WorldWideScience

Sample records for spect single photon

  1. Single photon emission computerized tomography (SPECT)

    Ganatra, R.D.

    1992-01-01

    Tomography in nuclear medicine did not originate after the introduction of X-ray computerized tomography (CT). Even in the days of rectilinear scanner, tomography was attempted with multiple detector heads rotating around the patient, but the counts at each plane were never very high to obtain a satisfactory image. A high resolution focusing collimator can look at different depths but taking several slices in one projection was a time consuming process. Rectilinear scanners lose lot of counts in the collimator to look at one point, at on time, in one plane. It is true that attempts to do tomography with gamma camera really got a boost after the success of CT. By that time, algorithms for doing reconstruction of images also were highly refined and for advanced. Clinical application of SPECT has become widespread now, because of the development of suitable radiopharmaceuticals and improvement in instrumentation. The SPECT provides a direct measure of regional organ function and is performed with nuclides such as 123 I and 99 Tc m that emit a mono-image photon during their decay. SPECT is far less expensive than positron emission tomography

  2. Single photon emission computerized tomography (SPECT)

    Ganatra, R D

    1993-12-31

    Tomography in nuclear medicine did not originate after the introduction of X-ray computerized tomography (CT). Even in the days of rectilinear scanner, tomography was attempted with multiple detector heads rotating around the patient, but the counts at each plane were never very high to obtain a satisfactory image. A high resolution focusing collimator can look at different depths but taking several slices in one projection was a time consuming process. Rectilinear scanners lose lot of counts in the collimator to look at one point, at on time, in one plane. It is true that attempts to do tomography with gamma camera really got a boost after the success of CT. By that time, algorithms for doing reconstruction of images also were highly refined and for advanced. Clinical application of SPECT has become widespread now, because of the development of suitable radiopharmaceuticals and improvement in instrumentation. The SPECT provides a direct measure of regional organ function and is performed with nuclides such as {sup 123}I and {sup 99}Tc{sup m} that emit a mono-image photon during their decay. SPECT is far less expensive than positron emission tomography

  3. Proceedings of clinical SPECT [single photon emission computed tomography] symposium

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base

  4. Quantification in single photon emission computed tomography (SPECT)

    Buvat, Irene

    2005-01-01

    The objective of this lecture is to understand the possibilities and limitations of the quantitative analysis of single photon emission computed tomography (SPECT) images. It is also to identify the conditions to be fulfilled to obtain reliable quantitative measurements from images. Content: 1 - Introduction: Quantification in emission tomography - definition and challenges; quantification biasing phenomena; 2 - quantification in SPECT, problems and correction methods: Attenuation, scattering, un-stationary spatial resolution, partial volume effect, movement, tomographic reconstruction, calibration; 3 - Synthesis: actual quantification accuracy; 4 - Beyond the activity concentration measurement

  5. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  6. Single-Photon Emission Computed Tomography (SPECT) in childhood epilepsy

    Gulati, Sheffali; Kalra, Veena; Bal, C.S.

    2000-01-01

    The success of epilepsy surgery is determined strongly by the precise location of the epileptogenic focus. The information from clinical electrophysiological data needs to be strengthened by functional neuroimaging techniques. Single photon emission computed tomography (SPECT) available locally has proved useful as a localising investigation. It evaluates the regional cerebral blood flow and the comparison between ictal and interictal blood flow on SPECT has proved to be a sensitive nuclear marker for the site of seizure onset. Many studies justify the utility of SPECT in localising lesions to possess greater precision than interictal scalp EEG or anatomic neuroimaging. SPECT is of definitive value in temporal lobe epilepsy. Its role in extratemporal lobe epilepsy is less clearly defined. It is useful in various other generalized and partial seizure disorders including epileptic syndromes and helps in differentiating pseudoseizures from true seizures. The need for newer radiopharmaceutical agents with specific neurochemical properties and longer shelf life are under investigation. Subtraction ictal SPECT co-registered to MRI is a promising new modality. (author)

  7. 123I-IMP single photon emission computed tomography (SPECT) study in childhood epilepsy

    Hara, Masafumi; Shimomura, Osamu; Kojima, Akihiro; Izunaga, Hiroshi; Tomiguchi, Seiji; Hirota, Yoshihisa; Taku, Keiichi; Miike, Teruhisa; Takahashi, Mutsumasa

    1990-01-01

    N-isopropyl-p[ 123 I]-iodoamphetamine (IMP) single photon emission computed tomography (SPECT), X-ray computed tomography (X-CT) and magnetic resonance imaging (MRI) were performed in 18 children with idiopathic seizures. In children with idiopathic seizures SPECT identified abnormal lesions in the highest rate (50%) compared with X-CT (11%) and MRI (13%), but the findings of SPECT poorly correlated with the foci on electroencephalography (EEG). Idiopathic epilepsy with abnormal uptake on SPECT was refractory to medical treatments and frequently associated with mental and/or developmental retardation. Perfusion defects identified on SPECT probably influenced the development of the brains in children. IMP SPECT is useful in the diagnosis and medical treatment in children with seizures. (author)

  8. Usefulness of isoproterenol stress thallium-201 myocardial single photon emission computed tomography (SPECT)

    Watanabe, Shigeyuki; Ajisaka, Ryuichi; Masuoka, Takeshi

    1990-01-01

    Twenty patients complaining of chest pain were referred for isoproterenol stress thallium-201 myocardial single photon emission computed tomography (ISO-SPECT). The findings were compared with those obtained from isoproterenol stress ECG testing (ISO-ECG) and exercise SPECT (EX-SPECT). Isoproterenol was iv injected in a dose of 0.02 μg/kg/min. The amount was continuously increased until limited by chest pain, ST depression, and/or determined heart rate criteria. The patients were scanned immediately and three hours after giving isoproterenol. Transient hypoperfusion was regarded as myocardial ischemia. Washout rate, obtained from circumferential profile analysis on the short axis SPECT images, was expressed by Bull's eye display. Fifteen patients with angiographically significant stenosis of 75% or greater were diagnosed as having coronary artery disease (CAD). The other five patients had normal coronary artery (NC). In diagnosing CAD, ISO-ECG and ISO-SPECT had a sensitivity of 80% and 92%, respectively. Because the NC group had negative findings for redistribution on ISO-SPECT, the specificy of ISO-SPECT seemed to be high. For multi-vessel disease, redistribution on ISO-SPECT tended to underestimate coronary lesions. The underestimation was, however, corrected by calculating washout rate. For evaluable 11 patients undergoing concurrent EX-SPECT, ISP-SPECT was equivalent or superior to EX-SPECT in diagnostic sensitivity. None of the patients had severe side effects of isoproterenol, except for some having arrhythmia. The results indicated that ISO-SPECT is a safe, high sensitive diagnostic approach that is comparable to Ex-SPECT. (N.K.)

  9. Single photon emission computed tomography (SPECT) in seizure disorders in childhood

    Vles, J.S.H.; Demandt, E.; Ceulemans, B.; de Roo, M.; Casaer, P.J.M.

    1990-01-01

    In 38 children with partial seizures, the EEG, CT and NMR findings were compared to the results obtained with Tc99m HMPAO single photon emission computed tomography (SPECT) in order to determine whether SPECT is a useful adjunct to EEG, CT and NMR in this age group. In 3 out of 7 patients with a normal EEG, SPECT showed focal abnormalities. Nine patients whose EEGs did not show adequate lateralization had an abnormal SPECT which revealed a focus. In 14 out of 21 patients with a normal CT, SPECT showed focal changes in 13 patients and diffuse changes in the other one. In 7 out of 12 patients with a normal NMR, SPECT showed focal abnormalities. Although clinical history and a careful description of the seizures are the most valuable information in partial seizure disorders, SPECT imaging gives valuable additional information, which might target treatment. SPECT was superior to CT and NMR with respect to the depiction of some kind of abnormality. (author)

  10. Single-photon emission tomography (SPECT) with 123I-amphetamine in cerebral ischemia

    Koenig, B.; Donis, J.; Mostbeck, A.; Koehn, H.

    1987-01-01

    The uptake of 123 I-amphetamine (IMP) in brain mainly corresponds to regional perfusion. Distribution of IMP can be visualized in tomographic slices by single-photon emission computed tomography (SPECT). For better evaluation and comparison in follow-up studies, right/left ratios were computed and an asymmetry index calculated. The most sensitive asymmetry index was achieved by 120 average circumferential profiles. In 52 patients with stroke and 16 controls the respective sensitivities of IMP-SPECT, computed tomography (CT), static and dynamic brain scanning and angiography were evaluated. In patients with TIA and PRIND the IMP-SPECT had the highest sensitivity of all non-invasive methods. In patients with completed stroke, the sensitivity of IMP-SPECT was comparable with that of CT (90 vs. 93%). There was a significant correlation between the IMP asymmetry index and the clinical and social score (p [de

  11. Single photon emission computed tomography (SPECT) in neurocysticercosis

    Braga, Francisco Jose H. N; Santos, Antonio C; Takanayagui, Oswaldo M; Agapejev, Svetlana; Maes, A

    2002-01-01

    Neurocysticercosis (NC) is a parasitic infectious disease caused by Taenia solium eggs that set in the brain. Its incidence is increasing both in the developing and the developed world, as a result of low economical and hygiene levels and immigration, respectively. Clinical manifestation of disease varies from no symptoms to epilepsy, increased intra-cranial pressure, arachnoiditis and dementia. In order to evaluate function (perfusion) of affected brains, we studied 40 patients (21 females and 19 males, 19-71 yo) by means of SPECT (ECD, ethyl cysteinate dimer, labelled with 99mTc) and with and without contrast CT. SPECT studies were all abnormal. No difference was noted between active and inactive disease. Two SPECT patterns were noted: a) several areas of focally reduced uptake, resulting from coalescent and big lesions and large destruction of brain tissue (small, isolated and symmetric cysts seen in CT were missed by SPECT); b) diffuse atrophy with reduction of the tracer uptake, associated with ventricle dilatation, corresponding to the cases where ventricular NC was important. Interestingly, we noted diffuse hypoperfusion, with the scintigraphic pattern of atrophy in 5 cases of massive parenchymal infection; in such cases, CT signs of atrophy were clearly less prominent. The first scintigraphic aspect can be explained by the destruction of large areas of brain, which produces focal absence of perfusion; generalised vasculitis and the destruction of large portions of brain tissue could explain the difference noted between the SPECT and the CT aspects in the 5 cases of massive parenchimal infection, and this may be interesting for prognosis. Dilatation of ventricles and Sylvian fissures were interestingly prominent in SPECT. SPECT may be of great value to evaluate brain perfusion in NC (Au)

  12. Single-Photon Emission Computerized Tomography (SPECT in Neuropsychiatry: A Review

    B. K. Puri

    1992-01-01

    Full Text Available Cranial single-photon emission computerized tomography (SPECT or SPET can now give regional cerebral blood flow images with a resolution approaching that of positron emission tomography (PET. In this paper, the use of high resolution SPECT neuroimaging in neuropsychiatric disorders, including Alzheimer's disease, multi-infarct dementia, Pick's disease, progressive supranuclear palsy, Korsakoff's psychosis, Creutzfeld-Jakob disease, Parkinson's disease, Huntington's disease, schizophrenia, mood disorders, obsessive–compulsive disorder, HIV infection and AIDS is reviewed. Finally, further potential research and clinical uses, based on ligand studies, are outlined.

  13. Single-photon emission computed tomography (SPECT) in oediatric migraine

    Battistella, P.A.; Pitassi, I.; Ruffilli, R.; Boniver, C.; Suppiej, A.; Casara, G.

    1989-01-01

    Cerebral blood flow in pediatric patients suffering from different types of migraine is analyzed by SPECT with 99m Tc HM-PAO, during the pain free intervals. The results indicate that such studies may give further information toward the understanding of common and classic forms of migraine and the difference in the CBF patterns of these forms support the hypothesis of a possible different pathogenesis. (H.W.). 13 refs.; 1 tab

  14. A comparative study of attenuation correction algorithms in single photon emission computed tomography (SPECT)

    Murase, Kenya; Itoh, Hisao; Mogami, Hiroshi; Ishine, Masashiro; Kawamura, Masashi; Iio, Atsushi; Hamamoto, Ken

    1987-01-01

    A computer based simulation method was developed to assess the relative effectiveness and availability of various attenuation compensation algorithms in single photon emission computed tomography (SPECT). The effect of the nonuniformity of attenuation coefficient distribution in the body, the errors in determining a body contour and the statistical noise on reconstruction accuracy and the computation time in using the algorithms were studied. The algorithms were classified into three groups: precorrection, post correction and iterative correction methods. Furthermore, a hybrid method was devised by combining several methods. This study will be useful for understanding the characteristics limitations and strengths of the algorithms and searching for a practical correction method for photon attenuation in SPECT. (orig.)

  15. Regional cerebral blood flow in status epileptics measured by single photon emission computed tomography (SPECT)

    Ichiseki, Hajime; Terashi, Akiro; Hamamoto, Makoto; Miyazaki, Tokuzo.

    1995-01-01

    We have performed single photon emission computed tomography (SPECT) with 99m Tc-hexamethylpropylene amineoxime (HM-PAO) to evaluate regional cerebral blood flow (rCBF) in status epileptics (SE) caused by a cerebral vascular accident. In addition, we have discussed the neurophysiology of SE based on the SPECT findings. A total of sixteen patients (5 males and 11 females, average age; 78.2 years old) with SE who were suffering from prolonged consciousness disturbance were investigated. When SPECT was performed in the ictal state, there was a remarkable increase in radio isotope (RI) uptake at the focus which correlated well with EEG findings. However, in other cortical regions, basal ganglia and thalamus, there was a relatively demonstrated decrease in RI uptake compared with that of the focus. Additionally in the interictal state, we found a decrease in RI uptake in the epileptic foci and normal recovery of the RI uptake level in other cerebral regions. We speculate that these characteristic patterns of cerebral blood flow distribution shown by SPECT scans in the ictal state reflect the state of consciousness disturbance due to SE. In general, in the elderly, it is difficult to make a differential diagnosis between prolonged consciousness disturbance due to nonconvulsive SE and other diseases such as cardiovascular diseases, dehydration, metabolic disorder, etc. Nevertheless, nonconvulsive SE causes diffuse cell loss and irreversible brain damage. Therefore the elderly who have suffered from prolonged consciousness disturbance due to SE need an exact diagnosis and immediate medical treatment. When we diagnose a nonconvulsive SE, the characteristic findings of SPECT scans in the ictal state are very clear and useful. In conclusion, SPECT is a very simple and non-invasive method that demonstrates abnormalities of brain function exactly. Therefore, we should perform not only EEC but also SPECT scans when making a diagnosis of SE. (author)

  16. Regional cerebral blood flow in status epileptics measured by single photon emission computed tomography (SPECT)

    Ichiseki, Hajime; Terashi, Akiro [Nippon Medical School, Tokyo (Japan); Hamamoto, Makoto; Miyazaki, Tokuzo

    1995-12-01

    We have performed single photon emission computed tomography (SPECT) with {sup 99m}Tc-hexamethylpropylene amineoxime (HM-PAO) to evaluate regional cerebral blood flow (rCBF) in status epileptics (SE) caused by a cerebral vascular accident. In addition, we have discussed the neurophysiology of SE based on the SPECT findings. A total of sixteen patients (5 males and 11 females, average age; 78.2 years old) with SE who were suffering from prolonged consciousness disturbance were investigated. When SPECT was performed in the ictal state, there was a remarkable increase in radio isotope (RI) uptake at the focus which correlated well with EEG findings. However, in other cortical regions, basal ganglia and thalamus, there was a relatively demonstrated decrease in RI uptake compared with that of the focus. Additionally in the interictal state, we found a decrease in RI uptake in the epileptic foci and normal recovery of the RI uptake level in other cerebral regions. We speculate that these characteristic patterns of cerebral blood flow distribution shown by SPECT scans in the ictal state reflect the state of consciousness disturbance due to SE. In general, in the elderly, it is difficult to make a differential diagnosis between prolonged consciousness disturbance due to nonconvulsive SE and other diseases such as cardiovascular diseases, dehydration, metabolic disorder, etc. Nevertheless, nonconvulsive SE causes diffuse cell loss and irreversible brain damage. Therefore the elderly who have suffered from prolonged consciousness disturbance due to SE need an exact diagnosis and immediate medical treatment. When we diagnose a nonconvulsive SE, the characteristic findings of SPECT scans in the ictal state are very clear and useful. In conclusion, SPECT is a very simple and non-invasive method that demonstrates abnormalities of brain function exactly. Therefore, we should perform not only EEC but also SPECT scans when making a diagnosis of SE. (author).

  17. Patient motion correction for single photon emission computed tomography (SPECT)

    Geckle, W.J.; Becker, L.C.; Links, J.M.; Frank, T.

    1986-01-01

    An investigation has been conducted to develop and validate techniques for the correction of projection images in SPECT studies of the myocardium subject to misalignment due to voluntary patient motion. The problem is frequently encountered due to the uncomfortable position the patient must assume during the 30 minutes required to obtain a 180 degree set of projection images. The reconstruction of misaligned projections can lead to troublesome artifacts in reconstructed images and degrade the diagnostic potential of the procedure. Significant improvement in the quality of heart reconstructions has been realized with the implementation of an algorithm to provide detection of and correction for patient motion. Normal, involuntary motion is not corrected for, however, since such movement is below the spatial resolution of the thallium imaging system under study. The algorithm is based on a comparison of the positions of an object in a set of projection images to the known, sinusoidal trajectory of an off-axis fixed point in space. Projection alignment, therefore, is achieved by shifting the position of a point or set of points in a projection image to the sinusoid of a fixed position in space

  18. Physical factors affecting single photon emission computed tomography (SPECT) applied in nuclear medicine

    Farag, H.I.; Khalil, W.A.; Hassan, R.A.

    2003-01-01

    many physical factors degrade single photon emission computed tomography (SPECT) images both qualitatively and quantitatively. Physical properties important for the assessment of the potential of emission computed tomography implemented by collimated detector systems include sensitivity, statistical and angular sampling requirements, attenuation compensation, resolution, uniformity, and multisection design constraints. SPECT has highlighted the used to improve gamma camera performance. Flood field nonuniformity is translated into tomographic the need to improve gamma camera performance. Flood field nonuniformity is translated into tomographic images as major artifacts because it distorts the data obtained at each projection. Also, poor energy resolution translates directly into degraded spatial resolution through reduced ability to reject scattered photons on the basic of pluses height analysis. The aim of this work is study the different and most important acquisition and processing parameters, which affect the quality of the SPECT images. The present study investigates the various parameters effecting SPECT images and experimental results demonstrate that: daily uniformity checks and evaluation are essential to ensure that the SPECT system is working properly. The Core used in the reconstruction process could be correct to avoid data misalignment. 60 mumblers of views gave the best image quality, rather than 20 or 30 views. Time per view (TPV) 30 or 20 sec gave a good image quality, rather than high-resolution collimator, is recommended in order to provide good spatial resolution. On the other hand patient motion could cause serious reconstruction artifacts. A cine display is recommended to identify movement artifacts. In the case of matrix size, matrix 128x128 give the best resolution than matrix 64x64. Energy window width, 15% compared with the standard 20% improved the resolution. Butter worth filter (cut off 0.57 cyc/cm with order 6 ) give the best resolution

  19. Bone single photon emission computed tomography (SPECT in a patient with Pancoast tumor: a case report

    Hamid Javadi

    Full Text Available CONTEXT: Non-small cell lung carcinomas (NSCLCs of the superior sulcus are considered to be the most challenging type of malignant thoracic disease. In this disease, neoplasms originating mostly from the extreme apex of the lung expand to the chest wall and thoracic inlet structures. Multiple imaging procedures have been applied to identify tumors and to stage and predict tumor resectability in surgical operations. Clinical examinations to localize pain complaints in shoulders and down the arms, and to screen for Horner's syndrome and abnormalities seen in paraclinical assessments, have been applied extensively for differential diagnosis of superior sulcus tumors. Although several types of imaging have been utilized for diagnosing and staging Pancoast tumors, there have been almost no reports on the efficiency of whole-body bone scans (WBBS for detecting the level of abnormality in cases of superior sulcus tumors. CASE REPORT: We describe a case of Pancoast tumor in which technetium-99m methylene diphosphonate (Tc-99m MDP bone single-photon emission-computed tomography (SPECT was able to accurately detect multiple areas of abnormality in the vertebrae and ribs. In describing this case, we stress the clinical and diagnostic points, in the hope of stimulating a higher degree of suspicion and thereby facilitating appropriate diagnosis and treatment. From the results of this study, further clinical trials to evaluate the potential of SPECT as an efficient imaging tool for the work-up on cases of Pancoast tumor are recommended.

  20. Three-dimensional SPECT [single photon emission computed tomography] reconstruction of combined cone beam and parallel beam data

    Jaszczak, R.J.; Jianying Li; Huili Wang; Coleman, R.E.

    1992-01-01

    Single photon emission computed tomography (SPECT) using cone beam (CB) collimation exhibits increased sensitivity compared with acquisition geometries using parallel (P) hole collimation. However, CB collimation has a smaller field-of-view which may result in truncated projections and image artifacts. A primary objective of this work is to investigate maximum likelihood-expectation maximization (ML-EM) methods to reconstruct simultaneously acquired parallel and cone beam (P and CB) SPECT data. Simultaneous P and CB acquisition can be performed with commercially available triple camera systems by using two cone-beam collimators and a single parallel-hole collimator. The loss in overall sensitivity (relative to the use of three CB collimators) is about 15 to 20%. The authors have developed three methods to combine P and CB data using modified ML-EM algorithms. (author)

  1. Thallium-201 single photon emission computed tomography (SPECT) in patients with Duchenne's progressive muscular dystrophy. A histopathologic correlation study

    Nishimura, Toru; Yanagisawa, Atsuo; Sakata, Konomi; Shimoyama, Katsuya; Yoshino, Hideaki; Ishikawa, Kyozo; Sakata, Hitomi; Ishihara, Tadayuki

    2001-01-01

    The pathomorphologic mechanism responsible for abnormal perfusion imaging during thallium-201 myocardial single photon emission computed tomography ( 201 Tl-SPECT) in patients with Duchenne's progressive muscular dystrophy (DMD) was investigated. Hearts from 7 patients with DMD were evaluated histopathologically at autopsy and the results correlated with findings on initial and delayed resting 201 Tl-SPECT images. The location of segments with perfusion defects correlated with the histopathologically abnormal segments in the hearts. Both the extent and degree of myocardial fibrosis were severe, especially in the posterolateral segment of the left ventricle. Severe transmural fibrosis and severe fatty infiltration were common in segments with perfusion defects. In areas of redistribution, the degree of fibrosis appeared to be greater than in areas of normal perfusion; and intermuscular edema was prominent. Thus, the degree and extent of perfusion defects detected by 201 Tl-SPECT were compatible with the histopathology. The presence of the redistribution phenomenon may indicate ongoing fibrosis. Initial and delayed resting 201 Tl-SPECT images can predict the site and progress of myocardial degeneration in patients with DMD. (author)

  2. Single photon emission computed tomography (SPECT of anxiety disorders before and after treatment with citalopram

    Seedat Soraya

    2004-10-01

    Full Text Available Abstract Background Several studies have now examined the effects of selective serotonin reuptake inhibitor (SSRI treatment on brain function in a variety of anxiety disorders including obsessive-compulsive disorder (OCD, posttraumatic stress disorder (PTSD, and social anxiety disorder (social phobia (SAD. Regional changes in cerebral perfusion following SSRI treatment have been shown for all three disorders. The orbitofrontal cortex (OFC (OCD, caudate (OCD, medial pre-frontal/cingulate (OCD, SAD, PTSD, temporal (OCD, SAD, PTSD and, thalamic regions (OCD, SAD are some of those implicated. Some data also suggests that higher perfusion pre-treatment in the anterior cingulate (PTSD, OFC, caudate (OCD and antero-lateral temporal region (SAD predicts subsequent treatment response. This paper further examines the notion of overlap in the neurocircuitry of treatment and indeed treatment response across anxiety disorders with SSRI treatment. Methods Single photon emission computed tomography (SPECT using Tc-99 m HMPAO to assess brain perfusion was performed on subjects with OCD, PTSD, and SAD before and after 8 weeks (SAD and 12 weeks (OCD and PTSD treatment with the SSRI citalopram. Statistical parametric mapping (SPM was used to compare scans (pre- vs post-medication, and responders vs non-responders in the combined group of subjects. Results Citalopram treatment resulted in significant deactivation (p = 0.001 for the entire group in the superior (t = 4.78 and anterior (t = 4.04 cingulate, right thalamus (t = 4.66 and left hippocampus (t = 3.96. Deactivation (p = 0.001 within the left precentral (t = 4.26, right mid-frontal (t = 4.03, right inferior frontal (t = 3.99, left prefrontal (3.81 and right precuneus (t= 3.85 was more marked in treatment responders. No pattern of baseline activation distinguished responders from non-responders to subsequent pharmacotherapy. Conclusions Although each of the anxiety disorders may be mediated by different

  3. Sensitivity and Specificity of Dual-Isotope 99mTc-Tetrofosmin and 123I Sodium Iodide Single Photon Emission Computed Tomography (SPECT) in Hyperparathyroidism.

    Sommerauer, Michael; Graf, Carmen; Schäfer, Niklaus; Huber, Gerhard; Schneider, Paul; Wüthrich, Rudolf; Schmid, Christoph; Steinert, Hans

    2015-01-01

    Despite recommendations for 99mTc-tetrofosmin dual tracer imaging for hyperparathyroidism in current guidelines, no report was published on dual-isotope 99mTc-tetrofosmin and 123I sodium iodide single-photon-emission-computed-tomography (SPECT). We evaluated diagnostic accuracy and the impact of preoperative SPECT on the surgical procedures and disease outcomes. Analysis of 70 consecutive patients with primary hyperparathyroidism and 20 consecutive patients with tertiary hyperparathyroidism. Imaging findings were correlated with surgical results. Concomitant thyroid disease, pre- and postoperative laboratory measurements, histopathological results, type and duration of surgery were assessed. In primary hyperparathyroidism, SPECT had a sensitivity of 80% and a positive predictive value of 93% in patient-based analysis. Specificity was 99% in lesion-based analysis. Patients with positive SPECT elicit higher levels of parathyroid hormone and higher weight of resected parathyroids than SPECT-negative patients. Duration of parathyroid surgery was on average, approximately 40 minutes shorter in SPECT-positive than in SPECT-negative patients (89 ± 46 vs. 129 ± 41 minutes, p = 0.006); 86% of SPECT-positive and 50% of SPECT-negative patients had minimal invasive surgery (p = 0.021). SPECT had lower sensitivity (60%) in patients with tertiary hyperparathyroidism; however, 90% of these patients had multiple lesions and all of these patients had bilateral lesions. Dual-isotope SPECT with 99mTc-tetrofosmin and 123I sodium iodide has a high diagnostic value in patients with primary hyperparathyroidism and allows for saving of operation time. Higher levels of parathyroid hormone and higher glandular weight facilitated detection of parathyroid lesion. Diagnostic accuracy of preoperative imaging was lower in patients with tertiary hyperparathyroidism.

  4. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences

    Jaszczak, Ronald Jack

    2006-01-01

    The origin of SPECT can be found in pioneering experiments on emission tomography performed approximately 50 years ago. This historical review consists of a compilation of first person recollections from nine trailblazing scientists who shaped the early years of SPECT instrumentation during the 1960s and 1970s. (review)

  5. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences

    Jaszczak, Ronald Jack [Duke University Medical Center, Durham, NC 27710 (United States)

    2006-07-07

    The origin of SPECT can be found in pioneering experiments on emission tomography performed approximately 50 years ago. This historical review consists of a compilation of first person recollections from nine trailblazing scientists who shaped the early years of SPECT instrumentation during the 1960s and 1970s. (review)

  6. REVIEW: The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences

    Jaszczak, Ronald Jack

    2006-07-01

    The origin of SPECT can be found in pioneering experiments on emission tomography performed approximately 50 years ago. This historical review consists of a compilation of first person recollections from nine trailblazing scientists who shaped the early years of SPECT instrumentation during the 1960s and 1970s.

  7. The early years of single photon emission computed tomography (SPECT): an anthology of selected reminiscences.

    Jaszczak, Ronald Jack

    2006-07-07

    The origin of SPECT can be found in pioneering experiments on emission tomography performed approximately 50 years ago. This historical review consists of a compilation of first person recollections from nine trailblazing scientists who shaped the early years of SPECT instrumentation during the 1960s and 1970s.

  8. Brain areas involved in acupuncture needling sensation of de qi: a single-photon emission computed tomography (SPECT) study.

    Chen, Jia-Rong; Li, Gan-Long; Zhang, Gui-Feng; Huang, Yong; Wang, Shu-Xia; Lu, Na

    2012-12-01

    De qi is a sensory response elicited by acupuncture stimulation. According to traditional Chinese medicine (TCM), de qi is essential for clinical efficacy. However, the understanding of the neurobiological basis of de qi is still limited. To investigate the relationship between brain activation and de qi by taking a single-photon emission computed tomography (SPECT) scan while applying acupuncture at TE5. A total of 24 volunteers were randomly divided into 4 groups, and received verum or sham acupuncture at true acupuncture point TE5 or a nearby sham point according to grouping. All subjects then received a (99m)Tc-ethylcysteinate dimer (ECD) SPECT scan. All six subjects in the verum acupuncture at true acupuncture point group experienced de qi sensation; in contrast, all six subjects in the sham acupuncture at the sham point group responded with nothing other than non-sensation. Compared to the scan results from subjects who experienced non-sensation, SPECT scans from subjects with de qi sensation demonstrated significant activated points mainly located in brodmann areas 6, 8, 19, 21, 28, 33, 35, 37, 47, the parahippocampal gyrus, lentiform nucleus, claustrum and red nucleus; deactivated points were seen in brodmann areas 9 and 25. Verum acupuncture at true acupuncture points is more likely to elicit de qi sensation. De qi sensations mainly resulted in brain area activations, but not deactivations. These brain areas are related to the curative effect of Te5. The acupuncture needle sensations of de qi and sharp pain are associated with different patterns of activations and deactivations in the brain.

  9. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  10. Three-dimensional single-photon emission computed tomography using cone beam collimation (CB-SPECT)

    Jaszczak, R.J.; Floyd, C.E. Jr.; Manglos, S.H.; Greer, K.L.; Coleman, R.E.

    1986-01-01

    A simple and economically practical method of improving the sensitivity of camera-based SPECT was developed using converging (cone-beam) collimation. This geometry is particularly advantageous for SPECT devices using large field-of-view cameras in imaging smaller, centrally located activity distributions. Geometric sensitivities, spatial resolutions, and fields-of-view of a cone-beam collimator having a focal length of 48 cm and a similarly designed parallel hole collimator were compared analytically. At 15 cm from the collimator surface the point-source sensitivity of the cone-beam collimator was 2.4 times the sensitivity of the parallel-hole collimator. SPECT projection data (simulated using Monte Carlo methodology) were reconstructed using a 3-D filtered backprojection algorithm. Cone-beam emission CT (CB-SPECT) seems potentially useful for animal investigations, pediatric studies, and for brain imaging

  11. The significance of the bone single photon emission computed tomography (SPECT) for lumbar spondylolysis in adolescence

    Habaguchi, Tatsuya; Hashimoto, Tomoyuki; Tada, Hiroshi; Ohkoshi, Yasumitsu; Shigenobu, Keiichi; Takemitsu, Masakazu; Yamane, Shigeru [Hakodate Central General Hospital, Hokkaido (Japan)

    1999-05-01

    The usefulness of the bone SPECT was examined by the comparison with the simple radiographs and the planar and the SPECT images of the bone scintigram obtained from cases which were diagnosed as the lumbar spondylolysis. Subjects were 36 patients (male: 26, female: 10, age: from 7 to 19 years, mean age: 15.6 years). The have had the sports experience and complained of low back pain for more than two months with no lower limb pain. The bone SPECT was more useful in the early detection of the lumbar spondylolysis in adolescence than the planar examination. It was also usefulness in the planning of the treatment including the restriction of exercise and the treatment by the equipments. It seemed to be useful to observe the progress of the treatment in the conservative treatment. But the bone SPECT is expensive, and the problems of the exposure and the equipments remain unsolved. So the bone SPECT should be performed restricting the cases under the consideration of ages, the sports experience and the duration of the lower back pain. (K.H.)

  12. The significance of the bone single photon emission computed tomography (SPECT) for lumbar spondylolysis in adolescence

    Habaguchi, Tatsuya; Hashimoto, Tomoyuki; Tada, Hiroshi; Ohkoshi, Yasumitsu; Shigenobu, Keiichi; Takemitsu, Masakazu; Yamane, Shigeru

    1999-01-01

    The usefulness of the bone SPECT was examined by the comparison with the simple radiographs and the planar and the SPECT images of the bone scintigram obtained from cases which were diagnosed as the lumbar spondylolysis. Subjects were 36 patients (male: 26, female: 10, age: from 7 to 19 years, mean age: 15.6 years). The have had the sports experience and complained of low back pain for more than two months with no lower limb pain. The bone SPECT was more useful in the early detection of the lumbar spondylolysis in adolescence than the planar examination. It was also usefulness in the planning of the treatment including the restriction of exercise and the treatment by the equipments. It seemed to be useful to observe the progress of the treatment in the conservative treatment. But the bone SPECT is expensive, and the problems of the exposure and the equipments remain unsolved. So the bone SPECT should be performed restricting the cases under the consideration of ages, the sports experience and the duration of the lower back pain. (K.H.)

  13. Single photon emission tomography

    Buvat, Irene

    2011-09-01

    The objective of this lecture is to present the single photon emission computed tomography (SPECT) imaging technique. Content: 1 - Introduction: anatomic, functional and molecular imaging; Principle and role of functional or molecular imaging; 2 - Radiotracers: chemical and physical constraints, main emitters, radioisotopes production, emitters type and imaging techniques; 3 - Single photon emission computed tomography: gamma cameras and their components, gamma camera specifications, planar single photon imaging characteristics, gamma camera and tomography; 4 - Quantification in single photon emission tomography: attenuation, scattering, un-stationary spatial resolution, partial volume effect, movements, others; 5 - Synthesis and conclusion

  14. Comparison of Single-Photon Emission Computed Tomography-Computed Tomography (SPECT/CT) and Conventional Planar Lymphoscintigraphy for Sentinel Node Localization in Patients with Cutaneous Malignancies.

    Doepker, Matthew P; Yamamoto, Maki; Applebaum, Matthew A; Patel, Nupur U; Jaime Montilla-Soler, M; Sarnaik, Amod A; Wayne Cruse, C; Sondak, Vernon K; Zager, Jonathan S

    2017-02-01

    Accurate preoperative lymphoscintigraphy is vital to performing sentinel lymph node biopsy (SLNB) for cutaneous malignancies. Potential advantages of single-photon emission computed tomography with integrated computed tomography (SPECT/CT) include the ability to readily identify aberrant drainage patterns as well as provide the surgeon with three-dimensional anatomic landmarks not seen on conventional planar lymphoscintigraphy (PLS). Patients with cutaneous malignancies who underwent SLNB with preoperative imaging using both SPECT/CT and PLS from 2011 to 2014 were identified. Both SPECT/CT and PLS were obtained in 351 patients (median age, 69 years; range, 5-94 years) with cutaneous malignancies (melanoma = 300, Merkel cell carcinoma = 33, squamous cell carcinoma = 8, other = 10) after intradermal injection of 99m technetium sulfur colloid (median dose 300 µCi). A mean of 4.3 hot spots were identified on SPECT/CT compared to 3.0 on PLS (p CT and PLS, while 172 (49 %) had additional hot spots identified on SPECT/CT compared to only 24 (6.8 %) additional on PLS. SPECT/CT demonstrated additional nodal basins in 103 patients (29.4 %), compared to only 11 patients (3.1 %) with additional basins on PLS. SPECT/CT is a useful adjunct that can help with sentinel node localization in challenging cases. It identified additional hot spots not seen on PLS in almost 50 % of patients. Because PLS identified hot spots not seen on SPECT/CT in 6.8 % of patients, we recommend using both modalities jointly. Long-term follow-up will be required to validate the clinical significance of the additional hot spots identified by SPECT/CT.

  15. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  16. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Mejia, J.; Reis, M.A.; Miranda, A.C.C.; Batista, I.R.; Barboza, M.R.F.; Shih, M.C.; Fu, G.; Chen, C.T.; Meng, L.J.; Bressan, R.A.; Amaro, E. Jr

    2013-01-01

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s -1 ·MBq -1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99m Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99m Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity

  17. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  18. Single-photon-emission-computed-tomography (SPECT) in basal ganglia disorders

    Tatsch, K.

    1997-01-01

    In the past, SPECT investigations of regional cerebral blood flow have played a minor role in the diagnostic work-up of patients with basal ganglia disorders. More recently, however, interest in nuclear medicine procedures has dramatically increased since with the development of selective receptor ligands diagnostic tools have been provided which address the pathology in basal ganglia disorders more specifically than other diagnostic modalities. Evaluations of the pre- and postsynaptic aspects of the dopaminergic system, for example, deliver not only interesting data from the scientific point of view but also for the daily routine work. This paper summarizes some of the experience reported in the literature on SPECT investigations in basal ganglia disorders, such as Parkinson's disease, parkinsonian syndromes of other etiology, Wilson's and Huntington's disease, focal dystonias, and schizophrenia under treatment with neuroleptics. (orig.) [de

  19. Evaluation of left ventricular function and volume in patients with dilated cardiomyopathy: Gated myocardial single-photon emission tomography (SPECT) versus echocardiography

    Berk, Fatma; Isgoren, S.; Demir, H.; Kozdag, G.; Ural, D.; Komsuoglu, B.

    2005-01-01

    Left ventricular function, volumes and regional wall motion provide valuable diagnostic information and are of long-term prognostic importance in patients with dilated cardiomyopathy (DCM). This study was designed to compare the effectiveness of 2D-echocardiography and gated single-photon emission tomography (SPECT) for evaluation of these parameters in patients with DCM. Gated SPECT and 2D-echocardiography were performed in 33 patients having DCM. Gated SPECT data, including left ventricular ejection fraction (LVEF), were processed using an automated algorithm. Standard technique was used for 2D-echocardiography. Regional wall motion was evaluated using both modalities and was scored by two independent observers using a 16-sement model with a 5-point scoring system. The overall agreement between the two imaging modalities for the assessment of regional wall motion was 56% (298/528 segments). With gated SPECT, LEVF, end-diastolic volume (EDV), and end-diastolic volume (EDV), and end-systolic volume (ESV) were 27+-9%, 217+-73mL, respectively, and 30.8%, 195+-58mL and, 137+-48 mL with echocardiography. The correlation between gated SPECT and 2-D-echocardiography was good (r=0.76, P<0.01) for the assessment of LVEF. The correlation for EDV and ESV were also good, but with wider limits of agreement (r=0.72, P<0.01 and r=0.73, P<0.01, respectively) and significantly higher values were obtained with gated SPECT (P<0.01). Gated SPECT and 2D-echocardiography correlate well for the assessment of LV function and LV volumes. Like 2D-echocardiography, gated SPECT provides reliable information about LV function and dimension with the additional advantage of perfusion data. (author)

  20. Prediction of sentinel lymph node status using single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging of breast cancer.

    Tomiguchi, Mai; Yamamoto-Ibusuki, Mutsuko; Yamamoto, Yutaka; Fujisue, Mamiko; Shiraishi, Shinya; Inao, Touko; Murakami, Kei-ichi; Honda, Yumi; Yamashita, Yasuyuki; Iyama, Ken-ichi; Iwase, Hirotaka

    2016-02-01

    Single-photon emission computed tomography (SPECT)/computed tomography (CT) improves the anatomical identification of sentinel lymph nodes (SNs). We aimed to evaluate the possibility of predicting the SN status using SPECT/CT. SN mapping using a SPECT/CT system was performed in 381 cases of clinically node-negative, operable invasive breast cancer. We evaluated and compared the values of SN mapping on SPECT/CT, the findings of other modalities and clinicopathological factors in predicting the SN status. Patients with SNs located in the Level I area were evaluated. Of the 355 lesions (94.8 %) assessed, six cases (1.6 %) were not detected using any imaging method. According to the final histological diagnosis, 298 lesions (78.2 %) were node negative and 83 lesions (21.7 %) were node positive. The univariate analysis showed that SN status was significantly correlated with the number of SNs detected on SPECT/CT in the Level I area (P = 0.0048), total number of SNs detected on SPECT/CT (P = 0.011), findings of planar lymphoscintigraphy (P = 0.011) and findings of a handheld gamma probe during surgery (P = 0.012). According to the multivariate analysis, the detection of multiple SNs on SPECT/CT imaging helped to predict SN metastasis. The number of SNs located in the Level I area detected using the SPECT/CT system may be a predictive factor for SN metastasis.

  1. Single photon emission computed tomography (SPECT): Clinical routine diagnosis of cerebral malfunction

    Neidl, K.F.W.

    1993-01-01

    Positron emission tomography is the gold standard for in vivo research in neurophysiology and pathology. The introduction of SPECT and the development of such tracers as 99m Tc-HMPAYO ( 99m Tc-d,l-hexamethylpropylenaminoxim) and, more recently, 123 I-iomazenil and 123 I-IBZM ( 123 I-3-iodo-6-methoxybenzamide) allowed closer examination of the perfusion of the brain and neuroreceptor density mapping in more than the few institutions that can afford PET and the production of special tracers marked with a positron emitting nucleus. Nuclear medicine's future will be based on neuroreceptor density mapping, as further tracers will become commercially available and no other technique can probably show such low concentrations of the receptors. Probably MR techniques will be used for brain's perfusion measurement in future. For examination of a limited cerebral region xenon-enhanced CT is an alternative to perfusion measurements with HMPAO, or a very interesting supplement. Of the old techniques in nuclear medicine, examination of the liquor dynamics is still feasible and well supplemented by SPECT. (orig./MG) [de

  2. Factors affecting volume calculation with single photon emission tomography (SPECT) method

    Liu, T.H.; Lee, K.H.; Chen, D.C.P.; Ballard, S.; Siegel, M.E.

    1985-01-01

    Several factors may influence the calculation of absolute volumes (VL) from SPECT images. The effect of these factors must be established to optimize the technique. The authors investigated the following on the VL calculations: % of background (BG) subtraction, reconstruction filters, sample activity, angular sampling and edge detection methods. Transaxial images of a liver-trunk phantom filled with Tc-99m from 1 to 3 μCi/cc were obtained in 64x64 matrix with a Siemens Rota Camera and MDS computer. Different reconstruction filters including Hanning 20,32, 64 and Butterworth 20, 32 were used. Angular samplings were performed in 3 and 6 degree increments. ROI's were drawn manually and with an automatic edge detection program around the image after BG subtraction. VL's were calculated by multiplying the number of pixels within the ROI by the slice thickness and the x- and y- calibrations of each pixel. One or 2 pixel per slice thickness was applied in the calculation. An inverse correlation was found between the calculated VL and the % of BG subtraction (r=0.99 for 1,2,3 μCi/cc activity). Based on the authors' linear regression analysis, the correct liver VL was measured with about 53% BG subtraction. The reconstruction filters, slice thickness and angular sampling had only minor effects on the calculated phantom volumes. Detection of the ROI automatically by the computer was not as accurate as the manual method. The authors conclude that the % of BG subtraction appears to be the most important factor affecting the VL calculation. With good quality control and appropriate reconstruction factors, correct VL calculations can be achieved with SPECT

  3. Optimization of pinhole single photon emission computed tomography (pinhole SPECT) reconstruction

    Israel-Jost, V.

    2006-11-01

    In SPECT small animal imaging, it is highly recommended to accurately model the response of the detector in order to improve the low spatial resolution. The volume to reconstruct is thus obtained both by back-projecting and de-convolving the projections. We chose iterative methods, which permit one to solve the inverse problem independently from the model's complexity. We describe in this work a Gaussian model of point spread function (PSF) whose position, width and maximum are computed according to physical and geometrical parameters. Then we use the rotation symmetry to replace the computation of P projection operators, each one corresponding to one position of the detector around the object, by the computation of only one of them. This is achieved by choosing an appropriate polar discretization, for which we control the angular density of voxels to avoid over-sampling the center of the field of view. Finally, we propose a new family of algorithms, the so-called frequency adapted algorithms, which enable to optimize the reconstruction of a given band in the frequency domain on both the speed of convergence and the quality of the image. (author)

  4. Retention index of thallium-201 single photon emission computerised tomography (SPECT) as an indicator of metastasis in adenocarcinoma of the lung.

    Takekawa, H.; Itoh, K.; Abe, S.; Ogura, S.; Isobe, H.; Sukou, N.; Furudate, M.; Kawakami, Y.

    1994-01-01

    We examined the relationship between the retention of thallium-201 (201Tl) on a delayed scan and the metastatic potential of adenocarcinomas of the lung. We studied 43 patients with adenocarcinoma of the lung and divided them into two groups according to the presence or absence of lymph node metastasis. 201Tl single photon emission computerised tomography (SPECT) was conducted twice: 15 min (early scan) and 120 min (delayed scan) after intravenous injection of 3 mCi of 201Tl chloride. We calculated the retention index in order to evaluate the degree of 201Tl retention in the primary tumour. The retention indices were significantly higher in the group that was positive for lymph node metastasis than in the negative group. In adenocarcinomas with high metastatic potential, 201Tl SPECT demonstrated slow washout or increased retention on the delayed scan. The retention index of 201Tl SPECT is a useful indicator of metastatic potential, thereby facilitating the prediction of prognosis, and provides insight into the relationship between 201Tl uptake and malignancy. This is the first report demonstrating a significant relationship between the retention of 201Tl SPECT and lymph node metastasis. Images Figure 1 PMID:8054281

  5. Thallium-201 single photon emission computed tomography (SPECT) in patients with Duchenne's progressive muscular dystrophy. A histopathologic correlation study

    Nishimura, Toru; Yanagisawa, Atsuo; Sakata, Konomi; Shimoyama, Katsuya; Yoshino, Hideaki; Ishikawa, Kyozo [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine; Sakata, Hitomi; Ishihara, Tadayuki

    2001-02-01

    The pathomorphologic mechanism responsible for abnormal perfusion imaging during thallium-201 myocardial single photon emission computed tomography ({sup 201}Tl-SPECT) in patients with Duchenne's progressive muscular dystrophy (DMD) was investigated. Hearts from 7 patients with DMD were evaluated histopathologically at autopsy and the results correlated with findings on initial and delayed resting {sup 201}Tl-SPECT images. The location of segments with perfusion defects correlated with the histopathologically abnormal segments in the hearts. Both the extent and degree of myocardial fibrosis were severe, especially in the posterolateral segment of the left ventricle. Severe transmural fibrosis and severe fatty infiltration were common in segments with perfusion defects. In areas of redistribution, the degree of fibrosis appeared to be greater than in areas of normal perfusion; and intermuscular edema was prominent. Thus, the degree and extent of perfusion defects detected by {sup 201}Tl-SPECT were compatible with the histopathology. The presence of the redistribution phenomenon may indicate ongoing fibrosis. Initial and delayed resting {sup 201}Tl-SPECT images can predict the site and progress of myocardial degeneration in patients with DMD. (author)

  6. MediSPECT: Single photon emission computed tomography system for small field of view small animal imaging based on a CdTe hybrid pixel detector

    Accorsi, R.; Autiero, M.; Celentano, L.

    2007-01-01

    We describe MediSPECT, a new scanner developed at University and INFN Napoli, for SPECT studies on small animals with a small field of view (FOV) and high spatial resolution. The CdTe pixel detector (a 256x256 matrix of 55 μm square pixels) operating in single photon counting for detection of gamma-rays with low and medium energy (e.g. 125 I, 27-35 keV, 99m Tc, 140 keV), is bump bonded to the Medipix2 readout chip. The FOV of the MediSPECT scanner with a coded aperture mask collimator ranges from 6.3 mm (system spatial resolution 110 μm at 27-35 keV) to 24.3 mm. With a 0.30 mm pinhole the FOV ranges from 2.4 to 29 mm (where the system spatial resolution is 1.0 mm at 27-35 keV and 2.0 mm at 140 keV). MediSPECT will be used for in vivo imaging of small organs or tissue structures in mouse, e.g., brain, thyroid, heart or tumor

  7. Regional cerebral blood flow assessed by single photon emission computed tomography (SPECT) in dogs with congenital portosystemic shunt and hepatic encephalopathy.

    Or, Matan; Peremans, Kathelijne; Martlé, Valentine; Vandermeulen, Eva; Bosmans, Tim; Devriendt, Nausikaa; de Rooster, Hilde

    2017-02-01

    Regional cerebral blood flow (rCBF) in eight dogs with congenital portosystemic shunt (PSS) and hepatic encephalopathy (HE) was compared with rCBF in eight healthy control dogs using single photon emission computed tomography (SPECT) with a 99m technetium-hexamethylpropylene amine oxime ( 99m Tc-HMPAO) tracer. SPECT scans were abnormal in all PSS dogs. Compared to the control group, rCBF in PSS dogs was significantly decreased in the temporal lobes and increased in the subcortical (thalamic and striatal) area. Brain perfusion imaging alterations observed in the dogs with PSS and HE are similar to those in human patients with HE. These findings suggest that dogs with HE and PSS have altered perfusion of mainly the subcortical and the temporal regions of the brain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Single photon emission computed tomography (SPECT) findings using N-isopropyl-p-[123I]iodoamphetamine (123I-IMP) in schizophrenia and atypical psychosis

    Suga, Hidemichi; Hayashi, Takuji; Mitsugi, Ohara

    1994-01-01

    As a basis for possible classification of schinzophrenic psychoses into schizophrenia and atypical psychosis, we studied the brain functional differences among 16 schizophrenic patients, 16 atypical psychosis patients and 16 healthy volunteers by single photon emission computed tomography (SPECT) using N-isopropyl-p-[ 123 I] iodoamphetamine. As a result, schizophrenics showed hypofrontality. On the other hand, atypical psychotics had no such hypofrontality but showed a reduced uptake rate in the right thalamic region. No influence of sex, duration of illness and medication was confirmed by the findings. The results suggest that schizophrenics might have some lesions in the frontal regions, whereas atypical psychotics might have no such lesions, but dysfunction in the right thalamic region. Consequently, the SPECT findings as least indicate possibly different etiologies for schizophrenia and atypical psychosis. (author)

  9. Single photon emission computed tomography (SPECT) findings using N-isopropyl-p-[{sup 123}I]iodoamphetamine ({sup 123}I-IMP) in schizophrenia and atypical psychosis

    Suga, Hidemichi; Hayashi, Takuji; Mitsugi, Ohara [Aichi Medical Univ., Nagakute (Japan)

    1994-12-01

    As a basis for possible classification of schinzophrenic psychoses into schizophrenia and atypical psychosis, we studied the brain functional differences among 16 schizophrenic patients, 16 atypical psychosis patients and 16 healthy volunteers by single photon emission computed tomography (SPECT) using N-isopropyl-p-[{sup 123}I] iodoamphetamine. As a result, schizophrenics showed hypofrontality. On the other hand, atypical psychotics had no such hypofrontality but showed a reduced uptake rate in the right thalamic region. No influence of sex, duration of illness and medication was confirmed by the findings. The results suggest that schizophrenics might have some lesions in the frontal regions, whereas atypical psychotics might have no such lesions, but dysfunction in the right thalamic region. Consequently, the SPECT findings as least indicate possibly different etiologies for schizophrenia and atypical psychosis. (author).

  10. Possibilities of the new hybrid technology single photon emission computer technology/computer tomography (SPECT/CT) and the first impressions of its application

    Kostadinova, I.

    2010-01-01

    With the help of the new hybrid technique SPECT/ CT it is possible, using the only investigation, to acquire a combine image of the investigated organ, visualizing its function and structure. Combining the possibilities of the new multimodality method, which combines the possibilities of the Single Photon Emission Computer Tomography - SPECT and Computer Tomography - CT, it is possible to precisely localize the pathologically changed organs function. With the further combination of the tomographic gamma camera with diagnostic CT, a detailed morphological evaluation of the finding was possible. The main clinical application of the new hybrid diagnostic is in the fields of cardiology, oncology, orthopedics with more and more extension of those, not connected with oncology, such as - thyroid, parathyroid, brain (especially localization of the epileptic foci), visualization of local infection and recently for the purposes of the radiotherapy planning. According to the literature data, around 35% of SPECT-investigations have to be combined with CT in order to increase the specificity of the diagnosis, which changes the interpretation of the result in 56% of the cases. After installation of the SPECT/CT camera in the University hospital 'Alexandrovska' in January 2009, the following changes have been done: the number of the investigated patients have increased, including number of heart, thyroid (especially scintigraphy with 131I), bones and parathyroid glands. As a result of the application of the hybrid technique, a shortage of the investigated time was realized and a decrease prize in comparison with the individual application of the investigations. Summarizing the literature data and the preliminary impression of the first multimodality scanner in our country in the University hospital 'Alexandrovska' it could be said, that there is continuously increasing information for the new clinical applications of SPECT/CT. It is now accepted, that its usage will increase in

  11. Single photon emission computed tomography (SPECT) findings using N-isopropyl-p-[123I]iodoamphetamine (123I-IMP) in schizophrenia and atypical psychosis

    Suga, Hidemichi

    1993-01-01

    Sixteen schizophrenic patients, 16 atypical psychosis patients, and 16 healthy volunteers were subjected to single photon emission computed tomography (SPECT) of the brain using N-isopropyl-p-[ 123 I]iodoamphetamine ( 123 I-IMP). The basal ganglia region was in particular examined not only in transverse sections, but in coronal sections. Schizophrenics showed significantly decreased uptake rates in the bilateral frontal regions and increased uptakes in the bilateral basal ganglia. On the other hand, atypical psychotics had a reduced uptake rate only in the right thalamic region, compared to the controls. The increased uptake rates in the basal ganglia were associated with auditory hallucination, but gender difference, duration of illness and dose of neuroleptics had no influence on these SPECT findings. The results suggest that schizophrenics might have some lesions in the frontal area of the brain, whereas atypical psychotics might have no lesion in the frontal region but dysfunction in the right thalamic region. Subsequently, using only SPECT findings, all the cases were divided by cluster analysis into 4 groups and a residue group. Schizophrenics distributed mainly in the 2 groups that have lesion in the frontal regions. Atypical psychotics distributed principally in the other 2 groups that have alterations in the bilateral thalamic region. The present study suggests that schizophrenia and atypical psychosis might have different etiologies. (author)

  12. Single photon emission computed tomography (SPECT) findings using N-isopropyl-p-[[sup 123]I]iodoamphetamine ([sup 123]I-IMP) in schizophrenia and atypical psychosis

    Suga, Hidemichi (Aichi Medical Univ., Nagakute (Japan))

    1993-05-01

    Sixteen schizophrenic patients, 16 atypical psychosis patients, and 16 healthy volunteers were subjected to single photon emission computed tomography (SPECT) of the brain using N-isopropyl-p-[[sup 123]I]iodoamphetamine ([sup 123]I-IMP). The basal ganglia region was in particular examined not only in transverse sections, but in coronal sections. Schizophrenics showed significantly decreased uptake rates in the bilateral frontal regions and increased uptakes in the bilateral basal ganglia. On the other hand, atypical psychotics had a reduced uptake rate only in the right thalamic region, compared to the controls. The increased uptake rates in the basal ganglia were associated with auditory hallucination, but gender difference, duration of illness and dose of neuroleptics had no influence on these SPECT findings. The results suggest that schizophrenics might have some lesions in the frontal area of the brain, whereas atypical psychotics might have no lesion in the frontal region but dysfunction in the right thalamic region. Subsequently, using only SPECT findings, all the cases were divided by cluster analysis into 4 groups and a residue group. Schizophrenics distributed mainly in the 2 groups that have lesion in the frontal regions. Atypical psychotics distributed principally in the other 2 groups that have alterations in the bilateral thalamic region. The present study suggests that schizophrenia and atypical psychosis might have different etiologies. (author).

  13. Correlation of uptake patterns on single-photon emission computed tomography/computed tomography (SPECT/CT)and treatment response in patients with knee pain

    Koh, Geon; Hwang, Kyung Hoon; Lee, Hae Jin; Kim, Seog Gyun; Lee, Beom Koo

    2016-01-01

    To determine whether treatment response in patients with knee pain could be predicted using uptake patterns on single-photon emission computed tomography/computed tomography (SPECT/CT) images. Ninety-five patients with knee pain who had undergone SPECT/CT were included in this retrospective study. Subjects were divided into three groups: increased focal uptake (FTU), increased irregular tracer uptake (ITU), and no tracer uptake (NTU). A numeric rating scale (NRS-11) assessed pain intensity. We analyzed the association between uptake patterns and treatment response using Pearson's chi-square test and Fisher's exact test. Uptake was quantified from SPECT/CT with region of interest (ROI) counting, and an intraclass correlation coefficient (ICC) calculated agreement. We used Student' t-test to calculate statistically significant differences of counts between groups and the Pearson correlation to measure the relationship between counts and initial NRS-1k1. Multivariate logistic regression analysis determined which variables were significantly associated with uptake. The FTU group included 32 patients; ITU, 39; and NTU, 24. With conservative management, 64 % of patients with increased tracer uptake (TU, both focal and irregular) and 36 % with NTU showed positive response. Conservative treatment response of FTU was better than NTU, but did not differ from that of ITU. Conservative treatment response of TU was significantly different from that of NTU (OR 3.1; p 0.036). Moderate positive correlation was observed between ITU and initial NRS-11. Age and initial NRS-11 significantly predicted uptake. Patients with uptake in their knee(s) on SPECT/CT showed positive treatment response under conservative treatment

  14. Correlation of uptake patterns on single-photon emission computed tomography/computed tomography (SPECT/CT)and treatment response in patients with knee pain

    Koh, Geon; Hwang, Kyung Hoon; Lee, Hae Jin; Kim, Seog Gyun; Lee, Beom Koo [Gachon University Gil Hospital, Incheon (Korea, Republic of)

    2016-06-15

    To determine whether treatment response in patients with knee pain could be predicted using uptake patterns on single-photon emission computed tomography/computed tomography (SPECT/CT) images. Ninety-five patients with knee pain who had undergone SPECT/CT were included in this retrospective study. Subjects were divided into three groups: increased focal uptake (FTU), increased irregular tracer uptake (ITU), and no tracer uptake (NTU). A numeric rating scale (NRS-11) assessed pain intensity. We analyzed the association between uptake patterns and treatment response using Pearson's chi-square test and Fisher's exact test. Uptake was quantified from SPECT/CT with region of interest (ROI) counting, and an intraclass correlation coefficient (ICC) calculated agreement. We used Student' t-test to calculate statistically significant differences of counts between groups and the Pearson correlation to measure the relationship between counts and initial NRS-1k1. Multivariate logistic regression analysis determined which variables were significantly associated with uptake. The FTU group included 32 patients; ITU, 39; and NTU, 24. With conservative management, 64 % of patients with increased tracer uptake (TU, both focal and irregular) and 36 % with NTU showed positive response. Conservative treatment response of FTU was better than NTU, but did not differ from that of ITU. Conservative treatment response of TU was significantly different from that of NTU (OR 3.1; p 0.036). Moderate positive correlation was observed between ITU and initial NRS-11. Age and initial NRS-11 significantly predicted uptake. Patients with uptake in their knee(s) on SPECT/CT showed positive treatment response under conservative treatment.

  15. Technetium-99m-HMPAO labeled leukocyte single photon emission computerized tomography (SPECT) for assessing Crohn's disease extent and intestinal infiltration.

    Biancone, L; Schillaci, O; Capoccetti, F; Bozzi, R M; Fina, D; Petruzziello, C; Geremia, A; Simonetti, G; Pallone, F

    2005-02-01

    Scintigraphy using radiolabeled leukocytes is a useful technique for assessing intestinal infiltration in Crohn's disease (CD). However, limits of planar images include overlapping activity in other organs and low specificity. To investigate the usefulness of (99m)Tc-HMPAO (hexametyl propylene amine oxime) labeled leukocyte single photon emission computerized tomography (SPECT) for assessing CD lesions, in comparison with planar images. Twenty-two inflammatory bowel disease patients (19 CD; 2 ulcerative colitis, UC; 1 ileal pouch) assessed by conventional endoscopy or radiology were enrolled. Leukocytes were labeled with (99m)Tc-HMPAO. SPECT images were acquired at 2 h and planar images at 30 min and 2 h. Bowel uptake was quantitated in nine regions (score 0-3). Both SPECT and planar images detected a negative scintigraphy (score 0) in the UC patient with no pouchitis and a positive scintigraphy (score 1-3) in the 21 patients showing active inflammation by conventional techniques. SPECT showed a higher global score than planar images (0.71 +/- 0.09 vs 0.30 +/- 0.05; p < 0.001), and in particular in the right iliac fossa (p= 0.003), right and left flank (p < 0.001; p= 0.02), hypogastrium (p= 0.002), and mesogastrium (p < 0.001). SPECT provided a better visualization and a higher uptake than planar images in patients with ileal and ileocolonic CD (6.45 +/- 0.82 vs 2.8 +/- 0.55, p < 0.001; 5.5 +/- 1.6 vs 2.6 +/- 0.7, p= 0.03), and with perianal CD (6.6 +/- 1.6 vs 3.4 +/- 1.2; p= 0.03). (99m)Tc-HMPAO labeled leukocyte SPECT provides a more detailed visualization of CD lesions than planar images. This technique may better discriminate between intestinal and bone marrow uptake, thus being useful for assessing CD lesions within the pelvis, including perianal disease.

  16. Diagnostic value of 123I-betamethyl-p-iodophenyl-pentadecanoic acid (BMIPP) single photon emission computed tomography (SPECT) in patients with chest pain. Comparison with rest-stress 99mTc-tetrofosmin SPECT and coronary angiography

    Kawai, Yuko; Nozaki, Yoichi; Ohkusa, Takanori; Sakurai, Masayuki; Morita, Koichi; Tamaki, Nagara

    2004-01-01

    Basic and clinical studies have indicated that 15-(p-[ 123 I] iodophenyl)-3-(R, S) methylpentadecanoic acid (BMIPP) single photon emission computed tomography (SPECT) can identify ischemic myocardium without evidence of myocardial infarction by the regional decline of tracer uptake. The present study compared BMIPP SPECT with rest-stress myocardial perfusion imaging (MPI) findings and coronary angiography (CAG) in 150 patients with acute chest pain. Patients with acute chest pain who underwent all of the following tests were selected: MPI at rest-stress, BMIPP SPECT at rest and CAG. Organic coronary artery stenosis (≥75%) was observed in 46 patients, 27 patients had total or subtotal coronary occlusion by spasm in the spasm provocation test on CAG and the remaining 77 patients had no significant coronary artery stenosis or spasm. The sensitivity of BMIPP at rest to detect organic stenosis was significantly higher (54%) than that of rest-MPI (33%, p<0.005), but lower than that of stress-MPI (76%, p=0.05). The sensitivity of BMIPP at rest to detect spasm was significantly higher (63%) than that of both rest-MPI (15%; p<0.001) and stress-MPI (19%; p<0.001). Overall, the sensitivity of BMIPP at rest to detect both organic stenosis and spasm was significantly higher (58%) than that of rest-MPI (26%; p<0.001), despite having no significance with that of stress-MPI (55%). The specificity was not significantly different among the three imaging techniques. Resting BMIPP SPECT is an alternative method to stress MPI for identifying patients with not only organic stenosis but also spasm without the need for a stress examination. (author)

  17. Handheld single photon emission computed tomography (handheld SPECT) navigated video-assisted thoracoscopic surgery of computer tomography-guided radioactively marked pulmonary lesions.

    Müller, Joachim; Putora, Paul Martin; Schneider, Tino; Zeisel, Christoph; Brutsche, Martin; Baty, Florent; Markus, Alexander; Kick, Jochen

    2016-09-01

    Radioactive marking can be a valuable extension to minimally invasive surgery. The technique has been clinically applied in procedures involving sentinel lymph nodes, parathyroidectomy as well as interventions in thoracic surgery. Improvements in equipment and techniques allow one to improve the limits. Pulmonary nodules are frequently surgically removed for diagnostic or therapeutic reasons; here video-assisted thoracoscopic surgery (VATS) is the preferred technique. VATS might be impossible with nodules that are small or located deep in the lung. In this study, we examined the clinical application and safety of employing the newly developed handheld single photon emission tomography (handheld SPECT) device in combination with CT-guided radioactive marking of pulmonary nodules. In this pilot study, 10 subjects requiring surgical resection of a pulmonary nodule were included. The technique involved CT-guided marking of the target nodule with a 20-G needle, with subsequent injection of 25-30 MBq (effective: 7-14 MBq) Tc-99m MAA (Macro Albumin Aggregate). Quality control was made with conventional SPECT-CT to confirm the correct localization and exclude possible complications related to the puncture procedure. VATS was subsequently carried out using the handheld SPECT to localize the radioactivity intraoperatively and therefore the target nodule. A 3D virtual image was superimposed on the intraoperative visual image for surgical guidance. In 9 of the 10 subjects, the radioactive application was successfully placed directly in or in the immediate vicinity of the target nodule. The average size of the involved nodules was 9 mm (range 4-15). All successfully marked nodules were subsequently completely excised (R0) using VATS. The procedure was well tolerated. An asymptomatic clinically insignificant pneumothorax occurred in 5 subjects. Two subjects were found to have non-significant discrete haemorrhage in the infiltration canal of the needle. In a single subject, the

  18. N-isopropyl-p-[I123] iodoamphetamine single photon emission computed tomography (I123-IMP SPECT) and child neurology

    Tada, Hiroshi; Morooka, Keiichi; Arimoto, Kiyoshi; Matsuo, Takiko; Takagi, Kazue; Yanagawa, Etsuko

    1992-01-01

    We studied the clinical usefulness of I 123 -IMP SPECT in 50 pediatric patients with CNS disorders, which were categorized into the convulsive disorder group (n=20), the cerebrovascular disorder group (n=10), the acute encephalopathy or CNS infection group (n=10), the metabolic or degenerative disorder group (n=6), the congenital abnormality group (n=2) and the migraine group (n=2). The findings obtained were compared with those of cranial CT. I 123 -IMP SPECT revealed abnormal findings in 45 out of the 50 patients (90%), although cranial CT showed abnormal findings in only 24 patients (48%). This difference was statistically significant (p 123 -IMP SPECT showed focal abnormalities in 26 patients (93%). Moreover in many patients with focal neurological abnormalities, we found focal abnormalities of I 123 -IMP SPECT related with neurological abnormalities of the patients. From these findings, we think I 123 -IMP SPECT might be superior to CT scanning in examining a localized lesion. It was found that in many patients with focal abnormalities in CT scanning, I 123 -IMP SPECT showed larger abnormalities in CT scanning. By using I 123 -IMP SPECT we might be able to study the blood perfusional state surrounding the abnormal area shown by CT. In 3 patients with acute cerebrovascular disorders, I 123 -IMP SPECT revealed abnormal findings 3 to 11 days earlier than cranial CT. I 123 -IMP SPECT might be useful for early recognition of the pathological state. From these experiences, we concluded that I 123 -IMP SPECT was useful for studying the pathophysiology of CNS disorders in children. (author)

  19. Prediction of 6-year prognosis for cardiac event by thallium-201 single-photon emission computed tomography (SPECT) with treadmill exercise test

    Hayashi, Katsumi; Ohsuzu, Fumitaka; Kosuda, Shigeru; Nakamura, Haruo

    1997-01-01

    To examine thallium-201 single-photon emission computed tomography (SPECT) with a treadmill exercise test can predict the long-term prognosis of patients with coronary artery disease, 95 patients (71 men, 24 women) who underwent a treadmill exercise test with thallium-201 SPECT from April to December 1986 were followed for 6 years. Three short-axis slices at the apical, mid- and basal-level were selected, and each slice was divided into eight segments. Each segment count was assigned a score according to the count range in the slice (score 0, count range 76-100%; 1, 51-75%; 2, 26-50%; 3, 1-25%; 4, 0%) by evaluating the mean value of the slice. The total Tl defect score of each segment in 3 slices was summed (ΣTl defect score). The 'early ΣTl defect score' was the ΣTl defect score 5 min after treadmill exercise, and the 'late ΣTl defect score' was ΣTl defect score measured 4 h after treadmill exercise. Cardiac events occurred in 27 of the 95 patients: cardiac death 3; myocardial infarction 1; percutaneous transluminal angioplasty 16; coronary artery bypass graft 5; congestive heart failure 3. Univariate analysis showed that previous myocardial infarction (p<0.01), exercise work load (p<0.05), early ΣTl defect score (p<0.0l) and late ΣTl defect score (p<0.01) were independent predictors of the prognosis. These results suggest that thallium-201 SPECT with the treadmill exercise test could be applicable and useful to predict long term prognosis. (author)

  20. Dual myocardial single photon emission computed tomography (SPECT) using thallium-201 and I-123-β-methyl-i-pentadecanoic acid in patients with Duchenne's progressive muscular dystrophy

    Shimoyama, Katsuya

    1999-01-01

    Dual single photon emission computed tomography (SPECT) was performed in 31 patients with Duchenne's progressive muscular dystrophy (DMD) using 123 I-β-methyl pentadecanoic acid (BMIPP) for myocardial fatty acid metabolism and 201 thallium (Tl)-chloride for myocardial perfusion. The left ventricle was divided into 9 segments, and accumulation of the radiotracers was assessed visually for each segment to calculate defect score for each tracer. There was some degree of decrease in myocardial accumulation of both tracers in all DMD patients. Reduced accumulation was most common at the apex (BMIPP: 67%, Tl: 63%), followed by the posterior wall, lateral wall, and anterior wall. On the other hand, reduced accumulation was less common at the septum. BMIPP showed a higher accumulation than Tl in all segments but the septum. When BMIPP defect score was larger than Tl defect score, BMIPP defect score tended to increase during 4 years follow-up (p Tl defect score revealed a slight fibrosis or normal myocardium. It can be concluded that the dual SPECT myocardial scintigraphy using BMIPP and Tl provides accurate information about disease progression of the heart in patients with DMD by detecting abnormalities of the myocardial metabolism of each substance, thereby enabling the assessment of left ventricular function. (author)

  1. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Razali, Azhani Mohd, E-mail: azhani@nuclearmalaysia.gov.my; Abdullah, Jaafar, E-mail: jaafar@nuclearmalaysia.gov.my [Plant Assessment Technology (PAT) Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)

    2015-04-29

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  2. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-01-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm

  3. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-04-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  4. Estimation of scattered photons using a neural network in SPECT

    Hasegawa, Wataru; Ogawa, Koichi

    1994-01-01

    In single photon emission CT (SPECT), measured projection data involve scattered photons. This causes degradation of spatial resolution and contrast in reconstructed images. The purpose of this study is to estimate the scattered photons, and eliminate them from measured data. To estimate the scattered photons, we used an artificial neural network which consists of five input units, five hidden units, and two output units. The inputs of the network are the ratios of the counts acquired by five narrow energy windows and their sum. The outputs are the ratios of the count of scattered photons and that of primary photons to the total count. The neural network was trained with a back-propagation algorithm using count data obtained by a Monte Carlo simulation. The results of simulation showed improvement of contrast and spatial resolution in reconstructed images. (author)

  5. Regional cerebral blood flow studies with single photon emission computed tomography (SPECT); Clinical experiences, possibilities. Regionalis agyi veratfolyas vizsgalata egyfotonos emissios computer tomographiaval (SPECT); Klinikai tapasztalatok, lehetoesegek

    Pavics, Laszlo; Csernay, Laszlo; Doczi, Tamas; Lang, Jenoe; Blaho, Gabor; Janka, Zoltan; Bodosi, Mihaly [Szegedi Orvostudomanyi Egyetem, Szeged (Hungary)

    1990-01-07

    Clinical experiences based on regional cerebral blood flow investigations with {sup 99m}Tc hexamethylpropyleneamin-oxime (HMPAO) SPECT in 164 patients are reported. The pharmacokinetics of the {sup 99m}Tc HMPAO are summarized, and the important indications of the investigations are interpreted in case reports (stroke, surgical solution of intracavernous aneurysm, Alzheimer and multiinfarct types of dementia). The literature data suggest that the diagnostic possibilities with this method are advantageous, even in other diseases. (author) 36 refs.; 7 figs.

  6. The baboon model under anaesthesia for in vivo cerebral blood flow studies using single photon emission computed tomographic (SPECT) techniques

    Dormehl, I.; Redelinghuys, F.; Hugo, N.; Oliver, D.; Pilloy, W.

    1992-01-01

    Single photon computed tomography of the brain can be useful in animal experimentation directed towards cerebral conditions. A well established and understood baboon model, necessarily under anaesthesia, could especially be valuable in such investigations. Six normal baboons were studied under various anesthetic agents and their combinations: ketamine, thiopentone, pentobarbitone and halothane. Cerebral blood flow (CBF) studies were performed with 99m Tc-HMPAO. CBF effects from various anaesthesia were detected, requiring careful choice of the anaesthesia for cerebral investigations. (author). 13 refs, 4 figs, 3 tabs

  7. The baboon model under anaesthesia for in vivo cerebral blood flow studies using single photon emission computed tomographic (SPECT) techniques

    Dormehl, I.; Redelinghuys, F.; Hugo, N. [Pretoria Univ. (South Africa); Oliver, D.; Pilloy, W. [Medical Univ. of Southern Africa (MEDUNSA), Pretoria (South Africa)

    1992-12-31

    Single photon computed tomography of the brain can be useful in animal experimentation directed towards cerebral conditions. A well established and understood baboon model, necessarily under anaesthesia, could especially be valuable in such investigations. Six normal baboons were studied under various anesthetic agents and their combinations: ketamine, thiopentone, pentobarbitone and halothane. Cerebral blood flow (CBF) studies were performed with {sup 99m}Tc-HMPAO. CBF effects from various anaesthesia were detected, requiring careful choice of the anaesthesia for cerebral investigations. (author). 13 refs, 4 figs, 3 tabs.

  8. Clinical usefulness of scatter and attenuation correction for brain single photon emission computed tomography (SPECT) in pediatrics

    Adachi, Itaru; Doi, Kenji; Komori, Tsuyoshi; Hou, Nobuyoshi; Tabuchi, Koujirou; Matsui, Ritsuo; Sueyoshi, Kouzou; Utsunomiya, Keita; Narabayashi, Isamu

    1998-01-01

    This investigation was undertaken to study clinical usefulness of scatter and attenuation correction (SAC) of brain SPECT in infants to compare the standard reconstruction (STD). The brain SPECT was performed in 31 patients with 19 epilepsy, 5 cerebro-vascular disease, 2 brain tumor, 3 meningitis, 1 hydrocephalus and psychosis (mean age 5.0±4.9 years old). Many patients was necessary to be injected sedatives for restraining body motion after Technetium-99m hexamethylpropylene amine oxime ( 99m Tc-HMPAO) was injected at the convulsion or rest. Brain SPECT data were acquired with triple detector gamma camera (GCA-9300 Toshiba Japan). These data were reconstructed by filtered backprojection after the raw data were corrected by triple energy windows method of scatter correction and Chang filtered method of attenuation correction. The same data was reconstructed by filtered backprojection without these corrections. Both SAC and STD SPECT images were analyzed by the visual interpretation. The uptake ratio of cerebral basal nuclei was calculated by the counts of the thalamus or lenticular nuclei divided by the cortex. All images of SAC method were excellent than that of STD method. The thalamic uptake ratio in SAC method was higher than that of STD method (1.22±0.09>0.87±0.22 p 1.02±0.16 p<0.01). Transmission scan is the most suitable method of absorption correction. But the transmission scan is not adequate for examination of children, because this scan needs a lot of time and the infants are exposed by the line source radioisotope. It was concluded that these scatter and absorption corrections were most suitable method for brain SPECT in pediatrics. (author)

  9. Clinical usefulness of scatter and attenuation correction for brain single photon emission computed tomography (SPECT) in pediatrics

    Adachi, Itaru; Doi, Kenji; Komori, Tsuyoshi; Hou, Nobuyoshi; Tabuchi, Koujirou; Matsui, Ritsuo; Sueyoshi, Kouzou; Utsunomiya, Keita; Narabayashi, Isamu [Osaka Medical Coll., Takatsuki (Japan)

    1998-01-01

    This investigation was undertaken to study clinical usefulness of scatter and attenuation correction (SAC) of brain SPECT in infants to compare the standard reconstruction (STD). The brain SPECT was performed in 31 patients with 19 epilepsy, 5 cerebro-vascular disease, 2 brain tumor, 3 meningitis, 1 hydrocephalus and psychosis (mean age 5.0{+-}4.9 years old). Many patients was necessary to be injected sedatives for restraining body motion after Technetium-99m hexamethylpropylene amine oxime ({sup 99m}Tc-HMPAO) was injected at the convulsion or rest. Brain SPECT data were acquired with triple detector gamma camera (GCA-9300 Toshiba Japan). These data were reconstructed by filtered backprojection after the raw data were corrected by triple energy windows method of scatter correction and Chang filtered method of attenuation correction. The same data was reconstructed by filtered backprojection without these corrections. Both SAC and STD SPECT images were analyzed by the visual interpretation. The uptake ratio of cerebral basal nuclei was calculated by the counts of the thalamus or lenticular nuclei divided by the cortex. All images of SAC method were excellent than that of STD method. The thalamic uptake ratio in SAC method was higher than that of STD method (1.22{+-}0.09>0.87{+-}0.22 p<0.01). The lenticular nuclear uptake ratio in SAC method was higher than that of STD method (1.26{+-}0.15>1.02{+-}0.16 p<0.01). Transmission scan is the most suitable method of absorption correction. But the transmission scan is not adequate for examination of children, because this scan needs a lot of time and the infants are exposed by the line source radioisotope. It was concluded that these scatter and absorption corrections were most suitable method for brain SPECT in pediatrics. (author)

  10. Regional cerebral blood flow changes in schizophrenia and endogenous depression by single photon emission computed tomography (SPECT) using N-isopropyl-p-( sup 123 I)iodoamphetamine (IMP)

    Kanaya, Toshinori (Hiroshima Univ. (Japan). School of Medicine)

    1989-06-01

    Regional cerebral blood flows (rCBF) were measured in patients with schizophrenia and endogenous depression by single photon emission computed tomography (SPECT) using N-isopropyl-p-({sup 123}I)iodoamphetamine (IMP). The subjects were 20 patients with shizophrenia, 32 patients with endogenous depression and 20 normal controls. The patients with depression were divided into 3 groups; unmedicated, medicated patients in depressive state, and medicated patients in remited state. The rCBF were calculated by the corticocerebellar ratio (CCR), which was expressed as a ratio of activity per pixel in cortical regions of interest to the activity per pixel in the cerebellum. The results were as follows. In patients with schizophrenia the marked decrease in rCBF in bilateral frontal regions and the lower rCBF in the left than in the right hemisphere were observed. There was no significant correlation between the mean rCBF and BPRS (Brief Psychiatric Rating Scale) in patients with shizophrenia. In patients with depression the decrease in rCBF in overall cerebral regions and the lower rCBF in the left than in the right hemisphere were observed in both groups in depressive state. These changes were normalized in remited state, though there was no significant difference in rCBF between on medication and off medication. There was significantly negative correlation between the mean rCBF and Hamilton Depression Rating Scale in patients with depression. These results support the previously reported 'hypofrontality' and the left hemispheric dysfunction in shizophrenia. In depressive patients the overall cerebral dysfunction was revealed more remarkablly in the left than in the right hemisphere, which was normalized following the improvement of depressive symptoms. Furthermore, it was suggested that the applications of IMP-SPECT could be useful for the diagnosis and research for the cerebral function in mental illness. (author) 59 refs.

  11. Regional cerebral blood flow changes in schizophrenia and endogenous depression by single photon emission computed tomography (SPECT) using N-isopropyl-p-[123I]iodoamphetamine (IMP)

    Kanaya, Toshinori

    1989-01-01

    Regional cerebral blood flows (rCBF) were measured in patients with schizophrenia and endogenous depression by single photon emission computed tomography (SPECT) using N-isopropyl-p-[ 123 I]iodoamphetamine (IMP). The subjects were 20 patients with shizophrenia, 32 patients with endogenous depression and 20 normal controls. The patients with depression were divided into 3 groups; unmedicated, medicated patients in depressive state, and medicated patients in remited state. The rCBF were calculated by the corticocerebellar ratio (CCR), which was expressed as a ratio of activity per pixel in cortical regions of interest to the activity per pixel in the cerebellum. The results were as follows. In patients with schizophrenia the marked decrease in rCBF in bilateral frontal regions and the lower rCBF in the left than in the right hemisphere were observed. There was no significant correlation between the mean rCBF and BPRS (Brief Psychiatric Rating Scale) in patients with shizophrenia. In patients with depression the decrease in rCBF in overall cerebral regions and the lower rCBF in the left than in the right hemisphere were observed in both groups in depressive state. These changes were normalized in remited state, though there was no significant difference in rCBF between on medication and off medication. There was significantly negative correlation between the mean rCBF and Hamilton Depression Rating Scale in patients with depression. These results support the previously reported 'hypofrontality' and the left hemispheric dysfunction in shizophrenia. In depressive patients the overall cerebral dysfunction was revealed more remarkablly in the left than in the right hemisphere, which was normalized following the improvement of depressive symptoms. Furthermore, it was suggested that the applications of IMP-SPECT could be useful for the diagnosis and research for the cerebral function in mental illness. (author) 59 refs

  12. Therapeutic effects of coenzyme Q10 on dilated cardiomyopathy. Assessment by {sup 123}I-BMIPP myocardial single photon emission computed tomography (SPECT). A multicenter trial in Osaka University Medical School Group

    Nishimura, Tsunehiko; Hori, Masatsugu [Osaka Univ. (Japan). Faculty of Medicine

    1996-01-01

    To evaluate therapeutic effects of Coenzyme Q10 (CoQ10), 15 patients with dilated cardiomyopathy were investigated by {sup 123}I-BMIPP myocardial single photon emission computed tomography (SPECT). The BMIPP defect score was determined semiquantitatively by using representative short and long axial SPECT images. Mean BMIPP defect score with CoQ10 treatment was significantly low, 7.7{+-}6.1 compared to 12.7{+-}7.4 without CoQ10 treatment. On the other hand, in 8 patients of dilated cardiomyopathy, % fractional shortening using echocardiography was not different before and after CoQ10 treatment. In conclusion, {sup 123}I-BMIPP myocardial SPECT was proved to be sensitive to evaluate the therapeutic effects of CoQ10, which improve myocardial mitochondrial function, in the cases of dilated cardiomyopathy. (author).

  13. [The value of multimodal imaging by single photon emission computed tomography associated to X ray computed tomography (SPECT-CT) in the management of differentiated thyroid carcinoma: about 156 cases].

    Mhiri, Aida; El Bez, Intidhar; Slim, Ihsen; Meddeb, Imène; Yeddes, Imene; Ghezaiel, Mohamed; Gritli, Saïd; Ben Slimène, Mohamed Faouzi

    2013-10-01

    Single photon emission computed tomography combined with a low dose computed tomography (SPECT-CT), is a hybrid imaging integrating functional and anatomical data. The purpose of our study was to evaluate the contribution of the SPECTCT over traditional planar imaging of patients with differentiated thyroid carcinoma (DTC). Post therapy 131IWhole body scan followed by SPECTCT of the neck and thorax, were performed in 156 patients with DTC. Among these 156 patients followed for a predominantly papillary, the use of fusion imaging SPECT-CT compared to conventional planar imaging allowed us to correct our therapeutic approach in 26.9 % (42/156 patients), according to the protocols of therapeutic management of our institute. SPECT-CT is a multimodal imaging providing better identification and more accurate anatomic localization of the foci of radioiodine uptake with impact on therapeutic management.

  14. Implementation and development of methods for quantification of cerebral blood flow in absolute units using single Photon Emission Tomography (SPECT)

    Diaz Moreno, Rogelio Manuel; Sanchez Catasus, Carlos; Aguila Ruiz, Angel; Samper, J; Llibre, J.

    2007-01-01

    The aim of this work was to implement the graphical and spectral methods of quantification of cerebral blood flow in absolute units with Single photon emission computered tomography and compare the results of its application. Also, a third method was developed to calculate blood flow, modifying the spectral method. The obtained flow values were 43.6 + 6.1 ml/min/100 g; 43.3+ 8.2 ml/min/100 g and 43.0+4.7 ml/min/100 g, respectively. We conclude that these methods are easy, non invasive and can be made in our country's technological conditions. The main innovation in this work was the modification of the spectral method, with which it is possible to avoid some of the difficulties arisen in the other methods. Also, the use of the software allows high reproducibility and efficiency on the process. These methods can become a valuable tool to enhance clinical diagnosis and important biomedical research. (Author)

  15. 99mTc-DMSA renal uptake in urological diseases measured from renal tomographic images using single photon emission computed tomography (SPECT)

    Oishi, Yukihiko; Tashiro, Kazuya; Kishimoto, Koichi; Wada, Tetsuro; Torii, Shinichiro; Yoshigoe, Fukuo; Machida, Toyohei; Yamada, Hideo; Toyama, Hinako.

    1987-01-01

    To determine renal function, 99m Tc-DMSA renal uptake was measured from renal tomographic images obtained by single photon emission computed tomography (SPECT). A total of 77 tests was conducted on 73 patients with various diseases in the kidneys and urinary tract to determine renal uptake. The correlation coefficient(r) between total renal volume and total renal uptake was 0.3509 and that between renal volume and uptake of 143 kidneys was 0.5433. In 62 patients whose creatinine clearance could be measured, the correlation coefficient between creatinine clearance and total renal volume was 0.2352, and that between creatinine clearance and total renal uptake was 0.8854, that is, creatinine clearance correlated well with renal uptake. Renal volume and uptake determined in 10 normal male and 10 normal female adults were 220 ml and 26.8 % for the right kidney and 239 ml and 27.6 % for the left kidney for the males and 206 ml and 26.4 % (right) and 237 ml and 27.9 % (left) for the females. This method, which requires no blood or urine collection, is very useful as an individual kidney function test to evaluate individual kidney function and to understand kidney function before and after operation in patients with renal and urinary diseases. (author)

  16. A low-cost phantom for simple routine testing of single photon emission computed tomography (SPECT) cameras

    Ng, A.H.; Ng, K.H.; Dharmendra, H.; Perkins, A.C.

    2009-01-01

    A simple sphere test phantom has been developed for routine performance testing of SPECT systems in situations where expensive commercial phantoms may not be available. The phantom was based on a design with six universal syringe hubs set in the frame to support a circular array of six glass blown spheres of different sizes. The frame was then placed into a water-filled CT abdomen phantom and scanned with a triple head camera system (Philips IRIX TM , USA). Comparison was made with a commercially available phantom (Deluxe Jaszczak phantom). Whereas the commercial phantom demonstrates cold spot resolution, an important advantage of the sphere test phantom was that hot spot resolution could be easily measured using almost half (370 MBq) of the activity recommended for use in the commercial phantom. Results showed that the contrast increased non-linearly with sphere volume and radionuclide concentration. The phantom was found to be suitable as an inexpensive option for daily performance tests.

  17. Evaluation of cardiac function in patients with Duchenne's muscular dystrophy by single photon emission computed tomography (SPECT)

    Tamura, Takuhisa; Motomura, Masakatsu; Kanazawa, Hajime; Shibuya, Noritoshi (Kawatana Byoin National Sanatorium, Nagasaki (Japan))

    1989-06-01

    The extent of myocardial ischemia was evaluated in 20 patients with Duchenne's muscular dystrophy (DMD) by using Bull's eye method of thallium-201 myocardial SPECT. It was examined in relation to skeletal muscle involvement, age, left ventricular (LV) ejection fraction and ventricular premature contractions (VPCs). Myocardial ischemia was detected in all of patients with DMD. Ischemic lesion was mostly detected in the apical side of the LV lateral wall and interventricular septum, while the extent of myocardial ischemia had no correlations with either the stage of functional disability of skeletal muscle or age. The more ischemic ratio was higher, the more LV ejection fraction decreased. The total number of VPCs was relatively small and it did not have any relation to myocardial ischemic ratio. These results suggest that younger DMD patients having extensive myocardial ischemia and/or ventricular tachycardia will have a high risk of cardiac death. (author).

  18. Evaluation of cardiac function in patients with Duchenne's muscular dystrophy by single photon emission computed tomography (SPECT)

    Tamura, Takuhisa; Motomura, Masakatsu; Kanazawa, Hajime; Shibuya, Noritoshi

    1989-01-01

    The extent of myocardial ischemia was evaluated in 20 patients with Duchenne's muscular dystrophy (DMD) by using Bull's eye method of thallium-201 myocardial SPECT. It was examined in relation to skeletal muscle involvement, age, left ventricular (LV) ejection fraction and ventricular premature contractions (VPCs). Myocardial ischemia was detected in all of patients with DMD. Ischemic lesion was mostly detected in the apical side of the LV lateral wall and interventricular septum, while the extent of myocardial ischemia had no correlations with either the stage of functional disability of skeletal muscle or age. The more ischemic ratio was higher, the more LV ejection fraction decreased. The total number of VPCs was relatively small and it did not have any relation to myocardial ischemic ratio. These results suggest that younger DMD patients having extensive myocardial ischemia and/or ventricular tachycardia will have a high risk of cardiac death. (author)

  19. Effect of post-myocardial infarction streptokinase (sk) therapy, on myocardial viability - evaluation with thallium-201 single photon emission computed tomography (TL-201 SPECT)

    Shaikh, M.S.; Raza, M.; Kayani, A.M.; Fazal, I.

    2011-01-01

    To evaluate the effect of post-myocardial infarction Streptokinase therapy on myocardial viability, employing Thallium-201 single photon emission computed tomography (TL-201 SPECT). Design: Retrospective, experimental study. Place and duration of study: The Nuclear Cardiology Department, Armed Forces Institute of Cardiology / National Institute of Heart Diseases, Rawalpindi, from 1 April, 2009 to 31 October, 2009. Patients and Methods: Male patients, who had suffered from acute myocardial infarction (AMI), in an area supplied by the left anterior descending (LAD) artery, had infarct-related electrocardiogram (ECG) changes and received or did not receive Streptokinase therapy, were included. Those with a normal ECG, or history of revascularisation, or non-ST elevation MI, or more than one MIs, were excluded. The patients were divided into groups 1 (who received Streptokinase) and 2 (who did not receive Streptokinase). Each group contained 42 patients and all underwent scintigraphic viability study through intravenous injection of 3.0 mCi (123 MBq) of TL-201, followed by rest-redistribution SPECT imaging on a dual head, dedicated cardiac gamma camera system (Philips Cardio MD). Emory's cardiac toolbox and AutoQUANT were used for data processing and quantitative estimation of viable myocardium. Empirical scores from 0 to 2 were assigned to each of the scans, in the order of increasing viability, and these were compared across the two groups. Result: Group 1 contained 42 patients (age range = 38 to 80 years, mean = 53.98 +- 11.26 years), in whom empirical viability scoring was done. Score 0 was seen in 2 patients, score 1 was seen in 15 patients and score 2 was seen in 25 patients form this group. Group 2 also contained 42 patients (age range = 38 to 80 years, mean = 56.71 +- 9.05 years), in whom viability score of 0 was seen in 3 patients, score 1 was seen in 11 patients and score 2 was seen in 28 patients form this group. Age difference between the two groups was

  20. Prognostic value of myocardial perfusion single photon emission computed tomography for major adverse cardiac cerebrovascular and renal events in patients with chronic kidney disease: results from first year of follow-up of the Gunma-CKD SPECT multicenter study

    Kasama, Shu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Cardiovascular Hospital of Central Japan (Kitakanto Cardiovascular Hospital), Department of Cardiovascular Medicine, Gunma (Japan); Toyama, Takuji [Department of Cardiovascular Medicine, Gunma Prefectural Cardiovascular Center, Maebashi (Japan); Sato, Makito [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Tatebayashi Kosei Hospital, Department of Internal Medicine, Gunma (Japan); Sano, Hirokazu [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Isesaki Municipal Hospital, Department of Cardiovascular Medicine, Isesaki (Japan); Ueda, Tetsuya [Fujioka General Hospital, Division of Cardiology, Fujioka (Japan); Sasaki, Toyoshi [Takasaki General Medical Center, Division of Cardiology, Takasaki (Japan); Nakahara, Takehiro; Kurabayashi, Masahiko [Gunma University Graduate School of Medicine, Department of Medicine and Biological Science (Cardiovascular Medicine), Maebashi, Gunma (Japan); Higuchi, Tetsuya; Tsushima, Yoshito [Gunma University Graduate School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Maebashi (Japan)

    2016-02-15

    Patients with chronic kidney disease (CKD) have an increased risk of adverse cardio-cerebrovascular events. We examined whether stress myocardial perfusion single photon emission computed tomography (SPECT) provides reliable prognostic markers for these patients. In this multicenter, prospective cohort trial from the Gunma-CKD SPECT study protocol, patients with CKD [estimated glomerular filtration rate (eGFR) < 60 min/ml per 1.73 m{sup 2}] undergoing stress {sup 99m}Tc-tetrofosmin SPECT for suspected or possible ischemic heart disease were initially followed for 1 year, with the following study endpoints: primary, the occurrence of cardiac deaths (CDs), and secondary, major adverse cardiac, cerebrovascular, and renal events (MACCREs). The summed stress score (SSS), summed rest score, and summed difference score (SDS) were estimated with the standard 17-segment, 5-point scoring model. Left ventricular end-diastolic volume, end-systolic volume (ESV), and ejection fraction were measured using electrocardiogram-gated SPECT. During the first year of follow-up, 69 of 299 patients experienced MACCREs (CD, n = 7; non-fatal myocardial infarction, n = 3; hospitalization for heart failure, n = 13; cerebrovascular accident, n = 1; need for revascularization, n = 38; and renal failure, i.e., hemodialysis initiation, n = 7). ESV and SSS were associated with CDs (p < 0.05), and eGFR and SDS were associated with MACCREs (p < 0.05), in multivariate logistic analysis. Patients with high ESV and high SSS had a significantly higher CD rate during the first year than the other CKD patient subgroups (p < 0.05). Patients with low eGFR and high SDS had a significantly higher MACCRE rate than the other subgroups (p < 0.05). Myocardial perfusion SPECT can provide reliable prognostic markers for patients with CKD. (orig.)

  1. Prognostic value of myocardial perfusion single photon emission computed tomography for major adverse cardiac cerebrovascular and renal events in patients with chronic kidney disease: results from first year of follow-up of the Gunma-CKD SPECT multicenter study

    Kasama, Shu; Toyama, Takuji; Sato, Makito; Sano, Hirokazu; Ueda, Tetsuya; Sasaki, Toyoshi; Nakahara, Takehiro; Kurabayashi, Masahiko; Higuchi, Tetsuya; Tsushima, Yoshito

    2016-01-01

    Patients with chronic kidney disease (CKD) have an increased risk of adverse cardio-cerebrovascular events. We examined whether stress myocardial perfusion single photon emission computed tomography (SPECT) provides reliable prognostic markers for these patients. In this multicenter, prospective cohort trial from the Gunma-CKD SPECT study protocol, patients with CKD [estimated glomerular filtration rate (eGFR) < 60 min/ml per 1.73 m 2 ] undergoing stress 99m Tc-tetrofosmin SPECT for suspected or possible ischemic heart disease were initially followed for 1 year, with the following study endpoints: primary, the occurrence of cardiac deaths (CDs), and secondary, major adverse cardiac, cerebrovascular, and renal events (MACCREs). The summed stress score (SSS), summed rest score, and summed difference score (SDS) were estimated with the standard 17-segment, 5-point scoring model. Left ventricular end-diastolic volume, end-systolic volume (ESV), and ejection fraction were measured using electrocardiogram-gated SPECT. During the first year of follow-up, 69 of 299 patients experienced MACCREs (CD, n = 7; non-fatal myocardial infarction, n = 3; hospitalization for heart failure, n = 13; cerebrovascular accident, n = 1; need for revascularization, n = 38; and renal failure, i.e., hemodialysis initiation, n = 7). ESV and SSS were associated with CDs (p < 0.05), and eGFR and SDS were associated with MACCREs (p < 0.05), in multivariate logistic analysis. Patients with high ESV and high SSS had a significantly higher CD rate during the first year than the other CKD patient subgroups (p < 0.05). Patients with low eGFR and high SDS had a significantly higher MACCRE rate than the other subgroups (p < 0.05). Myocardial perfusion SPECT can provide reliable prognostic markers for patients with CKD. (orig.)

  2. Single photon emission computed tomography in children with idiopathic seizures

    Hara, Masafumi; Takahashi, Mutsumasa; Kojima, Akihiro; Shimomura, Osamu; Kinoshita, Rumi; Tomiguchi, Seiji; Taku, Keiichi; Miike, Teruhisa

    1991-01-01

    Single photon emission computed tomography (SPECT) with N-isoprophyl-p [ 123 I]-iodoamphetamine (IMP), X-ray computed tomography (X-CT), and magnetic resonance imaging (MRI) were performed in 20 children with idiopathic seizures. In children with idiopathic seizures, SPECT could detect the abnormal sites at the highest rate (45%) compared with CT (10%) and MRI (12%), but the abnormal sites on SPECT correlated poorly with the foci on electroencephalograph (EEG). Idiopathic epilepsy with hypoperfusion on SPECT was refractory to treatment and was frequently associated with mental and/or developmental retardation. Perfusion defects on SPECT scans probably affect the development and maturation of the brain in children. (author)

  3. Ictal technetium-99 m ethyl cysteinate dimer single-photon emission tomographic findings in epileptic patients with polymicrogyria syndromes: A subtraction of ictal-interictal SPECT coregistered to MRI study

    Wichert-Ana, Lauro; Mazzoncini de Azevedo-Marques, Paulo; Santos, Antonio C.; Araujo, David; Ferrari Oliveira, Lucas; Fernandes, Regina M.F.; Velasco, Tonicarlo R.; Sakamoto, Americo C.; Kato, Mery; Muxfeldt Bianchin, Marino

    2008-01-01

    To describe the ictal technetium-99 m-ECD SPECT findings in polymicrogyria syndromes (PMG) during epileptic seizures. We investigated 17 patients with PMG syndromes during presurgical workup, which included long-term video-electroencephalographic (EEG) monitoring, neurological and psychiatry assessments, invasive EEG, and the subtraction of ictal-interictal SPECT coregistered to magnetic resonance imaging (MRI) (SISCOM). The analysis of the PMG cortex, using SISCOM, revealed intense hyperperfusion in the polymicrogyric lesion during epileptic seizures in all patients. Interestingly, other localizing investigations showed heterogeneous findings. Twelve patients underwent epilepsy surgery, three achieved seizure-freedom, five have worthwhile improvement, and four patients remained unchanged. Our study strongly suggests the involvement of PMG in seizure generation or early propagation. Both conventional ictal single-photon emission computed tomography (SPECT) and SISCOM appeared as the single contributive exam to suggest the localization of the epileptogenic zone. Despite the limited number of resective epilepsy surgery in our study (n = 9), we found a strong prognostic role of SISCOM in predicting surgical outcome. This result may be of great value on surgical decision-making of whether or not the whole or part of the PMG lesion should be surgically resected. (orig.)

  4. Ictal technetium-99 m ethyl cysteinate dimer single-photon emission tomographic findings in epileptic patients with polymicrogyria syndromes: A subtraction of ictal-interictal SPECT coregistered to MRI study

    Wichert-Ana, Lauro [University of Sao Paulo, Center for Epilepsy Surgery, Department of Neurology, Psychiatry and Clinical Psychology, Ribeirao Preto (Brazil); Hospital das Clinicas, USP, Centro de Cirurgia de Epilepsia, CIREP, Ribeirao Preto, SP (Brazil); Mazzoncini de Azevedo-Marques, Paulo; Santos, Antonio C.; Araujo, David [University of Sao Paulo, Center for Imaging Science and Medical Physics, Department of Internal Medicine, Ribeirao Preto (Brazil); Ferrari Oliveira, Lucas [Federal University of Pelotas, Informatics Department, Pelotas, RS (Brazil); Fernandes, Regina M.F.; Velasco, Tonicarlo R.; Sakamoto, Americo C. [University of Sao Paulo, Center for Epilepsy Surgery, Department of Neurology, Psychiatry and Clinical Psychology, Ribeirao Preto (Brazil); Kato, Mery [University of Sao Paulo, Division of Nuclear Medicine, Department of Internal Medicine from the Ribeirao Preto Medical School, Ribeirao Preto (Brazil); Muxfeldt Bianchin, Marino [Rio Grande do Sul Federal University, Neurology Division, HCPA, Porto Alegre, RS (Brazil)

    2008-06-15

    To describe the ictal technetium-99 m-ECD SPECT findings in polymicrogyria syndromes (PMG) during epileptic seizures. We investigated 17 patients with PMG syndromes during presurgical workup, which included long-term video-electroencephalographic (EEG) monitoring, neurological and psychiatry assessments, invasive EEG, and the subtraction of ictal-interictal SPECT coregistered to magnetic resonance imaging (MRI) (SISCOM). The analysis of the PMG cortex, using SISCOM, revealed intense hyperperfusion in the polymicrogyric lesion during epileptic seizures in all patients. Interestingly, other localizing investigations showed heterogeneous findings. Twelve patients underwent epilepsy surgery, three achieved seizure-freedom, five have worthwhile improvement, and four patients remained unchanged. Our study strongly suggests the involvement of PMG in seizure generation or early propagation. Both conventional ictal single-photon emission computed tomography (SPECT) and SISCOM appeared as the single contributive exam to suggest the localization of the epileptogenic zone. Despite the limited number of resective epilepsy surgery in our study (n = 9), we found a strong prognostic role of SISCOM in predicting surgical outcome. This result may be of great value on surgical decision-making of whether or not the whole or part of the PMG lesion should be surgically resected. (orig.)

  5. Liver function assessment using 99mTc-GSA single-photon emission computed tomography (SPECT)/CT fusion imaging in hilar bile duct cancer: A retrospective study.

    Sumiyoshi, Tatsuaki; Shima, Yasuo; Okabayashi, Takehiro; Kozuki, Akihito; Hata, Yasuhiro; Noda, Yoshihiro; Kouno, Michihiko; Miyagawa, Kazuyuki; Tokorodani, Ryotaro; Saisaka, Yuichi; Tokumaru, Teppei; Nakamura, Toshio; Morita, Sojiro

    2016-07-01

    The objective of this study was to determine the utility of Tc-99m-diethylenetriamine-penta-acetic acid-galactosyl human serum albumin ((99m)Tc-GSA) single-photon emission computed tomography (SPECT)/CT fusion imaging for posthepatectomy remnant liver function assessment in hilar bile duct cancer patients. Thirty hilar bile duct cancer patients who underwent major hepatectomy with extrahepatic bile duct resection were retrospectively analyzed. Indocyanine green plasma clearance rate (KICG) value and estimated KICG by (99m)Tc-GSA scintigraphy (KGSA) and volumetric and functional rates of future remnant liver by (99m)Tc-GSA SPECT/CT fusion imaging were used to evaluate preoperative whole liver function and posthepatectomy remnant liver function, respectively. Remnant (rem) KICG (= KICG × volumetric rate) and remKGSA (= KGSA × functional rate) were used to predict future remnant liver function; major hepatectomy was considered unsafe for values liver were significantly higher than volumetric rates (median: 0.54 vs 0.46; P liver failure and mortality did not occur in the patients for whom hepatectomy was considered unsafe based on remKICG. remKGSA showed a stronger correlation with postoperative prothrombin time activity than remKICG. (99m)Tc-GSA SPECT/CT fusion imaging enables accurate assessment of future remnant liver function and suitability for hepatectomy in hilar bile duct cancer patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A vectorized Monte Carlo code for modeling photon transport in SPECT

    Smith, M.F.; Floyd, C.E. Jr.; Jaszczak, R.J.

    1993-01-01

    A vectorized Monte Carlo computer code has been developed for modeling photon transport in single photon emission computed tomography (SPECT). The code models photon transport in a uniform attenuating region and photon detection by a gamma camera. It is adapted from a history-based Monte Carlo code in which photon history data are stored in scalar variables and photon histories are computed sequentially. The vectorized code is written in FORTRAN77 and uses an event-based algorithm in which photon history data are stored in arrays and photon history computations are performed within DO loops. The indices of the DO loops range over the number of photon histories, and these loops may take advantage of the vector processing unit of our Stellar GS1000 computer for pipelined computations. Without the use of the vector processor the event-based code is faster than the history-based code because of numerical optimization performed during conversion to the event-based algorithm. When only the detection of unscattered photons is modeled, the event-based code executes 5.1 times faster with the use of the vector processor than without; when the detection of scattered and unscattered photons is modeled the speed increase is a factor of 2.9. Vectorization is a valuable way to increase the performance of Monte Carlo code for modeling photon transport in SPECT

  7. Superconducting Single Photon Detectors

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and

  8. Single-photon imaging

    Seitz, Peter

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncoooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist´s view from different domains to the forthcoming “single-photon imaging” revolution. The various aspects of single-photon imaging are treated by internati...

  9. Single-photon sources

    Lounis, Brahim; Orrit, Michel

    2005-01-01

    The concept of the photon, central to Einstein's explanation of the photoelectric effect, is exactly 100 years old. Yet, while photons have been detected individually for more than 50 years, devices producing individual photons on demand have only appeared in the last few years. New concepts for single-photon sources, or 'photon guns', have originated from recent progress in the optical detection, characterization and manipulation of single quantum objects. Single emitters usually deliver photons one at a time. This so-called antibunching of emitted photons can arise from various mechanisms, but ensures that the probability of obtaining two or more photons at the same time remains negligible. We briefly recall basic concepts in quantum optics and discuss potential applications of single-photon states to optical processing of quantum information: cryptography, computing and communication. A photon gun's properties are significantly improved by coupling it to a resonant cavity mode, either in the Purcell or strong-coupling regimes. We briefly recall early production of single photons with atomic beams, and the operation principles of macroscopic parametric sources, which are used in an overwhelming majority of quantum-optical experiments. We then review the photophysical and spectroscopic properties and compare the advantages and weaknesses of various single nanometre-scale objects used as single-photon sources: atoms or ions in the gas phase and, in condensed matter, organic molecules, defect centres, semiconductor nanocrystals and heterostructures. As new generations of sources are developed, coupling to cavities and nano-fabrication techniques lead to improved characteristics, delivery rates and spectral ranges. Judging from the brisk pace of recent progress, we expect single photons to soon proceed from demonstrations to applications and to bring with them the first practical uses of quantum information

  10. Single photon ECT

    Maeda, Toshio; Matsuda, Hiroshi; Tada, Akira; Bunko, Hisashi; Koizumi, Kiyoshi

    1982-01-01

    The detectability of lesions located deep in a body or overlapped with a physiologically increased activity improve with the help of single photon ECT. In some cases, the ECT is superior to the conventional gamma camera images and X-ray CT scans in the evaluation of the location and size of lesion. The single photon ECT of the brain compares favorably with the contrast enhansed X-ray CT scans. The most important adaptation of the single photon ECT are the detection of recurrent brain tumors after craniotomy and the evaluation of ischemic heart diseases. (author)

  11. [Follow-up of patients with good exercise capacity in stress test with myocardial single-photon emission computed tomography (SPECT)].

    González, Javiera; Prat, Hernán; Swett, Eduardo; Berrocal, Isabel; Fernández, René; Zhindon, Juan Pablo; Castro, Ariel; Massardo, Teresa

    2015-11-01

    The evaluation of coronary artery disease (CAD) can be performed with stress test and myocardial SPECT tomography. To assess the predictive value of myocardial SPECT using stress test for cardiovascular events in patients with good exercise capacity. We included 102 males aged 56 ± 10 years and 19 females aged 52 ± 10 years, all able to achieve 10 METs and ≥ 85% of the theoretical maximum heart rate and at least 8 min in their stress test with gated 99mTc-sestamibi SPECT. Eighty two percent of patients were followed clinically for 33 ± 17 months. Sixty seven percent of patients were studied for CAD screening and the rest for known disease assessment. Treadmill stress test was negative in 75.4%; 37% of patients with moderate to severe Duke Score presented ischemia. Normal myocardial perfusion SPECT was observed in 70.2%. Reversible defects appeared in 24.8% of cases, which were of moderate or severe degree (> 10% left ventricular extension) in 56.6%. Only seven cases had coronary events after the SPECT. Two major (myocardial infarction and emergency coronary revascularization) and 5 minor events (elective revascularization) ere observed in the follow-up. In a multivariate analysis, SPECT ischemia was the only statistically significant parameter that increased the probability of having a major or minor event. Nearly a quarter of our patients with good exercise capacity demonstrated reversible defects in their myocardial perfusion SPECT. In the intermediate-term follow-up, a low rate of cardiac events was observed, being the isotopic ischemia the only significant predictive parameter.

  12. Single-photon imaging

    Seitz, Peter; Theuwissen, Albert J.P.

    2011-01-01

    The acquisition and interpretation of images is a central capability in almost all scientific and technological domains. In particular, the acquisition of electromagnetic radiation, in the form of visible light, UV, infrared, X-ray, etc. is of enormous practical importance. The ultimate sensitivity in electronic imaging is the detection of individual photons. With this book, the first comprehensive review of all aspects of single-photon electronic imaging has been created. Topics include theoretical basics, semiconductor fabrication, single-photon detection principles, imager design and applications of different spectral domains. Today, the solid-state fabrication capabilities for several types of image sensors has advanced to a point, where uncooled single-photon electronic imaging will soon become a consumer product. This book is giving a specialist's view from different domains to the forthcoming ''single-photon imaging'' revolution. The various aspects of single-photon imaging are treated by internationally renowned, leading scientists and technologists who have all pioneered their respective fields. (orig.)

  13. A clinical study of auditory hallucination by single photon emission computed tomography (SPECT) using N-isopropyl-p-[123I] iodoamphetamine (IMP)

    Gyobu, Tsuyoshi; Inao, Gyoshun; Ii, Masayasu; Matsuda, Hiroshi; Hisada, Kinichi.

    1988-01-01

    SPECT images with N-isopropyl-p-I-123 iodoamphetamine (IMP) were reviewed in 24 right-handed patients with hallucination (H Group), comprising schizophrenic disorder (20), alcohol hallucinosis (2), epileptic hallucinosis (one), and organic mental disorder (one), and 50 subjects without hallucination (non-H Group), consisting of 39 patients with mental or organic central nervous system disorder and 11 healthy volunteers. Early SPECT images showed an increased uptake of IMP in the auditory area and angular gyrus in 23 patients of H Group and 3 persons of non-H Group. A similar uptake of IMP was seen on delayed SPECT images in 12 patients of H Group and 4 patients with a history of hallucination of non-H Group. There were no SPECT findings specific to diseases. For schizophrenic patients, increased and decreased uptakes of IMP were seen in the striatolimbic region and in the bilateral frontal lobes, respectively, irrespective of hallucination. Factors contributing to increased uptake of IMP are discussed. (Namekawa, K.) 84 refs

  14. Single photons on demand

    Grangier, P.; Abram, I.

    2004-01-01

    Quantum cryptography and information processing are set to benefit from developments in novel light sources that can emit photons one by one. Quantum mechanics has gained a reputation for making counter-intuitive predictions. But we rarely get the chance to witness these effects directly because, being humans, we are simply too big. Take light, for example. The light sources that are familiar to us, such as those used in lighting and imaging or in CD and DVD players, are so huge that they emit billions and billions of photons. But what if there was a light source that emitted just one photon at a time? Over the past few years, new types of light source that are able to emit photons one by one have been emerging from laboratories around the world. Pulses of light composed of a single photon correspond to power flows in the femtowatt range - a million billion times less than that of a table lamp. The driving force behind the development of these single-photon sources is a range of novel applications that take advantage of the quantum nature of light. Quantum states of superposed and entangled photons could lead the way to guaranteed-secure communication, to information processing with unprecedented speed and efficiency, and to new schemes for quantum teleportation. (U.K.)

  15. Comparison of ventilation-perfusion single-photon emission computed tomography (V/Q SPECT) versus dual-energy CT perfusion and angiography (DECT) after 6 months of pulmonary embolism (PE) treatment

    Meysman, M., E-mail: marc.meysman@uzbrussel.be [Respiratory Division, Department of Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels (Belgium); Everaert, H., E-mail: nucgeth@gmail.com [Department of Nuclear Medicine, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels (Belgium); Buls, N., E-mail: nico.buls@uzbrussel.be [Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels (Belgium); Nieboer, K., E-mail: koenraad.nieboer@uzbrussel.be [Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels (Belgium); Mey, J. de, E-mail: Johan.deMey@uzbrussel.be [Department of Radiology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels (Belgium)

    2015-09-15

    Highlights: • Incomplete resolution of pulmonary emboli occurs frequently. • Residual V/Q-SPECT defects correspond in the majority of cases with defects seen on DECT. • Some (11.1%) defects on V/Q-SPECT are not present on comparable DECT images. - Abstract: Background: The natural evolution of treated symptomatic pulmonary embolism shows often incomplete resolution of pulmonary thrombi. The prevalence of perfusion defects depend on the image modality used. This study directly compares V/Q SPECT with DECT. Methods: A single-center prospective observational cohort study of patients with intermediate risk PE, reassessed at the end of treatment with V/Q SPECT. Abnormal V/Q SPECT images were compared with DECT. Results: We compared DECT en V/Q SPECT in 28 consecutive patients with persistent V/Q mismatch on V/Q SPECT, 13 men and 15 woman, mean age 60 (+17), range 23–82 year. One patient was excluded from the final analysis due to inferior quality DECT. In 18/27 (66.7%) the results were concordant between CTPA (persistent embolus visible), DECT (segmentary defects on iodine map) and V/Q SPECT (segmentary ventilation–perfusion mismatch). In 3/18 (11.1% of the total group) the partialy matched V/Q SPECT defect could be explained on DECT lung images by lung infarction. In 6/27 (22.1%) only hypoperfusion was seen on DECT iodine map. In 3/27 (11.1%) results were discordant between V/Q SPECT and DECT images. Conclusion: Six months after diagnosis of first or recurrent PE, residual pulmonary perfusion-defects encountered on V/Q-SPECT corresponds in the majority of patients with chronic thromboembolic disease seen on DECT. In 22.1% of patients V/Q SPECT mismatch only corresponds with hypoperfusion on iodine map DECT scan. Some (11.1%) of the chronic thromboembolic lesions seen on V/Q SPECT can not be explained by DECT results.

  16. Dual myocardial single photon emission computed tomography (SPECT) using thallium-201 and I-123-{beta}-methyl-i-pentadecanoic acid in patients with Duchenne's progressive muscular dystrophy

    Shimoyama, Katsuya [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1999-10-01

    Dual single photon emission computed tomography (SPECT) was performed in 31 patients with Duchenne's progressive muscular dystrophy (DMD) using {sup 123}I-{beta}-methyl pentadecanoic acid (BMIPP) for myocardial fatty acid metabolism and {sup 201}thallium (Tl)-chloride for myocardial perfusion. The left ventricle was divided into 9 segments, and accumulation of the radiotracers was assessed visually for each segment to calculate defect score for each tracer. There was some degree of decrease in myocardial accumulation of both tracers in all DMD patients. Reduced accumulation was most common at the apex (BMIPP: 67%, Tl: 63%), followed by the posterior wall, lateral wall, and anterior wall. On the other hand, reduced accumulation was less common at the septum. BMIPP showed a higher accumulation than Tl in all segments but the septum. When BMIPP defect score was larger than Tl defect score, BMIPP defect score tended to increase during 4 years follow-up (p<0.042). However, when Tl defect score was larger than BMIPP defect score, an increase in Tl defect score was slight. A significant negative correlation was found between the sum of the BMIPP and Tl defect scores and the left ventricular ejection fraction (LVEF) (r=0.66, p<0.0001). According to the histo-pathological study of two autopsied hearts, severe myocardial fibrosis was seen in segments with fixed perfusion defect. In addition, the mismatched segments of BMIPP defect score > Tl defect score revealed a slight fibrosis or normal myocardium. It can be concluded that the dual SPECT myocardial scintigraphy using BMIPP and Tl provides accurate information about disease progression of the heart in patients with DMD by detecting abnormalities of the myocardial metabolism of each substance, thereby enabling the assessment of left ventricular function. (author)

  17. Cardiac functional mapping for thallium-201 myocardial perfusion, washout, wall motion and phase using single-photon emission computed tomography (SPECT)

    Nakajima, Kenichi; Bunko, Hisashi; Taniguchi, Mitsuru; Taki, Junichi; Tonami, Norihisa; Hisada, Kinichi; Hirano, Takako; Wani, Hidenobu.

    1986-01-01

    A method for three-dimensional functional mapping of Tl-201 myocardial uptake, washout, wall motion and phase was developed using SPECT. Each parameter was mapped using polar display in the same format. Normal values were determined in Tl-201 exercise study in 16 patients. Myocardial counts were lower in the septum and inferior wall and the difference of counts between anterior and inferior walls were greater in man compared with the perfusion pattern in woman. Washout was slower at septum and inferior wall in man, and slightly slower at inferior wall in woman. In gated blood-pool tomography, length-based and count-based Fourier analyses were applied to calculate the parameters of contraction and phase. The results of both Fourier analyses generally agreed; however, the area of abnormality was slightly different. Phase maps were useful for the assessment of asynergy as well as in patients with conduction disorders. These cardiac functional maps using SPECT were considered to be effective for the understanding of three-dimensional informations of cardiac function. (author)

  18. Painful spondylolysis or spondylolisthesis studied by radiography and single-photon emission computed tomography

    Collier, B.D.; Johnson, R.P.; Carrera, G.F.

    1985-01-01

    Planar bone scintigraphy (PBS) and single-photon emission computed tomography (SPECT) were compared in 19 adults with radiographic evidence of spondylolysis and/or spondylolisthesis. SPECT was more sensitive than PBS when used to identify symptomatic patients and sites of painful defects in the pars interarticularis. In addition, SPECT allowed more accurate localization than PBS. In 6 patients, spondylolysis or spondylolisthesis was unrealted to low back pain, and SPECT images of the posterior neural arch were normal. The authors conclude that when spondylolysis or spondylolisthesis is the cause of low back pain, pars defects are frequently heralded by increased scintigraphic activity which is best detected and localized by SPECT

  19. Painful spondylolysis or spondylolisthesis studied by radiography and single-photon emission computed tomography

    Collier, B.D.; Johnson, R.P.; Carrera, G.F.; Meyer, G.A.; Schwab, J.P.; Flatley, T.J.; Isitman, A.T.; Hellman, R.S.; Zielonka, J.S.; Knobel, J.

    1985-01-01

    Planar bone scintigraphy (PBS) and single-photon emission computed tomography (SPECT) were compared in 19 adults with radiographic evidence of spondylolysis and/or spondylolisthesis. SPECT was more sensitive than PBS when used to identify symptomatic patients and sites of painful defects in the pars interarticularis. In addition, SPECT allowed more accurate localization than PBS. In 6 patients, spondylolysis or spondylolisthesis was unrealted to low back pain, and SPECT images of the posterior neural arch were normal. The authors conclude that when spondylolysis or spondylolisthesis is the cause of low back pain, pars defects are frequently heralded by increased scintigraphic activity which is best detected and localized by SPECT.

  20. Single photon emission computed tomographic studies (SPECT) of hepatic arterial perfusion scintigraphy (HAPS) in patients with colorectal liver metastases: improved tumour targetting by microspheres with angiotensin II.

    Goldberg, J A; Bradnam, M S; Kerr, D J; McKillop, J H; Bessent, R G; McArdle, C S; Willmott, N; George, W D

    1987-12-01

    As intra-arterial chemotherapy for liver metastases of colorectal origin becomes accepted, methods of further improving drug delivery to the tumour have been devised. Degradable microspheres have been shown to reduce regional blood flow by transient arteriolar capillary block, thereby improving uptake of a co-administered drug, when injected into the hepatic artery. In our study of five patients, we combined hepatic arterial perfusion scintigraphy (HAPS) and SPECT to assess the localization of approximately 1 X 10(5) labelled microspheres of human serum albumin (99Tcm MSA) in tumour. In addition, in three patients, we assessed the effect of an intra-arterial infusion of the vasoactive agent angiotension II during HAPS. Results were interpreted by comparing transaxial slices with corresponding slices of a tin colloid liver-spleen scan. Two of five patients showed good localization of 99Tcm MSA in tumour without an angiotensin II infusion. Of the three patients receiving angiotensin II, all showed good tumour targetting with the vasoconstrictor compared with only one of these three before its use. Thus, hepatic arterial infusion of angiotensin II greatly improves microsphere localization in tumour in some patients with colorectal liver metastases. This technique may be useful in the assessment of tumour targetting before and during locoregional therapy.

  1. Novel [99mTcN]2+ Labeled EGFR Inhibitors as Potential Radiotracers for Single Photon Emission Computed Tomography (SPECT Tumor Imaging

    Mingxia Zhao

    2014-04-01

    Full Text Available The epidermal growth factor receptor (EGFR is overexpressed in many cancers, including breast, ovarian, endometrial and non-small cell lung cancer. An EGFR-specific imaging agent could facilitate clinical evaluation of primary tumors or metastases. To achieve this goal, 4-(2-aminoethylamino-6,7-dimethoxyquinazoline (ADMQ was synthesized based on a 4-aminoquinazoline core and then conjugated with N-mercapto- acetylglycine (MAG and N-mercaptoacetyltriglycine (MAG3, respectively, to give compounds 1 and 2. The final complexes [99mTcN]-1 and [99mTcN]-2 were successfully obtained with radiochemical purities of >99% and >98% as measured by radio-HPLC. No decomposition of the two complexes at room temperature was observed over a period of 2 h. Their partition coefficients indicated they were hydrophilic and the electrophoresis results showed they were negatively charged. Biodistribution in tumor-bearing mice demonstrated that the two new complexes showed tumor accumulation, high tumor-tomuscle (T/M ratios and fast clearance from blood and muscle. Between the two compounds, the 99mTcN-MAG3-ADMQ ([99mTcN]-2 showed the better characteristics, with the tumor/muscle and tumor/blood ratios reached 2.11 and 1.90 at 60 min post-injection, 4.20 and 1.10 at 120 min post-injection, suggesting it could be a promising radiotracer for SPECT tumor imaging.

  2. Optimization of pinhole single photon emission computed tomography (pinhole SPECT) reconstruction; Optimisation de la reconstruction en tomographie d'emission monophotonique avec colimateur stenope

    Israel-Jost, V

    2006-11-15

    In SPECT small animal imaging, it is highly recommended to accurately model the response of the detector in order to improve the low spatial resolution. The volume to reconstruct is thus obtained both by back-projecting and de-convolving the projections. We chose iterative methods, which permit one to solve the inverse problem independently from the model's complexity. We describe in this work a Gaussian model of point spread function (PSF) whose position, width and maximum are computed according to physical and geometrical parameters. Then we use the rotation symmetry to replace the computation of P projection operators, each one corresponding to one position of the detector around the object, by the computation of only one of them. This is achieved by choosing an appropriate polar discretization, for which we control the angular density of voxels to avoid over-sampling the center of the field of view. Finally, we propose a new family of algorithms, the so-called frequency adapted algorithms, which enable to optimize the reconstruction of a given band in the frequency domain on both the speed of convergence and the quality of the image. (author)

  3. The dopaminergic system in patients with functional dyspepsia analysed by single photon emission computed tomography (SPECT) and an alpha-methyl-para-tyrosine (AMPT) challenge test

    Braak, Breg; Klooker, Tamira K.; Booij, Jan; Wijngaard, Rene M.J. van den; Boeckxstaens, Guy E.E.

    2012-01-01

    Functional dyspepsia (FD) is a chronic condition characterized by upper abdominal symptoms without an identifiable cause. While the serotonergic system is thought to play a key role in the regulation of gut physiology, the role of the dopaminergic system, which is important in the regulation of visceral pain and stress, is under-studied. Therefore, this study investigated the dopaminergic system and its relationship with drinking capacity and symptoms in FD patients. In FD patients and healthy volunteers (HV) the dopaminergic system was investigated by in-vivo assessment of central dopamine D2 receptors (D2Rs) with [ 123 I]IBZM SPECT and by an acute, but reversible, dopamine depletion alpha-methyl-para-tyrosine (AMPT) challenge test. A nutrient drink test was performed to investigate the association between maximal ingested volume, evoked symptoms, and D2Rs. The HV subjects comprised 12 women and 8 men (mean age 31 ± 3 years), and the FD patients comprised 5 women and 3 men (mean age 39 ± 5 years). The FD patients had a lower left plus right average striatal binding potential (BP NP ) for the caudate nucleus (p = 0.02), but not for putamen (p = 0.15), which in the FD patients was correlated with maximal ingested volume (r = 0.756, p = 0.03). The D2R BP NP in the putamen was correlated with nausea (r = 0.857, p = 0.01). The acute dopamine depletion test, however, failed to reveal differences in prolactin release between the FD patients and the HV subjects. These preliminary data suggest that chronic rather than acute alterations in the dopaminergic system may be involved in the pathogenesis of FD. Further studies are required to reproduce our novel findings and to evaluate to what extent the dopaminergic changes may be secondary to abnormalities in serotonergic pathways. (orig.)

  4. The dopaminergic system in patients with functional dyspepsia analysed by single photon emission computed tomography (SPECT) and an alpha-methyl-para-tyrosine (AMPT) challenge test

    Braak, Breg; Klooker, Tamira K. [Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam (Netherlands); Booij, Jan [Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Wijngaard, Rene M.J. van den [Academic Medical Center, Tytgat Institute of Liver and Intestinal Research, Amsterdam (Netherlands); Boeckxstaens, Guy E.E. [Academic Medical Center, Department of Gastroenterology and Hepatology, Amsterdam (Netherlands); University Hospital Leuven, Catholic University Leuven, Department of Gastroenterology, Leuven (Belgium)

    2012-04-15

    Functional dyspepsia (FD) is a chronic condition characterized by upper abdominal symptoms without an identifiable cause. While the serotonergic system is thought to play a key role in the regulation of gut physiology, the role of the dopaminergic system, which is important in the regulation of visceral pain and stress, is under-studied. Therefore, this study investigated the dopaminergic system and its relationship with drinking capacity and symptoms in FD patients. In FD patients and healthy volunteers (HV) the dopaminergic system was investigated by in-vivo assessment of central dopamine D2 receptors (D2Rs) with [{sup 123}I]IBZM SPECT and by an acute, but reversible, dopamine depletion alpha-methyl-para-tyrosine (AMPT) challenge test. A nutrient drink test was performed to investigate the association between maximal ingested volume, evoked symptoms, and D2Rs. The HV subjects comprised 12 women and 8 men (mean age 31 {+-} 3 years), and the FD patients comprised 5 women and 3 men (mean age 39 {+-} 5 years). The FD patients had a lower left plus right average striatal binding potential (BP{sub NP}) for the caudate nucleus (p = 0.02), but not for putamen (p = 0.15), which in the FD patients was correlated with maximal ingested volume (r = 0.756, p = 0.03). The D2R BP{sub NP} in the putamen was correlated with nausea (r = 0.857, p = 0.01). The acute dopamine depletion test, however, failed to reveal differences in prolactin release between the FD patients and the HV subjects. These preliminary data suggest that chronic rather than acute alterations in the dopaminergic system may be involved in the pathogenesis of FD. Further studies are required to reproduce our novel findings and to evaluate to what extent the dopaminergic changes may be secondary to abnormalities in serotonergic pathways. (orig.)

  5. Rational design of biophysical imaging protocols to measure the level of intensity of massive delocalized infections under severe HIV-induced immunodeficiency: configuration of novel radioimmunoscintigraphy modalities with single-photon emission tomography (SPECT) and positron emission tomography (PET)

    Nazarea, A.D.

    1996-01-01

    single-photon emission tomography (SPECT) and positron emission tomography (PET) protocols. (author)

  6. Clinical studies of cerebral blood flows using single photon emission computed tomography (SPECT), 1; The remote effects of tumors and the adverse effects of radiochemotherapy in the non-affected brain of patients with intracranial tumors

    Araki, Yuzo (Gifu Univ. (Japan). Faculty of Medicine)

    1991-01-01

    To examine remote effects of tumors on cerebral blood flow (CBF) and adverse effects of radiochemotherapy on cerebral and cerebellar blood flow (CeBF), mean CBF (mCBF) and mean CeBF (mCeBF) have been studied by single photon emission computed tomography (SPECT) with Xe-133. The subjects were 78 patients with brain tumor, whose ages ranged from 9 to 74 years. Forty normal volunteers served as controls. In the control group, both mCBF and mCeBF were significantly decreased with advancing age. Both ipsilateral and contralateral mCeBFs were significantly decreased in adult patients with bilateral cerebral tumor, as compared with the control group, which was dependent on tumor volume. mCeBF was significantly decreased on the contralataral side than on the ipsilataral side. Similarly, ipsilateral mCBF was significantly lower than that in the control group. Crossed cerebellar diaschisis occurred frequently associated with extensive involvement of tumor into the frontal, parietal, and temporal lobes. In adult patients, a decreased mCBF on the non-affected side before surgery was improved postoperatively. One month after irradiation, it transiently increased and decreased again. Three months after irradiation, mCBF was significantly decreased, as compared with that in the control group. The degree of atrophy and tumor volume influenced mCBF on the non-affected side. These factors were responsible for mCBF in younger patients for the adult group, and in older patients for the child group. For adult patients, radiation dose was also a contributing factor for mCBF. In the group given chemotherapy, mCBF was significantly decreased, as compared with the group without chemotherapy. (N.K.) 102 refs.

  7. Investigating the effect and photon scattering correction in isotopic scanning with gamma and SPECT

    Movafeghi, Amir

    1997-01-01

    Nowdays medical imaging systems has been become a very important tool in medicine, both in diagnosis and treatment. With the fast improvement in the computer sciences in the last three decades, three dimensional imaging systems or topographic systems has been developed for the daily applications. Among the different methods, for now X-ray Computerized tomography scanning, Magnetic Resonance Imaging, Single Photon Emission Computerized Tomography and Positron Emission tomography have been found many clinical application. SPECT and PET imaging systems are working with the use of emitting photons from special radioisotopes. In these two systems, image is reconstructed from a distribution of radioisotope in the human body's organs. In SPECT accuracy of data quantification for image reconstruction has influenced from photon attenuation, photon scattering, statistical noises and variation in detector response due to distance. Except scattering other three factors could be modeled and compensated with relatively simple models. Photon scattering is a complex process and usually semiemperical methods is used for its modeling. The effect of scattering photons on images was considered. This survey was done in both lab and clinical cases. Radioisotopes were 192 Ir and 99m Tc. 192 Ir is a solid source with the half-life of 73 days and is used at industrial radiography application. At the beginning, models and methods, were established by the help of 192 Ir. Then at the final stage, they were developed to use for 99m Tc. There are different methods for the error correction of scattered photons. A method from the 'window subtraction' group has been developed for lab cases. Generally, in this method with the use of adjacent window of the photopeak window, scattered photons are subtracted from the original count. A Monte Carlo simulation is used for better evaluation of results. In the clinical section , a dual head SPECT system was (ADAC system of Shariati hospital at Tehran). The

  8. Brain single photon emission computed tomography in neonates

    Denays, R.; Van Pachterbeke, T.; Tondeur, M.

    1989-01-01

    This study was designed to rate the clinical value of [ 123 I]iodoamphetamine (IMP) or [ 99m Tc] hexamethyl propylene amine oxyme (HM-PAO) brain single photon emission computed tomography (SPECT) in neonates, especially in those likely to develop cerebral palsy. The results showed that SPECT abnormalities were congruent in most cases with structural lesions demonstrated by ultrasonography. However, mild bilateral ventricular dilatation and bilateral subependymal porencephalic cysts diagnosed by ultrasound were not associated with an abnormal SPECT finding. In contrast, some cortical periventricular and sylvian lesions and all the parasagittal lesions well visualized in SPECT studies were not diagnosed by ultrasound scans. In neonates with subependymal and/or intraventricular hemorrhage the existence of a parenchymal abnormality was only diagnosed by SPECT. These results indicate that [ 123 I]IMP or [ 99m Tc]HM-PAO brain SPECT shows a potential clinical value as the neurodevelopmental outcome is clearly related to the site, the extent, and the number of cerebral lesions. Long-term clinical follow-up is, however, mandatory in order to define which SPECT abnormality is associated with neurologic deficit

  9. Nanodiamond Emitters of Single Photons

    Vlasov I.I.

    2015-01-01

    Full Text Available Luminescence properties of single color centers were studied in nanodiamonds of different origin. It was found that single photon emitters could be realized even in molecularsized diamond (less than 2 nm capable of housing stable luminescent center “silicon-vacancy.” First results on incorporation of single-photon emitters based on luminescent nanodiamonds in plasmonic nanoantennas to enhance the photon count rate and directionality, diminish the fluorescence decay time, and provide polarization selectivity are presented.

  10. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection.

    Kojima, Akihiro; Gotoh, Kumiko; Shimamoto, Masako; Hasegawa, Koki; Okada, Seiji

    2016-02-01

    Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV). The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned. Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image. We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.

  11. Single-photon emission CT in the assessment of low back pain in young athletes

    Johnson, G.T.; Lagatutta, F.P.; Lazarus, M.L.; Faulkner, T.J.; Nolan, J.P.

    1991-01-01

    Fifty-two teenage and young adult athletes (ages 12-24 years) with low back pain (LBP) underwent routine lumbar radiography and bone scintigraphy including planar and single-photon CT and SPECT imaging. This paper illustrates the significant limitations of routine radiography and the importance of SPECT bone scintigraphy in evaluating young athletes with LBP and suspected spondylolysis; the increased sensitivity and specificity of SPECT compared to planar scintigraphy in the diagnosis of spondylolysis; and the potential utility of follow-up SPECT studies in evaluating success of therapy in athletes with initially positive diagnostic indicators for spondylolysis or impending spondylolysis

  12. Photon attenuation correction technique in SPECT based on nonlinear optimization

    Suzuki, Shigehito; Wakabayashi, Misato; Okuyama, Keiichi; Kuwamura, Susumu

    1998-01-01

    Photon attenuation correction in SPECT was made using a nonlinear optimization theory, in which an optimum image is searched so that the sum of square errors between observed and reprojected projection data is minimized. This correction technique consists of optimization and step-width algorithms, which determine at each iteration a pixel-by-pixel directional value of search and its step-width, respectively. We used the conjugate gradient and quasi-Newton methods as the optimization algorithm, and Curry rule and the quadratic function method as the step-width algorithm. Statistical fluctuations in the corrected image due to statistical noise in the emission projection data grew as the iteration increased, depending on the combination of optimization and step-width algorithms. To suppress them, smoothing for directional values was introduced. Computer experiments and clinical applications showed a pronounced reduction in statistical fluctuations of the corrected image for all combinations. Combinations using the conjugate gradient method were superior in noise characteristic and computation time. The use of that method with the quadratic function method was optimum if noise property was regarded as important. (author)

  13. Single Photon Emission Computed Tomography (SPECT)

    ... examined for the location of the tracer. Computer graphics can be used to create a 3-dimensional ... a Second Heart Attack | Spanish Cardiac Rehab Referral Card | Spanish Heart Attack Warning Signs: Patient sheet | Infographic | ...

  14. Single photon emission computed tomography in AIDS dementia complex

    Pohl, P.; Vogl, G.; Fill, H.; Roessler, H.Z.; Zangerle, R.; Gerstenbrand, F.

    1988-01-01

    Single photon emission computed tomography (SPECT) studies were performed in AIDS dementia complex using IMP in 12 patients (and HM-PAO in four of these same patients). In all patients, SPECT revealed either multiple or focal uptake defects, the latter corresponding with focal signs or symptoms in all but one case. Computerized tomography showed a diffuse cerebral atrophy in eight of 12 patients, magnetic resonance imaging exhibited changes like atrophy and/or leukoencephalopathy in two of five cases. Our data indicate that both disturbance of cerebral amine metabolism and alteration of local perfusion share in the pathogenesis of AIDS dementia complex. SPECT is an important aid in the diagnosis of AIDS dementia complex and contributes to the understanding of the pathophysiological mechanisms of this disorder

  15. Thermoelectric single-photon detector

    Kuzanyan, A A; Petrosyan, V A; Kuzanyan, A S

    2012-01-01

    The ability to detect a single photon is the ultimate level of sensitivity in the measurement of optical radiation. Sensors capable of detecting single photons and determining their energy have many scientific and technological applications. Kondo-enhanced Seebeck effect cryogenic detectors are based on thermoelectric heat-to-voltage conversion and voltage readout. We evaluate the prospects of CeB 6 and (La,Ce)B 6 hexaboride crystals for their application as a sensitive element in this type of detectors. We conclude that such detectors can register a single UV photon, have a fast count rate (up to 45 MHz) and a high spectral resolution of 0.1 eV. We calculate the electric potential generated along the thermoelectric sensor upon registering a UV single photon.

  16. Approaches to single photon detection

    Thew, R.T.; Curtz, N.; Eraerds, P.; Walenta, N.; Gautier, J.-D.; Koller, E.; Zhang, J.; Gisin, N.; Zbinden, H.

    2009-01-01

    We present recent results on our development of single photon detectors, including: gated and free-running InGaAs/InP avalanche photodiodes (APDs); hybrid detection systems based on sum-frequency generation (SFG) and Si APDs-SFG-Si APDs; and SSPDs (superconducting single photon detectors), for telecom wavelengths; as well as SiPM (Silicon photomultiplier) detectors operating in the visible regime.

  17. Orthopedic applications of single photon emission computed Tomographic bone scanning

    Collier, B.D.

    1987-01-01

    When compared with planar bone scanning, single photon emission computed tomography (SPECT) has technical advantages of potential diagnostic significance. Planar imaging often superimposes substantial underlying or overlying activity on the bony structure of medical interest. SPECT, however, can be used to remove such unwanted activity. For example, in the hip the acetabulum extends downwards behind the femoral head. Therefore when using planar bone scanning techniques, the photon-deficient defect typical of avascular necrosis (AVN) of the femoral had may be obscured by activity originating in the underlying acetabulum. By using SPECT, underlying and overlying distributions of activity can be separated into sequential tomographic planes. For this reason SPECT facilitates the detection of AVN of the femoral head. When referring a patient without a history of malignancy for bone scanning, the orthopaedic surgeon usually has a specific clinical question involving a limited portion of the skeleton. Orthopaedic surgeons at their institution commonly use bone scanning to clarify the cause of back, hip or knee pain; to determine with a physiological test the significance of radiographic findings; and to establish the extent of disease at symptomatic skeletal sites such as the three compartments of the knee. In instances such as these, when clinical concern is limited to a specific anatomical region, a bone scan procedure that includes SPECT imaging of only a portion of the skeleton is appropriate. To date, SPECT of the skeletal system has most frequently been used to evaluate patients with pain the larger joints and bony structures such as the lumbar spine, hips, knees, or temporomandibular joints (TMJ)

  18. Studies of left ventricular volume estimation from single photon emission computed tomography

    Hiraki, Yoshio; Shimizu, Mitsuharu; Joja, Ikuo; Aono, Kaname; Yanagi, Hidekiyo; Indo, Haruaki; Seno, Yoshimasa; Teramoto, Shigeru; Nagaya, Isao.

    1988-01-01

    We studied the comparative accuracy of 99m Tc cardiac blood pool Single Photon Emission Computed Tomography (SPECT) for the measurement of left ventricular volume in 20 patients undergoing SPECT and single plane contrast left ventriculography (LVG). Left ventricular volume was calculated based on the total number of voxels in left ventricle. End-diastolic left ventricular volume (EDV) and end-systolic left ventricular volume (ESV) calculated from SPECT were compared with those from LVG. SPECT volume values showed a high degree of correlation with those by LVG (r = 0.923 for EDV, r = 0.903 for ESV). We appreciated the usefulness and accuracy of SPECT in measuring left ventricular volume because of its three-dimensional information. (author)

  19. Electrocardiograph-gated single photon emission computed tomography radionuclide angiography presents good interstudy reproducibility for the quantification of global systolic right ventricular function.

    Daou, Doumit; Coaguila, Carlos; Vilain, Didier

    2007-05-01

    Electrocardiograph-gated single photon emission computed tomography (SPECT) radionuclide angiography provides accurate measurement of right ventricular ejection fraction and end-diastolic and end-systolic volumes. In this study, we report the interstudy precision and reliability of SPECT radionuclide angiography for the measurement of global systolic right ventricular function using two, three-dimensional volume processing methods (SPECT-QBS, SPECT-35%). These were compared with equilibrium planar radionuclide angiography. Ten patients with chronic coronary artery disease having two SPECT and planar radionuclide angiography acquisitions were included. For the right ventricular ejection fraction, end-diastolic volume and end-systolic volume, the interstudy precision and reliability were better with SPECT-35% than with SPECT-QBS. The sample sizes needed to objectify a change in right ventricular volumes or ejection fraction were lower with SPECT-35% than with SPECT-QBS. The interstudy precision and reliability of SPECT-35% and SPECT-QBS for the right ventricle were better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography on the same population. SPECT-35% and SPECT-QBS present good interstudy precision and reliability for right ventricular function, with the results favouring the use of SPECT-35%. The results are better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography. They need to be confirmed in a larger population.

  20. Single-photon decision maker

    Naruse, Makoto; Berthel, Martin; Drezet, Aurélien; Huant, Serge; Aono, Masashi; Hori, Hirokazu; Kim, Song-Ju

    2015-08-01

    Decision making is critical in our daily lives and for society in general and is finding evermore practical applications in information and communication technologies. Herein, we demonstrate experimentally that single photons can be used to make decisions in uncertain, dynamically changing environments. Using a nitrogen-vacancy in a nanodiamond as a single-photon source, we demonstrate the decision-making capability by solving the multi-armed bandit problem. This capability is directly and immediately associated with single-photon detection in the proposed architecture, leading to adequate and adaptive autonomous decision making. This study makes it possible to create systems that benefit from the quantum nature of light to perform practical and vital intelligent functions.

  1. Single photon emission computed tomography study of human pulmonary perfusion: preliminary findings

    Carratu, L; Sofia, M [Naples Univ. (Italy). Facolta di Medicina e Chirurgia; Salvatore, M; Muto, P; Ariemma, G [Istituto Nazionale per la Prevenzione, Lo Studio e La Cura dei Tumori Fondazione Pascale, Naples (Italy); Lopez-Majano, V [Cook County Hospital, Chicago, IL (USA). Nuclear Medicine Div.

    1984-02-01

    Single photon emission computed tomography (SPECT) was performed with /sup 99/Tcsup(m)-albumin macroaggregates to study human pulmonary perfusion in healthy subjects and patients with respiratory diseases such as chronic obstructive pulmonary disease (COPD) and lung neoplasms. The reconstructed SPECT data was displayed in coronal, transverse, sagittal plane sections and compared to conventional perfusion scans. The SPECT data gave more complicated anatomical information about the extent of damage and morphology of the pulmonary vascular bed. In healthy subjects and COPD patients, qualitative and quantitative assessment of pulmonary perfusion could be obtained from serial SPECT scans with respect to distribution and relative concentration of the injected radiopharmaceutical. Furthermore, SPECT of pulmonary perfusion has been useful in detecting the extent of damage to the pulmonary circulation. This is useful for the preoperative evaluation and staging of lung cancer.

  2. Hot water epilepsy: Phenotype and single photon emission computed tomography observations

    Mehul Patel

    2014-01-01

    Full Text Available We studied the anatomical correlates of reflex hot water epilepsy (HWE using multimodality investigations viz. magnetic resonance imaging (MRI, electroencephalography (EEG, and single photon emission computed tomography (SPECT. Five men (mean age: 27.0 ΁ 5.8 years with HWE were subjected to MRI of brain, video-EEG studies, and SPECT scan. These were correlated with phenotypic presentations. Seizures could be precipitated in three patients with pouring of hot water over the head and semiology of seizures was suggestive of temporal lobe epilepsy. Ictal SPECT showed hyperperfusion in: left medial temporal - one, left lateral temporal - one, and right parietal - one. Interictal SPECT was normal in all five patients and did not help in localization. MRI and interictal EEG was normal in all the patients. The clinical and SPECT studies suggested temporal lobe as the seizure onset zone in some of the patients with HWE.

  3. Brain perfusion single photon emission computed tomography in major psychiatric disorders: From basics to clinical practice

    Santra, Amburanjan; Kumar, Rakesh

    2014-01-01

    Brain single photon emission computed tomography (SPECT) is a well-established and reliable method to assess brain function through measurement of regional cerebral blood flow (rCBF). It can be used to define a patient's pathophysiological status when neurological or psychiatric symptoms cannot be explained by anatomical neuroimaging findings. Though there is ample evidence validating brain SPECT as a technique to track human behavior and correlating psychiatric disorders with dysfunction of specific brain regions, only few psychiatrists have adopted brain SPECT in routine clinical practice. It can be utilized to evaluate the involvement of brain regions in a particular patient, to individualize treatment on basis of SPECT findings, to monitor the treatment response and modify treatment, if necessary. In this article, we have reviewed the available studies in this regard from existing literature and tried to present the evidence for establishing the clinical role of brain SPECT in major psychiatric illnesses

  4. Left ventricular volume determination from single-photon emission computed tomography

    Bunker, S.R.; Hartshorne, M.F.; Schmidt, W.P.; Cawthon, M.A.; Karl, R.D. Jr.; Bauman, J.M.; Howard, W.H. III; Rubal, B.J.

    1985-01-01

    To compare the accuracy of single-photon emission computed tomography (SPECT) with that of contrast cineangiography in measuring left ventricular end-diastolic volume, 25 consecutive patients undergoing catheterizaiton for coronary artery or valvular heart disease were first evaluated scintigraphically. SPECT volume values showed a high degree of correlation with those determined by angiography with a standard error of the estimate of 23 ml. SPECT offers a highly accurate and essentially noninvasive method for measuring chamber volumes that is independent of geometric assumptions about ventricular configuration and chest wall attenuation and does not require blood sample counting

  5. Left ventricular volume determination from single-photon emission computed tomography

    Bunker, S.R.; Hartshorne, M.F.; Schmidt, W.P.; Cawthon, M.A.; Karl, R.D. Jr.; Bauman, J.M.; Howard, W.H. III; Rubal, B.J.

    1985-02-01

    To compare the accuracy of single-photon emission computed tomography (SPECT) with that of contrast cineangiography in measuring left ventricular end-diastolic volume, 25 consecutive patients undergoing catheterizaiton for coronary artery or valvular heart disease were first evaluated scintigraphically. SPECT volume values showed a high degree of correlation with those determined by angiography with a standard error of the estimate of 23 ml. SPECT offers a highly accurate and essentially noninvasive method for measuring chamber volumes that is independent of geometric assumptions about ventricular configuration and chest wall attenuation and does not require blood sample counting.

  6. Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source

    Migdall, A.L.; Branning, D.; Castelletto, S.

    2002-01-01

    As typically implemented, single-photon sources cannot be made to produce single photons with high probability, while simultaneously suppressing the probability of yielding two or more photons. Because of this, single-photon sources cannot really produce single photons on demand. We describe a multiplexed system that allows the probabilities of producing one and more photons to be adjusted independently, enabling a much better approximation of a source of single photons on demand

  7. Single photon searches at PEP

    Hollebeek, R.

    1985-12-01

    The MAC and ASP searches for events with a single photon and no other observed particles are reviewed. New results on the number of neutrino generations and limits on selection, photino, squark and gluino masses from the ASP experiment are presented.

  8. Single photon searches at PEP

    Hollebeek, R.

    1985-12-01

    The MAC and ASP searches for events with a single photon and no other observed particles are reviewed. New results on the number of neutrino generations and limits on selection, photino, squark and gluino masses from the ASP experiment are presented

  9. High brightness single photon sources based on photonic wires

    Claudon, J.; Bleuse, J.; Bazin, M.

    2009-01-01

    We present a novel single-photon-source based on the emission of a semiconductor quantum dot embedded in a single-mode photonic wire. This geometry ensures a very large coupling (> 95%) of the spontaneous emission to the guided mode. Numerical simulations show that a photon collection efficiency...

  10. Multi-photon absorption limits to heralded single photon sources

    Husko, Chad A.; Clark, Alex S.; Collins, Matthew J.; De Rossi, Alfredo; Combrié, Sylvain; Lehoucq, Gaëlle; Rey, Isabella H.; Krauss, Thomas F.; Xiong, Chunle; Eggleton, Benjamin J.

    2013-01-01

    Single photons are of paramount importance to future quantum technologies, including quantum communication and computation. Nonlinear photonic devices using parametric processes offer a straightforward route to generating photons, however additional nonlinear processes may come into play and interfere with these sources. Here we analyse spontaneous four-wave mixing (SFWM) sources in the presence of multi-photon processes. We conduct experiments in silicon and gallium indium phosphide photonic crystal waveguides which display inherently different nonlinear absorption processes, namely two-photon (TPA) and three-photon absorption (ThPA), respectively. We develop a novel model capturing these diverse effects which is in excellent quantitative agreement with measurements of brightness, coincidence-to-accidental ratio (CAR) and second-order correlation function g(2)(0), showing that TPA imposes an intrinsic limit on heralded single photon sources. We build on these observations to devise a new metric, the quantum utility (QMU), enabling further optimisation of single photon sources. PMID:24186400

  11. Single photon emission computed tomography of the liver

    Makler, P.T. Jr.

    1988-01-01

    Single photon emission computed tomography (SPECT) of the liver has been introduced in order to improve sensitivity and localization of space-occupying lesions. There have been numerous reports on the usefulness of the technique, as well as extensive analyses of its technical drawbacks. In general, SPECT provides a more accurate estimation of defect size than does conventional planar scintigraphy for cases in which one wishes to evaluate changes in lesion size due to therapy. The presence of a superimposed parenchymal disease, however, remains a major problem, which will only be resolved by a scanning technique that specifically detects the disease process of concern (hot spot imaging) rather than displacement of normal tissue (cold spot imaging)

  12. Single photon image from PET with insertable collimator for boron neutron capture therapy

    Jung, Jooyoung; Suh, Tae Suk; Hong, Key Jo

    2014-01-01

    Boron neutron capture therapy (BNCT) is a radiation therapy technique for treating deep-seated brain tumors by irradiation with a thermal neutron in which boron-labelled low molecular weight compounds. Once completed, a single photon emission computed tomography (SPECT) scan is conducted to investigate for the region of therapy using an isotope exclusive to SPECT. In the case of an existing PET/SPECT combination system, at least two types of isotopes should be used for each scan with their purposes. Recently, researchers examined the effects of PET/SPECT dual modality on animal imaging systems. They reported that the PET/SPECT combination system was effective for simultaneous achievement of a single event and coincidence. The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one PET module with an insertable collimator for brain tumor treatment during the BNCT. We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector

  13. CMOS-compatible photonic devices for single-photon generation

    Xiong Chunle

    2016-09-01

    Full Text Available Sources of single photons are one of the key building blocks for quantum photonic technologies such as quantum secure communication and powerful quantum computing. To bring the proof-of-principle demonstration of these technologies from the laboratory to the real world, complementary metal–oxide–semiconductor (CMOS-compatible photonic chips are highly desirable for photon generation, manipulation, processing and even detection because of their compactness, scalability, robustness, and the potential for integration with electronics. In this paper, we review the development of photonic devices made from materials (e.g., silicon and processes that are compatible with CMOS fabrication facilities for the generation of single photons.

  14. The identification of spinal pathology in chronic low back pain using single photon emission computed tomography

    Ryan, R.J.; Gibson, T.; Fogelman, I.

    1992-01-01

    Single photon emission computed tomography (SPECT) findings were investigated in 80 consecutive patients (aged 18-70 years, median 44) referred to a rheumatology outpatient clinic with low back pain persisting for more than 3 months. Lesions of the lumbar spine were demonstrated in 60% of patients using SPECT but in only 35% with planar imaging. Fifty-one per cent of all lesions were only detected by SPECT, and lesions visualized on SPECT could be precisely localized to the vertebral body, or different parts of the posterior elements. Fifty per cent of lesions involved the facetal joints of which almost 60% were identified on SPECT alone. X-rays of the lumbar spine, with posterior oblique views, failed to demonstrate abnormalities corresponding to almost all SPECT posterior element lesions although it identified abnormalities corresponding to over 60% of anterior SPECT lesions. Computed tomography (CT) was performed in 30 patients with a SPECT lesion and sites of facetal joint activity corresponded to facetal osteoarthritis in 82%. (author)

  15. SPECT in psychiatry. SPECT in der Psychiatrie

    Barocka, A. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Feistel, H. (Nuklearmedizinische Klinik, Erlangen (Germany)); Ebert, D. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Lungershausen, E. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany))

    1993-08-13

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D[sub 2] and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.)

  16. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    Negahdar, M [Stanford University School of Medicine, Stanford, CA (United States); Yamamoto, T [UC Davis School of Medicine, Sacramento, CA (United States); Shultz, D; Gable, L; Shan, X; Mittra, E; Loo, B; Maxim, P [Stanford University, Stanford, CA (United States); Diehn, M [Stanford University, Palo Alto, CA (United States)

    2014-06-15

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patients treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.

  17. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    Negahdar, M; Yamamoto, T; Shultz, D; Gable, L; Shan, X; Mittra, E; Loo, B; Maxim, P; Diehn, M

    2014-01-01

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patients treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding

  18. Serial SPECT in children with partial epilepsy

    Hosoya, Machiko; Ushiku, Hideo

    1995-01-01

    We performed serial single-photon emission CT (SPECT) with N-isopropyl-p-( 123 I)-Iodoamphetamine to measure the regional cerebral blood flow (rCBF) in 15 children with partial epilepsy. SPECT showed focal changes in 14 cases. Ten cases had abnormalities in the initial SPECT and another four cases in the second test. The cases with normal rCBF in initial SPECT had been tested in an early phase after the onset, and then decreased rCBF were observed in the second SPECT. The cases with both abnormal rCBF in the initial SPECT and improved rCBF in the second SPECT showed good prognosis in clinico-electrophysiological evolutions. In cases with abnormal changes of rCBF in the second SPECT, clinical prognosis was found to be not so good. These findings suggest that serial SPECT may be used to follow the course of epilepsy. (author)

  19. Single-photon emission computed tomography in human immunodeficiency virus encephalopathy: A preliminary report

    Masdeu, J.C.; Yudd, A.; Van Heertum, R.L.; Grundman, M.; Hriso, E.; O'Connell, R.A.; Luck, D.; Camli, U.; King, L.N.

    1991-01-01

    Depression or psychosis in a previously asymptomatic individual infected with the human immunodeficiency virus (HIV) may be psychogenic, related to brain involvement by the HIV or both. Although prognosis and treatment differ depending on etiology, computed tomography (CT) and magnetic resonance imaging (MRI) are usually unrevealing in early HIV encephalopathy and therefore cannot differentiate it from psychogenic conditions. Thirty of 32 patients (94%) with HIV encephalopathy had single-photon emission computed tomography (SPECT) findings that differed from the findings in 15 patients with non-HIV psychoses and 6 controls. SPECT showed multifocal cortical and subcortical areas of hypoperfusion. In 4 cases, cognitive improvement after 6-8 weeks of zidovudine (AZT) therapy was reflected in amelioration of SPECT findings. CT remained unchanged. SPECT may be a useful technique for the evaluation of HIV encephalopathy

  20. Comparison of conventional and cadmium-zinc-telluride single-photon emission computed tomography for analysis of thallium-201 myocardial perfusion imaging: an exploratory study in normal databases for different ethnicities.

    Ishihara, Masaru; Onoguchi, Masahisa; Taniguchi, Yasuyo; Shibutani, Takayuki

    2017-12-01

    The aim of this study was to clarify the differences in thallium-201-chloride (thallium-201) myocardial perfusion imaging (MPI) scans evaluated by conventional anger-type single-photon emission computed tomography (conventional SPECT) versus cadmium-zinc-telluride SPECT (CZT SPECT) imaging in normal databases for different ethnic groups. MPI scans from 81 consecutive Japanese patients were examined using conventional SPECT and CZT SPECT and analyzed with the pre-installed quantitative perfusion SPECT (QPS) software. We compared the summed stress score (SSS), summed rest score (SRS), and summed difference score (SDS) for the two SPECT devices. For a normal MPI reference, we usually use Japanese databases for MPI created by the Japanese Society of Nuclear Medicine, which can be used with conventional SPECT but not with CZT SPECT. In this study, we used new Japanese normal databases constructed in our institution to compare conventional and CZT SPECT. Compared with conventional SPECT, CZT SPECT showed lower SSS (p < 0.001), SRS (p = 0.001), and SDS (p = 0.189) using the pre-installed SPECT database. In contrast, CZT SPECT showed no significant difference from conventional SPECT in QPS analysis using the normal databases from our institution. Myocardial perfusion analyses by CZT SPECT should be evaluated using normal databases based on the ethnic group being evaluated.

  1. Forensic applications of cerebral single photon emission computed tomography in mild traumatic brain injury.

    Wortzel, Hal S; Filley, Christopher M; Anderson, C Alan; Oster, Timothy; Arciniegas, David B

    2008-01-01

    Traumatic brain injury (TBI) is a substantial source of mortality and morbidity world wide. Although most such injuries are relatively mild, accurate diagnosis and prognostication after mild TBI are challenging. These problems are complicated further when considered in medicolegal contexts, particularly civil litigation. Cerebral single photon emission computed tomography (SPECT) may contribute to the evaluation and treatment of persons with mild TBI. Cerebral SPECT is relatively sensitive to the metabolic changes produced by TBI. However, such changes are not specific to this condition, and their presence on cerebral SPECT imaging does not confirm a diagnosis of mild TBI. Conversely, the absence of abnormalities on cerebral SPECT imaging does not exclude a diagnosis of mild TBI, although such findings may be of prognostic value. The literature does not demonstrate consistent relationships between SPECT images and neuropsychological testing or neuropsychiatric symptoms. Using the rules of evidence shaped by Daubert v. Merrell Dow Pharmaceuticals, Inc., and its progeny to analyze the suitability of SPECT for forensic purposes, we suggest that expert testimony regarding SPECT findings should be admissible only as evidence to support clinical history, neuropsychological test results, and structural brain imaging findings and not as stand-alone diagnostic data.

  2. SPECT in psychiatry

    Barocka, A.; Feistel, H.; Ebert, D.; Lungershausen, E.

    1993-01-01

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D 2 and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.) [de

  3. Brain spect imaging

    Lee, R.G.L.; Hill, T.C.; Holman, B.L.

    1989-01-01

    This paper discusses how the rapid development of single-photon radiopharmaceuticals has given new life to tomographic brain imaging in nuclear medicine. Further developments in radiopharmaceuticals and refinements in neuro-SPECT (single-photon emission computed tomography) instrumentation should help to reinstate brain scintigraphy as an important part of neurologic diagnosis. SPECT of the brain evolved from experimentation using prototype instrumentation during the early 1960s. Although tomographic studies provided superior diagnostic accuracy when compared to planar techniques, the arrival of X-ray CT of the head resulted in the rapid demise of technetium brain imaging

  4. Promising role of single photon emission computed tomography/computed tomography in Meckel's scan

    Jain, Anurag; Chauhan, MS; Pandit, AG; Kumar, Rajeev; Sharma, Amit

    2012-01-01

    Meckel's scan is a common procedure performed in nuclear medicine. Single-photon emission computed tomography/computed tomography (SPECT/CT) in a suspected case of heterotopic location of gastric mucosa can increase the accuracy of its anatomic localization. We present two suspected cases of Meckel's diverticulum in, which SPECT/CT co-registration has helped in better localization of the pathology

  5. Brain hypoperfusion on Tc-99m-ethylene dicysteine diethyl ester single-photon emission computed tomography in Hashimoto's encephalopathy

    Grande, María Luz Domínguez; Rayo, Juan Ignacio; Serrano, Justo; Infante, Jose Rafael; Garcia, Lucia; Duran, Carmen; Constantino, Ana

    2013-01-01

    We present a 17-year-old female, previously diagnosed of autoimmune hyperthyroidism who had an acute neurological episode and presented high antithyroid antibodies titers, cerebral spinal fluid and electroencephalogram changes. 99m Tc ethylene dicysteine diethyl ester brain single-photon emission computed tomography (SPECT) showed global and patchy hypoperfusion. With glucocorticoid therapy, clinical symptoms disappeared; there was a decrease in antithyroid antibody levels and repeat brain SPECT revealed improvement of perfusion. (author)

  6. Spectrum of single photon emission computed tomography/computed tomography findings in patients with parathyroid adenomas.

    Chakraborty, Dhritiman; Mittal, Bhagwant Rai; Harisankar, Chidambaram Natrajan Balasubramanian; Bhattacharya, Anish; Bhadada, Sanjay

    2011-01-01

    Primary hyperparathyroidism results from excessive parathyroid hormone secretion. Approximately 85% of all cases of primary hyperparathyroidism are caused by a single parathyroid adenoma; 10-15% of the cases are caused by parathyroid hyperplasia. Parathyroid carcinoma accounts for approximately 3-4% of cases of primary disease. Technetium-99m-sestamibi (MIBI), the current scintigraphic procedure of choice for preoperative parathyroid localization, can be performed in various ways. The "single-isotope, double-phase technique" is based on the fact that MIBI washes out more rapidly from the thyroid than from abnormal parathyroid tissue. However, not all parathyroid lesions retain MIBI and not all thyroid tissue washes out quickly, and subtraction imaging is helpful. Single photon emission computed tomography (SPECT) provides information for localizing parathyroid lesions, differentiating thyroid from parathyroid lesions, and detecting and localizing ectopic parathyroid lesions. Addition of CT with SPECT improves the sensitivity. This pictorial assay demonstrates various SPECT/CT patterns observed in parathyroid scintigraphy.

  7. Single photon emission computerized tomography

    Hooge, P. de.

    1983-01-01

    In this thesis two single-photon emission tomographic techniques are presented: (a) longitudinal tomography with a rotating slanting-hole collimator, and (b) transversal tomography with a rotating gamma camera. These methods overcome the disadvantages of conventional scintigraphy. Both detection systems and the image construction methods are explained and comparisons with conventional scintigraphy are drawn. One chapter is dedicated to the determination of system parameters like spatial resolution, contrast, detector uniformity, and size of the object, by phantom studies. In separate chapters the results are presented of detection of tumors and metastases in the liver and the liver hilus; skeletal diseases; various pathological aberrations of the brain; and myocardial perfusion. The possible use of these two ect's for other organs and body areas is discussed in the last chapter. (Auth.)

  8. I-123 iofetamine single photon emission tomography in school-age children with difficult-to-control seizures

    Gelfand, M.J.; Stowens, D.W.

    1989-01-01

    Interictal I-123 iofetamine (IMP) single photon emission tomography (SPECT) was performed in 15 children with difficult-to-control partial or generalized seizures. SPECT studies were compared with magnetic resonance imaging and CT in seven patients, with magnetic resonance imaging only in five, and with CT only in three. Electroencephalography was performed on all subjects, including invasive studies in nine. SPECT was abnormal in six patients. Magnetic resonance and/or CT studies were abnormal in two of the six patients. The other four patients with abnormal SPECT imaging studies had four magnetic resonance and two CT studies that were normal. The SPECT abnormality corresponded to EEG localization in each of the six cases. Lesions localized on SPECT were in or near the temporal lobes. Five other patients with normal SPECT had well-localized abnormalities on EEG. Four magnetic resonance and five CT studies were also negative in these five cases. Four patients whose EEGs did not show adequate lateralization had four normal SPECT, two normal CT, and three normal magnetic resonance studies. In children as in adults, IMP SPECT imaging shows promise in the localization of seizure foci in or near the temporal lobes

  9. Regional blood perfusion in childhood partial seizure using N-isopropyl-p-[I-123]iodoamphetamine and single photon emission CT

    Michihiro, Narumi; Kurosawa, Yumiko; Hibio, Shuichi; Ishihara, Hiroaki; Ariizumi, Motomizu

    1989-01-01

    Single photon emission CT (SPECT) with N-isopropyl-p-[I-123]iodoamphetamine was performed in 20 pediatric patients with partial seizure to examine regional blood perfusion. In detecting location of abnormality, SPECT and EEG were concordant in 13 patients (65%) and discordant in 4 patients (20%). In 7 patients undergoing SPECT one to 4 years after seizure onset, decreased blood perfusion corresponded to focal abnormality on EEG. In other 9 patiets in whom SPECT was performed within one year, however, location of abnormality on SPECT did not necessarily concur with that on EEG. These findings suggest that brain lesions are not focal but extensive at the early stage of partial seizure and that they are becoming focal with the mature of the central nervous system. (Namekawa, K)

  10. Effect of expression of P-glycoprotein on technetium-99m methoxyisobutylisonitrile single photon emission computed tomography of brain tumors

    Shibata, Yasushi; Matsumura, Akira; Nose, Tadao [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine

    2002-08-01

    The expression of P-glycoprotein was investigated imunohistochemically in 26 brain tumor tissues and compared with the findings of technetium-99m methoxyisobutylisonitrile single photon emission computed tomography ({sup 99m}Tc-MIBI SPECT) to clarify the effect of P-glycoprotein on the diagnostic accuracy. P-glycoprotein labeling index of both tumor cells and vascular endothelial cells showed no clear relationship with the findings of {sup 99m}Tc-MIBI SPECT imaging. Expression of P-glycoprotein has no effect on the diagnostic accuracy of {sup 99m}Tc-MIBI SPECT. (author)

  11. Waveguide superconducting single-photon autocorrelators for quantum photonic applications

    Sahin, D.; Gaggero, A.; Frucci, G.; Jahanmirinejad, S.; Sprengers, J.P.; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Fiore, A.; Hasan, Z.U.; Hemmer, P.R.; Lee, H.; Santori, C.M.

    2013-01-01

    We report a novel component for integrated quantum photonic applications, a waveguide single-photon autocorrelator. It is based on two superconducting nanowire detectors patterned onto the same GaAs ridge waveguide. Combining the electrical output of the two detectors in a correlation card enables

  12. Single photon emission computed tomography/spiral computed tomography fusion imaging for the diagnosis of bone metastasis in patients with known cancer

    Zhao, Zhen; Li, Lin; Li, Fanglan; Zhao, Lixia

    2010-01-01

    To evaluate single photon emission computed tomography (SPECT)/spiral computed tomography (CT) fusion imaging for the diagnosis of bone metastasis in patients with known cancer and to compare the diagnostic efficacy of SPECT/CT fusion imaging with that of SPECT alone and with SPECT + CT. One hundred forty-one bone lesions of 125 cancer patients (with nonspecific bone findings on bone scintigraphy) were investigated in the study. SPECT, CT, and SPECT/CT fusion images were acquired simultaneously. All images were interpreted independently by two experienced nuclear medicine physicians. In cases of discrepancy, consensus was obtained by a joint reading. The final diagnosis was based on biopsy proof and radiologic follow-up over at least 1 year. The final diagnosis revealed 63 malignant bone lesions and 78 benign lesions. The diagnostic sensitivity of SPECT, SPECT + CT, and SPECT/CT fusion imaging for malignant lesions was 82.5%, 93.7%, and 98.4%, respectively. Specificity was 66.7%, 80.8%, and 93.6%, respectively. Accuracy was 73.8%, 86.5%, and 95.7%, respectively. The specificity and accuracy of SPECT/CT fusion imaging for the diagnosis malignant bone lesions were significantly higher than those of SPECT alone and of SPECT + CT (P 2 = 9.855, P = 0.002). The numbers of equivocal lesions were 37, 18, and 5 for SPECT, SPECT + CT, and SPECT/CT fusion imaging, respectively, and 29.7% (11/37), 27.8% (5/18), and 20.0% (1/5) of lesions were confirmed to be malignant by radiologic follow-up over at least 1 year. SPECT/spiral CT is particularly valuable for the diagnosis of bone metastasis in patients with known cancer by providing precise anatomic localization and detailed morphologic characteristics. (orig.)

  13. Bronchobiliary Fistula Localized by Cholescintigraphy with Single-Photon Emission Computed Tomography

    Artunduaga, Maddy; Patel, Niraj R.; Wendt, Julie A.; Guy, Elizabeth S.; Nachiappan, Arun C.

    2015-01-01

    Biliptysis is an important clinical feature to recognize as it is associated with bronchobiliary fistula, a rare entity. Bronchobiliary fistulas have been diagnosed with planar cholescintigraphy. However, cholescintigraphy with single-photon emission computed tomography (SPECT) can better spatially localize a bronchobiliary fistula as compared to planar cholescintigraphy alone, and is useful for preoperative planning if surgical treatment is required. Here, we present the case of a 23-year-old male who developed a bronchobiliary fistula in the setting of posttraumatic and postsurgical infection, which was diagnosed and localized by cholescintigraphy with SPECT

  14. Single-photon manipulation in Nanophotonic Circuits

    Hansen, Sofie Lindskov

    Quantum dots in photonic nanostructures has long been known to be a very powerful and versatile solid-state platform for conducting quantum optics experiments. The present PhD thesis describes experimental demonstrations of single-photon generation and subsequent manipulation all realized...... on a gallium arsenide platform. This platform offers near-unity coupling between embedded single-photon emitters and a photonic mode, as well as the ability to suppress decoherence mechanisms, making it highly suited for quantum information applications. In this thesis we show how a single-photon router can...... be realized on a chip with embedded quantum dots. This allows for on-chip generation and manipulation of single photons. The router consists of an on-chip interferometer where the phase difference between the arms of the interferometer is controlled electrically. The response time of the device...

  15. Photon correlation in single-photon frequency upconversion.

    Gu, Xiaorong; Huang, Kun; Pan, Haifeng; Wu, E; Zeng, Heping

    2012-01-30

    We experimentally investigated the intensity cross-correlation between the upconverted photons and the unconverted photons in the single-photon frequency upconversion process with multi-longitudinal mode pump and signal sources. In theoretical analysis, with this multi-longitudinal mode of both signal and pump sources system, the properties of the signal photons could also be maintained as in the single-mode frequency upconversion system. Experimentally, based on the conversion efficiency of 80.5%, the joint probability of simultaneously detecting at upconverted and unconverted photons showed an anti-correlation as a function of conversion efficiency which indicated the upconverted photons were one-to-one from the signal photons. While due to the coherent state of the signal photons, the intensity cross-correlation function g(2)(0) was shown to be equal to unity at any conversion efficiency, agreeing with the theoretical prediction. This study will benefit the high-speed wavelength-tunable quantum state translation or photonic quantum interface together with the mature frequency tuning or longitudinal mode selection techniques.

  16. New application of myocardial infarct map using a dual isotope single photon emission computed tomography (SPECT) of [99mTc]pyrophosphate and [201Tl]chloride in patients with acute myocardial infarction

    Hiroe, Michiaki; Muramatsu, Yasuji; Sugimoto, Keiichi; Tsujino, Motoyoshi; Maejima, Michihiro; Miyahara, Yasuhiro; Taniguchi, Koichi; Matsui, Susumu; Mizukawa, Katsumi.

    1988-01-01

    In 12 patients with acute myocardial infarction, a dual isotope SPECT was applied to describe a myocardial infarct map for detecting the site and the extent of the infarct. Threshold cut-off level was determined as 55 % for [ 99m Tc] and 35 % for [ 201 Tl] according to cardiac phantom studies. Multiple cardiac tomograms showed two different uptakes of the isotopes in indentical slices and regions. Then, color tomograms were described on the red and green image for [ 99m Tc] and for [ 201 Tl], respectively, and Bulls eye map was drawn in the two colored fashion as the myocardial infarct map. In all patients, the infarct map was successful to determine the exact site of the infarct and the overlapped area by the viable myocardium. In conclusion, this functional map of acute myocardial infarction may be useful for understanding three dimensional area of the infarct and the viable myocardium easily and exactly. (author)

  17. Gated single photon emission computer tomography for the detection of silent myocardial ischemia

    Pena Q, Yamile; Coca P, Marco Antonio; Batista C, Juan Felipe; Fernandez-Britto, Jose; Quesada P, Rodobaldo; Pena C; Andria

    2009-01-01

    Background: Asymptomatic patients with severe coronary atherosclerosis may have a normal resting electrocardiogram and stress test. Aim: To assess the yield of Gated Single Photon Emission Computer Tomography (SPECT) for the screening of silent myocardial ischemia in type 2 diabetic patients. Material and methods: Electrocardiogram, stress test and gated-SPECT were performed on 102 type 2 diabetic patients aged 60 ± 8 years without cardiovascular symptoms. All subjects were also subjected to a coronary angiography, whose results were used as gold standard. Results: Gated-SPECT showed myocardial ischemia on 26.5% of studied patients. The sensibility, specificity, accuracy, positive predictive value and negative predictive value were 92.3%, 96%, 95%, 88.8%, 97.3%, respectively. In four and six patients ischemia was detected on resting electrocardiogram and stress test, respectively. Eighty percent of patients with doubtful resting electrocardiogram results and 70% with a doubtful stress test had a silent myocardial ischemia detected by gated-SPECT. There was a good agreement between the results of gated-SPECT and coronary angiography (k =0.873). Conclusions: Gated-SPECT was an useful tool for the screening of silent myocardial ischemia

  18. Single photon transport by a moving atom

    Afanasiev, A E; Melentiev, P N; Kuzin, A A; Yu Kalatskiy, A; Balykin, V I

    2017-01-01

    The results of investigation of photon transport through the subwavelength hole in the opaque screen by using single neutral atom are represented. The basis of the proposed and implemented method is the absorption of a photon by a neutral atom immediately before the subwavelength aperture, traveling of the atoms through the hole and emission of a photon on the other side of the screen. Realized method is the alternative approach to existing for photon transport through a subwavelength aperture: 1) self-sustained transmittance of a photon through the aperture according to the Bethe’s model; 2) extra ordinary transmission because of surface-plasmon excitation. (paper)

  19. SPECT and PET imaging in epilepsy

    Semah, F.

    2007-01-01

    Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging are very useful for the management of patients with medically refractory partial epilepsy. Presurgical evaluation of patients with medically refractory partial epilepsy often included PET imaging using FDG. The use of SPECT in these patients adds some more information and gives the clinicians the possibility of having ictal imaging. Furthermore, PET and SPECT imaging are performed to better understand the pathophysiology of epilepsy. (authors)

  20. Comparison of single photon emission computed tomography-computed tomography, computed tomography, single photon emission computed tomography and planar scintigraphy for characterization of isolated skull lesions seen on bone scintigraphy in cancer patients

    Sharma, Punit; Jain, Tarun Kumar; Reddy, Rama Mohan; Faizi, Nauroze Ashgar; Bal, Chandrasekhar; Malhotra, Arun; Kumar, Rakesh

    2014-01-01

    The purpose of this study is to evaluate the added value of single photon emission computed tomography-computed tomography (SPECT-CT) over planar scintigraphy, SPECT and CT alone for characterization of isolated skull lesions in bone scintigraphy (BS) in cancer patients. A total of 32 cancer patients (age: 39.5 ± 21.9; male: female - 1:1) with 36 isolated skull lesions on planar BS, underwent SPECT-CT of skull. Planar BS, SPECT, CT and SPECT-CT images were evaluated in separate sessions to minimize recall bias. A scoring scale of 1-5 was used, where 1 is definitely metastatic, 2 is probably metastatic, 3 is indeterminate, 4 is probably benign and 5 is definitely benign. With receiver operating characteristic analysis area under the curves (AUC) was calculated for each modality. For calculation of sensitivity, specificity and predictive values a Score ≤3 was taken as metastatic. Clinical/imaging follow-up and/or histopathology were taken as reference standard. Of 36 skull lesions 11 lesions each were on frontal, parietal and occipital bone while three lesions were in the temporal bone. Of these 36 lesions, 16 were indeterminate (Score-3) on planar and SPECT, five on CT and none on SPECT-CT. The AUC was largest for SPECT-CT followed by CT, SPECT and planar scintigraphy, respectively. Planar scintigraphy was inferior to SPECT-CT (P = 0.006) and CT (P = 0.012) but not SPECT (P = 0.975). SPECT was also inferior to SPECT-CT (P = 0.007) and CT (P = 0.015). Although no significant difference was found between SPECT-CT and CT (P = 0.469), the former was more specific (100% vs. 94%). SPECT-CT is better than planar scintigraphy and SPECT alone for correctly characterizing isolated skull lesions on BS in cancer patients. It is more specific than CT, but provides no significant advantage over CT alone for this purpose

  1. Single-photon emission computed tomography/computed tomography in lung cancer and malignant lymphoma.

    Schillaci, Orazio

    2006-10-01

    In nuclear oncology, despite the fast-growing diffusion of (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET), single-photon emission computed tomography (SPECT) studies can still play an useful clinical role in several applications. The main limitation of SPECT imaging with tumor-seeking agents is the lack of the structural delineation of the pathologic processes they detect; this drawback sometimes renders SPECT interpretation difficult and can diminish its diagnostic accuracy. Fusion with morphological studies can overcome this limitation by giving an anatomical map to scintigraphic data. In the past, software-based fusion of independently performed SPECT and CT images proved to be time-consuming and impractical for routine use. The recent development of dual-modality integrated imaging systems that provide functional (SPECT) and anatomical (CT) images in the same scanning session, with the acquired images coregistered by means of the hardware, has opened a new era in this field. The first reports indicate that SPECT/CT is very useful in cancer imaging because it is able to provide further information of clinical value in several cases. In SPECT, studies of lung cancer and malignant lymphomas using different radiopharmaceutical, hybrid images are of value in providing the correct localization of tumor sites, with a precise detection of the involved organs, and the definition of their functional status, and in allowing the exclusion of disease in sites of physiologic tracer uptake. Therefore, in lung cancer and lymphomas, hybrid SPECT/CT can play a role in the diagnosis of the primary tumor, in the staging of the disease, in the follow-up, in the monitoring of therapy, in the detection of recurrence, and in dosimetric estimations for target radionuclide therapy.

  2. Photon statistics characterization of a single-photon source

    Alleaume, R; Treussart, F; Courty, J-M; Roch, J-F

    2004-01-01

    In a recent experiment, we reported the time-domain intensity noise measurement of a single-photon source relying on single-molecule fluorescence control. In this paper, we present data processing starting from photocount timestamps. The theoretical analytical expression of the time-dependent Mandel parameter Q(T) of an intermittent single-photon source is derived from ON↔OFF dynamics. Finally, source intensity noise analysis, using the Mandel parameter, is quantitatively compared with the usual approach relying on the time autocorrelation function, both methods yielding the same molecular dynamical parameters

  3. I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury.

    Abiko, Kagari; Ikoma, Katsunori; Shiga, Tohru; Katoh, Chietsugu; Hirata, Kenji; Kuge, Yuji; Kobayashi, Kentaro; Tamaki, Nagara

    2017-12-01

    Traumatic brain injury (TBI) causes brain dysfunction in many patients. Using C-11 flumazenil (FMZ) positron emission tomography (PET), we have detected and reported the loss of neuronal integrity, leading to brain dysfunction in TBI patients. Similarly to FMZ PET, I-123 iomazenil (IMZ) single photon emission computed tomography (SPECT) is widely used to determine the distribution of the benzodiazepine receptor (BZR) in the brain cortex. The purpose of this study is to examine whether IMZ SPECT is as useful as FMZ PET for evaluating the loss of neuronal integrity in TBI patients. The subjects of this study were seven patients who suffered from neurobehavioral disability. They underwent IMZ SPECT and FMZ PET. Nondisplaceable binding potential (BP ND ) was calculated from FMZ PET images. The uptake of IMZ was evaluated on the basis of lesion-to-pons ratio (LPR). The locations of low uptake levels were visually evaluated both in IMZ SPECT and FMZ PET images. We compared FMZ BP ND and (LPR-1) of IMZ SPECT. In the visual assessment, FMZ BP ND decreased in 11 regions. In IMZ SPECT, low uptake levels were observed in eight of the 11 regions. The rate of concordance between FMZ PET and IMZ SPECT was 72.7%. The mean values IMZ (LPR-1) (1.95 ± 1.01) was significantly lower than that of FMZ BP ND (2.95 ± 0.80 mL/mL). There was good correlation between FMZ BP ND and IMZ (LPR-1) (r = 0.80). IMZ SPECT findings were almost the same as FMZ PET findings in TBI patients. The results indicated that IMZ SPECT is useful for evaluating the loss of neuronal integrity. Because IMZ SPECT can be performed in various facilities, IMZ SPECT may become widely adopted for evaluating the loss of neuronal integrity.

  4. Detection of avascular necrosis in adults by single photon emission computed tomography

    Collier, B.D.; Johnston, R.P.; Carrera, G.; Isitman, A.T.; Hellman, R.S.; Zielonka, J.S.

    1984-01-01

    Twenty-one adult patients with the clinical diagnosis of avascular necrosis (AVN) of the femoral head were examined with planar bone scintigraphy (high resolution collimator) and single photon emission computed tomography (SPECT). The duration of hip pain ranged from 1 day to 18 months. Risk factors (including steroids, renal transplantation, alcoholism, and trauma) were present in 17 cases. A final diagnosis of AVN (20 hips), osteochondral facture, or stress fracture, was established for 17 patients. The 4 remaining patients, who were radiographically normal and did not complain of pain 3 months later, were thought to have no significant bone pathology. SPECT and planar bone scintigraphy were reported as positive for AVN only if a photopenic bony defect could be identified. In particular, uniformly increased activity throughout the femoral head was not considered to be diagnostic of AVN. The authors conclude that by identifying a photopenic defect which is not evident on planar bone scintigraphy, SPECT can contribute to accurate diagnosis of AVN

  5. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  6. Single photon sources with single semiconductor quantum dots

    Shan, Guang-Cun; Yin, Zhang-Qi; Shek, Chan Hung; Huang, Wei

    2014-04-01

    In this contribution, we briefly recall the basic concepts of quantum optics and properties of semiconductor quantum dot (QD) which are necessary to the understanding of the physics of single-photon generation with single QDs. Firstly, we address the theory of quantum emitter-cavity system, the fluorescence and optical properties of semiconductor QDs, and the photon statistics as well as optical properties of the QDs. We then review the localization of single semiconductor QDs in quantum confined optical microcavity systems to achieve their overall optical properties and performances in terms of strong coupling regime, efficiency, directionality, and polarization control. Furthermore, we will discuss the recent progress on the fabrication of single photon sources, and various approaches for embedding single QDs into microcavities or photonic crystal nanocavities and show how to extend the wavelength range. We focus in particular on new generations of electrically driven QD single photon source leading to high repetition rates, strong coupling regime, and high collection efficiencies at elevated temperature operation. Besides, new developments of room temperature single photon emission in the strong coupling regime are reviewed. The generation of indistinguishable photons and remaining challenges for practical single-photon sources are also discussed.

  7. Application of single photon ECT for dynamic study

    Mukai, T.; Ishii, Y.; Tamaki, N.

    1982-01-01

    Feasibility of dynamic study in a form of ECT using a rotating gamma camera was evaluated. Since it takes longer one around time sampling, application for the dynamic study is limited under following conditions; 1) physiological gated process, 2) slow clearance process, 3) physiological steady state process. The gated study was applicated for heart pumping action synchronized with ECG. The ECG gated heart ECT either of blood pool or myocardium was useful to reveal a subtle wall motion abnormalities in a tomographic plane, even when a planar imaging failed to reveal it. As for slow dynamic process of tracer, an excretion process of hepatobiliary agent, was subjected to be analyzed in order to calculate clearance rate at each pixel. As for steady state process, an ECT of regional celebral blood flow (rCBF) was investigated during continuous infusion into intracarotid artery. All of these technique were proved to have a clinical feasibility and to potentiate usefulness of the single photon ECT (SPECT)

  8. Visualization of portal venous system by single photon emission CT

    Kashiwagi, T; Ikawa, T; Azuma, M; Matsuda, H; Yoshioka, H; Mitsutani, N; Koizumi, T

    1987-03-01

    Single photon emission CT (SPECT) was performed for the intra-abdominal blood pool with /sup 99m/Tc autologous red blood cells (RBC) in 15 patients with liver cirrhosis. Twenty mCi of /sup 99m/Tc-RBC labeled by in vivo technique were administered intravenously and tomographic imaging of the intra-abdominal vascular blood pool was performed as follows. For each subject, 64 views were obtained over 360 deg of elliptic rotation at 30 seconds per view using a high resolution low energy parallel-hole collimator. Portal vein and portosystemic collaterals were clearly observed in coronal images. In 12 of 15 patients, portal vein was delineated. Portosystemic collaterals such as coronary vein, splenorenal shunt and umbilical vein were also shown in 12 patients. These images were consistent with images obtained by scintiphotosplenoportography or arterial portography. Therefore, it is considered that SPECT study for the intra-abdominal blood pool is clinically very useful for the diagnosis of abnormality of portal venous system in portal hypertension.

  9. Single-photon emission computed tomography for the assessment of ventricular perfusion and function

    Gonzalez, Patricio; Dussaillant, Gaston; Gutierrez, Daniela; Berrocal, Isabel; Alay, Rita; Otarola, Sonia

    2013-01-01

    Background: Single-photon emission computed tomography (SPECT) can be used as a non-invasive tool for the assessment of coronary perfusion. Aim: To assess ventricular perfusion and function by SPECT in patients with single vessel coronary artery disease. Material and Methods: Among patients with indications for a coronary artery angiography, those with significant lesions in one vessel, were selected for the study. Within 24 hours, cardiac SPECT examinations on basal conditions and after high doses of dipyridamole, were performed. SPECT data from 38 patients with a low probability of coronary artery disease was used for comparisons. Results:Ten patients aged 61 ± 8 years (seven men) were studied. Visual analysis of SPECT revealed signs suggestive of ischemia in eight patients. The remaining two patients did not have perfusion disturbances. SPECT detected eight of ten abnormal vessels reported in the coronary artery angiography. There were two false negative results Summed stress, summed rest and summed difference scores were 9.78 ± 6.51, 3.22 ± 5.07 and 6.33 ± 4.97, respectively. The ejection fractions under stress and at rest were 53 ± 11.7% and 61 ± 15.7% respectively (p ≤ 0.01). The figures for the control group were 69.1 ± 13.5% and 75.2 ± 12.04% respectively (significantly different from patients). Two patients had a summed motion score above 14.9. Likewise, two patients had a summed thickening score above 10.9. Conclusions: SPECT detected 80% of coronary lesions found during coronary artery angiography. Visual analysis of perfusion is highly reliable for diagnosis. Quantitative parameters must be considered only as reference parameters

  10. Changing optical band structure with single photons

    Albrecht, Andreas; Caneva, Tommaso; Chang, Darrick E.

    2017-11-01

    Achieving strong interactions between individual photons enables a wide variety of exciting possibilities in quantum information science and many-body physics. Cold atoms interfaced with nanophotonic structures have emerged as a platform to realize novel forms of nonlinear interactions. In particular, when atoms are coupled to a photonic crystal waveguide, long-range atomic interactions can arise that are mediated by localized atom-photon bound states. We theoretically show that in such a system, the absorption of a single photon can change the band structure for a subsequent photon. This occurs because the first photon affects the atoms in the chain in an alternating fashion, thus leading to an effective period doubling of the system and a new optical band structure for the composite atom-nanophotonic system. We demonstrate how this mechanism can be engineered to realize a single-photon switch, where the first incoming photon switches the system from being highly transmissive to highly reflective, and analyze how signatures can be observed via non-classical correlations of the outgoing photon field.

  11. ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI): a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group and the American Society of Nuclear Cardiology endorsed by the American Heart Association.

    Brindis, Ralph G; Douglas, Pamela S; Hendel, Robert C; Peterson, Eric D; Wolk, Michael J; Allen, Joseph M; Patel, Manesh R; Raskin, Ira E; Hendel, Robert C; Bateman, Timothy M; Cerqueira, Manuel D; Gibbons, Raymond J; Gillam, Linda D; Gillespie, John A; Hendel, Robert C; Iskandrian, Ami E; Jerome, Scott D; Krumholz, Harlan M; Messer, Joseph V; Spertus, John A; Stowers, Stephen A

    2005-10-18

    Under the auspices of the American College of Cardiology Foundation (ACCF) and the American Society of Nuclear Cardiology (ASNC), an appropriateness review was conducted for radionuclide cardiovascular imaging (RNI), specifically gated single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). The review assessed the risks and benefits of the imaging test for several indications or clinical scenarios and scored them based on a scale of 1 to 9, where the upper range (7 to 9) implies that the test is generally acceptable and is a reasonable approach, and the lower range (1 to 3) implies that the test is generally not acceptable and is not a reasonable approach. The mid range (4 to 6) implies that the test may be generally acceptable and may be a reasonable approach for the indication. The indications for this review were primarily drawn from existing clinical practice guidelines and modified based on discussion by the ACCF Appropriateness Criteria Working Group and the Technical Panel members who rated the indications. The method for this review was based on the RAND/UCLA approach for evaluating appropriateness, which blends scientific evidence and practice experience. A modified Delphi technique was used to obtain first- and second-round ratings of 52 clinical indications. The ratings were done by a Technical Panel with diverse membership, including nuclear cardiologists, referring physicians (including an echocardiographer), health services researchers, and a payer (chief medical officer). These results are expected to have a significant impact on physician decision making and performance, reimbursement policy, and future research directions. Periodic assessment and updating of criteria will be undertaken as needed.

  12. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography

    Rochitte, Carlos E; George, Richard T; Chen, Marcus Y

    2014-01-01

    AIMS: To evaluate the diagnostic power of integrating the results of computed tomography angiography (CTA) and CT myocardial perfusion (CTP) to identify coronary artery disease (CAD) defined as a flow limiting coronary artery stenosis causing a perfusion defect by single photon emission computed...... emission computed tomography (SPECT/MPI). Sixteen centres enroled 381 patients who underwent combined CTA-CTP and SPECT/MPI prior to conventional coronary angiography. All four image modalities were analysed in blinded independent core laboratories. The prevalence of obstructive CAD defined by combined ICA...... tomography (SPECT). METHODS AND RESULTS: We conducted a multicentre study to evaluate the accuracy of integrated CTA-CTP for the identification of patients with flow-limiting CAD defined by ≥50% stenosis by invasive coronary angiography (ICA) with a corresponding perfusion deficit on stress single photon...

  13. Effect of bypass on the motor activation SPECT compared to the acetazolamide SPECT

    Kawaguchi, Shoichiro; Iwahashi, Hideaki; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    2002-03-01

    The authors evaluated and analyzed motor activation single photon emission computed tomography (M-SPECT) in ischemic cerebrovascular disease compared to resting and acetazolamide (ACZ) activated SPECT studies. Seventeen cases with STA-MCA bypass performed for ischemic cerebrovascular disease were examined. The SPECT studies consisting of resting, ACZ activation, and motor activation stages were performed before bypass, at 1 month, and 3 months after bypass. The result of the M-SPECT was expressed as negative or positive. Before bypass: In all 17 cases, SPECT studies of the affected side showed reduction of resting cerebral blood flow (CBF) and reduction of cerebrovascular reserve capacity (CVRC). Eight cases were positive in the M-SPECT study. One week after bypass: The resting CBF increased in seven cases. Four showed preoperative positive M-SPECT. Eight cases showed improvement of the CVRC. Twelve cases were positive in M-SPECT, and two were negative in the preoperative M-SPECT. Three months after bypass: Thirteen cases showed improvement in the resting CBF, and fourteen cases showed improvement of the CVRC. Fourteen cases were positive in the M-SPECT, and among these, 6 were negative in the preoperative M-SPECT. There was a discrepancy between the improvement in CVRC and M-SPECT. M-SPECT study can provide information about the degree of hemodynamic compromise and effect of bypass surgery. (author)

  14. Effect of bypass on the motor activation SPECT compared to the acetazolamide SPECT

    Kawaguchi, Shoichiro; Iwahashi, Hideaki; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    2002-01-01

    The authors evaluated and analyzed motor activation single photon emission computed tomography (M-SPECT) in ischemic cerebrovascular disease compared to resting and acetazolamide (ACZ) activated SPECT studies. Seventeen cases with STA-MCA bypass performed for ischemic cerebrovascular disease were examined. The SPECT studies consisting of resting, ACZ activation, and motor activation stages were performed before bypass, at 1 month, and 3 months after bypass. The result of the M-SPECT was expressed as negative or positive. Before bypass: In all 17 cases, SPECT studies of the affected side showed reduction of resting cerebral blood flow (CBF) and reduction of cerebrovascular reserve capacity (CVRC). Eight cases were positive in the M-SPECT study. One week after bypass: The resting CBF increased in seven cases. Four showed preoperative positive M-SPECT. Eight cases showed improvement of the CVRC. Twelve cases were positive in M-SPECT, and two were negative in the preoperative M-SPECT. Three months after bypass: Thirteen cases showed improvement in the resting CBF, and fourteen cases showed improvement of the CVRC. Fourteen cases were positive in the M-SPECT, and among these, 6 were negative in the preoperative M-SPECT. There was a discrepancy between the improvement in CVRC and M-SPECT. M-SPECT study can provide information about the degree of hemodynamic compromise and effect of bypass surgery. (author)

  15. A combined static-dynamic single-dose imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT.

    Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-03

    SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of 99m Tc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image

  16. Solid-state single-photon emitters

    Aharonovich, Igor; Englund, Dirk; Toth, Milos

    2016-10-01

    Single-photon emitters play an important role in many leading quantum technologies. There is still no 'ideal' on-demand single-photon emitter, but a plethora of promising material systems have been developed, and several have transitioned from proof-of-concept to engineering efforts with steadily improving performance. Here, we review recent progress in the race towards true single-photon emitters required for a range of quantum information processing applications. We focus on solid-state systems including quantum dots, defects in solids, two-dimensional hosts and carbon nanotubes, as these are well positioned to benefit from recent breakthroughs in nanofabrication and materials growth techniques. We consider the main challenges and key advantages of each platform, with a focus on scalable on-chip integration and fabrication of identical sources on photonic circuits.

  17. Single Photon Sources in Silicon Carbide

    Brett Johnson

    2014-01-01

    Single photon sources in semiconductors are highly sought after as they constitute the building blocks of a diverse range of emerging technologies such as integrated quantum information processing, quantum metrology and quantum photonics. In this presentation, we show the first observation of single photon emission from deep level defects in silicon carbide (SiC). The single photon emission is photo-stable at room temperature and surprisingly bright. This represents an exciting alternative to diamond color centers since SiC possesses well-established growth and device engineering protocols. The defect is assigned to the carbon vacancy-antisite pair which gives rise to the AB photoluminescence lines. We discuss its photo-physical properties and their fabrication via electron irradiation. Preliminary measurements on 3C SiC nano-structures will also be discussed. (author)

  18. The origins of SPECT and SPECT/CT

    Hutton, Brian F. [University College London, Institute of Nuclear Medicine, London (United Kingdom); University of Wollongong, Centre for Medical Radiation Physics, Wollongong, NSW (Australia)

    2014-05-15

    Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility. (orig.)

  19. Comparison of planar scanning and single photon emission computed tomography in the diagnosis of avascular necrosis of the femoral head

    Feiglin, D.H.I.; Levine, M.; Stulberg, B.; Pflanze, W.; O'Donnell, J.K.; Belhobek, G.H.; Go, R.T.; MacIntyre, W.J.

    1986-01-01

    Thirty-nine patients were investigated for avascular necrosis of the femoral head. All hips were studied by plain x-ray and MR imaging, 70 hips studied by radionuclide bone scanning, and 38 were studied by single photon emission CT (SPECT). Core biopsies of the femoral heads from 32 hips were examined. No one reference standard for noninvasive diagnosis of this disease is available. The sensitivity and specificity of the radionuclide studies with respect to SPECT were 77% and 100%; of SPECT with respect to pathologic confirmation, 100% and 57%; of MR imaging with respect to pathologic studies, 100% and 66%. Pathologic sampling is subject to error and may give false negative results with spuriously low specificities for imaging modalities. SPECT is recommended as the radionuclide imaging procedure of choice for detecting avascular necrosis of the femoral head

  20. Photonic wires and trumpets for ultrabright single photon sources

    Gérard, Jean-Michel; Claudon, Julien; Bleuse, Joël

    2013-01-01

    as to tailor their radiation diagram in the far-field. We highlight the novel “photonic trumpet” geometry, which provides a clean Gaussian beam, and is much less sensitive to fabrication imperfections than the more common needle-like taper geometry. S4Ps based on a single QD in a PW with integrated bottom...

  1. Single-photon sources based on single molecules in solids

    Moerner, W E

    2004-01-01

    Single molecules in suitable host crystals have been demonstrated to be useful single-photon emitters both at liquid-helium temperatures and at room temperature. The low-temperature source achieved controllable emission of single photons from a single terrylene molecule in p-terphenyl by an adiabatic rapid passage technique. In contrast with almost all other single-molecule systems, terrylene single molecules show extremely high photostability under continuous, high-intensity irradiation. A room-temperature source utilizing this material has been demonstrated, in which fast pumping into vibrational sidebands of the electronically excited state achieved efficient inversion of the emissive level. This source yielded a single-photon emission probability p(1) of 0.86 at a detected count rate near 300 000 photons s -1 , with very small probability of emission of more than one photon. Thus, single molecules in solids can be considered as contenders for applications of single-photon sources such as quantum key distribution

  2. single photon emission tomography and positron emission tomography - Part 1 (October 2012), Part 2 (October 2010)

    Buvat, Irene

    2010-10-01

    The objective of this lecture is to present the single photon emission computed tomography (SPECT) and the positron emission tomography (PET) imaging techniques. Part 1 Content: 1 - Introduction: anatomic, functional and molecular imaging; 2 - Radiotracers: chemical and physical constraints, gamma photon emitters, positon emitters, radioisotopes production, emitters type and imaging techniques; 3 - Gamma cameras; 4 - Quantification in emission tomography: attenuation, scattering, un-stationary spatial resolution; 5 - Synthesis and conclusion. Part 2 content: 1 - Positon emitters; 2 - Positons detection: Coincidence detection (electronic collimation, PET detectors with gamma cameras, dedicated PET detectors, spectrometry); PET detectors type; time-of-flight PET; 2D PET; 3D PET; 3 - Quantification in emission tomography: detected events, attenuation, scattering, fortuitous coincidences, standardisation; 4 - Common SPECT and PET problems: partial volume effect, movement, tomographic reconstruction, calibration, dead time; 5 - Synthesis and conclusion

  3. Safety of ventilation/perfusion single photon emission computed tomography for pulmonary embolism diagnosis

    Le Roux, Pierre-Yves; Palard, Xavier; Robin, Philippe; Abgral, Ronan; Querellou, Solene; Salaun, Pierre-Yves [Universite Europeenne de Bretagne, Brest (France); Universite de Brest, Brest (France); CHRU de la Cavale Blanche, Service de medecine nucleaire, Brest (France); Delluc, Aurelien; Couturaud, Francis [Universite Europeenne de Bretagne, Brest (France); Universite de Brest, Brest (France); CHRU de la Cavale Blanche, Departement de medecine interne et de pneumologie, Brest (France); Le Gal, Gregoire [Universite Europeenne de Bretagne, Brest (France); University of Ottawa, Ottawa Hospital Research Institute, Ottawa (Canada); CHRU de la Cavale Blanche, Departement de medecine interne et de pneumologie, Brest (France); Universite de Brest, Brest (France)

    2014-10-15

    The aim of this management outcome study was to assess the safety of ventilation/perfusion single photon emission computed tomography (V/Q SPECT) for the diagnosis of pulmonary embolism (PE) using for interpretation the criteria proposed in the European Association of Nuclear Medicine (EANM) guidelines for V/Q scintigraphy. A total of 393 patients with clinically suspected PE referred to the Nuclear Medicine Department of Brest University Hospital from April 2011 to March 2013, with either a high clinical probability or a low or intermediate clinical probability but positive D-dimer, were retrospectively analysed. V/Q SPECT were interpreted by the attending nuclear medicine physician using a diagnostic cut-off of one segmental or two subsegmental mismatches. The final diagnostic conclusion was established by the physician responsible for patient care, based on clinical symptoms, laboratory test, V/Q SPECT and other imaging procedures performed. Patients in whom PE was deemed absent were not treated with anticoagulants and were followed up for 3 months. Of the 393 patients, the prevalence of PE was 28 %. V/Q SPECT was positive for PE in 110 patients (28 %) and negative in 283 patients (72 %). Of the 110 patients with a positive V/Q SPECT, 78 (71 %) had at least one additional imaging test (computed tomography pulmonary angiography or ultrasound) and the diagnosis of PE was eventually excluded in one patient. Of the 283 patients with a negative V/Q SPECT, 74 (26 %) patients had another test. The diagnosis of PE was finally retained in one patient and excluded in 282 patients. The 3-month thromboembolic risk in the patients not treated with anticoagulants was 1/262: 0.38 % (95 % confidence interval 0.07-2.13). A diagnostic management including V/Q SPECT interpreted with a diagnostic cut-off of ''one segmental or two subsegmental mismatches'' appears safe to exclude PE. (orig.)

  4. Safety of ventilation/perfusion single photon emission computed tomography for pulmonary embolism diagnosis

    Le Roux, Pierre-Yves; Palard, Xavier; Robin, Philippe; Abgral, Ronan; Querellou, Solene; Salaun, Pierre-Yves; Delluc, Aurelien; Couturaud, Francis; Le Gal, Gregoire

    2014-01-01

    The aim of this management outcome study was to assess the safety of ventilation/perfusion single photon emission computed tomography (V/Q SPECT) for the diagnosis of pulmonary embolism (PE) using for interpretation the criteria proposed in the European Association of Nuclear Medicine (EANM) guidelines for V/Q scintigraphy. A total of 393 patients with clinically suspected PE referred to the Nuclear Medicine Department of Brest University Hospital from April 2011 to March 2013, with either a high clinical probability or a low or intermediate clinical probability but positive D-dimer, were retrospectively analysed. V/Q SPECT were interpreted by the attending nuclear medicine physician using a diagnostic cut-off of one segmental or two subsegmental mismatches. The final diagnostic conclusion was established by the physician responsible for patient care, based on clinical symptoms, laboratory test, V/Q SPECT and other imaging procedures performed. Patients in whom PE was deemed absent were not treated with anticoagulants and were followed up for 3 months. Of the 393 patients, the prevalence of PE was 28 %. V/Q SPECT was positive for PE in 110 patients (28 %) and negative in 283 patients (72 %). Of the 110 patients with a positive V/Q SPECT, 78 (71 %) had at least one additional imaging test (computed tomography pulmonary angiography or ultrasound) and the diagnosis of PE was eventually excluded in one patient. Of the 283 patients with a negative V/Q SPECT, 74 (26 %) patients had another test. The diagnosis of PE was finally retained in one patient and excluded in 282 patients. The 3-month thromboembolic risk in the patients not treated with anticoagulants was 1/262: 0.38 % (95 % confidence interval 0.07-2.13). A diagnostic management including V/Q SPECT interpreted with a diagnostic cut-off of ''one segmental or two subsegmental mismatches'' appears safe to exclude PE. (orig.)

  5. Assessment of left ventricular function by electrocardiogram-gated myocardial single photon emission computed tomography using quantitative gated single photon emission computed tomography software

    Morita, Koichi; Adachi, Itaru; Konno, Masanori

    1999-01-01

    Electrocardiogram (ECG)-gated myocardial single photon emission computed tomography (SPECT) can assess left ventricular (LV) perfusion and function easily using quantitative gated SPECT (QGS) software. ECG-gated SPECT was performed in 44 patients with coronary artery disease under post-stress and resting conditions to assess the values of LV functional parameters, by comparison to LV ejection fraction derived from gated blood pool scan and myocardial characteristics. A good correlation was obtained between ejection fraction using QGS and that using cardiac blood pool scan (r=0.812). Some patients with myocardial ischemia had lower ejection fraction under post-stress compared to resting conditions, indicating post-stress LV dysfunction. LV wall motion and wall thickening were significantly impaired in ischemic and infarcted myocardium, and the degree of abnormality in the infarcted areas was greater than in the ischemia area. LV functional parameters derived using QGS were useful to assess post-stress LV dysfunction and myocardial viability. In conclusion, ECG-gated myocardial SPECT permits simultaneous quantitative assessment of myocardial perfusion and function. (author)

  6. Highly efficient sources of single indistinguishable photons

    Gregersen, Niels

    2013-01-01

    be electrically driven. Several design strategies addressing these requirements have been proposed. In the cavity-based source, light emission is controlled using resonant cavity quantum electrodynamics effects, whereas in the waveguide-based source, broadband electric field screening effects are employed......Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable and the source should...

  7. Entangled photons from single atoms and molecules

    Nordén, Bengt

    2018-05-01

    The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.

  8. Quantitation of postexercise lung thallium-201 uptake during single photon emission computed tomography

    Kahn, J.K.; Carry, M.M.; McGhie, I.; Pippin, J.J.; Akers, M.S.; Corbett, J.R.

    1989-01-01

    To test the hypothesis that analysis of lung thallium uptake measured during single photon emission computed tomography (SPECT) yields supplementary clinical information as reported for planar imaging, quantitative analysis of lung thallium uptake following maximal exercise was performed in 40 clinically normal subjects (Group 1) and 15 angiographically normal subjects (Group 2). Lung thallium uptake was measured from anterior projection images using a ratio of heart-to-lung activities. Seventy subjects with coronary artery disease (CAD) (Group 3) determined by angiography (greater than or equal to 70% luminal stenosis) underwent thallium perfusion SPECT. Thirty-nine percent of these subjects had multivessel and 61% had single vessel CAD. Lung thallium uptake was elevated in 47 of 70 (67%) Group 3 subjects. Group 3 subjects with elevated lung thallium uptake did not differ from Group 3 subjects with normal lung thallium uptake with respect to extent or distribution of coronary artery disease, left ventricular function, or severity of myocardial ischemia as determined by exercise and redistribution thallium SPECT. Thus, the measurement of thallium lung uptake from anterior projection images obtained during SPECT frequently identifies patients with CAD, but it may not provide supplementary information regarding the extent of myocardial ischemia or ventricular dysfunction

  9. Evaluation of acute myocardial infarction by 201Tl single-photon emission computed tomography using scoring system

    Setsuta, Koichi

    1991-01-01

    In 36 patients with acute myocardial infarction (AMI) 201 Tl single photon emission computed tomography (SPECT) examinations were performed in a relatively early phase of AMI. The short and long axis views of the left ventricle (LV) were divided into 6 segments. Images of each segment were assigned scores (segmental scores) based on a visual evaluation of the extent of 201 Tl accumulations. SPECT scores were compared with max GOT, max LDT, max CPK and max CK-MB, Killip classification and Forrester hemodynamic subset on admission, and LV ejection fraction (LVEF). Segmental scores were compared with LV wall motion evaluated by left ventriculography. The results are as follows: There were significant correlations between SPECT scores and max GOT, max LDH, max CPK and max CK-MB. SPECT scores in patients with Killip group III were significantly higher than in patients with Killip group I+II. However, no significant differences in max GOT, max LDH, max CPK and max CK-MB were observed between patients with Killip group III and those with Killip group I+II. SPECT scores were significantly higher in patients with Forrester group III+IV than in patients with Forrester group I+II. Segmental scores in segments evaluated as akinesis, dyskinesis and aneurysm by left ventriculography were significantly higher than those evaluated as hypokinesis or normal. Segmental scores in segments evaluated as hypokinesis were significantly high in comparison with normal segments. Significant correlations were observed between LVEF and SPECT scores. However, LVEF correlated poorly with max GOT, max LDH and max CPK, and no significant correlation was observed between LVEF and max CK-MB. SPECT examinations were performed in 11 patients in both the acute and chronic phase of AMI. SPECT scores in the chronic phase did not change in 4 patients, decreased in 5, increased in 2. These results suggest that SPECT scores and segmental scores can be useful indices in the evaluation of AMI. (J.P.N.)

  10. Hemimegalencephaly: a rare cause of hemihypoperfusion on 99m technetium-ethyl cysteinate dimer brain perfusion single-photon emission computed tomography

    Damle, Nishikant A.; Singhal, Abhinav; Mukherjee, Anirban; Sahoo, Manas Kumar; Tripathi, Madhavi; Bal, Chandrasekhar

    2013-01-01

    Hemimegalencephaly is a rare congenital neuronal migration disorder that can presents with the equally rare finding of hemihypoperfusion on brain perfusion single-photon emission computed tomography (SPECT). It is an extremely rare cause of intractable epilepsy. Technetium-99m ethyl cysteinate dimer (ECD) brain perfusion SPECT is useful in excluding other foci of hypoperfusion in the contralateral since hemispherectomy has been suggested to be the treatment of choice. Furthermore, hemimegalencephaly may present with hyper as well as hypoperfusion on ECD SPECT. We present the case of an 11-year-old male child with intractable seizures who showed hemihypoperfusion in the hemimegalecephalic hemisphere. (author)

  11. Transmitting more than 10 bit with a single photon

    Tentrup, T.B.H.; Hummel, T.; Wolterink, T.A.W.; Uppu, R.; Mosk, Allard; Pinkse, P.W.H.

    2017-01-01

    Encoding information in the position of single photons has no known limits, given infinite resources. Using a heralded single-photon source and a spatial light modulator (SLM), we steer single photons to specific positions in a virtual grid on a large-area spatially resolving photon-counting

  12. Examination of brain function using PET and SPECT

    Sasaki, Yasuhito; Momose, Toshinitsu; Watanabe, Toshiaki; Oku, Shinya; Nishikawa, Junichi [Tokyo Univ. (Japan). Faculty of Medicine

    1996-12-31

    The purpose of the presentation is to elucidate the unique role of PET (positron emission computed tomography) and SPECT (single photon emission computed tomography) in assessing physiological and biochemical functions of the brain.

  13. Clinical applications of single photon emission tomography in neuromedicine. Part 1. Neuro-oncology, epilepsy, movement disorders, cerebrovascular disease

    Bartenstein, P.; Gruenwald, F.; Kuwert, T.; Tatsch, K.; Sabri, O.; Benkert, O.; Fahlbusch, R.; Gruender, G.; Herzholz, K.; Weiller, C.

    2000-01-01

    Single photon emission tomography is, because of its availability and the relatively low costs, the functional imaging modality currently most widely used for clinical applications in the brain. Beside the application of radiopharmaceuticals for the assessment of regional cerebral blood flow there is an increasing clinical use of more selective SPECT-radiopharmaceuticals, like amino acid analogs or receptor ligands. This article gives in its first part a critical review of the clinical applications of SPECT in neuro-oncology, epilepsy, basal ganglia disorders and cerebrovascular disease. (orig.) [de

  14. Single Photon Experiments and Quantum Complementarity

    Georgiev D. D.

    2007-04-01

    Full Text Available Single photon experiments have been used as one of the most striking illustrations of the apparently nonclassical nature of the quantum world. In this review we examine the mathematical basis of the principle of complementarity and explain why the Englert-Greenberger duality relation is not violated in the configurations of Unruh and of Afshar.

  15. Demonstrating quantum random with single photons

    Bronner, Patrick; Strunz, Andreas; Meyn, Jan-Peter; Silberhorn, Christine

    2009-01-01

    We present an experiment for education which demonstrates random transmission or reflection of heralded single photons on beam splitters. With our set-up, we can realize different quantum random experiments by appropriate settings of polarization rotators. The concept of entanglement is motivated by correlated randomness. The experiments are suitable for undergraduate education and are available as interactive screen experiments.

  16. Interactive Screen Experiments with Single Photons

    Bronner, Patrick; Strunz, Andreas; Silberhorn, Christine; Meyn, Jan-Peter

    2009-01-01

    Single photons are used for fundamental quantum physics experiments as well as for applications. Originally being a topic of advance courses, such experiments are increasingly a subject of undergraduate courses. We provide interactive screen experiments (ISE) for supporting the work in a real laboratory, and for students who do not have access to…

  17. [Myocardial single photon emission tomography imaging of reporter gene expression in rabbits].

    Liu, Ying; Lan, Xiao-li; Zhang, Liang; Wu, Tao; Jiang, Ri-feng; Zhang, Yong-xue

    2009-06-01

    To explore the feasibility of single photon emission computed tomography (SPECT) detection of heart reporter gene expression and observed the optimal transfecting titer and imaging time by using herpes simplex virus 1-thymidine kinase (HSV1-tk) as reporter gene and 131I-2'-fluoro-2'-deoxy-1-beta-D-arabinofuranosyl-5-iodouracil (131I-FIAU) as reporter probe in rabbit myocardium. The recombinant Ad-tk carrying HSV1-tk gene and adenovirus (Ad) as vector was constructed and intramyocardially injected to rabbits at various concentrations (1 x 10(9) pfu, 5 x 10(8) pfu, 1 x 10(8) pfu, 5 x 10(7) pfu, 1 x 10(7) pfu). Two days later, rabbits were injected with 600 microCi 131I-FIAU in ear-margin vein and then underwent SPECT myocardium imaging for detection of HSV1-tk expression at 6 h, 24 h, 48 h and 72 h after injection, rabbits with 1 x 10(9) pfu Ad-tk injection were imaged at 96 h and 120 h. Rabbits were sacrificed after imaging and the total myocardial 131I-FIAU accumulation was quantified in percent of injected dose per gram myocardium (% ID/g). The myocardial Ad-tk expression was determined with RT-PCR. Reporter gene was detected by SPECT imaging in the injection site while not detected in the control myocardium and site remote from injection. RT-PCR results also evidenced HSV1-tk express in the injection site. The SPECT target/nontarget ratio was correlated with ex vivo gamma-counting (r2 = 0.933, Ppfu by SPECT imaging. The cardiac SPECT reporter gene imaging with HSV1-tk as reporter gene and 131I-FIAU as reporter probe is feasible.

  18. SPECT assay of radiolabeled monoclonal antibodies. Final performance report, March 1992--November 1995

    Jaszczak, R.J.

    1995-12-01

    Research is described in the following areas: development and evaluation quantitatively of reconstruction algorithms with improved compensations for attenuation, scatter, and geometric collimator response; evaluation of single photon emission computed tomography (SPECT) quantification of iodine 123 and astatine 211; and the development and evaluation of SPECT pinhole imaging for low and medium energy photons

  19. SPECT assay of radiolabeled monoclonal antibodies. Final performance report, March 1992--November 1995

    Jaszczak, R.J.

    1995-12-01

    Research is described in the following areas: development and evaluation quantitatively of reconstruction algorithms with improved compensations for attenuation, scatter, and geometric collimator response; evaluation of single photon emission computed tomography (SPECT) quantification of iodine 123 and astatine 211; and the development and evaluation of SPECT pinhole imaging for low and medium energy photons.

  20. Angle sensitive single photon avalanche diode

    Lee, Changhyuk, E-mail: cl678@cornell.edu; Johnson, Ben, E-mail: bcj25@cornell.edu; Molnar, Alyosha, E-mail: am699@cornell.edu [Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2015-06-08

    An ideal light sensor would provide exact information on intensity, timing, location, and angle of incoming photons. Single photon avalanche diodes (SPADs) provide such desired high (single photon) sensitivity with precise time information and can be implemented at a pixel-scale to form an array to extract spatial information. Furthermore, recent work has demonstrated photodiode-based structures (combined with micro-lenses or diffraction gratings) that are capable of encoding both spatial and angular information of incident light. In this letter, we describe the implementation of such a grating structure on SPADs to realize a pixel-scale angle-sensitive single photon avalanche diode (A-SPAD) built in a standard CMOS process. While the underlying SPAD structure provides high sensitivity, the time information of the two layers of diffraction gratings above offers angle-sensitivity. Such a unique combination of SPAD and diffraction gratings expands the sensing dimensions to pave a path towards lens-less 3-D imaging and light-field time-of-flight imaging.

  1. The current status of SPECT or SPECT/CT in South Korea

    Yoo, Ik Dong; Choi, Eun Kyung; Chung, Yong An [Dept. of Radiology, Incheon Saint Mary' s HospitalThe Catholic University of Korea, Incheon (Korea, Republic of)

    2017-06-15

    The first step to nuclear medicine in Korea started with introduction of the gamma camera in 1969. Although planar images with the gamma camera give important functional information, they have the limitations that result from 2-dimensional images. Single-photon emission computed tomography (SPECT) due to its 3-dimensional image acquisition is superior to earlier planar gamma imaging in image resolution and diagnostic accuracy. As demand for a hybrid functional and anatomical imaging device has increased, integrated SPECT/CT systems have been used. In Korea, SPECT/CT was for the first time installed in 2003. SPECT/CT can eliminate many possible pitfalls on SPECT-alone images, making better attenuation correction and thereby improving image quality. Therefore, SPECT/CT is clinically preferred in many hospitals in various aspects. More recently, additional SPECT/CT images taken from the region with equivocal uptake on planar images have been helpful in making precise interpretation as part of their clinical workup in postoperative thyroid cancer patients. SPECT and SPECT/CT have various advantages, but its clinical application has gradually decreased in recent few years. While some researchers investigated the myocardial blood flow with cardiac PET using F-18 FDG or N-13 ammonia, myocardial perfusion SPECT is, at present, the radionuclide imaging study of choice for the risk stratification and guiding therapy in the coronary artery disease patients in Korea. New diagnostic radiopharmaceuticals for AD have received increasing attention; nevertheless, brain SPECT will remain the most reliable modality evaluating cerebral perfusion.

  2. Quantitative analysis of acute myocardial infarction using single photon emission computed tomography using technetium-99m pyrophosphate

    Fujiwara, Yasushi; Kokubu, Tatsuo; Murase, Kenya; Hamamoto, Ken; Itoh, Taketoshi; Doiuchi, Junji; Ochi, Takaaki

    1986-09-01

    The usefulness of single photon emission computed tomography (SPECT) using technetium-99m pyrophosphate (/sup 99m/Tc-PPi) was evaluated in 15 patients with acute myocardial infarction. SPECT was performed with a rotating gamma camera after conventional planar images were made. Infarct size was measured from transaxial images of myocardial pyrophosphate uptakes. In each slice, the boundary was defined by subtracting 70 percent of the maximal counts and the number of voxels automatically counted. This subtraction rate was determined by phantom study and by compraing SPECT using /sup 99m/Tc-PPi with thallium-201-gated myocardial scintigraphy (/sup 201/Tl gated SPECT). The planar images showed diffuse uptakes in two of the 15 patients, and in these cases it was difficult to detect the infarct site. In contrast, SPECT images clearly imaged the infarct site consistent with the electrocardiographic findings, and they were definitely separated from the uptakes in the bones in all cases. Infarct size, ranging from 3.4 ml to 78.3 ml, correlated well with cumulative creatine kinase release (r = 0.84, p < 0.01, y = 772x + 13900). Correlation of infarct size with peak serum creatine kinase level was also significant (r = 0.66, p < 0.01, y = 10.6x + 693). In conclusion, SPECT with /sup 99m/Tc-PPi is a useful means of investigating the spatial distribution of pyrophosphate uptake and of evaluating the size of myocardial infarction.

  3. Assessment of left ventricular function using 201Tl electrocardiogram-gated myocardial single photon emission computed tomography

    Nishikubo, Naotsugu; Tamai, Hiroyuki

    2013-01-01

    Advances in computed tomography (CT) technology make it possible to obtain left ventricular wall motion using 3D reconstruction. In this study, we compared the images obtained from CT and 201 Tl electrocardiogram (ECG) gated single photon emission computed tomography (SPECT). In 20 patients with ischemic heart disease, we performed 201 Tl ECG gated SPECT (GE Healthcare Millennium VG) and ECG gated CT (Philips Medical Systems Brilliance iCT) to evaluate of left ventricular wall motion during the resting phase. In SPECT, left ventricular images were reconstructed using quantitative gated SPECT (QGS) software. In CT, the images were reconstructed using Virtual Place (AZE Software). The left ventricle was classified into five regions (anterior, lateral, inferior, septal, and apical). The amplitude of the wall motion was classified into five grades according to AHA classification. The values of the wall motion were separately checked by two radiographers. Assessment of left ventricular function myocardial wall movement using the three-dimensional movie display with ECG gated myocardial SPECT data was in agreement with the evaluation by cardiac CT inspection, and corresponded with wall motion in 88 of all 100 segments. SPECT analysis has the same quantity as that of obtained from CT for evaluation of left ventricular wall motion. (author)

  4. Astigmatic single photon emission computed tomography imaging with a displaced center of rotation

    Wang, H.; Smith, M.F.; Stone, C.D.; Jaszczak, R.J.

    1998-01-01

    A filtered backprojection algorithm is developed for single photon emission computed tomography (SPECT) imaging with an astigmatic collimator having a displaced center of rotation. The astigmatic collimator has two perpendicular focal lines, one that is parallel to the axis of rotation of the gamma camera and one that is perpendicular to this axis. Using SPECT simulations of projection data from a hot rod phantom and point source arrays, it is found that a lack of incorporation of the mechanical shift in the reconstruction algorithm causes errors and artifacts in reconstructed SPECT images. The collimator and acquisition parameters in the astigmatic reconstruction formula, which include focal lengths, radius of rotation, and mechanical shifts, are often partly unknown and can be determined using the projections of a point source at various projection angles. The accurate determination of these parameters by a least squares fitting technique using projection data from numerically simulated SPECT acquisitions is studied. These studies show that the accuracy of parameter determination is improved as the distance between the point source and the axis of rotation of the gamma camera is increased. The focal length to the focal line perpendicular to the axis of rotation is determined more accurately than the focal length to the focal line parallel to this axis. copyright 1998 American Association of Physicists in Medicine

  5. Diagnostic accuracy of single photon emission CT in Alzheimer-type dementia

    Hanyu, Haruki; Abe, Shinei; Arai, Hisayuki; Asano, Tetsuichi; Iwamoto, Toshihiko; Takasaki, Masaru; Suzuki, Takanari [Tokyo Medical Coll. (Japan)

    1992-06-01

    To determine the diagnostic accuracy of single photon emission computed tomography (SPECT) with [sup 123]I-IMP in Alzheimer-type dementia (ATD), we studied 46 ATD patients and 23 healthy controls. The patients fulfilled the NINCDS-ADRDA criteria for probable or definite ATD and were classified as having mild, moderate, and severe ATD by neuropsychological examinations. To assess regional cerebral blood flow, we performed qualitative SPECT image analysis without any knowledge of the subject's clinical classification. The image was regarded as abnormal if cerebral blood flow was reduced in the unlilateral or bilateral temporoparietal association areas, with or without any reduction of flow in other brain regions. The diagnostic sensitivity (abnormal image/ patient) of [sup 123]I-IMP SPECT in mild, moderate and severe ATD was 67%, 86% and 92%, because an abnormal image was found in only 2/23 healthy controls. Eight ATD patients without reduced temporoparietal perfusion showed normal perfusion or frontal hypoperfusion. These results suggest that [sup 123]I-IMP SPECT may provide an accurate and sensitive diagnostic marker for ATD. The detection of these characteristic abnormalities of cerebral perfusion could well be applied to the clinical diagnosis of ATD. (author).

  6. Two-dimensional restoration of single photon emission computed tomography images using the Kalman filter

    Boulfelfel, D.; Rangayyan, R.M.; Kuduvalli, G.R.; Hahn, L.J.; Kloiber, R.

    1994-01-01

    The discrete filtered backprojection (DFBP) algorithm used for the reconstruction of single photon emission computed tomography (SPECT) images affects image quality because of the operations of filtering and discretization. The discretization of the filtered backprojection process can cause the modulation transfer function (MTF) of the SPECT imaging system to be anisotropic and nonstationary, especially near the edges of the camera's field of view. The use of shift-invariant restoration techniques fails to restore large images because these techniques do not account for such variations in the MTF. This study presents the application of a two-dimensional (2-D) shift-variant Kalman filter for post-reconstruction restoration of SPECT slices. This filter was applied to SPECT images of a hollow cylinder phantom; a resolution phantom; and a large, truncated cone phantom containing two types of cold spots, a sphere, and a triangular prism. The images were acquired on an ADAC GENESYS camera. A comparison was performed between results obtained by the Kalman filter and those obtained by shift-invariant filters. Quantitative analysis of the restored images performed through measurement of root mean squared errors shows a considerable reduction in error of Kalman-filtered images over images restored using shift-invariant methods

  7. Diagnostic accuracy of single photon emission CT in Alzheimer-type dementia

    Hanyu, Haruki; Abe, Shinei; Arai, Hisayuki; Asano, Tetsuichi; Iwamoto, Toshihiko; Takasaki, Masaru; Suzuki, Takanari

    1992-01-01

    To determine the diagnostic accuracy of single photon emission computed tomography (SPECT) with 123 I-IMP in Alzheimer-type dementia (ATD), we studied 46 ATD patients and 23 healthy controls. The patients fulfilled the NINCDS-ADRDA criteria for probable or definite ATD and were classified as having mild, moderate, and severe ATD by neuropsychological examinations. To assess regional cerebral blood flow, we performed qualitative SPECT image analysis without any knowledge of the subject's clinical classification. The image was regarded as abnormal if cerebral blood flow was reduced in the unlilateral or bilateral temporoparietal association areas, with or without any reduction of flow in other brain regions. The diagnostic sensitivity (abnormal image/ patient) of 123 I-IMP SPECT in mild, moderate and severe ATD was 67%, 86% and 92%, because an abnormal image was found in only 2/23 healthy controls. Eight ATD patients without reduced temporoparietal perfusion showed normal perfusion or frontal hypoperfusion. These results suggest that 123 I-IMP SPECT may provide an accurate and sensitive diagnostic marker for ATD. The detection of these characteristic abnormalities of cerebral perfusion could well be applied to the clinical diagnosis of ATD. (author)

  8. Diamond-based single-photon emitters

    Aharonovich, I; Castelletto, S; Simpson, D A; Su, C-H; Greentree, A D; Prawer, S

    2011-01-01

    The exploitation of emerging quantum technologies requires efficient fabrication of key building blocks. Sources of single photons are extremely important across many applications as they can serve as vectors for quantum information-thereby allowing long-range (perhaps even global-scale) quantum states to be made and manipulated for tasks such as quantum communication or distributed quantum computation. At the single-emitter level, quantum sources also afford new possibilities in terms of nanoscopy and bio-marking. Color centers in diamond are prominent candidates to generate and manipulate quantum states of light, as they are a photostable solid-state source of single photons at room temperature. In this review, we discuss the state of the art of diamond-based single-photon emitters and highlight their fabrication methodologies. We present the experimental techniques used to characterize the quantum emitters and discuss their photophysical properties. We outline a number of applications including quantum key distribution, bio-marking and sub-diffraction imaging, where diamond-based single emitters are playing a crucial role. We conclude with a discussion of the main challenges and perspectives for employing diamond emitters in quantum information processing.

  9. Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector

    Shcheslavskiy, V., E-mail: vis@becker-hickl.de; Becker, W. [Becker & Hickl GmbH, Nahmitzer Damm 30, 12277 Berlin (Germany); Morozov, P.; Divochiy, A. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Vakhtomin, Yu. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); Smirnov, K. [Scontel, Rossolimo St., 5/22-1, Moscow 119021 (Russian Federation); Moscow State Pedagogical University, 1/1 M. Pirogovskaya St., Moscow 119991 (Russian Federation); National Research University Higher School of Economics, 20 Myasnitskaya St., Moscow 101000 (Russian Federation)

    2016-05-15

    Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ∼15% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.

  10. Distributed quantum computing with single photon sources

    Beige, A.; Kwek, L.C.

    2005-01-01

    Full text: Distributed quantum computing requires the ability to perform nonlocal gate operations between the distant nodes (stationary qubits) of a large network. To achieve this, it has been proposed to interconvert stationary qubits with flying qubits. In contrast to this, we show that distributed quantum computing only requires the ability to encode stationary qubits into flying qubits but not the conversion of flying qubits into stationary qubits. We describe a scheme for the realization of an eventually deterministic controlled phase gate by performing measurements on pairs of flying qubits. Our scheme could be implemented with a linear optics quantum computing setup including sources for the generation of single photons on demand, linear optics elements and photon detectors. In the presence of photon loss and finite detector efficiencies, the scheme could be used to build large cluster states for one way quantum computing with a high fidelity. (author)

  11. SPECT og PET i neurobiologien

    Paulson, O.B.; Lassen, N.A.

    1997-01-01

    PET (positron emission tomography) and SPECT (single photon emission computed tomography) are isotopic methods in which the distribution is registered of radiolabelled tracers given in such small amounts that they are without effect on the organism or the organism's disposal of them. Thus, a series...

  12. Applications of cerebral SPECT

    McArthur, C., E-mail: claire.mcarthur@nhs.net [Department of Neuroradiology, Institute of Neurological Sciences, Glasgow (United Kingdom); Jampana, R.; Patterson, J.; Hadley, D. [Department of Neuroradiology, Institute of Neurological Sciences, Glasgow (United Kingdom)

    2011-07-15

    Single-photon emission computed tomography (SPECT) can provide three-dimensional functional images of the brain following the injection of one of a series of radiopharmaceuticals that crosses the blood-brain barrier and distributes according to cerebral perfusion, neurotransmitter, or cell density. Applications include differentiating between the dementias, evaluating cerebrovascular disease, preoperative localization of epileptogenic foci, diagnosing movement disorders, and evaluation of intracerebral tumours, while also proving a useful research tool. Unlike positronemission tomography (PET), SPECT imaging is widely available and can be performed in any department that has access to a rotating gamma camera. The purpose of this review is to demonstrate the utility of cerebral SPECT and increase awareness of its role in the investigation of neurological and psychiatric disorders.

  13. Evaluation of a 99Tcm bound brain scanning agent for single photon emission computed tomography

    Andersen, A R; Hasselbalch, S G; Paulson, O B

    1986-01-01

    D,L HM-PAO-99Tcm (PAO) is a lipophilic tracer complex which is avidly taken up by the brain. We have compared the regional distribution of PAO with regional cerebral blood flow (CBF). CBF was measured by single photon emission computed tomography (SPECT) by Tomomatic 64 after 133Xe inhalation in 41...... patients. With the same SPECT the distribution of PAO was measured after intravenous injection. High resolution (HR) and low resolution (LR) studies were performed yielding a resolution of 6-10 mm (HR) and 15-20 mm (LR). PAO images showed close resemblance to 133Xe CBF tomograms. Only 20 per cent...... of the (decay corrected) brain counts were lost during 24 hours....

  14. Differentiation of malignant glioma and metastatic brain tumor by thallium-201 single photon emission computed tomography

    Kojima, Yasuhiro; Kuwana, Nobumasa; Noji, Masato; Tosa, Junichi [Yokohama Minami Kyosai Hospital (Japan)

    1994-09-01

    The use of superdelayed thallium-201 single photon emission computed tomography ([sup 201]Tl SPECT) for differentiating malignant gliomas from cerebral metastases was investigated in 23 patients (7 with meningioma, 6 with glioma, 7 with cerebral metastasis, 1 with each of neurinoma, abscess, and necrosis). 4 mCi of [sup 201]Tl was injected intravenously, and gamma camera scans were performed after 10 minutes and 4, 24, 72, and 96 hours (superdelayed scan). The mean thallium index of meningiomas was significantly higher than those of gliomas and cerebral metastases after 10 minutes, while the mean thallium indices of meningiomas and gliomas were significantly higher than those of cerebral metastases after 96 hours. The combination of early and superdelayed [sup 201]Tl SPECT may be useful in differentiating malignant gliomas from cerebral metastases. (author).

  15. Single-photon emission computed tomography in the clinical evaluation of dementia

    Jagust, W.J.; Reed, B.R.; Budinger, T.F.; Colina, M.

    1987-01-01

    Physiological imaging using positron emission tomography (PET) has been a useful tool in the investigation of dementia. In particular, patterns of cerebral glucose utilization appear to differentiate various types of dementia, with Alzheimer's disease (AD) demonstrating a propensity for hypometabolism to involve the temporoparietal cortex. Single-photon emission computed tomography (SPECT) using new tracers for the measurement of regional cerebral blood flow is a technique with potentially broader clinical availability than PET and thus may provide a practical method of routinely evaluating patients. The authors studied eight patients with AD, four healthy elderly controls, and one patient with multi-infarct dementia (MID) using the tracer 123 I-N-isopropyl-p-iodoamphetamine with SPECT

  16. Brain perfusion single photon emission computed tomography in children after acute encephalopathy

    Kurihara, Mana; Nakae, Yoichiro; Kohagizawa, Toshitaka; Eto, Yoshikatsu

    2005-01-01

    We studied single photon emission computed tomography (SPECT) of 15 children with acute encephalopathy after more than 1 year from the onset, using technetium-99 m-L, L-ethyl cystinate dimer ( 99m Tc-ECD) and a three-dementional stereotaxic region of interest template. Regional cerebral blood flow was evaluated and divided in three groups according to the severity of disability: absent or mild, moderate, and severe. There was no abnormality on SPECT in the patients without disability or with mild disability. Diffuse hypoperfusion was shown in the groups with moderate and severe disability. The patients with severe disability showed hypoperfusion in the pericallosal, frontal and central areas which was more pronounced than in the patients with moderate disability. (author)

  17. Sub-megahertz linewidth single photon source

    Markus Rambach

    2016-12-01

    Full Text Available We report 100% duty cycle generation of sub-MHz single photon pairs at the rubidium D1 line using cavity-enhanced spontaneous parametric downconversion. The temporal intensity cross correlation function exhibits a bandwidth of 666±16 kHz for the single photons, an order of magnitude below the natural linewidth of the target transition. A half-wave plate inside our cavity helps to achieve triple resonance between pump, signal, and idler photon, reducing the bandwidth and simplifying the locking scheme. Additionally, stabilisation of the cavity to the pump frequency enables the 100% duty cycle. The quantum nature of the source is confirmed by the idler-triggered second-order autocorrelation function at τ=0 to be gs,s(2(0= 0.016±0.002 for a heralding rate of 5 kHz. The generated photons are well-suited for storage in quantum memory schemes with sub-natural linewidths, such as gradient echo memories.

  18. Single-Photon Technologies Based on Quantum-Dots in Photonic Crystals

    Lehmann, Tau Bernstorff

    -photon purity under quasi-resonantexcitation. Furthermore the waveguide based platform demonstrates indistinguishable single-photonsat timescales up to 13 ns.A setup for active demultiplexing of single-photons to a three-fold single-photon state is proposed.Using a fast electro-optical modulator, single...

  19. Dynamic single photon emission computed tomography-basic principles and cardiac applications

    Gullberg, Grant T; Reutter, Bryan W; Maltz, Jonathan S; Budinger, Thomas F; Sitek, Arkadiusz

    2010-01-01

    The very nature of nuclear medicine, the visual representation of injected radiopharmaceuticals, implies imaging of dynamic processes such as the uptake and wash-out of radiotracers from body organs. For years, nuclear medicine has been touted as the modality of choice for evaluating function in health and disease. This evaluation is greatly enhanced using single photon emission computed tomography (SPECT), which permits three-dimensional (3D) visualization of tracer distributions in the body. However, to fully realize the potential of the technique requires the imaging of in vivo dynamic processes of flow and metabolism. Tissue motion and deformation must also be addressed. Absolute quantification of these dynamic processes in the body has the potential to improve diagnosis. This paper presents a review of advancements toward the realization of the potential of dynamic SPECT imaging and a brief history of the development of the instrumentation. A major portion of the paper is devoted to the review of special data processing methods that have been developed for extracting kinetics from dynamic cardiac SPECT data acquired using rotating detector heads that move as radiopharmaceuticals exchange between biological compartments. Recent developments in multi-resolution spatiotemporal methods enable one to estimate kinetic parameters of compartment models of dynamic processes using data acquired from a single camera head with slow gantry rotation. The estimation of kinetic parameters directly from projection measurements improves bias and variance over the conventional method of first reconstructing 3D dynamic images, generating time-activity curves from selected regions of interest and then estimating the kinetic parameters from the generated time-activity curves. Although the potential applications of SPECT for imaging dynamic processes have not been fully realized in the clinic, it is hoped that this review illuminates the potential of SPECT for dynamic imaging

  20. Dynamic single photon emission computed tomography-basic principles and cardiac applications

    Gullberg, Grant T; Reutter, Bryan W; Maltz, Jonathan S; Budinger, Thomas F [E O Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Sitek, Arkadiusz, E-mail: gtgullberg@lbl.go [Brigham and Women' s Hospital and Harvard Medical School, Boston, MA (United States)

    2010-10-21

    The very nature of nuclear medicine, the visual representation of injected radiopharmaceuticals, implies imaging of dynamic processes such as the uptake and wash-out of radiotracers from body organs. For years, nuclear medicine has been touted as the modality of choice for evaluating function in health and disease. This evaluation is greatly enhanced using single photon emission computed tomography (SPECT), which permits three-dimensional (3D) visualization of tracer distributions in the body. However, to fully realize the potential of the technique requires the imaging of in vivo dynamic processes of flow and metabolism. Tissue motion and deformation must also be addressed. Absolute quantification of these dynamic processes in the body has the potential to improve diagnosis. This paper presents a review of advancements toward the realization of the potential of dynamic SPECT imaging and a brief history of the development of the instrumentation. A major portion of the paper is devoted to the review of special data processing methods that have been developed for extracting kinetics from dynamic cardiac SPECT data acquired using rotating detector heads that move as radiopharmaceuticals exchange between biological compartments. Recent developments in multi-resolution spatiotemporal methods enable one to estimate kinetic parameters of compartment models of dynamic processes using data acquired from a single camera head with slow gantry rotation. The estimation of kinetic parameters directly from projection measurements improves bias and variance over the conventional method of first reconstructing 3D dynamic images, generating time-activity curves from selected regions of interest and then estimating the kinetic parameters from the generated time-activity curves. Although the potential applications of SPECT for imaging dynamic processes have not been fully realized in the clinic, it is hoped that this review illuminates the potential of SPECT for dynamic imaging

  1. TOPICAL REVIEW: Dynamic single photon emission computed tomography—basic principles and cardiac applications

    Gullberg, Grant T.; Reutter, Bryan W.; Sitek, Arkadiusz; Maltz, Jonathan S.; Budinger, Thomas F.

    2010-10-01

    The very nature of nuclear medicine, the visual representation of injected radiopharmaceuticals, implies imaging of dynamic processes such as the uptake and wash-out of radiotracers from body organs. For years, nuclear medicine has been touted as the modality of choice for evaluating function in health and disease. This evaluation is greatly enhanced using single photon emission computed tomography (SPECT), which permits three-dimensional (3D) visualization of tracer distributions in the body. However, to fully realize the potential of the technique requires the imaging of in vivo dynamic processes of flow and metabolism. Tissue motion and deformation must also be addressed. Absolute quantification of these dynamic processes in the body has the potential to improve diagnosis. This paper presents a review of advancements toward the realization of the potential of dynamic SPECT imaging and a brief history of the development of the instrumentation. A major portion of the paper is devoted to the review of special data processing methods that have been developed for extracting kinetics from dynamic cardiac SPECT data acquired using rotating detector heads that move as radiopharmaceuticals exchange between biological compartments. Recent developments in multi-resolution spatiotemporal methods enable one to estimate kinetic parameters of compartment models of dynamic processes using data acquired from a single camera head with slow gantry rotation. The estimation of kinetic parameters directly from projection measurements improves bias and variance over the conventional method of first reconstructing 3D dynamic images, generating time-activity curves from selected regions of interest and then estimating the kinetic parameters from the generated time-activity curves. Although the potential applications of SPECT for imaging dynamic processes have not been fully realized in the clinic, it is hoped that this review illuminates the potential of SPECT for dynamic imaging

  2. Pulmonary ventilation/perfusion single photon emission tomography – Initial experience of a Nuclear Medicine Department

    J. G. Santos

    2016-01-01

    Full Text Available Introduction: Lung ventilation/perfusion scintigraphy with planar images (V/QS-planar is very useful for the diagnosis and follow-up of pulmonary thromboembolism (PTE. Acquiring tomographic images (V/QS-SPECT is a recent development with potential to increase the technique's accuracy. The purpose of this work is to evaluate the added benefits of V/QS-SPECT studies as opposed to traditional planar imaging. Patients and methods: We prospectively revised 53 V/QS-planar and V/QS-SPECT exams, performed according to the European Association of Nuclear Medicine guidelines. We evaluated the exams independently, by consensus of two Nuclear Medicine physicians. For both methods, we gave each lung a score expressing the dimension and extension of perfusion defects with normal ventilation. For each lung, we compared the scores with the paired Wilcoxon test, estimating the 95% confidence interval (95CI for the respective difference. Results: We performed V/QS-SPECT exams without technical difficulties. The paired Wilcoxon test estimated the score difference to be −0.75 (95CI of −1.0 to −0.5; p-value = 9.6 × 10−7, expressing a statistically significant difference of about 1 subsegmental defect between both methods, with V/QS-SPECT detecting more defects. Discussion: The results demonstrate that V/QS-SPECT identifies a slightly larger number of perfusion defects than V/QS-planar, suggesting a higher sensitivity of this technique. However, more studies are necessary to evaluate the clinical meaning of this fact. Conclusion: V/QS-SPECT demonstrates a higher capability to identify perfusion defects. This method looks promising, allowing for a greater role of this exam in pulmonary thromboembolism diagnosis and follow-up. Keywords: Pulmonary thromboembolism, Lung, Scintigraphy, Single-photon emission-computed tomography (SPECT

  3. Utility of Quantitative Parameters from Single-Photon Emission Computed Tomography/Computed Tomography in Patients with Destructive Thyroiditis

    Kim, Ji-Young; Kim, Ji Hyun; Moon, Jae Hoon; Kim, Kyoung Min; Oh, Tae Jung; Lee, Dong-Hwa; So, Young

    2018-01-01

    Objective Quantitative parameters from Tc-99m pertechnetate single-photon emission computed tomography/computed tomography (SPECT/CT) are emerging as novel diagnostic markers for functional thyroid diseases. We intended to assess the utility of SPECT/CT parameters in patients with destructive thyroiditis. Materials and Methods Thirty-five destructive thyroiditis patients (7 males and 28 females; mean age, 47.3 ± 13.0 years) and 20 euthyroid patients (6 males and 14 females; mean age, 45.0 ± 14.8 years) who underwent Tc-99m pertechnetate quantitative SPECT/CT were retrospectively enrolled. Quantitative parameters from the SPECT/CT (%uptake, standardized uptake value [SUV], thyroid volume, and functional thyroid mass [SUVmean × thyroid volume]) and thyroid hormone levels were investigated to assess correlations and predict the prognosis for destructive thyroiditis. The occurrence of hypothyroidism was the outcome for prognosis. Results All the SPECT/CT quantitative parameters were significantly lower in the 35 destructive thyroiditis patients compared to the 20 euthyroid patients using the same SPECT/CT scanner and protocol (p thyroid-stimulating hormone (TSH) significantly correlated with %uptake (p = 0.004), SUVmean (p thyroid mass (p thyroiditis patients, 16 progressed to hypothyroidism. On univariate and multivariate analyses, only T3 levels were associated with the later occurrence of hypothyroidism (p = 0.002, exp(β) = 1.022, 95% confidence interval: 1.008 – 1.035). Conclusion Novel quantitative SPECT/CT parameters could discriminate patients with destructive thyroiditis from euthyroid patients, suggesting the robustness of the quantitative SPECT/CT approach. However, disease progression of destructive thyroiditis could not be predicted using the parameters, as these only correlated with TSH, but not with T3, the sole predictor of the later occurrence of hypothyroidism. PMID:29713225

  4. Regional cerebral blood flow in acute stage with ischemic cerebrovascular disease by xenon-133 inhalation and single photon emission computerized tomography

    Kurokawa, Hiroyuki; Iino, Katsuro; Kojima, Hisashi; Saito, Hitoshi; Suzuki, Mikio; Watanabe, Kazuo; Kato, Toshiro

    1987-05-01

    Single photon emission computed tomography (SPECT) with xenon-133 inhalation method was undertaken within 48 hr after the onset in 68 patients with ischemic cerebrovascular disease. The results for regional cerebral blood flow (rCBF) were compared with concurrently available computed tomography (CT) scans. In patients with cerebral infarction, SPECT detected ischemic lesions earlier than CT, with the detectability being 92 %. The area with a decreased blood flow, as seen on SPECT, was more extensive than the low density area on CT, with a concomitant decrease in blood flow in the contralateral cerebral hemisphere. Crossed cerebellar diaschisis was associated with stenosis of the internal carotid artery in 50 % (7/14), and with stenosis of the middle cerebral artery in 35 % (9/26). Abnormal SPECT findings were seen in 47 % (8/17) of the patients with transient ischemic attack (TIA). Five TIA patients had a decreased rCBF on SPECT, which was not provided by CT scans. On the contrary, small infarct lesions in the cerebral basal ganglia, as observed in 4 patients, was not detected by SPECT, but detected by CT. This may imply the limitations of SPECT in the detection of deep-seated lesions of the cerebrum. The results led to the conclusion that SPECT can be performed safely even in acute, seriously ill patients to know changes in rCBF because it is noninvasive and is capable of being repeated in a short time. (Namekawa, K.).

  5. The effect of the superficial temporal to middle cerebral artery bypass based on the data of motor activation single photon emission computed tomography

    Kawaguchi, Shoichiro; Uranishi, Ryunosuke; Morimoto, Tetsuya; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-07-01

    We evaluated and analyzed the effect of the superficial temporal to middle cerebral artery (STA-MCA) bypass for the pure motor function in the ischemic cerebrovascular diseases (CVDs) using the motor activation single photon emission computed tomography (SPECT). Motor activation SPECT was performed on the 25 cases with ischemic CVD treated with STA-MCA bypass. Motor activation SPECT studies using the finger opposition task on the affected side were performed before surgery, at 1 month, and at 3 months after the bypass. The result of the motor activation SPECT was expressed as negative and positive by the visual inspection. During the follow-up period (mean; 2.2 years), there has been no recurrent or worsening clinical symptom. Before bypass, 10 cases were positive in the motor activation SPECT. The other 15 cases were negative. At one month after bypass, 14 cases were positive in the motor activation SPECT. At three months after bypass, 23 cases were positive in the motor activation SPECT. Twenty-two cases showed the improvement of the resting CBF. STA-MCA bypass is useful for pure motor function in the ischemic CVDs based on the motor activation SPECT coupling with their clinical symptoms. (author)

  6. The effect of the superficial temporal to middle cerebral artery bypass based on the data of motor activation single photon emission computed tomography

    Kawaguchi, Shoichiro; Uranishi, Ryunosuke; Morimoto, Tetsuya; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    1999-01-01

    We evaluated and analyzed the effect of the superficial temporal to middle cerebral artery (STA-MCA) bypass for the pure motor function in the ischemic cerebrovascular diseases (CVDs) using the motor activation single photon emission computed tomography (SPECT). Motor activation SPECT was performed on the 25 cases with ischemic CVD treated with STA-MCA bypass. Motor activation SPECT studies using the finger opposition task on the affected side were performed before surgery, at 1 month, and at 3 months after the bypass. The result of the motor activation SPECT was expressed as negative and positive by the visual inspection. During the follow-up period (mean; 2.2 years), there has been no recurrent or worsening clinical symptom. Before bypass, 10 cases were positive in the motor activation SPECT. The other 15 cases were negative. At one month after bypass, 14 cases were positive in the motor activation SPECT. At three months after bypass, 23 cases were positive in the motor activation SPECT. Twenty-two cases showed the improvement of the resting CBF. STA-MCA bypass is useful for pure motor function in the ischemic CVDs based on the motor activation SPECT coupling with their clinical symptoms. (author)

  7. Influence of the Pixel Sizes of Reference Computed Tomography on Single-photon Emission Computed Tomography Image Reconstruction Using Conjugate-gradient Algorithm.

    Okuda, Kyohei; Sakimoto, Shota; Fujii, Susumu; Ida, Tomonobu; Moriyama, Shigeru

    The frame-of-reference using computed-tomography (CT) coordinate system on single-photon emission computed tomography (SPECT) reconstruction is one of the advanced characteristics of the xSPECT reconstruction system. The aim of this study was to reveal the influence of the high-resolution frame-of-reference on the xSPECT reconstruction. 99m Tc line-source phantom and National Electrical Manufacturers Association (NEMA) image quality phantom were scanned using the SPECT/CT system. xSPECT reconstructions were performed with the reference CT images in different sizes of the display field-of-view (DFOV) and pixel. The pixel sizes of the reconstructed xSPECT images were close to 2.4 mm, which is acquired as originally projection data, even if the reference CT resolution was varied. The full width at half maximum (FWHM) of the line-source, absolute recovery coefficient, and background variability of image quality phantom were independent on the sizes of DFOV in the reference CT images. The results of this study revealed that the image quality of the reconstructed xSPECT images is not influenced by the resolution of frame-of-reference on SPECT reconstruction.

  8. Utility of single photon emission computed tomography/computed tomography imaging in evaluation of chronic low back pain

    Harisankar, Chidambaram Natrajan Balasubramanian; Mittal, Bhagwant Rai; Bhattacharya, Anish; Singh, Paramjeet; Sen, Ramesh

    2012-01-01

    Abnormal morphologic findings in imaging were thought to explain the etiology of low back pain (LBP). However, it is now known that variety of morphologic abnormalities is noted even in asymptomatic individuals. Single photon emission computed tomography/computed tomography (SPECT/CT) could be used to differentiate incidental findings from clinically significant findings. This study was performed to define the SPECT/CT patterns in patients with LBP and to correlate these with clinical and magnetic resonance imaging (MRI) findings. Thirty adult patients with LBP of duration 3 months or more were prospectively evaluated in this study. Patients with known or suspected malignancy, trauma or infectious processes were excluded. A detailed history of sensory and motor symptoms and neurologic examination was performed. All the patients were subjected to MRI and bone scintigraphy with hybrid SPECT/CT of the lumbo-sacral spine within 1 month of each other. The patients were classified into those with and without neurologic symptoms, activity limitation. The findings of clinical examination and imaging were compared. MRI and SPECT/CT findings were also compared. Thirty patients (18 men and 12 women; mean age 38 years; range 17-64 years) were eligible for the study. Clinically, 14 of 30 (46%) had neurologic signs and or symptoms. Six of the 30 patients (20%) had positive straight leg raising test (SLRT). Twenty-two of the 30 patients (73%) had SPECT abnormality. Most frequent SPECT/CT abnormality was tracer uptake in the anterior part of vertebral body with osteophytes/sclerotic changes. Significant positive agreement was noted between this finding and MRI evidence of degenerative disc disease. Only 13% of patients had more than one abnormality in SPECT. All 30 patients had MRI abnormalities. The most frequent abnormality was degenerative disc disease and facet joint arthropathy. MRI showed single intervertebral disc abnormality in 36% of the patients and more than one

  9. Advances in SPECT Instrumentation (Including Small Animal Scanners). Chapter 4

    Di Domenico, G.; Zavattini, G.

    2009-01-01

    Fundamental major efforts have been devoted to the development of positron emission tomography (PET) imaging modality over the last few decades. Recently, a novel surge of interest in single photon emission computed tomography (SPECT) technology has occurred, particularly after the introduction of the hybrid SPECT-CT imaging system. This has led to a flourishing of investigations in new types of detectors and collimators, and to more accurate refinement of reconstruction algorithms. Along with SPECT-CT, new, fast gamma cameras have been developed for dedicated cardiac imaging. The existing gap between PET and SPECT in sensitivity and spatial resolution is progressively decreasing, and this trend is particularly apparent in the field of small animal imaging where the most important advances have been reported in SPECT tomographs. An outline of the basic features of SPECT technology, and of recent developments in SPECT instrumentation for both clinical applications and basic biological research on animal models is described. (author)

  10. Factors affecting accuracy of ventricular volume and ejection fraction measured by gated Tl-201 myocardial perfusion single photon emission computed tomography

    Pai, Moon Sun; Yang, You Jung; Im, Ki Chun; Hong, Il Ki; Yun, Sung Cheol; Kang, Duk Hyun; Song, Jae Kwan; Moon, Dae Hyuk

    2005-01-01

    Systemic errors in the gated single photon emission computed tomography (SPECT) measurement of left ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) may occur. We evaluated whether patient-related factors affected the accuracy of EDV, ESV, and EF measured by electrocardiogram-gated Tl-201 SPECT. A total of 518 patients without perfusion defects on Tl-201 SPECT or coronary artery disease were studied. EDV, ESV, and EF were measured from echocardiography and adenosine stress/redistribution gated Tl-201 SPECT using commercially available software packages (QGS and 4D-MSPECT). We identified factors affecting the accuracy of gated SPECT via multiple linear regression analysis of the differences between echocardiography and gated SPECT. Gated SPECT analyzed with QGS underestimated EDV and ESV, and overestimated EF, but 4D-MSPECT overestimated all those values (p<0.001). Independent variables that increased the difference in EDV between echocardiography and gated SPECT were decreasing LV end-diastolic wall thickness, decreasing body surface area, female sex and increasing EDV (p< 0.001). Those for ESV were decreasing LV end-systolic wall thickness, female sex, and decreasing ESV (p<0.001). Increasing end-systolic wall thickness, male sex and decreasing age were independent determinants associated with an increased difference in EF (p< 0.001). Adenosine stress SPECT showed significantly higher EDV and ESV values and a lower EF than did redistribution SPECT (p< 0.001). In determination of EF, QGS demonstrated a smaller bias than did 4D-MSPECT. However, in men with LV hypertrophy, 4D-MSPECT was superior to QGS. Systemic error by gated Tl-201 SPECT is determined by individual patient-characteristics

  11. Single-photon tomographic determination of regional cerebral blood flow in epilepsy

    Bonte, F.J.; Devous, M.D. Sr.; Stokely, E.M.; Homan, R.W.

    1983-01-01

    Using a single-photon emission computed tomographic scanner (SPECT) the authors determined regional cerebral blood flow (rCBF) with inhaled xenon-133, a noninvasive procedure. Studies were performed in 40 normal individuals, and these were compared with rCBF determinations in 51 patients with seizure disorders. Although positive results were obtained in 15 of 16 patients with mass lesions, the group of principal interest comprised 25 patients suffering from ''temporal lobe'' epilepsy. Only one of these had a positive x-ray computed tomogram, but 16 had positive findings on rCBF study. These findings included increased local blood flow in the ictal state and reduced flow interictally

  12. I-123 iomazenil single photon emission computed tomography for detecting loss of neuronal integrity in patients with traumatic brain injury

    Abiko, Kagari; Ikoma, Katsunori; Shiga, Tohru; Katoh, Chietsugu; Hirata, Kenji; Kuge, Yuji; Kobayashi, Kentaro; Tamaki, Nagara

    2017-01-01

    Background Traumatic brain injury (TBI) causes brain dysfunction in many patients. Using C-11 flumazenil (FMZ) positron emission tomography (PET), we have detected and reported the loss of neuronal integrity, leading to brain dysfunction in TBI patients. Similarly to FMZ PET, I-123 iomazenil (IMZ) single photon emission computed tomography (SPECT) is widely used to determine the distribution of the benzodiazepine receptor (BZR) in the brain cortex. The purpose of this study is to examine whet...

  13. Brain hypoperfusion on Tc-99m-ethylene dicysteine diethyl ester single-photon emission computed tomography in Hashimoto's encephalopathy

    Grande, Mar?a Luz Dom?nguez; Constantino, Ana; Rayo, Juan Ignacio; Serrano, Justo; Infante, Jose Rafael; Garcia, Lucia; Duran, Carmen

    2013-01-01

    We present a 17-year-old female, previously diagnosed of autoimmune hyperthyroidism who had an acute neurological episode and presented high antithyroid antibodies titers, cerebral spinal fluid and electroencephalogram changes. Tc-99m ethylene dicysteine diethyl ester brain single-photon emission computed tomography (SPECT) showed global and patchy hypoperfusion. With glucocorticoid therapy, clinical symptoms disappeared; there was a decrease in antithyroid antibody levels and repeat brain SP...

  14. Comparison of exercise stress testing with dobutamine stress echocardiography and exercise technetium-99m isonitrile single photon emission computerized tomography for diagnosis of coronary artery disease

    Oguzhan, A.; Kisacik, H.L.; Ozdemir, K.

    1997-01-01

    To compare the value of exercise electrocardiography with dobutamine stress echocardiography and exercise technetium-99m isonitrile single-photon emission computed tomography for coronary artery disease, 70 patients with either suspected or proven coronary artery disease underwent dobutamine stress echocardiography, exercise technetium-99m isonitrile single-photon emission computed tomography (mibi-SPECT) and treadmill exercise electrocardiography (ECG). Dobutamine echocardiography and exercise mibi-SPECT revealed a higher overall sensitivity than exercise testing (90 vs 57%, p 0.05; 90 and 62% p<0.05, respectively) but the difference between dobutamine stress echocardiography and exercise mibi-SPECT was not statistically significant. Diagnostic accuracy of dobutamine stress echocardiography and exercise mibi-SPECT was higher than that of exercise testing (90 vs 59%, p<0.001; 89 vs 59%, p<0.001, respectively). Dobutamine stress echocardiography and exercise mibi-SPECT have superiority over exercise testing in the diagnosis of coronary artery disease and dobutamine stress echocardiography is an alternative for exercise mibi-SPECT. (author)

  15. Occult primary tumors of the head and neck: accuracy of thallium 201 single-photon emission computed tomography and computed tomography and/or magnetic resonance imaging

    van Veen, S. A.; Balm, A. J.; Valdés Olmos, R. A.; Hoefnagel, C. A.; Hilgers, F. J.; Tan, I. B.; Pameijer, F. A.

    2001-01-01

    To determine the accuracy of thallium 201 single-photon emission computed tomography (thallium SPECT) and computed tomography and/or magnetic resonance imaging (CT/MRI) in the detection of occult primary tumors of the head and neck. Study of diagnostic tests. National Cancer Institute, Amsterdam,

  16. Coupling of single quantum dots to a photonic crystal waveguide

    Lund-Hansen, Toke; Stobbe, Søren; Julsgaard, Brian

    Efficient and high quality single-photon sources is a key element in quantum information processing using photons. As a consequence, much current research is focused on realizing all-solid-state nanophotonic single-photon sources. Single photons can be harvested with high efficiency if the emitter...... is coupled efficiently to a single enhanced mode. One popular approach has been to couple single quantum dots to a nanocavity but a limiting factor in this configuration is that in order to apply the photon it should subsequently be coupled out of the cavity, reducing the overall efficiency significantly...

  17. Ultrafast electrical control of a resonantly driven single photon source

    Cao, Y.; Bennett, A. J.; Ellis, D. J. P.; Shields, A. J.; Farrer, I.; Ritchie, D. A.

    2014-01-01

    We demonstrate generation of a pulsed stream of electrically triggered single photons in resonance fluorescence, by applying high frequency electrical pulses to a single quantum dot in a p-i-n diode under resonant laser excitation. Single photon emission was verified, with the probability of multiple photon emission reduced to 2.8%. We show that despite the presence of charge noise in the emission spectrum of the dot, resonant excitation acts as a “filter” to generate narrow bandwidth photons

  18. Brain imaging during seizure: ictal brain SPECT

    Kottamasu, Sambasiva Rao

    1997-01-01

    The role of single photon computed tomography (SPECT) in presurgical localization of medically intractable complex partial epilepsy (CPE) in children is reviewed. 99m Technetium neurolite, a newer lipophylic agent with a high first pass brain extraction and little or no redistribution is injected during a seizure, while the child is monitored with a video recording and continuous EEG and SPECT imaging is performed in the next 1-3 hours with the images representing regional cerebral profusion at the time of injection. On SPECT studies performed with radiopharmaceutical injected during a seizure, ictal focus is generally hypervascular. Other findings on ictal brain SPECT include hypoperfusion of adjacent cerebral cortex and white matter, hyperperfusion of contralateral motor cortex, hyperperfusion of ipsilateral basal ganglia and thalamus, brain stem and contralateral cerebellum. Ictal brain SPECT is non-invasive, cost effective and highly sensitive for localization of epileptic focus in patients with intractable CPE. (author)

  19. Molecular imaging agents for SPECT (and SPECT/CT)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  20. Molecular imaging agents for SPECT (and SPECT/CT)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  1. Influence of void on image quality of industrial SPECT

    Park, J G; Jung, S H; Kim, J B; Moon, J; Kim, C H

    2013-01-01

    Industrial single photon emission computed tomography (SPECT) is a promising technique to determine the dynamic behavior of industrial process media and has been developed in the Korea Atomic Energy Research Institute. The present study evaluated the influence of a void, which is presence in multiphase reactors of industrial process, on the image quality of an industrial SPECT. The results are very encouraging; that is, the performance of the industrial SPECT system is little influenced by the presence of a void, which means that industrial SPECT is an appropriate tool to estimate the dynamic characteristics of the process media in a water-air phase bubble column with a static gas sparger

  2. Single Photon Double Ionization of Atomic Oxygen

    Wickramarathna, Madhushani; Gorczyca, Thomas; Ballance, Connor; Stolte, Wayne

    2017-04-01

    Single photon double ionization cross sections are calculated using an R-matrix with pseudostates (RMPS) method which was recently applied by Gorczyca et al. for the double photoionization of helium. With the convergence of these theoretical calculations for the simple case of helium, we extend this methodology to consider the more complex case of oxygen double photoionization. We compare our calculated results with recent measurements at the Advanced Light Source, as well as earlier experimental measurements. Our RMPS results agree well, qualitatively, with the experimental measurements, but there exist outstanding discrepancies to be addressed. This project is supported by NASA APRA award NNX17AD41G.

  3. Single photon detector with high polarization sensitivity.

    Guo, Qi; Li, Hao; You, LiXing; Zhang, WeiJun; Zhang, Lu; Wang, Zhen; Xie, XiaoMing; Qi, Ming

    2015-04-15

    Polarization is one of the key parameters of light. Most optical detectors are intensity detectors that are insensitive to the polarization of light. A superconducting nanowire single photon detector (SNSPD) is naturally sensitive to polarization due to its nanowire structure. Previous studies focused on producing a polarization-insensitive SNSPD. In this study, by adjusting the width and pitch of the nanowire, we systematically investigate the preparation of an SNSPD with high polarization sensitivity. Subsequently, an SNSPD with a system detection efficiency of 12% and a polarization extinction ratio of 22 was successfully prepared.

  4. Single-photon emission computed tomography

    Budinger, T.F.

    1986-01-01

    Single photon tomography dates from the early 1960's when the idea of emission transverse section tomography was presented by Kuhl and Edwards. They used a rectilinear scanner and analogue back-projection methods to detect emissions from a series of sequential positions transverse to the cephaldcaudad axis of the body. This chapter presents an explanation of emission tomography by describing longitudinal and transverse section tomography. In principle all modes of tomography can be considered under the general topic of coded apertures wherein the code ranges from translation of a pinhole collimator to rotation of a parallel hole or focused collimator array

  5. Single photon detection in the SQS mode

    Alves, M.A.; Fraga, M.M.; Lima, E.P. de; Marques, R.F.; Neves, F.; Policarpo, A.

    1997-01-01

    Results are presented concerning the detection of single UV photons in self quenching streamer detectors by photoionization of one of the gas mixture components, in this case TEA (tri ethyl-amine), whose molecules have low photoionization potential and large absorption cross section. As a UV light source, a gas scintillation counter filled with krypton was used, whose emission light spectrum, centered at approximately 150 nm, overlaps well the photoionization spectrum of TEA. The mixtures studied were argon/ethane/TEA, argon/isobutane/TEA, argon/ethane/methylal/TEA and argon/isobutane/methylal/ TEA. (author). 4 refs., 4 figs

  6. Single photon emission computed tomography of technetium-99m tetrofosmin myocardial perfusion imaging in patients with systemic lupus erythematosus-A preliminary report

    Lin, Jen-Jhy; Hsu, Hsiu-Bao; Sun, Shung-Shung; Kao, Chia-Hung; Ho, Shung-Tai

    2003-01-01

    The purpose of this study was to evaluate the utility of single-photon emission computed tomography (SPECT) of technetium-99m tetrofosmin (Tc-99m TF) myocardial perfusion imaging to detect myocardial involvement in patients with systemic lupus erythematosus (SLE). Three groups of subjects-group 1: 25 SLE female patients with non-specific cardiac symptoms and signs, group 2: 25 female SLE patients without any cardiac symptoms and signs, and group 3: 25 female healthy controls-were evaluated by comparing rest and dipyridamole-stress Tc-99m TF myocardial perfusion SPECT. Tc-99m TF myocardial perfusion SPECT revealed perfusion defects in 88% and 40% of the cases in groups 1 and 2, respectively. However, no cases in group 3 demonstrated myocardial perfusion defects. Tc-99m TF myocardial perfusion SPECT is a useful noninvasive imaging modality to detect cardiac involvement in SLE patients with or without cardiac symptoms and signs. (author)

  7. Perirolandic hypoperfusion on single-photon emission computed tomography in term infants with perinatal asphyxia: comparison with MRI and clinical findings

    Yoon, C.S.; Kim, D.I.; Lee, S.; Yoon, P.H.; Jeon, T.J.; Lee, J.D. [Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul (Korea); Ryu, Y.H. [Department of Diagnostic Radiology, Yonsei University College of Medicine, Seoul (Korea); Department of Nuclear Medicine, Ghil Medical Center, Gachon Medical School, Inchon (Korea); Park, C.I. [Department of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul (Korea)

    2000-12-01

    We describe the findings on single-photon emission computed tomography (SPECT) in patients with perinatal asphyxia at term, with perirolandic cortico-subcortical changes on MRI, and to correlate them with clinical features. SPECT of 7 patients was obtained after injection of 185-370 MBq of Tc-99m-ECD (ethyl cysteinate dimer). The patients had spastic quadriplegia (7/7) with perinatal asphyxia (6/7) at term (7/7). The results were correlated with the MRI findings. Hypoperfusion of the perirolandic cortex was clearly seen on SPECT in all patients, even in two with subtle changes on MRI. SPECT demonstrated a more extensive area of involvement than MRI, notably in the cerebellum (in 4), the thalamus (in 7) and basal ganglia (in 5), where MRI failed to show any abnormalities. (orig.)

  8. Perirolandic hypoperfusion on single-photon emission computed tomography in term infants with perinatal asphyxia: comparison with MRI and clinical findings

    Yoon, C.S.; Kim, D.I.; Lee, S.; Yoon, P.H.; Jeon, T.J.; Lee, J.D.; Ryu, Y.H.; Park, C.I.

    2000-01-01

    We describe the findings on single-photon emission computed tomography (SPECT) in patients with perinatal asphyxia at term, with perirolandic cortico-subcortical changes on MRI, and to correlate them with clinical features. SPECT of 7 patients was obtained after injection of 185-370 MBq of Tc-99m-ECD (ethyl cysteinate dimer). The patients had spastic quadriplegia (7/7) with perinatal asphyxia (6/7) at term (7/7). The results were correlated with the MRI findings. Hypoperfusion of the perirolandic cortex was clearly seen on SPECT in all patients, even in two with subtle changes on MRI. SPECT demonstrated a more extensive area of involvement than MRI, notably in the cerebellum (in 4), the thalamus (in 7) and basal ganglia (in 5), where MRI failed to show any abnormalities. (orig.)

  9. Clinical characteristics in patients showing ischemic electrocardiographic changes during adenosine triphosphate loading single-photon emission computed tomography

    Ohtaki, Yuka; Chikamori, Taishiro; Hida, Satoshi; Tanaka, Hirokazu; Igarashi, Yuko; Hatano, Tsuguhisa; Usui, Yasuhiro; Miyagi, Manabu; Yamashina, Akira

    2010-01-01

    Although ischemic electrocardiographic (ECG) changes during dipyridamole or adenosine infusion have been reported as a marker for severe coronary artery disease (CAD), few studies have focused on ST-segment changes with adenosine triphosphate (ATP)-loading myocardial single-photon emission computed tomography (SPECT). Between January 2003 and August 2008, 4650 consecutive patients underwent ATP-loading SPECT. After 1412 patients with left bundle branch block, pacemaker rhythm, or previous coronary revascularization were excluded, 16 out of 3238 patients (0.5%) showed ischemic ST-segment depression during ATP-loading myocardial SPECT. They were aged 67±11 years; 10 were men and 6 women. Of these patients, 8 demonstrated perfusion abnormalities, whereas the remaining 8 showed normal myocardial perfusion imaging. In 6 of the 8 patients with abnormal SPECT, coronary angiography was performed, revealing left main trunk disease in 1 patient, 3-vessel disease in 4, 1-vessel disease with proximal left ascending artery occlusion in 1, and an insignificant lesion in 1. By contrast, no major cardiac event was observed in the 8 patients with normal SPECT during follow-up for an average of 2 years. The prevalence of ischemic ST-segment changes during ATP loading is very rare. However, this finding should be taken into account since almost half of the patients, particularly those with perfusion abnormalities, may have severe CAD which requires coronary revascularization. (author)

  10. Quantitative analysis of acute myocardial infarction using single photon emission computed tomography using technetium-99m pyrophosphate

    Fujiwara, Yasushi; Kokubu, Tatsuo; Murase, Kenya; Hamamoto, Ken; Itoh, Taketoshi; Doiuchi, Junji; Ochi, Takaaki.

    1986-01-01

    The usefulness of single photon emission computed tomography (SPECT) using technetium-99m pyrophosphate ( 99m Tc-PPi) was evaluated in 15 patients with acute myocardial infarction. SPECT was performed with a rotating gamma camera after conventional planar images were made. Infarct size was measured from transaxial images of myocardial pyrophosphate uptakes. In each slice, the boundary was defined by subtracting 70 percent of the maximal counts and the number of voxels automatically counted. This subtraction rate was determined by phantom study and by compraing SPECT using 99m Tc-PPi with thallium-201-gated myocardial scintigraphy ( 201 Tl gated SPECT). The planar images showed diffuse uptakes in two of the 15 patients, and in these cases it was difficult to detect the infarct site. In contrast, SPECT images clearly imaged the infarct site consistent with the electrocardiographic findings, and they were definitely separated from the uptakes in the bones in all cases. Infarct size, ranging from 3.4 ml to 78.3 ml, correlated well with cumulative creatine kinase release (r = 0.84, p 99m Tc-PPi is a useful means of investigating the spatial distribution of pyrophosphate uptake and of evaluating the size of myocardial infarction. (author)

  11. Voxel-Based Correlation between Coregistered Single-Photon Emission Computed Tomography and Dynamic Susceptibility Contrast Magnetic Resonance Imaging in Subjects with Suspected Alzheimer Disease

    Cavallin, L.; Axelsson, R.; Wahlund, L.O.; Oeksengard, A.R.; Svensson, L.; Juhlin, P.; Wiberg, M. Kristoffersen; Frank, A.

    2008-01-01

    Background: Current diagnosis of Alzheimer disease is made by clinical, neuropsychologic, and neuroimaging assessments. Neuroimaging techniques such as magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) could be valuable in the differential diagnosis of Alzheimer disease, as well as in assessing prognosis. Purpose: To compare SPECT and MRI in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer disease (AD). Material and Methods: 24 patients, eight with AD, 10 with MCI, and six controls, were investigated with SPECT using 99m Tc-hexamethylpropyleneamine oxime (HMPAO, Ceretec; GE Healthcare Ltd., Little Chalsont UK) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with a contrast-enhancing gadobutrol formula (Gadovist; Bayer Schering Pharma, Berlin, Germany). Voxel-based correlation between coregistered SPECT and DSC-MR images was calculated. Region-of-interest (ROI) analyses were then performed in 24 different brain areas using brain registration and analysis of SPECT studies (BRASS; Nuclear Diagnostics AB, Stockholm (SE)) on both SPECT and DSC-MRI. Results: Voxel-based correlation between coregistered SPECT and DSC-MR showed a high correlation, with a mean correlation coefficient of 0.94. ROI analyses of 24 regions showed significant differences between the control group and AD patients in 10 regions using SPECT and five regions in DSC-MR. Conclusion: SPECT remains superior to DSC-MRI in differentiating normal from pathological perfusion, and DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer disease

  12. Performance of Thallium-201 Electrocardiography-gated Myocardial Perfusion Single Photon Emission Computed Tomography to Assess Left Ventricular Function

    Guang-Uei Hung

    2005-05-01

    Full Text Available This study evaluated the performance of gated single photon emission computed tomography (SPECT with thallium-201 (201Tl in assessing left ventricular ejection fraction (LVEF, end-diastolic volume (EDV, and end-systolic volume (ESV in Taiwanese by determining repeatability and correlation with two-dimensional (2D echocardiography. A total of 18 patients underwent two sequential gated SPECT acquisitions within 30 minutes in the resting state to assess repeatability. Another 28 patients who underwent gated SPECT and 2D echocardiography within 7 days were included for comparison. The two sequential measurements were well correlated with respect to LVEF, EDV, and ESV (r = 0.97, 0.95, and 0.97, respectively, all p < 0.0001. Bland-Altman analysis revealed that two standard deviations of the absolute difference between the two sequential measurements for LVEF, EDV, and ESV were 6.4%, 16.8 mL, and 8.6 mL, respectively. For LVEF, EDV, and ESV, correlations between redistribution 201Tl-gated SPECT and echocardiography were also excellent (all r = 0.83, p < 0.0001. LVEF was similar with 201Tl-gated SPECT and echocardiography, but EDV and ESV were significantly higher with echocardiography (p < 0.05. Our study revealed that 201Tl-gated SPECT has high repeatability and excellent correlation with echocardiography for the assessment of LVEF and volumes in Taiwanese. These results support the clinical application of gated SPECT in routine 201Tl myocardial perfusion imaging in Taiwanese.

  13. The Prognostic Role of Magnetic Resonance Imaging and Single-Photon Emission Computed Tomography in Viral Encephalitis

    Misra, U.K.; Kalita, J.; Srivastav, A.; Pradhan, P.K. (Depts. of Neurology and Nuclear Medicine, Sanjay Gandhi Post Graduate Inst. of Medical Sciences, Lucknow (India))

    2008-09-15

    Background: There is a paucity of studies evaluating the prognostic role of magnetic resonance imaging (MRI) and single-photon emission computed tomography (SPECT) changes in viral encephalitis. Purpose: To study MRI and SPECT changes in patients with viral encephalitis, and to correlate these changes with clinical findings and outcome. Material and Methods: During 1997-2006, 31 encephalitis patients (aged 2-60 years; nine females, 22 males) underwent both MRI and SPECT studies. Their demographic and clinical data and 6-month outcome were recorded. For the diagnosis of encephalitis, polymerase chain reaction (PCR) and IgM enzyme-linked immunosorbent assay (ELISA) were carried out. Cranial MRI was done on a 1.5 T scanner, and 99mTc ethylene cysteine dimer (ECD) SPECT using a gamma camera. Outcome was defined at 6 months as complete, partial, or poor recovery. Results: 19 patients had Japanese encephalitis (JE), one had herpes simplex encephalitis (HSE), and 11 had nonspecific encephalitis. Movement disorders were present in 21, parkinsonian features in 19, and dystonia in 16 patients. MRI was abnormal in 20 patients, and revealed thalamic involvement in 17, basal ganglia in eight, brainstem in 11, and cortical in two. SPECT revealed hypoperfusion in 22 patients, which was cortical in 11, thalamic in 10, basal ganglia in six, and midbrain in one. Cortical involvement was more frequently found by SPECT and brainstem involvement by MRI. Outcome of encephalitis did not differ in the different groups of encephalitis and MRI changes. Conclusion: MRI and SPECT show a spectrum of findings in encephalitis, but these do not correlate with 6-month outcome

  14. Quantum optics. All-optical routing of single photons by a one-atom switch controlled by a single photon.

    Shomroni, Itay; Rosenblum, Serge; Lovsky, Yulia; Bechler, Orel; Guendelman, Gabriel; Dayan, Barak

    2014-08-22

    The prospect of quantum networks, in which quantum information is carried by single photons in photonic circuits, has long been the driving force behind the effort to achieve all-optical routing of single photons. We realized a single-photon-activated switch capable of routing a photon from any of its two inputs to any of its two outputs. Our device is based on a single atom coupled to a fiber-coupled, chip-based microresonator. A single reflected control photon toggles the switch from high reflection (R ~ 65%) to high transmission (T ~ 90%), with an average of ~1.5 control photons per switching event (~3, including linear losses). No additional control fields are required. The control and target photons are both in-fiber and practically identical, making this scheme compatible with scalable architectures for quantum information processing. Copyright © 2014, American Association for the Advancement of Science.

  15. Effects of cross talk on dual energy SPECT imaging between [sup 123]I-BMIPP and [sup 201]Tl

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru (Hyogo College of Medicine, Nishinomiya (Japan))

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.).

  16. Effects of cross talk on dual energy SPECT imaging between 123I-BMIPP and 201Tl

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.)

  17. SPECT/CT and pulmonary embolism

    Mortensen, Jann [Copenhagen University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); The Faroese National Hospital, Department of Medicine, Torshavn (Faroe Islands); Gutte, Henrik [Copenhagen University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); Herlev Hospital, Copenhagen University Hospital, Department of Radiology, Copenhagen (Denmark); University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark)

    2014-05-15

    Acute pulmonary embolism (PE) is diagnosed either by ventilation/perfusion (V/P) scintigraphy or pulmonary CT angiography (CTPA). In recent years both techniques have improved. Many nuclear medicine centres have adopted the single photon emission CT (SPECT) technique as opposed to the planar technique for diagnosing PE. SPECT has been shown to have fewer indeterminate results and a higher diagnostic value. The latest improvement is the combination of a low-dose CT scan with a V/P SPECT scan in a hybrid tomograph. In a study comparing CTPA, planar scintigraphy and SPECT alone, SPECT/CT had the best diagnostic accuracy for PE. In addition, recent developments in the CTPA technique have made it possible to image the pulmonary arteries of the lungs in one breath-hold. This development is based on the change from a single-detector to multidetector CT technology with an increase in volume coverage per rotation and faster rotation. Furthermore, the dual energy CT technique is a promising modality that can provide functional imaging in combination with anatomical information. Newer high-end CT scanners and SPECT systems are able to visualize smaller subsegmental emboli. However, consensus is lacking regarding the clinical impact and treatment. In the present review, SPECT and SPECT in combination with low-dose CT, CTPA and dual energy CT are discussed in the context of diagnosing PE. (orig.)

  18. Quantum Logic with Cavity Photons From Single Atoms.

    Holleczek, Annemarie; Barter, Oliver; Rubenok, Allison; Dilley, Jerome; Nisbet-Jones, Peter B R; Langfahl-Klabes, Gunnar; Marshall, Graham D; Sparrow, Chris; O'Brien, Jeremy L; Poulios, Konstantinos; Kuhn, Axel; Matthews, Jonathan C F

    2016-07-08

    We demonstrate quantum logic using narrow linewidth photons that are produced with an a priori nonprobabilistic scheme from a single ^{87}Rb atom strongly coupled to a high-finesse cavity. We use a controlled-not gate integrated into a photonic chip to entangle these photons, and we observe nonclassical correlations between photon detection events separated by periods exceeding the travel time across the chip by 3 orders of magnitude. This enables quantum technology that will use the properties of both narrow-band single photon sources and integrated quantum photonics.

  19. Detection of hepatic tumor by means of single photon emission computed tomography, gray scale ultrasonography, and x-ray computed tomography

    Yumoto, Yasuhiro; Jinno, Kenji; Tokuyama, Katsuyuki [Shikoku National Cancer Center Hospital, Matsuyama (Japan)

    1984-07-01

    We have studied the detection of hepatic tumor by single photon emmision computed tomography (SPECT) using rotatory chair and gamma camera. SPECT were taken by multiple section slice not in transaxial but also in frontal and sagital view. The detectability of SPECT turned out to be superior to the conventional liver scintiphoto. By SPECT, minute hepatocellular carcinoma (HCC) of 1.9 cm in diameter was detectable. Simultaneous interpretation of SPECT, US and XCT was more helpful than each independent interpertation. Subject comprised 108 patients with focal hepatic lesions including 48 cases of HCC and 44 cases of metastatic liver tumor. SPECT and celiac angiography on a 63-year-old female with liver cirrhosis revealed hepatic mass lesion in subphrenic region in right hepatic lobe, but XCT or US could not detect any lesion of hepatic tumor. Operated specimen showed confluent-massive type of HCC according to Nakashima's classification with 7 x 7 x 6.5 cm in size, representing replacing proliferation by histological examination. Both sensitivity and false positive rate of detectability of HCC were superior in decreasing order as combined three modalities, US XCT and SPECT. The diagnosis by combined three modalities shows 99% of sensitivity rate with 1% of false negative rate and 0% of false positive rate and 99.5% of accuracy. Differenciation of HCC from metastatic liver cancer or another benign tumor was possible with sensitivity rate of 94.8% and specificity rate of 90.0% by three combined modalities.

  20. Initial clinical experiences with dopamine D2 receptor imaging by means of 2'-iodospiperone and single-photon emission computed tomography

    Yonekura, Yoshiharu; Saji, Hideo; Iwasaki, Yasushi

    1995-01-01

    Dopamine D 2 receptor imaging was performed with 123 I labeled 2'-iodospiperone (2'-ISP) and single-photon emission computed tomography (SPECT) in 9 patients: 4 with idiopathic Parkinson's disease, 2 with parkinsonism, 1 with Wilson's disease and 2 with pituitary tumor, and the results were compared with the data for 9 normal subjects. Following an intravenous injection of 123 I-2'-ISP, early (within 30 min) and late (between 2 and 4 hr) SPECT images were obtained by means of a multi-detector SPECT scanner or a rotating gamma camera. In normal subjects, early SPECT images demonstrated uniform distribution of radioactivity in the cerebral gray matter and cerebellum reflecting regional cerebral blood flow, whereas late SPECT images showed high radioactivity only in the basal ganglia. All the patients with Parkinson's disease also demonstrated symmetrical basal ganglia uptake in the late SPECT images, but it was diminished in parkinsonism and Wilson's disease. One patient with a growth hormone-producing pituitary tumor had a positive uptake in the tumor. These preliminary clinical data demonstrated that 2'-ISP can be used for SPECT imaging of D 2 dopamine receptors and may be of clinical value for the diagnosis and planning of the treatment of neurological diseases. (author)

  1. Comparative study of dobutamine stress echocardiography and dual single-photon emission computed tomography (Thallium-201 and I-123 BMIPP) for assessing myocardial viability after acute myocardial infarction

    Yasugi, Naoko; Hiroki, Tadayuki

    2002-01-01

    Discordance between the 123 I-labelled 15-iodophenyl-3-R, S-methyl pentadecanoic acid (BMIPP) and 201 Tl findings may indicate myocardial viability (MV). This study compared dobutamine stress echocardiography (DSE) and single-photon emission computed tomography (SPECT) using the dual tracers for assessment of MV and prediction of functional recovery after acute myocardial infarction (AMI). DSE and dual SPECT were studied in 35 patients after AMI, of whom 28 underwent percutaneous coronary intervention in the acute stage. Dual SPECT was performed to compare the defect score of BMIPP and 201 Tl. The left ventricular wall motion score (WMS) was estimated during DSE and 6 months later to assess functional recovery of the infarct area. The rate of agreement of MV between dual SPECT and DSE was 89% (p 201 Tl were significantly smaller in patients with functional recovery than in those without. Assessment of MV using DSE concords with the results of dual SPECT in the early stage of AMI. DSE may have a higher predictive value for long-term functional recovery at the infarct area. However, a finding of positive MV by dual SPECT, without functional recovery, may indicate residual stenosis of the infarct-related artery, although the number of cases was small. Combined assessment by dual SPECT and DSE may be useful for detecting MV and jeopardized myocardium. Furthermore, the results suggest that functional recovery of dysfunctional myocardium may depend on the size of the infarct and risk area. (author)

  2. Value of image fusion using single photon emission computed tomography with integrated low dose computed tomography in comparison with a retrospective voxel-based method in neuroendocrine tumours

    Amthauer, H.; Denecke, T.; Ruf, J.; Gutberlet, M.; Felix, R.; Lemke, A.J.; Rohlfing, T.; Boehmig, M.; Ploeckinger, U.

    2005-01-01

    The objective was the evaluation of single photon emission computed tomography (SPECT) with integrated low dose computed tomography (CT) in comparison with a retrospective fusion of SPECT and high-resolution CT and a side-by-side analysis for lesion localisation in patients with neuroendocrine tumours. Twenty-seven patients were examined by multidetector CT. Additionally, as part of somatostatin receptor scintigraphy (SRS), an integrated SPECT-CT was performed. SPECT and CT data were fused using software with a registration algorithm based on normalised mutual information. The reliability of the topographic assignment of lesions in SPECT-CT, retrospective fusion and side-by-side analysis was evaluated by two blinded readers. Two patients were not enrolled in the final analysis because of misregistrations in the retrospective fusion. Eighty-seven foci were included in the analysis. For the anatomical assignment of foci, SPECT-CT and retrospective fusion revealed overall accuracies of 91 and 94% (side-by-side analysis 86%). The correct identification of foci as lymph node manifestations (n=25) was more accurate by retrospective fusion (88%) than from SPECT-CT images (76%) or by side-by-side analysis (60%). Both modalities of image fusion appear to be well suited for the localisation of SRS foci and are superior to side-by-side analysis of non-fused images especially concerning lymph node manifestations. (orig.)

  3. Evaluation of left ventricular function and volume with multidetector-row computed tomography. Comparison with electrocardiogram-gated single photon emission computed tomography

    Suzuki, Takeya; Yamashina, Shohei; Nanjou, Shuji; Yamazaki, Junichi

    2007-01-01

    This study compared left ventricular systolic function and volume determined by multidetector-row computed tomography (MDCT) and electrocardiogram-gated single photon emission computed tomography (G-SPECT) Thirty-seven patients with coronary artery disease and non-cardiovascular disease underwent MDCT. In this study, left ventricular ejection fraction (EF), left ventricular end-diastolic volume (EDV) and left ventricular end-systolic volume (ESV) were calculated using only two-phase imaging with MDCT. Left ventricular function and volume were compared using measurements from G-SPECT. We conducted MDCT and G-SPECT virtually simultaneously. Both the EF and ESV evaluated by MDCT closely correlated with G-SPECT (r=0.763, P 65 bpm) during MDCT significantly influenced the difference in EF calculated from MDCT and G-SPECT (P<0.05). Left ventricular function can be measured with MDCT as well as G-SPECT. However, a heart rate over 65 bpm during MDCT negatively affects the EF correlation between MDCT and G-SPECT. (author)

  4. Initial clinical experiences with dopamine D{sub 2} receptor imaging by means of 2`-iodospiperone and single-photon emission computed tomography

    Yonekura, Yoshiharu [Fukui Medical Schoool, Matsuoka (Japan). Biomedical Imaging Research Center; Saji, Hideo; Iwasaki, Yasushi [and others

    1995-08-01

    Dopamine D{sub 2} receptor imaging was performed with {sup 123}I labeled 2`-iodospiperone (2`-ISP) and single-photon emission computed tomography (SPECT) in 9 patients: 4 with idiopathic Parkinson`s disease, 2 with parkinsonism, 1 with Wilson`s disease and 2 with pituitary tumor, and the results were compared with the data for 9 normal subjects. Following an intravenous injection of {sup 123}I-2`-ISP, early (within 30 min) and late (between 2 and 4 hr) SPECT images were obtained by means of a multi-detector SPECT scanner or a rotating gamma camera. In normal subjects, early SPECT images demonstrated uniform distribution of radioactivity in the cerebral gray matter and cerebellum reflecting regional cerebral blood flow, whereas late SPECT images showed high radioactivity only in the basal ganglia. All the patients with Parkinson`s disease also demonstrated symmetrical basal ganglia uptake in the late SPECT images, but it was diminished in parkinsonism and Wilson`s disease. One patient with a growth hormone-producing pituitary tumor had a positive uptake in the tumor. These preliminary clinical data demonstrated that 2`-ISP can be used for SPECT imaging of D{sub 2} dopamine receptors and may be of clinical value for the diagnosis and planning of the treatment of neurological diseases. (author).

  5. Motor activation SPECT for the neurosurgical diseases. Clinical application

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    1999-01-01

    We evaluated and analyzed the motor activation single photon emission computed tomography (M-SPECT) findings on patients with ischemic cerebrovascular diseases (CVD). The M-SPECT studies were carried out on 91 patients with ischemic cerebrovascular diseases. The M-SPECT study was performed using the finger opposition task in each case. The SPECT images were superimposed on the magnetic resonance images (MRIs) for each case using Image Fusion Software. The result of the M-SPECT was expressed as positive or negative. The cases with a marked increase of blood flow in the sensorio-motor cortex after the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among the 91 cases examined, 53 (58%) were categorized as positive in the M-SPECT study. Among the negative M-SPECT cases treated with revascularization surgery, there were some cases showing positive M-SPECT results postoperatively. The cases without any revascularization surgery did not change the M-SPECT findings in each during the follow-up period. The M-SPECT procedure for examining intracranial lesions could provide the cortical localization of the motor function. The M-SPECT procedure in the ischemic CVDs contributes to knowledge about the choices of treatment and the evaluation of the treatment result. (author)

  6. Motor activation SPECT for the neurosurgical diseases. Clinical application

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-08-01

    We evaluated and analyzed the motor activation single photon emission computed tomography (M-SPECT) findings on patients with ischemic cerebrovascular diseases (CVD). The M-SPECT studies were carried out on 91 patients with ischemic cerebrovascular diseases. The M-SPECT study was performed using the finger opposition task in each case. The SPECT images were superimposed on the magnetic resonance images (MRIs) for each case using Image Fusion Software. The result of the M-SPECT was expressed as positive or negative. The cases with a marked increase of blood flow in the sensorio-motor cortex after the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among the 91 cases examined, 53 (58%) were categorized as positive in the M-SPECT study. Among the negative M-SPECT cases treated with revascularization surgery, there were some cases showing positive M-SPECT results postoperatively. The cases without any revascularization surgery did not change the M-SPECT findings in each during the follow-up period. The M-SPECT procedure for examining intracranial lesions could provide the cortical localization of the motor function. The M-SPECT procedure in the ischemic CVDs contributes to knowledge about the choices of treatment and the evaluation of the treatment result. (author)

  7. Multimodal imaging analysis of single-photon emission computed tomography and magnetic resonance tomography for improving diagnosis of Parkinson's disease

    Barthel, H.; Georgi, P.; Slomka, P.; Dannenberg, C.; Kahn, T.

    2000-01-01

    Parkinson's disease (PD) is characterized by a degeneration of nigrostriated dopaminergic neurons, which can be imaged with 123 I-labeled 2β-carbomethoxy-3β-(4-iodophenyl) tropane ([ 123 I]β-CIT) and single-photon emission computed tomography (SPECT). However, the quality of the region of interest (ROI) technique used for quantitative analysis of SPECT data is compromised by limited anatomical information in the images. We investigated whether the diagnosis of PD can be improved by combining the use of SPECT images with morphological image data from magnetic resonance imaging (MRI)/computed tomography (CT). We examined 27 patients (8 men, 19 women; aged 55±13 years) with PD (Hoehn and Yahr stage 2.1±0.8) by high-resolution [ 123 I]β-CIT SPECT (185-200 MBq, Ceraspect camera). SPECT images were analyzed both by a unimodal technique (ROIs defined directly within the SPECT studies) and a multimodal technique (ROIs defined within individual MRI/CT studies and transferred to the corresponding interactively coregistered SPECT studies). [ 123 I]β-CIT binding ratios (cerebellum as reference), which were obtained for heads of caudate nuclei (CA), putamina (PU), and global striatal structures were compared with clinical parameters. Differences between contra- and ipsilateral (related to symptom dominance) striatal [ 123 I]β-CIT binding ratios proved to be larger in the multimodal ROI technique than in the unimodal approach (e.g., for PU: 1.2*** vs. 0.7**). Binding ratios obtained by the unimodal ROI technique were significantly correlated with those of the multimodal technique (e.g., for CA: y=0.97x+2.8; r=0.70; P com subscore (r=-0.49* vs. -0.32). These results show that the impact of [ 123 I]β-CIT SPECT for diagnosing PD is affected by the method used to analyze the SPECT images. The described multimodal approach, which is based on coregistration of SPECT and morphological imaging data, leads to improved determination of the degree of this dopaminergic disorder

  8. Single photon emission computed tomography in the diagnosis of Alzheimer`s disease

    Hanyu, Haruo; Asano, Tetsuichi; Abe, Shin`e; Arai, Hisayuki; Iwamoto, Toshihiko; Takasaki, Masaru; Shindo, Hiroaki; Abe, Kimihiko [Tokyo Medical Coll. (Japan)

    1997-06-01

    Studies with single photon emission computed tomography (SPECT) have shown temporoparietal (TP) hypoperfusion in patients with Alzheimer`s disease (AD). We evaluated the utility of this findings in the diagnosis of AD. SPECT images with {sup 123}I-iodoamphetamine were analyzed qualitatively by a rater without knowledge of the subject`s clinical status. Sixty-seven of 302 consecutive patients were judged as having TP hypoperfusion by SPECT imaging. This perfusion pattern was observed in 44 of 51 patients with AD, in 5 with mixed dementia, 8 with cerebrovascular disease (including 5 with dementia), 4 with Parkinson`s disease (including 2 with dementia), 1 with normal pressure hydrocephalus, 1 with slowly progressive aphasia, 1 with progressive autonomic failure, 2 with age-associated memory impairment, and 1 with unclassified dementia. The sensitivity for AD was 86.3% (44 of 51 AD), and the specificity was 91.2% (229 of 251 non-AD). Next, we looked for differences in perfusion images between patients with AD and without AD. Some patients without AD had additional hypoperfusion beyond TP areas: deep gray matter hypoperfusion and diffuse frontal hypoperfusion, which could be used to differentiate them from the patients with AD. Others could not be distinguished from patients with AD by their perfusion pattern. Although patients with other cerebral disorders occasionally have TP hypoperfusion, this finding makes the diagnosis of AD very likely. (author)

  9. Quantification of myocardial infarct size by technetium-99m pyrophosphate single photon emission computed tomography

    Yamamoto, Hiromichi; Fukuyama, Takaya; Aoki, Makoto; Inou, Tetsuji; Ashihara, Toshiaki; Nabeyama, Shyohzou; Yamamoto, Yuhsuke

    1989-04-01

    Myocardial infarct size in 41 patients with the first attack of acute transmural myocardial infarction (MI) was assessed by technetium-99m pyrophosphate single photon emission computed tomography (/sup 99m/TcPYP-SPECT). A ratio of the number of voxels of /sup 99m/TcPYP uptake into the infarct area to that into the thorax was calculated as a parameter of MI size. The ratio was positively correlated with both peak CPK activity (r=0.53, p<0.005, n=24) and extent score in /sup 201/Tl-SPECT (r=0.70, p<0.005, n=14) significantly in patients with anterior MI but not in patients with inferior MI. There was also significant negative correlation between the ratio and the left ventricular ejection fraction (LVEF) measured by RI angiography in both acute (r=-0.67, p<0.005, n=18) and chronic (r=-0.75, p<0.005, n=25) phases in patients with anterior MI. Recovery in LVEF at chronic phase was noted in patients with small anterior MI but not with large anterior MI. Eight of 14 patients with inferior MI had right ventricular MI, that might have affected evaluation of MI size and resulted in no correlation between variables. It was suggested that /sup 99m/TcPYP-SPECT was a useful method to evaluate MI size and to predict prognosis of cardiac function in patients with anterior MI but not in patients with inferior MI. (author).

  10. Scintigraphic appearance of focal fatty infiltration of the liver using single-photon emission computed tomography

    Kudo, M.; Hirasa, M.; Ibuki, Y.

    1984-01-01

    Fatty infiltration of the liver had been considered to assume a uniform distribution until quite recently. However, the development of X-ray computed tomography (XCT) and the ultrasound (US) has proven that fatty infiltration of the liver may sometimes assume a nonuniform distribution (focal fatty infiltration (FFI)). This investigation was undertaken to evaluate the scintigraphic appearance of FFI using single-photon emission computed tomography (SPECT) with a GE Maxicamera 400T. Radionuclide images including SPECT were evaluated in 12 cases with FFI which were diagnosed by XCT and US. Most of them were histrogically confirmed to be positive fatty infiltration in the liver. The results were as follows. The fatty infiltrated area was visualized as a hot spot in one case, a defect in 2 cases, a low uptake in one case and a normal uptake in 8 cases. Radionuclide imaging of FFI shows a large variety of findings and it suggests that Kupffer cell function varies with the causes or stage of fatty infiltration. And one can understand the pathological state of FFI from a viewpoint of Kupffer cell function only by radionuclide imaging including SPECT, which is very useful to compare the images with XCT images

  11. Hemodynamic evaluation of vascular reconstructive surgery for childhood moyamoya disease using single photon emission computed tomography

    Takikawa, Shugo; Kamiyama, Hiroyasu; Abe, Hiroshi [Hokkaido Univ., Sapporo (Japan). School of Medicine; Mitsumori, Kenji; Tsuru, Mitsuo

    1990-06-01

    To evaluate the efficacy of vascular reconstructive surgery for childhood moyamoya disease, the cerebral blood flow (CBF) in 31 hemispheres of 16 patients was examined by single photon emission computed tomography (SPECT) using the {sup 133}Xe inhalation method. Results were divided into two groups; 17 hemispheres with superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis (A(+) group) and 14 hemispheres without anastomosis (A(-) group). The mean hemispheric CBF (mCBF) and regional CBF (rCBF) in the frontal, temporal, occipital, and basal ganglia regions were calculated. Pre- and postoperative SPECT on the 10 hemispheres of the A(+) group showed an increase in mCBF in 6 hemispheres, the disappearance of the low perfusion area (LPA) in all 5 hemispheres where LPA was present before surgery, and an improvement in rCBF distribution (an increase in rCBF in the frontal and temporal lobes and a decrease in the basal ganglia). This suggests that vascular reconstruction is greatly effective in treating this disease. A comparison between the A(+) group and the A(-) group by postoperative SPECT, as well as the clinical outcomes and the postoperative findings of electroencephalography and angiography, revealed that the A(+) group was superior to the A(-) group in the frequency of LPA (12% and 43%, respectively) and rCBF in the frontal region where STA-MCA anastomosis was usually performed. These results indicate that STA-MCA anastomosis with indirect synangiosis is the most effective treatment of childhood moyamoya disease. (author).

  12. [Restoration filtering based on projection power spectrum for single-photon emission computed tomography].

    Kubo, N

    1995-04-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical "least squares filter" theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the "Butterworth" filtering method (cut-off frequency of 0.15 cycles/pixel), and "Wiener" filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99mTc filled cylinder, were used. NMSE of the "Butterworth" filter, "Wiener" filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images.

  13. Single photon emission computed tomography in the diagnosis of Alzheimer's disease

    Hanyu, Haruo; Asano, Tetsuichi; Abe, Shin'e; Arai, Hisayuki; Iwamoto, Toshihiko; Takasaki, Masaru; Shindo, Hiroaki; Abe, Kimihiko

    1997-01-01

    Studies with single photon emission computed tomography (SPECT) have shown temporoparietal (TP) hypoperfusion in patients with Alzheimer's disease (AD). We evaluated the utility of this findings in the diagnosis of AD. SPECT images with 123 I-iodoamphetamine were analyzed qualitatively by a rater without knowledge of the subject's clinical status. Sixty-seven of 302 consecutive patients were judged as having TP hypoperfusion by SPECT imaging. This perfusion pattern was observed in 44 of 51 patients with AD, in 5 with mixed dementia, 8 with cerebrovascular disease (including 5 with dementia), 4 with Parkinson's disease (including 2 with dementia), 1 with normal pressure hydrocephalus, 1 with slowly progressive aphasia, 1 with progressive autonomic failure, 2 with age-associated memory impairment, and 1 with unclassified dementia. The sensitivity for AD was 86.3% (44 of 51 AD), and the specificity was 91.2% (229 of 251 non-AD). Next, we looked for differences in perfusion images between patients with AD and without AD. Some patients without AD had additional hypoperfusion beyond TP areas: deep gray matter hypoperfusion and diffuse frontal hypoperfusion, which could be used to differentiate them from the patients with AD. Others could not be distinguished from patients with AD by their perfusion pattern. Although patients with other cerebral disorders occasionally have TP hypoperfusion, this finding makes the diagnosis of AD very likely. (author)

  14. Brain Single Photon Emission Computed Tomography in Anosmic Subjects Ater Closed Head Trauma

    Roozbeh Banan

    2011-01-01

    Full Text Available Anosmia following head trauma is relatively common and in many cases is persistent and irreversible. The ability to objectively measure such a decline in smelling, for both clinical and medicolegal goals, is very important. The aim of this study was to find results of brain Single Photon Emission Computed Tomography (SPECT in anosmic subjects after closed head trauma. This case-control cross sectional study was conducted in a tertiary referral University Hospital. The brain perfusion state of nineteen anosmic patients and thirteen normal controls was evaluated by means of the SPECT with 99mtc- ECD infusion- before and after olfactory stimulation. The orbitofrontal lobe of the brain was assumed as the region of interest and changes in perfusion of this area before and after the stimulations were compared in two groups. The mean of brain perfusion in controls before and after the stimulation was 8.26% ± 0.19% and 9.89% ± 0.54%, respectively (P < 0.0001. Among patients group, these quantities were 7.97% ± 1.05% and 8.49% ± 1.5%, respectively (P < 0.004. The difference between all the measures in cases and controls were statistically significant (P < 0.0001. There were no differences in age and sex between two groups. The brain SPECT is an objective technique suitable for evaluating anosmia following the head trauma and it may be used with other diagnostic modalities

  15. Restoration filtering based on projection power spectrum for single-photon emission computed tomography

    Kubo, Naoki

    1995-01-01

    To improve the quality of single-photon emission computed tomographic (SPECT) images, a restoration filter has been developed. This filter was designed according to practical 'least squares filter' theory. It is necessary to know the object power spectrum and the noise power spectrum. The power spectrum is estimated from the power spectrum of a projection, when the high-frequency power spectrum of a projection is adequately approximated as a polynomial exponential expression. A study of the restoration with the filter based on a projection power spectrum was conducted, and compared with that of the 'Butterworth' filtering method (cut-off frequency of 0.15 cycles/pixel), and 'Wiener' filtering (signal-to-noise power spectrum ratio was a constant). Normalized mean-squared errors (NMSE) of the phantom, two line sources located in a 99m Tc filled cylinder, were used. NMSE of the 'Butterworth' filter, 'Wiener' filter, and filtering based on a power spectrum were 0.77, 0.83, and 0.76 respectively. Clinically, brain SPECT images utilizing this new restoration filter improved the contrast. Thus, this filter may be useful in diagnosis of SPECT images. (author)

  16. Generation of Fourier-transform-limited heralded single photons

    U'Ren, Alfred B.; Jeronimo-Moreno, Yasser; Garcia-Gracia, Hipolito

    2007-01-01

    In this paper we study the spectral (temporal) properties of heralded single photon wave packets, triggered by the detection of an idler photon in the process of parametric down conversion. The generated single photons are studied within the framework of the chronocyclic Wigner function, from which the single photon spectral width and temporal duration can be computed. We derive specific conditions on the two-photon joint spectral amplitude which result in both pure and Fourier-transform-limited heralded single photons. Likewise, we present specific source geometries which lead to the fulfillment of these conditions and show that one of these geometries leads, for a given pump bandwidth, to the temporally shortest possible heralded single photon wave packets

  17. Electrocardiographic-gated dual-isotope simultaneous acquisition SPECT using 18F-FDG and 99mTc-sestamibi to assess myocardial viability and function in a single study

    Matsunari, Ichiro; Matsudaira, Masamichi; Hisada, Kinichi; Kanayama, Sugako; Yoneyama, Tatsuya; Nakajima, Kenichi; Taki, Junichi; Tonami, Norihisa; Nekolla, Stephan G.

    2005-01-01

    Dual-isotope simultaneous acquisition single-photon emission computed tomography (DISA SPECT) with 18 F-fluorodeoxyglucose (FDG) and 99m Tc-sestamibi appears attractive for the detection of viable myocardium because it permits simultaneous assessment of glucose utilisation and perfusion. Another potential benefit of this approach is that the measurement of left ventricular (LV) function may be possible by ECG gating. The aim of this study was to test the hypothesis that both myocardial viability and LV function can be assessed by a single ECG-gated 18 F-FDG/ 99m Tc-sestamibi DISA SPECT study, based on comparison with 18 F-FDG/ 13 N-ammonia positron emission tomography (PET) and magnetic resonance imaging (MRI) as reference techniques. Thirty-three patients with prior myocardial infarction underwent ECG-gated 18 F-FDG/ 99m Tc-sestamibi DISA SPECT and 18 F-FDG/ 13 N-ammonia PET on a single day. Of these, 25 patients also underwent cine-MRI to assess LV function. The LV myocardium was divided into nine regions, and each region was classified as viable or scar using a semiquantitative visual scoring system as well as quantitative analysis. The global and regional LV function measured by gated SPECT was compared with the results of MRI. There was good agreement in respect of viability (90-96%, κ0.74-0.85) between DISA SPECT and PET by either visual or quantitative analysis. Furthermore, although both global and regional LV function measured by gated SPECT agreed with those by MRI, 99m Tc-sestamibi showed a closer correlation with MRI than did 18 F-FDG. In conclusion, ECG-gated DISA SPECT provides information on myocardial viability, as well as global and regional LV function, similar to that obtained by PET and MRI. (orig.)

  18. The predictive value of single-photon emission computed tomography/computed tomography for sentinel lymph node localization in head and neck cutaneous malignancy.

    Remenschneider, Aaron K; Dilger, Amanda E; Wang, Yingbing; Palmer, Edwin L; Scott, James A; Emerick, Kevin S

    2015-04-01

    Preoperative localization of sentinel lymph nodes in head and neck cutaneous malignancies can be aided by single-photon emission computed tomography/computed tomography (SPECT/CT); however, its true predictive value for identifying lymph nodes intraoperatively remains unquantified. This study aims to understand the sensitivity, specificity, and positive and negative predictive values of SPECT/CT in sentinel lymph node biopsy for cutaneous malignancies of the head and neck. Blinded retrospective imaging review with comparison to intraoperative gamma probe confirmed sentinel lymph nodes. A consecutive series of patients with a head and neck cutaneous malignancy underwent preoperative SPECT/CT followed by sentinel lymph node biopsy with a gamma probe. Two nuclear medicine physicians, blinded to clinical data, independently reviewed each SPECT/CT. Activity within radiographically defined nodal basins was recorded and compared to intraoperative gamma probe findings. Sensitivity, specificity, and negative and positive predictive values were calculated with subgroup stratification by primary tumor site. Ninety-two imaging reads were performed on 47 patients with cutaneous malignancy who underwent SPECT/CT followed by sentinel lymph node biopsy. Overall sensitivity was 73%, specificity 92%, positive predictive value 54%, and negative predictive value 96%. The predictive ability of SPECT/CT to identify the basin or an adjacent basin containing the single hottest node was 92%. SPECT/CT overestimated uptake by an average of one nodal basin. In the head and neck, SPECT/CT has higher reliability for primary lesions of the eyelid, scalp, and cheek. SPECT/CT has high sensitivity, specificity, and negative predictive value, but may overestimate relevant nodal basins in sentinel lymph node biopsy. © 2014 The American Laryngological, Rhinological and Otological Society, Inc.

  19. A scanner for single photon emission tomography

    Smith, D.B.; Cumpstey, D.E.; Evans, N.T.S.; Coleman, J.D.; Ettinger, K.V.; Mallard, J.R.

    1982-01-01

    The technique of single photon ECT has now been available for some eighteen years, but has yet still to be exploited fully. The difficulties of doing this lie in the need for gathering data of sufficiently good statistical accuracy in a reasonable counting time, in the uniformity of detector sensitivity, and in the means for correcting the image satisfactorily for photon attenuation within the body. The relative ease with which a general purpose gamma camera can be adapted to give rotation around the patient makes this an attractive practical approach to the problem. However, the sensitivity of gamma cameras over their field of view is by no means uniform, and their sensitivity is less good than that of purpose-designed scanners when no more than about ten sections through the body are required. There is therefore a need to assess the clinical usefulness of a whole body tomographic scanner of high sensitivity and uniformity. Such a machine is the Aberdeen Section Scanner Mark II described

  20. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    Golestani, Reza; Dierckx, Rudi A.J.O. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Wu, Chao [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Utrecht, Image Sciences Institute and Rudolf Magnus Institute of Neurosciences, Utrecht (Netherlands); Tio, Rene A. [University Medical Center Groningen, Thorax Center, Department of Cardiology, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Zeebregts, Clark J. [University Medical Center Groningen, Department of Surgery, Division of Vascular Surgery, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Petrov, Artiom D. [University of California, Irvine, Division of Cardiology, School of Medicine, Irvine, California (United States); Beekman, Freek J. [University Medical Center Utrecht, Image Sciences Institute and Rudolf Magnus Institute of Neurosciences, Utrecht (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Section Radiation Detection and Medical Imaging, Delft (Netherlands); MILabs, Utrecht (Netherlands); Boersma, Hendrikus H. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Groningen, Department of Clinical and Hospital Pharmacy, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands)

    2010-09-15

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  1. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    Golestani, Reza; Dierckx, Rudi A.J.O.; Wu, Chao; Tio, Rene A.; Zeebregts, Clark J.; Petrov, Artiom D.; Beekman, Freek J.; Boersma, Hendrikus H.; Slart, Riemer H.J.A.

    2010-01-01

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  2. Circuit electromechanics with single photon strong coupling

    Xue, Zheng-Yuan, E-mail: zyxue@scnu.edu.cn; Yang, Li-Na [Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China); Zhou, Jian, E-mail: jianzhou8627@163.com [Department of Electronic Communication Engineering, Anhui Xinhua University, Hefei 230088 (China); Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 (China)

    2015-07-13

    In circuit electromechanics, the coupling strength is usually very small. Here, replacing the capacitor in circuit electromechanics by a superconducting flux qubit, we show that the coupling among the qubit and the two resonators can induce effective electromechanical coupling which can attain the strong coupling regime at the single photon level with feasible experimental parameters. We use dispersive couplings among two resonators and the qubit while the qubit is also driven by an external classical field. These couplings form a three-wave mixing configuration among the three elements where the qubit degree of freedom can be adiabatically eliminated, and thus results in the enhanced coupling between the two resonators. Therefore, our work constitutes the first step towards studying quantum nonlinear effect in circuit electromechanics.

  3. Single photon imaging. New instrumentation and techniques

    Muehllehner, G.; Colsher, J.

    1981-01-01

    The performance of Anger scintillation cameras continues to be enhanced through a series of small improvements which result in significantly better imaging characteristics. The most recent changes in camera design consist of: (1) the introduction of photomultipliers with better photocathode and electron collection efficiencies, (2) the use of thinner (3/8 or 1/4 in) crystals giving slightly better intrinsic resolution for low gamma-ray energies, (3) inclusion of a spatially varying energy window to compensate for variations of light collection efficiency, (4) event-by-event, real-time distortion removal for uniformity correction, and (5) introduction of new methods to improve the count-rate capability. Whereas some of these improvements are due to better understanding of the fundamentals of camera design, others are the result of technological advances in electronic components such as analogue-to-digital converters, microprocessors and high-density digital memories. The development of single photon tomography has developed along two parallel paths. Multipinhole and rotating slant-hole collimator attachments provide some degree of longitudinal tomography, and are currently being applied to cardiac imaging. At the same time rotating camera systems capable of transverse as well as longitudinal imaging are being refined technically and evaluated clinically. Longitudinal tomography is of limited use in quantitative studies and is likely to be an interim solution to three-dimensional imaging. Rotating camera systems, on the other hand, not only provide equal resolution in all three dimensions but are also capable of providing quantitative accuracy. This is the result of progress in attenuation correction and the design of special collimators. Single photon tomography provides a small but noticeable improvement in diagnostic accuracy which is likely to result in widespread use of rotating camera systems in the future

  4. New cardiac cameras: single-photon emission CT and PET.

    Slomka, Piotr J; Berman, Daniel S; Germano, Guido

    2014-07-01

    Nuclear cardiology instrumentation has evolved significantly in the recent years. Concerns about radiation dose and long acquisition times have propelled developments of dedicated high-efficiency cardiac SPECT scanners. Novel collimator designs, such as multipinhole or locally focusing collimators arranged in geometries that are optimized for cardiac imaging, have been implemented to enhance photon-detection sensitivity. Some of these new SPECT scanners use solid-state photon detectors instead of photomultipliers to improve image quality and to reduce the scanner footprint. These new SPECT devices allow dramatic up to 7-fold reduction in acquisition times or similar reduction in radiation dose. In addition, new hardware for photon attenuation correction allowing ultralow radiation doses has been offered by some vendors. To mitigate photon attenuation artifacts for the new SPECT scanners not equipped with attenuation correction hardware, 2-position (upright-supine or prone-supine) imaging has been proposed. PET hardware developments have been primarily driven by the requirements of oncologic imaging, but cardiac imaging can benefit from improved PET image quality and improved sensitivity of 3D systems. The time-of-flight reconstruction combined with resolution recovery techniques is now implemented by all major PET vendors. These new methods improve image contrast and image resolution and reduce image noise. High-sensitivity 3D PET without interplane septa allows reduced radiation dose for cardiac perfusion imaging. Simultaneous PET/MR hybrid system has been developed. Solid-state PET detectors with avalanche photodiodes or digital silicon photomultipliers have been introduced, and they offer improved imaging characteristics and reduced sensitivity to electromagnetic MR fields. Higher maximum count rate of the new PET detectors allows routine first-pass Rb-82 imaging, with 3D PET acquisition enabling clinical utilization of dynamic imaging with myocardial flow

  5. Waveguide-Coupled Superconducting Nanowire Single-Photon Detectors

    Beyer, Andrew D.; Briggs, Ryan M.; Marsili, Francesco; Cohen, Justin D.; Meenehan, Sean M.; Painter, Oskar J.; Shaw, Matthew D.

    2015-01-01

    We have demonstrated WSi-based superconducting nanowire single-photon detectors coupled to SiNx waveguides with integrated ring resonators. This photonics platform enables the implementation of robust and efficient photon-counting detectors with fine spectral resolution near 1550 nm.

  6. Single-Photon Routing for a L-Shaped Channel

    Yang, Xiong; Hou, Jiao-Jiao; Wu, Chun

    2018-02-01

    We have investigated the transport properties of a single photon scattered by a two-level atom embedded in a L-shaped waveguide, which is made of two one-dimensional (1D) semi-infinite coupled-resonator waveguides (CRWs). Single photons can be directed from one CRW to the other due to spontaneous emission of the atom. The result shows that the spontaneous emission of the TLS still routes single photon from one CRW to the other; the boundary existing makes the probability of finding single photon in a CRW could reach one. Our the scheme is helpful to construct a ring quantum networks.

  7. The photonic nanowire: A highly efficient single-photon source

    Gregersen, Niels

    2014-01-01

    The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency.......The photonic nanowire represents an attractive platform for a quantum light emitter. However, careful optical engineering using the modal method, which elegantly allows access to all relevant physical parameters, is crucial to ensure high efficiency....

  8. U-SPECT-BioFluo : An integrated radionuclide, bioluminescence, and fluorescence imaging platform

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  9. Attenuation correction in pulmonary and myocardial single photon emission computed tomography

    Almquist, H

    2000-01-01

    The objective was to develop and validate methods for single photon emission computed tomography, SPECT, allowing quantitative physiologic and diagnostic studies of lung and heart. A method for correction of variable attenuation in SPECT, based on transmission measurements before administration of an isotope to the subject, was developed and evaluated. A protocol based upon geometrically well defined phantoms was developed. In a mosaic pattern phantom count rates were corrected from 39-43% to 101-110% of reference. In healthy subjects non-gravitational pulmonary perfusion gradients observed without attenuation correctionwere artefacts caused by attenuation. Pulmonary density in centre of right lung, obtained from the transmission measurement, was 0.28 {+-} 0.03 g/ml in normal subjects. Mean density was lower in large lungs compared to smaller ones. We also showed that regional ventilation/perfusion ratios could be measured with SPECT, using the readily available tracer {sup 133}Xe. Because of the low energy of {sup 133}Xe this relies heavily upon attenuation correction. A commercially available system for attenuation correction with simultaneous emission and transmission, considered to improve myocardial SPECT, performed erroneously. This could lead to clinical misjudgement. We considered that manufacturer-independent pre-clinical tests are required. In a test of two other commercial systems, based on different principles, an adapted variant of our initial protocol was proven useful. Only one of the systems provided correct emission count rates independently on phantom configuration. Errors in the other system were related to inadequate compensation of the influence of emission activity on the transmission study.

  10. Effectiveness of revascularization surgery evaluated by proton magnetic resonance spectroscopy and single photon emission computed tomography

    Uno, Masaaki; Ueda, Shin; Hondo, Hideki; Matsumoto, Keizo; Harada, Masafumi [Tokushima Univ. (Japan). School of Medicine

    1996-08-01

    Proton magnetic resonance spectroscopy (MRS) and single photon emission computed tomography (SPECT) were used to evaluate chronic ischemic regions in 26 stroke patients before and 1, 3, and 6 months after revascularization surgery. The volume of interest for proton MRS was placed in an area including part of the frontal and temporal opercula, insular cortex, and basal ganglia. Twenty healthy volunteers served as controls for proton MRS. Patients were divided into three groups according to the preoperative proton MRS. Group A (n=12) had significantly lower N-acetylaspartate/choline (NAA/Cho) and N-acetylaspartate/creatine (NAA/Cr) ratios on the operative side compared to those on the contralateral side, and also lower than those in normal subjects. In seven patients in Group A, postoperative serial proton MRS demonstrated no recovery of these ratios on the operative side. However, proton MRS of the other five patients indicated gradual improvement in these ratios on the operative side at 3 to 6 months after surgery, and SPECT indicated an increase in cerebral blood flow on the operative side in four of these five patients. In Group B (n=9), proton MRS and SPECT showed no laterality before revascularization and no remarkable change during the postoperative course. In Group C (n=5), NAA/Cho or NAA/Cr decreased on the contralateral side preoperatively. Two patients showed fluctuating values of NAA/Cho or NAA/Cr during the postoperative period. Serial proton MRS and SPECT Studies may be useful for the evaluation of revascularization surgery on ischemic regions. The efficacy of revascularization surgery on the metabolism may appear gradually within 3-6 months. (author)

  11. Attenuation correction in pulmonary and myocardial single photon emission computed tomography

    Almquist, H.

    2000-01-01

    The objective was to develop and validate methods for single photon emission computed tomography, SPECT, allowing quantitative physiologic and diagnostic studies of lung and heart. A method for correction of variable attenuation in SPECT, based on transmission measurements before administration of an isotope to the subject, was developed and evaluated. A protocol based upon geometrically well defined phantoms was developed. In a mosaic pattern phantom count rates were corrected from 39-43% to 101-110% of reference. In healthy subjects non-gravitational pulmonary perfusion gradients observed without attenuation correction were artefacts caused by attenuation. Pulmonary density in centre of right lung, obtained from the transmission measurement, was 0.28 ± 0.03 g/ml in normal subjects. Mean density was lower in large lungs compared to smaller ones. We also showed that regional ventilation/perfusion ratios could be measured with SPECT, using the readily available tracer 133 Xe. Because of the low energy of 133 Xe this relies heavily upon attenuation correction. A commercially available system for attenuation correction with simultaneous emission and transmission, considered to improve myocardial SPECT, performed erroneously. This could lead to clinical misjudgement. We considered that manufacturer-independent pre-clinical tests are required. In a test of two other commercial systems, based on different principles, an adapted variant of our initial protocol was proven useful. Only one of the systems provided correct emission count rates independently on phantom configuration. Errors in the other system were related to inadequate compensation of the influence of emission activity on the transmission study

  12. Verification of a hybrid adjoint methodology in Titan for single photon emission computed tomography - 316

    Royston, K.; Haghighat, A.; Yi, C.

    2010-01-01

    The hybrid deterministic transport code TITAN is being applied to a Single Photon Emission Computed Tomography (SPECT) simulation of a myocardial perfusion study. The TITAN code's hybrid methodology allows the use of a discrete ordinates solver in the phantom region and a characteristics method solver in the collimator region. Currently we seek to validate the adjoint methodology in TITAN for this application using a SPECT model that has been created in the MCNP5 Monte Carlo code. The TITAN methodology was examined based on the response of a single voxel detector placed in front of the heart with and without collimation. For the case without collimation, the TITAN response for single voxel-sized detector had a -9.96% difference relative to the MCNP5 response. To simulate collimation, the adjoint source was specified in directions located within the collimator acceptance angle. For a single collimator hole with a diameter matching the voxel dimension, a difference of -0.22% was observed. Comparisons to groupings of smaller collimator holes of two different sizes resulted in relative differences of 0.60% and 0.12%. The number of adjoint source directions within an acceptance angle was increased and showed no significant change in accuracy. Our results indicate that the hybrid adjoint methodology of TITAN yields accurate solutions greater than a factor of two faster than MCNP5. (authors)

  13. A high-efficiency electrically-pumped single-photon source based on a photonics nanowire

    Gregersen, Niels; Nielsen, Torben Roland; Mørk, Jesper

    An electrically-pumped single-photon source design with a predicted efficiency of 89% is proposed. The design is based on a quantum dot embedded in a photonic nanowire with tailored ends and optimized contact electrodes. Unlike cavity-based approaches, the photonic nanowire features broadband...

  14. Computed tomography in dementia of Alzheimer type; Comparative study in each stage and comparison to single photon emission computed tomography with N-isopropyl-p-( sup 123 I) iodoamphetamine

    Tsunoda, Masahiko; Fujii, Tsutomu; Tanii, Yasuyuki [Toyama Medical and Pharmaceutical Univ., Toyama (Japan); and others

    1990-05-01

    Computed tomography (CT) examinations of 7 patients with dementia of Alzheimer type were reviewed and correlated with clinical stages. The findings of CT were also compared with those of single photon emission computed tomography (SPECT). There was no positive correlation between the degree of cerebral atrophy on CT and clinical stage. Cerebral atrophy seemed to be influenced by aging, ill duration, and the degree of dementia. The cerebral/cerebellar uptake ratio of RI on SPECT was significantly decreased with the progression of clinical stage. SPECT seemed to reflect the degree of dementia, irrespective of ages and ill duration. (N.K.).

  15. Improvement on image quality of single photon ECT with converging collimator system

    Murayama, Hideo; Nohara, Norimasa; Tanaka, Eiichi

    1986-01-01

    Single photon emission computed tomography (SPECT) with converging collimator system was proposed to improve quality of reconstructed images. The collimator system was designed to enhance sensitivity at the center region of field-of-view, where the probability photons escape the attenuating medium is smaller than at the off-center region. In order to evaluate efficiency of the improvement on image quality, the weighting function of projection, which is defined as relative sensitivity to the average on the lateral sampling of projection, was adopted to the image reconstruction algorithm of Radial Post Correction method. Statistical mean square noise in a reconstructed image was formulated in this method. Simulation studies using typical weighting function showed that center-enhanced weighting function brings effective improvement on image quality, especially, at the center region of cold area surrounded by annularly distributed activity. A new SPECT system was proposed as one example of the converging collimator systems. The system is composed of four gamma cameras with four fan-beam collimators, which have different focal distances one another. Simple simulation studies showed that the proposed system has reasonable center-enhanced weighting function, and the image quality based on the proposed system was fairly improved as compared with one based on uniform weighting function at the center region of the field-of-view. (author)

  16. Coherent single-photon absorption by single emitters coupled to 1D nanophotonic waveguides

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2012-01-01

    We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption.......We have derived an efficient model that allows calculating the dynamical single-photon absorption of an emitter coupled to a waveguide. We suggest a novel and simple structure that leads to strong single-photon absorption....

  17. Recovered neuronal viability revealed by Iodine-123-iomazenil SPECT following traumatic brain injury

    Koizumi, Hiroyasu; Fujisawa, Hirosuke; Kurokawa, Tetsu; Suehiro, Eiichi; Iwanaga, Hideyuki; Nakagawara, Jyoji; Suzuki, Michiyasu

    2010-01-01

    We evaluated cortical damages following traumatic brain injury (TBI) in the acute phase with [123I] iomazenil (IMZ) single photon emission computed tomography (SPECT). In all, 12 patients with cerebral contusion following TBI were recruited. All patients underwent IMZ SPECT within 1 week after TBI. To investigate the changes in distribution of IMZ in the cortex in the chronic phase, after conventional treatment, patients underwent IMZ SPECT again. A decrease in the accumulation of radioligand...

  18. SPECT and PET Serve as Molecular Imaging Techniques and in Vivo Biomarkers for Brain Metastases

    Palumbo, Barbara; Buresta, Tommaso; Nuvoli, Susanna; Spanu, Angela; Schillaci, Orazio; Fravolini, Mario Luca; Palumbo, Isabella

    2014-01-01

    Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed. PMID:24897023

  19. Comparison of Tc-99m-sestamibi-F-18-fluorodeoxyglucose dual isotope simultaneous acquisition and rest-stress Tc-99m-sestamibi single photon emission computed tomography for the assessment of myocardial viability

    De Boer, J; Slart, RHJA; Blanksma, Paulus; Willemsen, ATM; Jager, PL; Paans, AMJ; Vaalburg, W; Piers, DA

    Dual isotope simultaneous acquisition single photon emission computed tomography (DISA SPECT) offers the advantage of obtaining information on myocardial perfusion using Tc-99m-sestamibi (Tc-99m-MIBI) and metabolism using F-18-fluorodeoxyglucose (F-18-FDG) in a single study. The prerequisite is that

  20. Comparison of 99mTc-sestamibi-18F-fluorodeoxyglucose dual isotope simultaneous acquisition and rest-stress 99mTc-sestamibi single photon emission computed tomography for the assessment of myocardial viability

    den Boer, Johan; Slart, R H J A; Blanksma, P K; Willemsen, Antonius; Jager, P L; Paans, A M J; Vaalburg, W; Piers, D A

    Dual isotope simultaneous acquisition single photon emission computed tomography (DISA SPECT) offers the advantage of obtaining information on myocardial perfusion using Tc-sestamibi ( Tc-MIBI) and metabolism using F-fluorodeoxyglucose ( F-FDG) in a single study. The prerequisite is that the Tc-MIBI

  1. The additive prognostic value of perfusion and functional data assessed by quantitative gated SPECT in women

    Y.G.C.J. America (Yves); J.J. Bax (Jeroen); H. Boersma (Eric); M. Stokkel (Marcel); E.E. van der Wall (Ernst)

    2009-01-01

    textabstractBackground: The aim of this study was to assess the prognostic value of technetium-99m tetrofosmin gated SPECT imaging in women using quantitative gated single photon emission computed tomography (SPECT) imaging. Methods: We followed 453 consecutive female patients. Average follow-up was

  2. Post meningitis subdural hygroma: Anatomical and functional evaluation with (99m)Tc-ehylene cysteine dimer single photon emission tomography/computed tomography.

    Sharma, Punit; Mishra, Ajiv; Arora, Geetanjali; Tripathi, Madhavi; Bal, Chandrasekhar; Kumar, Rakesh

    2013-01-01

    Subdural hygroma is the collection of cerebrospinal fluid in the subdural space. Most often these resolve spontaneously. However, in cases with neurological complications surgical drainage may be needed. We here, present the case of an 8-year-old boy with post meningitis subdural hygroma. (99m)Tc-ehylene cysteine dimer ((99m)Tc-ECD) hybrid single photon emission tomography/computed tomography (SPECT/CT) carried out in this patient, demonstrated the subdural hygroma as well as the associated cerebral hypoperfusion. If (99m)Tc-ECD SPECT/CT is integrated into management of these patients, it can help in decision making with respect to conservative versus surgical management.

  3. Clinical evaluation of 99mTc-CPI myocardial perfusion single photon emission computerized tomography in the diagnosis of coronary heart disease

    Peng Changping

    1991-01-01

    Two normal subjects, 5 patients with old myocardial infarction (OMI) and 4 patients with angina pectoris were examined by rest single photon emission computerized tomography revealed that the right ventricular was not imaged, the left ventricular was well exposed in the normal subjects. All the 9 patients had defects in the left ventricle. comparison of SPECT with 99m Tc-CPI with selective coronary arteriography (SCA), echocardiography (UCG), dynamic electrocardiography (DCG) and electrocardiographic (ECG)-exercise test in the diagnosis of myocardial ischemia or necrosis has demonstrated the former to be more significantly sensitive than the latter four. Good agreement between SPECT and SCA has been confirmed

  4. Direct detection of a single photon by humans

    Tinsley, Jonathan N.; Molodtsov, Maxim I.; Prevedel, Robert; Wartmann, David; Espigulé-Pons, Jofre; Lauwers, Mattias; Vaziri, Alipasha

    2016-01-01

    Despite investigations for over 70 years, the absolute limits of human vision have remained unclear. Rod cells respond to individual photons, yet whether a single-photon incident on the eye can be perceived by a human subject has remained a fundamental open question. Here we report that humans can detect a single-photon incident on the cornea with a probability significantly above chance. This was achieved by implementing a combination of a psychophysics procedure with a quantum light source that can generate single-photon states of light. We further discover that the probability of reporting a single photon is modulated by the presence of an earlier photon, suggesting a priming process that temporarily enhances the effective gain of the visual system on the timescale of seconds. PMID:27434854

  5. New Generation of Superconducting Nanowire Single-Photon Detectors

    Goltsman G.N.

    2015-01-01

    Full Text Available We present an overview of recent results for new generation of infrared and optical superconducting nanowire single-photon detectors (SNSPDs that has already demonstrated a performance that makes them devices-of-choice for many applications. SNSPDs provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, SNSPDs are also compatible with an integrated optical platform as a crucial requirement for applications in emerging quantum photonic technologies. By embedding SNSPDs in nanophotonic circuits we realize waveguide integrated single photon detectors which unite all desirable detector properties in a single device.

  6. Methodology for ventilation/perfusion SPECT

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas ov...

  7. Brain SPECT with Tl-201 DDC

    Bruine, J.F. de.

    1988-01-01

    The development, animal and human experiments and the first clinical results of a new blood flow tracer thallium-201 diethyldithiocarbamate (Tl-201 DDC) are discussed for functional brain imaging with single-photon emission computed tomography (SPECT). 325 refs.; 43 figs.; 22 tabs

  8. SPECT imaging with resolution recovery

    Bronnikov, A. V.

    2011-01-01

    Single-photon emission computed tomography (SPECT) is a method of choice for imaging spatial distributions of radioisotopes. Many applications of this method are found in nuclear industry, medicine, and biomedical research. We study mathematical modeling of a micro-SPECT system by using a point-spread function (PSF) and implement an OSEM-based iterative algorithm for image reconstruction with resolution recovery. Unlike other known implementations of the OSEM algorithm, we apply en efficient computation scheme based on a useful approximation of the PSF, which ensures relatively fast computations. The proposed approach can be applied with the data acquired with any type of collimators, including parallel-beam fan-beam, cone-beam and pinhole collimators. Experimental results obtained with a micro SPECT system demonstrate high efficiency of resolution recovery. (authors)

  9. Organ volume estimation using SPECT

    Zaidi, H

    1996-01-01

    Knowledge of in vivo thyroid volume has both diagnostic and therapeutic importance and could lead to a more precise quantification of absolute activity contained in the thyroid gland. In order to improve single-photon emission computed tomography (SPECT) quantitation, attenuation correction was performed according to Chang's algorithm. The dual-window method was used for scatter subtraction. We used a Monte Carlo simulation of the SPECT system to accurately determine the scatter multiplier factor k. Volume estimation using SPECT was performed by summing up the volume elements (voxels) lying within the contour of the object, determined by a fixed threshold and the gray level histogram (GLH) method. Thyroid phantom and patient studies were performed and the influence of 1) fixed thresholding, 2) automatic thresholding, 3) attenuation, 4) scatter, and 5) reconstruction filter were investigated. This study shows that accurate volume estimation of the thyroid gland is feasible when accurate corrections are perform...

  10. Single-photon emission tomography and cerebral blood flow

    Celsis, P.; Chan, M.; Marc-Vergnes, J.P.; Sveinsdottir, E.; Goldman, T.G.; Henriksen, L.; Paulson, O.B.; Stokely, E.M.; Lassen, N.A.

    1982-01-01

    This paper illustrates the capabilities of single-photon emission tomography in imaging local cerebral blood flows in man. The results purport the conclusion that a fairly good improvement has been achieved when compared to stationary detectors and that single-photon emission tomography is a well-suited tool for studying cerebral hemodynamics, especially within the framework of clinical studies [fr

  11. Single-photon source engineering using a Modal Method

    Gregersen, Niels

    Solid-state sources of single indistinguishable photons are of great interest for quantum information applications. The semiconductor quantum dot embedded in a host material represents an attractive platform to realize such a single-photon source (SPS). A near-unity efficiency, defined as the num...... nanowire SPSs...

  12. Single-photon generator for optical telecommunication wavelength

    Usuki, T; Sakuma, Y; Hirose, S; Takemoto, K; Yokoyama, N; Miyazawa, T; Takatsu, M; Arakawa, Y

    2006-01-01

    We report on the generation of single-photon pulses from a single InAs/InP quantum dot in telecommunication bands (1.3-1.55 μm: higher transmittance through an optical fiber). First we prepared InAs quantum dots on InP (0 0 1) substrates in a low-pressure MOCVD by using a so-called InP 'double-cap' procedure. The quantum dots have well-controlled photo emission wavelength in the telecommunication bands. We also developed a single-photon emitter in which quantum dots were embedded. Numerical simulation designed the emitter to realize efficient injection of the emitted photons into a single-mode optical fiber. Using a Hanbury-Brown and Twiss technique has proved that the photons through the fiber were single photons

  13. Can Dynamic Susceptibility Contrast Magnetic Resonance Imaging Replace Single-Photon Emission Computed Tomography in the Diagnosis of Patients with Alzheimer's Disease? A Pilot Study

    Cavallin, L.; Danielsson, R.; Oeksengard, A.R.; Wahlund, L.O.; Julin, P.; Frank, A.; Engman, E.L.; Svensson, L.; Kristoffersen Wiberg, M.

    2006-01-01

    Purpose: To compare single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Material and Methods: Twenty-four patients, eight with AD, 10 with MCI, and six controls were investigated with SPECT using 99m Tc-hexamethylpropyleneamine oxime (HMPAO) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with gadobutrol. Three observers performed a visual interpretation of the SPECT and MR images using a four-point visual scale. Results: SPECT was superior to DSC-MRI in differentiating normal from pathological. All three observers showed statistically significant results in discriminating between the control group, AD, and MCI by SPECT, with a P value of 0.0006, 0.04, and 0.01 for each observer. The statistical results were not significant for MR (P values 0.8, 0.1, and 0.2, respectively). Conclusion: DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer's disease. Several patient- and method-related improvements should be made before this method can be recommended for clinical practice

  14. Can Dynamic Susceptibility Contrast Magnetic Resonance Imaging Replace Single-Photon Emission Computed Tomography in the Diagnosis of Patients with Alzheimer's Disease? A Pilot Study

    Cavallin, L.; Danielsson, R.; Oeksengard, A.R.; Wahlund, L.O.; Julin, P.; Frank, A.; Engman, E.L.; Svensson, L.; Kristoffersen Wiberg, M. [Karolinska Univ. Hospital, Stockholm (Sweden). Div. of Radiology

    2006-11-15

    Purpose: To compare single-photon emission computed tomography (SPECT) and magnetic resonance imaging (MRI) in a cohort of patients examined for suspected dementia, including patients with no objective cognitive impairment (control group), mild cognitive impairment (MCI), and Alzheimer's disease (AD). Material and Methods: Twenty-four patients, eight with AD, 10 with MCI, and six controls were investigated with SPECT using {sup 99m}Tc-hexamethylpropyleneamine oxime (HMPAO) and dynamic susceptibility contrast magnetic resonance imaging (DSC-MRI) with gadobutrol. Three observers performed a visual interpretation of the SPECT and MR images using a four-point visual scale. Results: SPECT was superior to DSC-MRI in differentiating normal from pathological. All three observers showed statistically significant results in discriminating between the control group, AD, and MCI by SPECT, with a P value of 0.0006, 0.04, and 0.01 for each observer. The statistical results were not significant for MR (P values 0.8, 0.1, and 0.2, respectively). Conclusion: DSC-MRI could not replace SPECT in the diagnosis of patients with Alzheimer's disease. Several patient- and method-related improvements should be made before this method can be recommended for clinical practice.

  15. Comparative study of thallium-201 single-photon emission computed tomography and electrocardiography in Duchenne and other types of muscular dystrophy

    Yamamoto, S.; Matsushima, H.; Suzuki, A.; Sotobata, I.; Indo, T.; Matsuoka, Y.

    1988-01-01

    Single-photon emission computed tomography (SPECT) using thallium-201 was compared with 12-lead electrocardiography (ECG) in patients with Duchenne (29), facioscapulohumeral (7), limb-girdle (6) and myotonic (5) dystrophies, by dividing the left ventricular (LV) wall into 5 segments. SPECT showed thallium defects (37 patients, mostly in the posteroapical wall), malrotation (23), apical aneurysm (5) and dilatation (7). ECG showed abnormal QRS (36 patients), particularly as a posterolateral pattern (13). Both methods of assessment were normal in only 7 patients. The Duchenne type frequently showed both a thallium defect (particularly in the posteroapical wall) and an abnormal QRS (predominantly in the posterolateral wall); the 3 other types showed abnormalities over the 5 LV wall segments in both tests. The percent of agreement between the 2 tests was 64, 66, 70, 72 and 72 for the lateral, apical, anteroseptal, posterior and inferior walls, respectively. The 2 tests were discordant in 31% of the LV wall, with SPECT (+) but ECG (-) in 21% (mostly in the apicoinferior wall) and SPECT (-) but ECG (+) in 10% (mostly in the lateral wall). Some patients showed large SPECT hypoperfusion despite minimal electrocardiographic changes. ECG thus appeared to underestimate LV fibrosis and to reflect posteroapical rather than posterolateral dystrophy in its posterolateral QRS pattern. In this disease, extensive SPECT hypoperfusion was also shown, irrespective of clinical subtype and skeletal involvement

  16. Single photon emission computed tomography procedure improves accuracy of somatostatin receptor scintigraphy in endocrine gastro-entero-pancreatic tumours

    Lebtahi, R.; Genin, R.; Rouzet, F.; Bleicner-Perez, S.; Lievre, A.; Scigliano, S.; Vialle, C.; Le Guludec, D.; Cadiot, G.; Sobhani, I.; Mignon, M.

    2005-01-01

    Somatostatin receptors scintigraphy (SRS) is a sensitive method for the detection of endocrine gastro-entero-pancreatic tumors. The aim of this study was to evaluate the sensitivity of anterior and posterior planar associated to single photon emission computerized tomography (SPECT) compared to anterior and posterior planar associated to additional lateral and oblique views in the detection of abdominal endocrine tumors. One hundred and sixty four patients with endocrine gastro-entero-pancreatic tumors were included in this study. Scintigraphic images were performed after injection of 189 ± 23 MBq of 111 In-Pentetreotide. Abdominal planar images were performed 4 h and 24 hours after injection. Abdominal SPECT was performed at 24 hours. The combination of anterior and posterior abdominal planar images with SPECT using iterative reconstruction detected significantly more tumoral sites compared to multiple planar images (298 versus 280 for the liver, p = 0.01 and 90 versus 88 for coeliac area). In particular liver lesions were better delineated on tomographic slices. The combination of 111 In-Pentetreotide SPECT with anterior and posterior planar images is more sensitive than multiple planar images to detect abdominal endocrine tumors. (author)

  17. Intellectual function and radiological images in patients with amyotrophic lateral sclerosis. Special reference to single photon emission computed tomography images

    Ichikawa, Hiroo; Kanda, Mikio; Fukui, Toshiya; Sugita, Koujiro [Showa Univ., Tokyo (Japan). School of Medicine

    1994-10-01

    To clarify cognitive decline in amyotrophic lateral sclerosis (ALS), we compared cognitive and motor signs with neuroradiological features, with special reference to single photon emission computed tomography (SPECT), in 23 patients with ALS. Of these 23 patients, five demented patients (ALS-D) showed a decrease in voluntary speech output, abnormal behavior or character change. SPECT images in these patients were specifically characterized by marked uptake reduction in the frontal lobes. ALS patients with normal mentality (ALS-N) showed either a normal pattern or non-specific patchy uptake reduction on SPECT, but never showed the diffuse frontal uptake reduction that was observed in ALS-D patients. None of the ALS-N patients showed cognitive decline or frontal uptake reduction during the follow-up period of up to 29 months. There was no relation in either ALS-D or ALS-N patients between the degree of tracer uptake reduction and clinical features of ALS including severity and duration of illness. Clinical and neuroradiological features in ALS-D patients were compatible with those of `frontal lobe dementia`. ALS-D patients may compose a distinct group because cognitive decline is unlikely to occur in ALS-N patients with a long clinical course. ALS-D patients may be differentiated from other non-demented ALS patients in the early clinical course by the characteristic diffuse frontal uptake reduction on SPECT. (author).

  18. Intellectual function and radiological images in patients with amyotrophic lateral sclerosis. Special reference to single photon emission computed tomography images

    Ichikawa, Hiroo; Kanda, Mikio; Fukui, Toshiya; Sugita, Koujiro

    1994-01-01

    To clarify cognitive decline in amyotrophic lateral sclerosis (ALS), we compared cognitive and motor signs with neuroradiological features, with special reference to single photon emission computed tomography (SPECT), in 23 patients with ALS. Of these 23 patients, five demented patients (ALS-D) showed a decrease in voluntary speech output, abnormal behavior or character change. SPECT images in these patients were specifically characterized by marked uptake reduction in the frontal lobes. ALS patients with normal mentality (ALS-N) showed either a normal pattern or non-specific patchy uptake reduction on SPECT, but never showed the diffuse frontal uptake reduction that was observed in ALS-D patients. None of the ALS-N patients showed cognitive decline or frontal uptake reduction during the follow-up period of up to 29 months. There was no relation in either ALS-D or ALS-N patients between the degree of tracer uptake reduction and clinical features of ALS including severity and duration of illness. Clinical and neuroradiological features in ALS-D patients were compatible with those of 'frontal lobe dementia'. ALS-D patients may compose a distinct group because cognitive decline is unlikely to occur in ALS-N patients with a long clinical course. ALS-D patients may be differentiated from other non-demented ALS patients in the early clinical course by the characteristic diffuse frontal uptake reduction on SPECT. (author)

  19. Atlas of Skeletal SPECT/CT Clinical Images

    2016-01-01

    The atlas focuses specifically on single photon emission computed tomography/computed tomography (SPECT/CT) in musculoskeletal imaging, and thus illustrates the inherent advantages of the combination of the metabolic and anatomical component in a single procedure. In addition, the atlas provides information on the usefulness of several sets of specific indications. The publication, which serves more as a training tool rather than a textbook, will help to further integrate the SPECT and CT experience in clinical practice by presenting a series of typical cases with many different patterns of SPECT/CT seen in bone scintigraphy

  20. Interactive reconstruction in single-photon tomography

    Miller, T.R.; Wallis, J.W.; Wilson, A.D.

    1989-01-01

    A new method is described to allow interactive selection of the reconstruction filter at the time of interpretation of images from single-photon tomography. In the filtered back projection algorithm, the only part of the reconstruction process requiring user interaction is the selection of the window function. Since the ramp and window filters have different purposes, they can be separated, placing the window at the end of the reconstruction process as a three-dimensional filter. All stages of reconstruction except the window filtering are performed before the physician begins to interpret the study. The three-dimensional filtering is performed very rapidly with use of the Chebyshev convolution algorithm. A 64 x 64 x 64 pixel cube of data is filtered in 13-33 s using filters of 3-11 lengths. Smaller volumes of image data can be filtered in less than 1 s; thus, the user can interactively choose any desired filter for a given tomographic study at the time of interpretation of the images. (orig.)

  1. Attenuation correction strategies for multi-energy photon emitters using SPECT

    Pretorius, P.H.; King, M.A.; Pan, T.S.

    1996-01-01

    The aim of this study was to investigate whether the photopeak window projections from different energy photons can be combined into a single window for reconstruction or if it is better to not combine the projections due to differences in the attenuation maps required for each photon energy. The mathematical cardiac torso (MCAT) phantom was modified to simulate the uptake of Ga-67 in the human body. Four spherical hot tumors were placed in locations which challenged attenuation correction. An analytical 3D projector with attenuation and detector response included was used to generate projection sets. Data were reconstructed using filtered backprojection (FBP) reconstruction with Butterworth filtering in conjunction with one iteration of Chang attenuation correction, and with 5 and 10 iterations of ordered-subset maximum-likelihood expectation-maximization reconstruction. To serve as a standard for comparison, the projection sets obtained from the two energies were first reconstructed separately using their own attenuation maps. The emission data obtained from both energies were added and reconstructed using the following attenuation strategies: (1) the 93 keV attenuation map for attenuation correction, (2) the 185 keV attenuation map for attenuation correction, (3) using a weighted mean obtained from combining the 93 keV and 185 keV maps, and (4) an ordered subset approach which combines both energies. The central count ratio (CCR) and total count ratio (TCR) were used to compare the performance of the different strategies. Compared to the standard method, results indicate an over-estimation with strategy 1, an under-estimation with strategy 2 and comparable results with strategies 3 and 4. In all strategies, the CCR's of sphere 4 were under-estimated, although TCR's were comparable to that of the other locations. The weighted mean and ordered subset strategies for attenuation correction were of comparable accuracy to reconstruction of the windows separately

  2. Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection.

    Weng, Qianchun; An, Zhenghua; Zhang, Bo; Chen, Pingping; Chen, Xiaoshuang; Zhu, Ziqiang; Lu, Wei

    2015-03-23

    Low-noise single-photon detectors that can resolve photon numbers are used to monitor the operation of quantum gates in linear-optical quantum computation. Exactly 0, 1 or 2 photons registered in a detector should be distinguished especially in long-distance quantum communication and quantum computation. Here we demonstrate a photon-number-resolving detector based on quantum dot coupled resonant tunneling diodes (QD-cRTD). Individual quantum-dots (QDs) coupled closely with adjacent quantum well (QW) of resonant tunneling diode operate as photon-gated switches- which turn on (off) the RTD tunneling current when they trap photon-generated holes (recombine with injected electrons). Proposed electron-injecting operation fills electrons into coupled QDs which turn "photon-switches" to "OFF" state and make the detector ready for multiple-photons detection. With proper decision regions defined, 1-photon and 2-photon states are resolved in 4.2 K with excellent propabilities of accuracy of 90% and 98% respectively. Further, by identifying step-like photon responses, the photon-number-resolving capability is sustained to 77 K, making the detector a promising candidate for advanced quantum information applications where photon-number-states should be accurately distinguished.

  3. SPECT assay of radiolabeled monoclonal antibodies

    Jaszczak, R.J.

    1992-02-01

    The long-term goal of this research project is to develop methods to improve the utility of single photon emission computed tomography (SPECI) to quantify the biodistribution of monoclonal antibodies (MoAbs) labeled with clinically relevant radionuclides ( 123 I, 131 I, and 111 In) and with another radionuclide, 211 At, recently used in therapy. We describe here our progress in developing quantitative SPECT methodology for 111 In and 123 I. We have focused our recent research thrusts on the following aspects of SPECT: (1) The development of improved SPECT hardware, such as improved acquisition geometries. (2) The development of better reconstruction methods that provide accurate compensation for the physical factors that affect SPECT quantification. (3) The application of carefully designed simulations and experiments to validate our hardware and software approaches

  4. Cerebral perfusion inhomogeneities in schizophrenia demonstrated with single photon emission computed tomography and Tc99m-hexamethylpropyleneamineoxim

    Bajc, M.; Basic, M.; Topuzovic, N.; Babic, C.; Medved, V.

    1989-01-01

    Cerebral blood flow was measured in relative terms with Tc99m-hexamethylpropyleneamineoxim (HMPAO) and single photon emission computed tomography (SPECT) in 28 female schizophrenic patients (20 acute and 8 chronic) classified according to DSM-III. Eleven normals served as controls. The acute patients were classified according to positive and negative symptoms. Patients with predominantly positive symptoms showed by and large normal and homogeneous cerebral isotope uptake. Those with negative symptoms, and the chronic patients, showed inhomogeneous tracer uptake with multiple regions of hypoperfusion in slices 4-6 cm above the orbitomeatal line. The findings support in principle the notion that schizophrenia with negative or chronic symptoms does not affect the whole brain homogeneously. Brain imaging with Tc99m-HMPAO and SPECT might be used to distinguish various types of schizophrenia. (author)

  5. Measurement of cerebral blood flow by single photon emission tomography: principles and application to functional studies of the language areas

    Tran Dinh, Y.R.; Seylaz, J.

    1989-01-01

    Quantitative measurement of cerebral blood flow by single photon emission computerized tomography (SPECT) is a new technique which is particularly suitable for routine studies of cerebro-vascular diseases. SPECT can be used to examine the deep structures of the brain and cerebellum. The functional areas of the brain, which have hitherto been only accessible by clinical-anatomical methods, can be imaged by this technique, based on the correlation between cerebral blood flow and metabolism. The demonstration of preferential activation of temporal and frontal zones in the left hemisphere by active speech stimulation confirms the general principles of hemispheric lateralization of cerebral functions. In addition to this role in studying the physiology of normal subjects, the technique has practical pathological applications. Knowledge of hemispheric lateralization of spoken language should be a pre-operative test for cerebral lesion when there is a risk that surgical intervention may produce irreversible neuropsychological lesions [fr

  6. Entanglement and quantum superposition induced by a single photon

    Lü, Xin-You; Zhu, Gui-Lei; Zheng, Li-Li; Wu, Ying

    2018-03-01

    We predict the occurrence of single-photon-induced entanglement and quantum superposition in a hybrid quantum model, introducing an optomechanical coupling into the Rabi model. Originally, it comes from the photon-dependent quantum property of the ground state featured by the proposed hybrid model. It is associated with a single-photon-induced quantum phase transition, and is immune to the A2 term of the spin-field interaction. Moreover, the obtained quantum superposition state is actually a squeezed cat state, which can significantly enhance precision in quantum metrology. This work offers an approach to manipulate entanglement and quantum superposition with a single photon, which might have potential applications in the engineering of new single-photon quantum devices, and also fundamentally broaden the regime of cavity QED.

  7. Analysis of deterministic swapping of photonic and atomic states through single-photon Raman interaction

    Rosenblum, Serge; Borne, Adrien; Dayan, Barak

    2017-03-01

    The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.

  8. A novel high-efficiency single-mode quantum dot single photon source

    Gerard, J.M.; Gregersen, Niels; Nielsen, Torben Roland

    2008-01-01

    We present a novel single-mode single photon source exploiting the emission of a semiconductor quantum dot (QD) located inside a photonic wire. Besides an excellent coupling (>95%) of QD spontaneous emission to the fundamental guided mode [1], we show that a single photon collection efficiency...... above 80% within a 0.5 numerical aperture can be achieved using a bottom Bragg mirror and a tapering of the nanowire tip. Because this photon collection strategy does not exploit the Purcell effect, it could also be efficiently applied to broadband single photon emitters such as F-centers in diamond....

  9. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    Qian Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small-animal single-photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ∼35 keV photons from the decay of 125 I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1x1x5 mm 3 /pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five, 1-mm-diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications

  10. SPECT/CT imaging in children with papillary thyroid carcinoma

    Kim, Hwa-Young; Gelfand, Michael J.; Sharp, Susan E.

    2011-01-01

    SPECT/CT improves localization of single photon-emitting radiopharmaceuticals. To determine the utility of SPECT/CT in children with papillary thyroid carcinoma. 20 SPECT/CT and planar studies were reviewed in 13 children with papillary thyroid carcinoma after total thyroidectomy. Seven studies used I-123 and 13 used I-131, after elevating TSH by T4 deprivation or intramuscular thyrotropin alfa. Eight children had one study and five children had two to four studies. Studies were performed at initial post-total thyroidectomy evaluation, follow-up and after I-131 treatment doses. SPECT/CT was performed with a diagnostic-quality CT unit in 13 studies and a localization-only CT unit in 7. Stimulated thyroglobulin was measured (except in 2 cases with anti-thyroglobulin antibodies). In 13 studies, neck activity was present but poorly localized on planar imaging; all foci of uptake were precisely localized by SPECT/CT. Two additional foci of neck uptake were found on SPECT/CT. SPECT/CT differentiated high neck uptake from facial activity. In six studies (four children), neck uptake was identified as benign by SPECT/CT (three thyroglossal duct remnants, one skin contamination, two by precise anatomical CT localization). In two children, SPECT/CT supported a decision not to treat with I-131. When SPECT/CT was unable to identify focal uptake as benign, stimulated thyroglobulin measurements were valuable. In three of 13 studies with neck uptake, SPECT/CT provided no useful additional information. SPECT/CT precisely localizes neck iodine uptake. In small numbers of patients, treatment is affected. SPECT/CT should be used when available in thyroid carcinoma patients. (orig.)

  11. Initial multicentre experience of high-speed myocardial perfusion imaging: comparison between high-speed and conventional single-photon emission computed tomography with angiographic validation

    Neill, Johanne [University College London Hospital, Institute of Nuclear Medicine, London (United Kingdom); The Prince Charles Hospital, Brisbane (Australia); Prvulovich, Elizabeth M.; Bomanji, Jamshed B. [University College London Hospital, Institute of Nuclear Medicine, London (United Kingdom); Fish, Matthews B. [Sacred Heart Medical Center (SHMC), Springfield, OR (United States); Berman, Daniel S.; Slomka, Piotr J. [Cedars-Sinai Medical Center, Los Angeles, CA (United States); Sharir, Tali [Procardia Maccabi Healthcare Services (PMHS), Tel Aviv (Israel); Martin, William H. [Vanderbilt University Medical Center (VUMC), Nashville, TN (United States); DiCarli, Marcelo F. [Brigham and Women' s Hospital (BWH), Boston, MA (United States); Ziffer, Jack A. [Baptist Hospital of Miami (BHM), Miami, FL (United States); Shiti, Dalia [Spectrum-Dynamics, Caesarea (Israel); Ben-Haim, Simona [University College London Hospital, Institute of Nuclear Medicine, London (United Kingdom); Chaim Sheba Medical Center, Department of Nuclear Medicine, Tel-Hashomer (Israel)

    2013-07-15

    High-speed (HS) single-photon emission computed tomography (SPECT) with a recently developed solid-state camera shows comparable myocardial perfusion abnormalities to those seen in conventional SPECT. We aimed to compare HS and conventional SPECT images from multiple centres with coronary angiographic findings. The study included 50 patients who had sequential conventional SPECT and HS SPECT myocardial perfusion studies and coronary angiography within 3 months. Stress and rest perfusion images were visually analysed and scored semiquantitatively using a 17-segment model by two experienced blinded readers. Global and coronary territorial summed stress scores (SSS) and summed rest scores (SRS) were calculated. Global SSS {>=}3 or coronary territorial SSS {>=}2 was considered abnormal. In addition the total perfusion deficit (TPD) was automatically derived. TPD >5 % and coronary territorial TPD {>=}3 % were defined as abnormal. Coronary angiograms were analysed for site and severity of coronary stenosis; {>=}50 % was considered significant. Of the 50 patients, 13 (26 %) had no stenosis, 22 (44 %) had single-vessel disease, 6 (12 %) had double-vessel disease and 9 (18 %) had triple-vessel disease. There was a good linear correlation between the visual global SSS and SRS (Spearman's {rho} 0.897 and 0.866, respectively; p < 0.001). In relation to coronary angiography, the sensitivities, specificities and accuracies of HS SPECT and conventional SPECT by visual assessment were 92 % (35/38), 83 % (10/12) and 90 % (45/50) vs. 84 % (32/38), 50 % (6/12) and 76 % (38/50), respectively (p < 0.001). The sensitivities, specificities and accuracies of HS SPECT and conventional SPECT in relation to automated TPD assessment were 89 % (31/35), 57 % (8/14) and 80 % (39/49) vs. 86 % (31/36), 77 % (10/13) and 84 % (41/49), respectively. HS SPECT allows fast acquisition of myocardial perfusion images that correlate well with angiographic findings with overall accuracy by visual

  12. Single-photon detector operating under extremely high background photon flux conditions

    Prochazka, Ivan; Sopko, Bruno; Blazej, Josef

    2009-01-01

    We are reporting our results in research and development in the field of avalanche semiconductor single-photon detectors and their application. Our goal was a development of a solid-state photon-counting detector capable of high-precision photon arrival time tagging in extremely harsh operating conditions. The background photon flux exceeding 10 9 photons per second hitting the detector active area should not avoid the useful signal detection and recognition on the signal level of units of photons per second. This is background photon flux about two orders of magnitude higher than what the conventional solid-state photon counters accept. The detection timing resolution should be better than 100 ps and the delay stability should be on picosecond level. We have developed and tested the active quenched and gated avalanche structure on silicon providing the required features in connection with the K14 detection chips. The detector is capable of gated operation under the conditions of background photon flux of 5x10 9 photons per second. The operational detector tolerates long term exposures to the input photon flux exceeding 10 15 photons (>1 mW) per second without damage.

  13. Contralateral thalamic hypoperfusion on brain perfusion SPECT

    Lee, Seok Mo; Bae, Sang Kyun; Yoo, Kyung Moo; Yum, Ha Yong

    2000-01-01

    Brain perfusion single photon emission computed tomography (SPECT) is useful for the localization of cerebrovascular lesion and sometimes reveals more definite lesion than radiologic imaging modality such as CT or MRI does. The purpose of this study was to evaluate the diagnostic usefulness of brain perfusion SPECT in patients with hemisensory impairment. Thirteen consecutive patients (M:F= 8:5, mean age = 48) who has hemisensory impairment were included. Brain perfusion SPECT was performed after intravenous injection of 1110 MBq of Tc-99m ECD. The images were obtained using a dual-head gamma camera with ultra-high resolution collimator. Semiquantitative analysis was performed after placing multiple ROIs on cerebral cortex, basal ganglia, thalamus and cerebellum. There were 10 patients with left hemisensory impairment and 3 patients with right-sided symptom. Only 2 patients revealed abnormal signal change in the thalamus on MRI. But brain perfusion SPECT showed decreased perfusion in the thalamus in 9 patients. Six patients among 10 patients with left hemisensory impairment revealed decreased perfusion in the contralateral thalamus on brain SPECT. The other 4 patients revealed no abnormality. Two patients among 3 patients with right hemisensory impairment also showed decreased perfusion in the contralateral thalamus on brain SPECT. One patients with right hemisensory impairment showed ipsilateral perfusion decrease. Two patients who had follow-up brain perfusion SEPCT after treatment revealed normalization of perfusion in the thalamus. Brain perfusion SPECT might be a useful tool in diagnosing patients with hemisensory impairment

  14. Spectrum of acetylene fluorescence excited by single XUV photons

    Schmieder, R.W.

    1982-01-01

    The spectrum of visible emission from photofragments of acetylene excited by single 16.85 eV photons has been recorded for the first time. The spectrum is dominated by the Swan and Deslandres-d'Azambuja bands of C 2 and the 431.5 nm band of CH. The yields of these emissions are of the order 10 -3 photons per absorbed incident photon. The experimental conditions suggest that the emission results from primary C* 2 and CH* photofragments

  15. MRI and SPECT findings in amyotrophic lateral sclerosis

    Ukada, F.; Sawada, H.; Seriu, N.; Shindou, K.; Nishitani, N.; Kameyama, M.

    1992-01-01

    MRI was performed in 21 patients and single photon emission computed tomography (SPECT) with N-isopropyl-p- 123 I iodoamphetamine in 16 patients, to visualize upper motor neurone lesions in amyotrophic lateral sclerosis. T2-weighted MRI revealed high signal along the course of the pyramidal tract in the internal capsule and cerebral peduncle in 4 of 21 patients. SPECT images were normal in 4 patients, but uptake was reduced in the cerebral cortex that includes the motor area in 11. (orig.)

  16. Dual-isotope single-photon emission computed tomography for dopamine and serotonin transporters in normal and parkinsonian monkey brains

    Li, I-H.; Huang, W.-S.; Yeh, C.-B.; Liao, M.-H.; Chen, C.-C.; Shen, L.-H.; Liu, J.-C.; Ma, K.-H.

    2009-01-01

    Introduction: Parkinson's disease (PD) affects both dopaminergic and serotonergic systems. In this study, we simultaneously evaluated dopamine and serotonin transporters in primates using dual-isotope single-photon emission computed tomography (SPECT) imaging and compared the results with traditional single-isotope imaging. Methods: Four healthy and one 6-OHDA-induced PD monkeys were used for this study. SPECT was performed over 4 h after individual or simultaneous injection of [ 99m Tc]TRODAT-1 (a dopamine transporter imaging agent) and [ 123 I]ADAM (a serotonin transporter imaging agent). Results: The results showed that the image quality and uptake ratios in different brain regions were comparable between single- and dual-isotope studies. The striatal [ 99m Tc]TRODAT-1 uptake in the PD monkey was markedly lower than that in normal monkeys. The uptake of [ 123 I]ADAM in the midbrain of the PD monkey was comparable to that in the normal monkeys, but there were decreased uptakes in the thalamus and striatum of the PD monkey. Conclusions: Our results suggest that dual-isotope SPECT using [ 99m Tc]TRODAT-1 and [ 123 I]ADAM can simultaneously evaluate changes in dopaminergic and serotonergic systems in a PD model.

  17. Dual-isotope single-photon emission computed tomography for dopamine and serotonin transporters in normal and parkinsonian monkey brains

    Li, I-H. [Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan (China); Huang, W.-S. [Department of Nuclear Medicine, Tri-Service General Hospital, Taipei, 114, Taiwan (China); Yeh, C.-B. [Department of Psychiatry, Tri-Service General Hospital, Taipei, 114, Taiwan (China); Liao, M.-H.; Chen, C.-C.; Shen, L.-H. [Division of Isotope Application, Institute of Nuclear Energy Research, Taoyaun, 325 Taiwan (China); Liu, J.-C. [Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan (China); Ma, K.-H. [Department of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan (China)], E-mail: kuohsing91@yahoo.com.tw

    2009-08-15

    Introduction: Parkinson's disease (PD) affects both dopaminergic and serotonergic systems. In this study, we simultaneously evaluated dopamine and serotonin transporters in primates using dual-isotope single-photon emission computed tomography (SPECT) imaging and compared the results with traditional single-isotope imaging. Methods: Four healthy and one 6-OHDA-induced PD monkeys were used for this study. SPECT was performed over 4 h after individual or simultaneous injection of [{sup 99m}Tc]TRODAT-1 (a dopamine transporter imaging agent) and [{sup 123}I]ADAM (a serotonin transporter imaging agent). Results: The results showed that the image quality and uptake ratios in different brain regions were comparable between single- and dual-isotope studies. The striatal [{sup 99m}Tc]TRODAT-1 uptake in the PD monkey was markedly lower than that in normal monkeys. The uptake of [{sup 123}I]ADAM in the midbrain of the PD monkey was comparable to that in the normal monkeys, but there were decreased uptakes in the thalamus and striatum of the PD monkey. Conclusions: Our results suggest that dual-isotope SPECT using [{sup 99m}Tc]TRODAT-1 and [{sup 123}I]ADAM can simultaneously evaluate changes in dopaminergic and serotonergic systems in a PD model.

  18. A case of temporal lobe epilepsy with improvement of clinical symptoms and single photon emission computed tomography findings after treatment with clonazepam.

    Ide, M; Mizukami, K; Suzuki, T; Shiraishi, H

    2000-10-01

    A 26-year-old female presented psychomotor seizures, deja vu and amnestic syndrome after meningitis at the age of 14 years. Repeated electroencephalograms (EEG) demonstrated occasional spikes localized in the right temporal region in addition to a considerable amount of theta waves mainly in the right fronto-temporal region. Single photon emission computed tomography (SPECT) showed a marked hypoperfusion corresponding to the region in which the EEG showed abnormal findings, although magnetic resonance imaging (MRI) demonstrated no abnormal findings associated with the clinical features. Treatment with clonazepam in addition to sodium valproate resulted in a remarkable improvement of clinical symptoms (i.e. psychomotor seizures and deja vu), as well as of the EEG and SPECT findings. The present study suggests that SPECT is a useful method not only to determine the localization of regions associated with temporal lobe epilepsy but also to evaluate the effect of treatment in temporal lobe epilepsy.

  19. Evaluation of the system performance and clinical images of the single photon emission computed tomography for head using ring arranged detector

    Ejiri, Kazutaka; Toyama, Hiroshi; Kato, Yukihiko; Narita, Takae; Takeshita, Gen; Takeuchi, Akira; Koga, Sukehiko

    1988-01-01

    To evaluate the system performance, several preoperational fundamental tests of single photon emission computed tomography (SPECT) were carried out. Spatial resolutions (FWHM) measured with the point-spread functions of a 99m Tc line source were 12.5 mm with a high resolution (HR) collimator and 17.2 mm with a high sensitivity (HS) collimator respectively. Slice thicknesses (FWHM) obtained from the profile curves of slice images were 17.5 mm (HR) and 29.0 mm (HS) at the center of rotation. System sensitivities were 5.4 kcps/slice (HR) and 27.8 kcps/slice (HS). Uniformities calculated from the SPECT images of a pool phantom were 4.7 % (HR) and 2.7 % (HS) at the condition of 3000 kcounts to be acquired. SPECT images of the HEADTOME SET-031 were considered very useful to diagnose the cerebrovascular disease. (author)

  20. Usefulness of technetium-99m tetrofosmin single-photon emission computed tomography for short-term risk stratification in patients with acute chest pain in the emergency room

    Kawahito, Michitomo; Kondo, Makoto; Abe, Yoshiteru

    2003-01-01

    High-risk patients with acute coronary syndrome are difficult to distinguish from low-risk patients with chest pain in the emergency room. Technetium-99 m ( 99m Tc) tetrofosmin single-photon emission computed tomography (SPECT) was investigated to exclude high-risk patients with chest pain in the emergency room. 99m Tc-tetrofosmin SPECT was evaluated using a four-point scoring system in 228 patients (144 men, 84 women, mean age 68±12 years) with chest pain. Negative was defined as the myocardial segments with a defect score (DS) of 99m Tc-tetrofosmin; no significance (NS)), 84.9% (NS) and 60.4% (p 99m Tc-tetrofosmin SPECT is a useful method to exclude high-risk patients among patients with chest pain in the emergency room. (author)

  1. Dipyridamole thallium-201 single-photon emission computed tomography for prediction of perioperative cardiac events in patients with arteriosclerosis obliterans undergoing vascular surgery

    Ziyang, Huang; Komori, Sadayoshi; Sawanobori, Takao

    1998-01-01

    The aim of the study was to determine whether or not dipyridamole thallium-201 single-photon emission computed tomography ( 201 Tl-SPECT) has significant additive value for predicting perioperative cardiac events in patients with arteriosclerosis obliterans (ASO) undergoing vascular surgery. Routine preoperative 201 Tl-SPECT was performed in 106 consecutive patients with ASO (age 68±8.9 years; 91 men and 15 women). The frequency of reversible defects in a clinical high-risk group (n=44) was significantly higher than in a low-risk group (n=62; 55% vs 24%, p 201 Tl-SPECT data to clinical risk-stratified patients with ASO allows better prediction of perioperative cardiac events. (author)

  2. An incidentally found inflamed uterine myoma Causing low abdominal pain, using TC-99m-tektrotyd single photon emission computed tomography-CT hybrid imaging

    Zandieh, Shahin; Schuetz, Matthias; Bernt, Reinhard; Zwerina, Jochen; Haller, Joerg [Hanusch-Hospital, Teaching Hospital of Medical University of Vienna, Vienna (Australia)

    2013-10-15

    We report the case of a 50-year-old woman presented with a history of right hemicolectomy due to an ileocecal neuroendocrine tumor and left breast metastasis. Owing to a slightly elevated chromogranin A-level and lower abdominal pain, single photon emission computed tomography-computer tomography (SPECT-CT) was performed. There were no signs of recurrence on the SPECT-CT scan, but the patient was incidentally found to have an inflamed intramural myoma. We believe that the slightly elevated chromogranin A-level was caused by the hypertension that the patient presented. In the clinical context, this is a report of an inflamed uterine myoma seen as a false positive result detected by TC-99m-Tc-EDDA/HYNIC-Tyr3-Octreotide (Tektrotyd) SPECT-CT hybrid imaging.

  3. Nanofabrication of Plasmonic Circuits Containing Single Photon Sources

    Siampour, Hamidreza; Kumar, Shailesh; Bozhevolnyi, Sergey I.

    2017-01-01

    Nanofabrication of photonic components based on dielectric loaded surface plasmon polariton waveguides (DLSPPWs) excited by single nitrogen vacancy (NV) centers in nanodiamonds is demonstrated. DLSPPW circuits are built around NV containing nanodiamonds, which are certified to be single-photon...... emitters, using electron-beam lithography of hydrogen silsesquioxane (HSQ) resist on silver-coated silicon substrates. A propagation length of 20 ± 5 μm for the NV single-photon emission is measured with DLSPPWs. A 5-fold enhancement in the total decay rate, and 58% coupling efficiency to the DLSPPW mode...

  4. Single-photon light detection with transition-edge sensors

    Rajteri, M.; Taralli, E.; Portesi, C.; Monticone, E.

    2008-01-01

    Transition-Edge Sensors (TESs) are micro calorimeters that measure the energy of incident single-photons by the resistance increase of a superconducting film biased within the superconducting-to-normal transition. TES are able to detect single photons from x-ray to IR with an intrinsic energy resolution and photon-number discrimination capability. Metrological, astronomical and quantum communication applications are the fields where these properties can be particularly important. In this work, we report about characterization of different TESs based on Ti films. Single-photons have been detected from 200 nm to 800 nm working at T c ∼ 100 m K. Using a pulsed laser at 690 nm we have demonstrated the capability to resolve up to five photons.

  5. Role of single photon emission computed tomography/computed tomography in diagnostic iodine-131 scintigraphy before initial radioiodine ablation in differentiated thyroid cancer

    Agrawal, Kanhaiyalal; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2005-01-01

    The study was performed to evaluate the incremental value of single photon emission computed tomography/computed tomography (SPECT/CT) over planar radioiodine imaging before radioiodine ablation in the staging, management and stratification of risk of recurrence (ROR) in differentiated thyroid cancer (DTC) patients. Totally, 83 patients (21 male, 62 female) aged 17–75 (mean 39.9) years with DTC were included consecutively in this prospective study. They underwent postthyroidectomy planar and SPECT/CT scans after oral administration of 37–114 MBq iodine-131 (I-131). The scans were interpreted as positive, negative or suspicious for tracer uptake in the thyroid bed, cervical lymph nodes and sites outside the neck. In each case, the findings on planar images were recorded first, without knowledge of SPECT/CT findings. Operative and pathological findings were used for postsurgical tumor–node–metastasis staging. The tumor staging was reassessed after each of these two scans. Single photon emission computed tomography/computed tomography localized radioiodine uptake in the thyroid bed in 9/83 (10.8%) patients, neck nodes in 24/83 (28.9%) patients and distant metastases in 8/83 (9.6%) patients in addition to the planar study. Staging was changed in 8/83 (9.6%), ROR in 11/83 (13.2%) and management in 26/83 (31.3%) patients by the pretherapy SPECT/CT in comparison to planar imaging. SPECT/CT had incremental value in 32/83 patients (38.5%) over the planar scan. Single photon emission computed tomography/computed tomography is feasible during a diagnostic I-131 scan with a low amount of radiotracer. It improved the interpretation of pretherapy I-131 scintigraphy and changed the staging and subsequent patient management

  6. Depression following intracerebral hemorrhage and the evaluation of cerebral blood flow by single photon emission tomography

    Masada, Tetsuya; Makabe, Tetsuo; Kunishio, Katsuzo; Matsumoto, Akira

    2007-01-01

    The authors studied patients who presented depression and apathy following intracerebral hemorrhage (ICH). Twelve patients who were admitted in our hospital were divided into two groups according to the presence of post-stroke depression (PSD). Five patients with PSD are in group A, and another seven patients without PSD are in group B. Zung-self depression scale (SDS) and apathy scale were used for screening of depression and apathy. PSD was recognized in 5 (42%) of patients following ICH. Single photon emission tomography (SPECT) suggested the reduction of cerebral blood flow (CBF) in the frontal lobe in all patients of the group A (100%), whereas only 29% of patients of the group B. The reduction of CBF in the frontal lobe might be involved in the mechanism of depression following ICH in subacute stage. (author)

  7. Simulation Study of Single Photon Emission Computed Tomography for Industrial Applications

    Roy, Tushar; Sarkar, P. S.; Sinha, Amar

    2008-01-01

    SPECT (Single Photon Emission Computed Tomography) provides for an invaluable non-invasive technique for the characterization and activity distribution of the gamma-emitting source. For many applications of radioisotopes for medical and industrial application, not only the positional information of the distribution of radioisotopes is needed but also its strength. The well-established X-ray radiography or transmission tomography techniques do not yield sufficient quantitative information about these objects. Emission tomography is one of the important methods for such characterization. Application of parallel beam, fan beam and 3D cone beam emission tomography methods have been discussed in this paper. Simulation studies to test these algorithms have been carried out to validate the technique.

  8. Single-photon generation with InAs quantum dots

    Santori, Charles; Fattal, David; Vuckovic, Jelena; Solomon, Glenn S; Yamamoto, Yoshihisa

    2004-01-01

    Single-photon generation using InAs quantum dots in pillar microcavities is described. The effects on performance of the excitation wavelength and polarization, and the collection bandwidth and polarization, are studied in detail. The efficiency and photon state purity of these devices have been measured, and issues affecting these parameters are discussed. Prospects for improved devices are also discussed

  9. Detection of hemodynamic impairment using magnetic resonance angiography in patients with internal carotid artery stenoocclusive disease. Comparison with quantitative brain perfusion single-photon emission computed tomography

    Hirooka, Ryonoshin; Ogasawara, Kuniaki

    2008-01-01

    Cerebrovascular reactivity (CVR) to acetazolamideis a key parameter in determining the severity of hemodynamic impairment in patients with major cerebral artery occlusive disease. The aim of the present study is to validate the accuracy of magnetic resonance angiography (MRA) for detecting hemodynamic impairment by correlating detectability of the middle cerebral artery obtained by MRA with CVR measured by single-photon emission computed tomography (SPECT) in patients with internal carotid artery (ICA) occlusive disease. Ninety-four patients with chronic ICA occlusion underwent single slab three-dimensional time-of-flight MRA and SPECT. SPECT-CVR was calculated by measured cerebral blood flow before and after acetazolamide challenge. CVR was significantly lower in patients without detection of any portion (M1, M2 or M3) of the MCA than in those with detection of all portions. When SPECT-CVR lower than the mean- 2 standard deviation (SD) obtained in normal subjects was defined as reduced and the SPECT-CVR was assumed as the true determinant of hemodynamic impairment, MRA provided 92% sensitivity and 73% specificity, with 96% negative predictive value for detecting patients with reduced CVR. The present MRA method is effective for the identification of patients with hemodynamic impairment. (author)

  10. Sequential SPECT/CT imaging starting with stress SPECT in patients with left bundle branch block suspected for coronary artery disease

    Engbers, Elsemiek M.; Mouden, Mohamed [Isala, Department of Cardiology, Zwolle (Netherlands); Isala, Department of Nuclear Medicine, Zwolle (Netherlands); Timmer, Jorik R.; Ottervanger, Jan Paul [Isala, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Jager, Pieter L. [Isala, Department of Nuclear Medicine, Zwolle (Netherlands)

    2017-01-15

    To investigate the impact of left bundle branch block (LBBB) on sequential single photon emission computed tomography (SPECT)/ CT imaging starting with stress-first SPECT. Consecutive symptomatic low- to intermediate-risk patients without a history of coronary artery disease (CAD) referred for SPECT/CT were included from an observational registry. If stress SPECT was abnormal, additional rest SPECT and, if feasible, coronary CT angiography (CCTA) were acquired. Of the 5,018 patients, 218 (4.3 %) demonstrated LBBB. Patients with LBBB were slightly older than patients without LBBB (65±12 vs. 61±11 years, p<0.001). Stress SPECT was more frequently abnormal in patients with LBBB (82 % vs. 46 %, p<0.001). After reviewing stress and rest images, SPECT was normal in 43 % of the patients with LBBB, compared to 77 % of the patients without LBBB (p<0.001). Sixty-four of the 124 patients with LBBB and abnormal stress-rest SPECT underwent CCTA (52 %), which could exclude obstructive CAD in 46 of the patients (72 %). Sequential SPECT/CT imaging starting with stress SPECT is not the optimal imaging protocol in patients with LBBB, as the majority of these patients have potentially false-positive stress SPECT. First-line testing using CCTA may be more appropriate in low- to intermediate-risk patients with LBBB. (orig.)

  11. Semi-quantitative analysis of post-transarterial radioembolization 90Y Microsphere position emission tomography combined with computed tomography (PET/CT) images in advance liver malignancy: Comparison with 99mTc macroaggregated albumin (MAA) single photon emission computed tomography (SPECT)

    Rhee, Seung Hong; Kim, Sung Eun; Cho, Jae Hyuk; Park, Ju Kyung; Kim, Yun Hwan; Choe, Jae Gol; Eo, Jae Seon; Park, So Yeon; Lee, Eun Sub

    2016-01-01

    The purpose of this study is to evaluate the correlation between pretreatment planning technetium-99m ( 99 mTc) macroaggregated albumin (MAA) SPECT images and posttreatment transarterial radioembolization (TARE) yttirum-90 ( 90 Y) PET/CT images by comparing the ratios of tumor-to-normal liver counts. Fifty-two patients with advanced hepatic malignancy who underwent 90 Y microsphere radioembolization from January 2010 to December 2012 were retrospectively reviewed. Patients had undergone 99 mTc MAA intraarterial injection SPECT for a pretreatment evaluation of microsphere distribution and therapy planning. After the administration of 90 Y microspheres, the patients underwent posttreatment 90 Y PET/CT within 24 h. For semiquantitative analysis, the tumor-to-normal uptake ratios in 90 Y PET/CT (TNR-yp) and 99 mTc MAA SPECT (TNR-ms) as well as the tumor volumes measured in angiographic CT were obtained and analyzed. The relationship of TNR-yp and TNR-ms was evaluated by Spearman's rank correlation and Wilcoxon's matched pairs test. In a total of 79 lesions of 52 patients, the distribution of microspheres was well demonstrated in both the SPECT and PET/CT images. A good correlation was observed of between TNR-ms and TNR-yp (rho value = 0.648, p < 0.001). The TNR-yp (median 2.78, interquartile range 2.43) tend to show significantly higher values than TNR-ms (median 2.49, interquartile range of 1.55) (p = 0.012). The TNR-yp showed weak correlation with tumor volume (rho = 0.230, p = 0.041). The 99mTc MAA SPECT showed a good correlation with 90 Y PET/CT in TNR values, suggesting that 99 mTc MAA can be used as an adequate pretreatment evaluation method. However, the 99 mTc MAA SPECT image consistently shows lower TNR values compared to 90Y PET/CT, which means the possibility of underestimation of tumorous uptake in the partition dosimetry model using 99 mTc MAA SPECT. Considering that 99 mTc MAA is the only clinically available surrogate marker

  12. Semi-quantitative analysis of post-transarterial radioembolization {sup 90}Y Microsphere position emission tomography combined with computed tomography (PET/CT) images in advance liver malignancy: Comparison with {sup 99m}Tc macroaggregated albumin (MAA) single photon emission computed tomography (SPECT)

    Rhee, Seung Hong; Kim, Sung Eun; Cho, Jae Hyuk; Park, Ju Kyung; Kim, Yun Hwan; Choe, Jae Gol [Korea University Anam Hospital, Seoul (Korea, Republic of); Eo, Jae Seon; Park, So Yeon; Lee, Eun Sub [Dept. of Nuclear Medicine, Korea University Guro Hospital, Seoul (Korea, Republic of)

    2016-03-15

    The purpose of this study is to evaluate the correlation between pretreatment planning technetium-99m ({sup 99}mTc) macroaggregated albumin (MAA) SPECT images and posttreatment transarterial radioembolization (TARE) yttirum-90 ({sup 90}Y) PET/CT images by comparing the ratios of tumor-to-normal liver counts. Fifty-two patients with advanced hepatic malignancy who underwent {sup 90}Y microsphere radioembolization from January 2010 to December 2012 were retrospectively reviewed. Patients had undergone {sup 99}mTc MAA intraarterial injection SPECT for a pretreatment evaluation of microsphere distribution and therapy planning. After the administration of {sup 90}Y microspheres, the patients underwent posttreatment {sup 90}Y PET/CT within 24 h. For semiquantitative analysis, the tumor-to-normal uptake ratios in {sup 90}Y PET/CT (TNR-yp) and {sup 99}mTc MAA SPECT (TNR-ms) as well as the tumor volumes measured in angiographic CT were obtained and analyzed. The relationship of TNR-yp and TNR-ms was evaluated by Spearman's rank correlation and Wilcoxon's matched pairs test. In a total of 79 lesions of 52 patients, the distribution of microspheres was well demonstrated in both the SPECT and PET/CT images. A good correlation was observed of between TNR-ms and TNR-yp (rho value = 0.648, p < 0.001). The TNR-yp (median 2.78, interquartile range 2.43) tend to show significantly higher values than TNR-ms (median 2.49, interquartile range of 1.55) (p = 0.012). The TNR-yp showed weak correlation with tumor volume (rho = 0.230, p = 0.041). The 99mTc MAA SPECT showed a good correlation with {sup 90}Y PET/CT in TNR values, suggesting that {sup 99}mTc MAA can be used as an adequate pretreatment evaluation method. However, the {sup 99}mTc MAA SPECT image consistently shows lower TNR values compared to 90Y PET/CT, which means the possibility of underestimation of tumorous uptake in the partition dosimetry model using {sup 99}mTc MAA SPECT. Considering that

  13. Functional neuroimaging in epilepsy: FDG-PET and SPECT

    Lee, Sang Kun; Lee, Dong Soo

    2003-01-01

    Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. lctal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test

  14. Functional neuroimaging in epilepsy: FDG-PET and SPECT

    Lee, Sang Kun; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2003-02-01

    Finding epileptogenic zone is the most important step for the successful epilepsy surgery. F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) and single photon emission computed tomography (SPECT) can be used in the localization of epileptogenic foci. In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG-PET and ictal SPECT is excellent. However, detection of hippocampal sclerosis by MRI is so certain that use of FDG-PET and ictal SPECT in medial temporal lobe epilepsy is limited for some occasions. In neocortical epilepsy, the sensitivities of FDG-PET or ictal SPECT are fair. However, FDG-PET and ictal SPECT can have a crucial role in the localization of epileptogenic foci for non-lesional neocortical epilepsy. Interpretation of FDG-PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods can aid the objective diagnosis of epileptogenic foci. lctal SPECT was analyzed using subtraction methods and voxel-based analysis. Rapidity of injection of tracers, ictal EEG findings during injection of tracer, and repeated ictal SPECT were important technical issues of ictal SPECT. SPECT can also be used in the evaluation of validity of Wada test.

  15. I-123 Iofetamine SPECT scan in children with neurological disorders

    Flamini, J.R.; Konkol, R.J.; Wells, R.G.; Sty, J.R.

    1990-01-01

    I-123 Iofetamine (IMP) single photon emission computed tomography (SPECT) imaging of the brain in 42 patients (ages 14 days to 23 years) was compared with other localizing studies in children with neurological diseases. All had an EEG and at least one imaging study of the brain (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Seventy-eight percent of the patients had an EEG within 24-72 hours of the IMP-SPECT scan. Thirty-five (83%) had a history of seizures, and the remainder had other neurological conditions without a history of seizures. In most cases, a normal EEG reading with normal CT or MRI result predicted a normal SPECT study. When the EEG was abnormal the majority of the IMP-SPECT scans were abnormal and localized the abnormality to the same region. A comparison with CT and MRI showed that structural abnormalities involving the cortex were usually well demonstrated with IMP-SPECT imaging. Structural lesions confined to the white matter were generally not detectable with IMP-SPECT. In a few cases, SPECT scans revealed abnormalities in deep brain areas not identified by EEG. IMP-SPECT imaging is a valuable technique for the detection and localization of abnormal cerebral metabolic activity in children with seizure disorders. A correlation with CT or MRI is essential for proper interpretation of abnormalities detected with IMP SPECT imaging

  16. Post meningitis subdural hygroma: Anatomical and functional evaluation with 99mTc-ehylene cysteine dimer single photon emission tomography/computed tomography

    Sharma, Punit; Mishra, Ajiv; Arora, Geetanjali; Tripathi, Madhavi; Bal, Chandrasekhar; Kumar, Rakesh

    2013-01-01

    Subdural hygroma is the collection of cerebrospinal fluid in the subdural space. Most often these resolve spontaneously. However, in cases with neurological complications surgical drainage may be needed. We here, present the case of an 8-year-old boy with post meningitis subdural hygroma. 99mTc-ehylene cysteine dimer (99mTc-ECD) hybrid single photon emission tomography/computed tomography (SPECT/CT) carried out in this patient, demonstrated the subdural hygroma as well as the associated cereb...

  17. Multiple-Event, Single-Photon Counting Imaging Sensor

    Zheng, Xinyu; Cunningham, Thomas J.; Sun, Chao; Wang, Kang L.

    2011-01-01

    The single-photon counting imaging sensor is typically an array of silicon Geiger-mode avalanche photodiodes that are monolithically integrated with CMOS (complementary metal oxide semiconductor) readout, signal processing, and addressing circuits located in each pixel and the peripheral area of the chip. The major problem is its single-event method for photon count number registration. A single-event single-photon counting imaging array only allows registration of up to one photon count in each of its pixels during a frame time, i.e., the interval between two successive pixel reset operations. Since the frame time can t be too short, this will lead to very low dynamic range and make the sensor merely useful for very low flux environments. The second problem of the prior technique is a limited fill factor resulting from consumption of chip area by the monolithically integrated CMOS readout in pixels. The resulting low photon collection efficiency will substantially ruin any benefit gained from the very sensitive single-photon counting detection. The single-photon counting imaging sensor developed in this work has a novel multiple-event architecture, which allows each of its pixels to register as more than one million (or more) photon-counting events during a frame time. Because of a consequently boosted dynamic range, the imaging array of the invention is capable of performing single-photon counting under ultra-low light through high-flux environments. On the other hand, since the multiple-event architecture is implemented in a hybrid structure, back-illumination and close-to-unity fill factor can be realized, and maximized quantum efficiency can also be achieved in the detector array.

  18. Brain blood flow studies with single photon emission computed tomography in patients with plateau waves

    Hayashi, Minoru; Kobayashi, Hidenori; Kawano, Hirokazu; Handa, Yuji; Noguchi, Yoshiyuki; Shirasaki, Naoki; Hirose, Satoshi

    1986-01-01

    The authors studied brain blood flow with single photon emission computed tomography (SPECT) in two patients with plateau waves. The intracranial pressure and blood pressure were also monitored continuously in these patients. They included one patient with brain-tumor (rt. sphenoid ridge meningioma) and another with hydrocephalus after subarachnoid hemorrhage due to rupture of lt. internal carotid aneurysm. The intracranial pressure was monitored through an indwelling ventricular catheter attached to a pressure transducer. The blood pressure was recorded through an intraarterial catheter placed in the dorsalis pedis artery. Brain blood flow was studied with Headtome SET-011 (manufactured by Shimazu Co., Ltd.). For this flow measurement study, an intravenous injection of Xenon-133 of about 30 mCi was given via an antecubital vein. The position of the slice for the SPECT was selected so as to obtain information not only from the cerebral hemisphere but also from the brain stem : a cross section 25 deg over the orbito-meatal line, passing through the inferior aspect of the frontal horn, the basal ganglia, the lower recessus of the third ventricle and the brain stem. The results indicated that, in the cerebral hemisphere, plateau waves were accompanied by a decrease in blood flow, whereas, in the brain stem, the blood flow showed little change during plateau waves as compared with the interval phase between two plateau waves. These observations may explain why there is no rise in the blood pressure and why patients are often alert during plateau waves. (author)

  19. Design of a serotonin 4 receptor radiotracer with decreased lipophilicity for single photon emission computed tomography.

    Fresneau, Nathalie; Dumas, Noé; Tournier, Benjamin B; Fossey, Christine; Ballandonne, Céline; Lesnard, Aurélien; Millet, Philippe; Charnay, Yves; Cailly, Thomas; Bouillon, Jean-Philippe; Fabis, Frédéric

    2015-04-13

    With the aim to develop a suitable radiotracer for the brain imaging of the serotonin 4 receptor subtype (5-HT4R) using single photon emission computed tomography (SPECT), we synthesized and evaluated a library of di- and triazaphenanthridines with lipophilicity values which were in the range expected to favour brain penetration, and which demonstrated specific binding to the target of interest. Adding additional nitrogen atoms to previously described phenanthridine ligands exhibiting a high unspecific binding, we were able to design a radioiodinated compound [(125)I]14. This compound exhibited a binding affinity value of 0.094 nM toward human 5-HT4R and a high selectivity over other serotonin receptor subtypes (5-HTR). In vivo SPECT imaging studies and competition experiments demonstrated that the decreased lipophilicity (in comparison with our previously reported compounds 4 and 5) allowed a more specific labelling of the 5-HT4R brain-containing regions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Regional cerebral blood flow analysis of vascular dementia by the single photon emission computed tomography

    Miyakawa, Kouichi; Watanabe, Sho; Suzuki, Michiyo; Kamijima, Gonbei

    1989-01-01

    In order to evaluate the relationship between the regional cerebral blood flow (CBF) and cerebrovascular dementia, eleven patients with vascular dementia and eight patients with non-demented infarction were studied and regional CBF were measured quantitatively with single photon emission computed tomography (SPECT) by using N-isopropyl-p-(I-123) iodoamphetamine. All cases were basal infarction and vascular dementia were diagnosed by less than 21.5 of the Hasegawa's dementia score and more than 7 of Hachinsk's ischemic score. The results of the present study were as follows: (1) Cerebrovascular dementia showed lower mean CBF value compared with non-demented group. (2) Regional CBF of bilateral frontal areas and affected basal ganglia were significantly reduced than occipital area in the dementia group. (3) A comparison of regional CBF and the Hasegawa's dementia score revealed a statistically significant correlation at the bilateral frontal areas in the dementia group. It is possible that measuring the regional CBF quantitatively by IMP-SPECT is useful for clinical analysis of vascular dementia. (author)

  1. Time sequential single photon emission computed tomography studies in brain tumour using thallium-201

    Ueda, Takashi; Kaji, Yasuhiro; Wakisaka, Shinichiro; Watanabe, Katsushi; Hoshi, Hiroaki; Jinnouchi, Seishi; Futami, Shigemi

    1993-01-01

    Time sequential single photon emission computed tomography (SPECT) studies using thallium-201 were performed in 25 patients with brain tumours to evaluate the kinetics of thallium in the tumour and the biological malignancy grade preoperatively. After acquisition and reconstruction of SPECT data from 1 min post injection to 48 h (1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 15-20 min, followed by 4-6, 24 and 48 h), the thallium uptake ratio in the tumour versus the homologous contralateral area of the brain was calculated and compared with findings of X-ray CT, magnetic resonance imaging, cerebral angiography and histological investigations. Early uptake of thallium in tumours was related to tumour vascularity and the disruption of the blood-brain barrier. High and rapid uptake and slow reduction of thallium indicated a hypervascular malignant tumour; however, high and rapid uptake but rapid reduction of thallium indicated a hypervascular benign tumour, such as meningioma. Hypovascular and benign tumours tended to show low uptake and slow reduction of thallium. Long-lasting retention or uptake of thallium indicates tumour malignancy. (orig.)

  2. Imaging of lesions in the posterior cranial fossa using single photon emission computed tomography

    Kawakami, Michiro; Uesugi, Yasuo; Higashikawa, Masahiko; Ochi, Mari; Makimoto, Kazuo; Takahashi, Hiroaki; Shin, Akinori; Utsunomiya, Keita; Akagi, Hiroaki

    1988-01-01

    Lesions in the posterior cranial fossa were visualized by single photon emission computed tomography (SPECT) with 123 I-IMP (N-isopropyl-p- 123 I-iodoamphetamine) and 99m Tc-HM-PAO ( 99m Tc-hexametylpropyleneamine oxime). It is generally held that these radiopharmaceuticals penetrate the walls of cerebral blood vessels and that their accumulations in the brain tissue may reflect the cerebral blood flow. Six patients with lesions in the central nervous system all showed wider areas of abnormality in SPECT than in X-ray CT, indicating a larger lesion of blood flow disturbance. In the next series of 11 patients with vertigo or dizziness of unknown etiology, eight had abnormal findings in the scan with 123 I-IMP as did four of the nine in the scan with 99m Tc-HM-PAO. Thus, most patients with dizziness of unknown etiology may have some vertebral blood flow disorder, which in some cases is not clearly diagnosed by conventional vestibular examinations or even by X-ray CT scan. The accuracy of the diagnostic measures for otoneurological problems awaits further studies of their sensitivity and specificity. (author)

  3. Cardiac single-photon emission-computed tomography using combined cone-beam/fan-beam collimation

    Gullberg, Grant T.; Zeng, Gengsheng L.

    2004-01-01

    The objective of this work is to increase system sensitivity in cardiac single-photon emission-computed tomography (SPECT) studies without increasing patient imaging time. For imaging the heart, convergent collimation offers the potential of increased sensitivity over that of parallel-hole collimation. However, if a cone-beam collimated gamma camera is rotated in a planar orbit, the projection data obtained are not complete. Two cone-beam collimators and one fan-beam collimator are used with a three-detector SPECT system. The combined cone-beam/fan-beam collimation provides a complete set of data for image reconstruction. The imaging geometry is evaluated using data acquired from phantom and patient studies. For the Jaszazck cardiac torso phantom experiment, the combined cone-beam/fan-beam collimation provided 1.7 times greater sensitivity than standard parallel-hole collimation (low-energy high-resolution collimators). Also, phantom and patient comparison studies showed improved image quality. The combined cone-beam/fan-beam imaging geometry with appropriate weighting of the two data sets provides improved system sensitivity while measuring sufficient data for artifact free cardiac images

  4. Quantification of leg muscle perfusion using thallium-201 single photon emission computed tomography

    Oshima, M.; Akanabe, H.; Sakuma, S.; Yano, T.; Nishikimi, N.; Shionoya, S.

    1989-01-01

    The purpose of this study is to quantify leg muscle perfusion with 201 Tl single photon emission computed tomography (SPECT). Six normal controls and 21 patients with peripheral arterial disease underwent this examination. Thallium-201 leg SPECT of both stress and redistribution was performed using a dual-headed digital gamma camera. Each slice of transverse images was normalized with pixels and whole-body counts. In normal controls, the activity of posterior tibial muscle components was significantly higher than that of anterior tibial muscle components (p less than 0.001). In 14 components, where patients had insignificant lesions, profile curves were normal in 10 (71%). In 62 components, where patients had arteriographically significant lesions, stress profile curves were abnormal in 57 (92%) compared with normal controls. Approximately, in half (28/62) components which had significant lesions, profile curves showed redistribution after 3 hr compared with normal redistribution curves. In three patients who underwent successful bypass graftings, the activity of each muscle component returned to a normal range

  5. Single photon emission computed tomography using a regularizing iterative method for attenuation correction

    Soussaline, Francoise; Cao, A.; Lecoq, G.

    1981-06-01

    An analytically exact solution to the attenuated tomographic operator is proposed. Such a technique called Regularizing Iterative Method (RIM) belongs to the iterative class of procedures where a priori knowledge can be introduced on the evaluation of the size and shape of the activity domain to be reconstructed, and on the exact attenuation distribution. The relaxation factor used is so named because it leads to fast convergence and provides noise filtering for a small number of iteractions. The effectiveness of such a method was tested in the Single Photon Emission Computed Tomography (SPECT) reconstruction problem, with the goal of precise correction for attenuation before quantitative study. Its implementation involves the use of a rotating scintillation camera based SPECT detector connected to a mini computer system. Mathematical simulations of cylindical uniformly attenuated phantoms indicate that in the range of a priori calculated relaxation factor a fast converging solution can always be found with a (contrast) accuracy of the order of 0.2 to 4% given that numerical errors and noise are or not, taken into account. The sensitivity of the (RIM) algorithm to errors in the size of the reconstructed object and in the value of the attenuation coefficient μ was studied, using the same simulation data. Extreme variations of +- 15% in these parameters will lead to errors of the order of +- 20% in the quantitative results. Physical phantoms representing a variety of geometrical situations were also studied

  6. Recent Advances for High-Efficiency Sources of Single Photons Based on Photonic Nanowires

    Gerard, J. M.; Claudon, J.; Munsch, M.

    2012-01-01

    Photonic nanowires have recently been used to tailor the spontaneous emission of embedded quantum dots, and to develop record efficiency single-photon sources. We will present recent developments in this field mainly 1) the observation of a strong inhibition of the spontaneous emission of quantum...

  7. Controlling light emission from single-photon sources using photonic nanowires

    Gregersen, Niels; Chen, Yuntian; Mørk, Jesper

    2012-01-01

    The photonic nanowire has recently emerged as an promising alternative to microcavity-based single-photon source designs. In this simple structure, a geometrical effect ensures a strong coupling between an embedded emitter and the optical mode of interest and a combination of tapers and mirrors a...

  8. Tomography methods for diagnostic examination of cerebrovascular disease: a comparative evaluation of SPECT, PET and MR/CT findings

    Reiche, W.; Kaiser, H.J.; Weiller, C.; Altehoefer, C.; Buell, U.; Isensee, C.

    1991-01-01

    Single Photon Emissions Computerized Tomography (SPECT), Positron Emissions Tomography (PET), Magnetic Resonance Tomography (MR), and Transmission Computerized Tomography (CT) complement each other and lead to a consideration of the cerebrovascular disease under patho-physiological aspects. Indications for the combined application of functionally oriented (SPECT/PET) and morphologically oriented (CT/MR) examination methods with cerebrovascular disease are presented. (orig./MG) [de

  9. Single Photon Avalanche Diodes: Towards the Large Bidimensional Arrays

    Emilio Sciacca

    2008-08-01

    Full Text Available Single photon detection is one of the most challenging goals of photonics. In recent years, the study of ultra-fast and/or low-intensity phenomena has received renewed attention from the academic and industrial communities. Intense research activity has been focused on bio-imaging applications, bio-luminescence, bio-scattering methods, and, more in general, on several applications requiring high speed operation and high timing resolution. In this paper we present design and characterization of bi-dimensional arrays of a next generation of single photon avalanche diodes (SPADs. Single photon sensitivity, dark noise, afterpulsing and timing resolution of the single SPAD have been examined in several experimental conditions. Moreover, the effects arising from their integration and the readout mode have also been deeply investigated.

  10. Modeling and Development of Superconducting Nanowire Single Photon Detectors

    National Aeronautics and Space Administration — This proposal outlines a research project as the central component of a Ph.D. program focused on the device physics of superconducting nanowire single photon...

  11. Myocardial perfusion assessed by contrast echocardiography and single photon emission computed tomography in the evaluation of patients with acute chest pain and normal electrocardiogram

    Soares, J. Jr.; Ferreira, S.M.A.; Matias, W. Jr.; Giorgi, M.C.P.; Izaki, M.; Luz, P.L.; Ramires, J.A.F.; Meneghetti, J.C.

    2002-01-01

    Aim : Evaluation of diagnostic accuracy of myocardial contrast echocardiography (MCE) in comparison with single-photon emission computed tomography (SPECT) for the detection of myocardial ischemia in patients with acute chest pain. Material and Methods : Eighteen patients (pts) with chest pain lasting ≥30 minutes, occurring within 6 hours of emergency room presentation and a normal or no diagnostic electrocardiogram were studied. Pts underwent rest MCE and SPECT. For both exams myocardial perfusion was assessed in the same 7 segments (apical, anterior, inferior, anteroseptal, inferoseptal, lateral and posterior) of left ventricle. A total of 126 segments were analyzed. Images were classified as positive for ischemia if they had a perfusion defect. Coronary angiography was performed if MCE or SPECT images were classified as positive for ischemia or by clinical indication. Otherwise the patients underwent stress SPECT. Significant coronary artery disease (CAD) was defined as ≥70% stenosis in a major coronary artery or its branches. Final diagnosis of an acute coronary event (ACE) was established in the presence of positive findings in MCE or SPECT in addition to significant CAD in the corresponding territory. Kappa statistics were calculated to evaluate the concordance between MCE and SPECT. κ values of ≤0.4, >0.4 and >0.7 indicate fair, good and excellent agreement, respectively. Results: Thirteen out of 18 pts underwent coronary angiography (seven pts had positive findings on SPECT, 2 on MCE, 2 on both exams and 1 had clinical indication). Significant CAD was detected on six. Five pts underwent stress SPECT and no perfusion defect was detected. Therefore, six pts (33.3%) had an ACE and 12 (66.6%) had not. There were no statistical differences between groups according to age, gender, duration of pain, free pain interval, presence of risk factors and antecedents. Concordance between MCE and SPECT for evaluation of perfusion defects showed a ? coefficient of 0

  12. Interactions of collimation, sampling and filtering on spect spatial resolution

    Tsui, B.M.W.; Jaszczak, R.J.

    1984-01-01

    The major factors which affect the spatial resolution of single-photon emission computer tomography (SPECT) include collimation, sampling and filtering. A theoretical formulation is presented to describe the relationship between these factors and their effects on the projection data. Numerical calculations were made using commercially available SPECT systems and imaging parameters. The results provide an important guide for proper selection of the collimator-detector design, the imaging and the reconstruction parameters to avoid unnecessary spatial resolution degradation and aliasing artifacts in the reconstructed image. In addition, the understanding will help in the fair evaluation of different SPECT systems under specific imaging conditions

  13. The future of SPECT in a time of PET

    Jansen, Floris P.; Vanderheyden, Jean-Luc

    2007-01-01

    As positron emission tomography (PET) imaging is becoming more prevalent in clinical practice, it is reasonable to ask if there will be a role for single photon emission computed tomography (SPECT) in the future. This article considers that question, focusing on areas where SPECT can differentiate itself from PET for fundamental reasons: breadth of available radionuclides, simultaneous imaging of multiple agents, cost-effectiveness and adaptability to specific imaging situations. The conclusion is that SPECT will continue to evolve and exist alongside PET and will grow the field of molecular imaging with improved efficiency and patient workflow

  14. Transmission computed tomography data acquisition with a SPECT system

    Greer, K.L.; Harris, C.C.; Jaszczak, R.J.; Coleman, R.E.; Hedlund, L.W.; Floyd, C.E.; Manglos, S.H.

    1987-01-01

    Phantom and animal transmission computed tomography (TCT) scans were performed with a camera-based single photon emission computed tomography (SPECT) system to determine system linearity as a function of object density, which is important in the accurate determination of attenuation coefficients for SPECT attenuation compensation. Results from phantoms showed promise in providing a linear relationship in measuring density while maintaining good image resolution. Animal images were essentially free of artifacts. Transmission computed tomography scans derived from a SPECT system appear to have the potential to provide data suitable for incorporation in an attenuation compensation algorithm at relatively low (calculated) radiation doses to the subjects

  15. HM-PAO SPECT in the diagnosis of cerebrovascular disease

    Cordes, M.; Rummeny, E.; Reissmann, M.; Fox, K.; Panitz, N.; Pfannenstiel, P.

    1987-01-01

    Single photon emission computed tomography (SPECT) after injection of 99m-Tc-HM-PAO was used to examine 34 patients whose clinical findings could not exclude a cerebrovascular disease. In all patients an X-ray computed tomography examination was inconclusive for the clinical-neurological findings. The regional cerebral bloodflow was pathologically disturbed in 10 of 34 patients in the HM-PAO SPECT examination. The detection of the regional cerebral bloodflow with HM-PAO SPECT is helpful in the diagnosis of cerebrovascular disease. (orig.) [de

  16. Evaluation of pulmonary emphysema by the fused image of CT image and ventilation SPECT image

    Okuda, Ituko; Maruno, Hiromasa; Mori, Kazuaki; Kohno, Tadashi; Kokubo, Takashi

    2007-01-01

    We evaluated pulmonary emphysema using a diagnostic device that could obtain a CT image, a ventilation single photon emission computed tomography (SPECT) image and a lung perfusion SPECT image in one examination. The fused image made from the CT image and SPECT image had very little position gap between images, and the precision was high. From the fused image, we were able to detect the areas in which emphysematous change was the most marked in the CT image, while the accumulation decrease was most remarkable in the ventilation SPECT image. Thus it was possible to obtain an accurate status of pulmonary emphysema, and our method was regarded as a useful technique. (author)

  17. Deterministic Single-Photon Source for Distributed Quantum Networking

    Kuhn, Axel; Hennrich, Markus; Rempe, Gerhard

    2002-01-01

    A sequence of single photons is emitted on demand from a single three-level atom strongly coupled to a high-finesse optical cavity. The photons are generated by an adiabatically driven stimulated Raman transition between two atomic ground states, with the vacuum field of the cavity stimulating one branch of the transition, and laser pulses deterministically driving the other branch. This process is unitary and therefore intrinsically reversible, which is essential for quantum communication and networking, and the photons should be appropriate for all-optical quantum information processing

  18. Graphene-Based Josephson-Junction Single-Photon Detector

    Walsh, Evan D.; Efetov, Dmitri K.; Lee, Gil-Ho; Heuck, Mikkel; Crossno, Jesse; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    2017-08-01

    We propose to use graphene-based Josephson junctions (GJJs) to detect single photons in a wide electromagnetic spectrum from visible to radio frequencies. Our approach takes advantage of the exceptionally low electronic heat capacity of monolayer graphene and its constricted thermal conductance to its phonon degrees of freedom. Such a system could provide high-sensitivity photon detection required for research areas including quantum information processing and radio astronomy. As an example, we present our device concepts for GJJ single-photon detectors in both the microwave and infrared regimes. The dark count rate and intrinsic quantum efficiency are computed based on parameters from a measured GJJ, demonstrating feasibility within existing technologies.

  19. Characterizing multi-photon quantum interference with practical light sources and threshold single-photon detectors

    Navarrete, Álvaro; Wang, Wenyuan; Xu, Feihu; Curty, Marcos

    2018-04-01

    The experimental characterization of multi-photon quantum interference effects in optical networks is essential in many applications of photonic quantum technologies, which include quantum computing and quantum communication as two prominent examples. However, such characterization often requires technologies which are beyond our current experimental capabilities, and today's methods suffer from errors due to the use of imperfect sources and photodetectors. In this paper, we introduce a simple experimental technique to characterize multi-photon quantum interference by means of practical laser sources and threshold single-photon detectors. Our technique is based on well-known methods in quantum cryptography which use decoy settings to tightly estimate the statistics provided by perfect devices. As an illustration of its practicality, we use this technique to obtain a tight estimation of both the generalized Hong‑Ou‑Mandel dip in a beamsplitter with six input photons and the three-photon coincidence probability at the output of a tritter.

  20. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  1. Recyclable amplification for single-photon entanglement from photon loss and decoherence

    Zhou, Lan; Chen, Ling-Quan; Zhong, Wei; Sheng, Yu-Bo

    2018-01-01

    We put forward a highly efficient recyclable single-photon assisted amplification protocol, which can protect single-photon entanglement (SPE) from photon loss and decoherence. Making use of quantum nondemolition detection gates constructed with the help of cross-Kerr nonlinearity, our protocol has some attractive advantages. First, the parties can recover less-entangled SPE to be maximally entangled SPE, and reduce photon loss simultaneously. Second, if the protocol fails, the parties can repeat the protocol to reuse some discarded items, which can increase the success probability. Third, when the protocol is successful, they can similarly repeat the protocol to further increase the fidelity of the SPE. Thereby, our protocol provides a possible way to obtain high entanglement, high fidelity and high success probability simultaneously. In particular, our protocol shows higher success probability in the practical high photon loss channel. Based on the above features, our amplification protocol has potential for future application in long-distance quantum communication.

  2. A highly efficient single-photon source based on a quantum dot in a photonic nanowire

    Claudon, Julien; Bleuse, Joel; Malik, Nitin Singh

    2010-01-01

    –4 or a semiconductor quantum dot5–7. Achieving a high extraction efficiency has long been recognized as a major issue, and both classical solutions8 and cavity quantum electrodynamics effects have been applied1,9–12. We adopt a different approach, based on an InAs quantum dot embedded in a GaAs photonic nanowire......The development of efficient solid-state sources of single photons is a major challenge in the context of quantum communication,optical quantum information processing and metrology1. Such a source must enable the implementation of a stable, single-photon emitter, like a colour centre in diamond2...

  3. [Treatment choice in dacryostenosis based on single-photon emission computed tomography and X-ray computed tomography findings].

    At'kova, E L; Yartsev, V D; Tomashevskiy, I O; Krakhovetskiy, N N

    2016-01-01

    To develop surgical indications in dacryostenosis within the vertical portion of lacrimal pathways that would consider findings of single-photon emission computed tomography (SPECT) combined with X-ray computed tomography (CT). A total of 96 patients with isolated vertical-portion dacryostenosis (127 cases) were enrolled. The examination included collecting Munk's scores for epiphora, optical coherence tomography of the lower tear meniscus, lacrimal scintigraphy, and SPECT/CT. Group 1 (40 cases) was composed of patients with lacrimal obstruction on CT, group 2 (87 cases) - of those whose lacrimal pathways proved passable. There were also 3 patients (4 cases) from group 1, whose lacrimal pathways, despite being blocked on CT, were still passable on SPECT. Surgeries performed in group 1 were endoscopic endonasal dacryocystorhinostomy (DCR) (36 cases) and pathways recanalization with bicanalicular intubation and balloon dacryoplasty (DCP) (4 cases). In group 2, all patients (87 cases) underwent recanalization with bicanalicular intubation (supplemented with balloon DCP in 32 cases). Surgical results were evaluated 8-12 months after the treatment. In group 2, particular attention was paid to the concordance in locations of dacryostenosis provided by CT and SPECT scans. Favorable outcomes of endoscopic endonasal DCR were obtained in as many as 32 cases from group 1 (88.9%), while in 4 cases (12.1%) the condition relapsed. Of those patients whose stenosis was not complete on SPECT, 3 cases (75.0%) improved, 1 (25.0%) - relapsed. In group 2, favorable outcomes were obtained in 65 cases (74.7%), relapses were 22 (25.3%). A high concordance in stenosis locations by CT and SPECT was noted in 60 cases of those who improved (92.3%) and 3 cases of those who relapsed (13.6%). The value of information provided by SPECT/CT has proved high in patients with nasolacrimal duct stenosis or obstruction. A combined scan allows to establish causal relationships between anatomical changes

  4. Photonics

    Andrews, David L

    2015-01-01

    Discusses the basic physical principles underlying Biomedical Photonics, spectroscopy and microscopy This volume discusses biomedical photonics, spectroscopy and microscopy, the basic physical principles underlying the technology and its applications. The topics discussed in this volume are: Biophotonics; Fluorescence and Phosphorescence; Medical Photonics; Microscopy; Nonlinear Optics; Ophthalmic Technology; Optical Tomography; Optofluidics; Photodynamic Therapy; Image Processing; Imaging Systems; Sensors; Single Molecule Detection; Futurology in Photonics. Comprehensive and accessible cov

  5. Measurement of infarct size and percentage myocardium infarcted in a dog preparation with single photon-emission computed tomography, thallium-201, and indium 111-monoclonal antimyosin Fab

    Johnson, L.L.; Lerrick, K.S.; Coromilas, J.

    1987-01-01

    Single photon-emission tomography (SPECT) and indium 111-labeled monoclonal antimyosin Fab fragments were used to measure myocardial infarct size in 12 dogs, six subjected to balloon catheter-induced coronary artery occlusion for 6 hr (late reperfusion) and six subjected to occlusion with reperfusion at 2 hr (early reperfusion). Tomographic imaging was performed 24 hr after the intravenous injection of labeled Fab fragments with the use of a dual-head SPECT camera with medium-energy collimators. Immediately after the first tomographic scan, thallium-201 was injected into nine of 12 dogs and imaging was repeated. Estimated infarct size in grams was calculated from transaxially reconstructed, normalized, and background-corrected indium SPECT images with the use of a threshold technique for edge detection. Estimated noninfarcted myocardium in grams was calculated from obliquely reconstructed thallium SPECT images by a similar method. The animals were killed and infarct size in grams and true infarct size as a percentage of total left ventricular myocardial volume were measured by triphenyl tetrazolium chloride staining. Estimated infarct size from indium SPECT images showed an excellent correlation with true infarct size (r = .95, SEE = 4.1 g). Estimated percentage myocardium infarcted was calculated by dividing estimated infarct size from indium images by the sum of estimated infarct size plus estimated noninfarcted myocardium obtained from thallium images. Correlation between the estimated percentage of myocardium infarcted and true percentage of myocardium infarcted was excellent

  6. Use of fuzzy edge single-photon emission computed tomography analysis in definite Alzheimer's disease - a retrospective study

    Rusina, Robert; Kukal, Jaromír; Bělíček, Tomáš; Buncová, Marie; Matěj, Radoslav

    2010-01-01

    Definite Alzheimer's disease (AD) requires neuropathological confirmation. Single-photon emission computed tomography (SPECT) may enhance diagnostic accuracy, but due to restricted sensitivity and specificity, the role of SPECT is largely limited with regard to this purpose. We propose a new method of SPECT data analysis. The method is based on a combination of parietal lobe selection (as regions-of-interest (ROI)), 3D fuzzy edge detection, and 3D watershed transformation. We applied the algorithm to three-dimensional SPECT images of human brains and compared the number of watershed regions inside the ROI between AD patients and controls. The Student's two-sample t-test was used for testing domain number equity in both groups. AD patients had a significantly reduced number of watershed regions compared to controls (p < 0.01). A sensitivity of 94.1% and specificity of 80% was obtained with a threshold value of 57.11 for the watershed domain number. The narrowing of the SPECT analysis to parietal regions leads to a substantial increase in both sensitivity and specificity. Our non-invasive, relatively low-cost, and easy method can contribute to a more precise diagnosis of AD

  7. Influence of Respiratory Gating, Image Filtering, and Animal Positioning on High-Resolution Electrocardiography-Gated Murine Cardiac Single-Photon Emission Computed Tomography

    Chao Wu

    2015-01-01

    Full Text Available Cardiac parameters obtained from single-photon emission computed tomographic (SPECT images can be affected by respiratory motion, image filtering, and animal positioning. We investigated the influence of these factors on ultra-high-resolution murine myocardial perfusion SPECT. Five mice were injected with 99m technetium (99mTc-tetrofosmin, and each was scanned in supine and prone positions in a U-SPECT-II scanner with respiratory and electrocardiographic (ECG gating. ECG-gated SPECT images were created without applying respiratory motion correction or with two different respiratory motion correction strategies. The images were filtered with a range of three-dimensional gaussian kernels, after which end-diastolic volumes (EDVs, end-systolic volumes (ESVs, and left ventricular ejection fractions were calculated. No significant differences in the measured cardiac parameters were detected when any strategy to reduce or correct for respiratory motion was applied, whereas big differences (> 5% in EDV and ESV were found with regard to different positioning of animals. A linear relationship (p < .001 was found between the EDV or ESV and the kernel size of the gaussian filter. In short, respiratory gating did not significantly affect the cardiac parameters of mice obtained with ultra-high-resolution SPECT, whereas the position of the animals and the image filters should be the same in a comparative study with multiple scans to avoid systematic differences in measured cardiac parameters.

  8. Brain MRI and single photon emission computed tomography in severe athetotic cerebral palsy. A comparative study with mental and motor disorders

    Yamada, Kazutaka; Tsuzura, Shigenobu; Matsuda, Hiroshi.

    1995-01-01

    Single photon emission computed tomography (SPECT) using N-isopropyl-p-[ 123 I]-iodoamphetamine ( 123 I-IMP) was performed in twelve patients with severe athetotic cerebral palsy (Ath; 5 males and 7 females) who had both motor delay (unable to move) and mental retardation (I.Q, or D.Q, below 30). The neuroimaging findings of those patients were compared with those of patients mental and motor disorders. In five caes suffering from neonatal asphyxia, SPECT demonstrated a decreased regional cerebral blood flow (rCBF) in corpus striatum, thalamus, orbitofrontal areas, pericentral gyrus areas, prefrontal areas and medial temporal areas. In seven cases suffering from neonatal jaundice, SPECT demonstrated a decreased rCBF in orbito-frontal areas, prefrontal areas and medial temporal areas. SPECT showed hypoperfusion of peri-central gyrus areas in cases with complications of spastic palsy. The decreased rCBF in medial temporal areas mostly corresponded to an alteration in hippocampal formation as assessed by magnetic resonance imaging (MRI). Cases with hypoperfusion of bilateral medial temporal areas showed a lower score of language understanding than those with the unilateral damage. In cases with hypofusion of bilateral prefrontal areas and bilateral medial temporal areas, the grade of understanding of language was almost below 12 months. In cases with hypoperfusion of orbitofrontal areas, psychomotor hypersensitivity had been observed. Those results suggest that IMP-SPECT and MRI of the brain is useful tool for neurological assessment in handicapped patients with athetotic cerebral palsy. (author)

  9. Brain MRI and single photon emission computed tomography in severe athetotic cerebral palsy. A comparative study with mental and motor disorders

    Yamada, Kazutaka; Tsuzura, Shigenobu [Metropolitan Medical Center of the Severely Handicapped, Fuchu, Tokyo (Japan); Matsuda, Hiroshi

    1995-07-01

    Single photon emission computed tomography (SPECT) using N-isopropyl-p-[{sup 123}I]-iodoamphetamine ({sup 123}I-IMP) was performed in twelve patients with severe athetotic cerebral palsy (Ath; 5 males and 7 females) who had both motor delay (unable to move) and mental retardation (I.Q, or D.Q, below 30). The neuroimaging findings of those patients were compared with those of patients mental and motor disorders. In five caes suffering from neonatal asphyxia, SPECT demonstrated a decreased regional cerebral blood flow (rCBF) in corpus striatum, thalamus, orbitofrontal areas, pericentral gyrus areas, prefrontal areas and medial temporal areas. In seven cases suffering from neonatal jaundice, SPECT demonstrated a decreased rCBF in orbito-frontal areas, prefrontal areas and medial temporal areas. SPECT showed hypoperfusion of peri-central gyrus areas in cases with complications of spastic palsy. The decreased rCBF in medial temporal areas mostly corresponded to an alteration in hippocampal formation as assessed by magnetic resonance imaging (MRI). Cases with hypoperfusion of bilateral medial temporal areas showed a lower score of language understanding than those with the unilateral damage. In cases with hypofusion of bilateral prefrontal areas and bilateral medial temporal areas, the grade of understanding of language was almost below 12 months. In cases with hypoperfusion of orbitofrontal areas, psychomotor hypersensitivity had been observed. Those results suggest that IMP-SPECT and MRI of the brain is useful tool for neurological assessment in handicapped patients with athetotic cerebral palsy. (author).

  10. Property of electrocardiogram gated single photon emission tomography by 99mTc-methoxy isobutyl isonitrile

    Imai, Kamon; Nishio, Yukari; Araki, Yasushi; Saito, Satoshi; Ozawa, Yukio; Yasugi, Tadao; Hagiwara, Kazuo; Kamata, Rikisaburo

    1992-01-01

    99m Tc-methoxy isobutyl isonitrile (MIBI) is a new developed myocardial perfusion imaging agent. Because this compound has higher photon energy than thallium (Tl), electrocardiogram gated single photon emission tomography (SPECT): end-diastolic (ED) and end-systolic (ES) short axis (SA) images could be taken. To investigate property of gated MIBI SPECT, MIBI myocardial scintigraphy, Tl scintigraphy (TMS) and analysis of left ventricular wall motion were performed in 6 patients with myocardial infarction. Left ventricule was divided into 8 segments. Perfusion defect (PD) was scored: '0' (normal), '1' (hypo-perfusion), '2' (defect). Wall motion abnormality (WMA) was also scored: '0' (normo-kinesis), '1' (hypo-kinesis), '2' (a-, dys-kinesis). Severity and extent of PD and WMA were calculated. Severity of WMA was 3.0±2.0 (M±SD), severity of PD was 3.3±1.7 in TMS, 3.7±1.3 in no-gated MIBI, 5.0±0.6 in ES-MIBI, 7.3±2.0 in ED-MIBI. Extent of WMA was 2.3±1.0. Extent of PD was 2.5±1.3 in TMS, 3.0±1.6 in no-gated MIBI, 3.5±0.8 in ES-MIBI, 4.8±1.0 in ED-MIBI. Compared with wall motion abnormality, severity and extent of PD in ED-MIBI was larger. From our data, it is concluded that perfusion defect in ED-MIBI was overestimated significantly. When we evaluate gated MIBI image, we must consider this property. (author)

  11. Efficient generation of single and entangled photons on a silicon photonic integrated chip

    Mower, Jacob; Englund, Dirk

    2011-01-01

    We present a protocol for generating on-demand, indistinguishable single photons on a silicon photonic integrated chip. The source is a time-multiplexed spontaneous parametric down-conversion element that allows optimization of single-photon versus multiphoton emission while realizing high output rate and indistinguishability. We minimize both the scaling of active elements and the scaling of active element loss with multiplexing. We then discuss detection strategies and data processing to further optimize the procedure. We simulate an improvement in single-photon-generation efficiency over previous time-multiplexing protocols, assuming existing fabrication capabilities. We then apply this system to generate heralded Bell states. The generation efficiency of both nonclassical states could be increased substantially with improved fabrication procedures.

  12. The Added Value of a Single-photon Emission Computed Tomography-Computed Tomography in Sentinel Lymph Node Mapping in Patients with Breast Cancer and Malignant Melanoma.

    Bennie, George; Vorster, Mariza; Buscombe, John; Sathekge, Mike

    2015-01-01

    Single-photon emission computed tomography-computed tomography (SPECT-CT) allows for physiological and anatomical co-registration in sentinel lymph node (SLN) mapping and offers additional benefits over conventional planar imaging. However, the clinical relevance when considering added costs and radiation burden of these reported benefits remains somewhat uncertain. This study aimed to evaluate the possible added value of SPECT-CT and intra-operative gamma-probe use over planar imaging alone in the South African setting. 80 patients with breast cancer or malignant melanoma underwent both planar and SPECT-CT imaging for SLN mapping. We assessed and compared the number of nodes detected on each study, false positive and negative findings, changes in surgical approach and or patient management. In all cases where a sentinel node was identified, SPECT-CT was more accurate anatomically. There was a significant change in surgical approach in 30 cases - breast cancer (n = 13; P 0.001) and malignant melanoma (n = 17; P 0.0002). In 4 cases a node not identified on planar imaging was seen on SPECT-CT. In 16 cases additional echelon nodes were identified. False positives were excluded by SPECT-CT in 12 cases. The addition of SPECT-CT and use of intra-operative gamma-probe to planar imaging offers important benefits in patients who present with breast cancer and melanoma. These benefits include increased nodal detection, elimination of false positives and negatives and improved anatomical localization that ultimately aids and expedites surgical management. This has been demonstrated in the context of industrialized country previously and has now also been confirmed in the setting of a emerging-market nation.

  13. The Added Value of a Single-photon Emission Computed Tomography-Computed Tomography in Sentinel Lymph Node Mapping in Patients with Breast Cancer and Malignant Melanoma

    Bennie, George; Vorster, Mariza; Buscombe, John; Sathekge, Mike

    2015-01-01

    Single-photon emission computed tomography-computed tomography (SPECT-CT) allows for physiological and anatomical co-registration in sentinel lymph node (SLN) mapping and offers additional benefits over conventional planar imaging. However, the clinical relevance when considering added costs and radiation burden of these reported benefits remains somewhat uncertain. This study aimed to evaluate the possible added value of SPECT-CT and intra-operative gamma-probe use over planar imaging alone in the South African setting. 80 patients with breast cancer or malignant melanoma underwent both planar and SPECT-CT imaging for SLN mapping. We assessed and compared the number of nodes detected on each study, false positive and negative findings, changes in surgical approach and or patient management. In all cases where a sentinel node was identified, SPECT-CT was more accurate anatomically. There was a significant change in surgical approach in 30 cases - breast cancer (n = 13; P 0.001) and malignant melanoma (n = 17; P 0.0002). In 4 cases a node not identified on planar imaging was seen on SPECT-CT. In 16 cases additional echelon nodes were identified. False positives were excluded by SPECT-CT in 12 cases. The addition of SPECT-CT and use of intra-operative gamma-probe to planar imaging offers important benefits in patients who present with breast cancer and melanoma. These benefits include increased nodal detection, elimination of false positives and negatives and improved anatomical localization that ultimately aids and expedites surgical management. This has been demonstrated in the context of industrialized country previously and has now also been confirmed in the setting of a emerging-market nation

  14. Optimization of helical acquisition parameters to preserve uniformity of mouse whole body using multipinhole collimator in single-photon emission computed tomography

    Naoyuki Ukon

    Full Text Available Focusing on whole-body uniformity in small-animal single-photon emission computed tomography (SPECT, we examined the optimal helical acquisition parameters using five-pinhole collimators for mouse imaging. SPECT images of an 80-mm-long cylindrical phantom with 99mTc solution were acquired using an Inveon multimodality imaging platform. The bed travels used in this study were 0, 30, 60, 90 and 120 mm, and the numbers of revolutions traversed during the SPECT scan were 1.0, 2.0, 3.0, 4.0, 5.0 and 7.0, respectively. Artifacts that degrade uniformity in reconstructed images were conspicuous when the bed travel was smaller than the object length. Regarding the distal-to-center ratio (DCR of SPECT values in the object’s axial direction, the DCR nearest to the ideal ratio of 1.00 was 1.02 in the optimal uniformity with 4.0 revolutions and a bed travel of 120 mm. Moreover, the helical acquisition using these parameters suppressed the formation of artifacts. We proposed the optimal parameters in whole-body helical SPECT; the bed travel was sufficiently larger than the object length; the 4.0 or more revolutions were required for a pitch of approximately 30 mm/revolution. The optimal acquisition parameters in SPECT to preserve uniformity would contribute to the accurate quantification of whole-body biodistribution. Keywords: Helical acquisition, Multipinhole collimator, Computed tomography, SPECT

  15. Differentiation of myocardial ischemia and infarction assessed by dynamic computed tomography perfusion imaging and comparison with cardiac magnetic resonance and single-photon emission computed tomography

    Tanabe, Yuki; Kido, Teruhito; Kurata, Akira; Miyagawa, Masao; Mochizuki, Teruhito [Ehime University Graduate School of Medicine, Department of Radiology, Toon, Ehime (Japan); Uetani, Teruyoshi; Kono, Tamami; Ogimoto, Akiyoshi [Ehime University Graduate School of Medicine, Department of Cardiology, Pulmonology, Hypertension and Nephrology, Toon, Ehime (Japan); Soma, Tsutomu [FUJIFILM RI Pharma Co., Ltd., QMS Group, Quality Assurance Department, Tokyo (Japan); Graduate School of Medicine, University of Tokyo, Department of Radiology, Tokyo (Japan); Murase, Kenya [Osaka University Graduate School of Medicine, Department of Medical Physics and Engineering, Division of Medical Technology and Science, Faculty of Health Science, Osaka (Japan); Iwaki, Hirotaka [Ehime University Graduate School of Medicine, Center for Clinical Research Data and Biostatistics, Toon, Ehime (Japan)

    2016-11-15

    To evaluate the feasibility of myocardial blood flow (MBF) by computed tomography from dynamic CT perfusion (CTP) for detecting myocardial ischemia and infarction assessed by cardiac magnetic resonance (CMR) or single-photon emission computed tomography (SPECT). Fifty-three patients who underwent stress dynamic CTP and either SPECT (n = 25) or CMR (n = 28) were retrospectively selected. Normal and abnormal perfused myocardium (ischemia/infarction) were assessed by SPECT/CMR using 16-segment model. Sensitivity and specificity of CT-MBF (mL/g/min) for detecting the ischemic/infarction and severe infarction were assessed. The abnormal perfused myocardium and severe infarction were seen in SPECT (n = 90 and n = 19 of 400 segments) and CMR (n = 223 and n = 36 of 448 segments). For detecting the abnormal perfused myocardium, sensitivity and specificity were 80 % (95 %CI, 71-90) and 86 % (95 %CI, 76-91) in SPECT (cut-off MBF, 1.23), and 82 % (95 %CI, 76-88) and 87 % (95 %CI, 80-92) in CMR (cut-off MBF, 1.25). For detecting severe infarction, sensitivity and specificity were 95 % (95 %CI, 52-100) and 72 % (95 %CI, 53-91) in SPECT (cut-off MBF, 0.92), and 78 % (95 %CI, 67-97) and 80 % (95 %CI, 58-86) in CMR (cut-off MBF, 0.98), respectively. Dynamic CTP has a potential to detect abnormal perfused myocardium and severe infarction assessed by SPECT/CMR using comparable cut-off MBF. (orig.)

  16. Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides

    Chen Yuntian; Wubs, Martijn; Moerk, Jesper [DTU Fotonik, Department of Photonics Engineering, Oersteds Plads, DK-2800 Kgs Lyngby (Denmark); Koenderink, A Femius, E-mail: yche@fotonik.dtu.dk [Center for Nanophotonics, FOM Institute for Atomic and Molecular Physics (AMOLF), Science Park 104, 1098 XG Amsterdam (Netherlands)

    2011-10-15

    We study the dynamics of single-photon absorption by a single emitter coupled to a one-dimensional waveguide that simultaneously provides channels for spontaneous emission (SE) decay and a channel for the input photon. We have developed a time-dependent theory that allows us to specify any input single-photon wavepacket guided by the waveguide as the initial condition, and calculate the excitation probability of the emitter, as well as the time evolution of the transmitted and reflected fields. For single-photon wavepackets with a Gaussian spectrum and temporal shape, we obtain analytical solutions for the dynamics of absorption, with maximum atomic excitation {approx}40%. We furthermore propose a terminated waveguide to aid the single-photon absorption. We found that for an emitter placed at an optimal distance from the termination, the maximum atomic excitation due to an incident single-photon wavepacket can exceed 70%. This high value is a direct consequence of the high SE {beta}-factor for emission into the waveguide. Finally, we have also explored whether waveguide dispersion could aid single-photon absorption by pulse shaping. For a Gaussian input wavepacket, we found that the absorption efficiency can be improved by a further 4% by engineering the dispersion. Efficient single-photon absorption by a single emitter has potential applications in quantum communication and quantum computation. (paper)

  17. Dependency of energy and spatial distributions of photons on edge of object in brain SPECT

    Deloar, H M; Kudomi, N; Kim, K M; Aoi, T; Iida, H

    2003-01-01

    Accurate mu maps are important for quantitative image reconstruction in SPECT. The Compton scatter energy window (CSW) technique has been proposed to define the outline of objects. In this technique, a lower energy window image is acquired in addition to the main photo-peak energy window. The image of the lower energy window is used to estimate the edge of the scanned object to produce a constant attenuation map. The aim of this study was to investigate the dependency of CSW on the spatial and energy distribution of radioisotope to predict the edges of objects. Two particular cases of brain study were considered, namely uniform distribution and non-uniform distribution using Monte Carlo simulation and experiments with uniform cylindrical phantom and hotspot phantom. The phantoms were filled with water and a radioactive solution of sup 9 sup 9 sup m Tc. For each phantom, 20%, 30%, 40% and 50% thresholds of the mean profile were applied to estimate E sub w sub t , the energy window for minimum difference betwee...

  18. Quantification of the extent and severity of myocardial ischemia in single-vessel disease using stress-redistribution thallium-201 single-photon emission computerized tomography

    Prigent, F.; Maddahi, J.; Garcia, E.; VanTrain, K.; Friedman, J.; Bietendorf, J.; Swan, H.J.C.; Waxman, A.; Berman, D.

    1984-01-01

    Single-vessel coronary artery (CA) disease (SVD) is not uniformly benign: long-term prognosis is likely to be related to the extent (E) and severity (S) of myocardial ischemia (isch). To assess the ability of stress thalium-201 (Tl) single photon emission computerized tomography (SPECT) to quantify E and S of isch, the authors studied 15 patients (pts) without myocardial infarction who had SVD (8 LAD, 4 RCA, and 3 LCX). SPECT cuts were analyzed using maximum count circumferential profiles (CPs) which were compared with previously established normal (nl) limits derived from 20 nl pts. E of isch was defined as the % of the CP points falling below nl, S and depth (D) of ischemia respectively expressed the total and the mean % by which the abnormal points fell below normal limits. Although all pts had SVD, the range of E, S and D of isch was wide (0 to 48% and 0 to 38% and 0 to 20% respectively). CA scores (CS) were derived using a 15-point system accounting for the distribution of the diseased CA, location, and degree of stenosis, and collateral supply. CS varied from 1.2 to 8. E and S significantly correlated with CS (r=.74,p=.001, and r=.78, p=.000, respectively). The 6 pts with a D less than or equal to .1 had 75% CA stenosis whereas 5 of the 9 pts with D <.1 had only 50-75% stenosis. Thus, the authors conclude that: 1) pts with SVD have highly differing degrees of isch; 2) E, S and D scores from Tl SPECT correlate favorably with the angiographic extent and severity of disease; and 3) SPECT offers potential for quantification of the magnitude of isch and may become a useful, noninvasive prognostic indicator.

  19. Deterministic teleportation using single-photon entanglement as a resource

    Björk, Gunnar; Laghaout, Amine; Andersen, Ulrik L.

    2012-01-01

    We outline a proof that teleportation with a single particle is, in principle, just as reliable as with two particles. We thereby hope to dispel the skepticism surrounding single-photon entanglement as a valid resource in quantum information. A deterministic Bell-state analyzer is proposed which...

  20. Single-photon production at the CERN ISR

    Linnemann, J.T.

    1981-01-01

    A measurement of single photon production from p-p collisions at ISR energies is presented. A signal comparable to single π 0 production is found at large p/sub T/. A study of associated particles favors production dominated by the first-order QCD process of gluon-valence quark production q g → q γ

  1. Monitoring of regional cerebral blood flow by single photon emission tomography of I123-N-isopropyl-iodoamphetamine in epileptics

    Magistretti, P.L.; Uren, R.F.; Parker, J.A.; Royal, H.D.; Front, D.; Kolodny, G.M.

    1983-01-01

    In some patients with epileptic disorders it is difficult to accurately localize the seizure focus especially in the case of deep lesions. In an attempt to provide better localization of such foci we have used single photon emission tomography (SPECT) of a new radiopharmaceutical I 123 -N-isopropyl-iodoamphetamine (IMP) to measure regional cerebral blood flow (RCBF) in the ictal and interictal phases. Eight patients were studied. The location of the seizure focus was determined by intraoperative corticography operative findings and pathology in 5 patients and by neuropsychological testing and long-term EEG monitoring in the other three. The SPECT scan accurately localized the seizure focus in all patients. This modality also allowed the functional state of the seizure focus to be assessed. In five of the thirteen studies there was increased RCBF at the seizure focus. On four of these occasions the patients reported symptoms typical of their seizures. In the asymptomatic patient the focally increased RCBF corresponded with a very active superficial epileptic focus on EEG. These preliminary results suggest that SPECT scans of RCBF, will have considerable utility in the management of epileptics. This is particularly the case as the necessary instrumentation is already available in many hospitals, thus minimizing the cost of widespread application

  2. The clinical meaning of gastric-wall hyperactivity observed on sestamibi cardiac single-photon emission computed tomography

    Cote, C.; Dumont, M. [Centre Hospitalier Universitaire de Quebec, Dept. of Nuclear Medicine, Quebec, Quebec (Canada)]. E-mail: christian.cote@chuq.qc.ca

    2004-06-01

    To evaluate prospectively the incidence and clinical meaning, if any, of gastric-wall hyperactivity observed on sestamibi cardiac single-photon emission computed tomography (SPECT). This phenomenon is completely different from the well-known intraluminal gastric reflux of sestamibi. A group of 819 patients who underwent sestamibi cardiac SPECT was studied from January 2000 to October 2000. Gastric-wall activity was graded qualitatively. Only patients with gastric-wall activity near or equivalent to their heart activity were considered for subsequent analysis. The medical records of patient candidates were reviewed, and their family physicians were asked to respond to a questionnaire by telephone when further information was needed. We identified 13 patients with significant gastric-wall hyperactivity, which was more intense on rest images. Our review of the clinical data shows that all these patients were suffering from dyspepsia and were taking gastric medication. These 13 cases were assigned to 3 groups: gastroesophageal reflux, chronic functional dyspepsia and nonspecific gastritis. Significant gastric-wall hyperactivity is an infrequent observation on sestamibi cardiac SPECT. Our results indicate that the presence of significant gastric-wall hyperactivity is associated with dyspepsia. It is important to realize that this gastric-wall hyperactivity by its proximity to the inferior myocardial wall could in some circumstances lead to either false-negative or false-positive findings, representing a diagnostic problem. Although infrequent, this situation could be avoided by proper quality control, including a systematic review of the raw cine data before reading the images. (author)

  3. Single photon emission computed tomography with N-isopropyl-p-[123I] iodoamphetamine in dementia of the Alzheimer type

    Tsunoda, Masahiko; Fujii, Tsutomu; Tanii, Yasuyuki; Yasui, Shinichi; Yuasa, Satoru; Shimizu, Akinori; Kurachi, Masayoshi; Seki, Hiroyasu; Fukuta, Tsutomu.

    1989-01-01

    Correlation between brain uptake of N-isopropyl-p-[I-123]iodoamphetamine (I-123 IMP), as shown on single photon emission computed tomography (SPECT) scans, and clinical stages was examined in 8 patients with Alzheimer type dementia. The patients were clinically staged as Stage I (3), Stage II (3), or Stage III (2). The count ratio of each cerebral lobe to the cerebellum was calculated on horizontal SPECT scans. Stage I patients had a decreased I-123 IMP uptake in the temporal and parietal lobes. The decreased uptake in these areas became marked in Stage II patients, with diffusely slight uptake of I-123 IMP in the brain. In Stage III patients, the uptake of I-123 IMP was markedly decreased in the whole brain, including temporal, parietal, and frontal lobes. For five patients of Stage II and III, bilateral differences in the cerebral hemispheres were observed, corresponding to neurologic symptoms. Iodine-123 IMP SPECT was thus considered useful in clinically evaluating Alzheimer type dementia and in determining degenerative process of this disease. (Namekawa, K)

  4. The diagnostic value of single-photon emission computed tomography/computed tomography for severe sacroiliac joint dysfunction.

    Tofuku, Katsuhiro; Koga, Hiroaki; Komiya, Setsuro

    2015-04-01

    We aimed to evaluate the value of single-photon emission computed tomography (SPECT)/computed tomography (CT) for the diagnosis of sacroiliac joint (SIJ) dysfunction. SPECT/CT was performed in 32 patients with severe SIJ dysfunction, who did not respond to 1-year conservative treatment and had a score of >4 points on a 10-cm visual analog scale. We investigated the relationship between the presence of severe SIJ dysfunction and tracer accumulation, as confirmed by SPECT/CT. In cases of bilateral SIJ dysfunction, we also compared the intensity of tracer accumulation on each side. Moreover, we examined the relationship between the intensity of tracer accumulation and the different treatments the patients subsequently received. All 32 patients with severe SIJ dysfunction had tracer accumulation with a standardized uptake value (SUV) of >2.2 (mean SUV 4.7). In the 19 patients with lateralized symptom intensity, mean SUVs of the dominant side were significantly higher than those of the nondominant side. In 10 patients with no lateralization, the difference in the SUVs between sides was dysfunction as well as a useful technique for predicting the prognosis of this condition.

  5. Highly efficient photonic nanowire single-photon sources for quantum information applications

    Gregersen, Niels; Claudon, J.; Munsch, M.

    2013-01-01

    to a collection efficiency of only 1-2 %, and efficient light extraction thus poses a major challenge in SPS engineering. Initial efforts to improve the efficiency have exploited cavity quantum electrodynamics (cQED) to efficiently couple the emitted photons to the optical cavity mode. An alternative approach......Within the emerging field of optical quantum information processing, the current challenge is to construct the basic building blocks for the quantum computing and communication systems. A key component is the singlephoton source (SPS) capable of emitting single photons on demand. Ideally, the SPS...... must feature near-unity efficiency, where the efficiency is defined as the number of detected photons per trigger, the probability g(2)(τ=0) of multi-photon emission events should be 0 and the emitted photons are required to be indistinguishable. An optically or electrically triggered quantum light...

  6. Quasi free mechanism in single photon double ionization of helium

    Schoeffler, Markus; Stuck, Christian [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Kernphysik; Lawrence Berkeley National Lab, Berkeley, CA (United States); Jahnke, Till; Waitz, Markus; Trinter, Florian; Lenz, Ute; Schmidt-Boecking, Horst; Doerner, Reinhard [Frankfurt Univ., Frankfurt am Main (Germany). Inst. fuer Kernphysik; Jones, Mathew; Landers, Allen [Auburn University, Auburn, AL (United States); Belkacem, Ali; Weber, Thorsten [Lawrence Berkeley National Lab, Berkeley, CA (United States); Cocke, Lew [Kansas State University, Manhattan, KS (United States)

    2012-07-01

    Double ionization of Helium by a single photon is widely believed to proceed through two mechanisms: knock-off (TS1) or shake-off, with the last one dominating at high photon energies. A new mechanism, termed ''Quasi Free Mechanism'' (QFM) was predicted 35 years ago by Amusia and coworkers, but escaped experimental observation till today. Here we provide the first proof of this mechanism using 800 eV photons from the Advanced Light Source. Fragments (electrons and ions) were measured in coincidence using momentum spectroscopy (COLTRIMS). He{sup (}2+) ions with zero momentum were found - the fingerprint for the QFM.

  7. Gold-195m first-pass radionuclide ventriculography, thallium-201 single-photon emission CT, and 12-lead ECG stress testing as a combined procedure

    Kipper, S.L.; Ashburn, W.L.; Norris, S.L.; Rimkus, D.S.; Dillon, W.A.

    1985-01-01

    Graded, sequential, rest/exercise, gold-195m, first-pass ventriculography and thallium-201 (Tl-201) single-photon emission computed tomography (SPECT) were performed simultaneously during a single, electrocardiograph-monitored, bicycle stress test in 24 individuals. The technical aspects and logistics involved in performing this combined radionuclide study are stressed in this preliminary report. Fourteen healthy volunteers each had a normal left ventricular ejection fraction and wall-motion response, along with normal T1-201 perfusion and washout, as determined by both visual and quantitative analysis of the tomographic sections. Each of ten patients with coronary artery disease had at least one abnormality of these parameters. The authors suggest that it is technically feasible to evaluate both cardiac function and myocardial perfusion simultaneously by combing Au-195m ventriculography and Tl-201 SPECT imaging into a single, noninvasive, diagnostic package

  8. Radiopharmaceuticals for SPECT cancer detection

    Chernov, V. I., E-mail: chernov@oncology.tomsk.ru; Medvedeva, A. A., E-mail: tickayaAA@oncology.tomsk.ru; Zelchan, R. V., E-mail: r.zelchan@yandex.ru; Sinilkin, I. G., E-mail: sinilkinig@oncology.tomsk.ru [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation); Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation); Stasyuk, E. S.; Larionova, L. A. [Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050 (Russian Federation); Slonimskaya, E. M.; Choynzonov, E. L. [Tomsk Cancer Research Institute, Kooperativny Street 5, Tomsk, 634050 (Russian Federation)

    2016-08-02

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with {sup 199}Tl and {sup 99}mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. A total of 220 patients were included into the study: 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and 100 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). No abnormal {sup 199}Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of {sup 199}Tl SPECT. In the breast cancer patients, the increased {sup 199}Tl uptake in the breast was visualized in 94.8% patients, {sup 99m}Tc-MIBI—in 93.4% patients. The increased {sup 199}Tl uptake in axillary lymph nodes was detected in 60% patients, and {sup 99m}Tc-MIBI—in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, the sensitivity of SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI was 95%. The {sup 199}Tl SPECT sensitivity in identification of regional lymph node metastases in the patients with laryngeal/hypopharyngeal cancer was 75% and the {sup 99m}Tc-MIBI SPECT sensitivity was 17%. The data obtained showed that SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI can be used as one of the additional imaging methods in detection of tumors.

  9. Development of advanced industrial SPECT system with 12-gonal diverging-collimator

    Park, Jang Guen; Jung, Sung-Hee; Kim, Jong Bum; Moon, Jinho; Han, Min Cheol; Kim, Chan Hyeong

    2014-01-01

    Industrial single photon emission computed tomography (SPECT) is a promising diagnosis technique to investigate the dynamic behavior of process media. In the present study, a 12-gonal industrial SPECT system was developed using diverging collimators, and its performance was compared with those of hexagonal and 24-gonal systems. Of all of the systems, the 12-gonal type showed the best performance, providing (1) a detection-efficiency map without edge artifacts, (2) the best image resolution, and (3) reconstruction images that correctly furnish multi-source information. Based on the performance of the three different types of configurations, a SPECT system with 12-gonal type configuration was found most suitable for investigating and visualization of flow dynamics in industrial process systems. - highlights: • Industrial SPECT provides the dynamic behavior of multiphase industrial processes. • The present study compared performance of various industrial SPECT systems. • The 12-gonal SPECT system with diverging-collimator provides the best performance

  10. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  11. Brain receptor single-photon emission computer tomography with 123I Datscan in Parkinson's disease

    Minchev, D.; Peshev, N.; Kostadinova, I.; Grigorova, O.; Trindev, P.; Shotekov, P.

    2005-01-01

    Clinical aspects of Parkinson's disease are not enough for the early diagnosis of the disease. Positron emission tomography and the receptor single - photon emission tomography can be used for imaging functional integrity of nigrostriatal dopaminergic structures. 24 patient (17 men and 7 women) were investigated. 20 of them are with Parkinson's disease and 4 are with essential tremor. The radiopharmaceutical - 123I-Datscan (ioflupane, bind with 123I) represent a cocaine analogue with selective affinity to dopamine transporters, located in the dopaminergic nigrostriatal terminals in the striatum. Single - photon emission computer tomography was performed with SPECT gamma camera (ADAC, SH Epic detector). The scintigraphic study was made 3 to 6 hours after intravenous injection of the radiopharmaceutical - 123I- Datscan in dose 185 MBq. 120 frames are registered with duration of each one 22 seconds and gamma camera rotation 360. After generation of transversal slices we generated two composites pictures. The first composite picture image the striatum, the second - the occipital region. Two ratios were calculated representing the uptake of the radiopharmaceutical in the left and right striatum. Qualitative and quantitative criteria were elaborated for evaluating the scintigraphic patterns. Decreased, nonhomogeneous and asymmetric uptake of the radiopharmaceutical coupled with low quantitative parameters in range from 1.44 to 2.87 represents the characteristic scintigraphic pattern for Parkinson's disease with clear clinical picture. Homogenous with high intensity and symmetric uptake of the radiopharmaceutical in the striatum coupled with his clear frontier and with quantitative parameters up to 4.40 represent the scintigraphic pattern in two patients with essential tremor. Receptor single - photon emission computer tomography with 123I - Datscan represents an accurate nuclear-medicine method for precise diagnosis of Parkinson's disease and for its differentiation from

  12. IQ-SPECT for thallium-201 myocardial perfusion imaging: effect of normal databases on quantification.

    Konishi, Takahiro; Nakajima, Kenichi; Okuda, Koichi; Yoneyama, Hiroto; Matsuo, Shinro; Shibutani, Takayuki; Onoguchi, Masahisa; Kinuya, Seigo

    2017-07-01

    Although IQ-single-photon emission computed tomography (SPECT) provides rapid acquisition and attenuation-corrected images, the unique technology may create characteristic distribution different from the conventional imaging. This study aimed to compare the diagnostic performance of IQ-SPECT using Japanese normal databases (NDBs) with that of the conventional SPECT for thallium-201 ( 201 Tl) myocardial perfusion imaging (MPI). A total of 36 patients underwent 1-day 201 Tl adenosine stress-rest MPI. Images were acquired with IQ-SPECT at approximately one-quarter of the standard time of conventional SPECT. Projection data acquired with the IQ-SPECT system were reconstructed via an ordered subset conjugate gradient minimizer method with or without scatter and attenuation correction (SCAC). Projection data obtained using the conventional SPECT were reconstructed via a filtered back projection method without SCAC. The summed stress score (SSS) was calculated using NDBs created by the Japanese Society of Nuclear Medicine working group, and scores were compared between IQ-SPECT and conventional SPECT using the acquisition condition-matched NDBs. The diagnostic performance of the methods for the detection of coronary artery disease was also compared. SSSs were 6.6 ± 8.2 for the conventional SPECT, 6.6 ± 9.4 for IQ-SPECT without SCAC, and 6.5 ± 9.7 for IQ-SPECT with SCAC (p = n.s. for each comparison). The SSS showed a strong positive correlation between conventional SPECT and IQ-SPECT (r = 0.921 and p IQ-SPECT with and without SCAC was also good (r = 0.907 and p IQ-SPECT without SCAC; and 88.5, 86.8, and 87.3%, respectively, for IQ-SPECT with SCAC, respectively. The area under the curve obtained via receiver operating characteristic analysis were 0.77, 0.80, and 0.86 for conventional SPECT, IQ-SPECT without SCAC, and IQ-SPECT with SCAC, respectively (p = n.s. for each comparison). When appropriate NDBs were used, the diagnostic performance of 201 Tl IQ-SPECT

  13. Investigating and Improving Student Understanding of Quantum Mechanics in the Context of Single Photon Interference

    Marshman, Emily; Singh, Chandralekha

    2017-01-01

    Single photon experiments involving a Mach-Zehnder interferometer can illustrate the fundamental principles of quantum mechanics, e.g., the wave-particle duality of a single photon, single photon interference, and the probabilistic nature of quantum measurement involving single photons. These experiments explicitly make the connection between the…

  14. Preparation and tomographic reconstruction of an arbitrary single-photon path qubit

    Baek, So-Young; Kim, Yoon-Ho

    2011-01-01

    We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. The arbitrary single-photon path qubit is prepared losslessly by passing the heralded single-photon state from spontaneous parametric down-conversion through variable beam splitter. Quantum state tomography of the single-photon path qubit is implemented by introducing path-projection measurements based on the first-order single-photon quantum interference. Using the state preparation and path-projection measurements methods for the single-photon path qubit, we demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity. -- Highlights: → We report methods for preparation and tomographic reconstruction of an arbitrary single-photon path qubit. → We implement path-projection measurements based on the first-order single-photon quantum interference. → We demonstrate preparation and complete tomographic reconstruction of the single-photon path qubit with arbitrary purity.

  15. A Variable Single Photon Plasmonic Beamsplitter

    Israelsen, Niels Møller; Kumar, Shailesh; Huck, Alexander

    Plasmonic structures can both be exploited for scaling down optical components beyond the diffraction limit and enhancing andcollecting the emission from a single dipole emitter. Here, we experimentally demonstrate adiabatic coupling between two silvernanowires using a nitrogen vacancy center as ...

  16. Temporal trends in compliance with appropriateness criteria for stress single-photon emission computed tomography sestamibi studies in an academic medical center.

    Gibbons, Raymond J; Askew, J Wells; Hodge, David; Miller, Todd D

    2010-03-01

    The purpose of this study was to apply published appropriateness criteria for single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) in a single academic medical center to determine if the percentage of inappropriate studies was changing over time. In a previous study, we applied the American College of Cardiology Foundation/American Society of Nuclear Cardiology (ASNC) appropriateness criteria for stress SPECT MPI and reported that 14% of stress SPECT studies were performed for inappropriate reasons. Using similar methodology, we retrospectively examined 284 patients who underwent stress SPECT MPI in October 2006 and compared the findings to the previous cohort of 284 patients who underwent stress SPECT MPI in May 2005. The indications for testing in the 2 cohorts were very similar. The overall level of agreement in characterizing categories of appropriateness between 2 experienced cardiovascular nurse abstractors was good (kappa = 0.68), which represented an improvement from our previous study (kappa = 0.56). There was a significant change between May 2005 and October 2006 in the overall classification of categories for appropriateness (P = .024 by chi(2) statistic). There were modest, but insignificant, increases in the number of patients who were unclassified (15% in the current study vs 11% previously), appropriate (66% vs 64%), and uncertain (12% vs 11%). Only 7% of the studies in the current study were inappropriate, which represented a significant (P = .004) decrease from the 14% reported in the 2005 cohort. In the absence of any specific intervention, there was a significant change in the overall classification of SPECT appropriateness in an academic medical center over 17 months. The only significant difference in individual categories was a decrease in inappropriate studies. Additional measurements over time will be required to determine if this trend is sustainable or generalizable.

  17. Fast recognition of single molecules based on single-event photon statistics

    Dong Shuangli; Huang Tao; Liu Yuan; Wang Jun; Zhang Guofeng; Xiao Liantuan; Jia Suotang

    2007-01-01

    Mandel's Q parameter, which is determined from single-event photon statistics, provides an alternative way to recognize single molecules with fluorescence detection, other than the second-order correlation function. It is shown that the Q parameter of an assumed ideal double-molecule fluorescence with the same average photon number as that of the sample fluorescence can act as the criterion for single-molecule recognition. The influence of signal-to-background ratio and the error estimates for photon statistics are also presented. We have applied this method to ascertain single Cy5 dye molecules within hundreds of milliseconds

  18. Diagnosis of dementia with single photon emission computed tomography

    Jagust, W.J.; Budinger, T.F.; Reed, B.R.

    1987-01-01

    Single photon emission computed tomography is a practical modality for the study of physiologic cerebral activity in vivo. We utilized single photon emission computed tomography and N-isopropyl-p-iodoamphetamine iodine 123 to evaluate regional cerebral blood flow in nine patients with Alzheimer's disease (AD), five healthy elderly control subjects, and two patients with multi-infarct dementia. We found that all subjects with AD demonstrated flow deficits in temporoparietal cortex bilaterally, and that the ratio of activity in bilateral temporoparietal cortex to activity in the whole slice allowed the differentiation of all patients with AD from both the controls and from the patients with multi-infarct dementia. Furthermore, this ratio showed a strong correlation with disease severity in the AD group. Single photon emission computed tomography appears to be useful in the differential diagnosis of dementia and reflects clinical features of the disease

  19. High-resolution tomography of positron emitters with clustered pinhole SPECT

    Goorden, Marlies C; Beekman, Freek J [Section of Radiation Detection and Medical Imaging, Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)], E-mail: m.c.goorden@tudelft.nl

    2010-03-07

    State-of-the-art small-animal single photon emission computed tomography (SPECT) enables sub-half-mm resolution imaging of radio-labelled molecules. Due to severe photon penetration through pinhole edges, current multi-pinhole SPECT is not suitable for high-resolution imaging of photons with high energies, such as the annihilation photons emitted by positron emitting tracers (511 keV). To deal with this edge penetration, we introduce here clustered multi-pinhole SPECT (CMP): each pinhole in a cluster has a narrow opening angle to reduce photon penetration. Using simulations, CMP is compared with (i) a collimator with traditional pinholes that is currently used for sub-half-mm imaging of SPECT isotopes (U-SPECT-II), and (ii), like (i) but with collimator thickness adapted to image high-energy photons (traditional multi-pinhole SPECT, TMP). At 511 keV, U-SPECT-II is able to resolve the 0.9 mm rods of an iteratively reconstructed Jaszczak-like capillary hot rod phantom, and while TMP only leads to small improvements, CMP can resolve rods as small as 0.7 mm. Using a digital tumour phantom, we show that CMP resolves many details not assessable with standard USPECT-II and TMP collimators. Furthermore, CMP makes it possible to visualize uptake of positron emitting tracers in sub-compartments of a digital mouse striatal brain phantom. This may open up unique possibilities for analysing processes such as those underlying the function of neurotransmitter systems. Additional potential of CMP may include (i) the imaging of other high-energy single-photon emitters (e.g. I-131) and (ii) localized imaging of positron emitting tracers simultaneously with single photon emitters, with an even better resolution than coincidence PET.

  20. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and99mTc-tetrofosmin: Method and validation

    Shrestha, U; Sciammarella, M; Alhassen, F; Yeghiazarians, Y; Ellin, J; Verdin, E; Boyle, A; Seo, Y; Botvinick, EH; Gullberg, GT

    2017-01-01

    © 2015, American Society of Nuclear Cardiology. Background: The objective of this study was to measure myocardial blood flow (MBF) in humans using 99m Tc-tetrofosmin and dynamic single-photon emission computed tomography (SPECT). Methods: Dynamic SPECT using 99m Tc-tetrofosmin and dynamic positron emission tomography (PET) was performed on a group of 16 patients. The SPECT data were reconstructed using a 4D-spatiotemporal iterative reconstruction method. The data corresponding to 9 patients w...

  1. Streak camera imaging of single photons at telecom wavelength

    Allgaier, Markus; Ansari, Vahid; Eigner, Christof; Quiring, Viktor; Ricken, Raimund; Donohue, John Matthew; Czerniuk, Thomas; Aßmann, Marc; Bayer, Manfred; Brecht, Benjamin; Silberhorn, Christine

    2018-01-01

    Streak cameras are powerful tools for temporal characterization of ultrafast light pulses, even at the single-photon level. However, the low signal-to-noise ratio in the infrared range prevents measurements on weak light sources in the telecom regime. We present an approach to circumvent this problem, utilizing an up-conversion process in periodically poled waveguides in Lithium Niobate. We convert single photons from a parametric down-conversion source in order to reach the point of maximum detection efficiency of commercially available streak cameras. We explore phase-matching configurations to apply the up-conversion scheme in real-world applications.

  2. Optimization of time-correlated single photon counting spectrometer

    Zhang Xiufeng; Du Haiying; Sun Jinsheng

    2011-01-01

    The paper proposes a performance improving scheme for the conventional time-correlated single photon counting spectrometer and develops a high speed data acquisition card based on PCI bus and FPGA technologies. The card is used to replace the multi-channel analyzer to improve the capability and decrease the volume of the spectrometer. The process of operation is introduced along with the integration of the spectrometer system. Many standard samples are measured. The experimental results show that the sensitivity of the spectrometer is single photon counting, and the time resolution of fluorescence lifetime measurement can be picosecond level. The instrument could measure the time-resolved spectroscopy. (authors)

  3. Single-photon interference experiment for high schools

    Bondani, Maria

    2014-07-01

    We follow the reductio ad absurdum reasoning described in the book "Sneaking a Look at God's Cards" by Giancarlo Ghirardi to demonstrate the wave-particle duality of light in a Mach-Zehnder interferometric setup analog to the conventional Young double-slit experiment. We aim at showing the double nature of light by measuring the existence of interference fringes down to the single-photon level. The setup includes a strongly attenuated laser, polarizing beam splitters, half-waveplates, polarizers and single-photon detectors.

  4. Stable single-photon source in the near infrared

    Gaebel, T; Popa, I; Gruber, A; Domhan, M; Jelezko, F; Wrachtrup, J

    2004-01-01

    Owing to their unsurpassed photostability, defects in solids may be ideal candidates for single-photon sources. Here we report on generation of single photons by optical excitation of a yet unexplored defect in diamond, the nickel-nitrogen complex (NE8) centre. The most striking feature of the defect is its emission bandwidth of 1.2 nm at room temperature. The emission wavelength of the defect is around 800 nm, which is suitable for telecom fibres. In addition, in this spectral region little background light from the diamond bulk material is detected. Consequently, a high contrast in antibunching measurements is achieved

  5. Effects of attenuation map accuracy on attenuation-corrected micro-SPECT images

    Wu, C.; Gratama van Andel, H.A.; Laverman, P.; Boerman, O.C.; Beekman, F.J.

    2013-01-01

    Background In single-photon emission computed tomography (SPECT), attenuation of photon flux in tissue affects quantitative accuracy of reconstructed images. Attenuation maps derived from X-ray computed tomography (CT) can be employed for attenuation correction. The attenuation coefficients as well

  6. Regional cerebral blood flow in patients with sickle cell disease: study with single photon emission computed tomography

    Al-Kandari, F.A.; Owunwanne, A.; Syed, G.M.; Elgazzar, A.H.; Rizui, A.M.; Al-Ajmi, J.A.; Mohammed, A.M.; Ar Marouf, R.; Shiekh, M.

    2007-01-01

    Neurological complications have been reported in patients with sickle-cell disease (SCD) using positron emission tomography (PET), magnetic resonance imaging (MRI), and computed tomography (CT), but not with single photon emission computed tomography (SPECT). The objective of this study was to investigate brain perfusion in the patients with SCD using SPECT after technetium-99m hexamethylpropylene amine oxime ( 99m Tc-HMPAO), was administered and compare the findings with those of demography, physical examination, MRI and hematological profile. The study involved 21 patients (12 males, 9 females, age at study 8-45 years) who were known to be having SCD for a duration of at least 5 years. The patients were not in acute crisis and had normal neurological assessments with no known history of stroke or transient ischemic episode or previous abnormal CT or MRI brain scan, and were right-handed. The brain SPECT was performed after intravenous injection of 740 MBq (20 mCi) 99m Tc-HMPAO in adults or an appropriate dose in pediatric patients. The scans were visually interpreted by two nuclear medicine physicians and a decision was reached by consensus. An MRI done 3 months later was interpreted by a radiologist. The demographic data and hematological profile were obtained from the medical records of the patients. Of the 21 patients, 7 (age 11-22 years) had brain perfusion deficit mostly in the frontal lobe either alone or in combination with temporal and/or parietal lobe. The MRI was abnormal in 2 patients. The brain perfusion deficit was not associated with the demographic data of the patients or hematological profiles. The findings show that SPECT was useful in detecting brain perfusion deficit in SCD patients, and such an early detection may be clinically useful in the subsequent follow-up of such patients, since it is known that cerebral perfusion deficit can lead to silent infarct and/or overt stroke, and affect cognitive skills. (author)

  7. Measurement of acute Q-wave myocardial infarct size with single photon emission computed tomography imaging of indium-111 antimyosin.

    Antunes, M L; Seldin, D W; Wall, R M; Johnson, L L

    1989-04-01

    Myocardial infarct size was measured by single photon emission computed tomography (SPECT) following injection of indium-111 antimyosin in 27 patients (18 male and 9 female; mean age 57.4 +/- 10.5 years, range 37 to 75) who had acute transmural myocardial infarction (MI). These 27 patients represent 27 of 35 (77%) consecutive patients with acute Q-wave infarctions who were injected with indium-111 antimyosin. In the remaining 8 patients either tracer uptake was too faint or the scans were technically inadequate to permit infarct sizing from SPECT reconstructions. In the 27 patients studied, infarct location by electrocardiogram was anterior in 15 and inferoposterior in 12. Nine patients had a history of prior infarction. Each patient received 2 mCi of indium-111 antimyosin followed by SPECT imaging 48 hours later. Infarct mass was determined from coronal slices using a threshold value obtained from a human torso/cardiac phantom. Infarct size ranged from 11 to 87 g mean 48.5 +/- 24). Anterior infarcts were significantly (p less than 0.01) larger (60 +/- 20 g) than inferoposterior infarcts (34 +/- 21 g). For patients without prior MI, there were significant inverse correlations between infarct size and ejection fraction (r = 0.71, p less than 0.01) and wall motion score (r = 0.58, p less than 0.01) obtained from predischarge gated blood pool scans. Peak creatine kinase-MB correlated significantly with infarct size for patients without either reperfusion or right ventricular infarction (r = 0.66). Seven patients without prior infarcts had additional simultaneous indium-111/thallium-201 SPECT studies using dual energy windows.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Towards the coupling of single photons from dye molecules to a photonic waveguide

    Polisseni, Claudio; Kho, Kiang Wei; Major, Kyle; Grandi, Samuele; Boisser, Sebastien; Hwang, Jaesuk; Clark, Alex; Hinds, Edward

    Single photons are very attractive for quantum information processing given their long coherence time and their ability to carry information in many degrees of freedom. A current challenge is the efficient generation of single photons in a photonic chip in order to scale up the complexity of quantum operations. We have proposed that a dibenzoterrylene (DBT) molecule inside an anthracene (AC) crystal could couple lifetime-limited indistinguishable single photons into a photonic waveguide if deposited in its vicinity. In this talk I describe the recent progress towards the realization of this proposal. A new method has been developed for evaporating AC and DBT to produce crystals that are wide and thin. The crystals are typically several microns across and have remarkably uniform thickness, which we control between 20 and 150 nm. The crystal growth is carried out in a glove bag in order to exclude oxygen, which improves the photostability of the DBT molecules by orders of magnitude. We image the fluorescence of single DBT molecules using confocal microscopy and analyse the polarization of this light to determine the alignment of the molecules. I will report on our efforts to control the alignement of the molecules by aligning the host matrix with the substrate.

  9. Single-photon switch: Controllable scattering of photons inside a one-dimensional resonator waveguide

    Zhou, L.; Gong, Z. R.; Liu, Y. X.; Sun, C. P.; Nori, F.

    2010-03-01

    We analyze the coherent transport of a single photon, which propagates in a one-dimensional coupled-resonator waveguide and is scattered by a controllable two-level system located inside one of the resonators of this waveguide. Our approach, which uses discrete coordinates, unifies low and high energy effective theories for single-photon scattering. We show that the controllable two-level system can behave as a quantum switch for the coherent transport of a single photon. This study may inspire new electro-optical single-photon quantum devices. We also suggest an experimental setup based on superconducting transmission line resonators and qubits. References: L. Zhou, Z.R. Gong, Y.X. Liu, C.P. Sun, F. Nori, Controllable scattering of photons inside a one-dimensional resonator waveguide, Phys. Rev. Lett. 101, 100501 (2008). L. Zhou, H. Dong, Y.X. Liu, C.P. Sun, F. Nori, Quantum super-cavity with atomic mirrors, Phys. Rev. A 78, 063827 (2008).

  10. Evaluation of the ID220 single photon avalanche diode for extended spectral range of photon time-of-flight spectroscopy

    Nielsen, Otto Højager Attermann; Dahl, Anders Bjorholm; Anderson-Engels, Stefan

    This paper describe the performance of the ID220 single photon avalanche diode for single photon counting, and investigates its performance for photon time-of-flight (PToF) spectroscopy. At first this report will serve as a summary to the group for PToF spectroscopy at the Department of Physics...

  11. A photon position sensor consisting of single-electron circuits

    Kikombo, Andrew Kilinga; Amemiya, Yoshihito; Tabe, Michiharu

    2009-01-01

    This paper proposes a solid-state sensor that can detect the position of incident photons with a high spatial resolution. The sensor consists of a two-dimensional array of single-electron oscillators, each coupled to its neighbors through coupling capacitors. An incident photon triggers an excitatory circular wave of electron tunneling in the oscillator array. The wave propagates in all directions to reach the periphery of the array. By measuring the arrival time of the wave at the periphery, we can know the position of the incident photon. The tunneling wave's generation, propagation, arrival at the array periphery, and the determination of incident photon positions are demonstrated with the results of Monte Carlo based computer simulations.

  12. Non invasive evaluation of the coronary atherosclerosis illness in patients with silent ischemia: utility of the SPECT of myocardial perfusion. Electric, angiographic and image correlation

    Puente B, A.; Roffe G, F.; Aceves C, J.; Gomez A, E.

    2005-01-01

    The objective of the work was to determine the utility of the SPECT (Single Photon Emission Computerized Tomography) of myocardial perfusion for the ischemia detection in asymptomatic patients with Coronary Atherosclerosis Illness. It was concluded that the SPECT of myocardial perfusion has a high sensitivity (97%) for the silent ischemia diagnosis

  13. Interfering Heralded Single Photons from Two Separate Silicon Nanowires Pumped at Different Wavelengths

    Xiang Zhang

    2016-08-01

    Full Text Available Practical quantum photonic applications require on-demand single photon sources. As one possible solution, active temporal and wavelength multiplexing has been proposed to build an on-demand single photon source. In this scheme, heralded single photons are generated from different pump wavelengths in many temporal modes. However, the indistinguishability of these heralded single photons has not yet been experimentally confirmed. In this work, we achieve 88% ± 8% Hong–Ou–Mandel quantum interference visibility from heralded single photons generated from two separate silicon nanowires pumped at different wavelengths. This demonstrates that active temporal and wavelength multiplexing could generate indistinguishable heralded single photons.

  14. Indeterminate lesions on planar bone scintigraphy in lung cancer patients: SPECT, CT or SPECT-CT?

    Sharma, Punit; Kumar, Rakesh; Singh, Harmandeep; Bal, Chandrasekhar; Malhotra, Arun; Julka, Pramod Kumar; Thulkar, Sanjay

    2012-01-01

    The objective of the present study was to compare the role of single photon emission computed tomography (SPECT), computed tomography (CT) and SPECT-CT of selected volume in lung cancer patients with indeterminate lesions on planar bone scintigraphy (BS). The data of 50 lung cancer patients (53 ± 10.3 years; range 30-75; male/female 38/12) with 65 indeterminate lesions on planar BS (January 2010 to November 2010) were retrospectively evaluated. All of them underwent SPECT-CT of a selected volume. SPECT, CT and SPECT-CT images were independently evaluated by two experienced readers (experience in musculoskeletal imaging, including CT: 5 and 7 years) in separate sessions. A scoring scale of 1 to 5 was used, in which 1 is definitely metastatic, 2 is probably metastatic, 3 is indeterminate, 4 is probably benign and 5 is definitely benign. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for each modality, taking a score ≤2 as metastatic. With receiver operating characteristic (ROC) curve analysis, areas under the curve (AUC) were calculated for each modality and compared. Clinical and imaging follow-up and/or histopathology were taken as reference standard. For both readers SPECT was inferior to CT (P = 0.004, P = 0.022) and SPECT-CT (P = 0.003, P = 0.037). However, no significant difference was found between CT and SPECT-CT for reader 1 (P = 0.847) and reader 2 (P = 0.592). The findings were similar for lytic as well as sclerotic lesions. Moderate inter-observer agreement was seen for SPECT images (κ = 0.426), while almost perfect agreement was seen for CT (κ = 0.834) and SPECT-CT (κ = 0.971). CT alone and SPECT-CT are better than SPECT for accurate characterisation of indeterminate lesions on planar BS in lung cancer patients. CT alone is not inferior to SPECT-CT for this purpose and might be preferred because of shorter acquisition time and wider availability. (orig.)

  15. Improving appropriate use of echocardiography and single-photon emission computed tomographic myocardial perfusion imaging: a continuous quality improvement initiative.

    Johnson, Thomas V; Rose, Geoffrey A; Fenner, Deborah J; Rozario, Nigel L

    2014-07-01

    Appropriate use criteria for cardiovascular imaging have been published, but compliance in practice has been incomplete, with persistent high rates of inappropriate use. The aim of this study was to show the efficacy of a continuous quality improvement (CQI) initiative to favorably influence the appropriate use of outpatient transthoracic echocardiography and single-photon emission computed tomographic (SPECT) myocardial perfusion imaging (MPI) in a large cardiovascular practice. In this prospective study, a multiphase CQI initiative was implemented, and its impact on ordering patterns for outpatient transthoracic echocardiography and SPECT MPI was assessed. Between November and December 2010, a baseline analysis of the application of appropriate use criteria to indications for outpatient transthoracic echocardiographic studies (n = 203) and SPECT MPI studies (n = 205) was performed, with studies categorized as "appropriate," "inappropriate," "uncertain," or "unclassified." The CQI initiative was then begun, with (1) clinician education, including didactic lectures and case-based presentations with audience participation; (2) system changes in ordering processes, with redesigned image ordering forms; and (3) peer review and feedback. A follow-up analysis was then performed between June and August 2012, with categorization of indications for transthoracic echocardiographic studies (n = 206) and SPECT MPI studies (n = 206). At baseline, 73.9% of echocardiographic studies were categorized as appropriate, 16.7% as inappropriate, 5.9% as uncertain, and 3.4% as unclassified. Similarly, for SPECT MPI studies 71.7% were categorized as appropriate, 18.5% as inappropriate, 7.8% as uncertain, and 1.9% as unclassified. Separate analysis of the two most important categories, appropriate and inappropriate, demonstrated a significant improvement after the CQI initiative, with a 63% reduction in inappropriate echocardiographic studies (18.5% vs 6.9%, P = .0010) and a 46% reduction

  16. Clinical evaluation of reducing acquisition time on single-photon emission computed tomography image quality using proprietary resolution recovery software.

    Aldridge, Matthew D; Waddington, Wendy W; Dickson, John C; Prakash, Vineet; Ell, Peter J; Bomanji, Jamshed B

    2013-11-01

    A three-dimensional model-based resolution recovery (RR) reconstruction algorithm that compensates for collimator-detector response, resulting in an improvement in reconstructed spatial resolution and signal-to-noise ratio of single-photon emission computed tomography (SPECT) images, was tested. The software is said to retain image quality even with reduced acquisition time. Clinically, any improvement in patient throughput without loss of quality is to be welcomed. Furthermore, future restrictions in radiotracer supplies may add value to this type of data analysis. The aims of this study were to assess improvement in image quality using the software and to evaluate the potential of performing reduced time acquisitions for bone and parathyroid SPECT applications. Data acquisition was performed using the local standard SPECT/CT protocols for 99mTc-hydroxymethylene diphosphonate bone and 99mTc-methoxyisobutylisonitrile parathyroid SPECT imaging. The principal modification applied was the acquisition of an eight-frame gated data set acquired using an ECG simulator with a fixed signal as the trigger. This had the effect of partitioning the data such that the effect of reduced time acquisitions could be assessed without conferring additional scanning time on the patient. The set of summed data sets was then independently reconstructed using the RR software to permit a blinded assessment of the effect of acquired counts upon reconstructed image quality as adjudged by three experienced observers. Data sets reconstructed with the RR software were compared with the local standard processing protocols; filtered back-projection and ordered-subset expectation-maximization. Thirty SPECT studies were assessed (20 bone and 10 parathyroid). The images reconstructed with the RR algorithm showed improved image quality for both full-time and half-time acquisitions over local current processing protocols (Pimproved image quality compared with local processing protocols and has been

  17. Anatomically standardized statistical mapping of 123I-IMP SPECT in brain tumors

    Shibata, Yasushi; Akimoto, Manabu; Matsushita, Akira; Yamamoto, Tetsuya; Takano, Shingo; Matsumura, Akira

    2010-01-01

    123 I-iodoamphetamine Single Photon Emission Computed Tomography (IMP SPECT) is used to evaluate cerebral blood flow. However, application of IMP SPECT to patients with brain tumors has been rarely reported. Primary central nervous system lymphoma (PCNSL) is a rare tumor that shows delayed IMP uptake. The relatively low spatial resolution of SPECT is a clinical problem in diagnosing brain tumors. We examined anatomically standardized statistical mapping of IMP SPECT in patients with brain lesions. This study included 49 IMP SPECT images for 49 patients with brain lesions: 20 PCNSL, 1 Burkitt's lymphoma, 14 glioma, 4 other tumor, 7 inflammatory disease and 3 without any pathological diagnosis but a clinical diagnosis of PCNSL. After intravenous injection of 222 MBq of 123 I-IMP, early (15 minutes) and delayed (4 hours) images were acquired using a multi-detector SPECT machine. All SPECT data were transferred to a newly developed software program iNeurostat+ (Nihon Medi-physics). SPECT data were anatomically standardized on normal brain images. Regions of increased uptake of IMP were statistically mapped on the tomographic images of normal brain. Eighteen patients showed high uptake in the delayed IMP SPECT images (16 PCNSL, 2 unknown). Other tumor or diseases did not show high uptake of delayed IMP SPECT, so there were no false positives. Four patients with pathologically proven PCNSL showed no uptake in original IMP SPECT. These tumors were too small to detect in IMP SPECT. However, statistical mapping revealed IMP uptake in 18 of 20 pathologically verified PCNSL patients. A heterogeneous IMP uptake was seen in homogenous tumors in MRI. For patients with a hot IMP uptake, statistical mapping showed clearer uptake. IMP SPECT is a sensitive test to diagnose of PCNSL, although it produced false negative results for small posterior fossa tumor. Anatomically standardized statistical mapping is therefore considered to be a useful method for improving the diagnostic

  18. Initial experience with SPECT imaging of the brain using I-123 p-iodoamphetamine in focal epilepsy

    LaManna, M.M.; Sussman, N.M.; Harner, R.N.

    1989-01-01

    Nineteen patients with complex partial seizures refractory to medical treatment were examined with routine electroencephalography (EEG), video EEG monitoring, computed tomography or magnetic resonance imaging, neuropsychological tests and interictal single photon emission computed tomography (SPECT) with I-123 iodoamphetamine (INT). In 18 patients, SPECT identified areas of focal reduction in tracer uptake that correlated with the epileptogenic focus identified on the EEG. In addition, SPECT disclosed other areas of neurologic dysfunction as elicited on neuropsychological tests. Thus, IMP SPECT is a useful tool for localizing epileptogenic foci and their associated dynamic deficits

  19. Improved quantification in single-pinhole and multiple-pinhole SPECT using micro-CT information

    Vanhove, Christian; Bossuyt, Axel; Defrise, Michel; Lahoutte, Tony

    2009-01-01

    The purpose of this study was to demonstrate the feasibility of accurate quantification in pinhole SPECT using micro-CT information. Pinhole SPECT scans were performed using a clinical dual-head gamma camera. Each pinhole SPECT scan was followed by a micro-CT acquisition. Functional and anatomical images were coregistered using six point sources visible with both modalities. Pinhole SPECT images were reconstructed iteratively. Attenuation correction was based on micro-CT information. Scatter correction was based on dual and triple-energy window methods. Phantom and animal experiments were performed. A phantom containing nine vials was filled with different concentrations of 99m Tc. Three vials were also filled with CT contrast agent to increase attenuation. Activity concentrations measured on the pinhole SPECT images were compared with activity concentrations measured by the dose calibrator. In addition, 11 mice were injected with 99m Tc-labelled Nanobodies. After acquiring functional and anatomical images, the animals were killed and the liver activity was measured using a gamma-counter. Activity concentrations measured on the reconstructed images were compared with activity concentrations measured with the gamma counter. The phantom experiments demonstrated an average error of -27.3 ± 15.9% between the activity concentrations measured on the uncorrected pinhole SPECT images and in the dose calibrator. This error decreased significantly to -0.1 ± 7.3% when corrections were applied for nonuniform attenuation and scatter. The animal experiment revealed an average error of -18.4 ± 11.9% between the activity concentrations measured on the uncorrected pinhole SPECT images and measured with the gamma counter. This error decreased to -7.9 ± 10.4% when attenuation and scatter correction was applied. Attenuation correction obtained from micro-CT data in combination with scatter correction allows accurate quantification in pinhole SPECT. (orig.)

  20. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O.

    2007-01-01

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D 2 receptor SPECT findings in selected movement disorders. (orig.)

  1. Optimizing the photon selection of the CMS Single-Photon search for Supersymmetry using multivariate analyses

    Lange, Johannes

    2014-01-01

    The purpose of this thesis is to improve the photon selection of the CMS SinglePhoton search for Supersymmetry by using multivariate analyses.The Single-Photon search aims to find Supersymmetry (SUSY) in data taken by theCompact Muon Solenoid (CMS) detector at the Large Hadron Collider located atthe research center CERN. SUSY is an extension of the standard model of particlephysics. The search is designed for a general gauge mediation scenario, which describes the gauge mediated SUSY breaking. The analysis uses final states with jets,at least one photon and missing transverse energy. A data-driven prediction of themultijet background is performed for the analysis. For this purpose, photon candidates have to be classified into two selections.In this thesis the usage of multivariate analyses for the photon candidate classification is studied. The methods used are Fisher Discriminant, Boosted Decision Treesand Artificial Neural Networks. Their performance is evaluated with respect to different aspects impor...

  2. Single photon imaging at ultra-high resolution

    Bellazzini, R. [INFN sez. Pisa, Pisa (Italy); Spandre, G. [INFN sez. Pisa, Pisa (Italy)], E-mail: Gloria.Spandre@pi.infn.it; Minuti, M.; Brez, A.; Baldini, L.; Latronico, L.; Omodei, N.; Sgro, C.; Bregeon, J.; Razzano, M.; Pinchera, M. [INFN sez. Pisa, Pisa (Italy); Tremsin, A.; McPhate, J.; Vallerga, J.V.; Siegmund, O. [SSL, Berkeley (United States)

    2008-06-11

    We present a detection system capable of imaging both single photon/positive ion and multiple coincidence photons/positive ions with extremely high spatial resolution. In this detector the photoelectrons excited by the incoming photons are multiplied by microchannel plate(s) (MCP). The process of multiplication is spatially constrained within an MCP pore, which can be as small as 4 {mu}m for commercially available MCPs. An electron cloud originated by a single photoelectron is then encoded by a pixellated custom analog ASIC consisting of 105 K charge sensitive pixels of 50 {mu}m in size arranged on a hexagonal grid. Each pixel registers the charge with an accuracy of <100 electrons rms. Computation of the event centroid from the readout charges results in an accurate event position. A large number of simultaneous photons spatially separated by {approx}0.4 mm can be detected simultaneously allowing multiple coincidence operation for the experiments where a large number of incoming photons/positive ions have to be detected simultaneously. The experimental results prove that the spatial resolution of the readout system itself is {approx}3 {mu}m FWHM enabling detection resolution better than 6 {mu}m for the small pore MCPs. An attractive feature of the detection system is its capability to register the timing of each incoming photon/positive ion (in single photon detection mode) or of the first incoming particle (for the multiple coincidence detection) with an accuracy of {approx}130 ps FWHM. There is also virtually no dark count noise in the detection system making it suitable for low count rate applications.

  3. Subcortical aphasia and cerebral blood flow using SPECT

    Celsis, P.; Puel, M.; Demonet, J.P.; Bonafe, A.; Cardebat, D.; Viallard, G.; Pujol, T.; Marc-Vergnes, J.P.; Rascol, A.

    1985-01-01

    Possible cerebral blood flow (CBF) alteration in subcortical aphasia was investigated by single-photon emission tomography (SPECT). The results confirm the capsulo-striatal lesions and also point to the high rate of ipsilateral thalamic and cortical dysfunction. (author). 8 refs.; 1 fig.; 1 tab

  4. The intensity detection of single-photon detectors based on photon counting probability density statistics

    Zhang Zijing; Song Jie; Zhao Yuan; Wu Long

    2017-01-01

    Single-photon detectors possess the ultra-high sensitivity, but they cannot directly respond to signal intensity. Conventional methods adopt sampling gates with fixed width and count the triggered number of sampling gates, which is capable of obtaining photon counting probability to estimate the echo signal intensity. In this paper, we not only count the number of triggered sampling gates, but also record the triggered time position of photon counting pulses. The photon counting probability density distribution is obtained through the statistics of a series of the triggered time positions. Then Minimum Variance Unbiased Estimation (MVUE) method is used to estimate the echo signal intensity. Compared with conventional methods, this method can improve the estimation accuracy of echo signal intensity due to the acquisition of more detected information. Finally, a proof-of-principle laboratory system is established. The estimation accuracy of echo signal intensity is discussed and a high accuracy intensity image is acquired under low-light level environments. (paper)

  5. Protecting single-photon entanglement with practical entanglement source

    Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo

    2017-06-01

    Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

  6. Multi-group dynamic quantum secret sharing with single photons

    Liu, Hongwei [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Ma, Haiqiang, E-mail: hqma@bupt.edu.cn [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Wei, Kejin [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Yang, Xiuqing [School of Science, Beijing Jiaotong University, Beijing 100044 (China); Qu, Wenxiu; Dou, Tianqi; Chen, Yitian; Li, Ruixue; Zhu, Wu [School of Science and State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2016-07-15

    In this letter, we propose a novel scheme for the realization of single-photon dynamic quantum secret sharing between a boss and three dynamic agent groups. In our system, the boss can not only choose one of these three groups to share the secret with, but also can share two sets of independent keys with two groups without redistribution. Furthermore, the security of communication is enhanced by using a control mode. Compared with previous schemes, our scheme is more flexible and will contribute to a practical application. - Highlights: • A multi-group dynamic quantum secret sharing with single photons scheme is proposed. • Any one of the groups can be chosen to share secret through controlling the polarization of photons. • Two sets of keys can be shared simultaneously without redistribution.

  7. Semi-quantum Dialogue Based on Single Photons

    Ye, Tian-Yu; Ye, Chong-Qiang

    2018-02-01

    In this paper, we propose two semi-quantum dialogue (SQD) protocols by using single photons as the quantum carriers, where one requires the classical party to possess the measurement capability and the other does not have this requirement. The security toward active attacks from an outside Eve in the first SQD protocol is guaranteed by the complete robustness of present semi-quantum key distribution (SQKD) protocols, the classical one-time pad encryption, the classical party's randomization operation and the decoy photon technology. The information leakage problem of the first SQD protocol is overcome by the classical party' classical basis measurements on the single photons carrying messages which makes him share their initial states with the quantum party. The security toward active attacks from Eve in the second SQD protocol is guaranteed by the classical party's randomization operation, the complete robustness of present SQKD protocol and the classical one-time pad encryption. The information leakage problem of the second SQD protocol is overcome by the quantum party' classical basis measurements on each two adjacent single photons carrying messages which makes her share their initial states with the classical party. Compared with the traditional information leakage resistant QD protocols, the advantage of the proposed SQD protocols lies in that they only require one party to have quantum capabilities. Compared with the existing SQD protocol, the advantage of the proposed SQD protocols lies in that they only employ single photons rather than two-photon entangled states as the quantum carriers. The proposed SQD protocols can be implemented with present quantum technologies.

  8. Interictal brain SPECT in patients with medically refractory temporal lobe epilepsy; SPECT cerebral interictal em pacientes com epilepsia do lobo temporal de dificil controle

    Andraus, Maria Emilia Cosenza

    2000-06-01

    The brain single photon emission computed tomography (SPECT) is s functional neuroimaging method that can detect localized changes in cerebral blood flow. The temporal lobe epilepsy (TLE) is the most common epileptic syndrome in adults, and more than 50% are medically refractory. The SPECT can contribute to investigation of epileptogenic focus and is one of the methods of pre-surgical evaluation of these patients. (author)

  9. Coherent single-photon absorption by single emitters coupled to one-dimensional nanophotonic waveguides

    Chen, Yuntian; Wubs, Martijn; Mørk, Jesper

    2011-01-01

    -photon wavepacket can exceed 70%. This high value is a direct consequence of the high SE β-factor for emission into the waveguide. Finally, we have also explored whether waveguide dispersion could aid single-photon absorption by pulse shaping. For a Gaussian input wavepacket, we found that the absorption efficiency...

  10. Extramedullary pulmonary hematopoiesis causing pulmonary hypertension and severe tricuspid regurgitation detected by {sup 99m} technetium sulfur colloid bone marrow scan and single-photon emission computed tomography/CT

    Ali, Syed Zama; Clarke, Michael John; Kannivelu, Anbalagan; Chinchure, Dinesh; Srinivasan, Sivasubramanian [Dept. of Diagnostic Radiology, Khoo Teck Puat Hospital, Singapore (Singapore)

    2014-06-15

    Extramedullary pulmonary hematopoiesis is a rare entity with a limited number of case reports in the available literature only. We report the case of a 66-year-old man with known primary myelofibrosis, in whom a {sup 99m}technetium sulfur colloid bone marrow scan with single-photon emission computed tomography (SPECT)/CT revealed a pulmonary hematopoiesis as the cause of pulmonary hypertension and severe tricuspid regurgitation. To the best of our knowledge, this is the first description of {sup 99m} technetium sulfur colloid SPECT/CT imaging in this rare condition.

  11. Extramedullary pulmonary hematopoiesis causing pulmonary hypertension and severe tricuspid regurgitation detected by 99m technetium sulfur colloid bone marrow scan and single-photon emission computed tomography/CT

    Ali, Syed Zama; Clarke, Michael John; Kannivelu, Anbalagan; Chinchure, Dinesh; Srinivasan, Sivasubramanian

    2014-01-01

    Extramedullary pulmonary hematopoiesis is a rare entity with a limited number of case reports in the available literature only. We report the case of a 66-year-old man with known primary myelofibrosis, in whom a 99m technetium sulfur colloid bone marrow scan with single-photon emission computed tomography (SPECT)/CT revealed a pulmonary hematopoiesis as the cause of pulmonary hypertension and severe tricuspid regurgitation. To the best of our knowledge, this is the first description of 99m technetium sulfur colloid SPECT/CT imaging in this rare condition.

  12. Design and characterization of single photon avalanche diodes arrays

    Neri, L.; Tudisco, S.; Lanzanò, L.; Musumeci, F.; Privitera, S.; Scordino, A.; Condorelli, G.; Fallica, G.; Mazzillo, M.; Sanfilippo, D.; Valvo, G.

    2010-05-01

    During the last years, in collaboration with ST-Microelectronics, we developed a new avalanche photo sensor, single photon avalanche diode (SPAD) see Ref.[S. Privitera, et al., Sensors 8 (2008) 4636 [1];S. Tudisco et al., IEEE Sensors Journal 8 (2008) 1324 [2

  13. The physics of nanowire superconducting single-photon detectors

    Renema, Jelmer Jan

    2015-01-01

    We investigate the detection mechanism in superconducting single photon detectors via quantum detector tomography. We find that the detection event is caused by diffusion of quasiparticles from the absorption spot, combined with entrance of a vortex. Moreover, we investigate the behaviour of

  14. High-speed single-photon signaling for daytime QKD

    Bienfang, Joshua; Restelli, Alessandro; Clark, Charles

    2011-03-01

    The distribution of quantum-generated cryptographic key at high throughputs can be critically limited by the performance of the systems' single-photon detectors. While noise and afterpulsing are considerations for all single-photon QKD systems, high-transmission rate systems also have critical detector timing-resolution and recovery time requirements. We present experimental results exploiting the high timing resolution and count-rate stability of modified single-photon avalanche diodes (SPADs) in our GHz QKD system operating over a 1.5 km free-space link that demonstrate the ability to apply extremely short temporal gates, enabling daytime free-space QKD with a 4% QBER. We also discuss recent advances in gating techniques for InGaAs SPADs that are suitable for high-speed fiber-based QKD. We present afterpulse-probability measurements that demonstrate the ability to support single-photon count rates above 100 MHz with low afterpulse probability. These results will benefit the design and characterization of free-space and fiber QKD systems. A. Restelli, J.C. Bienfang A. Mink, and C.W. Clark, IEEE J. Sel. Topics in Quant. Electron 16, 1084 (2010).

  15. Directional emission of single photons from small atomic samples

    Miroshnychenko, Yevhen; V. Poulsen, Uffe; Mølmer, Klaus

    2013-01-01

    We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state i...... is coupled by a classical laser field to an optically excited state which rapidly decays to the ground atomic state. Our model accounts for the different field polarization components via re-absorption and emission of light by the Zeeman manifold of optically excited states.......We provide a formalism to describe deterministic emission of single photons with tailored spatial and temporal profiles from a regular array of multi-level atoms. We assume that a single collective excitation is initially shared by all the atoms in a metastable atomic state, and that this state...

  16. The usefulness of preoperative exercise stress myocardial single photon emission CT with thallium-201 to predict the responses to coronary revascularization

    Narita, Michihiro; Kurihara, Tadashi; Murano, Kenichi; Usami, Masahisa; Minamino, Takazoh; Katoh, Osamu; Higashino, Yorihiko.

    1989-01-01

    To evaluate the usefulness of preoperative exercise stress (Ex) myocardial single photon emission CT (SPECT) with thallium-201 to predict the responses to coronary revascularization (CRV), Ex-SPECT's were obtained in 42 patients with coronary artery disease (CAD). In 34 patients angioplasty was performed and in 18 patients coronary bypass surgery was undergone. Before and after CVR, Ex-SPECT's were obtained both at immediately after Ex (Initial) and 3 hours later (RD) by the rotating gamma camera. Initial images before CRV showed definite perfusion defects (+3) in 76 myocardial segments. Perfusion abnormalities at RD images were graded into (+3 to 0) by visual interpretation. '+3' indicated fixed defect and '0' indicated no perfusion abnormality. At RD images 17 segments showed fixed defect and 59 segments showed improved perfusion more than one grade. After CRV, all 59 segments with improved perfusion at RD images showed improvement of perfusion in comparison with initial images before CRV. Out of 17 segments with fixed defect before CRV, 14 segments showed perfusion defect with +3, while 3 segments showed improved perfusion after CRV. These 3 segments had ECG evidence of myocardial infarction. In these 3 segments, Ex-SPECT's before CRV showed abnormally low myocardial Tl washout rate (WOR) despite they indicated fixed defect visually. On the contrary, other 14 segments with fixed defect showed normal WOR before CRV. In conclusion, visually interpreted Ex-SPECT's before CRV predict the myocardial perfusion after CRV in most of cases. In a small number (especially infarction segments) Ex-SPECT's before CRV cannot predict the improvement of myocardial perfusion after CRV by visual inspection, but WOR abnormality before CRV is useful to prospect their results. (author)

  17. Behaviors of cost functions in image registration between 201Tl brain tumor single-photon emission computed tomography and magnetic resonance images

    Soma, Tsutomu; Takaki, Akihiro; Teraoka, Satomi; Ishikawa, Yasushi; Murase, Kenya; Koizumi, Kiyoshi

    2008-01-01

    We studied the behaviors of cost functions in the registration of thallium-201 ( 201 Tl) brain tumor single-photon emission computed tomography (SPECT) and magnetic resonance (MR) images, as the similarity index of image positioning. A marker for image registration [technetium-99m ( 99m Tc) point source] was attached at three sites on the heads of 13 patients with brain tumor, from whom 42 sets of 99m Tc- 201 Tl SPECT (the dual-isotope acquisition) and MR images were obtained. The 201 Tl SPECT and MR images were manually registered according to the markers. From the positions where the two images were registered, the position of the 201 Tl SPECT was moved to examine the behaviors of the three cost functions, i.e., ratio image uniformity (RIU), mutual information (MI), and normalized MI (NMI). The cost functions MI and NMI reached the maximum at positions adjacent to those where the SPECT and MR images were manually registered. As for the accuracy of image registration in terms of the cost functions MI and NMI, on average, the images were accurately registered within 3 deg of rotation around the X-, Y-, and Z-axes, and within 1.5 mm (within 2 pixels), 3 mm (within 3 pixels), and 4 mm (within 1 slice) of translation to the X-, Y-, and Z-axes, respectively. In terms of rotation around the Z-axis, the cost function RIU reached the minimum at positions where the manual registration of the two images was substantially inadequate. The MI and NMI were suitable cost functions in the registration of 201 Tl SPECT and MR images. The behavior of the RIU, in contrast, was unstable, being unsuitable as an index of image registration. (author)

  18. Adaptive Angular Sampling for SPECT Imaging

    Li, Nan; Meng, Ling-Jian

    2011-01-01

    This paper presents an analytical approach for performing adaptive angular sampling in single photon emission computed tomography (SPECT) imaging. It allows for a rapid determination of the optimum sampling strategy that minimizes image variance in regions-of-interest (ROIs). The proposed method consists of three key components: (a) a set of close-form equations for evaluating image variance and resolution attainable with a given sampling strategy, (b) a gradient-based algor...

  19. Cerebral blood flow single-photon emission tomography with 123I-IMP in vascular dementia

    Kawahata, Nobuya; Gotoh, Chiharu; Yokoyama, Sakura; Daitoh, Nobuyuki

    2001-01-01

    Cerebral blood flow differences between patients with vascular dementia, patients with multiple lacunar infarction without cognitive dysfunction, and age-matched controls were examined. Thirty four patients with vascular dementia (VD) were selected from consecutive referrals to the Memory Clinic at Narita Memorial Hospital. All the patients had routine assessment including history, physical and neurological examinations, neuropsychological assessment, blood tests, EEG, head MRI, and single photon emission computed tomography (SPECT). All of them fulfilled the NINDS-AIREN diagnostic criteria for vascular dementia. Thirty nine patients with multiple lacunar infarction without cognitive dysfunction and 110 age-matched controls were included in this study. Mean cerebral blood flow (mCBF) and regional cerebral blood flow (rCBF) were measured using N-isopropyl-P- 123 I-iodoamphetamine ( 123 I-IMP) and SPECT imager. The mCBF in VD was 27.6±5.3 ml/100 g/min, while those in the control group and multiple lacunar infarction without cognitive dysfunction were 36.6±6.1 ml/100 g/min and 32.5±5.5 ml/100 g/min, respectively. The patients with VD demonstrated significantly reduced mCBF and rCBF in twenty regions including both cerebellar hemispheres as compared with those of the control group. Although there was no significant rCBF differences in bilateral inferior occipital regions and the right cerebellar hemisphere between patients with VD and multiple lacunar infarction without cognitive dysfunction, we could find significant lower rCBF in the remaining brain areas. In spite of the severity of VD, the diffuse decrease of cerebral blood flow was recognized in all patients with VD. (author)

  20. Proton magnetic resonance spectroscopy and single photon emission CT in patients with olivopontocerebellar atrophy

    Ikuta, Naomi

    1998-01-01

    Using proton magnetic resonance spectroscopy ( 1 H-MRS) and single photon emission CT (SPECT), the cerebellum of patients with olivopontocerebellar atrophy (OPCA) and of age-matched control subjects was studied. A spectrum was collected from a 27 cm 3 (3 x 3 x 3 cm) voxel in the cerebellum containing white and gray matters in order to measure the distribution and relative signal intensities of N-acetylaspartate (NAA), creatine (Cre) and choline (Cho). In the cerebellum of the patients with OPCA, mean NAA/Cre ratios for OPCA patients were significantly decreased compared with normal control subjects (OPCA, 1.01±0.247; controls, 1.526±0.144: p<0.001). Mean NAA/Cho ratios for OPCA patients were slightly decreased (OPCA, 1.285±0.228; controls 1.702±0.469: p<0.06). Cho/Cre ratios valued in the cerebellum of OPCA patients were not significantly different from those in normal controls (OPCA, 0.793±0.186; controls, 0.946±0.219). The ratio of RI count in the cerebellum to that in the occipital lobe was significantly decreased in OPCA patients (OPCA, 0.947±0.096; controls, 1.06±0.063: p<0.01). Cerebellar signs were assessed including gait ataxia, limb ataxia, dysarthria, saccadic pursuit, and nystagmus separately or in combination. In patients with more severe ataxic gait and dysarthria, MRS revealed slightly lowered NAA/Cre ratio. There was no significant correlation between NAA/Cre ratio and severity of other clinical signs. The MRS and SPECT findings give a confirmative evidence of hypofunction in cerebellum of patients with OPCA. (author)

  1. Single photon detection with self-quenching multiplication

    Zheng, Xinyu (Inventor); Cunningham, Thomas J. (Inventor); Pain, Bedabrata (Inventor)

    2011-01-01

    A photoelectronic device and an avalanche self-quenching process for a photoelectronic device are described. The photoelectronic device comprises a nanoscale semiconductor multiplication region and a nanoscale doped semiconductor quenching structure including a depletion region and an undepletion region. The photoelectronic device can act as a single photon detector or a single carrier multiplier. The avalanche self-quenching process allows electrical field reduction in the multiplication region by movement of the multiplication carriers, thus quenching the avalanche.

  2. Single photon emission computed tomography by using fan beam collimator

    Akiyama, Yoshihisa

    1992-01-01

    A multislice fan beam collimator which has parallel collimation along the cephalic-caudul axis of a patient and converging collimation within planes that are perpendicular to that axis was designed for a SPECT system with a rotating scintillation camera, and it was constructed by the lead casting method which was developed in recent years. A reconstruction algorithm for fan beam SPECT was formed originally by combining the reconstruction algorithm of the parallel beam SPECT with that of the fan beam X-ray CT. The algorithm for fan beam SPECT was confirmed by means of computer simulation and a head phantom filled with diluted radionuclide. Not only 99m Tc but also 123 I was used as a radionuclide. A SPECT image with the fan beam collimator was compared with that of a parallel hole, low energy, high resolution collimator which was routinely used for clinical and research SPECT studies. Both system resolution and sensitivity of the fan beam collimator were ∼20% better than those of the parallel hole collimator. Comparing SPECT images obtained from fan beam collimator with those of parallel hole collimator, the SPECT images using fan beam collimator had far better resolution. A fan beam collimator is a useful implement for the SPECT study. (author)

  3. Single-Photon Source for Quantum Information Based on Single Dye Molecule Fluorescence in Liquid Crystal Host

    Lukishova, S.G.; Knox, R.P.; Freivald, P.; McNamara, A.; Boyd, R.W.; Stroud, Jr. C.R.; Schmid, A.W.; Marshall, K.L.

    2006-01-01

    This paper describes a new application for liquid crystals: quantum information technology. A deterministically polarized single-photon source that efficiently produces photons exhibiting antibunching is a pivotal hardware element in absolutely secure quantum communication. Planar-aligned nematic liquid crystal hosts deterministically align the single dye molecules which produce deterministically polarized single (antibunched) photons. In addition, 1-D photonic bandgap cholesteric liquid crystals will increase single-photon source efficiency. The experiments and challenges in the observation of deterministically polarized fluorescence from single dye molecules in planar-aligned glassy nematic-liquid-crystal oligomer as well as photon antibunching in glassy cholesteric oligomer are described for the first time

  4. Single-photon indistinguishability: influence of phonons

    Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka

    2012-01-01

    of indistinguishability, absent in the approximate theories. The maximum arises due to virtual processes in the highly non-Markovian short-time regime, which dominate the decoherence for small QD-cavity coupling, and phonon-mediated real transitions between the upper and lower polariton branches in the long-time regime......Recent years have demonstrated that the interaction with phonons plays an important role in semiconductor based cavity QED systems [2], consisting of a quantum dot (QD) coupled to a single cavity mode [Fig. 1(a)], where the phonon interaction is the main decoherence mechanism. Avoiding decoherence...... as a function of the QD-cavity coupling strength for light emitted from the QD and the cavity, respectively, for all the employed methods. Both the Lindblad and TCL theories deviate significantly from our exact results, where, importantly, the exact results predict a pronounced maximum in the degree...

  5. The Heisenberg picture for single photon states

    Pienaar, Jacques; Myers, Casey; Ralph, Timothy C.

    2011-01-01

    In the context of quantum field theory, the Heisenberg picture has a distinct advantage over the Schrodinger picture because the Schrodinger picture requires us to transform the vacuum state itself, which can be intractable in the case of non-inertial reference frames, whereas the Heisenberg picture allows us to keep the same vacuum state and only transform the operators. However, the Heisenberg calculation requires the operators to already be expressed as a function of creation and annihilation operators acting on the original vacuum, whereas calculations in quantum information and quantum computation use operators that act on qubit states, necessarily containing particles. The relationship between the operators acting on these states and the operators acting on the vacuum state has remained elusive. We derive such an expression using an explicit model for single-particle production from the vacuum.

  6. Non invasive evaluation of the coronary atherosclerosis illness in patients with silent ischemia: utility of the SPECT of myocardial perfusion. Electric, angiographic and image correlation; Valoracion no invasiva de la enfermedad ateroesclerosa coronaria en pacientes con isquemia silente: utilidad del SPECT de perfusion miocardica. Correlacion electrica, angiografica y de imagen

    Puente B, A.; Roffe G, F.; Aceves C, J.; Gomez A, E. [Hospital Centro Medico Nacional 20 de Noviembre, ISSSTE, Mexico D.F. (Mexico)

    2005-07-01

    The objective of the work was to determine the utility of the SPECT (Single Photon Emission Computerized Tomography) of myocardial perfusion for the ischemia detection in asymptomatic patients with Coronary Atherosclerosis Illness. It was concluded that the SPECT of myocardial perfusion has a high sensitivity (97%) for the silent ischemia diagnosis.

  7. Trapping a single atom with a fraction of a photon using a photonic crystal nanocavity

    van Oosten, D.; Kuipers, L.

    2011-01-01

    We consider the interaction between a single rubidium atom and a photonic crystal nanocavity. Because of the ultrasmall mode volume of the nanocavity, an extremely strong coupling regime can be achieved in which the atom can shift the cavity resonance by many cavity linewidths. We show that this

  8. High-efficiency single-photon source: The photonic wire geometry

    Claudon, J.; Bazin, Maela; Malik, Nitin S.

    2009-01-01

    We present a single-photon-source design based on the emission of a quantum dot embedded in a semiconductor (GaAs) nanowire. The nanowire ends are engineered (efficient metallic mirror and tip taper) to reach a predicted record-high collection efficiency of 90% with a realistic design. Preliminar...

  9. Tapered fiber coupling of single photons emitted by a deterministically positioned single nitrogen vacancy center

    Liebermeister, Lars, E-mail: lars.liebermeister@physik.uni-muenchen.de; Petersen, Fabian; Münchow, Asmus v.; Burchardt, Daniel; Hermelbracht, Juliane; Tashima, Toshiyuki [Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München (Germany); Schell, Andreas W.; Benson, Oliver [Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin (Germany); Meinhardt, Thomas; Krueger, Anke [Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg (Germany); Wilhelm Conrad Roentgen Research Center for Complex Materials Systems, Universität Würzburg, 97074 Würzburg (Germany); Stiebeiner, Ariane; Rauschenbeutel, Arno [Atominstitut, Technische Universität Wien, 1020 Wien (Austria); Weinfurter, Harald; Weber, Markus, E-mail: markusweber@lmu.de [Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 München (Germany); Max-Planck-Institut für Quantenoptik, 85748 Garching (Germany)

    2014-01-20

    A diamond nano-crystal hosting a single nitrogen vacancy (NV) center is optically selected with a confocal scanning microscope and positioned deterministically onto the subwavelength-diameter waist of a tapered optical fiber (TOF) with the help of an atomic force microscope. Based on this nano-manipulation technique, we experimentally demonstrate the evanescent coupling of single fluorescence photons emitted by a single NV-center to the guided mode of the TOF. By comparing photon count rates of the fiber-guided and the free-space modes and with the help of numerical finite-difference time domain simulations, we determine a lower and upper bound for the coupling efficiency of (9.5 ± 0.6)% and (10.4 ± 0.7)%, respectively. Our results are a promising starting point for future integration of single photon sources into photonic quantum networks and applications in quantum information science.

  10. Phonon number measurements using single photon opto-mechanics

    Basiri-Esfahani, S; Akram, U; Milburn, G J

    2012-01-01

    We describe a system composed of two coupled optical cavity modes with a coupling modulated by a bulk mechanical resonator. In addition, one of the cavity modes is irreversibly coupled to a single photon source. Our scheme is an opto-mechanical realization of the Jaynes–Cummings model where the qubit is a dual rail optical qubit while the bosonic degree of freedom is a matter degree of freedom realized as the bulk mechanical excitation. We show the possibility of engineering phonon number states of the mechanical oscillator in such a system by computing the conditional state of the mechanics after successive photon counting measurements. (paper)

  11. Quantum Secure Direct Communication with Authentication Expansion Using Single Photons

    Yang Jing; Wang Chuan; Zhang Ru

    2010-01-01

    In this paper we propose two quantum secure direct communication (QSDC) protocols with authentication. The authentication key expansion method is introduced to improve the life of the keys with security. In the first scheme, the third party, called Trent is introduced to authenticate the users that participate in the communication. He sends the polarized photons in blocks to authenticate communication parties Alice and Bob using the authentication keys. In the communication process, polarized single photons are used to serve as the carriers, which transmit the secret messages directly. The second QSDC process with authentication between two parties is also discussed.

  12. Multi-photon creation and single-photon annihilation of electron-positron pairs

    Hu, Huayu

    2011-04-27

    In this thesis we study multi-photon e{sup +}e{sup -} pair production in a trident process, and singlephoton e{sup +}e{sup -} pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e{sup +}e{sup -} pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e{sup +}e{sup -} plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e{sup +}e{sup -} dynamics at very high density. (orig.)

  13. Multi-photon creation and single-photon annihilation of electron-positron pairs

    Hu, Huayu

    2011-01-01

    In this thesis we study multi-photon e + e - pair production in a trident process, and singlephoton e + e - pair annihilation in a triple interaction. The pair production is considered in the collision of a relativistic electron with a strong laser beam, and calculated within the theory of laser-dressed quantum electrodynamics. A regularization method is developed systematically for the resonance problem arising in the multi-photon process. Total production rates, positron spectra, and relative contributions of different reaction channels are obtained in various interaction regimes. Our calculation shows good agreement with existing experimental data from SLAC, and adds further insights into the experimental findings. Besides, we study the process in a manifestly nonperturbative domain, whose accessibility to future all-optical experiments based on laser acceleration is shown. In the single-photon e + e - pair annihilation, the recoil momentum is absorbed by a spectator particle. Various kinematic configurations of the three incoming particles are examined. Under certain conditions, the emitted photon exhibits distinct angular and polarization distributions which could facilitate the detection of the process. Considering an equilibrium relativistic e + e - plasma, it is found that the single-photon process becomes the dominant annihilation channel for plasma temperatures above 3 MeV. Multi-particle correlation effects are therefore essential for the e + e - dynamics at very high density. (orig.)

  14. Initial Investigation of preclinical integrated SPECT and MR imaging.

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-02-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.

  15. Clinical application of SPECT and PET in cerebrovascular disease

    Ra, Young Shin

    2003-01-01

    Single photon emission computed tomography(SPECT) and positron emission tomography(PET) are modern imaging techniques that allow for both qualitative are quantitative assessment of hemodynamic changes in cerebrovascular diseases. SPECT has been becoming an indispensable method to investigate regional cerebral blood flow because equipment and isotope are easily available in most general hospitals. Acetazolamide stress SPECT has also been proved to be useful to evaluate the cerebrovascular reserve of occlusive cerebrovascular diseases and to select surgical candidate. PET has gained wide spread clinical use in the evaluation of the hemodynamic and metabolic consequences of extracranial or intracranial arterial obstructive disease despite its complexity and limited availability. PET has been established as an invaluable tool in the pathophysilogy investigation of acute ischemic stroke. The potentials, limitations, and clinical applications of SPECT and PET in various cerebrovascular diseases will be discussed in this article with reviews of literatures

  16. 99mTc-HMPAO SPECT in brain death

    Tsuchida, Tatsuro; Sadato, Norihiro; Nishizawa, Sadahiko

    1993-01-01

    Brain single photon emission computed tomography (SPECT) with 99m Tc-d,l-hexamethyl-propyleneamine oxime (HMPAO) was performed twice in a 78-year-old man clinically diagnosed as brain death according to the standard criteria of the Japanese Ministry of Welfare. The first brain SPECT demonstrated the tracer accumulation in the brain, indicating preserved cerebral blood flow. The second brain SPECT performed 3 days later revealed cessation of the blood flow. In patients with preserved cerebral blood flow, the diagnosis of brain death cannot be made, even if they meet the existing criteria, because previous report noted the recovery in some of those patients. Brain perfusion SPECT plays an important role as a confirmatory test for the diagnosis of brain death. (author)

  17. Clinical application of SPECT and PET in cerebrovascular disease

    Ra, Young Shin [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    2003-02-01

    Single photon emission computed tomography(SPECT) and positron emission tomography(PET) are modern imaging techniques that allow for both qualitative are quantitative assessment of hemodynamic changes in cerebrovascular diseases. SPECT has been becoming an indispensable method to investigate regional cerebral blood flow because equipment and isotope are easily available in most general hospitals. Acetazolamide stress SPECT has also been proved to be useful to evaluate the cerebrovascular reserve of occlusive cerebrovascular diseases and to select surgical candidate. PET has gained wide spread clinical use in the evaluation of the hemodynamic and metabolic consequences of extracranial or intracranial arterial obstructive disease despite its complexity and limited availability. PET has been established as an invaluable tool in the pathophysilogy investigation of acute ischemic stroke. The potentials, limitations, and clinical applications of SPECT and PET in various cerebrovascular diseases will be discussed in this article with reviews of literatures.

  18. SPECT og PET i neurobiologien

    Paulson, O.B.; Lassen, N.A.

    1997-01-01

    PET (positron emission tomography) and SPECT (single photon emission computed tomography) are isotopic methods in which the distribution is registered of radiolabelled tracers given in such small amounts that they are without effect on the organism or the organism's disposal of them. Thus, a series...... of important biological processes in the intact organism can be studied. The methods have been used in many disciplines but in particular for neurobiological research on the brain--e.g., the brain's regional blood circulation and mapping of the brain's functional structure. The methods have also been used...

  19. Area at risk can be assessed by iodine-123-meta-iodobenzylguanidine single-photon emission computed tomography after myocardial infarction: a prospective study.

    Hedon, Christophe; Huet, Fabien; Ben Bouallegue, Fayçal; Vernhet, Hélène; Macia, Jean-Christophe; Cung, Thien-Tri; Leclercq, Florence; Cade, Stéphane; Cransac, Frédéric; Lattuca, Benoit; Vandenberghe, D'Arcy; Bourdon, Aurélie; Benkiran, Meriem; Vauchot, Fabien; Gervasoni, Richard; D'estanque, Emmanuel; Mariano-Goulart, Denis; Roubille, François

    2018-02-01

    Myocardial salvage is an important surrogate endpoint to estimate the impact of treatments in patients with ST-segment elevation myocardial infarction (STEMI). The aim of this study was to evaluate the correlation between cardiac sympathetic denervation area assessed by single-photon emission computed tomography (SPECT) using iodine-123-meta-iodobenzylguanidine (I-MIBG) and myocardial area at risk (AAR) assessed by cardiac magnetic resonance (CMR) (gold standard). A total of 35 postprimary reperfusion STEMI patients were enrolled prospectively to undergo SPECT using I-MIBG (evaluates cardiac sympathetic denervation) and thallium-201 (evaluates myocardial necrosis), and to undergo CMR imaging using T2-weighted spin-echo turbo inversion recovery for AAR and postgadolinium T1-weighted phase sensitive inversion recovery for scar assessment. I-MIBG imaging showed a wider denervated area (51.1±16.0% of left ventricular area) in comparison with the necrosis area on thallium-201 imaging (16.1±14.4% of left ventricular area, Parea (P=0.23) and was adequately correlated (R=0.56, P=0.0002). Myocardial salvage evaluated by SPECT imaging (mismatch denervated but viable myocardium) was significantly higher than by CMR (P=0.02). In patients with STEMI, I-MIBG SPECT, assessing cardiac sympathetic denervation may precisely evaluate the AAR, providing an alternative to CMR for AAR assessment.

  20. 99mTc-Hexamethyl Propyleneamine Oxime Brain Perfusion Single Photon Emission Computed Tomography in Characterization of Dementia: An Initial Experience in Indian Clinical Practice

    Santra, Amburanjan; Sinha, Gaurav Kumar; Neogi, Rajarshi; Thukral, Ramesh Kumar

    2014-01-01

    There is a growing health burden in developing countries due to recent trends of increasing incidence of neurodegenerative diseases. To reduce the healthcare cost and effective management of dementia illness, early diagnosis, accurate differentiation and their progression assessment is becoming crucially important. We are utilizing 99m Tc-d, l-hexamethyl propyleneamine oxime (HMPAO) brain perfusion single photon emission computed tomography (SPECT) to characterize dementia on the basis of perfusion patterns and observed significant improvement in their management. Eleven patients (median age of 60 years range of 53-83 years) with clinical suspicion of dementia underwent 99m Tc-HMPAO brain perfusion SPECT. SPECT-computed tomography acquisition done, data are reconstructed, reviewed in three view and further processed in “neurogam” to get voxel based analysis and the comparison with age based normal database and surface mapping. Final diagnosis was done with clinical correlation. Four patients are diagnosed as Alzheimer's disease, two as frontotemporal dementia, one as dementia of Lewy bodies, two as vascular dementia and two as pseudodementia. All imaging findings are well-correlated with clinical background. Brain perfusion SPECT with HMPAO was very helpful to us in characterizing the patients of dementia by its perfusion pattern

  1. Prediction of left main or 3-vessel disease using myocardial perfusion reserve on dynamic thallium-201 single-photon emission computed tomography with a semiconductor gamma camera.

    Shiraishi, Shinya; Sakamoto, Fumi; Tsuda, Noriko; Yoshida, Morikatsu; Tomiguchi, Seiji; Utsunomiya, Daisuke; Ogawa, Hisao; Yamashita, Yasuyuki

    2015-01-01

    Myocardial perfusion imaging (MPI) may fail to detect balanced ischemia. We evaluated myocardial perfusion reserve (MPR) using Tl dynamic single-photon emission computed tomography (SPECT) and a novel cadmium zinc telluride (CZT) camera for predicting 3-vessel or left main coronary artery disease (CAD). METHODS AND RESULTS: A total of 55 consecutive patients with suspected CAD underwent SPECT-MPI and coronary angiography. The MPR index was calculated using the standard 2-compartment kinetic model. We analyzed the utility of MPR index, other SPECT findings, and various clinical variables. On multivariate analysis, MPR index and history of previous myocardial infarction (MI) predicted left main and 3-vessel disease. The area under the receiver operating characteristic curve was 0.81 for MPR index, 0.699 for history of previous MI, and 0.86 for MPR index plus history of previous MI. MPR index ≤1.5 yielded the highest diagnostic accuracy. Sensitivity, specificity, and accuracy were 86%, 78%, and 80%, respectively, for MPR index, 64%, 76%, 73% for previous MI, and 57%, 93%, and 84% for MPR index plus history of previous MI. Quantification of MPR using dynamic SPECT and a novel CZT camera may identify balanced ischemia in patients with left main or 3-vessel disease.

  2. Clinical value of iodine-123 beta-methyliodophenyl pentadecanoic acid (BMIPP) myocardial single photon emission computed tomography for predicting cardiac death among patients with chronic heart failure

    Sasaki, Ryu; Usui, Takashi; Mitani, Isao

    2003-01-01

    In the present study, the effectiveness of 123 I-β-methyliodophenyl pentadecanoic acid (BMIPP) single photon emission computed tomography (SPECT) for predicting cardiac death of patients with chronic heart failure was evaluated. Abnormalities of fatty acid metabolism are found in patients with chronic heart failure and BMIPP was developed as a tracer for scintigraphic assessment of myocardial fatty acid utilization. The study group comprised 74 patients with chronic heart failure with a left ventricular ejection fraction (LVEF) 201 Tl SPECT and BMIPP SPECT. The uptake of tracer was scored semiquantitatively from 0 (normal) to 4 (defect) in 20 segments and a total defect score (TDS) for all 20 segments was calculated. On planar images the mediastinum to heart count ratio (H/M) was calculated for the BMIPP and Tl studies, and the H/M BMIPP :H/M Tl (H/M BMIPP divided by H/M Tl ) was also calculated. The mean follow-up period was 660 days and there were 17 cases of cardiac death. Multivariate analysis identified H/M BMIPP :H/M Tl (p BMIPP :H/M Tl was situated to the left relative to LVEF. Analysis of the myocardial metabolism by BMIPP SPECT can predict the high-risk patients with chronic heart failure. (author)

  3. Diagnostic Performance of a Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography System With Low-Dose Technetium-99m as Assessed by Fractional Flow Reserve.

    Chikamori, Taishiro; Hida, Satoshi; Tanaka, Nobuhiro; Igarashi, Yuko; Yamashita, Jun; Shiba, Chie; Murata, Naotaka; Hoshino, Kou; Hokama, Yohei; Yamashina, Akira

    2016-04-25

    Although stress single-photon emission computed tomography (SPECT) using a cadmium-zinc-telluride (CZT) camera facilitates radiation dose reduction, only a few studies have evaluated its diagnostic accuracy in Japanese patients by applying fractional flow reserve (FFR) measurements. We prospectively evaluated 102 consecutive patients with suspected or known coronary artery disease with a low-dose stress/rest protocol ((99m)Tc radiotracer 185/370 MBq) using CZT SPECT. Within 3 months, coronary angiography was performed and a significant stenosis was defined as ≥90% diameter narrowing on visual estimation, or as a lesion of <90% and ≥ 50% stenosis with FFR ≤0.80. To detect individual coronary stenosis, the respective sensitivity, specificity, and accuracy were 86%, 75%, and 82% for left anterior descending artery stenosis, 76%, 81%, and 79% for left circumflex artery stenosis, and 87%, 92%, and 90% for right coronary artery stenosis. When limited to 92 intermediate stenotic lesions in which FFR was measured, stress SPECT showed 77% sensitivity, 91% specificity, and 84% accuracy, whereas the diagnostic value decreased to 52% sensitivity, 68% specificity, and 58% accuracy based only on visual estimation of ≥75% diameter narrowing. CZT SPECT demonstrated a good diagnostic yield in detecting hemodynamically significant coronary stenoses as assessed by FFR, even when using a low-dose (99m)Tc protocol with an effective dose ≤5 mSv. (Circ J 2016; 80: 1217-1224).

  4. Skull base osteomyelitis in otitis externa: The utility of triphasic and single photon emission computed tomography/computed tomography bone scintigraphy

    Chakraborty, Dhritiman; Bhattacharya, Anish; Gupta, Ashok Kumar; Panda, Naresh Kumar; Das, Ashim; Mittal, Bhagwant Rai

    2013-01-01

    Skull base osteomyelitis (SBO) refers to infection that has spread beyond the external auditory canal to the base of the skull in advanced stages of otitis externa. Clinically, it may be difficult to differentiate SBO from severe otitis externa without bony involvement. This study was performed to determine the role of three phase bone scintigraphy (TPBS) and single photon emission tomography/computed tomography (SPECT/CT) in detecting SBO. We retrospectively analyzed records of 20 patients (14 M, 6 F) with otitis externa and suspected SBO. TPBS and SPECT/CT of the skull were performed. Findings were correlated with clinical, laboratory and diagnostic CT scan findings. All patients were diabetic with elevated erythrocyte sedimentation rate. A total of 18 patients had bilateral and two unilateral symptoms. Cranial nerves were involved in eight patients and microbiological culture of ear discharge fluid positive in seven. Early images showed increased temporal vascularity in nine patients and increased soft-tissue uptake in 10, while delayed images showed increased bone uptake in 19/20 patients. Localized abnormal tracer uptake was shown by SPECT/CT in the mastoid temporal (15), petrous (11), sphenoid (3) and zygomatic (1) and showed destructive changes in five. Thus, TPBS was found positive for SBO in 10/20 patients and changed the management in four. Our study suggests that TPBS with SPECT/CT is a useful non-invasive investigation for detection of SBO in otitis externa

  5. Advanced time-correlated single photon counting applications

    Becker, Wolfgang

    2015-01-01

    This book is an attempt to bridge the gap between the instrumental principles of multi-dimensional time-correlated single photon counting (TCSPC) and typical applications of the technique. Written by an originator of the technique and by sucessful users, it covers the basic principles of the technique, its interaction with optical imaging methods and its application to a wide range of experimental tasks in life sciences and clinical research. The book is recommended for all users of time-resolved detection techniques in biology, bio-chemistry, spectroscopy of live systems, live cell microscopy, clinical imaging, spectroscopy of single molecules, and other applications that require the detection of low-level light signals at single-photon sensitivity and picosecond time resolution.

  6. Single photon energy dispersive x-ray diffraction

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S.; Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H.; Tang, Henry

    2014-01-01

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored

  7. Single photon energy dispersive x-ray diffraction

    Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S. [Department of Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Tang, Henry [Department of Earth and Planetary Science, University of California Berkeley, Berkeley, California 94720 (United States)

    2014-03-15

    With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.

  8. Near-unity efficiency, single-photon sources based on tapered photonic nanowires

    Bleuse, Joël; Munsch, Mathieu; Claudon, Julien

    2012-01-01

    Single-photon emission from excitons in InAs Quantum Dots (QD) embedded in GaAs Tapered Photonic Wires (TPW) already demonstrated a 0.72 collection efficiency, with TPWs were the apex is the sharp end of the cone. Going to alternate designs, still based on the idea of the adiabatic deconfinement...... of the quasi-Gaussian emission mode, but with inverted TPW where the apex is the cone's base, leads to even larger efficiencies. In addition, these inverted TPWs make the electric pumping of the emitters compatible with these large efficiencies....

  9. On-chip single photon filtering and multiplexing in hybrid quantum photonic circuits.

    Elshaari, Ali W; Zadeh, Iman Esmaeil; Fognini, Andreas; Reimer, Michael E; Dalacu, Dan; Poole, Philip J; Zwiller, Val; Jöns, Klaus D

    2017-08-30

    Quantum light plays a pivotal role in modern science and future photonic applications. Since the advent of integrated quantum nanophotonics different material platforms based on III-V nanostructures-, colour centers-, and nonlinear waveguides as on-chip light sources have been investigated. Each platform has unique advantages and limitations; however, all implementations face major challenges with filtering of individual quantum states, scalable integration, deterministic multiplexing of selected quantum emitters, and on-chip excitation suppression. Here we overcome all of these challenges with a hybrid and scalable approach, where single III-V quantum emitters are positioned and deterministically integrated in a complementary metal-oxide-semiconductor-compatible photonic circuit. We demonstrate reconfigurable on-chip single-photon filtering and wavelength division multiplexing with a foot print one million times smaller than similar table-top approaches, while offering excitation suppression of more than 95 dB and efficient routing of single photons over a bandwidth of 40 nm. Our work marks an important step to harvest quantum optical technologies' full potential.Combining different integration platforms on the same chip is currently one of the main challenges for quantum technologies. Here, Elshaari et al. show III-V Quantum Dots embedded in nanowires operating in a CMOS compatible circuit, with controlled on-chip filtering and tunable routing.

  10. Efficient fiber-coupled single-photon source based on quantum dots in a photonic-crystal waveguide

    Daveau, Raphaël S.; Balram, Krishna C.; Pregnolato, Tommaso

    2017-01-01

    Many photonic quantum information processing applications would benefit from a high brightness, fiber-coupled source of triggered single photons. Here, we present a fiber-coupled photonic-crystal waveguide (PCWG) singlephoton source relying on evanescent coupling of the light field from a tapered...

  11. 1-123 iodoamphetamine SPECT findings in paranoid schizophrenia

    Simon, T.R.; Walker, B.S.; Matthieson, S.; Miller, C.D.; Raese, J.

    1989-01-01

    To find out if frontal metabolic and cerebral blood flow differ between normal subjects and patients with paranoid schizophrenia (PAR), the authors have examined regional synaptic amine metabolism. Using [I- 123]iodoamphetamine (IMP), the authors compared 85 subjects (61 PAR patients and 24 normal subjects) with single-head single-photon emission CT (SPECT). Virtually automatic analysis assigned relative tracer uptake to the frontal, anterior temporoparietal (TP), and posterior TP regions. Consistent with the visual inspection of two clinicians familiar with SPECT IMP images, this objective method yielded T-tests that showed higher relative frontal lobe ratios in normal subjects than in PAR patients (P =.03)

  12. Brain perfusion SPECT in children with frequent fits

    Heiskala, H.; Launes, J.; Pihko, H.; Nikkinen, P.; Santavuori, P.

    1993-01-01

    We studied 14 children with frequent fits using 99m Tc-HM-PAO single photon emission computed tomography (SPECT). There were 11 patients with partial secondary generalized epilepsy (PSGE) and 3 with Lennox-Gastaut syndrome (LGS). The typical regional cerebral blood flow (rCBF) finding in PSGE was a single area of abnormally low perfused cortex, and that in LGS, multiple hypoperfused areas. Clinically, the LGS patients were more severely affected. SPECT was more sensitive in detecting abnormalities than EEG, CT or MRI. Extensive impairment of rCBF may thus indicate unfavourable development of intellectual performance and poor seizure control. (author)

  13. Quantitative assessment of 201TlCl myocardial SPECT

    Uehara, Toshiisa

    1987-01-01

    Clinical evaluation of the quantitative analysis of Tl-201 myocardial tomography by SPECT (Single Photon Emission Computed Tomography) was performed in comparison with visual evaluation. The method of quantitative analysis has been already reported in our previous paper. In this study, the program of re-standardization in the case of lateral myocardial infarction was added. This program was useful mainly for the evaluation of lesions in the left circumflex coronary artery. Regarding the degree of diagnostic accuracy of myocardial infarction in general, quantitative evaluation of myocardial SPECT images was highest followed by visual evaluation of myocardial SPECT images, and visual evaluation of myocardial planar images. However, in the case of anterior myocardial infarction, visual evaluation of myocardial SPECT images has almost the same detectability as quantitative evaluation of myocardial SPECT images. In the case of infero-posterior myocardial infarction, quantitative evaluation was superior to visual evaluation. As for specificity, quantitative evaluation of SPECT images was slightly inferior to visual evaluation of SPECT images. An infarction map was made by quantitative analysis and this enabled us to determine the infarction site, extent and degree according to easily recognizable patterns. As a result, the responsible coronary artery lesion could be inferred correctly and the calculated infarction score could be correlated with the residual left ventricular function after myocardial infarction. (author)

  14. SPECT/CT Fusion in the Diagnosis of Hyperparathyroidism

    Monzen, Yoshio; Tamura, Akihisa; Okazaki, Hajime; Kurose, Taichi; Kobayashi, Masayuki; Kuraoka, Masatsugu

    2015-01-01

    In this study, we aimed to analyze the relationship between the diagnostic ability of fused single photon emission computed tomography/ computed tomography (SPECT/CT) images in localization of parathyroid lesions and the size of adenomas or hyperplastic glands. Five patients with primary hyperparathyroidism (PHPT) and 4 patients with secondary hyperparathyroidism (SHPT) were imaged 15 and 120 minutes after the intravenous injection of technetium99m-methoxyisobutylisonitrile ( 99m Tc-MIBI). All patients underwent surgery and 5 parathyroid adenomas and 10 hyperplastic glands were detected. Pathologic findings were correlated with imaging results. The SPECT/CT fusion images were able to detect all parathyroid adenomas even with the greatest axial diameter of 0.6 cm. Planar scintigraphy and SPECT imaging could not detect parathyroid adenomas with an axial diameter of 1.0 to 1.2 cm. Four out of 10 (40%) hyperplastic parathyroid glands were diagnosed, using planar and SPECT imaging and 5 out of 10 (50%) hyperplastic parathyroid glands were localized, using SPECT/CT fusion images. SPECT/CT fusion imaging is a more useful tool for localization of parathyroid lesions, particularly parathyroid adenomas, in comparison with planar and or SPECT imaging

  15. Incremental value of regional wall motion analysis immediately after exercise for the detection of single-vessel coronary artery disease. Study by separate acquisition, dual-isotope ECG-gated single-photon emission computed tomography

    Yoda, Shunichi; Sato, Yuichi; Matsumoto, Naoya; Tani, Shigemasa; Takayama, Tadateru; Uchiyama, Takahisa; Saito, Satoshi

    2005-01-01

    Although the detection of wall motion abnormalities gives incremental value to myocardial perfusion single-photon emission computed tomography (SPECT) in the diagnosis of extensive coronary artery disease (CAD) and high-grade single-vessel CAD, whether or not it is useful in the diagnosis of mild, single-vessel CAD has not been studied previously. Separate acquisition, dual isotope electrocardiogram (ECG)-gated SPECT was performed in 97 patients with a low likelihood of CAD (Group 1) and 46 patients with single-vessel CAD (Group 2). Mild CAD was defined by stenosis of 50-75% (Group 2a, n=22) and moderate to severe CAD was defined by stenosis ≥76% (Group 2b, n=24). Myocardial perfusion and wall motion were graded by a 5 point-scale, 20-segment model. The sensitivity of myocardial perfusion alone was 50% for Group 2a, 83% for Group 2b and 67% for Group 2 as a whole. The overall specificity was 90%. When the wall motion analysis was combined, the sensitivity was increased to 82% in Group 2a and 92% in Group 2b. The ability to detect a wall motion abnormality immediately after exercise gives incremental diagnostic value to myocardial perfusion SPECT in the identification of mild, single-vessel CAD. (author)

  16. Localization of functioning parathyroid adenomas by SPECT/CT. Report of two cases

    Pruzzo C, Rossana; Amaral P, Horacio; Rossi F, Ricardo; Morales K, Barbara; Martinez G, M.Eugenia

    2013-01-01

    Single photon emission computed tomography and computed tomography (SPECT/CT), integrates a gamma camera and a CT scan and is effective for the location of parathyroid adenomas. We report a 55 years old male and a 80 years old female with primary hyperparathyroidism. In both cases the 99m Tc-Sestamibi parathyroid scintigraphy detected a functioning nodule whose presence was confirmed with SPECT/CT

  17. Gallium SPECT detection of neoplastic intravascular obstruction of the superior vena cava

    Swayne, L.C.; Kaplan, I.L.

    1989-01-01

    A rare case of an intravascular neoplastic obstruction of the superior vena cava is discussed. The lesion was detected with gallium single photon emission computed tomography (SPECT) despite a normal appearance on a concurrent radiographic CT study. A computer-generated composite SPECT-CT image confirmed the intravascular localization of the radioisotope, and a subsequent CT-guided transthoracic needle biopsy revealed a poorly differentiated adenocarcinoma

  18. Interictal brain SPECT in patients with medically refractory temporal lobe epilepsy

    Andraus, Maria Emilia Cosenza

    2000-06-01

    The brain single photon emission computed tomography (SPECT) is s functional neuroimaging method that can detect localized changes in cerebral blood flow. The temporal lobe epilepsy (TLE) is the most common epileptic syndrome in adults, and more than 50% are medically refractory. The SPECT can contribute to investigation of epileptogenic focus and is one of the methods of pre-surgical evaluation of these patients. (author)

  19. Nonclassicality characterization in photon statistics based on binary-response single-photon detection

    Guo Yanqiang; Yang Rongcan; Li Gang; Zhang Pengfei; Zhang Yuchi; Wang Junmin; Zhang Tiancai

    2011-01-01

    By employing multiple conventional single-photon counting modules (SPCMs), which are binary-response detectors, instead of photon number resolving detectors, the nonclassicality criteria are investigated for various quantum states. The bounds of the criteria are derived from a system based on three or four SPCMs. The overall efficiency and background are both taken into account. The results of experiments with thermal and coherent light agree with the theoretical analysis. Compared with photon number resolving detectors, the use of a Hanbury Brown-Twiss-like scheme with multiple SPCMs is even better for revealing the nonclassicality of the fields, and the efficiency requirements are not so stringent. Some proposals are presented which can improve the detection performance with binary-response SPCMs for different quantum states.

  20. SPECT in patients with cortical visual loss.

    Silverman, I E; Galetta, S L; Gray, L G; Moster, M; Atlas, S W; Maurer, A H; Alavi, A

    1993-09-01

    Single-photon emission computed tomography (SPECT) with 99mTc-hexamethylpropyleneamine oxime (HMPAO) was used to investigate changes in cerebral blood flow in seven patients with cortical visual impairment. Traumatic brain injury (TBI) was the cause of cortical damage in two patients, cerebral ischemia in two patients and carbon monoxide (CO) poisoning, status epilepticus and Alzheimer's Disease (AD) each in three separate patients. The SPECT scans of the seven patients were compared to T2-weighted magnetic resonance image (MRI) scans of the brain to determine the correlation between functional and anatomical findings. In six of the seven patients, the qualitative interpretation of the SPECT studies supported the clinical findings (i.e., the visual field defect) by revealing altered regional cerebral blood flow (rCBF) in the appropriate regions of the visual pathway. MR scans in all of the patients, on the other hand, were either normal or disclosed smaller lesions than those detected by SPECT. We conclude that SPECT may reveal altered rCBF in patients with cortical visual impairment of various etiologies, even when MRI studies are normal or nondiagnostic.