WorldWideScience

Sample records for spect imaging ligands

  1. Labeled receptor ligands for spect

    International Nuclear Information System (INIS)

    Kung, H.F.

    1989-01-01

    Receptor specific imaging agents for single photon emission computed tomography (SPECT) can potentially be useful in the understanding of basic biochemistry and pharmacology of receptors. SPECT images may also provide tools for evaluation of density and binding kinetics of a specific receptor, information important for diagnosis and patient management. Basic requirements for receptor imaging agents are: (a) they are labeled with short-lived isotopes, (b) they show high selectivity and specific uptake, (c) they exhibit high target/background ratio, and (d) they can be modeled to obtain quantitative information. Several good examples of CNS receptor specific ligands labeled with I-123 have been developed, including iodoQNB, iodoestrogen iodobenzadiazepine, iodobenazepine, iodobenzamides for muscarinic, estrogen benzadiazepine, D-1 and D-2 dopamine receptors. With the advent of newer and faster SPECT imaging devices, it may be feasible to quantitate the receptor density by in vivo imaging techniques. These new brain imaging agents can provide unique diagnostic information, which may not be available through other imaging modalities, such as CT and MRI

  2. Molecular imaging agents for SPECT (and SPECT/CT)

    International Nuclear Information System (INIS)

    Gnanasegaran, Gopinath; Ballinger, James R.

    2014-01-01

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  3. Molecular imaging agents for SPECT (and SPECT/CT)

    Energy Technology Data Exchange (ETDEWEB)

    Gnanasegaran, Gopinath [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); Ballinger, James R. [Guy' s and St Thomas' NHS Foundation Trust, Department of Nuclear Medicine, London (United Kingdom); King' s College London, Division of Imaging Sciences and Biomedical Engineering, London (United Kingdom)

    2014-05-15

    The development of hybrid single photon emission computed tomography/computed tomography (SPECT/CT) cameras has increased the diagnostic value of many existing single photon radiopharmaceuticals. Precise anatomical localization of lesions greatly increases diagnostic confidence in bone imaging of the extremities, infection imaging, sentinel lymph node localization, and imaging in other areas. Accurate anatomical localization is particularly important prior to surgery, especially involving the parathyroid glands and sentinel lymph node procedures. SPECT/CT plays a role in characterization of lesions, particularly in bone scintigraphy and radioiodine imaging of metastatic thyroid cancer. In the development of novel tracers, SPECT/CT is particularly important in monitoring response to therapies that do not result in an early change in lesion size. Preclinical SPECT/CT devices, which actually have spatial resolution superior to PET/CT devices, have become essential in characterization of the biodistribution and tissue kinetics of novel tracers, allowing coregistration of serial studies within the same animals, which serves both to reduce biological variability and reduce the number of animals required. In conclusion, SPECT/CT increases the utility of existing radiopharmaceuticals and plays a pivotal role in the evaluation of novel tracers. (orig.)

  4. Imaging neurochemistry of cerebrovascular disease with PET and SPECT

    International Nuclear Information System (INIS)

    Hatazawa, J.; Shimosegawa, E.

    1998-01-01

    Pathophysiology od cerebrovascular disease has been studied by measuring cerebral blood flow and energy metabolism using single photon emission computed tomography (SPECT) and positron emission tomography (PET). These parameters are measures for brain tissue consisting of heterogeneous components such as neurons, glial cells, and blood vessels. It is still difficult to evaluate brain damages specifically involving either neurons or other components. Several trials were recently conducted to visualize neuron-specific injury in cerebrovascular disease by means of 11 C flumazenil for PET and 123 I-iomazenil for SPECT. These tracers selectively bind to central benzodiazepine receptor which is purely neuronal. A reduced accumulation of these ligands was found in the area surrounding the complete infarction and in the cortex remote from putaminal hemorrhage, indicating the existence of neuron specific injury not visualized by CT and MR. Neurological deficits were well correlated with the loss of cortical accumulation of these ligands. These preliminary studies indicated a potential of neurochemical imaging in cerebrovascular disease. Vulnerability to ischemia which may differ among brain tissue components, among subpopulations of neurons, and among pre-synaptic and post-synaptic functions can be more precisely examined. Neurochemical imaging can be also applied to reveal releases and re-organization of each neurotransmitter-acceptor system after stroke

  5. Imaging neurochemistry of cerebrovascular disease with PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Hatazawa, J.; Shimosegawa, E. [Akita Research Institute of Brain and Blood Vessels, Akita (Japan). Dept. of Radiology and Nuclear Medicine

    1998-09-01

    Pathophysiology od cerebrovascular disease has been studied by measuring cerebral blood flow and energy metabolism using single photon emission computed tomography (SPECT) and positron emission tomography (PET). These parameters are measures for brain tissue consisting of heterogeneous components such as neurons, glial cells, and blood vessels. It is still difficult to evaluate brain damages specifically involving either neurons or other components. Several trials were recently conducted to visualize neuron-specific injury in cerebrovascular disease by means of {sup 11}C flumazenil for PET and {sup 123}I-iomazenil for SPECT. These tracers selectively bind to central benzodiazepine receptor which is purely neuronal. A reduced accumulation of these ligands was found in the area surrounding the complete infarction and in the cortex remote from putaminal hemorrhage, indicating the existence of neuron specific injury not visualized by CT and MR. Neurological deficits were well correlated with the loss of cortical accumulation of these ligands. These preliminary studies indicated a potential of neurochemical imaging in cerebrovascular disease. Vulnerability to ischemia which may differ among brain tissue components, among subpopulations of neurons, and among pre-synaptic and post-synaptic functions can be more precisely examined. Neurochemical imaging can be also applied to reveal releases and re-organization of each neurotransmitter-acceptor system after stroke.

  6. EANM procedure guidelines for brain neurotransmission SPECT/PET using dopamine D2 receptor ligands, version 2

    DEFF Research Database (Denmark)

    Van Laere, Koen; Varrone, Andrea; Booij, Jan

    2010-01-01

    receptor SPECT or PET studies, and to achieve a high quality standard of dopamine D2 receptor imaging, which will increase the impact of this technique in neurological practice.The present document is an update of the first guidelines for SPECT using D2 receptor ligands labelled with (123)I [1......The guidelines summarize the current views of the European Association of Nuclear Medicine Neuroimaging Committee (ENC). The aims of the guidelines are to assist nuclear medicine practitioners in making recommendations, performing, interpreting and reporting the results of clinical dopamine D2......] and was guided by the views of the Society of Nuclear Medicine Brain Imaging Council [2], and the individual experience of experts in European countries. The guidelines intend to present information specifically adapted to European practice. The information provided should be taken in the context of local...

  7. SP-ECT imaging and its physical study

    International Nuclear Information System (INIS)

    Kinoshita, Fujimi

    1983-01-01

    Recently, more than a hundred hospitals are provided with SPECT system for clinical examination in Japan. However, a standardization of measuring method and performance test of the systems is ont yet made. We have been studying some basic problems of SPECT system with special phantoms originaly designed by ourselves. We got a conclusion that a standardized phantom is necessary for comparing performances between SPECT systems. In clinical experiences with 3,332 cases, we think that SPECT image combined with conventional image presents much more informations for accurate diagnosis, especially in brain, bone and tumor imagings. Synthesized image of SPECT and XCT, double tracer image and transmission image are useful to visualize the body contour and the clinical diagnosis. (author)

  8. SPECT and PET imaging in epilepsy

    International Nuclear Information System (INIS)

    Semah, F.

    2007-01-01

    Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging are very useful for the management of patients with medically refractory partial epilepsy. Presurgical evaluation of patients with medically refractory partial epilepsy often included PET imaging using FDG. The use of SPECT in these patients adds some more information and gives the clinicians the possibility of having ictal imaging. Furthermore, PET and SPECT imaging are performed to better understand the pathophysiology of epilepsy. (authors)

  9. Brain spect imaging

    International Nuclear Information System (INIS)

    Lee, R.G.L.; Hill, T.C.; Holman, B.L.

    1989-01-01

    This paper discusses how the rapid development of single-photon radiopharmaceuticals has given new life to tomographic brain imaging in nuclear medicine. Further developments in radiopharmaceuticals and refinements in neuro-SPECT (single-photon emission computed tomography) instrumentation should help to reinstate brain scintigraphy as an important part of neurologic diagnosis. SPECT of the brain evolved from experimentation using prototype instrumentation during the early 1960s. Although tomographic studies provided superior diagnostic accuracy when compared to planar techniques, the arrival of X-ray CT of the head resulted in the rapid demise of technetium brain imaging

  10. Ventilation/perfusion SPECT or SPECT/CT for lung function imaging in patients with pulmonary emphysema?

    Science.gov (United States)

    Froeling, Vera; Heimann, Uwe; Huebner, Ralf-Harto; Kroencke, Thomas J; Maurer, Martin H; Doellinger, Felix; Geisel, Dominik; Hamm, Bernd; Brenner, Winfried; Schreiter, Nils F

    2015-07-01

    To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.

  11. Small animal SPECT and its place in the matrix of molecular imaging technologies

    International Nuclear Information System (INIS)

    Meikle, Steven R; Kench, Peter; Kassiou, Michael; Banati, Richard B

    2005-01-01

    Molecular imaging refers to the use of non-invasive imaging techniques to detect signals that originate from molecules, often in the form of an injected tracer, and observe their interaction with a specific cellular target in vivo. Differences in the underlying physical principles of these measurement techniques determine the sensitivity, specificity and length of possible observation of the signal, characteristics that have to be traded off according to the biological question under study. Here, we describe the specific characteristics of single photon emission computed tomography (SPECT) relative to other molecular imaging technologies. SPECT is based on the tracer principle and external radiation detection. It is capable of measuring the biodistribution of minute ( -10 molar) concentrations of radio-labelled biomolecules in vivo with sub-millimetre resolution and quantifying the molecular kinetic processes in which they participate. Like some other imaging techniques, SPECT was originally developed for human use and was subsequently adapted for imaging small laboratory animals at high spatial resolution for basic and translational research. Its unique capabilities include (i) the ability to image endogenous ligands such as peptides and antibodies due to the relative ease of labelling these molecules with technetium or iodine (ii) the ability to measure relatively slow kinetic processes (compared with positron emission tomography, for example) due to the long half-life of the commonly used isotopes and (iii) the ability to probe two or more molecular pathways simultaneously by detecting isotopes with different emission energies. In this paper, we review the technology developments and design tradeoffs that led to the current state-of-the-art in SPECT small animal scanning and describe the position SPECT occupies within the matrix of molecular imaging technologies. (topical review)

  12. SPECT/CT workflow and imaging protocols

    Energy Technology Data Exchange (ETDEWEB)

    Beckers, Catherine [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Hustinx, Roland [University Hospital of Liege, Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, Liege (Belgium); Domaine Universitaire du Sart Tilman, Service de Medecine Nucleaire et Imagerie Oncologique, CHU de Liege, Liege (Belgium)

    2014-05-15

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  13. SPECT/CT workflow and imaging protocols

    International Nuclear Information System (INIS)

    Beckers, Catherine; Hustinx, Roland

    2014-01-01

    Introducing a hybrid imaging method such as single photon emission computed tomography (SPECT)/CT greatly alters the routine in the nuclear medicine department. It requires designing new workflow processes and the revision of original scheduling process and imaging protocols. In addition, the imaging protocol should be adapted for each individual patient, so that performing CT is fully justified and the CT procedure is fully tailored to address the clinical issue. Such refinements often occur before the procedure is started but may be required at some intermediate stage of the procedure. Furthermore, SPECT/CT leads in many instances to a new partnership with the radiology department. This article presents practical advice and highlights the key clinical elements which need to be considered to help understand the workflow process of SPECT/CT and optimise imaging protocols. The workflow process using SPECT/CT is complex in particular because of its bimodal character, the large spectrum of stakeholders, the multiplicity of their activities at various time points and the need for real-time decision-making. With help from analytical tools developed for quality assessment, the workflow process using SPECT/CT may be separated into related, but independent steps, each with its specific human and material resources to use as inputs or outputs. This helps identify factors that could contribute to failure in routine clinical practice. At each step of the process, practical aspects to optimise imaging procedure and protocols are developed. A decision-making algorithm for justifying each CT indication as well as the appropriateness of each CT protocol is the cornerstone of routine clinical practice using SPECT/CT. In conclusion, implementing hybrid SPECT/CT imaging requires new ways of working. It is highly rewarding from a clinical perspective, but it also proves to be a daily challenge in terms of management. (orig.)

  14. Clinical assessment of SPECT/CT co-registration image fusion

    International Nuclear Information System (INIS)

    Zhou Wen; Luan Zhaosheng; Peng Yong

    2004-01-01

    Objective: Study the methodology of the SPECT/CT co-registration image fusion, and Assessment the Clinical application value. Method: 172 patients who underwent SPECT/CT image fusion during 2001-2003 were studied, 119 men, 53 women. 51 patients underwent 18FDG image +CT, 26 patients underwent 99m Tc-RBC Liver pool image +CT, 43 patients underwent 99mTc-MDP Bone image +CT, 18 patients underwent 99m Tc-MAA Lung perfusion image +CT. The machine is Millium VG SPECT of GE Company. All patients have been taken three steps image: X-ray survey, X-ray transmission and nuclear emission image (Including planer imaging, SPECT or 18 F-FDG of dual head camera) without changing the position of the patients. We reconstruct the emission image with X-ray map and do reconstruction, 18FDG with COSEM and 99mTc with OSEM. Then combine the transmission image and the reconstructed emission image. We use different process parameters in deferent image methods. The accurate rate of SPECT/CT image fusion were statistics, and compare their accurate with that of single nuclear emission image. Results: The nuclear image which have been reconstructed by X-ray attenuation and OSEM are apparent better than pre-reconstructed. The post-reconstructed emission images have no scatter lines around the organs. The outline between different issues is more clear than before. The validity of All post-reconstructed images is better than pre-reconstructed. SPECT/CT image fusion make localization have worthy bases. 138 patients, the accuracy of SPECT/CT image fusion is 91.3% (126/138), whereas 60(88.2%) were found through SPECT/CT image fusion, There are significant difference between them(P 99m Tc- RBC-SPECT +CT image fusion, but 21 of them were inspected by emission image. In BONE 99m Tc -MDP-SPECT +CT image fusion, 4 patients' removed bone(1-6 months after surgery) and their relay with normal bone had activity, their morphologic and density in CT were different from normal bones. 11 of 20 patients who could

  15. Imaging of D2 dopamine receptors of patients with Parkinson's disease using SPECT and 131I-IBZM

    International Nuclear Information System (INIS)

    Zhang Wei; Wang Jian; Jiang Yuping; Lu Chuanzhen

    2001-01-01

    Objective: To evaluate the usefulness of SPECT with 131 I-IBZM in imaging of D 2 Dopamine receptors in patients with Parkinson's disease (PD). Methods: Six patients which early unmedicated PD, six patients with moderate or advanced PD treated with long-term oral L-Dopa and Four control subjects were investigated with SPECT using 131 I-IBZM as dopamine receptor ligand. The ratio of basal ganglia to occipital cortex (BG/OC) and ratio of basal ganglia to frontal cortex (BG/FC) were calculated as semiquantitative parameter of striatal D 2 dopamine receptor's function. Results: The SPECT images revealed high uptake of IBZM in the basal ganglia. In the early unmedicated PD group, the BG/PC and BG/FC rates were significantly higher in the striatum contralateral to the parkinsonism. In the moderate or advanced PD group, no significant differences were observed bilaterally, and the BG/OC and the BG/FC rates in this group was lower than those of the control. Conclusion: 131 I-IBZM with SPECT imaging is useful in evaluating patients with Parkinson's disease

  16. Evaluation of pulmonary emphysema by the fused image of CT image and ventilation SPECT image

    International Nuclear Information System (INIS)

    Okuda, Ituko; Maruno, Hiromasa; Mori, Kazuaki; Kohno, Tadashi; Kokubo, Takashi

    2007-01-01

    We evaluated pulmonary emphysema using a diagnostic device that could obtain a CT image, a ventilation single photon emission computed tomography (SPECT) image and a lung perfusion SPECT image in one examination. The fused image made from the CT image and SPECT image had very little position gap between images, and the precision was high. From the fused image, we were able to detect the areas in which emphysematous change was the most marked in the CT image, while the accumulation decrease was most remarkable in the ventilation SPECT image. Thus it was possible to obtain an accurate status of pulmonary emphysema, and our method was regarded as a useful technique. (author)

  17. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    International Nuclear Information System (INIS)

    Qian Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small-animal single-photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ∼35 keV photons from the decay of 125 I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1x1x5 mm 3 /pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five, 1-mm-diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications

  18. A novel computer-assisted image analysis of [123I]β-CIT SPECT images improves the diagnostic accuracy of parkinsonian disorders

    International Nuclear Information System (INIS)

    Goebel, Georg; Seppi, Klaus; Wenning, Gregor K.; Poewe, Werner; Scherfler, Christoph; Donnemiller, Eveline; Warwitz, Boris; Virgolini, Irene

    2011-01-01

    The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [ 123 I]β-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP ND ) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP ND image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [ 123 I]β-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [ 123 I]β-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [ 123 I]β-CIT SPECT in patients presenting with parkinsonism at their initial visit. (orig.)

  19. A novel computer-assisted image analysis of [123I]β-CIT SPECT images improves the diagnostic accuracy of parkinsonian disorders.

    Science.gov (United States)

    Goebel, Georg; Seppi, Klaus; Donnemiller, Eveline; Warwitz, Boris; Wenning, Gregor K; Virgolini, Irene; Poewe, Werner; Scherfler, Christoph

    2011-04-01

    The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [(123)I]β-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP(ND)) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP(ND) image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [(123)I]β-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [(123)I]β-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [(123)I]β-CIT SPECT in patients presenting with parkinsonism at their initial visit.

  20. SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system

    Science.gov (United States)

    Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.

    2010-04-01

    The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co

  1. SPECT imaging with resolution recovery

    International Nuclear Information System (INIS)

    Bronnikov, A. V.

    2011-01-01

    Single-photon emission computed tomography (SPECT) is a method of choice for imaging spatial distributions of radioisotopes. Many applications of this method are found in nuclear industry, medicine, and biomedical research. We study mathematical modeling of a micro-SPECT system by using a point-spread function (PSF) and implement an OSEM-based iterative algorithm for image reconstruction with resolution recovery. Unlike other known implementations of the OSEM algorithm, we apply en efficient computation scheme based on a useful approximation of the PSF, which ensures relatively fast computations. The proposed approach can be applied with the data acquired with any type of collimators, including parallel-beam fan-beam, cone-beam and pinhole collimators. Experimental results obtained with a micro SPECT system demonstrate high efficiency of resolution recovery. (authors)

  2. A novel computer-assisted image analysis of [{sup 123}I]{beta}-CIT SPECT images improves the diagnostic accuracy of parkinsonian disorders

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Georg [Innsbruck Medical University, Department of Medical Statistics, Informatics and Health Economics, Innsbruck (Austria); Seppi, Klaus; Wenning, Gregor K.; Poewe, Werner; Scherfler, Christoph [Innsbruck Medical University, Department of Neurology, Innsbruck (Austria); Donnemiller, Eveline; Warwitz, Boris; Virgolini, Irene [Innsbruck Medical University, Department of Nuclear Medicine, Innsbruck (Austria)

    2011-04-15

    The purpose of this study was to develop an observer-independent algorithm for the correct classification of dopamine transporter SPECT images as Parkinson's disease (PD), multiple system atrophy parkinson variant (MSA-P), progressive supranuclear palsy (PSP) or normal. A total of 60 subjects with clinically probable PD (n = 15), MSA-P (n = 15) and PSP (n = 15), and 15 age-matched healthy volunteers, were studied with the dopamine transporter ligand [{sup 123}I]{beta}-CIT. Parametric images of the specific-to-nondisplaceable equilibrium partition coefficient (BP{sub ND}) were generated. Following a voxel-wise ANOVA, cut-off values were calculated from the voxel values of the resulting six post-hoc t-test maps. The percentages of the volume of an individual BP{sub ND} image remaining below and above the cut-off values were determined. The higher percentage of image volume from all six cut-off matrices was used to classify an individual's image. For validation, the algorithm was compared to a conventional region of interest analysis. The predictive diagnostic accuracy of the algorithm in the correct assignment of a [{sup 123}I]{beta}-CIT SPECT image was 83.3% and increased to 93.3% on merging the MSA-P and PSP groups. In contrast the multinomial logistic regression of mean region of interest values of the caudate, putamen and midbrain revealed a diagnostic accuracy of 71.7%. In contrast to a rater-driven approach, this novel method was superior in classifying [{sup 123}I]{beta}-CIT-SPECT images as one of four diagnostic entities. In combination with the investigator-driven visual assessment of SPECT images, this clinical decision support tool would help to improve the diagnostic yield of [{sup 123}I]{beta}-CIT SPECT in patients presenting with parkinsonism at their initial visit. (orig.)

  3. Kit formulated asialoglycoprotein receptor targeting tracer based on copolymer for liver SPECT imaging

    International Nuclear Information System (INIS)

    Liu, Chang; Guo, Zhide; Zhang, Pu; Song, Manli; Zhao, Zuoquan; Wu, Xiaowei; Zhang, Xianzhong

    2014-01-01

    Introduction: Specific targeting of galactose-carrying molecule to ASGP-R in normal hepatocytes has been demonstrated before. In this study, galactosyl polystyrene was synthesized from controllable ratio of functional monomers and radio-labelled with 99m Tc by formulated kit for SPECT imaging of hepatic function. Methods: p(VLA-co-VNI)(46:54) was synthesized by free-radical copolymerization initiated by AIBN, purified by dialysis, lyophilized to kit with Tricine and TPPTS as co-ligands for 99m Tc labeling. Radiotracer 99m Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) was prepared and evaluated by in vitro stability, in vivo metabolism, ex vivo biodistribution and microSPECT/CT imaging in normal KM mice. MicroSPECT/CT and microMRI imaging were also performed in C57BL/b6 mice with xenograft hepatic carcinoma for hepatic function evaluation. Results: 99m Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) was obtained in high radio chemical purity (RCP) (> 99%) by using instant kit without further purification and excellent in vitro and in vivo stability. The result of biodistribution showed that liver had high uptake (90.49 ± 10.68 ID%/g) at 30 min after injection and was blocked significantly by cold copolymer. MicroSPECT imaging in normal KM mice at 1 h and 4 h after injection showed good liver retention and targeting properties. Significant defect of activity was observed in the tumor site which was confirmed by MRI imaging. Conclusion: 99m Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) with lower ratio of targeting moiety has no observable effect on the specific binding affinity and liver uptake. This makes it possible to introduce more imaging units for multi-modality imaging. Furthermore, the instant kit preparation of 99m Tc-labeling provides great potential for the evaluation of hepatocyte function in clinical application

  4. Technical approach to improvement of SPECT images

    International Nuclear Information System (INIS)

    Fukukita, Hiroyoshi

    1985-01-01

    At present, a large number of SPECT systems are being widely used in Japan, hence, it is reasonable for us to know the physical and imaging characteristics of these SPECT devices, and also to recommend the optimum utility of SPECT systems. For this reason, a survey respect of characteristics of the commercialy available SPECT devices was carried out. In addition to this, various factors which have significant influence over SPECT image quality, such as, data acquisition matrix, reconstruction filter, γ-ray attenuation correction and daily quality control procedure, were also investigated. The materials used for this study are PET/SPECT phantom, Alderson liver phantom filled with Tc-99m solution, and either LFOV-E or ZLC-7500 interfaced to Scintipac 2400 minicomputer with 256 K byte of memory. Following are the results of this study. 1) The suitable data acquisition procedure was 128 x 128 matrix for linear sampling and approximately 64 views for angular sampling. 2) Reconstructed image using pre-processing filter with Wiener and Butterworth filters provided high quality image as compared with the Ramp filter. 3) Weighted backprojection method (WBP) proposed by Tanaka was superior to other methods, such as Sorenson method and Chang method in the object with non-uniform distribution of radionuclide. 4) It was found that uniformity correction of gamma camera and precise adjustment of the center of rotation are most important to maintain the images with a high quality. (author)

  5. High-resolution SPECT for small-animal imaging

    International Nuclear Information System (INIS)

    Qi Yujin

    2006-01-01

    This article presents a brief overview of the development of high-resolution SPECT for small-animal imaging. A pinhole collimator has been used for high-resolution animal SPECT to provide better spatial resolution and detection efficiency in comparison with a parallel-hole collimator. The theory of imaging characteristics of the pinhole collimator is presented and the designs of the pinhole aperture are discussed. The detector technologies used for the development of small-animal SPECT and the recent advances are presented. The evolving trend of small-animal SPECT is toward a multi-pinhole and a multi-detector system to obtain a high resolution and also a high detection efficiency. (authors)

  6. The clinical use of brain SPECT imaging in neuropsychiatry

    International Nuclear Information System (INIS)

    Amen, Daniel G; Wu, Joseph C; Carmichael, Blake

    2003-01-01

    This article reviews the literature on brain SPECT imaging in brain trauma, dementia, and temporal lobe epilepsy. Brain SPECT allows clinicians the ability to view cerebral areas of healthy, low, and excessive perfusion. This information can be correlated with what is known about the function or dysfunction of each area. SPECT has a number of advantages over other imaging techniques, including wider availability, lower cost, and high quality resolution with multi-headed cameras. There are a number of issues that compromise the effective use of SPECT, including low quality of some imaging cameras, and variability of image rendering and readings (Au)

  7. Stereotactic radiosurgery planning with ictal SPECT images

    International Nuclear Information System (INIS)

    Ackerly, T.; RMIT University, Bundoora, VIC; Geso, M.; O'Keefe, G.; Smith, R.

    2004-01-01

    This paper is motivated by a clinical requirement to utilise ictal SPECT images for target localisation in stereotactic radiosurgery treatment planning using the xknife system which only supports CT and MRI images. To achieve this, the SPECT images were converted from raw (pixel data only) format into a part 10 compliant DICOM CT fileset. The minimum requirements for the recasting of a raw format image as DICOM CT or MRI data set are described in detail. The method can be applied to the importation of raw format images into any radiotherapy treatment planning system that supports CT or MRI import. It is demonstrated that the combination of the low spatial resolution SPECT images, depicting functional information, with high spatial resolution MRI images, which show the structural information, is suitable for stereotactic radiosurgery treatment planning. Copyright (2004) Australasian College of Physical Scientists and Engineers in Medicine

  8. Study on SPECT image for children with cerebral infarction

    International Nuclear Information System (INIS)

    Xie Wenhuang; Xie Zhichun; Chen Yucai; Lin Haoxue; Zheng Aidong; Xie Hui

    1998-01-01

    To explore the diagnostic value of SPECT image for children with cerebral infarction (CCI), comparative research was made on 26 cases undergoing regional cerebral perfusion (rCP) image between SPECT imaging and CT scanning. The results showed that the rCP in the infarct and its distant area was decreased. The positive rate of SPECT and CT were 92.3% (24/26) and 84.5% (22/26) respectively. The difference was not significant (P = 0.67, P>0.05). But, the positive rate of SPECT image 2 days after onset in 9 CCI was 100% (9/9), significantly higher than 55.6% (5/9) in CT scanning (P = 0.04, P<0.05). These findings suggested that the SPECT imaging is a sensitive method for the early diagnosis of CCI, and also helpful for observation of the therapeutic effect and evaluation of the prognosis

  9. Diagnostic role of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for early and atypical bone metastases.

    Science.gov (United States)

    Chen, Xiao-Liang; Li, Qian; Cao, Lin; Jiang, Shi-Xi

    2014-01-01

    The bone metastasis appeared early before the bone imaging for most of the above patients. (99)Tc(m)-MDP ((99)Tc(m) marked methylene diphosphonate) bone imaging could diagnosis the bone metastasis with highly sensitivity, but with lower specificity. The aim of this study is to explore the diagnostic value of (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging for the early period atypical bone metastases. 15 to 30 mCi (99)Tc(m)-MDP was intravenously injected to the 34 malignant patients diagnosed as doubtful early bone metastases. SPECT, CT and SPECT/CT images were captured and analyzed consequently. For the patients diagnosed as early period atypical bone metastases by SPECT/CT, combining the SPECT/CT and MRI together as the SPECT/MRI integrated image. The obtained SPECT/MRI image was analyzed and compared with the pathogenic results of patients. The results indicated that 34 early period doubtful metastatic focus, including 34 SPECT positive focus, 17 focus without special changes by using CT method, 11 bone metastases focus by using SPECT/CT method, 23 doubtful bone metastases focus, 8 doubtful bone metastases focus, 14 doubtful bone metastases focus and 2 focus without clear image. Totally, SPECT/CT combined with SPECT/MRI method diagnosed 30 bone metastatic focus and 4 doubtfully metastatic focus. In conclusion, (99)Tc(m)-MDP SPECT/CT combined SPECT/MRI Multi modality imaging shows a higher diagnostic value for the early period bone metastases, which also enhances the diagnostic accuracy rate.

  10. Brain imaging during seizure: ictal brain SPECT

    International Nuclear Information System (INIS)

    Kottamasu, Sambasiva Rao

    1997-01-01

    The role of single photon computed tomography (SPECT) in presurgical localization of medically intractable complex partial epilepsy (CPE) in children is reviewed. 99m Technetium neurolite, a newer lipophylic agent with a high first pass brain extraction and little or no redistribution is injected during a seizure, while the child is monitored with a video recording and continuous EEG and SPECT imaging is performed in the next 1-3 hours with the images representing regional cerebral profusion at the time of injection. On SPECT studies performed with radiopharmaceutical injected during a seizure, ictal focus is generally hypervascular. Other findings on ictal brain SPECT include hypoperfusion of adjacent cerebral cortex and white matter, hyperperfusion of contralateral motor cortex, hyperperfusion of ipsilateral basal ganglia and thalamus, brain stem and contralateral cerebellum. Ictal brain SPECT is non-invasive, cost effective and highly sensitive for localization of epileptic focus in patients with intractable CPE. (author)

  11. A combined static-dynamic single-dose imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT.

    Science.gov (United States)

    Sciammarella, Maria; Shrestha, Uttam M; Seo, Youngho; Gullberg, Grant T; Botvinick, Elias H

    2017-08-03

    SPECT myocardial perfusion imaging (MPI) is a clinical mainstay that is typically performed with static imaging protocols and visually or semi-quantitatively assessed for perfusion defects based upon the relative intensity of myocardial regions. Dynamic cardiac SPECT presents a new imaging technique based on time-varying information of radiotracer distribution, which permits the evaluation of regional myocardial blood flow (MBF) and coronary flow reserve (CFR). In this work, a preliminary feasibility study was conducted in a small patient sample designed to implement a unique combined static-dynamic single-dose one-day visit imaging protocol to compare quantitative dynamic SPECT with static conventional SPECT for improving the diagnosis of coronary artery disease (CAD). Fifteen patients (11 males, four females, mean age 71 ± 9 years) were enrolled for a combined dynamic and static SPECT (Infinia Hawkeye 4, GE Healthcare) imaging protocol with a single dose of 99m Tc-tetrofosmin administered at rest and a single dose administered at stress in a one-day visit. Out of 15 patients, eleven had selective coronary angiography (SCA), 8 within 6 months and the rest within 24 months of SPECT imaging, without intervening symptoms or interventions. The extent and severity of perfusion defects in each myocardial region was graded visually. Dynamically acquired data were also used to estimate the MBF and CFR. Both visually graded images and estimated CFR were tested against SCA as a reference to evaluate the validity of the methods. Overall, conventional static SPECT was normal in ten patients and abnormal in five patients, dynamic SPECT was normal in 12 patients and abnormal in three patients, and CFR from dynamic SPECT was normal in nine patients and abnormal in six patients. Among those 11 patients with SCA, conventional SPECT was normal in 5, 3 with documented CAD on SCA with an overall accuracy of 64%, sensitivity of 40% and specificity of 83%. Dynamic SPECT image

  12. Combined SPECT/CT and PET/CT for breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Paolo [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Larobina, Michele [Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche, Via Tommaso De Amicis, 95, Naples I-80145 (Italy); Di Lillo, Francesca [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy); Del Vecchio, Silvana [Università di Napoli Federico II, Dipartimento di Scienze Biomediche Avanzate, Via Pansini, 5, Naples I-80131 (Italy); Mettivier, Giovanni, E-mail: mettivier@na.infn.it [Università di Napoli Federico II, Dipartimento di Fisica, Via Cintia, Naples I-80126 (Italy); INFN Sezione di Napoli, Via Cintia, Naples I-80126 (Italy)

    2016-02-11

    In the field of nuclear medicine imaging, breast imaging for cancer diagnosis is still mainly based on 2D imaging techniques. Three-dimensional tomographic imaging with whole-body PET or SPECT scanners, when used for imaging the breast, has performance limits in terms of spatial resolution and sensitivity, which can be overcome only with a dedicated instrumentation. However, only few hybrid imaging systems for PET/CT or SPECT/CT dedicated to the breast have been developed in the last decade, providing complementary functional and anatomical information on normal breast tissue and lesions. These systems are still under development and clinical trials on just few patients have been reported; no commercial dedicated breast PET/CT or SPECT/CT is available. This paper reviews combined dedicated breast PET/CT and SPECT/CT scanners described in the recent literature, with focus on their technological aspects.

  13. SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice

    International Nuclear Information System (INIS)

    Jongen, Cynthia; Bruin, Kora de; Booij, Jan; Beekman, Freek

    2008-01-01

    The dopamine D 2 receptor (D2R) is important in the mediation of addiction. [ 123 I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [ 123 I]IBZM has not been used in mice SPECT studies. This study evaluates the use of [ 123 I]IBZM for measuring D2R availability in mice. Pharmacokinetics of [ 123 I]IBZM in mice were studied with pinhole SPECT imaging after intravenous (i.v.) injection of [ 123 I]IBZM (20, 40, and 70 MBq). In addition, the ability to measure the release of endogenous dopamine after amphetamine administration with [ 123 I]IBZM SPECT was investigated. Thirdly, i.v. administration, the standard route of administration, and intraperitoneal (i.p.) administration of [ 123 I]IBZM were compared. Specific binding of [ 123 I]IBZM within the mouse striatum could be clearly visualized with SPECT. Peak specific striatal binding ratios were reached around 90 min post-injection. After amphetamine administration, the specific binding ratios of [ 123 I]IBZM decreased significantly (-27.2%; n=6; p=0.046). Intravenous administration of [ 123 I]IBZM led to significantly higher specific binding than i.p. administration of the same dose. However, we found that i.v. administration of a dose of 70 MBq [ 123 I]IBZM might result in acute ethanol intoxication because ethanol is used as a preparative aid for the routine production of [ 123 I]IBZM. Imaging of D2R availability and endogenous dopamine release in mice is feasible using [ 123 I]IBZM single pinhole SPECT. Using commercially produced [ 123 I]IBZM, a dose of 40 MBq injected i.v. can be recommended. (orig.)

  14. Brain Perfusion SPECT Imaging in Sturge - Weber Syndrome : Comparison with MR Imaging

    International Nuclear Information System (INIS)

    Ryu, Jin Sook; Choi, Yun Young; Moon, Dae Hyuk; Yang, Seoung Oh; Ko, Tae Sung; Yoo, Shi Joon; Lee, Hee Kyung

    1996-01-01

    The purpose of this study was evaluate the characteristic perfusion changes in patients with Sturge-Weber syndrome by comparison of the findings of brain MR images and perfusion SPECT images. 99m Tc-HMPAO or 99m Tc-ECD interictal brain SPECTs were performed on 5 pediatric patients with Struge-Weber syndrome within 2 weeks after MR imaging. Brain SPECTs of three patients without calcification showed diminished perfusion in the affected area on MR image. A 3 month-old patient without brain atrophy or calcification demonstrated paradoxical hyperperfusion in the affected hemisphere, and follow-up perfusion SPECT revealed decreased perfusion in the same area. The other patient with advanced calcified lesion and atrophy on MR image showed diffusely decreased perfusion in the affected hemisphere, but a focal area of increased perfusion was also noted in the ipsilateral temporal lobe on SPECT. In conclusion, brain perfusion of the affected area of Sturge-Weber syndrome patients was usually diminished, but early or advanced patients may show paradoxical diffuse or focal hyperperfusion in the affected hemisphere. Further studies are needed for better understanding of these perfusion changes and pathophysiology of Struge-Weber syndrome.

  15. Kit formulated asialoglycoprotein receptor targeting tracer based on copolymer for liver SPECT imaging.

    Science.gov (United States)

    Liu, Chang; Guo, Zhide; Zhang, Pu; Song, Manli; Zhao, Zuoquan; Wu, Xiaowei; Zhang, Xianzhong

    2014-08-01

    Specific targeting of galactose-carrying molecule to ASGP-R in normal hepatocytes has been demonstrated before. In this study, galactosyl polystyrene was synthesized from controllable ratio of functional monomers and radio-labelled with (99m)Tc by formulated kit for SPECT imaging of hepatic function. p(VLA-co-VNI)(46:54) was synthesized by free-radical copolymerization initiated by AIBN, purified by dialysis, lyophilized to kit with Tricine and TPPTS as co-ligands for (99m)Tc labeling. Radiotracer (99m)Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) was prepared and evaluated by in vitro stability, in vivo metabolism, ex vivo biodistribution and microSPECT/CT imaging in normal KM mice. MicroSPECT/CT and microMRI imaging were also performed in C57BL/b6 mice with xenograft hepatic carcinoma for hepatic function evaluation. (99m)Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) was obtained in high radio chemical purity (RCP) (>99%) by using instant kit without further purification and excellent in vitro and in vivo stability. The result of biodistribution showed that liver had high uptake (90.49±10.68 ID%/g) at 30 min after injection and was blocked significantly by cold copolymer. MicroSPECT imaging in normal KM mice at 1h and 4h after injection showed good liver retention and targeting properties. Significant defect of activity was observed in the tumor site which was confirmed by MRI imaging. (99m)Tc-p(VLA-co-VNI)(46:54)(Tricine)(TPPTS) with lower ratio of targeting moiety has no observable effect on the specific binding affinity and liver uptake. This makes it possible to introduce more imaging units for multi-modality imaging. Furthermore, the instant kit preparation of (99m)Tc-labeling provides great potential for the evaluation of hepatocyte function in clinical application. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Attenuation correction of myocardial SPECT images with X-ray CT. Effects of registration errors between X-ray CT and SPECT

    International Nuclear Information System (INIS)

    Takahashi, Yasuyuki; Murase, Kenya; Mochizuki, Teruhito; Motomura, Nobutoku

    2002-01-01

    Attenuation correction with an X-ray CT image is a new method to correct attenuation on SPECT imaging, but the effect of the registration errors between CT and SPECT images is unclear. In this study, we investigated the effects of the registration errors on myocardial SPECT, analyzing data from a phantom and a human volunteer. Registerion (fusion) of the X-ray CT and SPECT images was done with standard packaged software in three dimensional fashion, by using linked transaxial, coronal and sagittal images. In the phantom study, and X-ray CT image was shifted 1 to 3 pixels on the x, y and z axes, and rotated 6 degrees clockwise. Attenuation correction maps generated from each misaligned X-ray CT image were used to reconstruct misaligned SPECT images of the phantom filled with 201 Tl. In a human volunteer, X-ray CT was acquired in different conditions (during inspiration vs. expiration). CT values were transferred to an attenuation constant by using straight lines; an attenuation constant of 0/cm in the air (CT value=-1,000 HU) and that of 0.150/cm in water (CT value=0 HU). For comparison, attenuation correction with transmission CT (TCT) data and an external γ-ray source ( 99m Tc) was also applied to reconstruct SPECT images. Simulated breast attenuation with a breast attachment, and inferior wall attenuation were properly corrected by means of the attenuation correction map generated from X-ray CT. As pixel shift increased, deviation of the SPECT images increased in misaligned images in the phantom study. In the human study, SPECT images were affected by the scan conditions of the X-ray CT. Attenuation correction of myocardial SPECT with an X-ray CT image is a simple and potentially beneficial method for clinical use, but accurate registration of the X-ray CT to SPECT image is essential for satisfactory attenuation correction. (author)

  17. Skeletal scintigraphy and SPECT/CT in orthopedic imaging; Knochenszintigrafie und SPECT/CT bei orthopaedischen Fragestellungen

    Energy Technology Data Exchange (ETDEWEB)

    Klaeser, B.; Walter, M.; Krause, T. [Inselspital Bern (Switzerland). Universitaetsklinik fuer Nuklearmedizin

    2011-03-15

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  18. Myocardial perfusion SPECT imaging in patients with myocardial bridging

    International Nuclear Information System (INIS)

    Fang Wei; Qiu Hong; Yang Weixian; Wang Feng; He Zuoxiang

    2008-01-01

    Objective: Stress myocardial perfusion SPECT imaging was used to assess myocardial ischemia in patients with myocardial bridging. Methods: Ninety-six patients with myocardial bridging of the left anterior descending artery documented by coronary angiography were included in this study. All under- went exercise or pharmacological stress myocardial perfusion SPECT assessing myocardial ischemia. None had prior myocardial infarction. One year follow-up by telephone interview was performed in all patients. Results The mean stenotic severity of systolic phase on angiography was (65 ± 19)%. In the SPECT study, 20 of 96 (20.8%) patients showed abnormal perfusion. This percentage was significantly higher than that of stress electrocardiogram (ECG). The higher positive rate of SPECT perfusion images was showed in the group of patients with severe systolic narrowing (≥75%) than that with mild-to-moderate systolic narrowing (50% vs 6.3%, P<0.001). The prevalence of abnormal image was significantly higher in ELDERLY PEOPLE; patients with STT change on rest ECG than in those with normal rest ECG (54.2% vs 9.7%, P<0.001). During follow-up, one patient with abnormal SPECT perfusion image sustained angina and accepted percutaneous coronary intervention, and no cardiac event occurred in patients with normal images. Conclusions: Stress myocardial perfusion SPECT imaging can be used effectively for assessing myocardial ischemia and has potential prognostic value for patients with myocardial bridging. (authors)

  19. Evaluation of Tl-201 SPECT imaging findings in prostate cancer

    Directory of Open Access Journals (Sweden)

    Sinem Ozyurt

    2015-07-01

    Full Text Available Objectives: To compare with histopathological findings the findings of prostate cancer imaging by SPECT method using Tl-201 as a tumor seeking agent. Methods: The study comprised 59 patients (age range 51-79 years, mean age 65.3 ± 6.8 years who were planned to have transrectal ultrasonography (TRUS-guided biopsies due to suspicion of prostate cancer between April 2011 and September 2011. Early planar, late planar and SPECT images were obtained for all patients. Scintigraphic evaluation was made in relation to uptake presence and patterns in the visual assessment and to Tumor/Background (T/Bg ratios for both planar and SPECT images in the quantitative assessment. Histopathological findings were compatible with benign etiology in 36 (61% patients and malign etiology in 23 (39% patients. Additionally, comparisons were made to evaluate the relationships between uptake patterns,total PSA values and Gleason scores. Results: A statistically significant difference was found between the benign and malignant groups in terms of uptake in planar and SPECT images and T/Bg ratios and PSA values. No statistically significant difference was found between uptake patterns of planar and SPECT images and Gleason scores in the malignant group. Conclusions: SPECT images were superior to planar images in the comparative assessment. Tl-201 SPECT imaging can provide an additional contribution to clinical practice in the diagnosis of prostate cancer and it can be used in selected patients.

  20. Skeletal scintigraphy and SPECT/CT in orthopedic imaging

    International Nuclear Information System (INIS)

    Klaeser, B.; Walter, M.; Krause, T.

    2011-01-01

    Multi-modality imaging with SPECT-CT in orthopaedics combines the excellent sensitivity of scintigraphy with the morphological information of CT as a key for specific interpretation of findings in bone scans. The result is an imaging modality with the clear potential to prove of value even in a competitive setting dominated by MRI, and to significantly add to diagnostic imaging in orthopaedics. SPECT-CT is of great value in the diagnostic evaluation after fractures, and - in contrast to MRI - it is well suited for imaging in patients with osteosyntheses and metallic implants. In sports medicine, SPECT-CT allows for a sensitive and specific detection of osseous stress reactions before morphological changes become detectable by CT or MRI. In patients with osseous pain syndromes, actively evolving degenerative changes as a cause of pain can be identified and accurately localized. Further, particularly prospective diagnostic studies providing comparative data are needed to strengthen the position of nuclear imaging in orthopaedics and sports medicine and to help implementing SPECT/CT in diagnostic algorithms. (orig.)

  1. Preclinical imaging characteristics and quantification of Platinum-195m SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Aalbersberg, E.A.; Wit-van der Veen, B.J. de; Vegt, E.; Vogel, Wouter V. [The Netherlands Cancer Institute (NKI-AVL), Department of Nuclear Medicine, Amsterdam (Netherlands); Zwaagstra, O.; Codee-van der Schilden, K. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)

    2017-08-15

    In vivo biodistribution imaging of platinum-based compounds may allow better patient selection for treatment with chemo(radio)therapy. Radiolabeling with Platinum-195m ({sup 195m}Pt) allows SPECT imaging, without altering the chemical structure or biological activity of the compound. We have assessed the feasibility of {sup 195m}Pt SPECT imaging in mice, with the aim to determine the image quality and accuracy of quantification for current preclinical imaging equipment. Enriched (>96%) {sup 194}Pt was irradiated in the High Flux Reactor (HFR) in Petten, The Netherlands (NRG). A 0.05 M HCl {sup 195m}Pt-solution with a specific activity of 33 MBq/mg was obtained. Image quality was assessed for the NanoSPECT/CT (Bioscan Inc., Washington DC, USA) and U-SPECT{sup +}/CT (MILabs BV, Utrecht, the Netherlands) scanners. A radioactivity-filled rod phantom (rod diameter 0.85-1.7 mm) filled with 1 MBq {sup 195m}Pt was scanned with different acquisition durations (10-120 min). Four healthy mice were injected intravenously with 3-4 MBq {sup 195m}Pt. Mouse images were acquired with the NanoSPECT for 120 min at 0, 2, 4, or 24 h after injection. Organs were delineated to quantify {sup 195m}Pt concentrations. Immediately after scanning, the mice were sacrificed, and the platinum concentration was determined in organs using a gamma counter and graphite furnace - atomic absorption spectroscopy (GF-AAS) as reference standards. A 30-min acquisition of the phantom provided visually adequate image quality for both scanners. The smallest visible rods were 0.95 mm in diameter on the NanoSPECT and 0.85 mm in diameter on the U-SPECT{sup +}. The image quality in mice was visually adequate. Uptake was seen in the kidneys with excretion to the bladder, and in the liver, blood, and intestine. No uptake was seen in the brain. The Spearman correlation between SPECT and gamma counter was 0.92, between SPECT and GF-AAS it was 0.84, and between GF-AAS and gamma counter it was0.97 (all p < 0

  2. Fusion of SPECT/TC images: Usefulness and benefits in degenerative spinal cord pathology

    International Nuclear Information System (INIS)

    Ocampo, Monica; Ucros, Gonzalo; Bermudez, Sonia; Morillo, Anibal; Rodriguez, Andres

    2005-01-01

    The objectives are to compare CT and SPECT bone scintigraphy evaluated independently with SPECT-CT fusion images in patients with known degenerative spinal pathology. To demonstrate the clinical usefulness of CT and SPECT fusion images. Materials and methods: Thirty-one patients with suspected degenerative spinal disease were evaluated with thin-slice, non-angled helical CT and bone scintigrams with single photon emission computed tomography (SPECT), both with multiplanar reconstructions within a 24-hour period After independent evaluation by a nuclear medicine specialist and a radiologist, multimodality image fusion software was used to merge the CT and SPECT studies and a final consensus interpretation of the combined images was obtained. Results: Thirty-two SPECT bone scintigraphy images, helical CT studies and SPECT-CT fusion images were obtained for 31 patients with degenerative spinal disease. The results of the bone scintigraphy and CT scans were in agreement in 17 pairs of studies (53.12%). In these studies image fusion did not provide additional information on the location or extension of the lesions. In 11 of the study pairs (34.2%), the information obtained was not in agreement between scintigraphy and CT studies: CT images demonstrated several abnormalities, whereas the SPECT images showed only one dominant lesion, or the SPECT images did not provide enough information for anatomical localization. In these cases image fusion helped establish the precise localization of the most clinically significant lesion, which matched the lesion with the greatest uptake. In 4 studies (12.5%) the CT and SPECT images were not in agreement: CT and SPECT images showed different information (normal scintigraphy, abnormal CT), thus leading to inconclusive fusion images. Conclusion: The use of CT-SPECT fusion images in degenerative spinal disease allows for the integration of anatomic detail with physiologic and functional information. CT-SPECT fusion improves the

  3. Multimodality imaging: transfer and fusion of SPECT and MRI data

    International Nuclear Information System (INIS)

    Knesaurek, K.

    1994-01-01

    Image fusion is a technique which offers the best of both worlds. It unites the two basic types of medical images: functional body images(PET or SPECT scans), which provide physiological information, and structural images (CT or MRI), which provide an anatomic map of the body. Control-point based registration technique was developed and used. Tc-99m point sources were used as external markers in SPECT studies while, for MRI and CT imaging only anatomic landmarks were used as a control points. The MRI images were acquired on GE Signa 1.2 system and CT data on a GE 9800 scanner. SPECT studies were performed 1h after intravenous injection of the 740 MBq of the Tc-99m-HMPAO on the triple-headed TRIONIX gamma camera. B-spline and bilinear interpolation were used for the rotation, scaling and translation of the images. In the process of creation of a single composite image, in order to retain information from the individual images, MRI (or CT) image was scaled to one color range and a SPECT image to another. In some situations the MRI image was kept black-and-white while the SPECT image was pasted on top of it in 'opaque' mode. Most errors which propagate through the matching process are due to sample size, imperfection of the acquisition system, noise and interpolations used. Accuracy of the registration was investigated by SPECT-CT study performed on a phantom study. The results has shown that accuracy of the matching process is better, or at worse, equal to 2 mm. (author)

  4. Sequential SPECT/CT imaging starting with stress SPECT in patients with left bundle branch block suspected for coronary artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Engbers, Elsemiek M.; Mouden, Mohamed [Isala, Department of Cardiology, Zwolle (Netherlands); Isala, Department of Nuclear Medicine, Zwolle (Netherlands); Timmer, Jorik R.; Ottervanger, Jan Paul [Isala, Department of Cardiology, Zwolle (Netherlands); Knollema, Siert; Jager, Pieter L. [Isala, Department of Nuclear Medicine, Zwolle (Netherlands)

    2017-01-15

    To investigate the impact of left bundle branch block (LBBB) on sequential single photon emission computed tomography (SPECT)/ CT imaging starting with stress-first SPECT. Consecutive symptomatic low- to intermediate-risk patients without a history of coronary artery disease (CAD) referred for SPECT/CT were included from an observational registry. If stress SPECT was abnormal, additional rest SPECT and, if feasible, coronary CT angiography (CCTA) were acquired. Of the 5,018 patients, 218 (4.3 %) demonstrated LBBB. Patients with LBBB were slightly older than patients without LBBB (65±12 vs. 61±11 years, p<0.001). Stress SPECT was more frequently abnormal in patients with LBBB (82 % vs. 46 %, p<0.001). After reviewing stress and rest images, SPECT was normal in 43 % of the patients with LBBB, compared to 77 % of the patients without LBBB (p<0.001). Sixty-four of the 124 patients with LBBB and abnormal stress-rest SPECT underwent CCTA (52 %), which could exclude obstructive CAD in 46 of the patients (72 %). Sequential SPECT/CT imaging starting with stress SPECT is not the optimal imaging protocol in patients with LBBB, as the majority of these patients have potentially false-positive stress SPECT. First-line testing using CCTA may be more appropriate in low- to intermediate-risk patients with LBBB. (orig.)

  5. Brain SPECT in childhood

    International Nuclear Information System (INIS)

    Tranquart, F.; Saliba, E.; Prunier, C.; Baulieu, F.; Besnard, J.C.; Guilloteau, D.; Baulieu, J.L.

    2001-01-01

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  6. Filters in 2D and 3D Cardiac SPECT Image Processing

    Directory of Open Access Journals (Sweden)

    Maria Lyra

    2014-01-01

    Full Text Available Nuclear cardiac imaging is a noninvasive, sensitive method providing information on cardiac structure and physiology. Single photon emission tomography (SPECT evaluates myocardial perfusion, viability, and function and is widely used in clinical routine. The quality of the tomographic image is a key for accurate diagnosis. Image filtering, a mathematical processing, compensates for loss of detail in an image while reducing image noise, and it can improve the image resolution and limit the degradation of the image. SPECT images are then reconstructed, either by filter back projection (FBP analytical technique or iteratively, by algebraic methods. The aim of this study is to review filters in cardiac 2D, 3D, and 4D SPECT applications and how these affect the image quality mirroring the diagnostic accuracy of SPECT images. Several filters, including the Hanning, Butterworth, and Parzen filters, were evaluated in combination with the two reconstruction methods as well as with a specified MatLab program. Results showed that for both 3D and 4D cardiac SPECT the Butterworth filter, for different critical frequencies and orders, produced the best results. Between the two reconstruction methods, the iterative one might be more appropriate for cardiac SPECT, since it improves lesion detectability due to the significant improvement of image contrast.

  7. SPECT/CT imaging in general orthopedic practice.

    Science.gov (United States)

    Scharf, Stephen

    2009-09-01

    The availability of hybrid devices that combine the latest single-photon emission computed tomography (SPECT) imaging technology with multislice computed tomography (CT) scanning has allowed us to detect subtle, nonspecific abnormalities on bone scans and interpret them as specific focal areas of pathology. Abnormalities in the spine can be separated into those caused by pars fractures, facet joint arthritis, or osteophyte formation on vertebral bodies. Compression fractures can be distinguished from severe degenerative disease, both of which can cause intense activity across the spine on either planar or SPECT imaging. Localizing activity in patients who have had spinal fusion can provide tremendous insight into the causes of therapeutic failures. Infections of the spine now can be diagnosed with gallium SPECT/CT, despite the fact that gallium has long been abandoned because of its failure to detect spine infection on either planar or SPECT imaging. Small focal abnormalities in the feet and ankles can be localized well enough to make specific orthopedic diagnoses on the basis of their location. Moreover, when radiographic imaging provides equivocal or inadequate information, SPECT/CT can provide a road map for further diagnostic studies and has been invaluable in planning surgery. Our ability to localize activity within a bone or at an articular surface has allowed us to distinguish between fractures and joint disease. Increased activity associated with congenital anomalies, such as tarsal coalition and Bertolotti's syndrome have allowed us to understand the pathophysiology of these conditions, to confirm them as the cause of the patient's symptoms, and to provide information that is useful in determining appropriate clinical management. As our experience broadens, SPECT/CT will undoubtedly become an important tool in the evaluation and management of a wider variety of orthopedic patients.

  8. Role of SPECT imaging in symptomatic posterior element lumbar stress injuries

    Directory of Open Access Journals (Sweden)

    Debnath U

    2005-01-01

    Full Text Available Background : Diagnosis of stress injuries of spine is very difficult with conventional radiography. Methods : In a observational study, 132 subjects were recruited (between 8 and 38 years of age, who had lumbar spondylolysis or posterior element stress injuries. All these patients underwent clinical examination followed by plain X-rays, planar bone scintigraphy and SPECT (single photon emission computerised tomography. SPECT scans can identify the posterior element lumbar stress injuries earlier than other imaging modalities. As the lesions evolve and the completed spondylolysis becomes chronic, the SPECT scans tend to revert to normal even though healing of the defect has not occurred. The aim of the study was to determine the time lag after which SPECT imaging tends to be negative. We divided the patients into two groups, one SPECT positive group and the other SPECT negative group. Pre treatment background variables such as age, gender, back pain in extension or flexion, sporting activities, time of onset of symptoms, Oswestry Disability Index (ODI were used in a univariate logistic regression model to find the strong predictors of positive SPECT imaging results. Determinants of positivity versus negativity of SPECT were identified by discriminant analysis using multivariate logistic regression. Results : Seventy nine patients had positive SPECT scans whereas 53 patients had negative SPECT scans. Bilateral increased uptake was more common than unilateral uptake. Increased uptake at the L5 lumbar spine was more common (70% in SPECT positive group. Low back pain in extension was significantly more common in SPECT positive subjects. Active sporting individuals had higher probability of having a positive SPECT scan. The mean time lag from the onset of low back pain to SPECT imaging was 7 months in SPECT positive group and 25 months in the SPECT negative group. Multivariate analysis predicted that there is a significant difference in positivity of

  9. SPECT imaging of D{sub 2} dopamine receptors and endogenous dopamine release in mice

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Cynthia [University Medical Center Utrecht, Image Sciences Institute, Q0S.459, P.O. Box 85500, Utrecht (Netherlands); Bruin, Kora de; Booij, Jan [University of Amsterdam, Academic Medical Center, Department of Nuclear Medicine, Amsterdam (Netherlands); Beekman, Freek [University Medical Center Utrecht, Image Sciences Institute, Q0S.459, P.O. Box 85500, Utrecht (Netherlands); University Medical Center Utrecht, Department of Neuroscience and Pharmacology, Utrecht (Netherlands); Technical University Delft, Department R3, Section Radiation, Detection and Matter, Delft (Netherlands)

    2008-09-15

    The dopamine D{sub 2} receptor (D2R) is important in the mediation of addiction. [{sup 123}I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [{sup 123}I]IBZM has not been used in mice SPECT studies. This study evaluates the use of [{sup 123}I]IBZM for measuring D2R availability in mice. Pharmacokinetics of [{sup 123}I]IBZM in mice were studied with pinhole SPECT imaging after intravenous (i.v.) injection of [{sup 123}I]IBZM (20, 40, and 70 MBq). In addition, the ability to measure the release of endogenous dopamine after amphetamine administration with [{sup 123}I]IBZM SPECT was investigated. Thirdly, i.v. administration, the standard route of administration, and intraperitoneal (i.p.) administration of [{sup 123}I]IBZM were compared. Specific binding of [{sup 123}I]IBZM within the mouse striatum could be clearly visualized with SPECT. Peak specific striatal binding ratios were reached around 90 min post-injection. After amphetamine administration, the specific binding ratios of [{sup 123}I]IBZM decreased significantly (-27.2%; n=6; p=0.046). Intravenous administration of [{sup 123}I]IBZM led to significantly higher specific binding than i.p. administration of the same dose. However, we found that i.v. administration of a dose of 70 MBq [{sup 123}I]IBZM might result in acute ethanol intoxication because ethanol is used as a preparative aid for the routine production of [{sup 123}I]IBZM. Imaging of D2R availability and endogenous dopamine release in mice is feasible using [{sup 123}I]IBZM single pinhole SPECT. Using commercially produced [{sup 123}I]IBZM, a dose of 40 MBq injected i.v. can be recommended. (orig.)

  10. Usefulness of CT based SPECT Fusion Image in the lung Disease : Preliminary Study

    International Nuclear Information System (INIS)

    Park, Hoon Hee; Lyu, Kwang Yeul; Kim, Tae Hyung; Shin, Ji Yun

    2012-01-01

    Recently, SPECT/CT system has been applied to many diseases, however, the application is not extensively applied at pulmonary disease. Especially, in case that, the pulmonary embolisms suspect at the CT images, SPECT is performed. For the accurate diagnosis, SPECT/CT tests are subsequently undergoing. However, without SPECT/CT, there are some limitations to apply these procedures. With SPECT/CT, although, most of the examination performed after CT. Moreover, such a test procedures generate unnecessary dual irradiation problem to the patient. In this study, we evaluated the amount of unnecessary irradiation, and the usefulness of fusion images of pulmonary disease, which independently acquired from SPECT and CT. Using NEMA PhantomTM (NU2-2001), SPECT and CT scan were performed for fusion images. From June 2011 to September 2010, 10 patients who didn't have other personal history, except lung disease were selected (male: 7, female: 3, mean age: 65.3±12.7). In both clinical patient and phantom data, the fusion images scored higher than SPECT and CT images. The fusion images, which is combined with pulmonary vessel images from CT and functional images from SPECT, can increase the detection possibility in detecting pulmonary embolism in the resin of lung parenchyma. It is sure that performing SPECT and CT in integral SPECT/CT system were better. However, we believe this protocol can give more informative data to have more accurate diagnosis in the hospital without integral SPECT/CT system.

  11. Clinical applications of SPECT/CT in imaging the extremities

    International Nuclear Information System (INIS)

    Huellner, Martin W.; Strobel, Klaus

    2014-01-01

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  12. Clinical applications of SPECT/CT in imaging the extremities

    Energy Technology Data Exchange (ETDEWEB)

    Huellner, Martin W. [University Hospital Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland); Strobel, Klaus [Lucerne Cantonal Hospital, Department of Nuclear Medicine and Radiology, Lucerne (Switzerland)

    2014-05-15

    Today, SPECT/CT is increasingly used and available in the majority of larger nuclear medicine departments. Several applications of SPECT/CT as a supplement to or replacement for traditional conventional bone scintigraphy have been established in recent years. SPECT/CT of the upper and lower extremities is valuable in many conditions with abnormal bone turnover due to trauma, inflammation, infection, degeneration or tumour. SPECT/CT is often used in patients if conventional radiographs are insufficient, if MR image quality is impaired due to metal implants or in patients with contraindications to MR. In complex joints such as those in the foot and wrist, SPECT/CT provides exact anatomical correlation of pathological uptake. In many cases SPECT increases the sensitivity and CT the specificity of the study, increasing confidence in the final diagnosis compared to planar images alone. The CT protocol should be adapted to the clinical question and may vary from very low-dose (e.g. attenuation correction only), to low-dose for anatomical correlation, to normal-dose protocols enabling precise anatomical resolution. The aim of this review is to give an overview of SPECT/CT imaging of the extremities with a focus on the hand and wrist, knee and foot, and for evaluation of patients after joint arthroplasty. (orig.)

  13. Monte Carlo simulation of PET and SPECT imaging of {sup 90}Y

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akihiko, E-mail: takahsr@hs.med.kyushu-u.ac.jp; Sasaki, Masayuki [Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Himuro, Kazuhiko; Yamashita, Yasuo; Komiya, Isao [Division of Radiology, Department of Medical Technology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Baba, Shingo [Department of Clinical Radiology, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan)

    2015-04-15

    Purpose: Yittrium-90 ({sup 90}Y) is traditionally thought of as a pure beta emitter, and is used in targeted radionuclide therapy, with imaging performed using bremsstrahlung single-photon emission computed tomography (SPECT). However, because {sup 90}Y also emits positrons through internal pair production with a very small branching ratio, positron emission tomography (PET) imaging is also available. Because of the insufficient image quality of {sup 90}Y bremsstrahlung SPECT, PET imaging has been suggested as an alternative. In this paper, the authors present the Monte Carlo-based simulation–reconstruction framework for {sup 90}Y to comprehensively analyze the PET and SPECT imaging techniques and to quantitatively consider the disadvantages associated with them. Methods: Our PET and SPECT simulation modules were developed using Monte Carlo simulation of Electrons and Photons (MCEP), developed by Dr. S. Uehara. PET code (MCEP-PET) generates a sinogram, and reconstructs the tomography image using a time-of-flight ordered subset expectation maximization (TOF-OSEM) algorithm with attenuation compensation. To evaluate MCEP-PET, simulated results of {sup 18}F PET imaging were compared with the experimental results. The results confirmed that MCEP-PET can simulate the experimental results very well. The SPECT code (MCEP-SPECT) models the collimator and NaI detector system, and generates the projection images and projection data. To save the computational time, the authors adopt the prerecorded {sup 90}Y bremsstrahlung photon data calculated by MCEP. The projection data are also reconstructed using the OSEM algorithm. The authors simulated PET and SPECT images of a water phantom containing six hot spheres filled with different concentrations of {sup 90}Y without background activity. The amount of activity was 163 MBq, with an acquisition time of 40 min. Results: The simulated {sup 90}Y-PET image accurately simulated the experimental results. PET image is visually

  14. Brain lesion analysis using three-dimensional SPECT imaging

    International Nuclear Information System (INIS)

    Shibata, Iekado; Onagi, Atsuo; Kuroki, Takao

    1995-01-01

    A three-headed gamma camera (PRISM 3000) is capable to scan the protocol of early dynamic SPECT and to analyze two radioisotopes at the same time. We have framed three-dimensional brain SPECT images for several brain diseases by using the Application Visualization System (AVS). We carried out volume measurements in brain tumors and/or AVMs by applying this methodology. Thallium-201 and/or 123I-IMP were used for brain SPECT imaging. The dynamic scan protocol was changed in accordance with the given disease. The protocol for brain tumors was derived from a preliminary comparative study with thallium-201 and 123I-IMP that had suggested a disparity in the detection of brain tumors and the differentiation between tumor tissue and normal brain. The three-dimension SPECT image represented the brain tumor or AVM in a striking fashion, and the changes with respect to tumor or AVM after radiosurgery or embolization were understood readily. (author)

  15. Study of regional cerebral blood flow SPECT imaging for sudden sensorineural deafness

    International Nuclear Information System (INIS)

    Xie Changhui; Kui Xixiao; Xiong Qibin; Wen Hui; Xie Jiabiao

    1998-01-01

    Purpose: To study the clinical value of regional cerebral blood flow (rCBF) SPECT imaging for sudden sensorineural deafness (SSD). Methods: 10 normal persons, 19 conductive deafness and 31 SSD patients were examined by rCBF SPECT imaging, and compared with X CT at the same time. All SSD patients were followed up for 6∼12 months with repeated rCBF SPECT imaging. Results: 1) The radioactivity of diseased and normal horizontal temporal gyrus ratio (T/NT) in SSD patients was the lowest among three groups (P < 0.01). 2) The sensitivity (80.6%) and accurate rate (88.3%) of rCBF SPECT imaging in SSD patients were much higher than those of CT (3.2% and 50%, P < 0.01). 3) There was a significant correlation between degree of deafness and T/NT in SSD patients. 4) Good prognosis of SSD patients with normal rCBF SPECT was found. 5) The rCBF SPECT had close concordance between rCBF SPECT imaging and clinical prognosis (84.6%). Conclusions: rCBF SPECT imaging was superior to X CT in diagnosis of SSD and played an important clinical role

  16. Initial Investigation of preclinical integrated SPECT and MR imaging.

    Science.gov (United States)

    Hamamura, Mark J; Ha, Seunghoon; Roeck, Werner W; Wagenaar, Douglas J; Meier, Dirk; Patt, Bradley E; Nalcioglu, Orhan

    2010-02-01

    Single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high-spatial resolution anatomical information as well as complementary functional information. In this study, we utilized a dual modality SPECT/MRI (MRSPECT) system to investigate the integration of SPECT and MRI for improved image accuracy. The MRSPECT system consisted of a cadmium-zinc-telluride (CZT) nuclear radiation detector interfaced with a specialized radiofrequency (RF) coil that was placed within a whole-body 4 T MRI system. The importance of proper corrections for non-uniform detector sensitivity and Lorentz force effects was demonstrated. MRI data were utilized for attenuation correction (AC) of the nuclear projection data and optimized Wiener filtering of the SPECT reconstruction for improved image accuracy. Finally, simultaneous dual-imaging of a nude mouse was performed to demonstrated the utility of co-registration for accurate localization of a radioactive source.

  17. Novel SPECT Technologies and Approaches in Cardiac Imaging

    Directory of Open Access Journals (Sweden)

    Piotr Slomka

    2016-12-01

    Full Text Available Recent novel approaches in myocardial perfusion single photon emission CT (SPECT have been facilitated by new dedicated high-efficiency hardware with solid-state detectors and optimized collimators. New protocols include very low-dose (1 mSv stress-only, two-position imaging to mitigate attenuation artifacts, and simultaneous dual-isotope imaging. Attenuation correction can be performed by specialized low-dose systems or by previously obtained CT coronary calcium scans. Hybrid protocols using CT angiography have been proposed. Image quality improvements have been demonstrated by novel reconstructions and motion correction. Fast SPECT acquisition facilitates dynamic flow and early function measurements. Image processing algorithms have become automated with virtually unsupervised extraction of quantitative imaging variables. This automation facilitates integration with clinical variables derived by machine learning to predict patient outcome or diagnosis. In this review, we describe new imaging protocols made possible by the new hardware developments. We also discuss several novel software approaches for the quantification and interpretation of myocardial perfusion SPECT scans.

  18. Problems in the optimum display of SPECT images

    International Nuclear Information System (INIS)

    Fielding, S.L.

    1988-01-01

    The instrumentation, computer hardware and software, and the image display system are all very important in the production of diagnostically useful SPECT images. Acquisition and processing parameters are discussed which can affect the quality of SPECT images. Regular quality control of the gamma camera and computer is important to keep the artifacts due to instrumentation to a minimum. The choice of reconstruction method will depend on the statistics in the study. The paper has shown that for high count rate studies, a high pass filter can be used to enhance the reconstructions. For lower count rate studies, pre-filtering is useful and the data can be reconstructed into thicker slices to reduce the effect of image noise. Finally, the optimum display for the images must be chosen, so that the information contained in the SPECT data can be easily perceived by the clinician. (orig.) [de

  19. Complexity and accuracy of image registration methods in SPECT-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L S; Duzenli, C; Moiseenko, V [Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada); Tang, L; Hamarneh, G [Computing Science, Simon Fraser University, 9400 TASC1, Burnaby, BC, V5A 1S6 (Canada); Gill, B [Medical Physics, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Celler, A; Shcherbinin, S [Department of Radiology, University of British Columbia, 828 West 10th Ave, Vancouver, BC, V5Z 1L8 (Canada); Fua, T F; Thompson, A; Sheehan, F [Radiation Oncology, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Liu, M [Radiation Oncology, Fraser Valley Cancer Centre, BC Cancer Agency, 13750 9th Ave, Surrey, BC, V3V 1Z2 (Canada)], E-mail: lyin@bccancer.bc.ca

    2010-01-07

    The use of functional imaging in radiotherapy treatment (RT) planning requires accurate co-registration of functional imaging scans to CT scans. We evaluated six methods of image registration for use in SPECT-guided radiotherapy treatment planning. Methods varied in complexity from 3D affine transform based on control points to diffeomorphic demons and level set non-rigid registration. Ten lung cancer patients underwent perfusion SPECT-scans prior to their radiotherapy. CT images from a hybrid SPECT/CT scanner were registered to a planning CT, and then the same transformation was applied to the SPECT images. According to registration evaluation measures computed based on the intensity difference between the registered CT images or based on target registration error, non-rigid registrations provided a higher degree of accuracy than rigid methods. However, due to the irregularities in some of the obtained deformation fields, warping the SPECT using these fields may result in unacceptable changes to the SPECT intensity distribution that would preclude use in RT planning. Moreover, the differences between intensity histograms in the original and registered SPECT image sets were the largest for diffeomorphic demons and level set methods. In conclusion, the use of intensity-based validation measures alone is not sufficient for SPECT/CT registration for RTTP. It was also found that the proper evaluation of image registration requires the use of several accuracy metrics.

  20. Development of a new statistical evaluation method for brain SPECT images

    International Nuclear Information System (INIS)

    Kawashima, Ryuta; Sato, Kazunori; Ito, Hiroshi; Koyama, Masamichi; Goto, Ryoui; Yoshioka, Seiro; Ono, Shuichi; Sato, Tachio; Fukuda, Hiroshi

    1996-01-01

    The purpose of this study was to develop a new statistical evaluation method for brain SPECT images. First, we made normal brain image databases using 99m Tc-ECD and SPECT in 10 normal subjects as described previously. Each SPECT images were globally normalized and anatomically standardized to the standard brain shape using Human Brain Atlas (HBA) of Roland et al. and each subject's X-CT. Then, mean and SD images were calculated voxel by voxel. For the next step, 99m Tc-ECD SPECT images of a patient were obtained, and global normalization and anatomical standardization were performed as the same way. Then, a statistical map was calculated as following voxel by voxel; (P-Mean)/SDx10+50, where P, mean and SD indicate voxel value of patient, mean and SD images of normal databases, respectively. We found this statistical map was helpful for clinical diagnosis of brain SPECT studies. (author)

  1. Pre-evaluation study in SPECT images using a phantom

    International Nuclear Information System (INIS)

    Rebelo, Marina de Sa; Furuie, Sergio Shiguemi; Abe, Rubens; Moura, Lincoln

    1996-01-01

    An alternative solution for the reconstruction of SPECT images using a Poisson Noise Model is presented. The proposed algorithm was applied on a real phantom and compared to the standard clinical procedures. Results have shown that the proposed method improves the quality of the SPECT images

  2. SPECT versus planar bone radionuclide imaging in the detection of spondylolysis

    International Nuclear Information System (INIS)

    Whitten, C.G.; El-Khoury, G.Y.; Chang, P.J.; Seabold, J.E.; Found, E.M.; Renfrew, D.L.

    1991-01-01

    This paper evaluates the relative performance and ease of interpretation of SPECT versus planar radionuclide bone imaging in the detection of spondylolysis. The authors studied all patients presenting with back pain suggestive of spondylolysis from November 1989 to January 1991 who underwent bone scanning; patients underwent both planar and SPECT imaging. The planar and SPECT images were randomly mixed and independently interpreted by four observers for presence or absence of spondylolysis and ease of interpretation for each scan. Receiver operating characteristic (ROC) and analysis of variance (ANOVA) were used. Of 72 patients, 19 had confirmed spondylolysis, and 53 did not. While ROC analysis showed that SPECT performed slightly better than planar imaging for all four observers, the difference was not statistically significant. ANOVA results suggest that planar imaging was significantly easier to use than SPECT and that ease of use was strongly correlated with the observer's confidence in the diagnosis

  3. SPECT imaging of cardiac reporter gene expression in living rabbits

    International Nuclear Information System (INIS)

    Liu Ying; Lan Xiaoli; Zhang Liang; Wu Tao; Jiang Rifeng; Zhang Yongxue

    2009-01-01

    This work is to demonstrate feasibility of imaging the expression of herpes simplex virus 1-thymidine kinase (HSVI-tk) reporter gene in rabbits myocardium by using the reporter probe 131 I-2'-fluoro-2'-deoxy-l-β-D-arabinofuranosyl-5-iodouracil ( 131 I-FIAU) and SPECT. Rabbits of the study group received intramyocardial injection of Ad5-tk and control group received aseptic saline injection. Two sets of experiments were performed on the study group. Rabbits of the 1st set were injected with 131 I-FIAU 600 μCi at Day 2 after intramyocardial transfection of Ad5-tk in 1xl0 9 , 5x10 8 , 1x10 8 , 5x10 7 and 1x10 7 pfu, and heart SPECT imaging was done at different hours. Rabbits of the 2nd were transferred various titers of Ad5-tk (1x10 9 , 5x10 8 , 1x10 8 , 5x10 7 , 1x10 7 pfu) to determine the threshold and optimal viral titer needed for detection of gene expression. Two days later, 131 I-FIAU was injected and heart SPECT imaging was performed at 6, 24 and 48 h, before killing them for gamma counting of the hearts. Reverse transcription-polymerase chain reaction (RT-PCR) was used to verify the transferred HSVI-tk gene expression. Semi-quantitative analysis derived of region of interest (ROI) of SPECT images and RT-PCR images was performed and the relationship of SPECT images with ex vivo gamma counting and mRNA level were evaluated. SPECT images conformed 131 I-FIAU accumulation in rabbits injected with Ad5-tk in the anterolateral wall. The optimal images quality was obtained at 24-48 h for different viral titers. The highest radioactivity in the focal myocardium was seen at 6 h, and then declined with time. The threshold was 5x10 7 pfu of virus titer. The result could be set better in 1-5x10 8 pfu by SPECT analysis and gamma counting. ROI-derived semi-quantitative study on SPECT images correlated well with ex vivo gamma counting and mRNA levels from RT-PCR analysis. The HSVI-tk/ 131 I-FIAU reporter gene/reporter probe system is feasible for cardiac SPECT reporter

  4. Imaging of striatal dopamine transporters in rat brain with single pinhole SPECT and co-aligned MRI is highly reproducible

    International Nuclear Information System (INIS)

    Booij, Jan; Bruin, Kora de; Win, Maartje M.L. de; Lavini, Cristina Mphil; Heeten, Gerard J. den; Habraken, Jan

    2003-01-01

    A recently developed pinhole high-resolution SPECT system was used to measure striatal to non-specific binding ratios in rats (n = 9), after injection of the dopamine transporter ligand 123 I-FP-CIT, and to assess its test/retest reproducibility. For co-alignment purposes, the rat brain was imaged on a 1.5 Tesla clinical MRI scanner using a specially developed surface coil. The SPECT images showed clear striatal uptake. On the MR images, cerebral and extra-cerebral structures could be easily delineated. The mean striatal to non-specific [ 123 I]FP-CIT binding ratios of the test/retest studies were 1.7 ± 0.2 and 1.6 ± 0.2, respectively. The test/retest variability was approximately 9%. We conclude that the assessment of striatal [ 123 I]FP-CIT binding ratios in rats is highly reproducible

  5. Radiotracers for SPECT imaging. Current scenario and future prospects

    International Nuclear Information System (INIS)

    Adak, S.; Vijaya Raj, K.K.; Mandal, S.

    2012-01-01

    Single photon emission computed tomography (SPECT) has been the cornerstone of nuclear medicine and today it is widely used to detect molecular changes in cardiovascular, neurological and oncological diseases. While SPECT has been available since the 1980s, advances in instrumentation hardware, software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. The biggest change in the last decade has been the fusion of CT with SPECT, which has improved attenuation correction and image quality. Advances in collimator design, replacement of sodium iodide crystals in the detectors with cadmium zinc telluride (CZT) detectors as well as advances in software and reconstruction algorithms have all helped to retain SPECT as a much needed and used technology. Today, a wide spectrum of radiotracers is available for use in cardiovascular, neurology and oncology applications. The development of several radiotracers for neurological disorders is briefly described in this review, including [ 123 I]FP-CIT (DaTSCAN trademark) available for Parkinson's disease. In cardiology, while technetium-99m labeled tetrofosmin and technetium-99m labeled sestamibi have been well known for myocardial perfusion imaging, we describe a recently completed multicenter clinical study on the use of [ 123 I]mIBG (AdreView trademark) for imaging in chronic heart failure patients. For oncology, while bone scanning has been prevalent, newer radiotracers that target cancer mechanisms are being developed. Technetium-99m labeled RGD peptides have been reported in the literature that can be used for imaging angiogenesis, while technetium-99m labeled duramycin has been used to image apoptosis. While PET/CT is considered to be the more advanced technology particularly for oncology applications, SPECT continues to be the modality of choice and the workhorse in many hospitals and nuclear medicine centers. The cost of SPECT instruments also makes them more

  6. Radiotracers for SPECT imaging. Current scenario and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Adak, S.; Vijaya Raj, K.K.; Mandal, S. [GE Healthcare Medical Diagnostics, John F. Welch Technology Center, Bangalore (India).; Bhalla, R.; Pickett, R.; Luthra, S.K. [GE Healthcare Medical Diagnostics, The Grove Centre, Amersham (United Kingdom)

    2012-07-01

    Single photon emission computed tomography (SPECT) has been the cornerstone of nuclear medicine and today it is widely used to detect molecular changes in cardiovascular, neurological and oncological diseases. While SPECT has been available since the 1980s, advances in instrumentation hardware, software and the availability of new radiotracers that are creating a revival in SPECT imaging are reviewed in this paper. The biggest change in the last decade has been the fusion of CT with SPECT, which has improved attenuation correction and image quality. Advances in collimator design, replacement of sodium iodide crystals in the detectors with cadmium zinc telluride (CZT) detectors as well as advances in software and reconstruction algorithms have all helped to retain SPECT as a much needed and used technology. Today, a wide spectrum of radiotracers is available for use in cardiovascular, neurology and oncology applications. The development of several radiotracers for neurological disorders is briefly described in this review, including [{sup 123}I]FP-CIT (DaTSCAN trademark) available for Parkinson's disease. In cardiology, while technetium-99m labeled tetrofosmin and technetium-99m labeled sestamibi have been well known for myocardial perfusion imaging, we describe a recently completed multicenter clinical study on the use of [{sup 123}I]mIBG (AdreView trademark) for imaging in chronic heart failure patients. For oncology, while bone scanning has been prevalent, newer radiotracers that target cancer mechanisms are being developed. Technetium-99m labeled RGD peptides have been reported in the literature that can be used for imaging angiogenesis, while technetium-99m labeled duramycin has been used to image apoptosis. While PET/CT is considered to be the more advanced technology particularly for oncology applications, SPECT continues to be the modality of choice and the workhorse in many hospitals and nuclear medicine centers. The cost of SPECT instruments also

  7. Atlas of Skeletal SPECT/CT Clinical Images

    International Nuclear Information System (INIS)

    2016-01-01

    The atlas focuses specifically on single photon emission computed tomography/computed tomography (SPECT/CT) in musculoskeletal imaging, and thus illustrates the inherent advantages of the combination of the metabolic and anatomical component in a single procedure. In addition, the atlas provides information on the usefulness of several sets of specific indications. The publication, which serves more as a training tool rather than a textbook, will help to further integrate the SPECT and CT experience in clinical practice by presenting a series of typical cases with many different patterns of SPECT/CT seen in bone scintigraphy

  8. Synthesis, characterization and biodistribution of neutral and lipid-soluble 99mTc-bisaminoethanethiol spiperone derivatives: Possible ligands for receptor imaging with SPECT

    International Nuclear Information System (INIS)

    Samnick, Samuel; Brandau, Wolfgang; Sciuk, Joachim; Steinstrasser, Axel; Schober, Otmar

    1995-01-01

    Using parts of the molecular structure of spiperone, two new ligand systems for complexation with [ 99m Tc]technetium were prepared in order to develop potential receptor imaging agents for single photon emission computer tomography (SPECT). The bis-aminoethanethiols (BAT): 1-benzyl-4-(2-mercapto-2-methyl-4-aza-pentyl)-4-(2-mercapto-2-methyl- propylamino)-piperidine (benzylpiperidyl-BAT, BP-BAT) and 1-[3-(4-fluorobenzoyl)-propyl]-4-(2-mercapto-2-methyl-4-aza-pentyl)-4-(2- mercapto-2-methyl-propylamino)-piperidine (butyrophenoylpiperidyl-BAT, BUP-BAT) form stable, neutral and lipid soluble complexes with [ 99m Tc]technetium at pH ≥ 11 using SnCl 2 as reducing agent in nearly quantitative radiochemical yields. Biodistribution of 99m Tc-BP-BAT and 99m Tc-BUP-BAT in rats showed a moderate clearance from blood and low uptake and retention in the liver, whereas brain uptake was moderate, however with prolonged brain retention. On the other hand, significant accumulations and retentions were observed in heart, kidney and lung with increasing oxygen/blood ratios up to 24 h. Within 24 h p.i. 22 and 29% of the injected dose (i.d.) of 99m Tc-BP-BAT and 99m Tc-BUP-BAT were eliminated by hepatobiliary excretion whereas 22% i.d. of both 99m Tc-BAT complexes were excreted into the urine. Although first biodistribution studies of 99m Tc-BP-BAT and 99m Tc-BUP-BAT in rats showed relatively low brain uptake, the high uptake in peripheral, receptor rich organs indicates that compounds of this type may be used as a basis for further structural modification to develop agents with optimal properties for cerebral or peripheral receptor imaging with SPECT

  9. Nuclear myocardial perfusion imaging using thallium-201 with a novel multifocal collimator SPECT/CT: IQ-SPECT versus conventional protocols in normal subjects.

    Science.gov (United States)

    Matsuo, Shinro; Nakajima, Kenichi; Onoguchi, Masahisa; Wakabayash, Hiroshi; Okuda, Koichi; Kinuya, Seigo

    2015-06-01

    A novel multifocal collimator, IQ-SPECT (Siemens) consists of SMARTZOOM, cardio-centric and 3D iterative SPECT reconstruction and makes it possible to perform MPI scans in a short time. The aims are to delineate the normal uptake in thallium-201 ((201)Tl) SPECT in each acquisition method and to compare the distribution between new and conventional protocol, especially in patients with normal imaging. Forty patients (eight women, mean age of 75 years) who underwent myocardial perfusion imaging were included in the study. All patients underwent one-day protocol perfusion scan after an adenosine-stress test and at rest after administering (201)Tl and showed normal results. Acquisition was performed on a Symbia T6 equipped with a conventional dual-headed gamma camera system (Siemens ECAM) and with a multifocal SMARTZOOM collimator. Imaging was performed with a conventional system followed by IQ-SPECT/computed tomography (CT). Reconstruction was performed with or without X-ray CT-derived attenuation correction (AC). Two nuclear physicians blinded to clinical information interpreted all myocardial perfusion images. A semi-quantitative myocardial perfusion was analyzed by a 17-segment model with a 5-point visual scoring. The uptake of each segment was measured and left ventricular functions were analyzed by QPS software. IQ-SPECT provided good or excellent image quality. The quality of IQ-SPECT images without AC was similar to those of conventional LEHR study. Mid-inferior defect score (0.3 ± 0.5) in the conventional LEHR study was increased significantly in IQ-SPECT with AC (0 ± 0). IQ-SPECT with AC improved the mid-inferior decreased perfusion shown in conventional images. The apical tracer count in IQ-SPECT with AC was decreased compared to that in LEHR (0.1 ± 0.3 vs. 0.5 ± 0.7, p IQ-SPECT was significantly higher than that from the LEHR collimator (p = 0.0009). The images of IQ-SPECT acquired in a short time are equivalent to that of conventional LEHR

  10. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    International Nuclear Information System (INIS)

    Bowsher, James; Giles, William; Yin, Fang-Fang; Yan, Susu; Roper, Justin

    2014-01-01

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  11. Onboard functional and molecular imaging: A design investigation for robotic multipinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Bowsher, James, E-mail: james.bowsher@duke.edu; Giles, William; Yin, Fang-Fang [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 and Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Yan, Susu [Medical Physics Graduate Program, Duke University, Durham, North Carolina 27710 (United States); Roper, Justin [Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710 (United States)

    2014-01-15

    Purpose: Onboard imaging—currently performed primarily by x-ray transmission modalities—is essential in modern radiation therapy. As radiation therapy moves toward personalized medicine, molecular imaging, which views individual gene expression, may also be important onboard. Nuclear medicine methods, such as single photon emission computed tomography (SPECT), are premier modalities for molecular imaging. The purpose of this study is to investigate a robotic multipinhole approach to onboard SPECT. Methods: Computer-aided design (CAD) studies were performed to assess the feasibility of maneuvering a robotic SPECT system about a patient in position for radiation therapy. In order to obtain fast, high-quality SPECT images, a 49-pinhole SPECT camera was designed which provides high sensitivity to photons emitted from an imaging region of interest. This multipinhole system was investigated by computer-simulation studies. Seventeen hot spots 10 and 7 mm in diameter were placed in the breast region of a supine female phantom. Hot spot activity concentration was six times that of background. For the 49-pinhole camera and a reference, more conventional, broad field-of-view (FOV) SPECT system, projection data were computer simulated for 4-min scans and SPECT images were reconstructed. Hot-spot localization was evaluated using a nonprewhitening forced-choice numerical observer. Results: The CAD simulation studies found that robots could maneuver SPECT cameras about patients in position for radiation therapy. In the imaging studies, most hot spots were apparent in the 49-pinhole images. Average localization errors for 10-mm- and 7-mm-diameter hot spots were 0.4 and 1.7 mm, respectively, for the 49-pinhole system, and 3.1 and 5.7 mm, respectively, for the reference broad-FOV system. Conclusions: A robot could maneuver a multipinhole SPECT system about a patient in position for radiation therapy. The system could provide onboard functional and molecular imaging with 4-min

  12. High resolution SPECT imaging for visualization of intratumoral heterogeneity using a SPECT/CT scanner dedicated for small animal imaging

    International Nuclear Information System (INIS)

    Umeda, Izumi O.; Tani, Kotaro; Tsuda, Keisuke

    2012-01-01

    Tumor interiors are never homogeneous and in vivo visualization of intratumoral heterogeneity would be an innovation that contributes to improved cancer therapy. But, conventional nuclear medicine tests have failed to visualize heterogeneity in vivo because of limited spatial resolution. Recently developed single photon emission computed tomographic (SPECT) scanners dedicated for small animal imaging are of interest due to their excellent spatial resolution of 111 In and simulations of actual small animal imaging. The optimal conditions obtained were validated by in vivo imaging of sarcoma 180-bearing mice. Larger number of counts must be obtained within limited acquisition time to visualize tumor heterogeneity in vivo in animal imaging, compared to cases that simply detect tumors. At an acquisition time of 30 min, better image quality was obtained with pinhole apertures diameter of 1.4 mm than of 1.0 mm. The obtained best spatial resolution was 1.3 mm, it was acceptable for our purpose, though a little worse than the best possible performance of the scanner (1.0 mm). Additionally, the reconstruction parameters, such as noise suppression, voxel size, and iteration/subset number, needed to be optimized under the limited conditions and were different from those found under the ideal condition. The minimal radioactivity concentration for visualization of heterogeneous tumor interiors was estimated to be as high as 0.2-0.5 MBq/mL. Liposomes containing 111 In met this requirement and were administered to tumor-bearing mice. SPECT imaging successfully showed heterogeneous 111 In distribution within the tumors in vivo with good spatial resolution. A threshold of 0.2 MBq/g for clear visualization of tumor heterogeneity was validated. Autoradiograms obtained ex vivo of excised tumors confirmed that the in vivo SPECT images accurately depicted the heterogeneous intratumoral accumulation of liposomes. Intratumoral heterogeneity was successfully visualized under the optimized

  13. Usefulness of Ga-67 citrate whole body imaging, chest spot imaging, and chest SPECT in sarcoidosis

    International Nuclear Information System (INIS)

    Ueno, Kyoichi; Nishi, Koichi; Namura, Masanobu; Kawashima, Yoshio; Kurumaya, Hiroshi

    1999-01-01

    To assess the sensitivity, and the relative role of Ga-67 whole body, chest spot imaging, and chest SPECT, we retrospectively studied 34 cases of sarcoidosis (24 biopsy proven, 10 clinically diagnosed) with Ga-67 (111 MBq), and compared the results of lung (25 cases), muscle (25 cases), skin (3 cases), and myocardial (2 cases) biopsies. Ga-67 chest SPECT (single photon emission CT) were done in 17 cases with Siemens MultiSPECT3. Ga-67 planar imaging visualized only 2 of 12 (16.7%) lung biopsy-positive cases, 5 of 12 (41.6%) muscle biopsy-positive cases, 2 of 3 (66.7%) skin biopsy-positive cases. However, Ga-67 imaging revealed the lesions in 1 of 9 (11.1%) of muscle biopsy-negative cases, in 2 of 3 (66.7%) of skin biopsy-negative cases, and in 1 of 2 myocardial biopsy-negative cases. Ga-67 chest SPECT visualized 14 hilar lymphadenopathy (LN), 3 supraclavicular LN, and 1 myocardial sarcoidosis. Although both SPECT, and planar spot imaging detected the lesions equally, the former showed them more clearly. Compared with various biopsies, the sensitivity of Ga-67 imaging was not so high. However, Ga-67 imaging is non-invasive, easy to perform the whole body imaging, and can detect the activity of the lesions. Ga-67 SPECT showed clear imaging of the hilar, mediastinal LN, and potentially fatal myocardial sarcoidosis. (author)

  14. Synthesis, radiolabeling and baboon SPECT imaging of 2β-carbomethoxy-3β-(3'-[123I]iodophenyl)tropane ([123I]YP256) as a serotonin transporter radiotracer

    International Nuclear Information System (INIS)

    Bois, Frederic; Baldwin, Ronald M.; Amici, Louis; Al-Tikriti, Mohammed S.; Kula, Nora; Baldessarini, Ross; Innis, Robert B.; Staley, Julie K.; Tamagnan, Gilles D.

    2008-01-01

    To develop a potential SPECT probe to evaluate the integrity of the serotoninergic system (5-HTT) whose dysfunction is linked to several disease conditions such as Parkinson's disease, Alzheimer's disease and depression, we report the synthesis, radiolabeling and in vivo baboon imaging of 2β-carbomethoxy-3β-(3'-[ 123 I]iodophenyl) tropane (YP256, ). The radiolabeling was performed by iododestannylation using sodium [ 123 I]iodide and peracetic acid. Although the ligand displayed high selectivity for 5-HTT over dopamine transporter in vitro, SPECT imaging in baboons did not reveal selective 5-HTT accumulation in brain in vivo

  15. Is SPECT useful in imaging of abdominal inflammatory processes using 99mTc-HMPAO-WBCs?

    International Nuclear Information System (INIS)

    Smole, M.S.; Stantic, T.S.; Fettich, J.F.

    2002-01-01

    Aim: The aim of the study is to determine whether SPECT gives additional information in the assessment of inflammation of the abdominal region with labelled white blood cells as compared with usual planar imaging. Patients And Methods: SPECT and planar imaging was performed in 26 patients with suspected inflammatory process in the abdomen, within three hours after injection of autologous white blood cells labelled with 99m Tc HMPAO. Planar images where acquired as static spot images using high resolution low energy collimator on 256 x 256 matrix. SPECT was performed using the same collimator on 128 x 128 matrix in 128 projections. Filtered back projection was used for reconstruction and volume rendering was performed. Results: The lesions in the abdomen were classified as jejunum, colon ascendents, colon transversum, colon descendents, sigmoid, and lesions outside GIT. All lesions, which were seen on planar images, except one, were also seen on SPECT. Five equivocal lesions seen on planar images were reconfirmed as pathological on SPECT. Additionally SPECT revealed three lesions not seen on planar images. Fourteen lesions were seen by both imaging techniques. All together SPECT improved diagnostic accuracy of 99m Tc - HMPAO - WBC scintigraphy in 7/28 patients. Conclusion: more inflammatory lesions in the abdomen are revealed by SPECT and volume rendering, than by planar imaging equivocal lesions seen on planar images can be characterised as positive or negative by SPECT. SPECT artefacts can cause possible false positive results; therefore usual planar imaging cannot be omitted if SPECT is performed

  16. Clinical applications of SPECT/CT: New hybrid nuclear medicine imaging system

    International Nuclear Information System (INIS)

    2008-08-01

    Interest in multimodality imaging shows no sign of subsiding. New tracers are spreading out the spectrum of clinical applications and innovative technological solutions are preparing the way for yet more modality marriages: hybrid imaging. Single photon emission computed tomography (SPECT) has enabled the evaluation of disease processes based on functional and metabolic information of organs and cells. Integration of X ray computed tomography (CT) into SPECT has recently emerged as a brilliant diagnostic tool in medical imaging, where anatomical details may delineate functional and metabolic information. SPECT/CT has proven to be valuable in oncology. For example, in the case of a patient with metastatic thyroid cancer, neither SPECT nor CT alone could identify the site of malignancy. SPECT/CT, a hybrid image, precisely identified where the surgeon should operate. However SPECT/CT is not just advantageous in oncology. It may also be used as a one-stop-shop for various diseases. Clinical applications with SPECT/CT have started and expanded in developed countries. It has been reported that moving from SPECT alone to SPECT/CT could change diagnoses in 30% of cases. Large numbers of people could therefore benefit from this shift all over the world. This report presents an overview of clinical applications of SPECT/CT and a relevant source of information for nuclear medicine physicians, radiologists and clinical practitioners. This information may also be useful for decision making when allocating resources dedicated to the health care system, a critical issue that is especially important for the development of nuclear medicine in developing countries. In this regard, the IAEA may be heavily involved in the promotion of programmes aimed at the IAEA's coordinated research projects and Technical Cooperation projects

  17. Diagnosis and staging of breast cancer by SPECT images fused with CT images

    International Nuclear Information System (INIS)

    Li Yanjing; Zhu Qiaomei

    2007-01-01

    Objective: To evaluate the TNM staging value of 99mTc-MIBI scintimammotraphy with SPECT-CT images fusing for the diagnosis of breast cancer. Methods: 10 patients with breast cancer underwent scintimammography with 99mTc-MIBI, and SPECT images were fused with CT images. Images were compared with final diagnosis confirmed by histopathology. Results: Of the 19 breast cancer patients, one case of invasive ductal carcinoma showed false-negative. Among 18 cases of positive lesions, axillary metastases were involved in 10, supraclavicular nodes were also defined in 3, para-sternum nodes were involved in 2, 2 were missed and 1 cases without metastatic node. The axillary lymph nodes were divided into three levels with respect to their position relative to the pectoralis minor muscle by fused images. Conclusion: 99mTc-MIBI scintimammotraphy combined with SPECT-CT images fusing is of some clinical value in TNM staging of breast cancer. (authors)

  18. Imaging fusion (SPECT/CT) in degenerative disease of spine

    International Nuclear Information System (INIS)

    Bernal, P.; Ucros, G.; Bermudez, S.; Ocampo, M.

    2007-01-01

    Full text: Objective: To determine the utility of Fusion Imaging SPECT/CT in degenerative pathology of the spine and to establish the impact of the use of fusion imaging in spinal pain due to degenerative changes of the spine. Materials and methods: 44 Patients (M=21, F=23) average age of 63 years and with degenerative pathology of spine were sent to Diagnosis Imaging department in FSFB. Bone scintigraphy (SPECT), CT of spine (cervical: 30%, Lumbar 70%) and fusion imaging were performed in all of them. Bone scintigraphy was carried out in a gamma camera Siemens Diacam double head attached to ESOFT computer. The images were acquired in matrix 128 x 128, 20 seg/imag, 64 images. CT of spine was performed same day or two days after in Helycoidal Siemens somatom emotion CT. The fusion was done in a Dicom workstation in sagital, axial and coronal reconstruction. The findings were evaluated by 2 Nuclear Medicine physicians and 2 radiologists of the staff of FSFB in an independent way. Results: Bone scan (SPECT) and CT of 44 patients were evaluated. CT showed facet joint osteoarthrities in 27 (61.3%) patients, uncovertebral joint arthrosis in 7 (15.9%), bulging disc in 9(20.4%), spinal nucleus lesion in 7(15.9%), osteophytes in 9 (20.4%), spinal foraminal stenosis in 7 (15.9%), spondylolysis/spondylolisthesis in 4 (9%). Bone scan showed facet joint osteoarthrities in 29 (65.9%), uncovertebral joint arthrosis in 4 (9%), osteophytes in 9 (20.4%) and normal 3 (6.8%). The imaging fusion showed coincidence findings (main lesion in CT with high uptake in scintigraphy) in 34 patients (77.2%) and no coincidence in 10 (22.8%). In 15 (34.09%) patients the fusion provided additional information. The analysis of the findings of CT and SPECT showed similar results in most of the cases and the fusion didn't provide additional information but it allowed to confirm the findings but when the findings didn't match where the CT showed several findings and SPECT only one area with high uptake

  19. Clinical value of SPECT/CT imaging in the diagnosis of bone metastasis

    International Nuclear Information System (INIS)

    Wang Xinhua; Zhao Yanping; Lu Haijian; Dong Zhanfei

    2010-01-01

    Objective: To evaluate the clinical value of 99 Tc m -methylene diphosphonic acid (MDP) SPECT/CT imaging for the diagnosis of bone metastasis. Methods: Patients suspected for bone metastasis and with bone pain of unknown origin were included in this study (n=237). All cases underwent SPECT and CT imaging at 180 min after 99 Tc m -MDP injection. Diagnosis was confirmed by pathology (n=21), more than 2 kinds of radiologieal imaging (MRI, CT, X-ray) (n=106), and clinical follow up in 2 years (n=110). χ 2 -test was used to compare the results of planar and SPECT/CT imaging using SAS 6.12 software. Results: In 237 patients, planar imaging of 142 cases matched the final diagnosis in which 72 had benign lesions and 70 had bone metastases. The definite coincidence rate was 95.30% (142/149). SPECT/CT imaging of 224 cases matched the final diagnosis in which 104 had benign lesions and 120 cases diagnosed as bone metastases. The coincidence and definite coincidence rates were 94.51% (224/237), and 99.48% (192/193). Difference in the definite coincidence rate between planar and SPECT/CT imaging was statistically significant (χ 2 = 5.37, P=0.024). Conclusion: SPECT/CT imaging is valuable for accurate localization of osseous pathology and for improvement of diagnosing bone metastasis. (authors)

  20. Comparison of SPECT and whole-body planar imaging in radioimmunoscintigraphy with Tc-labeled antibodies

    International Nuclear Information System (INIS)

    Lacic, K.; Bokulic, T.; Lukac, J.; Dakovic, N.; Kusic, Z.

    1994-01-01

    The authors of some recent clinical studies suggested 20-24 hours SPECT imaging as a mandatory procedure in radioimmunoscintigraphy with Tc-labeled antibodies. The aim of our study was to compare whole-body (WB) planar imaging versus SPECT as well as 4-6 hours SPECT to 20-24 hours one. For this purpose we analyzed 33 lesions in 12 postsurgical patients with colorectal carcinoma. Each patient received intravenously 0.5-1.0 mg anti-CEA BW 431/26 murine monoclonal IgG-antibodies labeled with Tc-99m (814-1110 MBq). WB and SPECT imaging were performed at 4-6 and 20-24 hours post infusion. 20-24 hours WB scan imaged more 'hot' and less 'cold' lesions than 4-6 hours one. SPECT scan showed significantly more lesions than WB scan. 20-24 hours SPECT scan detected more 'hot' lesions than 4-6 hours SPECT. At the same time the number of 'cold' lesions decreased in 20-24 hours SPECT in comparison to 4-6 hours one. As a conclusion we can say that our results suggest a superiority of SPECT imaging in comparison to WB scan. Except that, in our opinion performing of a 20-24 hours SPECT scan in radioimmunoscintigraphy with Tc-labeled antibodies should be mandatory. (author)

  1. Comparison of SPECT and whole-body planar imaging in radioimmunoscintigraphy with Tc-labeled antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Lacic, K; Bokulic, T; Lukac, J; Dakovic, N; Kusic, Z [Clinical Hospital Sestre Milosrdnice, Zagreb (Croatia). Dept. of Oncology and Nuclear Medicine

    1994-10-01

    The authors of some recent clinical studies suggested 20-24 hours SPECT imaging as a mandatory procedure in radioimmunoscintigraphy with Tc-labeled antibodies. The aim of our study was to compare whole-body (WB) planar imaging versus SPECT as well as 4-6 hours SPECT to 20-24 hours one. For this purpose we analyzed 33 lesions in 12 postsurgical patients with colorectal carcinoma. Each patient received intravenously 0.5-1.0 mg anti-CEA BW 431/26 murine monoclonal IgG-antibodies labeled with Tc-99m (814-1110 MBq). WB and SPECT imaging were performed at 4-6 and 20-24 hours post infusion. 20-24 hours WB scan imaged more `hot` and less `cold` lesions than 4-6 hours one. SPECT scan showed significantly more lesions than WB scan. 20-24 hours SPECT scan detected more `hot` lesions than 4-6 hours SPECT. At the same time the number of `cold` lesions decreased in 20-24 hours SPECT in comparison to 4-6 hours one. As a conclusion we can say that our results suggest a superiority of SPECT imaging in comparison to WB scan. Except that, in our opinion performing of a 20-24 hours SPECT scan in radioimmunoscintigraphy with Tc-labeled antibodies should be mandatory. (author).

  2. Implications of CT noise and artifacts for quantitative 99mTc SPECT/CT imaging

    International Nuclear Information System (INIS)

    Hulme, K. W.; Kappadath, S. C.

    2014-01-01

    Purpose: This paper evaluates the effects of computed tomography (CT) image noise and artifacts on quantitative single-photon emission computed-tomography (SPECT) imaging, with the aim of establishing an appropriate range of CT acquisition parameters for low-dose protocols with respect to accurate SPECT attenuation correction (AC). Methods: SPECT images of two geometric and one anthropomorphic phantom were reconstructed iteratively using CT scans acquired at a range of dose levels (CTDI vol = 0.4 to 46 mGy). Resultant SPECT image quality was evaluated by comparing mean signal, background noise, and artifacts to SPECT images reconstructed using the highest dose CT for AC. Noise injection was performed on linear-attenuation (μ) maps to determine the CT noise threshold for accurate AC. Results: High levels of CT noise (σ ∼ 200–400 HU) resulted in low μ-maps noise (σ ∼ 1%–3%). Noise levels greater than ∼10% in 140 keV μ-maps were required to produce visibly perceptible increases of ∼15% in 99m Tc SPECT images. These noise levels would be achieved at low CT dose levels (CTDI vol = 4 μGy) that are over 2 orders of magnitude lower than the minimum dose for diagnostic CT scanners. CT noise could also lower (bias) the expected μ values. The relative error in reconstructed SPECT signal trended linearly with the relative shift in μ. SPECT signal was, on average, underestimated in regions corresponding with beam-hardening artifacts in CT images. Any process that has the potential to change the CT number of a region by ∼100 HU (e.g., misregistration between CT images and SPECT images due to motion, the presence of contrast in CT images) could introduce errors in μ 140 keV on the order of 10%, that in turn, could introduce errors on the order of ∼10% into the reconstructed 99m Tc SPECT image. Conclusions: The impact of CT noise on SPECT noise was demonstrated to be negligible for clinically achievable CT parameters. Because CT dose levels that affect

  3. Pulmonary function-morphologic relationships assessed by SPECT-CT fusion images

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi

    2012-01-01

    Pulmonary single photon emission computed tomography-computed tomography (SPECT-CT) fusion images provide objective and comprehensive assessment of pulmonary function and morphology relationships at cross-sectional lungs. This article reviewed the noteworthy findings of lung pathophysiology in wide-spectral lung disorders, which have been revealed on SPECT-CT fusion images in 8 years of experience. The fusion images confirmed the fundamental pathophysiologic appearance of lung low CT attenuation caused by airway obstruction-induced hypoxic vasoconstriction and that caused by direct pulmonary arterial obstruction as in acute pulmonary thromboembolism (PTE). The fusion images showed better correlation of lung perfusion distribution with lung CT attenuation changes at lung mosaic CT attenuation (MCA) compared with regional ventilation in the wide-spectral lung disorders, indicating that lung heterogeneous perfusion distribution may be a dominant mechanism of MCA on CT. SPECT-CT angiography fusion images revealed occasional dissociation between lung perfusion defects and intravascular clots in acute PTE, indicating the importance of assessment of actual effect of intravascular colts on peripheral lung perfusion. Perfusion SPECT-CT fusion images revealed the characteristic and preferential location of pulmonary infarction in acute PTE. The fusion images showed occasional unexpected perfusion defects in normal lung areas on CT in chronic obstructive pulmonary diseases and interstitial lung diseases, indicating the ability of perfusion SPECT superior to CT for detection of mild lesions in these disorders. The fusion images showed frequent ''steal phenomenon''-induced perfusion defects extending to the surrounding normal lung of arteriovenous fistulas and those at normal lungs on CT in hepatopulmonary syndrome. Comprehensive assessment of lung function-CT morphology on fusion images will lead to more profound understanding of lung pathophysiology in wide-spectral lung

  4. The characteristics of SPECT images in childhood benign partial epilepsy

    International Nuclear Information System (INIS)

    Jia Shaowei; Liao Jianxiang; Liu Xiaoyan; Zheng Xiyuan; Qin Jiong; Pan Zhongyun; Zuo Qihua

    1998-01-01

    Purpose: To investigate childhood benign partial epilepsy (BPE) with SPECT. Methods: Double SPECT imaging was performed on 21 cases of BPE at the stage of wake (interval spike discharge) and sleep (spike discharge), under EEG monitoring. The transverse images were reconstructed after digital image subtraction. The quantitative analysis was conducted with brain flow change rate (BFCR) % mathematical model. Results: EEG monitoring demonstrated approximately normal background of 21 cases of BPE during the stage of wake, and spike discharge frequency markedly increased during the stage of sleep, 117 foci were showed by SPeCT in cases of BPE, and the average was 5.6 +- 1.6 foci/case. The characteristics of SPECT transverse images were 1) multiple foci of mirror, 2) mostly seen in Rolandic region, 3) circular symbol, 4) the radioactivity in foci decreased during the stage of wake (interval spike discharge) and increased during the stage of sleep (spike discharge). The concordance of SPECT and EEG was 93.1% (109/117 foci). The BFCR% of all epileptogenic foci exceeded normal limit (99% confidence interval). There was no correlation between the spike discharge frequency and BFCR% (r = 0.45, P>0.05). Conclusions: Regional cerebral blood flow and function were abnormal during the epileptogenic foci were discharging abnormally in BPE

  5. Pinhole SPECT: high resolution imaging of brain tumours in small laboratory animals

    International Nuclear Information System (INIS)

    Franceschim, M.; Bokulic, T.; Kusic, Z.; Strand, S.E.; Erlandsson, K.

    1994-01-01

    The performance properties of pinhole SPECT and the application of this technology to evaluate radionuclide uptake in brain in small laboratory animals were investigated. System sensitivity and spatial resolution measurements of a rotating scintillation camera system were made for a low energy pinhole collimator equipped with 2.0 mm aperture pinhole insert. Projection data were acquired at 4 degree increments over 360 degrees in the step and shoot mode using a 4.5 cm radius of rotation. Pinhole planar and SPECT imaging were obtained to evaluate regional uptake of Tl-201, Tc-99m-MIBI, Tc-99m-HMPAO and Tc-99m-DTPA in tumor and control regions of the brain in a primary brain tumor model in Fisher 344 rats. Pinhole SPECT images were reconstructed using a modified cone- beam algorithm developed from a two dimensional fan-beam filtered backprojection algorithm. The reconstructed transaxial resolution of 2.8 FWHM and system sensitivity of 0.086 c/s/kBq with the 2.0 mm pinhole collimator aperture were measured. Tumor to non-tumor uptake ratios at 19-28 days post tumor cell inoculation varied by a factor > 20:1 on SPECT images. Pinhole SPECT provides an important new approach for performing high resolution imaging: the resolution properties of pinhole SPECT are superior to those which have been achieved with conventional SPECT or PET imaging technologies. (author)

  6. Individual patient dosimetry using quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Gonzalez, J.; Oliva, J.; Baum, R.; Fisher, S.

    2002-01-01

    An approach is described to provide individual patient dosimetry for routine clinical use. Accurate quantitative SPECT imaging was achieved using appropriate methods. The volume of interest (VOI) was defined semi-automatically using a fixed threshold value obtained from phantom studies. The calibration factor to convert the voxel counts from SPECT images into activity values was determine from calibrated point source using the same threshold value as in phantom studies. From selected radionuclide the dose within and outside a sphere of voxel dimension at different distances was computed through dose point-kernels to obtain a discrete absorbed dose kernel representation around the volume source with uniform activity distribution. The spatial activity distribution from SPECT imaging was convolved with this kernel representation using the discrete Fourier transform method to yield three-dimensional absorbed dose rate distribution. The accuracy of dose rates calculation was validated by software phantoms. The absorbed dose was determined by integration of the dose rate distribution for each volume of interest (VOI). Parameters for treatment optimization such as dose rate volume histograms and dose rate statistic are provided. A patient example was used to illustrate our dosimetric calculations

  7. The current status of SPECT or SPECT/CT in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Ik Dong; Choi, Eun Kyung; Chung, Yong An [Dept. of Radiology, Incheon Saint Mary' s HospitalThe Catholic University of Korea, Incheon (Korea, Republic of)

    2017-06-15

    The first step to nuclear medicine in Korea started with introduction of the gamma camera in 1969. Although planar images with the gamma camera give important functional information, they have the limitations that result from 2-dimensional images. Single-photon emission computed tomography (SPECT) due to its 3-dimensional image acquisition is superior to earlier planar gamma imaging in image resolution and diagnostic accuracy. As demand for a hybrid functional and anatomical imaging device has increased, integrated SPECT/CT systems have been used. In Korea, SPECT/CT was for the first time installed in 2003. SPECT/CT can eliminate many possible pitfalls on SPECT-alone images, making better attenuation correction and thereby improving image quality. Therefore, SPECT/CT is clinically preferred in many hospitals in various aspects. More recently, additional SPECT/CT images taken from the region with equivocal uptake on planar images have been helpful in making precise interpretation as part of their clinical workup in postoperative thyroid cancer patients. SPECT and SPECT/CT have various advantages, but its clinical application has gradually decreased in recent few years. While some researchers investigated the myocardial blood flow with cardiac PET using F-18 FDG or N-13 ammonia, myocardial perfusion SPECT is, at present, the radionuclide imaging study of choice for the risk stratification and guiding therapy in the coronary artery disease patients in Korea. New diagnostic radiopharmaceuticals for AD have received increasing attention; nevertheless, brain SPECT will remain the most reliable modality evaluating cerebral perfusion.

  8. The group study of diagnostic efficacy of cerebro-vascular disease by I-123 IMP SPECT images obtained with ring type SPECT scanner

    International Nuclear Information System (INIS)

    Machida, Kikuo; Honda, Norinari; Matsumoto, Toru

    1991-01-01

    We performed two image reading experiments in order to investigate the diagnostic capability of I-123 IMP SPECT obtained by the ring type SPECT scanner in cerebro-vascular disease. Fourteen physicians diagnosed SPECT images of 55 cases with reference to clinical neurological information, first without brain XCT images and second with XCT images. Each physician detected perfusion defects and redistributions of I-123 IMP and assigned a confidence level of abnormality for these SPECT findings by means of five rating method. From results obtained by ROC analysis, we concluded as follows. (1) Generally, I-123 IMP SPECT is a stable diagnostic modality in the diagnosis of cerebro-vascular disease and the image reading of XCT had no effects on the diagnosis of SPECT on the whole of physician. (2) However, there were unnegligible differences among individuals in the detectability of findings and the effect of XCT image reading. (3) Detectability of redistribution of I-123 IMP was lower than that of perfusion defect and inter-observer variation in the diagnostic performance for redistribution was larger than that of perfusion defect. The results suggest that it is necessary to standardize diagnostic criteria among physicians for redistribution of I-123 IMP. (author)

  9. Frameless image registration of X-ray CT and SPECT by volume matching

    International Nuclear Information System (INIS)

    Tanaka, Yuko; Kihara, Tomohiko; Yui, Nobuharu; Kinoshita, Fujimi; Kamimura, Yoshitsugu; Yamada, Yoshifumi.

    1998-01-01

    Image registration of functional (SPECT) and morphological (X-ray CT/MRI) images is studied in order to improve the accuracy and the quantity of the image diagnosis. We have developed a new frameless registration method of X-ray CT and SPECT image using transmission CT image acquired for absorption correction of SPECT images. This is the automated registration method and calculates the transformation matrix between the two coordinate systems of image data by the optimization method. This registration method is based on the similar physical property of X-ray CT and transmission CT image. The three-dimensional overlap of the bone region is used for image matching. We verified by a phantom test that it can provide a good result of within two millimeters error. We also evaluated visually the accuracy of the registration method by the application study of SPECT, X-ray CT, and transmission CT head images. This method can be carried out accurately without any frames. We expect this registration method becomes an efficient tool to improve image diagnosis and medical treatment. (author)

  10. The effect of Compton scattering on quantitative SPECT imaging

    International Nuclear Information System (INIS)

    Beck, J.W.; Jaszczak, R.J.; Starmer, C.F.

    1982-01-01

    A Monte Carlo code has been developed to simulate the response of a SPECT system. The accuracy of the code has been verified and has been used in this research to study and illustrate the effects of Compton scatter on quantitative SPECT measurements. The effects of Compton scattered radiation on gamma camera response have been discussed by several authors, and will be extended to rotating gamma camera SPECT systems. The unique feature of this research includes the pictorial illustration of the Compton scattered and the unscattered components of the photopeak data on SPECT imaging by simulating phantom studies with and without Compton scatter

  11. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Energy Technology Data Exchange (ETDEWEB)

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  12. Hybrid SPECT/CT imaging in neurology.

    Science.gov (United States)

    Ciarmiello, Andrea; Giovannini, Elisabetta; Meniconi, Martina; Cuccurullo, Vincenzo; Gaeta, Maria Chiara

    2014-01-01

    In recent years, the SPECT/CT hybrid modality has led to a rapid development of imaging techniques in nuclear medicine, opening new perspectives for imaging staff and patients as well. However, while, the clinical role of positron emission tomography-computed tomography (PET-CT) is well consolidated, the diffusion and the consequent value of single-photon emission tomography-computed tomography (SPECT-CT) has yet to be weighed, Hence, there is a need for a careful analysis, comparing the "potential" benefits of the hybrid modality with the "established" ones of the standalone machine. The aim of this article is to analyze the impact of this hybrid tool on the diagnosis of diseases of the central nervous system, comparing strengths and weaknesses of both modalities through the use of SWOT analysis.

  13. Benign versus malignant osseous lesions in spine: differentiation by means of bone SPECT/CT fused image

    International Nuclear Information System (INIS)

    Yao Zhiming; Qu Wanying

    2004-01-01

    This study compared the efficiency of SPECT-CT fused image with planar bone scan, bone SPECT and CT in differentiating malignant from benign lesions and detecting metastases to the spine. Methods. Total 144 patients with spinal lesions underwent planar bone scan (WB), single photon tomography (SPECT), CT and SPECT-CT fused image by a SPECT/CT system. The malignant or benign nature of lesions was proved by radiological Methods, histological findings, 6-24 month follow-up, or all of these. The diagnostic results was divided into 4 types, i.e., normal, benign, doubtful malignant and malignant. Results. There were 137 malignant and 252 benign lesions in 144 patients, respectively. The percentages of doubtful malignant diagnosed by WB, SPECT, CT and fused image are 22.6%, 5.1%, 9.5% and 0%, respectively, p < 0.01-0.001, except for the comparison between the percentages of SPECT and CT. Sensitivities in detection of malignant lesions by WB, SPECT, CT and fused image are 75.2%, 94.2%, 96.6% and 99.3%, respectively, P < 0.001, excepting for the comparisons between those of SPECT and CT, and between those of CT and fused image. The sensitivities m detection of benign lesions by WB, SPECT, CT and fused image are, 56.7%, 86.5%, 90.1% and 96.8%, respectively, P < 0.005 - 0.001, excepting for the comparison between those of SPECT and CT. The specificities in detection of maliganant lesions by WB, SPECT, CT and fused image are 70.6%, 88.9%, 97.2% and 97.6%, respectively, P < 0.001, excepting for the comparison between those of CT and fused image. Conclusion. Bone SPECT-CT fused image has highest diagnostic and differentiating diagnostic values in detection of spinal abnormalities over the planar bone scanning and SPECT. The CT by present SPECT/CT system can complement planar bone scanning and SPECT and is clinically valuable in detection of spinal abnormalities. (authors)

  14. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Grova, C [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Jannin, P [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Biraben, A [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Buvat, I [INSERM U494, CHU Pitie Salpetriere, Paris (France); Benali, H [INSERM U494, CHU Pitie Salpetriere, Paris (France); Bernard, A M [Service de Medecine Nucleaire, Centre Eugene Marquis, Rennes (France); Scarabin, J M [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France); Gibaud, B [Laboratoire IDM, Faculte de Medecine, Universite de Rennes 1, Rennes (France)

    2003-12-21

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were

  15. The impact of exercise myocardial perfusion SPECT imaging on the selection of patients for coronary angiography

    International Nuclear Information System (INIS)

    Song Liping; He Zuoxiang; Liu Xiujie; Shi Rongfang; Liu Yunzhong; Tian Yueqin; Zhang Xiaoli; Qin Xuewen; Chen Jilin; Gao Runlin

    2001-01-01

    Objective: Exercise 99 Tc m -MIBI myocardial perfusion SPECT is accurate for the diagnosis of coronary artery disease (CAD). This study assessed the impact of exercise myocardial perfusion imaging on the selection of patients for coronary angiography. Methods: 2188 consecutive patients who underwent exercise myocardial perfusion SPECT in authors' department in 1999 were retrospectively analyzed. Among them, 1807 were men, 381 women (average age: 53.5 +- 7.2 years). Overall, exercise myocardial SPECT was normal in 1731 patients, abnormal in 359 cases, and equivocal in 98 patients. There were 141 patients who underwent CAG within 60 days after myocardial SPECT. Results: Overall, 12% of the patients with abnormal SPECT imaging underwent coronary angiography, but only 5% of the patients with a normal SPECT imaging did (P < 0.001). Among these 141 patients who underwent coronary angiography, significant coronary stenosis was present in 91% of the patients who had had an abnormal SPECT imaging, but only 8% of those who had had a normal SPECT imaging (P < 0.001). In those patients who underwent coronary angiography, revascularization rate was 25% for the patients with abnormal SPECT imaging, but only 1% for the patients with a normal SPECT imaging. Conclusion: The results of exercise myocardial perfusion SPECT have a significant impact on the selection of patients for coronary angiography and revascularization

  16. Adaptive Angular Sampling for SPECT Imaging

    OpenAIRE

    Li, Nan; Meng, Ling-Jian

    2011-01-01

    This paper presents an analytical approach for performing adaptive angular sampling in single photon emission computed tomography (SPECT) imaging. It allows for a rapid determination of the optimum sampling strategy that minimizes image variance in regions-of-interest (ROIs). The proposed method consists of three key components: (a) a set of close-form equations for evaluating image variance and resolution attainable with a given sampling strategy, (b) a gradient-based algor...

  17. Influence of void on image quality of industrial SPECT

    International Nuclear Information System (INIS)

    Park, J G; Jung, S H; Kim, J B; Moon, J; Kim, C H

    2013-01-01

    Industrial single photon emission computed tomography (SPECT) is a promising technique to determine the dynamic behavior of industrial process media and has been developed in the Korea Atomic Energy Research Institute. The present study evaluated the influence of a void, which is presence in multiphase reactors of industrial process, on the image quality of an industrial SPECT. The results are very encouraging; that is, the performance of the industrial SPECT system is little influenced by the presence of a void, which means that industrial SPECT is an appropriate tool to estimate the dynamic characteristics of the process media in a water-air phase bubble column with a static gas sparger

  18. 3D composite image, 3D MRI, 3D SPECT, hydrocephalus

    International Nuclear Information System (INIS)

    Mito, T.; Shibata, I.; Sugo, N.; Takano, M.; Takahashi, H.

    2002-01-01

    The three-dimensional (3D)SPECT imaging technique we have studied and published for the past several years is an analytical tool that permits visual expression of the cerebral circulation profile in various cerebral diseases. The greatest drawback of SPECT is that the limitation on precision of spacial resolution makes intracranial localization impossible. In 3D SPECT imaging, intracranial volume and morphology may vary with the threshold established. To solve this problem, we have produced complimentarily combined SPECT and helical-CT 3D images by means of general-purpose visualization software for intracranial localization. In hydrocephalus, however, the key subject to be studied is the profile of cerebral circulation around the ventricles of the brain. This suggests that, for displaying the cerebral ventricles in three dimensions, CT is a difficult technique whereas MRI is more useful. For this reason, we attempted to establish the profile of cerebral circulation around the cerebral ventricles by the production of combined 3D images of SPECT and MRI. In patients who had shunt surgery for hydrocephalus, a difference between pre- and postoperative cerebral circulation profiles was assessed by a voxel distribution curve, 3D SPECT images, and combined 3D SPECT and MRI images. As the shunt system in this study, an Orbis-Sigma valve of the automatic cerebrospinal fluid volume adjustment type was used in place of the variable pressure type Medos valve currently in use, because this device requires frequent changes in pressure and a change in pressure may be detected after MRI procedure. The SPECT apparatus used was PRISM3000 of the three-detector type, and 123I-IMP was used as the radionuclide in a dose of 222 MBq. MRI data were collected with an MAGNEXa+2 with a magnetic flux density of 0.5 tesla under the following conditions: field echo; TR 50 msec; TE, 10 msec; flip, 30ueK; 1 NEX; FOV, 23 cm; 1-mm slices; and gapless. 3D images are produced on the workstation TITAN

  19. IQ-SPECT for thallium-201 myocardial perfusion imaging: effect of normal databases on quantification.

    Science.gov (United States)

    Konishi, Takahiro; Nakajima, Kenichi; Okuda, Koichi; Yoneyama, Hiroto; Matsuo, Shinro; Shibutani, Takayuki; Onoguchi, Masahisa; Kinuya, Seigo

    2017-07-01

    Although IQ-single-photon emission computed tomography (SPECT) provides rapid acquisition and attenuation-corrected images, the unique technology may create characteristic distribution different from the conventional imaging. This study aimed to compare the diagnostic performance of IQ-SPECT using Japanese normal databases (NDBs) with that of the conventional SPECT for thallium-201 ( 201 Tl) myocardial perfusion imaging (MPI). A total of 36 patients underwent 1-day 201 Tl adenosine stress-rest MPI. Images were acquired with IQ-SPECT at approximately one-quarter of the standard time of conventional SPECT. Projection data acquired with the IQ-SPECT system were reconstructed via an ordered subset conjugate gradient minimizer method with or without scatter and attenuation correction (SCAC). Projection data obtained using the conventional SPECT were reconstructed via a filtered back projection method without SCAC. The summed stress score (SSS) was calculated using NDBs created by the Japanese Society of Nuclear Medicine working group, and scores were compared between IQ-SPECT and conventional SPECT using the acquisition condition-matched NDBs. The diagnostic performance of the methods for the detection of coronary artery disease was also compared. SSSs were 6.6 ± 8.2 for the conventional SPECT, 6.6 ± 9.4 for IQ-SPECT without SCAC, and 6.5 ± 9.7 for IQ-SPECT with SCAC (p = n.s. for each comparison). The SSS showed a strong positive correlation between conventional SPECT and IQ-SPECT (r = 0.921 and p IQ-SPECT with and without SCAC was also good (r = 0.907 and p IQ-SPECT without SCAC; and 88.5, 86.8, and 87.3%, respectively, for IQ-SPECT with SCAC, respectively. The area under the curve obtained via receiver operating characteristic analysis were 0.77, 0.80, and 0.86 for conventional SPECT, IQ-SPECT without SCAC, and IQ-SPECT with SCAC, respectively (p = n.s. for each comparison). When appropriate NDBs were used, the diagnostic performance of 201 Tl IQ-SPECT

  20. Added Value of 3D Cardiac SPECT/CTA Fusion Imaging in Patients with Reversible Perfusion Defect on Myocardial Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Eun Jung; Cho, Ihn Ho [Yeungnam University Hospital, Daegu (Korea, Republic of); Kang, Won Jun [Yonsei University Hospital, Seoul (Korea, Republic of); Kim, Seong Min [Chungnam National University Medical School and Hospital, Daejeon (Korea, Republic of); Won, Kyoung Sook [Keomyung University Dongsan Hospital, Daegu (Korea, Republic of); Lim, Seok Tae [Chonbuk National University Medical School and Hospital, Jeonju (Korea, Republic of); Hwang, Kyung Hoon [Gachon University Gil Hospital, Incheon (Korea, Republic of); Lee, Byeong Il; Bom, Hee Seung [Chonnam National University Medical School and Hospital, Gwangju (Korea, Republic of)

    2009-12-15

    Integration of the functional information of myocardial perfusion SPECT (MPS) and the morphoanatomical information of coronary CT angiography (CTA) may provide useful additional diagnostic information of the spatial relationship between perfusion defects and coronary stenosis. We studied to know the added value of three dimensional cardiac SPECT/CTA fusion imaging (fusion image) by comparing between fusion image and MPS. Forty-eight patients (M:F=26:22, Age: 63.3{+-}10.4 years) with a reversible perfusion defect on MPS (adenosine stress/rest SPECT with Tc-99m sestamibi or tetrofosmin) and CTA were included. Fusion images were molded and compared with the findings from the MPS. Invasive coronary angiography served as a reference standard for fusion image and MPS. Total 144 coronary arteries in 48 patients were analyzed; Fusion image yielded the sensitivity, specificity, negative and positive predictive value for the detection of hemodynamically significant stenosis per coronary artery 82.5%, 79.3%, 76.7% and 84.6%, respectively. Respective values for the MPS were 68.8%, 70.7%, 62.1% and 76.4%. And fusion image also could detect more multi-vessel disease. Fused three dimensional volume-rendered SPECT/CTA imaging provides intuitive convincing information about hemodynamic relevant lesion and could improved diagnostic accuracy.

  1. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.

    Directory of Open Access Journals (Sweden)

    Oliver S Grosser

    Full Text Available Hybrid imaging combines nuclear medicine imaging such as single photon emission computed tomography (SPECT or positron emission tomography (PET with computed tomography (CT. Through this hybrid design, scanned patients accumulate radiation exposure from both applications. Imaging modalities have been the subject of long-term optimization efforts, focusing on diagnostic applications. It was the aim of this study to investigate the influence of an iterative CT image reconstruction algorithm (ASIR on the image quality of the low-dose CT images.Examinations were performed with a SPECT-CT scanner with standardized CT and SPECT-phantom geometries and CT protocols with systematically reduced X-ray tube currents. Analyses included image quality with respect to photon flux. Results were compared to the standard FBP reconstructed images. The general impact of the CT-based attenuation maps used during SPECT reconstruction was examined for two SPECT phantoms. Using ASIR for image reconstructions, image noise was reduced compared to FBP reconstructions for the same X-ray tube current. The Hounsfield unit (HU values reconstructed by ASIR were correlated to the FBP HU values(R2 ≥ 0.88 and the contrast-to-noise ratio (CNR was improved by ASIR. However, for a phantom with increased attenuation, the HU values shifted for low X-ray tube currents I ≤ 60 mA (p ≤ 0.04. In addition, the shift of the HU values was observed within the attenuation corrected SPECT images for very low X-ray tube currents (I ≤ 20 mA, p ≤ 0.001.In general, the decrease in X-ray tube current up to 30 mA in combination with ASIR led to a reduction of CT-related radiation exposure without a significant decrease in image quality.

  2. State-of-the-art of small animal imaging with high-resolution SPECT

    International Nuclear Information System (INIS)

    Nikolaus, S.; Wirrwar, A.; Antke, C.; Kley, K.; Mueller, H.W.

    2005-01-01

    During the recent years, in vivo imaging of small animals using SPECT has become of growing relevance. Along with the development of dedicated high-resolution small animal SPECT cameras, an increasing number of conventional clinical scanners has been equipped with single or multipinhole collimators. This paper reviews the small animal tomographs, which are operating at present and compares their performance characteristics. Furthermore, we describe the in vivo imaging studies, which have been performed so far with the individual scanners and survey current approaches to optimize molecular imaging with small animal SPECT. (orig.)

  3. IBZM- and CIT-SPECT of the dopaminergic system in Parkinsonism

    International Nuclear Information System (INIS)

    Tissingh, G.; Winogradzka, A.; Wolters, E.C.; Booij, J.; Royen, E.A. van

    1997-01-01

    Parkinsonism is most of the time caused by idiopathic Parkinson's disease (IPD). Considering the differences in therapeutic response and prognosis. in viva discrimination between IPD and 'Parkinsonism-plus' syndromes is important. Recently, ligands have become available for imaging the pre- and postsynaptic dopaminergic system by Single Photon Emission Computed Tomography (SPECT). Visualization of postsynaptic D 2 dopamine receptors using 123 I-iodobenzamide ( 123 I-IBZM) may contribute to the differential diagnosis between IPD and 'Parkinsonism-plus' syndromes as IPD is a pure presynaptic disease. Imaging of the presynaptic dopamine transporters using [ 123 I]β-CIT (2β-carbomethoxy-3β-(4-iodophenyl)tropane) may be used as a diagnostic technique. Early disease detection in subjects suspected to be at risk for developing IPD has become possible using [ 123 I]β-CIT or other ligands for the dopamine transporter. Furthermore, with SPECT one is probably able to monitor in an objective way the efficacy of new pharmacological therapies. (author)

  4. Functional imaging in the Neuroscience. The role of PET, MR and SPECT

    International Nuclear Information System (INIS)

    Fulham, M.J.

    1998-01-01

    Full text: Functional imaging is commonly used to describe imaging techniques that provide data about aspects of tissue metabolism, such as glucose / protein metabolism, metabolite concentrations, neuro receptor density and blood flow / perfusion / diffusion when compared with the depiction of anatomy obtained with Computed Tomography (CT) and clinical Magnetic Resonance (MR) imaging. In the neuroscience this is a rapidly evolving area and unlike in the past where imaging of the nervous system was carried out by neuroradiologists participants in this dynamic field now come from diverse backgrounds and include basic scientists, clinicians, psychologists, physicists and chemists. PET and SPECT combine the principles of the tracer kinetic method and tomographic (as in CT) image reconstruction. A mathematical model can be derived to describe the biochemical process (in picomolar concentrations) under study and the raw counts of radioactivity that are detected by the scanner can be converted into units of physiological function in-vivo e.g. cerebral metabolic rate for glucose and receptor density. These techniques, using a variety of ligands, have been employed for evaluation of cerebral blood flow / volume, oxygen utilization / metabolism, glucose metabolism, amino acid transport / metabolism, protein synthesis, the dopaminergic, opiate, benzodiazepine, cholinergic and serotonergic systems and for brain mapping in humans. Meanwhile, the term 'functional MR imaging' encompasses MR spectroscopy, echoplanar imaging, diffusion tensor imaging and techniques that rely on the change in blood oxygenation levels to provide an indirect image of neuronal activity (referred to as fMRI). Unlike PET and SPECT, however, these data are obtained without using ionising radiation. In MRS, signals are obtained from nuclei (in mM concentrations) that are constituents of molecules other than water that provide the signal in clinical MR imaging; fibre tract directions have been depicted with

  5. DMSA SPECT imaging using oblique reconstruction in a paediatric population - benefits and technical considerations

    International Nuclear Information System (INIS)

    Parsons, G.; Ford, M.; Crisp, J.; Bernard, E.; Howman-Giles, R.

    1997-01-01

    Full text: DMSA renal scans are frequently requested for the diagnosis and follow-up of acute pyelonephritis and cortical scarring. This study was designed to:- 1. evaluate oblique reconstruction of DMSA SPECT over standard plane reconstruction and planar imaging; and 2. report on the technical aspects important in obtaining high quality DMSA SPECT, particularly in neonates. Over seven months, 210/231 (91 %) of DMSA scans were performed with SPECT on children from age nine days to 16 years, the median age being 2.5 years. 65 patients (31 %) were under one year and 39 (18%) were under six months. Planar and SPECT imaging with standard plane reconstruction and oblique reorientation was performed on the Siemens triple-headed gamma camera. High quality SPECT images were obtained on the smallest babies using a paediatric palette, and were of comparable quality to those of older children. At the time of reporting, the nuclear medicine physician assessed the diagnostic value of the three types of date presented: (1) planar images; (2) standard plane SPECT reconstruction; and (3) oblique SPECT reconstruction. Cortical defects were identified separately for upper, middle and lower poles. Three physicians concluded that high quality SPECT is superior to planar images when assessing the renal cortex. In addition, oblique reorientation is superior to standard reconstruction, particularly at the upper and lower poles. SPECT is now performed routinely on patients of all ages, and the oblique sagittal and coronal reorientation is now used in place of the standard reconstruction

  6. Evaluation of image reconstruction methods for 123I-MIBG-SPECT. A rank-order study

    International Nuclear Information System (INIS)

    Soederberg, Marcus; Mattsson, Soeren; Oddstig, Jenny; Uusijaervi-Lizana, Helena; Leide-Svegborn, Sigrid; Valind, Sven; Thorsson, Ola; Garpered, Sabine; Prautzsch, Tilmann; Tischenko, Oleg

    2012-01-01

    Background: There is an opportunity to improve the image quality and lesion detectability in single photon emission computed tomography (SPECT) by choosing an appropriate reconstruction method and optimal parameters for the reconstruction. Purpose: To optimize the use of the Flash 3D reconstruction algorithm in terms of equivalent iteration (EI) number (number of subsets times the number of iterations) and to compare with two recently developed reconstruction algorithms ReSPECT and orthogonal polynomial expansion on disc (OPED) for application on 123 I-metaiodobenzylguanidine (MIBG)-SPECT. Material and Methods: Eleven adult patients underwent SPECT 4 h and 14 patients 24 h after injection of approximately 200 MBq 123 I-MIBG using a Siemens Symbia T6 SPECT/CT. Images were reconstructed from raw data using the Flash 3D algorithm at eight different EI numbers. The images were ranked by three experienced nuclear medicine physicians according to their overall impression of the image quality. The obtained optimal images were then compared in one further visual comparison with images reconstructed using the ReSPECT and OPED algorithms. Results: The optimal EI number for Flash 3D was determined to be 32 for acquisition 4 h and 24 h after injection. The average rank order (best first) for the different reconstructions for acquisition after 4 h was: Flash 3D 32 > ReSPECT > Flash 3D 64 > OPED, and after 24 h: Flash 3D 16 > ReSPECT > Flash 3D 32 > OPED. A fair level of inter-observer agreement concerning optimal EI number and reconstruction algorithm was obtained, which may be explained by the different individual preferences of what is appropriate image quality. Conclusion: Using Siemens Symbia T6 SPECT/CT and specified acquisition parameters, Flash 3D 32 (4 h) and Flash 3D 16 (24 h), followed by ReSPECT, were assessed to be the preferable reconstruction algorithms in visual assessment of 123 I-MIBG images

  7. The clinical application of SPECT myocardial perfusion imaging with 99mTc-MIBI

    International Nuclear Information System (INIS)

    Dong Weiyu

    1992-01-01

    This paper reported 182 SPECT myocardial perfusion images with China made 99m Tc-MIBI and were compared with ECG and UCG. The sensitivity of SPECT in ischemic were 91.2% and was higher than ECG (74.9%)and UCG (61.8%) (P < 0.01). And its specificity, accuracy and positive predictive rate were 78.3%, 90% and 97% respectively. Besides 9 cases have reverse distribution after exercise and rest images. In some ICD patients had shown their SPECT images, the perfusion defects in exercise as well as in rest image

  8. SPECT/CT imaging in children with papillary thyroid carcinoma

    International Nuclear Information System (INIS)

    Kim, Hwa-Young; Gelfand, Michael J.; Sharp, Susan E.

    2011-01-01

    SPECT/CT improves localization of single photon-emitting radiopharmaceuticals. To determine the utility of SPECT/CT in children with papillary thyroid carcinoma. 20 SPECT/CT and planar studies were reviewed in 13 children with papillary thyroid carcinoma after total thyroidectomy. Seven studies used I-123 and 13 used I-131, after elevating TSH by T4 deprivation or intramuscular thyrotropin alfa. Eight children had one study and five children had two to four studies. Studies were performed at initial post-total thyroidectomy evaluation, follow-up and after I-131 treatment doses. SPECT/CT was performed with a diagnostic-quality CT unit in 13 studies and a localization-only CT unit in 7. Stimulated thyroglobulin was measured (except in 2 cases with anti-thyroglobulin antibodies). In 13 studies, neck activity was present but poorly localized on planar imaging; all foci of uptake were precisely localized by SPECT/CT. Two additional foci of neck uptake were found on SPECT/CT. SPECT/CT differentiated high neck uptake from facial activity. In six studies (four children), neck uptake was identified as benign by SPECT/CT (three thyroglossal duct remnants, one skin contamination, two by precise anatomical CT localization). In two children, SPECT/CT supported a decision not to treat with I-131. When SPECT/CT was unable to identify focal uptake as benign, stimulated thyroglobulin measurements were valuable. In three of 13 studies with neck uptake, SPECT/CT provided no useful additional information. SPECT/CT precisely localizes neck iodine uptake. In small numbers of patients, treatment is affected. SPECT/CT should be used when available in thyroid carcinoma patients. (orig.)

  9. Improvements in SPECT technology for cerebral imaging

    International Nuclear Information System (INIS)

    Esser, P.D.

    1985-01-01

    Advancement in three major areas of SPECT (single photon emission computed tomography) technology have resulted in improved image quality for cerebral studies. In the first area, single-crystal camera electronics, extensive use of microprocessors, custom digital circuitry, an data bus architecture have allowed precise external control of all gantry motions and improved signal processing. The new digital circuitry permits energy, uniformity, and linearity corrections to be an integral part of the processing electronics. Calibration of these correlations is controlled by algorithms stored in the camera's memory. The second area of improved SPECT technology is camera collimation and related imaging techniques. In this area, system resolution has been improved without loss of sensitivity by decreasing the air gap between patient and collimator surface. Since cerebral studies characteristically image high-contrast regions less than 1 cm in size, image quality has been improved by increasing collimator resolution even at the expense of sensitivity. Increased resolution also improved image contrast for studies using 123 I-labeled pharmaceuticals with 3% to 4% 124 I contamination. 65 references

  10. Technetium SPECT agents for imaging heart and brain

    International Nuclear Information System (INIS)

    Linder, K.E.

    1990-01-01

    One major goal of radiopharmaceutical research has been the development of technetium-based perfusion tracers for SPECT imaging of the heart and brain. The recent clinical introduction of the technetium complexes HM-PAO, ECD and DMG-2MP for brain imaging, and of CDO-MEB and MIBI for heart imaging promises to revolutionize the field of nuclear medicine. All of these agents appear to localize in the target tissue in proportion to blood flow, but their mechanisms of localization and/or retention may differ quite widely. In this talk, a survey of the new technetium SPECT agents will be presented. The inorganic and biological chemistry of these complexes, mechanisms of uptake and retention, QSAR studies, and potential clinical applications are discussed

  11. Bull's-eye map of myocardial perfusion MR imaging. Comparison with SPECT

    International Nuclear Information System (INIS)

    Nomura, Yukihiro; Nanjo, Shuji; Yamazaki, Junichi; Yoshikawa, Kohki; Inoue, Yusuke

    2003-01-01

    When diagnosing heart disease, chest roentgenograms, ultrasonography, single-photon emission computed tomography (SPECT), and coronary arteriography are usually performed. Magnetic resonance (MR) imaging is not widely used for evaluating heart disease. Recent technological progress has allowed high quality images of the heart to be reliably obtained. A routine MR study taking about 30-40 minutes can provide a large amount of diagnostic information, such as cardiac structure, function, perfusion, and myocardial viability. The analysis software that can offer Bull's-eye maps from myocardial perfusion images has recently become commercially available. In this study, the characteristics of Bull's-eye mapping of MR imaging is compared with that of Bull's-eye mapping of SPECT using the same heart phantom. The difference in the image quality of the Bull's-eye maps was evaluated among the receiver coils of MR imaging. On Bull's-eye maps from both MR imaging and SPECT, decreased signal intensity was noted in the posterolateral wall. The degree of decrease in the signal of the MR imaging was more prominent than of SPECT. The decrease was severe for the general-purpose receive-only flexible (GPFLEX) coil, moderate for the cardiac and TORSO coil, and slight for the body coil. In the selection of a coil, it is necessary to take into consideration the trade-off between the distribution of signal intensity and the signal-to-noise ratio (SNR). (author)

  12. Metabolic imaging using SPECT

    International Nuclear Information System (INIS)

    Taki, Junichi; Matsunari, Ichiro

    2007-01-01

    In normal condition, the heart obtains more than two-thirds of its energy from the oxidative metabolism of long chain fatty acids, although a wide variety of substrates such as glucose, lactate, ketone bodies and amino acids are also utilised. In ischaemic myocardium, on the other hand, oxidative metabolism of free fatty acid is suppressed and anaerobic glucose metabolism plays a major role in residual oxidative metabolism. Therefore, metabolic imaging can be an important technique for the assessment of various cardiac diseases and conditions. In SPECT, several iodinated fatty acid traces have been introduced and studied. Of these, 123 I-labelled 15-(p-iodophenyl)3-R, S-methylpentadecanoic acid (BMIPP) has been the most commonly used tracer in clinical studies, especially in some of the European countries and Japan. In this review article, several fatty acid tracers for SPECT are characterised, and the mechanism of uptake and clinical utility of BMIPP are discussed in detail. (orig.)

  13. Single-Photon Emission Computerized Tomography (SPECT in Neuropsychiatry: A Review

    Directory of Open Access Journals (Sweden)

    B. K. Puri

    1992-01-01

    Full Text Available Cranial single-photon emission computerized tomography (SPECT or SPET can now give regional cerebral blood flow images with a resolution approaching that of positron emission tomography (PET. In this paper, the use of high resolution SPECT neuroimaging in neuropsychiatric disorders, including Alzheimer's disease, multi-infarct dementia, Pick's disease, progressive supranuclear palsy, Korsakoff's psychosis, Creutzfeld-Jakob disease, Parkinson's disease, Huntington's disease, schizophrenia, mood disorders, obsessive–compulsive disorder, HIV infection and AIDS is reviewed. Finally, further potential research and clinical uses, based on ligand studies, are outlined.

  14. Triangular SPECT system for 3-D total organ volume imaging: Design concept and preliminary imaging results

    International Nuclear Information System (INIS)

    Lim, C.B.; Anderson, J.; Covic, J.

    1985-01-01

    SPECT systems based on 2-D detectors for projection data collection and filtered back-projection image reconstruction have the potential for true 3-D imaging, providing contiguous slice images in any orientation. Anger camera-based SPECT systems have the natural advantage supporting planar imaging clinical procedures. However, current systems suffer from two drawbacks; poor utilization of emitted photons, and inadequate system design for SPECT. A SPECT system consisting of three rectangular cameras with radial translation would offer the variable cylindrical FOV of 25 cm to 40 cm diameter allowing close detector access to the object. This system would provide optimized imaging for both brain and body organs in terms of sensitivity and resolution. For brain imaging a tight detector triangle with fan beam collimation, matching detector UFOV to the head, allows full 2 π utilization of emitted photons, resulting in >4 times sensitivity increase over the single detector system. Minification of intrinsic detector resolution in fan beam collimation further improves system resolution. For body organ imaging the three detectors with parallel hole collimators, rotating in non-circular orbit, provide both improved resolution and three-fold sensitivity increase. Practical challenges lie in ensuring perfect image overlap from three detectors without resolution degradation and artifact generation in order to benefit from the above improvements. An experimental system has been developed to test the above imaging concept and we have successfully demonstrated the superior image quality of the overlapped images. Design concept will be presented with preliminary imaging results

  15. Infective endocarditis detection through SPECT/CT images digital processing

    Science.gov (United States)

    Moreno, Albino; Valdés, Raquel; Jiménez, Luis; Vallejo, Enrique; Hernández, Salvador; Soto, Gabriel

    2014-03-01

    Infective endocarditis (IE) is a difficult-to-diagnose pathology, since its manifestation in patients is highly variable. In this work, it was proposed a semiautomatic algorithm based on SPECT images digital processing for the detection of IE using a CT images volume as a spatial reference. The heart/lung rate was calculated using the SPECT images information. There were no statistically significant differences between the heart/lung rates values of a group of patients diagnosed with IE (2.62+/-0.47) and a group of healthy or control subjects (2.84+/-0.68). However, it is necessary to increase the study sample of both the individuals diagnosed with IE and the control group subjects, as well as to improve the images quality.

  16. Synthesis, radiolabeling and baboon SPECT imaging of 2{beta}-carbomethoxy-3{beta}-(3'-[{sup 123}I]iodophenyl)tropane ([{sup 123}I]YP256) as a serotonin transporter radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Bois, Frederic; Baldwin, Ronald M.; Amici, Louis; Al-Tikriti, Mohammed S. [Yale University, School of Medicine, VA Connecticut HCS (116A2), West Haven, CT 06516 (United States); Kula, Nora; Baldessarini, Ross [Department of Psychiatry and Neuroscience Program, Harvard Medical School, Mailman Research Center McLean Division of Massachusetts General Hospital, Belmont, MA 02478 (United States); Innis, Robert B.; Staley, Julie K. [Yale University, School of Medicine, VA Connecticut HCS (116A2), West Haven, CT 06516 (United States); Tamagnan, Gilles D. [Yale University, School of Medicine, VA Connecticut HCS (116A2), West Haven, CT 06516 (United States); Institute for Neurodegenerative Disorders, New Haven, CT 06510 (United States)], E-mail: gtamagnan@indd.org

    2008-01-15

    To develop a potential SPECT probe to evaluate the integrity of the serotoninergic system (5-HTT) whose dysfunction is linked to several disease conditions such as Parkinson's disease, Alzheimer's disease and depression, we report the synthesis, radiolabeling and in vivo baboon imaging of 2{beta}-carbomethoxy-3{beta}-(3'-[{sup 123}I]iodophenyl) tropane (YP256, ). The radiolabeling was performed by iododestannylation using sodium [{sup 123}I]iodide and peracetic acid. Although the ligand displayed high selectivity for 5-HTT over dopamine transporter in vitro, SPECT imaging in baboons did not reveal selective 5-HTT accumulation in brain in vivo.

  17. Thoracic and abdominal SPECT imaging in systemic amyloidosis in identifying multiorgan involvement

    International Nuclear Information System (INIS)

    Wellman, H.N.; Benson, M.D.; Park, H.M.; Siddiqui, A.R.; Krepshaw, J.D.

    1988-01-01

    Thirty-three patients with systemic amyloidosis have been studied. Thoracic single photon emission computed tomography (SPECT) for myocardial involvement and skeletal imaging were performed with Tc-99m PYP, and abdominal SPECT with TcS colloid. Myocardial wall involvement was easily discernible with SPECT in 17 cases, and in many with normal ultrasonography. PYP uptake was also observed in liver (five patients), kidneys (four patients), and soft tissues (two patients). Most patients had widespread degenerative joint disease. With TcS colloid, intrinsic liver abnormalities were found in four patients, hepatomegaly in seven, and splenic infiltration in two. Nuclear SPECT and planar imaging characterize the distribution of systemic amyloidosis in organs, distribution not readily identified with other diagnostic modalities

  18. Impact of SPECT/CT in imaging inflammation and infection; Wertigkeit der SPECT/CT fuer die nuklearmedizinische Entzuendungsdiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Linke, R. [Klinikum Bremen-Mitte, Bremen (Germany). Klinik fuer Nuklearmedizin; Kuwert, T. [Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik

    2011-03-15

    Even today infection remains a significant concern, and the diagnosis and localization of infectious foci is an important health issue. As an established infection-imaging modality, nuclear medicine plays a vital health-care role in the diagnosis and subsequent effective treatment of this condition. Several techniques in nuclear medicine significantly aid infection diagnosis, including triple-phase bone scanning, {sup 18}F-FDG-PET and imaging with {sup 111}In-oxine-, {sup 99m}Tc-HMPAO-labeled leukocytes. Each radiopharmaceutical has specific advantages and disadvantages that makes it suitable to diagnose different infectious processes (e.g., soft-tissue sepsis, inflammatory bowel disease, osteomyelitis, occult fever, fever of unknown origin, and infections commonly found in immuno-compromised patients). However, their clinical applications may be limited by the relatively low spatial resolution and the lack of anatomic landmarks of a highly specific tracer with only scarce background uptake to use as a framework for orientation. Anatomic imaging modalities such as CT provide a high-quality assessment of structural abnormalities related to infection, but these structural abnormalities may be unspecific. Furthermore, to detect infection before anatomical changes are present, functional imaging could have some advantages over anatomical imaging. Scintigraphic studies have demonstrated high sensitivity and specificity to an infectious process. Diagnosis and precise delineation of infection may be challenging in certain clinical scenarios, rendering decisions concerning further patient management difficult. The SPECT/CT-technology combines the acquisition of SPECT and CT data with the same imaging device enabling perfect overlay of anatomical and functional images. SPECT/CT imaging data has been shown to be beneficial for many clinical settings such as indeterminate findings in bone scintigraphy, orthopaedic disorders, endocrine, and neuroendocrine tumors. Therefore

  19. Two-dimensional filtering of SPECT images using the Metz and Wiener filters

    International Nuclear Information System (INIS)

    King, M.A.; Schwinger, R.B.; Penney, B.C.; Doherty, P.W.

    1984-01-01

    Presently, single photon emission computed tomographic (SPECT) images are usually reconstructed by arbitrarily selecting a one-dimensional ''window'' function for use in reconstruction. A better method would be to automatically choose among a family of two-dimensional image restoration filters in such a way as to produce ''optimum'' image quality. Two-dimensional image processing techniques offer the advantages of a larger statistical sampling of the data for better noise reduction, and two-dimensional image deconvolution to correct for blurring during acquisition. An investigation of two such ''optimal'' digital image restoration techniques (the count-dependent Metz filter and the Wiener filter) was made. They were applied both as two-dimensional ''window'' functions for preprocessing SPECT images, and for filtering reconstructed images. Their performance was compared by measuring image contrast and per cent fractional standard deviation (% FSD) in multiple-acquisitions of the Jaszczak SPECT phantom at two different count levels. A statistically significant increase in image contrast and decrease in % FSD was observed with these techniques when compared to the results of reconstruction with a ramp filter. The adaptability of the techniques was manifested in a lesser % reduction in % FSD at the high count level coupled with a greater enhancement in image contrast. Using an array processor, processing time was 0.2 sec per image for the Metz filter and 3 sec for the Wiener filter. It is concluded that two-dimensional digital image restoration with these techniques can produce a significant increase in SPECT image quality

  20. Evaluation of image reconstruction methods for {sup 123}I-MIBG-SPECT. A rank-order study

    Energy Technology Data Exchange (ETDEWEB)

    Soederberg, Marcus; Mattsson, Soeren; Oddstig, Jenny; Uusijaervi-Lizana, Helena; Leide-Svegborn, Sigrid [Medical Radiation Physics, Dept. of Clinical Sciences Malmoe, Lund Univ., Skaane Univ. Hospital, Malmoe (Sweden)], e-mail: marcus.soderberg@med.lu.se; Valind, Sven; Thorsson, Ola; Garpered, Sabine [Dept. of Clinical Physiology, Skaane Univ. Hospital, Malmoe (Sweden); Prautzsch, Tilmann [Scivis wissenschaftlice Bildverarbeitung GmbH, Goettingen (Germany); Tischenko, Oleg [Research Unit Medical Radiation Physics and Diagnostics (AMSD), Helmholtz Zentrum Muenchen (Germany); German Research Center for Environmental Health, Neuherberg (Germany)

    2012-09-15

    Background: There is an opportunity to improve the image quality and lesion detectability in single photon emission computed tomography (SPECT) by choosing an appropriate reconstruction method and optimal parameters for the reconstruction. Purpose: To optimize the use of the Flash 3D reconstruction algorithm in terms of equivalent iteration (EI) number (number of subsets times the number of iterations) and to compare with two recently developed reconstruction algorithms ReSPECT and orthogonal polynomial expansion on disc (OPED) for application on {sup 123}I-metaiodobenzylguanidine (MIBG)-SPECT. Material and Methods: Eleven adult patients underwent SPECT 4 h and 14 patients 24 h after injection of approximately 200 MBq {sup 123}I-MIBG using a Siemens Symbia T6 SPECT/CT. Images were reconstructed from raw data using the Flash 3D algorithm at eight different EI numbers. The images were ranked by three experienced nuclear medicine physicians according to their overall impression of the image quality. The obtained optimal images were then compared in one further visual comparison with images reconstructed using the ReSPECT and OPED algorithms. Results: The optimal EI number for Flash 3D was determined to be 32 for acquisition 4 h and 24 h after injection. The average rank order (best first) for the different reconstructions for acquisition after 4 h was: Flash 3D{sub 32} > ReSPECT > Flash 3D{sub 64} > OPED, and after 24 h: Flash 3D{sub 16} > ReSPECT > Flash 3D{sub 32} > OPED. A fair level of inter-observer agreement concerning optimal EI number and reconstruction algorithm was obtained, which may be explained by the different individual preferences of what is appropriate image quality. Conclusion: Using Siemens Symbia T6 SPECT/CT and specified acquisition parameters, Flash 3D{sub 32} (4 h) and Flash 3D{sub 16} (24 h), followed by ReSPECT, were assessed to be the preferable reconstruction algorithms in visual assessment of {sup 123}I-MIBG images.

  1. In vivo SPECT reporter gene imaging of regulatory T cells.

    Directory of Open Access Journals (Sweden)

    Ehsan Sharif-Paghaleh

    Full Text Available Regulatory T cells (Tregs were identified several years ago and are key in controlling autoimmune diseases and limiting immune responses to foreign antigens, including alloantigens. In vivo imaging techniques including intravital microscopy as well as whole body imaging using bioluminescence probes have contributed to the understanding of in vivo Treg function, their mechanisms of action and target cells. Imaging of the human sodium/iodide symporter via Single Photon Emission Computed Tomography (SPECT has been used to image various cell types in vivo. It has several advantages over the aforementioned imaging techniques including high sensitivity, it allows non-invasive whole body studies of viable cell migration and localisation of cells over time and lastly it may offer the possibility to be translated to the clinic. This study addresses whether SPECT/CT imaging can be used to visualise the migratory pattern of Tregs in vivo. Treg lines derived from CD4(+CD25(+FoxP3(+ cells were retrovirally transduced with a construct encoding for the human Sodium Iodide Symporter (NIS and the fluorescent protein mCherry and stimulated with autologous DCs. NIS expressing self-specific Tregs were specifically radiolabelled in vitro with Technetium-99m pertechnetate ((99mTcO(4(- and exposure of these cells to radioactivity did not affect cell viability, phenotype or function. In addition adoptively transferred Treg-NIS cells were imaged in vivo in C57BL/6 (BL/6 mice by SPECT/CT using (99mTcO(4(-. After 24 hours NIS expressing Tregs were observed in the spleen and their localisation was further confirmed by organ biodistribution studies and flow cytometry analysis. The data presented here suggests that SPECT/CT imaging can be utilised in preclinical imaging studies of adoptively transferred Tregs without affecting Treg function and viability thereby allowing longitudinal studies within disease models.

  2. Interest of hybrid SPECT-CT imaging for diagnosis of infection

    International Nuclear Information System (INIS)

    Riviere, A.; Farid, K.; Guyot, M.; Jeandot, R.; Allard, M.; Fernandez, P.; Clermont, H. de; Dauchy, F.; Dupon, M.; Fernandez, P.

    2008-01-01

    Single-Photon Emission Computed Tomography-Computerized Tomography (SPECT-CT) is a new hybrid technique which offers new diagnostic capabilities in daily nuclear medicine practice. This technique not only allows to acquire merged anatomic and functional images in the same time, but also, it increases sensitivity and accuracy of SPECT thanks to attenuation and scattering corrections got from transmission data. Until now, SPECT-CT data have been mainly obtained in oncology and cardiology, but now, many authors use it in many scan studies and particularly for infectious diseases. In inflammatory bowel diseases, SPECT-CT seems to increase diagnostic performances and to modify management of many patients. In suspected vascular sepsis, SPECT-CT could increase sensitivity of white blood cell scintigraphy but also its specificity thanks to spatial resolution of CT. In osteo-articular sepsis, SPECT-CT has the advantage to distinguish osteomyelitis from soft tissue infection and to guide biopsies. Nevertheless, in the light of PET-CT works, SPECT-CT development will probably modify nuclear medicine practice and many studies have to be conducted to highlight consensual procedure guidelines. (authors)

  3. Assessment of smoking-induced impairment of pulmonary perfusion using three-dimensional SPECT images

    Energy Technology Data Exchange (ETDEWEB)

    Miyasaka, Takashi [Toho Univ., Tokyo (Japan). School of Medicine

    1997-09-01

    The effects of smoking on ventilation-perfusion lung scintigrams were investigated. The subjects comprised 40 healthy males (28 smokers and 12 nonsmokers) without a history of cardiopulmonary disease and with normal chest radiographs. After acquisition of planar images of ventilation lung scintigrams with 370 MBq of {sup 133}Xe gas, planar images and SPECT images of pulmonary perfusion flow were obtained using 185 MBq of {sup 99m}Tc-MAA. Planar imaging showed perfusion defects in only 5 smokers. In contrast, 16 subjects were found to have perfusion defects on SPECT images (p<0.05), indicating the usefulness of SPECT images in detecting minor vascular damage of the lung. Although perfusion defects were common in the smokers (p<0.05), their relationship to the BRINKMAN index was uncertain. The perfusion defects found in the smokers were nonsegmental and commonly involved the right upper lobe. Ventilation scans revealed only delayed washout of {sup 133}Xe in 4 smokers, suggesting that smoking-induced abnormal perfusion on SPECT appears earlier than impaired ventilation on scintigrams. (author)

  4. HMPAO-SPECT during epileptic seizures: Early and late images

    International Nuclear Information System (INIS)

    Overbeck, B.; Gruenwald, F.; Bockisch, A.; Biersack, H.J.; Reinke, U.; Gratz, K.F.

    1990-01-01

    For presurgical evaluation of epilepsy a 44-year old patient with complex-partial seizures underwent HMPAO-SPECT. The morphology of the seizures, the MRI-scan, psychometry and ictal as well as interictal EEGs showed a left temporal origin of the seizures. Early images were obtained 20 min and late images 24 h following injection. On both scans a marked hyperperfusion was observed in the left temporal area. A crossed cerebellar diaschisis was also seen on both SPECTs. It could be shown that during ictal examinations there is no bloodflow-dependent wash-out from brain tissue. (orig.) [de

  5. Improvement of image quality using interpolated projection data estimation method in SPECT

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Soma, Tsutomu; Murase, Kenya; Kojima, Akihiro; Asao, Kimie; Kamada, Shinya; Matsumoto, Masanori

    2009-01-01

    General data acquisition for single photon emission computed tomography (SPECT) is performed in 90 or 60 directions, with a coarse pitch of approximately 4-6 deg for a rotation of 360 deg or 180 deg, using a gamma camera. No data between adjacent projections will be sampled under these circumstances. The aim of the study was to develop a method to improve SPECT image quality by generating lacking projection data through interpolation of data obtained with a coarse pitch such as 6 deg. The projection data set at each individual degree in 360 directions was generated by a weighted average interpolation method from the projection data acquired with a coarse sampling angle (interpolated projection data estimation processing method, IPDE method). The IPDE method was applied to the numerical digital phantom data, actual phantom data and clinical brain data with Tc-99m ethyle cysteinate dimer (ECD). All SPECT images were reconstructed by the filtered back-projection method and compared with the original SPECT images. The results confirmed that streak artifacts decreased by apparently increasing a sampling number in SPECT after interpolation and also improved signal-to-noise (S/N) ratio of the root mean square uncertainty value. Furthermore, the normalized mean square error values, compared with standard images, had similar ones after interpolation. Moreover, the contrast and concentration ratios increased their effects after interpolation. These results indicate that effective improvement of image quality can be expected with interpolation. Thus, image quality and the ability to depict images can be improved while maintaining the present acquisition time and image quality. In addition, this can be achieved more effectively than at present even if the acquisition time is reduced. (author)

  6. Brain SPECT in childhood; Temp cerebrale chez l'enfant

    Energy Technology Data Exchange (ETDEWEB)

    Tranquart, F; Saliba, E; Prunier, C; Baulieu, F; Besnard, J C; Guilloteau, D; Baulieu, J L [Hopital Bretonneau, Service de Medecine Nucleaire, Unite Inserm 316, 37 - Tours (France)

    2001-04-01

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  7. Pixel based statistical analysis of differences between lung SPECT images: methodological aspects

    International Nuclear Information System (INIS)

    Bendada, S.; Rocchisani, J.L.M.; Moretti, J.L.

    2002-01-01

    The statistical parametric mapping method is applied in Neurology for activation studies. We had adapted this powerful method on Lungs SPECT to help for the diagnosis and the follow-up of pulmonary embolism and other lung diseases. The SPECT slices of pairs of examination were normalized thanks to the total acquired counts, reconstruction background subtracted, smoothed and realigned. A parametric image of statistical differences was finally computed. We had thus obtained a 3D image showing regions of improved or altered region under treatment. A tuning of the various parameters could lead to more accurate image. This new approach of lung SPECT processing appears to be a promising useful tool for the physician. (author)

  8. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-15

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with {sup 99m}Tc-MDP, DMSA, and {sup 18}F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, {sup 99m}Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined {sup 99}mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and {sup 18}F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug.

  9. Establishment study of the in vivo imaging analysis with small animal imaging modalities (micro-PET and micro-SPECT/CT) for bio-drug development

    International Nuclear Information System (INIS)

    Jang, Beomsu; Park, Sanghyeon; Park, Jeonghoon; Jo, Sungkee; Jung, Uhee; Kim, Seolwha; Lee, Yunjong; Choi, Daeseong

    2011-01-01

    In this study, we established the image acquisition and analysis procedures of micro-PET, SPECT/CT using the experimental animal (mouse) for the development of imaging assessment method for the bio-drug. We examined the micro-SPECT/CT, PET imaging study using the Siemens Inveon micro-multimodality system (SPECT/CT) and micro-PET with 99m Tc-MDP, DMSA, and 18 F-FDG. SPECT imaging studies using 3 types of pinhole collimators. 5-MWB collimator was used for SPECT image study. To study whole-body distribution, 99m Tc-MDP SPECT image study was performed. We obtained the fine distribution image. And the CT images was obtained to provide the anatomical information. And then these two types images are fused. To study specific organ uptake, we examined 99 mTc-DMSA SPECT/CT imaging study. We also performed the PET image study using U87MG tumor bearing mice and 18 F-FDG. The overnight fasting, warming and anesthesia with 2% isoflurane pretreatment enhance the tumor image through reducing the background uptake including brown fat, harderian gland and skeletal muscles. Also we got the governmental approval for use of x-ray generator for CT and radioisotopes as sealed and open source. We prepared the draft of process procedure for the experimental animal imaging facility. These research results can be utilized as a basic image study protocols and data for the image assessment of drugs including biological drug

  10. Effects of cross talk on dual energy SPECT imaging between 123I-BMIPP and 201Tl

    International Nuclear Information System (INIS)

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.)

  11. Diagnostic evaluation of brain SPECT imaging in diseases of nervous system

    Energy Technology Data Exchange (ETDEWEB)

    Yongsheng, Jiang; Chengmo, Zhu; Jixian, Zhang; Weijia, Tian [Shanghai Second Medical Univ. (China). Ruijing Hospital

    1992-11-01

    The dynamic distributions of home made ECD and the Amersham brain SPECT imaging agent 'Ceretec' in normal person as well as their diagnostic use in diseases of nervous system were investigated. Semi-quantitative analysis combined with direct observation was more accurate for the diagnosis. Aside from cerebrovascular diseases, SPECT brain imaging has its unique value for the diagnosis of transient ischemic attack, Alzheimer disease, multiple ischemic dementia and epilepsy etc.

  12. SPECT/CT image fusion with 99mTc-HYNIC-TOC in the oncological diagnostic

    International Nuclear Information System (INIS)

    Haeusler, F.

    2006-07-01

    Neuroendocrine tumours displaying somatostatin receptors have been successfully visualized with somatostatin receptor imaging. The aim of this retrospective study was to evaluate the value of anatomical-functional image fusion. Image fusion means the combined transmission and emission tomography (computed tomography (CT)) and single-photon emission computed tomography (SPECT) ) and was analyzed in comparison with SPECT and CT alone. Fifty-three patients (30 men and 23 women; mean age 55,9 years; range: 20-82 years) with suspected or known endocrine tumours were studied. The patients were referred to image fusion because of staging of newly diagnosed tumours (14) or biochemically/clinically suspected neuroendocrine tumour (20) or follow-up studies after therapy (19). The patients were studied with SPECT at 2 and 4 hours after injection of 400 MBq of 99mTc-EDDA-HYNIC-Tyr3-octreotide using a dual-detector scintillation camera. The CT was performed on one of the following two days. For both investigations the patients were fixed in an individualized vacuum mattress to guarantee exactly the same position. SPECT and SPECT/CT showed an equivalent scan result in 35 patients (66 %), discrepancies were found in 18 cases (34 %). After image fusion the scan result was true-positive in 27 patients ( 50.9 %) and true-negative in 25 patients (47.2 %). One patient with multiple small liver metastases escaped SPECT as well as image fusion and was so false-negative. The frequency of equivocal and probable lesion characterization was reduced by 11.6% (12 to 0) with PET/CT in comparison with PET or CT alone. The frequency of definite lesion characterization was increased by 11.6% (91 to 103). SPECT/CT affected the clinical management in 21 patients (40 %). The results of this study indicate that SPECT/CT is a valuable tool for the assessment of neuroendocrine tumours. SPECT/CT is better than SPECT or CT alone and it allows a more precise staging and determination of prognosis and

  13. Comparison of planar images and SPECT with bayesean preprocessing for the demonstration of facial anatomy and craniomandibular disorders

    International Nuclear Information System (INIS)

    Kircos, L.T.; Ortendahl, D.A.; Hattner, R.S.; Faulkner, D.; Taylor, R.L.

    1984-01-01

    Craniomandiublar disorders involving the facial anatomy may be difficult to demonstrate in planar images. Although bone scanning is generally more sensitive than radiography, facial bone anatomy is complex and focal areas of increased or decreased radiotracer may become obscured by overlapping structures in planar images. Thus SPECT appears ideally suited to examination of the facial skeleton. A series of patients with craniomandibular disorders of unknown origin were imaged using 20 mCi Tc-99m MDP. Planar and SPECT (Siemens 7500 ZLC Orbiter) images were obtained four hours after injection. The SPECT images were reconstructed with a filtered back-projection algorithm. In order to improve image contrast and resolution in SPECT images, the rotation views were pre-processed with a Bayesean deblurring algorithm which has previously been show to offer improved contrast and resolution in planar images. SPECT images using the pre-processed rotation views were obtained and compared to the SPECT images without pre-processing and the planar images. TMJ arthropathy involving either the glenoid fossa or the mandibular condyle, orthopedic changes involving the mandible or maxilla, localized dental pathosis, as well as changes in structures peripheral to the facial skeleton were identified. Bayesean pre-processed SPECT depicted the facial skeleton more clearly as well as providing a more obvious demonstration of the bony changes associated with craniomandibular disorders than either planar images or SPECT without pre-processing

  14. [Application of GVF snake model in segmentation of whole body bone SPECT image].

    Science.gov (United States)

    Zhu, Chunmei; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2008-02-01

    Limited by the imaging principle of whole body bone SPECT image, the gray value of bladder area is quite high, which affects the image's brightness, contrast and readability. In the meantime, the similarity between bladder area and focus makes it difficult for some images to be segmented automatically. In this paper, an improved Snake model, GVF Snake, is adopted to automatically segment bladder area, preparing for further processing of whole body bone SPECT images.

  15. Stereotactic imaging for radiotherapy: accuracy of CT, MRI, PET and SPECT

    International Nuclear Information System (INIS)

    Karger, Christian P; Hipp, Peter; Henze, Marcus; Echner, Gernot; Hoess, Angelika; Schad, Lothar; Hartmann, Guenther H

    2003-01-01

    CT, MRI, PET and SPECT provide complementary information for treatment planning in stereotactic radiotherapy. Stereotactic correlation of these images requires commissioning tests to confirm the localization accuracy of each modality. A phantom was developed to measure the accuracy of stereotactic localization for CT, MRI, PET and SPECT in the head and neck region. To this end, the stereotactically measured coordinates of structures within the phantom were compared with their mechanically defined coordinates. For MRI, PET and SPECT, measurements were performed using two different devices. For MRI, T1- and T2-weighted imaging sequences were applied. For each measurement, the mean radial deviation in space between the stereotactically measured and mechanically defined position of target points was determined. For CT, the mean radial deviation was 0.4 ± 0.2 mm. For MRI, the mean deviations ranged between 0.7 ± 0.2 mm and 1.4 ± 0.5 mm, depending on the MRI device and the imaging sequence. For PET, mean deviations of 1.1 ± 0.5 mm and 2.4 ± 0.3 mm were obtained. The mean deviations for SPECT were 1.6 ± 0.5 mm and 2.0 ± 0.6 mm. The phantom is well suited to determine the accuracy of stereotactic localization with CT, MRI, PET and SPECT in the head and neck region. The obtained accuracy is well below the physical resolution for CT, PET and SPECT, and of comparable magnitude for MRI. Since the localization accuracy may be device dependent, results obtained at one device cannot be generalized to others

  16. High-resolution brain SPECT imaging by combination of parallel and tilted detector heads.

    Science.gov (United States)

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Morimoto, Yuichi; Kobashi, Keiji; Ueno, Yuichiro

    2015-10-01

    To improve the spatial resolution of brain single-photon emission computed tomography (SPECT), we propose a new brain SPECT system in which the detector heads are tilted towards the rotation axis so that they are closer to the brain. In addition, parallel detector heads are used to obtain the complete projection data set. We evaluated this parallel and tilted detector head system (PT-SPECT) in simulations. In the simulation study, the tilt angle of the detector heads relative to the axis was 45°. The distance from the collimator surface of the parallel detector heads to the axis was 130 mm. The distance from the collimator surface of the tilted detector heads to the origin on the axis was 110 mm. A CdTe semiconductor panel with a 1.4 mm detector pitch and a parallel-hole collimator were employed in both types of detector head. A line source phantom, cold-rod brain-shaped phantom, and cerebral blood flow phantom were evaluated. The projection data were generated by forward-projection of the phantom images using physics models, and Poisson noise at clinical levels was applied to the projection data. The ordered-subsets expectation maximization algorithm with physics models was used. We also evaluated conventional SPECT using four parallel detector heads for the sake of comparison. The evaluation of the line source phantom showed that the transaxial FWHM in the central slice for conventional SPECT ranged from 6.1 to 8.5 mm, while that for PT-SPECT ranged from 5.3 to 6.9 mm. The cold-rod brain-shaped phantom image showed that conventional SPECT could visualize up to 8-mm-diameter rods. By contrast, PT-SPECT could visualize up to 6-mm-diameter rods in upper slices of a cerebrum. The cerebral blood flow phantom image showed that the PT-SPECT system provided higher resolution at the thalamus and caudate nucleus as well as at the longitudinal fissure of the cerebrum compared with conventional SPECT. PT-SPECT provides improved image resolution at not only upper but also at

  17. Application of SPECT/CT imaging in the diagnosis of benign diseases

    International Nuclear Information System (INIS)

    Garcheva, M.; Demirev, A.

    2014-01-01

    The application of recently introduced hybrid nuclear medicine methods gains importance in a variety of clinical fields, mainly because of the unique combination between functional and anatomical data provided by those methods and their capability for a precise localization of pathological processes. Single photon emission computed tomography, combined with computed tomography (SPECT/CT) is one of those methods. Its role in nuclear cardiology is important, because it provides quick attenuation correction and calculates the calcium score. In nuclear endocrinology SPECT/CT participates in thyroid and parathyroid examinations, especially in cases, where there is a need for localization of ectopic parathyroid or thyroid tissue. In nuclear pulmonology, one of the best ways to attribute certain changes seen on the SPECT, to the zone of interest on the CT, is to study the fused images obtained from the SPECT/ CT scanner. In cases of suspected infection and inflammation, fused images are indispensable for accurate localization of the involved tissue (structure) and for discrimination between normal/abnormal uptake. Careful reading of the CT component (even low-dose) is related (in 10% of cases) to clinically important incidental findings: effusions, tumors, metastases or lymph node pathology. SPECT/CT increases the specificity of the examinations and improves significantly the localization of pathological processes. It provides additional information, shortens the diagnostic algorithm and influences the extent of surgical procedures. In many hybrid examinations the preferred CT component is a low-dose one, without considerable radiation exposure. The opportunity to combine nuclear medicine techniques and contrast CT images, aiming at better diagnosis needs further development. SPECT/CT provides important additional information and more accurate diagnostics in patients with benign diseases. (authors) Key words: SPECT/CT. BENIGN DISEASES

  18. Myocardial Infarction Area Quantification using High-Resolution SPECT Images in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luciano Fonseca Lemos de [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Mejia, Jorge [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Carvalho, Eduardo Elias Vieira de; Lataro, Renata Maria; Frassetto, Sarita Nasbine [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Fazan, Rubens Jr.; Salgado, Hélio Cesar [Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Galvis-Alonso, Orfa Yineth [Faculdade de Medicina de São José do Rio Preto, São José do Rio Preto, SP (Brazil); Simões, Marcus Vinícius, E-mail: msimoes@fmrp.usp.br [Divisão de Cardiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2013-07-15

    Imaging techniques enable in vivo sequential assessment of the morphology and function of animal organs in experimental models. We developed a device for high-resolution single photon emission computed tomography (SPECT) imaging based on an adapted pinhole collimator. To determine the accuracy of this system for quantification of myocardial infarct area in rats. Thirteen male Wistar rats (250 g) underwent experimental myocardial infarction by occlusion of the left coronary artery. After 4 weeks, SPECT images were acquired 1.5 hours after intravenous injection of 555 MBq of 99mTc-Sestamibi. The tomographic reconstruction was performed by using specially developed software based on the Maximum Likelihood algorithm. The analysis of the data included the correlation between the area of perfusion defects detected by scintigraphy and extent of myocardial fibrosis assessed by histology. The images showed a high target organ/background ratio with adequate visualization of the left ventricular walls and cavity. All animals presenting infarction areas were correctly identified by the perfusion images. There was no difference of the infarct area as measured by SPECT (21.1 ± 21.2%) and by histology (21.7 ± 22.0%; p=0.45). There was a strong correlation between individual values of the area of infarction measured by these two methods. The developed system presented adequate spatial resolution and high accuracy for the detection and quantification of myocardial infarction areas, consisting in a low cost and versatile option for high-resolution SPECT imaging of small rodents.

  19. SPECT/CT imaging in bone scintigraphy of a case of clavicular osteoma

    International Nuclear Information System (INIS)

    Yamamoto, Yuka; Nishiyama, Yoshihiro

    2014-01-01

    Osteoma is a benign bone-forming tumor that usually arises in the craniofacial bones and rarely in the long bones. Clavicular involvement is extremely rare. We report a 51-year-old woman with osteoma of the left clavicle. Radiograph of the left shoulder showed a well-defined lobulated blastic mass in the proximal and mid-portion of the left clavicle. Bone scintigraphy was performed 4 hours after an intravenous injection of Tc-99m hydroxymethylene diphosphonate (HMDP). Whole-body image showed a focus of intensely increased uptake in the clavicle. Single photon emission computed tomography / computed tomography (SPECT/CT) images were also acquired and clearly showed intense uptake at the tumor site. Integrated SPECT/CT imaging supplies both functional and anatomic information about bone the SPECT imaging improves sensitivity compared with planar imaging, the CT imaging provides precise localization of the abnormal uptake, and information on the shape and structure of the abnormalities improves the specificity of the diagnosis

  20. Intravenous dipyridamole thallium-201 SPECT imaging in patients with left bundle branch block

    International Nuclear Information System (INIS)

    Rockett, J.F.; Wood, W.C.; Moinuddin, M.; Loveless, V.; Parrish, B.

    1990-01-01

    Tl-201 exercise imaging in patients with left bundle branch block (LBBB) has proven to be indeterminate for significant left anterior descending (LAD) coronary artery stenosis because of the presence of immediate septal perfusion defects with redistribution on delayed images in almost all cases. Tl-201 redistribution occurs regardless of the presence or absence of LAD stenosis. Nineteen patients having LBBB were evaluated with dipyridamole Tl-201 SPECT. Fourteen of these subjects had normal dipyridamole Tl-201 SPECT imaging. Three patients had normal coronary angiograms. None of the remaining 11 patients with normal dipyridamole Tl-201 SPECT images was found to have clinical coronary artery disease in a 5-11 month follow-up period. Five patients had abnormal septal perfusion. Four underwent coronary angiography. One had a significant LAD stenosis. The single patient with septal redistribution who refused to undergo coronary angiography died shortly thereafter of clinical coronary artery disease. This preliminary work suggests that dipyridamole Tl-201 SPECT may be more useful for excluding LAD stenosis in patients with LBBB than Tl-201 exercise imaging

  1. Performance characterization of the Inveon preclinical small-animal PET/SPECT/CT system for multimodality imaging

    International Nuclear Information System (INIS)

    Magota, Keiichi; Kubo, Naoki; Kuge, Yuji; Nishijima, Ken-ichi; Zhao, Songji; Tamaki, Nagara

    2011-01-01

    We investigated the performance of the Inveon small-animal PET/SPECT/CT system and compared the imaging capabilities of the SPECT and PET components. For SPECT, the energy resolution, tomographic spatial resolution and system sensitivity were evaluated with a 99m Tc solution using a single pinhole collimator. For PET, the spatial resolution, absolute sensitivity, scatter fraction and peak noise equivalent count were evaluated. Phantoms and a normal rat were scanned to compare the imaging capabilities of SPECT and PET. The SPECT spatial resolution was 0.84 mm full-width at half-maximum (FWHM) at a radius of rotation of 25 mm using a 0.5-mm pinhole aperture collimator, while the PET spatial resolution was 1.63 mm FWHM at the centre. The SPECT system sensitivity at a radius of rotation of 25 mm was 35.3 cps/MBq (4 x 10 -3 %) using the 0.5-mm pinhole aperture, while the PET absolute sensitivity was 3.2% for 350-650 keV and 3.432 ns. Accordingly, the volume sensitivity of PET was three orders of magnitude higher than that of SPECT. This integrated PET/SPECT/CT system showed high performance with excellent spatial resolution for SPECT and sensitivity for PET. Based on the tracer availability and system performance, SPECT and PET have complementary roles in multimodality small-animal imaging. (orig.)

  2. Diagnosis of Alzheimer's disease using brain perfusion SPECT and MR imaging: which modality achieves better diagnostic accuracy?

    International Nuclear Information System (INIS)

    Kubota, Takao; Ushijima, Yo; Yamada, Kei; Okuyama, Chio; Kizu, Osamu; Nishimura, Tsunehiko

    2005-01-01

    The purpose of this study was to compare the accuracy of MR imaging and brain perfusion single-photon emission tomography (SPECT) in diagnosing Alzheimer's disease (AD). The transaxial section display of brain perfusion SPECT, three-dimensional stereotactic surface projection (3D-SSP) SPECT image sets, thin-section MR imaging of the hippocampus and perfusion MR imaging were evaluated in 66 subjects comprising 35 AD patients and 31 subjects without AD. SPECT and MR imaging were visually interpreted by two experts and two novices, and the diagnostic ability of each modality was evaluated by receiver operating characteristic (ROC) analysis. In the experts' interpretations, there was no significant difference in the area under the ROC curve (A z ) between 3D-SSP and thin-section MR imaging, whereas the A z of transaxial SPECT display was significantly lower than that of 3D-SSP (3D-SSP: 0.97, thin-section MR imaging: 0.96, transaxial SPECT: 0.91), and the A z of perfusion MR imaging was lowest (0.63). The sensitivity and specificity of each modality were, respectively, 80.0% and 96.8% for 3D-SSP, 77.1% and 96.8% for thin-section MR imaging, 60.0% and 93.5% for transaxial SPECT display and 34.3% and 100% for perfusion MR imaging. In the novices' interpretations, the A z , sensitivity and specificity of 3D-SSP were superior to those of thin-section MR imaging. Thin-section hippocampal MR imaging and 3D-SSP image sets had potentially equivalent value for the diagnosis of AD, and they were superior to transaxial SPECT display and perfusion MR imaging. For avoidance of the effect of interpreters' experience on image evaluation, 3D-SSP appears to be optimal. (orig.)

  3. Measurement of heterogeneous distribution on technegas SPECT images by three-dimensional fractal analysis

    International Nuclear Information System (INIS)

    Nagao, Michinobu; Murase, Kenya

    2002-01-01

    This review article describes a method for quantifying heterogeneous distribution on Technegas ( 99m Tc-carbon particle radioaerosol) SPECT images by three-dimensional fractal analysis (3D-FA). Technegas SPECT was performed to quantify the severity of pulmonary emphysema. We delineated the SPECT images by using five cut-offs (15, 20, 25, 30 and 35% of the maximal voxel radioactivity), and measured the total number of voxels in the areas surrounded by the contours obtained with each cut-off level. We calculated fractal dimensions from the relationship between the total number of voxels and the cut-off levels transformed into natural logarithms. The fractal dimension derived from 3D-FA is the relative and objective measurement, which can assess the heterogeneous distribution on Technegas SPECT images. The fractal dimension strongly correlate pulmonary function in patients with emphysema and well documented the overall and regional severity of emphysema. (author)

  4. Brain SPECT in childhood; Temp cerebrale chez l'enfant

    Energy Technology Data Exchange (ETDEWEB)

    Tranquart, F.; Saliba, E.; Prunier, C.; Baulieu, F.; Besnard, J.C.; Guilloteau, D.; Baulieu, J.L. [Hopital Bretonneau, Service de Medecine Nucleaire, Unite Inserm 316, 37 - Tours (France)

    2001-04-01

    The modalities and the indications of perfusion and neurotransmission SPECT in childhood are presented. The perfusion as well as neurotransmission tracers have not yet authorization for use in children; they have to be used by prescription of magistral preparation or in research protocols. The radioprotection rules have to be strictly respected. The most frequent indication of perfusion SPECT is pharmacologically resistant epilepsy; the ictal SPECT before surgery allows the localization of the epileptogenic focus. Other indications are relevant in the prognosis of neonatal anoxia and encephalitis. In psychiatric disorders, especially in autism, the interest is the physiopathological approach of the brain dysfunctions. The neurotransmission SPECT is emerging as a consequence of the development of new radiotracer, as the dopaminergic system ligands. The decrease of the dopamine D2 receptors in the striatum can be imaged and quantified in the neonate. The lesions of dopamine system seem to be a consequence of the neonatal hypoxia-ischemia and it is predictive of motor sequelae. Brain SPECT should become a routine examination in child neurologic and psychiatric disorders. (authors)

  5. Episodic aphasia associated with tumor active multiple sclerosis: a correlative SPECT study utilising image fusion

    International Nuclear Information System (INIS)

    Roff, G.; Campbell, A.; Lawn, N.; Henderson, A.; McCarthy, M.; Lenzo, N.

    2003-01-01

    Full text: Cerebral perfusion imaging is a common technique to assess cerebral perfusion and metabolism. It can complement anatomical imaging in assessing a number of neurological conditions. At times it can better define the clinical manifestations of a disease process than anatomical imaging alone. We present a clinical case whereby cerebral SPECT imaging helped define the physiological reason for intermittent aphasia in a patient with tumor active multiple sclerotic white matter plaques. Cerebral SPECT studies were performed during a period of aphasia and when the patient had recovered. We utilised subtraction analyses and image fusion techniques to better define the changes seen on SPECT. We discuss the neuroanatomical relationship of aphasia and the automatic fusion technique that allows accurate co-registration of the MRI and SPECT data. Copyright (2003) The Australian and New Zealand Society of Nuclear Medicine Inc

  6. A hardware investigation of robotic SPECT for functional and molecular imaging onboard radiation therapy systems

    International Nuclear Information System (INIS)

    Yan, Susu; Tough, MengHeng; Bowsher, James; Yin, Fang-Fang; Cheng, Lin

    2014-01-01

    Purpose: To construct a robotic SPECT system and to demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch, as a step toward onboard functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was constructed utilizing a gamma camera detector (Digirad 2020tc) and a robot (KUKA KR150 L110 robot). An imaging study was performed with a phantom (PET CT Phantom TM ), which includes five spheres of 10, 13, 17, 22, and 28 mm diameters. The phantom was placed on a flat-top couch. SPECT projections were acquired either with a parallel-hole collimator or a single-pinhole collimator, both without background in the phantom and with background at 1/10th the sphere activity concentration. The imaging trajectories of parallel-hole and pinhole collimated detectors spanned 180° and 228°, respectively. The pinhole detector viewed an off-centered spherical common volume which encompassed the 28 and 22 mm spheres. The common volume for parallel-hole system was centered at the phantom which encompassed all five spheres in the phantom. The maneuverability of the robotic system was tested by navigating the detector to trace the phantom and flat-top table while avoiding collision and maintaining the closest possible proximity to the common volume. The robot base and tool coordinates were used for image reconstruction. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector radius of rotation. Without background, all five spheres were visible in the reconstructed parallel-hole image, while four spheres, all except the smallest one, were visible in the reconstructed pinhole image. With background, three spheres of 17, 22, and 28 mm diameters were readily observed with the parallel-hole imaging, and the targeted spheres (22 and 28 mm diameters) were readily observed in the pinhole

  7. SPECT and PET Serve as Molecular Imaging Techniques and in Vivo Biomarkers for Brain Metastases

    Science.gov (United States)

    Palumbo, Barbara; Buresta, Tommaso; Nuvoli, Susanna; Spanu, Angela; Schillaci, Orazio; Fravolini, Mario Luca; Palumbo, Isabella

    2014-01-01

    Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET) represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI) is discussed. PMID:24897023

  8. Examination of attenuation correction method for cerebral blood Flow SPECT Using MR imaging

    International Nuclear Information System (INIS)

    Mizuno, Takashi; Takahashi, Masaaki

    2009-01-01

    Authors developed a software for attenuation correction using MR imaging (MRAC) (Toshiba Med. System Engineer.) based on the idea that precision of AC could be improved by the head contour in MRI T2-weighted images (T2WI) obtained before 123 I-iofetamine (IMP) single photon emission computed tomography (SPECT) for cerebral blood flow (CBF) measurement. In the present study, this MRAC was retrospectively evaluated by comparison with the previous standard AC methods derived from transmission CT (TCT) and X-CT which overcoming the problem of sinogram threshold Chang method but still having cost and patient exposure issues. MRAC was essentially performed in the Toshiba GMS5500/PI processor where 3D registration was conducted with images of SPECT and MRI of the same patient. The gamma camera for 123 I-IMP SPECT and 99m TcO 4 - TCT was Toshiba 3-detector GCA9300A equipped with the above processor for MRAC and with low energy high resolution (LEHR) fan beam collimator. Machines for MRI and CT were Siemens-Asahi Meditech. MAGNETOM Symphony 1.5T and SOMATOM plus4, respectively. MRAC was examined in 8 patients with images of T1WI, TCT and SPECT, and in 18 of T2WI, CT and SPECT. Evaluation was made by comparison of attenuation coefficients (μ) by the 4 methods. As a result, the present MRAC was found to be closer to AC by TCT and CT than by the Chang method since MRAC, due to exact imaging of the head contour, was independent on radiation count, and was thought to be useful for improving the precision of CBF SPECT. (K.T.)

  9. Myocardial CT perfusion imaging and SPECT for the diagnosis of coronary artery disease

    DEFF Research Database (Denmark)

    George, Richard T; Mehra, Vishal C; Chen, Marcus Y

    2014-01-01

    %, respectively, for SPECT. CONCLUSION: The overall performance of myocardial CT perfusion imaging in the diagnosis of anatomic CAD (stenosis ≥50%), as demonstrated with the Az, was higher than that of SPECT and was driven in part by the higher sensitivity for left main and multivessel disease.......PURPOSE: To compare the diagnostic performance of myocardial computed tomographic (CT) perfusion imaging and single photon emission computed tomography (SPECT) perfusion imaging in the diagnosis of anatomically significant coronary artery disease (CAD) as depicted at invasive coronary angiography....... MATERIALS AND METHODS: This study was approved by the institutional review board. Written informed consent was obtained from all patients. Sixteen centers enrolled 381 patients from November 2009 to July 2011. Patients underwent rest and adenosine stress CT perfusion imaging and rest and either exercise...

  10. Nontraumatic femoral head necrosis. Classification of bone scintigraphic findings and diagnostic value of SPECT following planar imaging

    Energy Technology Data Exchange (ETDEWEB)

    Minoshima, Satoshi; Uchida, Yoshitaka; Anzai, Yoshimi; Uno, Kimiichi; Arimizu, Noboru [Chiba Univ. (Japan). School of Medicine

    1994-09-01

    This study was conducted to determine bone scintigraphic findings in nontraumatic femoral head avascular necrosis and diagnostic value of SPECT imaging following a conventional planar imaging. Forty-three femoral heads in twenty-six cases with idiopathic femoral head necrosis (n=2), systemic lupus erythematosus (n=22), aplastic anemia (n=1), and renal transplantation (n=1) were studied. The diagnosis for femoral head necrosis was based on magnetic resonance imaging as well as other diagnostic studies in all cases. Scintigraphic findings of planar and SPECT images were classified into six categories: normal (N); cold or decrease (C); partial increase with cold or decrease (PH+C); ring-like increase with a cold center (RH+C); partial increase (PH); diffuse and/or irregular increase (DH). Avascular necrosis was confirmed in twenty-four femoral heads, in which planar and SPECT images showed scintigraphic findings of N (n=3, 2), C (n=1, 3), PH+C (n=2, 8), RH+C (n=2, 3), PH (n=9, 2), and DH (n=7, 6), respectively. Femoral heads without avascular necrosis demonstrated planar and SPECT findings of N (n=16, 12), C (n=0, 6), and DH (n=3, 1), respectively. When considering C, PH+C, and RH+C as diagnostic findings for avascular necrosis, sensitivities of planar and SPECT images were 21% and 58%, and specificities were 100% and 68%, respectively. In nineteen femoral heads with normal planar findings (N), SPECT correctly identified avascular necrosis in two femoral heads and misidentified six normal femoral heads as avascular necrosis. In nineteen femoral heads with nondiagnostic abnormalities (PH, DH), SPECT correctly identified avascular necrosis in seven femoral heads and showed no false positive. Diagnostic planar findings in five femoral heads were concordant with SPECT diagnosis. These results indicate that SPECT imaging is most valuable when planar images show nondiagnostic abnormalities based on the proposed classification of scintigraphic findings. (author).

  11. Nontraumatic femoral head necrosis. Classification of bone scintigraphic findings and diagnostic value of SPECT following planar imaging

    International Nuclear Information System (INIS)

    Minoshima, Satoshi; Uchida, Yoshitaka; Anzai, Yoshimi; Uno, Kimiichi; Arimizu, Noboru

    1994-01-01

    This study was conducted to determine bone scintigraphic findings in nontraumatic femoral head avascular necrosis and diagnostic value of SPECT imaging following a conventional planar imaging. Forty-three femoral heads in twenty-six cases with idiopathic femoral head necrosis (n=2), systemic lupus erythematosus (n=22), aplastic anemia (n=1), and renal transplantation (n=1) were studied. The diagnosis for femoral head necrosis was based on magnetic resonance imaging as well as other diagnostic studies in all cases. Scintigraphic findings of planar and SPECT images were classified into six categories: normal (N); cold or decrease (C); partial increase with cold or decrease (PH+C); ring-like increase with a cold center (RH+C); partial increase (PH); diffuse and/or irregular increase (DH). Avascular necrosis was confirmed in twenty-four femoral heads, in which planar and SPECT images showed scintigraphic findings of N (n=3, 2), C (n=1, 3), PH+C (n=2, 8), RH+C (n=2, 3), PH (n=9, 2), and DH (n=7, 6), respectively. Femoral heads without avascular necrosis demonstrated planar and SPECT findings of N (n=16, 12), C (n=0, 6), and DH (n=3, 1), respectively. When considering C, PH+C, and RH+C as diagnostic findings for avascular necrosis, sensitivities of planar and SPECT images were 21% and 58%, and specificities were 100% and 68%, respectively. In nineteen femoral heads with normal planar findings (N), SPECT correctly identified avascular necrosis in two femoral heads and misidentified six normal femoral heads as avascular necrosis. In nineteen femoral heads with nondiagnostic abnormalities (PH, DH), SPECT correctly identified avascular necrosis in seven femoral heads and showed no false positive. Diagnostic planar findings in five femoral heads were concordant with SPECT diagnosis. These results indicate that SPECT imaging is most valuable when planar images show nondiagnostic abnormalities based on the proposed classification of scintigraphic findings. (author)

  12. SPECT and PET Serve as Molecular Imaging Techniques and in Vivo Biomarkers for Brain Metastases

    Directory of Open Access Journals (Sweden)

    Barbara Palumbo

    2014-06-01

    Full Text Available Nuclear medicine techniques (single photon emission computerized tomography, SPECT, and positron emission tomography, PET represent molecular imaging tools, able to provide in vivo biomarkers of different diseases. To investigate brain tumours and metastases many different radiopharmaceuticals imaged by SPECT and PET can be used. In this review the main and most promising radiopharmaceuticals available to detect brain metastases are reported. Furthermore the diagnostic contribution of the combination of SPECT and PET data with radiological findings (magnetic resonance imaging, MRI is discussed.

  13. Precise fusion of MRI and dual energy 111In WBC/99mTc HDP SPECT/CT in the diabetic foot using companion CT: an example of SPECT/MRI imaging

    International Nuclear Information System (INIS)

    Knešaurek, K.; Heiba, S.; Kolker, D.; Vatti, S.

    2015-01-01

    The purpose of our study was to correctly fuse MRI and SPECT 111 In WBC and 99m Tc HDP images using companion CT images. The fused images could be used to assess proper surgical approach in treatment of the diabetic foot. Nine patients who had dual energy 111 In WBC/ 99 m Tc HDP SPECT/CT and MRI studies within a week were investigated in an ongoing project. A GE Infinia SPECT/CT camera and Siemens MAGNETOM 1.5T MR system were used in this study. First, the MRI and corresponding CT images were coregistrated using a transformation based on normalized mutual information. The transformation was saved and used for MRI and 111 In WBC/ 99 m Tc HDP SPECT fusion. A Jaszczak phantom study was also performed in order to estimate accuracy of MRI/ SPECT fusion. The Jaszczak phantom study with 3.7 MBq 111 In hot sphere showed that MRI/SPECT alignment using the approach described above produced registration with 0.7±0.4 mm accuracy in all three dimensions (3D). The nine clinical cases were visually evaluated and showed 1-2 mm 3D fusion accuracy. MRI provides almost perfect anatomy of soft tissue and bony structures but it may exaggerate the extent of infection. 111 In WBC/ 99 m Tc HDP SPECT imaging is more accurate for infection detection but lacks anatomical reference. Combination of these images proved an essential adjunct to diagnosis. A clinical utility of the approach is illustrated in two clinical examples. In conclusion, the CT in dual energy 111 In WBC/ 99 m Tc HDP SPECT/CT studies can be used to accurately fuse and compare 111 In WBC/ 99 m Tc HDP SPECT and MRI images of the diabetic foot. This can significantly help in conservative treatment planning and limb salvage procedures in treatment of diabetic foot infections.

  14. Preliminary application of brain perfusion SPECT imaging in schizophrenia

    International Nuclear Information System (INIS)

    Wu Zhixing; Guo Chanliu; Li Xingbao; Liang Rongxiang; Zhao Jun; Yan Tingxiu

    1996-01-01

    The clinical value of 99m Tc-ECD brain perfusion SPECT imaging was evaluated in patients with schizophrenia. 32 patients with schizophrenia and 21 normal controls were analyzed with 99m Tc-ECD SPECT. 93.8% (30/32) of the patients showed decreased regional cerebral blood flow (rCBF). There was normal rCBF in controls. In the patient group rCBF decreased significantly in bilateral frontal lobes, left temporal lobe and right basal ganglion. The rCBF of left temporal lobe was significantly lower than that of right temporal lobe. The decreasing rCBF was not significantly related to previous treatment and duration of illness. 99m Tc-ECD SPECT is useful for the study and diagnosis of patients with schizophrenia

  15. Design and evaluation of a mobile bedside PET/SPECT imaging system

    Science.gov (United States)

    Studenski, Matthew Thomas

    Patients confined to an intensive care unit, the emergency room, or a surgical suite are managed without nuclear medicine procedures such as positron emission tomography (PET) or single photon emission computed tomography (SPECT). These studies have diagnostic value which can greatly benefit the physician's treatment of the patient but require that the patient is moved to a scanner. This dissertation examines the feasibility of an economical PET/SPECT system that can be brought to the bedside of an immobile patient for imaging. We chose to focus on cardiac SPECT imaging including perfusion imaging using 99mTc tracers and viability imaging using 18F tracers first because of problems arising from positioning a detector beneath a patient's bed, a requirement for the opposed detector orientation in PET imaging. Second, SPECT imaging acquiring over the anterior 180 degrees of the patient results in reduced attenuation effects due to the heart's location in the anterior portion of the body. Four studies were done to assess the clinical feasibility of the mobile system; 1) the performance of the system was evaluated in SPECT mode at both 140 keV (99mTc tracers) and 511 keV (positron emitting tracers), 2) a dynamic cardiac phantom was used to develop and test image acquisition and processing methods for the system at both energies, 3) a high energy pinhole collimator was designed to reduce the effects of high energy photon penetration through the parallel hole collimator, and 4) we estimated the radiation dose to persons that would be in the vicinity of a patient to ensure that the effective dose is below the regulatory limit. With these studies, we show that the mobile system provides an economical means of bringing nuclear medicine to an immobile patient while staying below the regulatory dose limit to other persons. The system performed well at both 140 keV and 511 keV and provided viable images of a phantom myocardium at both energies. The system does not achieve the

  16. Brain perfusion SPECT imaging before and during the acetazolamide test using sup 99m Tc-HMPAO

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Higashi, Sotaro; Kinuya, Keiko; Tsuji, Shiro; Sumiya, Hisashi; Hisada, Kinichi; Yamashita, Junkoh (Kanazawa Univ. (Japan). School of Medicine)

    1990-05-01

    A new method using brain perfusion {sup 99m}Tc-HMPAO SPECT imaging was developed for evaluating cerebral perfusion reserve by the acetazolamide test with a short period. The first SPECT study was carried out for 13.5 min to obtain SPECT images at the resting state after 3 min postinjection of 555 MBq (15 mCi) of {sup 99m}Tc-HMPAO. At the same time as the start of the first SPECT study, 1 g of acetazolamide was intravenously injected. Immediately after the stop of the 1st SPECT study, 925 MBq (25 mCi) of {sup 99m}Tc-HMPAO from the same vial as in the first study was additionally injected. Three minutes later the second SPECT study was carried out for 10 min. After reconstruction the tomographic images in the first study were subtracted from the images in the second study to obtain those during the acetazolamide test after correction of the time differences in data acquisition between the two studies. This subtraction technique gives independent brain perfusion SPECT images before and during the acetazolamide test. Besides, the regional flow changes during the test were quantitatively analyzed. In conclusion this method seems to be practically useful for evaluating regional brain perfusion before and during drug treatments as a consecutive study with a short period of approximately 30 min. (author).

  17. SPECT brain perfusion imaging in mild traumatic brain injury

    International Nuclear Information System (INIS)

    Li Juan; Liu Baojun; Zhao Feng; He Lirong; Xia Yucheng

    2003-01-01

    Objective: To study the clinical value of SPECT brain perfusion imaging after mild traumatic brain injury and to evaluate the mechanism of brain blood flow changes in the brain traumatic symptoms. Methods: SPECT 99 Tc m -ethylene cysteinate dimer (ECD) brain perfusion imaging was performed on 39 patients with normal consciousness and normal computed tomography. The study was performed on 23 patients within 3 months after the accidental injury and on 16 patients at more than 3 months post-injury. The cerebellum was used as the reference site (100% maximum value). Any decrease in cerebral perfusion in cortex or basal ganglia to below 70%, or even to below 50% in the medial temporal lobe, compared to the cerebellar reference was considered abnormal. Results: The results of 23 patients (59%) were abnormal. Among them, 20 patients showed 74 focal lesions with an average of 3.7 per patient (15 studies performed within 3 months and 8 studies performed more than 3 months after injury). The remaining 3 showed diffuse hypoperfusion (two at the early stage and one at more than 3 months after the injury). The 13 abnormal studies performed at the early stage showed 58 lesions (average, 4.5 per patient), whereas there was a reduction to an average of 2.3 per patient in the 7 patients (total 16 lesions) at more than 3 months post-injury. In the 20 patients with focal lesions, mainly the following regions were involved: frontal lobes 43.2% (32/74), basal ganglia 24.3% (18/74) and temporal lobes 17.6% (13/74). Conclusions: 1) SPECT brain perfusion imaging is more sensitive than computed tomography in detecting brain lesions of mild traumatic brain injury. 2) SPECT brain perfusion imaging is more sensitive at early stage than at late stage after injury. 3) The most common complaints were headache, dizziness, memory deficit. The patients without loss of consciousness may present brain hypoperfusion, too. 4) The changes may explain a neurological component of the patient symptoms in

  18. Design and evaluation of corn starch-bonded Rhizophora spp. particleboard phantoms for SPECT/CT imaging

    Science.gov (United States)

    Hamid, Puteri Nor Khatijah Abd; Yusof, Mohd Fahmi Mohd; Aziz Tajuddin, Abd; Hashim, Rokiah; Zainon, Rafidah

    2018-01-01

    The aim of this study was to design and evaluate of corn starch-bonded Rhizophora spp. particleboards as phantom for SPECT/CT imaging. The phantom was designed according to the Jaszczak phantom commonly used in SPECT imaging with dimension of 22 cm diameter and 18 cm length. Six inserts with different diameter were made for insertion of vials filled with 1.6 µCi/ml of 99mTc unsealed source. The particleboard phantom was scanned using SPECT/CT imaging protocol. The contrast of each vial for particleboards phantom were calculated based on the ratio of counts in radionuclide volume and phantom background and compared to Perspex® and water phantom. The results showed that contrast values for each vial in particleboard phantomis near to 1.0 and in good agreement with Perspex® and water phantoms as common phantom materials for SPECT/CT. The paired sample t-test result showed no significant difference of contrast values between images in particleboard phantoms and that in water. The overall results showed the potential of corn starch-bonded Rhizophora spp. as phantom for quality control and dosimetry works in SPECT/CT imaging.

  19. of Hypoxia-Inducible Factor-1α Activity by the Fusion of High-Resolution SPECT and Morphological Imaging Tests

    Directory of Open Access Journals (Sweden)

    Hirofumi Fujii

    2012-01-01

    Full Text Available Purpose. We aimed to clearly visualize heterogeneous distribution of hypoxia-inducible factor 1α (HIF activity in tumor tissues in vivo. Methods. We synthesized of 125I-IPOS, a 125I labeled chimeric protein probe, that would visualize HIF activity. The biodistribution of 125I-IPOS in FM3A tumor-bearing mice was evaluated. Then, the intratumoral localization of this probe was observed by autoradiography, and it was compared with histopathological findings. The distribution of 125I-IPOS in tumors was imaged by a small animal SPECT/CT scanner. The obtained in vivo SPECT-CT fusion images were compared with ex vivo images of excised tumors. Fusion imaging with MRI was also examined. Results. 125I-IPOS well accumulated in FM3A tumors. The intratumoral distribution of 125I-IPOS by autoradiography was quite heterogeneous, and it partially overlapped with that of pimonidazole. High-resolution SPECT-CT fusion images successfully demonstrated the heterogeneity of 125I-IPOS distribution inside tumors. SPECT-MRI fusion images could give more detailed information about the intratumoral distribution of 125I-IPOS. Conclusion. High-resolution SPECT images successfully demonstrated heterogeneous intratumoral distribution of 125I-IPOS. SPECT-CT fusion images, more favorably SPECT-MRI fusion images, would be useful to understand the features of heterogeneous intratumoral expression of HIF activity in vivo.

  20. Registration of SPECT, PET and/or X-ray CT images in patients with lung cancer

    International Nuclear Information System (INIS)

    Uemura, K.; Toyama, H.; Miyamoto, T.; Yoshikawa, K.; Mori, Y.

    2002-01-01

    Aim: In order to evaluate the therapeutic gain of heavy ion therapy performed on patients with lung cancer, the regional pulmonary functions and the amount of radio tracer accumulation to the tumor, we are investigated by using the region of interest based on anatomical information obtained from X-ray CT. There are many registration techniques for brain images, but not so much for the other organ images that we have studied registration of chest SPECT, PET and/or X-ray CT images. Materials and Methods: Perfusion, ventilation and blood pool images with Tc 99m labeled radiopharmaceuticals and SPECT, tumor images with 11 C-methionine and PET and X-ray CT scans were performed on several patients with lung cancer before and after heavy ion therapy. The registrations of SPECT-CT, PET-CT and CT-CT were performed by using AMIR (Automatic Multimodality Image Registration), which was developed by Babak et al. for registration of brain images. In a case of SPECT-CT registration, each of the three functional images was registered to the X-ray CT image, and the accuracy of each registration was compared. In the studies of PET-CT registration, the transmission images and X-ray CT images were registered at first, because the 11 C-methionine PET images bear little resemblance to the underlying anatomical images. Next, the emission images were realigned by using the same registration parameters. The X-ray CT images obtained from a single subject at the different time were registered to the first X-ray CT images, respectively. Results: In the SPECT-CT registration, the blood pool-CT registration is the best among three SPECT images in visual inspection by radiologists. In the PET-CT registration, the Transmission-CT registrations got good results. Therefore, Emission-CT registrations also got good results. In the CT-CT registration, the X-ray CT images obtained from a single subject at the different time were superimposed well each other except for lower lobe. As the results, it was

  1. Geometric Calibration and Image Reconstruction for a Segmented Slant-Hole Stationary Cardiac SPECT System.

    Science.gov (United States)

    Mao, Yanfei; Yu, Zhicong; Zeng, Gengsheng L

    2015-06-01

    A dedicated stationary cardiac single-photon emission computed tomography (SPECT) system with a novel segmented slant-hole collimator has been developed. The goal of this paper is to calibrate this new imaging geometry with a point source. Unlike the commercially available dedicated cardiac SPECT systems, which are specialized and can be used only to image the heart, our proposed cardiac system is based on a conventional SPECT system but with a segmented slant-hole collimator replacing the collimator. For a dual-head SPECT system, 2 segmented collimators, each with 7 sections, are arranged in an L-shaped configuration such that they can produce a complete cardiac SPECT image with only one gantry position. A calibration method was developed to estimate the geometric parameters of each collimator section as well as the detector rotation radius, under the assumption that the point source location is calculated using the central-section data. With a point source located off the rotation axis, geometric parameters for each collimator section can be estimated independently. The parameters estimated individually are further improved by a joint objective function that uses all collimator sections simultaneously and incorporates the collimator symmetry information. Estimation results and images reconstructed from estimated parameters are presented for both simulated and real data acquired from a prototype collimator. The calibration accuracy was validated by computer simulations with an error of about 0.1° for the slant angles and about 1 mm for the rotation radius. Reconstructions of a heart-insert phantom did not show any image artifacts of inaccurate geometric parameters. Compared with the detector's intrinsic resolution, the estimation error is small and can be ignored. Therefore, the accuracy of the calibration is sufficient for cardiac SPECT imaging. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  2. Optimization of Butterworth filter for brain SPECT imaging

    International Nuclear Information System (INIS)

    Minoshima, Satoshi; Maruno, Hirotaka; Yui, Nobuharu

    1993-01-01

    A method has been described to optimize the cutoff frequency of the Butterworth filter for brain SPECT imaging. Since a computer simulation study has demonstrated that separation between an object signal and the random noise in projection images in a spatial-frequency domain is influenced by the total number of counts, the cutoff frequency of the Butterworth filter should be optimized for individual subjects according to total counts in a study. To reveal the relationship between the optimal cutoff frequencies and total counts in brain SPECT study, we used a normal volunteer and 99m Tc hexamethyl-propyleneamine oxime (HMPAO) to obtain projection sets with different total counts. High quality images were created from a projection set with an acquisition time of 300-seconds per projection. The filter was optimized by calculating mean square errors from high quality images visually inspecting filtered reconstructed images. Dependence between total counts and optimal cutoff frequencies was clearly demonstrated in a nomogram. Using this nomogram, the optimal cutoff frequency for each study can be estimated from total counts, maximizing visual image quality. The results suggest that the cutoff frequency of Butterworth filter should be determined by referring to total counts in each study. (author)

  3. Evaluating performance of a pixel array semiconductor SPECT system for small animal imaging

    International Nuclear Information System (INIS)

    Kubo, Naoki; Zhao, Songji; Fujiki, Yutaka

    2005-01-01

    Small animal imaging has recently been focused on basic nuclear medicine. We have designed and built a small animal SPECT imaging system using a semiconductor camera and a newly designed collimator. We assess the performance of this system for small object imaging. We employed an MGC 1500 (Acrorad Co.) camera including a CdTe semiconductor. The pixel size was 1.4 mm/pixel. We designed and produced a parallel-hole collimator with 20-mm hole length. Our SPECT system consisted of a semiconductor camera with the subject holder set on an electric rotating stage controlled by a computer. We compared this system with a conventional small animal SPECT system comprising a SPECT-2000H scanner with four Anger type cameras and pinhole collimators. The count rate linearity for estimation of the scatter was evaluated for a pie-chart phantom containing different concentrations of 99m Tc. We measured the full width half maximum (FWHM) of the 99m Tc SPECT line source along with scatter. The system volume sensitivity was examined using a flood source phantom which was 35 mm long with a 32-mm inside diameter. Additionally, an in vivo myocardial perfusion SPECT study was performed with a rat. With regards to energy resolution, the semiconductor camera (5.6%) was superior to the conventional Anger type camera (9.8%). In the count rate linearity evaluation, the regression lines of the SPECT values were y=0.019x+0.031 (r 2 =0.999) for our system and y=0.018x+0.060 (r 2 =0.997) for the conventional system. Thus, the scatter count using the semiconductor camera was less than that using the conventional camera. FWHMs of our system and the conventional system were 2.9±0.1 and 2.0±0.1 mm, respectively. Moreover, the system volume sensitivity of our system [0.51 kcps/(MBq/ml)/cm] was superior to that of the conventional system [0.44 kcps/(MBq/ml)/cm]. Our system provided clear images of the rat myocardium, sufficient for practical use in small animal imaging. Our SPECT system, utilizing a

  4. Assessment of technetium-99m technegas scintigraphy for ventilatory impairment in pulmonary emphysema. Comparison of planar and SPECT images

    International Nuclear Information System (INIS)

    Satoh, Katashi; Tanabe, Masatada; Takahashi, Kazue

    1997-01-01

    Pulmonary emphysema can be diagnosed easily by X-ray CT (CT) as a low attenuation area. Recently Tc-99m-Technegas (Technegas) has been used for ventilation scintigraphy. The present study was undertaken to assess the usefulness of planar and SPECT images by using Technegas scintigraphy in patients with pulmonary emphysema. Technegas scintigraphy, CT and pulmonary function tests were performed in 20 patients (males, age 32-78 years). We classified the findings of Technegas images into 4 grades. Comparing planar and SPECT images of Technegas, more detailed findings were shown by SPECT than by planar images in mild cases (6 cases, 30%). In more severe cases, findings of SPECT and planar images were equivalent (14 cases, 70%). The degree of abnormal findings obtained by SPECT was equivalent to that obtained by CT in severe cases (6 cases, 30%). SPECT should be excluded in advanced stages as indicated by planar images. (author)

  5. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    Energy Technology Data Exchange (ETDEWEB)

    Golestani, Reza; Dierckx, Rudi A.J.O. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Wu, Chao [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Utrecht, Image Sciences Institute and Rudolf Magnus Institute of Neurosciences, Utrecht (Netherlands); Tio, Rene A. [University Medical Center Groningen, Thorax Center, Department of Cardiology, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Zeebregts, Clark J. [University Medical Center Groningen, Department of Surgery, Division of Vascular Surgery, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Petrov, Artiom D. [University of California, Irvine, Division of Cardiology, School of Medicine, Irvine, California (United States); Beekman, Freek J. [University Medical Center Utrecht, Image Sciences Institute and Rudolf Magnus Institute of Neurosciences, Utrecht (Netherlands); Delft University of Technology, Faculty of Applied Sciences, Section Radiation Detection and Medical Imaging, Delft (Netherlands); MILabs, Utrecht (Netherlands); Boersma, Hendrikus H. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Groningen, Department of Clinical and Hospital Pharmacy, Hanzeplein 1, P.O. Box 30001, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands); Slart, Riemer H.J.A. [University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); University Medical Center Groningen, Cardiovascular Imaging Group, P.O. Box 30001, Groningen (Netherlands)

    2010-09-15

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  6. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    International Nuclear Information System (INIS)

    Golestani, Reza; Dierckx, Rudi A.J.O.; Wu, Chao; Tio, Rene A.; Zeebregts, Clark J.; Petrov, Artiom D.; Beekman, Freek J.; Boersma, Hendrikus H.; Slart, Riemer H.J.A.

    2010-01-01

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. (orig.)

  7. Effects of cross talk on dual energy SPECT imaging between [sup 123]I-BMIPP and [sup 201]Tl

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Masato; Narita, Hitoshi; Yamamoto, Juro; Fukutake, Naoshige; Ohyanagi, Mitsumasa; Iwasaki, Tadaaki; Fukuchi, Minoru (Hyogo College of Medicine, Nishinomiya (Japan))

    1994-01-01

    The study was undertaken to determine how much cross talk influences the visual assessment of dual energy single photon emission computed tomographic (SPECT) images with iodine 123 beta-methyl-p-iodophenylpentadecanoic acid (I-123 BMIPP) and thallium-201 in 15 patients with acute myocardial infarction. After single SPECT with I-123 BMIPP was undertaken, simultaneous dual SPECT with I-123 BMIPP and Tl-201 were undertaken in all patients. Three patients also underwent single SPECT with Tl-201. I-123 BMIPP and Tl-201 uptake was graded in four-score for the comparison between single and dual SPECT images. There was good correlation between dual energy SPECT and both single I-123 BMIPP SPECT (pS=0.97) and single Tl-201 SPECT (pS=0.59). Uptake scores were increased on dual energy SPECT, compared with single I-123 SPECT (8 out of 132 segments) and single Tl-201 SPECT (12 out of 36 segments). Overall, there was a comparatively well correlation between single SEPCT with either I-123 BMIPP or Tl-201 and dual energy SPECT images. However, one tracer uptake sometimes increased in the other tracer defect areas. This was noticeable when I-123 BMIPP exerted an effect on Tl-201. (N.K.).

  8. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    Science.gov (United States)

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  9. Molecular Imaging of Hydrolytic Enzymes Using PET and SPECT.

    Science.gov (United States)

    Rempel, Brian P; Price, Eric W; Phenix, Christopher P

    2017-01-01

    Hydrolytic enzymes are a large class of biological catalysts that play a vital role in a plethora of critical biochemical processes required to maintain human health. However, the expression and/or activity of these important enzymes can change in many different diseases and therefore represent exciting targets for the development of positron emission tomography (PET) and single-photon emission computed tomography (SPECT) radiotracers. This review focuses on recently reported radiolabeled substrates, reversible inhibitors, and irreversible inhibitors investigated as PET and SPECT tracers for imaging hydrolytic enzymes. By learning from the most successful examples of tracer development for hydrolytic enzymes, it appears that an early focus on careful enzyme kinetics and cell-based studies are key factors for identifying potentially useful new molecular imaging agents.

  10. SPECT imaging of D2 dopamine receptors and endogenous dopamine release in mice

    NARCIS (Netherlands)

    Jongen, C.; De Bruin, K.; Beekman, F.J.; Booij, J.

    2008-01-01

    Purpose: The dopamine D2 receptor (D2R) is important in the mediation of addiction. [123I]iodobenzamide (IBZM), a SPECT ligand for the D2R, has been used for in vivo studies of D2R availability in humans, monkeys, and rats. Although mouse models are important in the study of addiction, [123I]IBZM

  11. SPECT imaging of 131I (364 keV): importance of collimation

    International Nuclear Information System (INIS)

    Clarke, L.P.; Saw, C.B.; Leong, L.K.; Serafini, A.N.

    1985-01-01

    A low sensitivity medium energy collimator (LSMEC) designed with thick septa and long bore (theoretical leakage 131 I for a SPECT system operated in both planar and tomographic imaging modes. The collimator was designed to minimize the influence of photon penetration on spatial resolution, in particular the resolution index FWTM. Overall spatial resolution for the planar imaging mode at 10 cm from the collimator face was found to be 11.6 mm FWHM and 21.6 mm FWTM. The corresponding transverse plane and slice thickness resolution was of the order of 17 mm FWHM and 31 mm FWTM, for a radius of rotation of 16 cm. A SPECT resolution phantom was imaged. Two quadrants of cold rods were well resolved, with rod dimensions of 16 and 12.7 mm respectively, the resolution being comparable to that obtained using 99 Tcsup(m) (140 keV) and a low-energy high-resolution collimator. NEMA sensitivity obtained was 75 cpm/μCi 131 I. The resolution measurements obtained suggest that this collimator should be useful for SPECT imaging with 131 I in either radioimmunoimaging or radioimmunotherapy. (author)

  12. SPECT in psychiatry. SPECT in der Psychiatrie

    Energy Technology Data Exchange (ETDEWEB)

    Barocka, A. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Feistel, H. (Nuklearmedizinische Klinik, Erlangen (Germany)); Ebert, D. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany)); Lungershausen, E. (Psychiatrische Klinik und Poliklinik, Erlangen (Germany))

    1993-08-13

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D[sub 2] and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.)

  13. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    International Nuclear Information System (INIS)

    Ozsahin, D. Uzun; Bläckberg, L.; Fakhri, G. El; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  14. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    Science.gov (United States)

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  15. Quality control of analogue to digital conversion circuitry for artefact-free SPECT imaging

    International Nuclear Information System (INIS)

    Gillen, G.J.; Elliott, A.T.

    1992-01-01

    A simple method for the objective, quantitative assessment of analogue to digital conversion (ADC) differential linearity has been developed for SPECT imaging. The analytical approach uses the fact that a differential non-linearity in the ADC will produce a non-uniformity in the digitized image which has a well defined periodicity. This can be most clearly demonstrated in the frequency space domain by determining the Fourier transform of a thick profile which is taken through the centre of a flood field image. The accuracy of the method permits deteriorations in the performance of ADCs to be detected well before significant reductions in SPECT image quality are produced. The availability of a quantitative measure of ADC performance, which can be tested objectively using a simple data acquisition method, is of value in the specification, acceptance testing and general quality control of gamma camera SPECT systems. (author)

  16. Ictal and interictal SPECT imaging of 8 patients with symptomatic partial epilepsy

    International Nuclear Information System (INIS)

    Motooka, Hiromichi

    1993-01-01

    Although epileptic discharges such as spike, spike and wave complex, sharp wave, and sharp and wave complex can be recorded by interictal scalp electroencephalography (EEG) in many patients with epilepsy, recent studies have demonstrated that no epileptic discharges can be recorded by interictal and ictal scalp EEGs in some patients who clinically exhibit epileptic seizures. Accordingly scalp EEG is not always helpful for diagnosing epilepsy or identifying the epileptic foci in the brain in these patients. Recently, studies using single photon emission computed tomography (SPECT) have been performed for patients with epilepsy and evidence that epileptic foci can be identified by changes in the regional cerebral blood flow (rCBF) seen on SPECT scanning have been accumulated. In the present study, therefore, 8 patients with medically intractable partial seizures were simultaneously or independently investigated by the recordings of scalp EEG and SPECT scanning during the interictal and ictal period. N-isopropyl-p[ 123 I]-iodoamphetamine ( 123 I-IMP) was used for SPECT scanning for 7 patients and 99m Tc-d,l-hexamethyl-propyleneamineoxime ( 99m Tc-HMPAO) for 1 patient. An increase in rCBF (hyperperfusion) or decrease in rCBF (hypoperfusion) were found in 4 patients by interictal SPECT imaging and in all patients by ictal SPECT imaging although epileptic discharges were observed in 3 patients by interictal scalp EEG and 5 patients by ictal scalp EEG. The findings of the present study indicate that ictal SPECT scanning is more useful for diagnosing epilepsy and identifying the epileptic foci in the brain than ictal scalp EEG. (author)

  17. Influences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3-dimensional brain phantom

    International Nuclear Information System (INIS)

    Akamatsu, Mana; Yamashita, Yasuo; Akamatsu, Go; Tsutsui, Yuji; Ohya, Nobuyoshi; Nakamura, Yasuhiko; Sasaki, Masayuki

    2014-01-01

    The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123 I brain SPECT obtained by the hybrid SPECT/CT device. We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray matter, white matter and bone regions. It was filled with 123 I solution (20.1 kBq/mL) in the gray matter region and with K 2 HPO 4 in the bone region. The SPECT/CT data were acquired by the hybrid SPECT/CT device. SPECT images were reconstructed by using filtered back projection with uniform attenuation correction (FBP-uAC), 3D ordered-subsets expectation-maximization with uniform AC (3D-OSEM-uAC) and 3D OSEM with CT-based non-uniform AC (3D-OSEM-CTAC). We evaluated the differences in the radioactivity distributions among these reconstruction methods using a 3D digital phantom, which was developed from CT images of the 3D brain phantom, as a reference. The normalized mean square error (NMSE) and regional radioactivity were calculated to evaluate the similarity of SPECT images to the 3D digital phantom. The NMSE values were 0.0811 in FBP-uAC, 0.0914 in 3D-OSEM-uAC and 0.0766 in 3D-OSEM-CTAC. The regional radioactivity of FBP-uAC was 11.5% lower in the middle cerebral artery territory, and that of 3D-OSEM-uAC was 5.8% higher in the anterior cerebral artery territory, compared with the digital phantom. On the other hand, that of 3D-OSEM-CTAC was 1.8% lower in all brain areas. By using the hybrid SPECT/CT device, the brain SPECT reconstructed by 3D-OSEM with CT attenuation correction can provide an accurate assessment of the distribution of brain radioactivity

  18. Preoperative localization of epileptic foci with SPECT brain perfusion imaging, electrocorticography, surgery and pathology

    International Nuclear Information System (INIS)

    Jia Shaowei; Xu Wengui; Chen Hongyan; Weng Yongmei; Yang Pinghua

    2002-01-01

    Objective: The value of preoperative localization of epileptic foci with SPECT brain perfusion imaging was investigated. Methods: The study population consisted of 23 patients with intractable partial seizures which was difficult to control with anticonvulsant for long period. In order to preoperatively locate the epileptic foci, double SPECT brain perfusion imaging was performed during interictal and ictal stage. The foci were confirmed with electrocorticography (EcoG), surgery and pathology. Results: The author checked with EcoG the foci shown by SPECT, 23 patients had all typical spike discharge. The regions of radioactivity increase in ictal matched with the abnormal electrical activity areas that EcoG showed. The spike wave originated in the corresponding cerebrum cortex instead of hyperplastic and adherent arachnoid or tumor itself. Conclusions: SPECT brain perfusion imaging contributes to distinguishing location, size, perfusion and functioning of epileptogenic foci, and has some directive function on to making out a treatment programme at preoperation

  19. Examination of statistical noise in SPECT image and sampling pitch

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Soma, Tsutomu; Murase, Kenya; Watanabe, Hiroyuki; Murakami, Tomonori; Kawakami, Kazunori; Teraoka, Satomi; Kojima, Akihiro; Matsumoto, Masanori

    2008-01-01

    Statistical noise in single photon emission computed tomography (SPECT) image was examined for its relation with total count and with sampling pitch by simulation and phantom experiment to obtain their projection data under defined conditions. The former SPECT simulation was performed on assumption of a virtual, homogeneous water column (20 cm diameter) as an absorbing mass. In the latter, used were 3D-Hoffman brain phantom (Data Spectrum Corp.) filled with 370 MBq of 99m Tc-pertechnetate solution and a facing 2-detector SPECT machine with a low-energy/high-resolution collimator, E-CAM (Siemens). Projected data by the two methods were reconstructed through the filtered back projection to make each transaxial image. The noise was evaluated by vision, by their root mean square uncertainty calculated from average count and standard deviation (SD) in the region of interest (ROI) defined in reconstructed images and by normalized mean squares calculated from the difference between the reference image obtained with common sampling pitch to and all of obtained slices of, the simulation and phantom. As a conclusion, the pitch was recommended to be set in the machine as to approximating the value calculated by the sampling theorem, though the projection counts per one angular direction were smaller with the same total time of data acquisition. (R.T.)

  20. Performance evaluation of a compact PET/SPECT/CT tri-modality system for small animal imaging applications

    International Nuclear Information System (INIS)

    Wei, Qingyang; Wang, Shi; Ma, Tianyu; Wu, Jing; Liu, Hui; Xu, Tianpeng; Xia, Yan; Fan, Peng; Lyu, Zhenlei; Liu, Yaqiang

    2015-01-01

    PET, SPECT and CT imaging techniques are widely used in preclinical small animal imaging applications. In this paper, we present a compact small animal PET/SPECT/CT tri-modality system. A dual-functional, shared detector design is implemented which enables PET and SPECT imaging with a same LYSO ring detector. A multi-pinhole collimator is mounted on the system and inserted into the detector ring in SPECT imaging mode. A cone-beam CT consisting of a micro focus X-ray tube and a CMOS detector is implemented. The detailed design and the performance evaluations are reported in this paper. In PET imaging mode, the measured NEMA based spatial resolution is 2.12 mm (FWHM), and the sensitivity at the central field of view (CFOV) is 3.2%. The FOV size is 50 mm (∅)×100 mm (L). The SPECT has a spatial resolution of 1.32 mm (FWHM) and an average sensitivity of 0.031% at the center axial, and a 30 mm (∅)×90 mm (L) FOV. The CT spatial resolution is 8.32 lp/mm @10%MTF, and the contrast discrimination function value is 2.06% with 1.5 mm size cubic box object. In conclusion, a compact, tri-modality PET/SPECT/CT system was successfully built with low cost and high performance

  1. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    Energy Technology Data Exchange (ETDEWEB)

    Negahdar, M [Stanford University School of Medicine, Stanford, CA (United States); Yamamoto, T [UC Davis School of Medicine, Sacramento, CA (United States); Shultz, D; Gable, L; Shan, X; Mittra, E; Loo, B; Maxim, P [Stanford University, Stanford, CA (United States); Diehn, M [Stanford University, Palo Alto, CA (United States)

    2014-06-15

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patients treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding.

  2. TU-A-12A-02: Novel Lung Ventilation Imaging with Single Energy CT After Single Inhalation of Xenon: Comparison with SPECT Ventilation Images

    International Nuclear Information System (INIS)

    Negahdar, M; Yamamoto, T; Shultz, D; Gable, L; Shan, X; Mittra, E; Loo, B; Maxim, P; Diehn, M

    2014-01-01

    Purpose: We propose a novel lung functional imaging method to determine the spatial distribution of xenon (Xe) gas in a single inhalation as a measure of regional ventilation. We compare Xe-CT ventilation to single-photon emission CT (SPECT) ventilation, which is the current clinical reference. Regional lung ventilation information may be useful for the diagnosis and monitoring of pulmonary diseases such as COPD, radiotherapy planning, and assessing the progression of toxicity after radiation therapy. Methods: In an IRB-approved clinical study, Xe-CT and SPECT ventilation scans were acquired for three patients including one patient with severe emphysema and two lung cancer patients treated with radiotherapy. For Xe- CT, we acquired two breath-hold single energy CT images of the entire lung with inspiration of 100% O2 and a mixture of 70% Xe and 30% O2, respectively. A video biofeedback system was used to achieve reproducible breath-holds. We used deformable image registration to align the breathhold images with each other to accurately subtract them, producing a map of the distribution of Xe as a surrogate of lung ventilation. We divided each lung into twelve parts and correlated the Hounsfield unit (HU) enhancement at each part with the SPECT ventilation count of the corresponding part of the lung. Results: The mean of the Pearson linear correlation coefficient values between the Xe-CT and ventilation SPECT count for all three patients were 0.62 (p<0.01). The Xe-CT image had a higher resolution than SPECT, and did not show central airway deposition artifacts that were present in the SPECT image. Conclusion: We developed a rapid, safe, clinically practical, and potentially widely accessible method for regional lung functional imaging. We demonstrated strong correlations between the Xe-CT ventilation image and SPECT ventilation image as the clinical reference. This ongoing study will investigate more patients to confirm this finding

  3. Imaging of gene expression in live pancreatic islet cell lines using dual-isotope SPECT.

    Science.gov (United States)

    Tai, Joo Ho; Nguyen, Binh; Wells, R Glenn; Kovacs, Michael S; McGirr, Rebecca; Prato, Frank S; Morgan, Timothy G; Dhanvantari, Savita

    2008-01-01

    We are combining nuclear medicine with molecular biology to establish a sensitive, quantitative, and tomographic method with which to detect gene expression in pancreatic islet cells in vivo. Dual-isotope SPECT can be used to image multiple molecular events simultaneously, and coregistration of SPECT and CT images enables visualization of reporter gene expression in the correct anatomic context. We have engineered pancreatic islet cell lines for imaging with SPECT/CT after transplantation under the kidney capsule. INS-1 832/13 and alphaTC1-6 cells were stably transfected with a herpes simplex virus type 1-thymidine kinase-green fluorescent protein (HSV1-thymidine kinase-GFP) fusion construct (tkgfp). After clonal selection, radiolabel uptake was determined by incubation with 5-(131)I-iodo-1-(2-deoxy-2-fluoro-beta-d-arabinofuranosyl)uracil ((131)I-FIAU) (alphaTC1-6 cells) or (123)I-FIAU (INS-1 832/13 cells). For the first set of in vivo experiments, SPECT was conducted after alphaTC1-6/tkgfp cells had been labeled with either (131)I-FIAU or (111)In-tropolone and transplanted under the left kidney capsule of CD1 mice. Reconstructed SPECT images were coregistered to CT. In a second study using simultaneous acquisition dual-isotope SPECT, INS-1 832/13 clone 9 cells were labeled with (111)In-tropolone before transplantation. Mice were then systemically administered (123)I-FIAU and data for both (131)I and (111)In were acquired simultaneously. alphaTC1-6/tkgfp cells showed a 15-fold greater uptake of (131)I-FIAU, and INS-1/tkgfp cells showed a 12-fold greater uptake of (123)I-FIAU, compared with that of wild-type cells. After transplantation under the kidney capsule, both reporter gene expression and location of cells could be visualized in vivo with dual-isotope SPECT. Immunohistochemistry confirmed the presence of glucagon- and insulin-positive cells at the site of transplantation. Dual-isotope SPECT is a promising method to detect gene expression in and location of

  4. Clinical features and 123I-FP-CIT SPECT imaging in drug-induced parkinsonism and Parkinson's disease

    International Nuclear Information System (INIS)

    Diaz-Corrales, Francisco J.; Escobar-Delgado, Teresa; Sanz-Viedma, Salome; Garcia-Solis, David; Mir, Pablo

    2010-01-01

    To determine clinical predictors and accuracy of 123 I-FP-CIT SPECT imaging in the differentiation of drug-induced parkinsonism (DIP) and Parkinson's disease (PD). Several clinical features and 123 I-FP-CIT SPECT images in 32 patients with DIP, 25 patients with PD unmasked by antidopaminergic drugs (PDu) and 22 patients with PD without a previous history of antidopaminergic treatment (PDc) were retrospectively evaluated. DIP and PD shared all clinical features except symmetry of parkinsonian signs which was more frequently observed in patients with DIP (46.9%) than in patients with PDu (16.0%, p 123 I-FP-CIT SPECT images were normal in 29 patients with DIP (90.6%) and abnormal in all patients with PD, and this imaging technique showed high levels of accuracy. DIP and PD are difficult to differentiate based on clinical signs. The precision of clinical diagnosis could be reliably enhanced by 123 I-FP-CIT SPECT imaging. (orig.)

  5. Resting functional imaging tools (MRS, SPECT, PET and PCT).

    Science.gov (United States)

    Van Der Naalt, J

    2015-01-01

    Functional imaging includes imaging techniques that provide information about the metabolic and hemodynamic status of the brain. Most commonly applied functional imaging techniques in patients with traumatic brain injury (TBI) include magnetic resonance spectroscopy (MRS), single photon emission computed tomography (SPECT), positron emission tomography (PET) and perfusion CT (PCT). These imaging modalities are used to determine the extent of injury, to provide information for the prediction of outcome, and to assess evidence of cerebral ischemia. In TBI, secondary brain damage mainly comprises ischemia and is present in more than 80% of fatal cases with traumatic brain injury (Graham et al., 1989; Bouma et al., 1991; Coles et al., 2004). In particular, while SPECT measures cerebral perfusion and MRS determines metabolism, PET is able to assess both perfusion and cerebral metabolism. This chapter will describe the application of these techniques in traumatic brain injury separately for the major groups of severity comprising the mild and moderate to severe group. The application in TBI and potential difficulties of each technique is described. The use of imaging techniques in children will be separately outlined. © 2015 Elsevier B.V. All rights reserved.

  6. Feasibility of Stereo-Infrared Tracking to Monitor Patient Motion During Cardiac SPECT Imaging

    OpenAIRE

    Beach, Richard D.; Pretorius, P. Hendrik; Boening, Guido; Bruyant, Philippe P.; Feng, Bing; Fulton, Roger R.; Gennert, Michael A.; Nadella, Suman; King, Michael A.

    2004-01-01

    Patient motion during cardiac SPECT imaging can cause diagnostic imaging artifacts. We investigated the feasibility of monitoring patient motion using the Polaris motion-tracking system. This system uses passive infrared reflection from small spheres to provide real-time position data with vendor stated 0.35 mm accuracy and 0.2 mm repeatability. In our configuration, the Polaris system views through the SPECT gantry toward the patient's head. List-mode event data was temporally synchronized w...

  7. Multi-centre evaluation of accuracy and reproducibility of planar and SPECT image quantification. An IAEA phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Brian E. [National Institute of Standards and Technology, Gaithersburg, MD (United States); Grosev, Darko [Univ. Hospital Centre Zagreb (Croatia); Buvat, Irene [Service Hospitalier Frederic Joliot, Paris (France); and others

    2017-08-01

    Accurate quantitation of activity provides the basis for internal dosimetry of targeted radionuclide therapies. This study investigated quantitative imaging capabilities at sites with a variety of experience and equipment and assessed levels of errors in activity quantitation in Single-Photon Emission Computed Tomography (SPECT) and planar imaging. Participants from 9 countries took part in a comparison in which planar, SPECT and SPECT with X ray computed tomography (SPECT-CT) imaging were used to quantify activities of four epoxy-filled cylinders containing {sup 133}Ba, which was chosen as a surrogate for {sup 131}I. The sources, with nominal volumes of 2, 4, 6 and 23 mL, were calibrated for {sup 133}Ba activity by the National Institute of Standards and Technology, but the activity was initially unknown to the participants. Imaging was performed in a cylindrical phantom filled with water. Two trials were carried out in which the participants first estimated the activities using their local standard protocols, and then repeated the measurements using a standardized acquisition and analysis protocol. Finally, processing of the imaging data from the second trial was repeated by a single centre using a fixed protocol. In the first trial, the activities were underestimated by about 15% with planar imaging. SPECT with Chang's first order attenuation correction (Chang-AC) and SPECT-CT overestimated the activity by about 10%. The second trial showed moderate improvements in accuracy and variability. Planar imaging was subject to methodological errors, e.g., in the use of a transmission scan for attenuation correction. The use of Chang-AC was subject to variability from the definition of phantom contours. The project demonstrated the need for training and standardized protocols to achieve good levels of quantitative accuracy and precision in a multicentre setting. Absolute quantification of simple objects with no background was possible with the strictest protocol to

  8. Clinical application of SPECT in adrenal imaging with iodine-131 6 beta-iodomethyl-19-norcholesterol

    International Nuclear Information System (INIS)

    Ishimura, J.; Kawanaka, M.; Fukuchi, M.

    1989-01-01

    Forty-one patients with or without adrenocortical disorders were studied to evaluate the clinical usefulness of SPECT in adrenal imaging with I-131 Adosterol. In the SPECT images from this study, all glands with either normally functioning or hyperfunctioning adrenal cortices could be detected, while those glands with hypofunctioning adrenal cortices could not be detected. Particularly in transaxial and sagittal slices, the adrenal gland was identified posteriorly and was clearly distinguished from the gallbladder. In preliminary results using SPECT by a standard method, uptake in 68 detectable glands ranged from 1.7% to 4.9% in four glands with Cushing's syndrome, from 1.1% to 1.3% in seven glands with primary aldosteronism, and were distributed below 1.0% in the remaining glands with normally functioning adrenal cortices. These data show that it is possible to evaluate the adrenocortical functioning status simply by analyzing the SPECT images of the adrenal

  9. Triple Detector SPECT Imaging with 99mTc-DMSA in Adult Patients with Urinary Tract Infection

    International Nuclear Information System (INIS)

    Ryu, Jin Sook; Bea, Woon Gyu; Moon, Dae Hyuk; Lee, Myung Hae; Kim, Soon Bae; Park, Su Kil; Park, Jung Sik; Hong, Chang Gi; Cho, Kyung Sik

    1992-01-01

    Although early diagnosis of urinary tract infection is important, the radiologic evaluation is still controversial because of the low sensitivity and the lack of cost-effectiveness. This study was carried out to evaluate the clinical utility of high resolution triple head 99m Tc-DMSA SPECT imaging in urinary tract infection. We prospectively performed 99m Tc-DMSA planar and SPECT imaging, ultrasound of kidney (US), intravenous pyelography (IVP) and voiding cystourethrography (VCU) in all 60 adult patients with UTI [26 with first episode of acute pyelonephritis (APN), 22 with recurrent APN, and 12 persistent asymptomatic pyuria] and 25 normal persons. To assess reversibility of the renal cortical defect (RCD), 99m Tc-DMSA SPECT was repeated 1 to 8 months later in those patients with abnormal initial findings. Overall detection rate of 99m Tc-DMSA SPECT imaging was 83% (50/60), but planar, US, IVP and VCU showed abnormal findings in 68%, 28%, 32% and 13%, respectively. 25 out of 27 patients with normal or single RCD were all normal in other radiological studies. Only two patients showed vesicoureteral reflux (VUR) on VCU (grade I) and mild hydronephrosis on IVP. But, high proportion of those with multiple RCD showed abnormal findings on US (17/33), IVP (18/33), and VCU (7/33): 67% in any of these 3 studies. Especially, 3 out 7 patients with VUR showed multiple RCD on 99m Tc-DMSA SPECT without any abnormality on IVP or US. 25 normal persons showed normal findings in all studies except one false positive finding on 99m Tc-DMSA SPECT imaging. Follow-up 99m Tc-DMSA SPECT was done in 28 patients (13 with single RCD, 15 with multiple RCD). All 13 patients with single RCD showed improvement. Those with multiple RCD presented improvement in 4, no change in 10, and aggravation in 1 on follow-up studies. With these results, we conclude: 1) 99m Tc-DMSA SPECT imaging is superior to planar imaging, US, IVP or VCU in detection of renal lesion in urinary tract infection. 99m Tc

  10. [Segmentation of whole body bone SPECT image based on BP neural network].

    Science.gov (United States)

    Zhu, Chunmei; Tian, Lianfang; Chen, Ping; He, Yuanlie; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2007-10-01

    In this paper, BP neural network is used to segment whole body bone SPECT image so that the lesion area can be recognized automatically. For the uncertain characteristics of SPECT images, it is hard to achieve good segmentation result if only the BP neural network is employed. Therefore, the segmentation process is divided into three steps: first, the optimal gray threshold segmentation method is employed for preprocessing, then BP neural network is used to roughly identify the lesions, and finally template match method and symmetry-removing program are adopted to delete the wrongly recognized areas.

  11. Physiological imaging with PET and SPECT in Dementia

    Energy Technology Data Exchange (ETDEWEB)

    Jagust, W.J. (California Univ., San Francisco, CA (United States). Dept. of Neurology Lawrence Berkeley Lab., CA (United States))

    1989-10-01

    Dementia is a medical problem of increasingly obvious importance. The most common cause of dementia, Alzheimer's disease (AD) accounts for at least 50% of all cases of dementia, with multi-infarct dementia the next most common cause of the syndrome. While the accuracy of diagnosis of AD may range from 80 to 90%, there is currently no laboratory test to confirm the diagnosis. Functional imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer diagnostic advantages since brain function is unequivocally disturbed in all dementing illnesses. Both PET and SPECT have been utilized in the study of dementia. While both techniques rely on principles of emission tomography to produce three dimensional maps of injected radiotracers, the differences between positron and single photon emission have important consequences for the practical applications of the two procedures. This briefly reviews the technical differences between PET and SPECT, and discusses how both techniques have been used in our laboratory to elucidate the pathophysiology of dementia. 32 refs., 2 figs.

  12. Physiological imaging with PET and SPECT in Dementia

    International Nuclear Information System (INIS)

    Jagust, W.J.

    1989-10-01

    Dementia is a medical problem of increasingly obvious importance. The most common cause of dementia, Alzheimer's disease (AD) accounts for at least 50% of all cases of dementia, with multi-infarct dementia the next most common cause of the syndrome. While the accuracy of diagnosis of AD may range from 80 to 90%, there is currently no laboratory test to confirm the diagnosis. Functional imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer diagnostic advantages since brain function is unequivocally disturbed in all dementing illnesses. Both PET and SPECT have been utilized in the study of dementia. While both techniques rely on principles of emission tomography to produce three dimensional maps of injected radiotracers, the differences between positron and single photon emission have important consequences for the practical applications of the two procedures. This briefly reviews the technical differences between PET and SPECT, and discusses how both techniques have been used in our laboratory to elucidate the pathophysiology of dementia. 32 refs., 2 figs

  13. In vivo quantification by SPECT of [123I] ADAM bound to serotonin transporters in the brains of rabbits

    International Nuclear Information System (INIS)

    Ye, X.-X.; Hwang, J.-J.; Hsieh, J.-F.; Chen, J.-C.; Chou, Y.-T.; Tu, K.-Y.; Wey, S.-P.; Ting Gann

    2004-01-01

    Background: A novel radioiodine ligand [ 123 I] ADAM (2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine) has been suggested as a promising serotonin transporter (SERT) imaging agent for the central nervous system. In this study, the biodistribution of SERTs in the rabbit brain was investigated using [ 123 I] ADAM and mapping images of the same animal produced by both single-photon emission computed tomography (SPECT) and microautoradiography. A semiquantification method was adopted to deduce the optimum time for SPECT imaging, whereas the input for a simple fully quantitative tracer kinetic model was provided from arterial blood sampling data. Methods: SPECT imaging was performed on female rabbits postinjection of 185 MBq [ 123 I] ADAM. The time-activity curve obtained from the SPECT images was used to quantify the SERTs, for which the binding potential was calculated from the kinetic modeling of [ 123 I] ADAM. The kinetic data were analyzed by the nonlinear least squares method. The effects of the selective serotonin reuptake inhibitors fluoxetine and p-chloroamphetamine (PCA) on rabbits were also evaluated. After scanning, the same animal was sacrificed and the brain was removed for microautoradiography. Regions-of-interest were analyzed using both SPECT and microautoradiography images. The SPECT images were coregistered manually with the corresponding microautoradiography images for comparative study. Results: During the time interval 90-100 min postinjection, the peak specific binding levels in different brain regions were compared and the brain stem was shown to have the highest activity. The target-to-background ratio was 1.89±0.02. Similar studies with fluoxetine and PCA showed a background level for SERT occupation. Microautoradiography demonstrated a higher level of anatomical details of the [ 123 I] ADAM distribution than that obtained by SPECT imaging of the rabbit brain. Conclusion: SPECT imaging of the rabbit brain with [ 123 I] ADAM showed

  14. Assessment of anatomic relation between pulmonary perfusion and morphology in pulmonary emphysema with breath-hold SPECT-CT fusion images

    International Nuclear Information System (INIS)

    Suga, Kazuyoshi; Kawakami, Yasuhiko; Iwanaga, Hideyuki; Hayashi, Noriko; Seto, Akiko; Matsunaga, Naofumi

    2008-01-01

    Anatomic relation between pulmonary perfusion and morphology in pulmonary emphysema was assessed on deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images. Subjects were 38 patients with pulmonary emphysema and 11 non-smoker controls, who successfully underwent DIBrH and non-BrH perfusion SPECT using a dual-headed SPECT system during the period between January 2004 and June 2006. DIBrH SPECT was three-dimensionally co-registered with DIBrH CT to comprehend the relationship between lung perfusion defects and CT low attenuation areas (LAA). By comparing the appearance of lung perfusion on DIBrH with non-BrH SPECT, the correlation with the rate constant for the alveolar-capillary transfer of carbon monoxide (DLCO/VA) was compared between perfusion abnormalities on these SPECTs and LAA on CT. DIBrH SPECT provided fairly uniform perfusion in controls, but significantly enhanced perfusion heterogeneity when compared with non-BrH SPECT in pulmonary emphysema patients (P<0.001). The reliable DIBrH SPECT-CT fusion images confirmed more extended perfusion defects than LAA on CT in majority (73%) of patients. Perfusion abnormalities on DIBrH SPECT were more closely correlated with DLCO/VA than LAA on CT (P<0.05). DIBrH SPECT identifies affected lungs with perfusion abnormality better than does non-BrH SPECT in pulmonary emphysema. DIBrH SPECT-CT fusion images are useful for more accurately localizing affected lungs than morphologic CT alone in this disease. (author)

  15. Clinical application of SPECT in adrenal imaging with iodine-131 6 beta-iodomethyl-19-norcholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Ishimura, J.; Kawanaka, M.; Fukuchi, M.

    1989-04-01

    Forty-one patients with or without adrenocortical disorders were studied to evaluate the clinical usefulness of SPECT in adrenal imaging with I-131 Adosterol. In the SPECT images from this study, all glands with either normally functioning or hyperfunctioning adrenal cortices could be detected, while those glands with hypofunctioning adrenal cortices could not be detected. Particularly in transaxial and sagittal slices, the adrenal gland was identified posteriorly and was clearly distinguished from the gallbladder. In preliminary results using SPECT by a standard method, uptake in 68 detectable glands ranged from 1.7% to 4.9% in four glands with Cushing's syndrome, from 1.1% to 1.3% in seven glands with primary aldosteronism, and were distributed below 1.0% in the remaining glands with normally functioning adrenal cortices. These data show that it is possible to evaluate the adrenocortical functioning status simply by analyzing the SPECT images of the adrenal.

  16. Investigation of Collimator Influential Parameter on SPECT Image Quality: a Monte Carlo Study

    Directory of Open Access Journals (Sweden)

    Banari Bahnamiri Sh

    2015-03-01

    Full Text Available Background: Obtaining high quality images in Single Photon Emission Tomography (SPECT device is the most important goal in nuclear medicine. Because if image quality is low, the possibility of making a mistake in diagnosing and treating the patient will rise. Studying effective factors in spatial resolution of imaging systems is thus deemed to be vital. One of the most important factors in SPECT imaging in nuclear medicine is the use of an appropriate collimator for a certain radiopharmaceutical feature in order to create the best image as it can be effective in the quantity of Full Width at Half Maximum (FWHM which is the main parameter in spatial resolution. Method: In this research, the simulation of the detector and collimator of SPECT imaging device, Model HD3 made by Philips Co. and the investigation of important factors on the collimator were carried out using MCNP-4c code. Results: The results of the experimental measurments and simulation calculations revealed a relative difference of less than 5% leading to the confirmation of the accuracy of conducted simulation MCNP code calculation. Conclusion: This is the first essential step in the design and modelling of new collimators used for creating high quality images in nuclear medicine

  17. Feasibility of one-eighth time gated myocardial perfusion SPECT functional imaging using IQ-SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Caobelli, Federico; Thackeray, James T.; Bengel, Frank M. [Medizinische Hochschule Hannover, Klinik fuer Nuklearmedizin, Hannover (Germany); Soffientini, Alberto; Pizzocaro, Claudio; Guerra, Ugo Paolo [Fondazione Poliambulanza, Department of Nuclear Medicine, Brescia (Italy)

    2015-11-15

    IQ-SPECT, an add-on to general purpose cameras based on multifocal collimation, can reduce myocardial perfusion imaging (MPI) acquisition times to one-fourth that of standard procedures (to 12 s/view). In a phantom study, a reduction of the acquisition time to one-eighth of the standard time (to 6 s/view) was demonstrated as feasible. It remains unclear whether such a reduction could be extended to clinical practice. Fifty patients with suspected or diagnosed CAD underwent a 2-day stress-rest {sup 99m}Tc-sestamibi MPI protocol. Two consecutive SPECT acquisitions (6 and 12 s/view) were performed. Electrocardiogram-gated images were reconstructed with and without attenuation correction (AC). Polar maps were generated and visually scored by two blinded observers for image quality and perfusion in 17 segments. Global and regional summed stress score (SSS), summed rest score (SRS) and summed difference score (SDS) were determined. Left ventricular volumes and ejection fraction were calculated based on automated contour detection. Image quality was scored higher with the 12 s/view acquisition, both with and without AC. Summed scores were statistically comparable between the 6 s/view and the 12 s/view acquisition, both globally and in individual coronary territories (e.g. in images with AC, SSS were 6.6 ± 8.3 and 6.2 ± 8.2 with 6 s and 12 s/view, respectively, p = 0.10; SRS were 3.9 ± 5.6 and 3.5 ± 5.3, respectively, p = 0.19; and SDS were 2.8 ± 5.7 and 2.6 ± 5.7, respectively, p = 0.59). Both acquisitions allowed MPI-based diagnosis of CAD in 25 of the 50 patients (with AC). Calculated end-diastolic volume (EDV) and end-systolic volume (ESV) were modestly higher with the 6 s/view acquisition than with the 12 s/view acquisition (EDV +4.8 ml at rest and +3.7 ml after stress, p = 0.003; ESV +4.1 ml at rest and +2.6 ml after stress, p = 0.01), whereas the ejection fraction did not differ (-1.2 % at rest, p = 0.20, and -0.9 % after stress, p = 0.27). Image quality and

  18. Towards adapting a normal patient database for SPECT brain perfusion imaging

    International Nuclear Information System (INIS)

    Smith, N D; Soleimani, M; Mitchell, C N; Holmes, R B; Evans, M J; Cade, S C

    2012-01-01

    Single-photon emission computerized tomography (SPECT) is a tool which can be used to image perfusion in the brain. Clinicians can use such images to help diagnose dementias such as Alzheimer's disease. Due to the intrinsic stochasticity in the photon imaging system, some form of statistical comparison of an individual image with a 'normal' patient database gives a clinician additional confidence in interpreting the image. Due to the variations between SPECT camera systems, ideally a normal patient database is required for each individual system. However, cost or ethical considerations often prohibit the collection of such a database for each new camera system. Some method of adapting existing normal patient databases to new camera systems would be beneficial. This paper introduces a method which may be regarded as a 'first-pass' attempt based on 2-norm regularization and a codebook of discrete spatially stationary convolutional kernels. Some preliminary illustrative results are presented, together with discussion on limitations and possible improvements

  19. SPECT radiopharmaceuticals for imaging chronic inflammatory diseases in the last decade

    International Nuclear Information System (INIS)

    Anzola, L. K.; Galli, F.; Dierckx, R. A.

    2015-01-01

    In the recent years, many radiopharmaceuticals have been described for the diagnosis of inflammatory chronic diseases. Several peptides, receptor ligands and monoclonal antibodies have been radiolabelled, allowing in-vivo visualization of inflammatory processes at a cellular and molecular level. The labelling of cytokines such as interleukin-1, interleukin-2, interleukin-12 and MCP-1 has facilitated the identification of inflamed synovia in patients with rheumatoid arthritis, active Crohn’s disease, vulnerable atherosclerotic plaques and other targets. The possibility of using monoclonal antibodies against TNF-α, CD2, CD3, CD4 and anti-selectin has not only allowed the localization of inflamed sites but had also a significant impact in helping the selection of patients who can benefit from biological therapies. Regarding radiolabelled peptides, it is important to highlight the increasing use of somatostatin analogues targeting somatostatin receptors in inflammatory diseases, particularly for rheumatoid arthritis, Sjögren syndrome and autoimmune thyroid diseases. In the present review we describe the state of the art of SPECT radiopharmaceuticals to image chronic inflammatory diseases.

  20. Initial experience with SPECT imaging of the brain using I-123 p-iodoamphetamine in focal epilepsy

    International Nuclear Information System (INIS)

    La Manna, M.M.; Sussman, N.M.; Harner, R.N.; Kaplan, L.R.; Hershey, B.L.; Bernstein, D.R.; Parker, J.A.; Wolodzko, J.G.; Popky, G.L.

    1986-01-01

    Twenty-three patients with complex partial seizures refractory to medical treatment were examined with routine electroencephalography (EEG), closed-circuit television EEG (CCTV-EEG), CT and MR imaging, neuropsychological tests, and interictal single photon emission CT with I-123 rho-iodoamphetamine (IMP SPECT). In three patients CT and MR imaging results correlated with the epileptogenic foci as identified on CCTV-EEG. In 21 patients SPECT identified areas of focal reduction in tracer uptake that correlated with the epileptogenic focus identified on CCTV-EEG. In addition, SPECT disclosed other areas of neurologic dysfunction as elicited on neuropsychological tests. Thus, IMP SPECT is a useful tool for localizing epileptogenic foci and their associated dynamic deficits

  1. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.

    Science.gov (United States)

    Cheimariotis, Grigorios-Aris; Al-Mashat, Mariam; Haris, Kostas; Aletras, Anthony H; Jögi, Jonas; Bajc, Marika; Maglaveras, Nicolaos; Heiberg, Einar

    2018-02-01

    Image segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes. A total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images. The Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p automatic quantification of wide range of measurements.

  2. A SPECT study in internal carotid artery occlusion: Discrepancies between flow image and neurologic deficits

    International Nuclear Information System (INIS)

    Moriwaki, H.; Hougaku, H.; Matsuda, I.; Kusunoki, M.; Shirai, J.

    1989-01-01

    A SPECT (single photon emission computed tomography) study in internal carotid artery (ICA) occlusion was performed in 6 patients. The validity of iodoamphetamine (IMP) SPECT study in the evaluation of cerebral blood flow (CBF) or neurologic function is still controversial. In this study, the authors showed several cases in whom SPECT images of brain were not compatible with their neurologic deficits. In 2 typical cases, a large low-density area was observed in the non-dominant hemisphere in computed tomography (CT) scan, but no apparent motor-sensory deficits in left limbs were present. In these patients, SPECT study also revealed flow reduction in the affected side of the brain. So there was a possibility that an IMP brain image could not always reflect CBF, which maintains neurologic function of the brain

  3. SPECT Imaging as a Tool for Testing and Challenging Assumptions About Transport in Porous Media

    Science.gov (United States)

    Moysey, S. M.; DeVol, T. A.; Tornai, M. P.

    2014-12-01

    Medical imaging has shown promise for unraveling the influence of physical, chemical and biological processes on contaminant transport. Micro-CT scans, for instance, are increasingly utilized to image the pore-scale structure of rocks and soils, which can subsequently be used within modeling studies. A disadvantage of micro-CT, however, is that this imaging modality does not directly detect contaminants. In contrast, Single Photon Emission Computed Tomography (SPECT) can provide the three-dimensional distribution of gamma emitting materials and is thus ideal for imaging the transport of radionuclides. SPECT is of particular interest as a tool for both directly imaging the behavior of long-lived radionuclides of interest, e.g., 99Tc and 137Cs, as well as monitoring shorter-lived isotopes as in-situ tracers of flow and biogeochemical processes. We demonstrate the potential of combining CT and SPECT imaging to improve the mechanistic understanding of flow and transport processes within a heterogeneous porous medium. In the experiment, a column was packed with 0.2mm glass beads with a cylindrical zone of 2mm glass beads embedded near the outlet; this region could be readily identified within the CT images. The column was injected with a pulse of NaCl solution spiked with 99mTcO4- and monitored using SPECT while aliquots of the effluent were used to analyze the breakthrough of both solutes. The breakthrough curves could be approximately replicated by a one-dimensional transport model, but the SPECT data revealed that the tracers migrated around the inclusion of larger beads. Although the zone of large-diameter beads was expected to act as a preferential pathway, the observed behavior could only be replicated in numerical transport simulations if this region was treated as a low-permeability zone relative to the rest of the column. This simple experiment demonstrates the potential of SPECT for investigating flow and transport phenomena within a porous medium.

  4. Peritoneal fluid causing inferior attenuation on SPECT thallium-201 myocardial imaging in women

    International Nuclear Information System (INIS)

    Rab, S.T.; Alazraki, N.P.; Guertler-Krawczynska, E.

    1988-01-01

    On SPECT thallium images, myocardial left ventricular (LV) anterior wall attenuation due to breast tissue is common in women. In contrast, in men, inferior wall counts are normally decreased compared to anterior counts. The purpose of this report is to describe cases of inferior wall attenuation of counts in women caused by peritoneal fluid, not myocardial disease. Twelve consecutive SPECT thallium myocardial studies performed in women on peritoneal dialysis, being evaluated for kidney transplant, were included in this study. For all studies, 3.5 mCi 201Tl were injected intravenously. Thirty-two images were acquired over 180 degrees (45 degrees RAO progressing to 45 degrees LPO) at 40 sec per stop. SPECT images were reviewed in short axis, horizontal long and vertical long axes. Data were also displayed in bullseye format with quantitative comparison to gender-matched normal files. Ten of 12 female patients studied had inferior wall defects on images, confirmed by bullseye display. All patients had approximately 2 liters of peritoneal fluid. Review of planar rotational views showed diaphragm elevation and fluid margin attenuations affecting left ventricular inferior wall. Thus, peritoneal fluid is a cause of inferior attenuation on 201Tl cardiac imaging

  5. Assessment of vascularization within hydroxyapatite ocular implant by bone scintigraphy: compartive analysis of planar and SPECT imaging

    International Nuclear Information System (INIS)

    Lim, Seok Tae; Sohn, Myung Hee; Park, Soon Ah

    1999-01-01

    Complete fibrovascular ingrowth within the hydroxyapatite ocular implant is necessary for peg drilling which is performed to prevent infection and to provide motility to the ocular prosthesis. We compared planar bone scintigraphy and SPECT for the evaluation of the vascularization within hydroxyapatite ocular implants. Seventeen patients (M:F=12:5, mean age: 50.4±17.5 years) who had received a coralline hydroxyapatite ocular implant after enucleation surgery were enrolled. Patients underwent Tc-99m MDP planar bone and SPECT imaging by dual head gamma camera after their implant surgery (interval: 197±81 days). Uptake on planar and SPECT images was graded visually as less than (grade 1), equal to (grade 2), and greater than (grade 3) nasal bridge activity. Quantitative ratio of implanted to non-implanted intraorbital activity was also measured. Vascularization within hydroxyapatite implants was confirmed by slit lamp examination and ocular movement. All but three patients were considered to be vascularized within hydroxyapatite implants. In visual analysis of planar image and SPECT, grade 1 was noted in 9/18 (50%) and 6/18 (33%), respectively. Grade 2 pattern 7/18 (39%) and 4/18 (22%), and grade 3 pattern was 2/18 (11%) and 8/18 (44%) respectively. When grade 2 or 3 was considered to be positive for vascularization, the sensitivity of planar and SPECT imaging were 60% (9/15) and 80% (12/15), respectively. In 3 patients with incomplete vascularization, both planar and SPECT showed grade 1 uptake. The orbital activity ratios on planar imaging were not significantly different between complete and incomplete vascularization (1.96±9.87 vs 1.17±0.08 , p>0.05), however, it was significantly higher on SPECT in patients with complete vascularization (8.44±5.45 vs 2.20±0.87, p<0.05). In the assessment of fibrovascular ingrowth within ocular implants by Tc-99m MDP bone scintigraphy, SPECT image appears to be more effective than planar scintigraphy

  6. Study on localization diagnosis with SPECT rCBF image in childhood epilepsy: in comparison with EEG and MRI findings

    International Nuclear Information System (INIS)

    Wu Meiqian; Tang Jihong; Wu Jinchang; Shi Yizhen

    1999-01-01

    Objective: To evaluate the diagnostic value of SPECT rCBF imaging in localization of childhood epileptic foci. Methods: rCBF imaging was performed in 74 epileptic patients not in seizure and 10 epileptic patients right in seizure. EEG was performed in 84, MRI in 67 of the subjects mentioned above. All the results of three modalities were compared with each other. Results: The highest positive rate (82.14%) was found in SPECT rCBF imaging, the positive rate in EEG or MRI was 71.43 or 47.76%. The epileptic foci localized by EEG (60 abnormalities) and by MRI (32 abnormalities) were 70.59% or 58.82% in concordance with those by SPECT, respectively. Conclusions: SPECT rCBF imaging is a sensitive and effective method for epileptic foci localization. It may have some advantages over EEG and MRI in detecting and localizing epileptic foci. However, abnormal SPECT areas may cover some abnormalities which do not belong to epileptic category. A combination of these three methods (SPECT, EEG and MRI) will improve the positive rate and accuracy for localizing

  7. Characteristics of images of angiographically proven normal coronary arteries acquired by adenosine-stress thallium-201 myocardial perfusion SPECT/CT-IQ[Symbol: see text]SPECT with CT attenuation correction changed stepwise.

    Science.gov (United States)

    Takahashi, Teruyuki; Tanaka, Haruki; Kozono, Nami; Tanakamaru, Yoshiki; Idei, Naomi; Ohashi, Norihiko; Ohtsubo, Hideki; Okada, Takenori; Yasunobu, Yuji; Kaseda, Shunichi

    2015-04-01

    Although several studies have shown the diagnostic and prognostic value of CT-based attenuation correction (AC) of single photon emission computed tomography (SPECT) images for diagnosing coronary artery disease (CAD), this issue remains a matter of debate. To clarify the characteristics of CT-AC SPECT images that might potentially improve diagnostic performance, we analyzed images acquired using adenosine-stress thallium-201 myocardial perfusion SPECT/CT equipped with IQ[Symbol: see text]SPECT (SPECT/CT-IQ[Symbol: see text]SPECT) from patients with angiographically proven normal coronary arteries after changing the CT attenuation correction (CT-AC) in a stepwise manner. We enrolled 72 patients (Male 36, Female 36) with normal coronary arteries according to findings of invasive coronary angiography or CT-angiography within three months after a SPECT/CT study. Projection images were reconstructed at CT-AC values of (-), 40, 60, 80 and 100 % using a CT number conversion program according to our definition and analyzed using polar maps according to sex. CT attenuation corrected segments were located from the mid- and apical-inferior spread through the mid- and apical-septal regions and finally to the basal-anterior and basal- and mid-lateral regions in males, and from the mid-inferior region through the mid-septal and mid-anterior, and mid-lateral regions in females as the CT-AC values increased. Segments with maximal mean counts shifted from the apical-anterior to mid-anterolateral region under both stress and rest conditions in males, whereas such segments shifted from the apical-septal to the mid-anteroseptal region under both stress and rest conditions in females. We clarified which part of the myocardium and to which degree CT-AC affects it in adenosine-stress thallium-201 myocardial perfusion SPECT/CT-IQ[Symbol: see text]SPECT images by changing the CT-AC value stepwise. We also identified sex-specific shifts of segments with maximal mean counts that changed as

  8. New SPECT and PET Radiopharmaceuticals for Imaging Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Oyebola O. Sogbein

    2014-01-01

    Full Text Available Nuclear cardiology has experienced exponential growth within the past four decades with converging capacity to diagnose and influence management of a variety of cardiovascular diseases. Single photon emission computed tomography (SPECT myocardial perfusion imaging (MPI with technetium-99m radiotracers or thallium-201 has dominated the field; however new hardware and software designs that optimize image quality with reduced radiation exposure are fuelling a resurgence of interest at the preclinical and clinical levels to expand beyond MPI. Other imaging modalities including positron emission tomography (PET and magnetic resonance imaging (MRI continue to emerge as powerful players with an expanded capacity to diagnose a variety of cardiac conditions. At the forefront of this resurgence is the development of novel target vectors based on an enhanced understanding of the underlying pathophysiological process in the subcellular domain. Molecular imaging with novel radiopharmaceuticals engineered to target a specific subcellular process has the capacity to improve diagnostic accuracy and deliver enhanced prognostic information to alter management. This paper, while not comprehensive, will review the recent advancements in radiotracer development for SPECT and PET MPI, autonomic dysfunction, apoptosis, atherosclerotic plaques, metabolism, and viability. The relevant radiochemistry and preclinical and clinical development in addition to molecular imaging with emerging modalities such as cardiac MRI and PET-MR will be discussed.

  9. The parallel implementation of a backpropagation neural network and its applicability to SPECT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, John Patrick [Iowa State Univ., Ames, IA (United States)

    1992-01-01

    The objective of this study was to determine the feasibility of using an Artificial Neural Network (ANN), in particular a backpropagation ANN, to improve the speed and quality of the reconstruction of three-dimensional SPECT (single photon emission computed tomography) images. In addition, since the processing elements (PE)s in each layer of an ANN are independent of each other, the speed and efficiency of the neural network architecture could be better optimized by implementing the ANN on a massively parallel computer. The specific goals of this research were: to implement a fully interconnected backpropagation neural network on a serial computer and a SIMD parallel computer, to identify any reduction in the time required to train these networks on the parallel machine versus the serial machine, to determine if these neural networks can learn to recognize SPECT data by training them on a section of an actual SPECT image, and to determine from the knowledge obtained in this research if full SPECT image reconstruction by an ANN implemented on a parallel computer is feasible both in time required to train the network, and in quality of the images reconstructed.

  10. Evaluation of (99m)Tc-HYNIC-TMTP1 as a tumor-homing imaging agent targeting metastasis with SPECT.

    Science.gov (United States)

    Li, Fei; Cheng, Teng; Dong, Qingjian; Wei, Rui; Zhang, Zhenzhong; Luo, Danfeng; Ma, Xiangyi; Wang, Shixuan; Gao, Qinglei; Ma, Ding; Zhu, Xiaohua; Xi, Ling

    2015-03-01

    TMTP1 (NVVRQ) is a novel tumor-homing peptide, which specifically targets tumor metastases, even at the early stage of occult metastasis foci. Fusing TMTP1 to therapeutic peptides or proteins can increase its anti-cancer efficacy both in vivo and in vitro. Here, we labeled TMTP1 with (99m)Tc to evaluate its targeting properties in an ovarian cancer xenograft tumor mouse model and a gastric cancer xenograft mouse model. The invasion ability of SKOV3 and highly metastatic SKOV3.ip cell lines were performed by the Transwell Invasion Assays, and then Rhodamine-TMTP1 was used to detect its affinity to these two cells. Using the co-ligand ethylenediamine-N, N'-diacetic acid (EDDA) and the bifunctional chelator 6-hydrazinonicotinic acid (HYNIC), the TMTP1 peptide was labeled with (99m)Tc. A cell-binding assay was performed by incubating cancer cells with (99m)Tc-HYNIC-TMTP1 with or without an excess dose of cold HYNIC-TMTP1. To evaluate the probe in vivo, nude mice bearing SKOV3, SKOV3.ip and MNK-45 tumor cells were established and subjected to SPECT imaging after injection with (99m)Tc-HYNIC-TMTP1. Ex vivo γ-counting of dissected tissues from the mice was used to evaluate its biodistribution. (99m)Tc-HYNIC-TMTP1 was successfully synthesized. The radiotracer also exhibited high hydrophilicity and excellent stability in vitro and in vivo. It has strong affinity to highly metastatic cancer cell lines but not to poorly metastatic cell lines. After mice were injected with (99m)Tc-HYNIC-TMTP1, non-invasive SPECT imaging detected SKOV3.ip and MNK-45 xenograft tumors but not SKOV3 xenograft tumors. This result can be inhibited by excess HYNIC-TMTP1. The uptake of (99m)Tc-HYNIC-TMTP1 in SKOV3.ip xenograft tumors was 0.182±0.017% ID/g at 2h p.i. with high renal uptake (74.32±15.05% ID/g at 2h p.i.). (99m)Tc-HYNIC-TMTP1 biodistribution and SPECT imaging demonstrated its ability to target highly metastatic tumors. Therefore, metastasis can be non-invasively investigated by SPECT

  11. Brain SPECT. SPECT in der Gehirndiagnostik

    Energy Technology Data Exchange (ETDEWEB)

    Feistel, H. (Erlangen-Nuernberg Univ., Erlangen (Germany). Nuklearmedizinische Klinik mit Poliklinik)

    1991-12-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG).

  12. Technetium-99m-labelled red blood cell imaging in the diagnosis of hepatic haemangiomas: the role of SPECT/CT with a hybrid camera

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, Orazio; Danieli, Roberta; Manni, Carlo; Capoccetti, Francesca; Simonetti, Giovanni [Department of Biopathology and Diagnostic Imaging, University ' ' Tor Vergata' ' , Rome (Italy)

    2004-07-01

    Delayed liver single-photon emission computed tomography (SPECT) after {sup 99m}Tc red blood cell (RBC) labelling is helpful in detecting hepatic haemangiomas; however, diagnosis can be difficult when lesions are situated adjacent to structures like the inferior vena cava, the heart or hepatic vessels, where blood activity persists. The aims of this study were to evaluate the usefulness of RBC SPECT and transmission computed tomography (RBC SPECT/CT) performed simultaneously with a hybrid imaging system for correct characterisation of hepatic lesions in patients with suspected haemangioma, and to assess the additional value of fused images compared with SPECT alone. Twelve patients with 24 liver lesions were studied. The acquisitions of both anatomical (CT) and functional (SPECT) data were performed during a single session. SPECT images were first interpreted alone and then re-evaluated after adding the transmission anatomical maps. Image fusion was successful in all patients, with perfect correspondence between SPECT and CT data, allowing the precise anatomical localisation of sites of increased blood pool activity. SPECT/CT had a significant impact on results in four patients (33.3%) with four lesions defined as indeterminate on SPECT images, accurately characterising the hot spot foci located near vascular structures. In conclusion, RBC SPECT/CT imaging using this hybrid SPECT/CT system is feasible and useful in the identification or exclusion of suspected hepatic haemangiomas located near regions with high vascular activity. (orig.)

  13. Value of Tc-99m HMPAO SPECT imaging in patients with TIA or acute stroke and normal CT

    International Nuclear Information System (INIS)

    Koster, K.; Brass, L.M.; Hoffer, P.B.; Gottschalk, A.; Smith, E.O.; Rehm, P.K.

    1988-01-01

    To determine the value of Tc-99m HMPAO single photon emission CT (SPECT) imaging, 51 patients with transient, acute, or chronic cerebrovascular disease were studied. Seventeen patients presented with recent transient ischemic attack (TIA) or acute stroke and underwent SPECT imaging and CT within 72 hours of presentation. SPECT image interpretation was independent of clinical history and CT findings. Four patients with acute stroke and eight patients with TIA had normal CT findings. All patients with acute stroke (three nonlacunar, one lacunar infarct) and three of eight patients with TIA also showed perfusion abnormalities on Tc-99m HMPAO scans. Thus, Tc-99m HMPAO SPECT may be useful in the early diagnosis and subtype determination of acute stroke and in the evaluation of TIA

  14. Indeterminate lesions on planar bone scintigraphy in lung cancer patients: SPECT, CT or SPECT-CT?

    International Nuclear Information System (INIS)

    Sharma, Punit; Kumar, Rakesh; Singh, Harmandeep; Bal, Chandrasekhar; Malhotra, Arun; Julka, Pramod Kumar; Thulkar, Sanjay

    2012-01-01

    The objective of the present study was to compare the role of single photon emission computed tomography (SPECT), computed tomography (CT) and SPECT-CT of selected volume in lung cancer patients with indeterminate lesions on planar bone scintigraphy (BS). The data of 50 lung cancer patients (53 ± 10.3 years; range 30-75; male/female 38/12) with 65 indeterminate lesions on planar BS (January 2010 to November 2010) were retrospectively evaluated. All of them underwent SPECT-CT of a selected volume. SPECT, CT and SPECT-CT images were independently evaluated by two experienced readers (experience in musculoskeletal imaging, including CT: 5 and 7 years) in separate sessions. A scoring scale of 1 to 5 was used, in which 1 is definitely metastatic, 2 is probably metastatic, 3 is indeterminate, 4 is probably benign and 5 is definitely benign. Sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were calculated for each modality, taking a score ≤2 as metastatic. With receiver operating characteristic (ROC) curve analysis, areas under the curve (AUC) were calculated for each modality and compared. Clinical and imaging follow-up and/or histopathology were taken as reference standard. For both readers SPECT was inferior to CT (P = 0.004, P = 0.022) and SPECT-CT (P = 0.003, P = 0.037). However, no significant difference was found between CT and SPECT-CT for reader 1 (P = 0.847) and reader 2 (P = 0.592). The findings were similar for lytic as well as sclerotic lesions. Moderate inter-observer agreement was seen for SPECT images (κ = 0.426), while almost perfect agreement was seen for CT (κ = 0.834) and SPECT-CT (κ = 0.971). CT alone and SPECT-CT are better than SPECT for accurate characterisation of indeterminate lesions on planar BS in lung cancer patients. CT alone is not inferior to SPECT-CT for this purpose and might be preferred because of shorter acquisition time and wider availability. (orig.)

  15. Molecular imaging of cancer using PET and SPECT

    DEFF Research Database (Denmark)

    Kjaer, Andreas

    2006-01-01

    for molecular imaging of cancer. Especially the possibility of a quick transfer of methods developed in animals to patients (translational research) is an important strength. This article will briefly discuss the newest applications and their importance and perspective in relation to the shift in paradigm......Molecular imaging allows for the study of molecular and cellular events in the living intact organism. The nuclear medicine methodologies of positron emission tomography (PET) and single photon emission computer tomography (SPECT) posses several advantages, which make them particularly suited...

  16. A Silicon SPECT System for Molecular Imaging of the Mouse Brain

    OpenAIRE

    Shokouhi, Sepideh; Fritz, Mark A.; McDonald, Benjamin S.; Durko, Heather L.; Furenlid, Lars R.; Wilson, Donald W.; Peterson, Todd E.

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 102...

  17. Clinical applications of SPECT-CT

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadzadehfar, Hojjat; Biersack, Hans-Juergen (eds.) [University Hospital Bonn (Germany). Dept. of Nuclear Medicine

    2014-06-01

    Covers the full spectrum of clinical applications of SPECT/CT in diagnosis of benign and malignant diseases. Includes chapters on the use of SPECT/CT for dosimetry and for therapy planning. Completely up to date. Many helpful illustrations. SPECT/CT cameras have considerably improved diagnostic accuracy in recent years. Such cameras allow direct correlation of anatomic and functional information, resulting in better localization and definition of scintigraphic findings. In addition to this anatomic referencing, CT coregistration provides superior quantification of radiotracer uptake based on the attenuation correction capabilities of CT. Useful applications of SPECT/CT have been identified not only in oncology but also in other specialties such as orthopedics and cardiology. This book covers the full spectrum of clinical applications of SPECT/CT in diagnosis and therapy planning of benign and malignant diseases. Opening chapters discuss the technology and physics of SPECT/CT and its use for dosimetry. The role of SPECT/CT in the imaging of a range of pathologic conditions is then addressed in detail. Applications covered include, among others, imaging of the thyroid, bone, and lungs, imaging of neuroendocrine tumors, cardiac scintigraphy, and sentinel node scintigraphy. Individual chapters are also devoted to therapy planning in selective internal radiation therapy of liver tumors and bremsstrahlung SPECT/CT. Readers will find this book to be an essential and up-to-date source of information on this invaluable hybrid imaging technique.

  18. Automated Analysis of 123I-beta-CIT SPECT Images with Statistical Probabilistic Anatomical Mapping

    International Nuclear Information System (INIS)

    Eo, Jae Seon; Lee, Hoyoung; Lee, Jae Sung; Kim, Yu Kyung; Jeon, Bumseok; Lee, Dong Soo

    2014-01-01

    Population-based statistical probabilistic anatomical maps have been used to generate probabilistic volumes of interest for analyzing perfusion and metabolic brain imaging. We investigated the feasibility of automated analysis for dopamine transporter images using this technique and evaluated striatal binding potentials in Parkinson's disease and Wilson's disease. We analyzed 2β-Carbomethoxy-3β-(4- 123 I-iodophenyl)tropane ( 123 I-beta-CIT) SPECT images acquired from 26 people with Parkinson's disease (M:F=11:15,mean age=49±12 years), 9 people with Wilson's disease (M: F=6:3, mean age=26±11 years) and 17 normal controls (M:F=5:12, mean age=39±16 years). A SPECT template was created using striatal statistical probabilistic map images. All images were spatially normalized onto the template, and probability-weighted regional counts in striatal structures were estimated. The binding potential was calculated using the ratio of specific and nonspecific binding activities at equilibrium. Voxel-based comparisons between groups were also performed using statistical parametric mapping. Qualitative assessment showed that spatial normalizations of the SPECT images were successful for all images. The striatal binding potentials of participants with Parkinson's disease and Wilson's disease were significantly lower than those of normal controls. Statistical parametric mapping analysis found statistically significant differences only in striatal regions in both disease groups compared to controls. We successfully evaluated the regional 123 I-beta-CIT distribution using the SPECT template and probabilistic map data automatically. This procedure allows an objective and quantitative comparison of the binding potential, which in this case showed a significantly decreased binding potential in the striata of patients with Parkinson's disease or Wilson's disease

  19. Collimator and energy window optimization for 90Y bremsstrahlung SPECT imaging: A SIMIND Monte Carlo study

    International Nuclear Information System (INIS)

    Roshan, Hoda Rezaei; Mahmoudian, Babak; Gharepapagh, Esmaeil; Azarm, Ahmadreza; Pirayesh Islamian, Jalil

    2016-01-01

    Treatment efficacy of radioembolization using Yttrium-90 ( 90 Y) microspheres is assessed by the 90 Y bremsstrahlung single photon emission computed tomography (SPECT) imaging following radioembolization. The radioisotopic image has the potential of providing reliable activity map of 90 Y microspheres distribution. One of the main reasons of the poor image quality in 90 Y bremsstrahlung SPECT imaging is the continuous and broad energy spectrum of the related bremsstrahlung photons. Furthermore, collimator geometry plays an impressive role in the spatial resolution, sensitivity and image contrast. Due to the relatively poor quality of the 90 Y bremsstrahlung SPECT images, we intend to optimize the medium-energy (ME) parallel-hole collimator and energy window. The Siemens e.cam gamma camera equipped with a ME collimator and a voxelized phantom was simulated by the SImulating Medical Imaging Nuclear Detectors (SIMIND) program. We used the SIMIND Monte Carlo program to generate the 90 Y bremsstrahlung SPECT projection of the digital Jaszczak phantom. The phantom consist of the six hot spheres ranging from 9.5 to 31.8 mm in diameter, which are used to evaluate the image contrast. In order to assess the effect of the energy window on the image contrast, three energy windows ranging from 60 to 160 KeV, 160 to 400 KeV, and 60 to 400 KeV were set on a 90 Y bremsstrahlung spectrum. As well, the effect of the hole diameter of a ME collimator on the image contrast and bremsstrahlung spectrum were investigated. For the fixed collimator and septa thickness values (3.28 cm and 1.14 mm, respectively), a hole diameter range (2.35–3.3 mm) was chosen based on the appropriate balance between the spatial resolution and sensitivity. The optimal energy window for 90 Y bremsstrahlung SPECT imaging was extended energy window from 60 to 400 KeV. Besides, The optimal value of the hole diameter of ME collimator was obtained 3.3 mm. Geometry of the ME parallel-hole collimator and energy

  20. Comparative methods for quantifying thyroid volume using planar imaging and SPECT

    International Nuclear Information System (INIS)

    Zaidi, H.

    1996-01-01

    Thyroid volume determination using planar imaging is a procedure often performed in routine nuclear medicine, but is hampered by several physical difficulties, in particular by structures which overlie or underlie the organ of interest. SPECT enables improved accuracy over planar imaging in the determination of the volume since it is derived from the 3-D data rather than from a 2-D projection with a certain geometric assumption regarding the thyroid configuration. By using the phantoms of known volume, it was possible to estimate the accuracy of 3 different methods of determining thyroid volume from planar imaging used in clinical routine. The experimental results demonstrate that compared with conventional scintigraphy, thyroid phantom volumes were most accurately determined with SPECT when attenuation and scatter corrections are performed which allows accurate radiation dosimetry in humans without the need for assumptions on organ size or concentrations. Poster 181. (author)

  1. SPECT/CT Fusion in the Diagnosis of Hyperparathyroidism

    International Nuclear Information System (INIS)

    Monzen, Yoshio; Tamura, Akihisa; Okazaki, Hajime; Kurose, Taichi; Kobayashi, Masayuki; Kuraoka, Masatsugu

    2015-01-01

    In this study, we aimed to analyze the relationship between the diagnostic ability of fused single photon emission computed tomography/ computed tomography (SPECT/CT) images in localization of parathyroid lesions and the size of adenomas or hyperplastic glands. Five patients with primary hyperparathyroidism (PHPT) and 4 patients with secondary hyperparathyroidism (SHPT) were imaged 15 and 120 minutes after the intravenous injection of technetium99m-methoxyisobutylisonitrile ( 99m Tc-MIBI). All patients underwent surgery and 5 parathyroid adenomas and 10 hyperplastic glands were detected. Pathologic findings were correlated with imaging results. The SPECT/CT fusion images were able to detect all parathyroid adenomas even with the greatest axial diameter of 0.6 cm. Planar scintigraphy and SPECT imaging could not detect parathyroid adenomas with an axial diameter of 1.0 to 1.2 cm. Four out of 10 (40%) hyperplastic parathyroid glands were diagnosed, using planar and SPECT imaging and 5 out of 10 (50%) hyperplastic parathyroid glands were localized, using SPECT/CT fusion images. SPECT/CT fusion imaging is a more useful tool for localization of parathyroid lesions, particularly parathyroid adenomas, in comparison with planar and or SPECT imaging

  2. Utility of SPECT imaging for determination of vertebral metastases in patients with known primary tumors

    International Nuclear Information System (INIS)

    Bushnell, D.L.; Kahn, D.; Huston, B.; Bevering, C.G.

    1995-01-01

    Determining the etiology of a focal lesion seen on bone scan in patients with primary tumors usually requires the use of other imaging procedures or biopsy. Single positron emission computed tomography (SPECT) with high resolution multidetector systems can localize the specific site of a vertebral lesion and in this way potentially differentiate between benign and metastatic disease. SPECT images of the lower thoracic and lumbar spine were reviewed for lesion location and intensity by two experienced interpreters. Follow-up data were adequate to ascertain the cause of 71 lesions seen on SPECT in 29 patients. Twenty-six of these lesions were not seen on planar images. Of the 71 lesions, 44 were benign and 27 metastatic. Of the 15 lesions where the pedicle was involved, 11 were found to metastatic. There were a total of 14 facet lesions, 9 of which were present in vertebra with no lesions at sites other than the facets. All 9 of these isolated facet lesions turned out to be benign. Lesion intensity did not distinguish benign from malignant disease. We conclude that SPECT imaging is useful in determining the etiology of focal lesions seen on bone scan in patients with a known primary tumor referred for evaluation of metastatic disease. (orig.)

  3. Performance of Myocardial Perfusion Imaging Using Multi-focus Fan Beam Collimator with Resolution Recovery Reconstruction in a Comparison with Conventional SPECT

    International Nuclear Information System (INIS)

    Matsutomo, Norikazu; Nagaki, Akio; Sasaki, Masayuki

    2014-01-01

    IQ-SPECT is an advanced high-speed SPECT modality for myocardial perfusion imaging (MPI), which uses a multi-focus fan beam collimator with resolution recovery reconstruction. The aim of this study was to compare IQ-SPECT with conventional SPECT in terms of performance, based on standard clinical protocols. In addition, we examined the concordance between conventional and IQ-SPECT in patients with coronary artery disease (CAD). Fifty-three patients, undergoing rest-gated MPI for the evaluation of known or suspected CAD, were enrolled in this study. In each patient, conventional SPECT ( 99m Tc-tetrofosmin, 9.6 min and 201 Tl, 12.9 min) was performed, immediately followed by IQ-SPECT, using a short acquisition time (4.3 min for 99m Tc-tetrofosmin and 6.2 min for 201 Tl). A quantitative analysis was performed on an MPI polar map, using a 20-segment model of the left ventricle. An automated analysis by gated SPECT was carried out to determine the left ventricular volume and function including end-diastolic volume (EDV), end-systolic volume (ESV), and left ventricular ejection fraction (LVEF). The degree of concordance between conventional SPECT and IQ-SPECT images was evaluated according to linear regression and Bland-Altman analyses. The segmental percent uptake exhibited a significant correlation between IQ-SPECT and conventional SPECT (P<0.05). The mean differences in 99m Tc-tetrofosmin studies were 1.1±6.6% (apex), 2.8±5.7% (anterior wall), 2.9±6.2% (septal wall), 4.9±6.7% (lateral wall), and 1.8±5.6% (inferior wall). Meanwhile, regarding the 201 Tl-SPECT studies, these values were 1.6±6.9%, 2.0±6.6%, 2.1±5.9%, 3.3±7.2%, and 2.4±5.8%, respectively. Although the mean LVEF in IQ-SPECT tended to be higher than that observed in conventional SPECT (conventional SPECT=64.8±11.8% and IQ-SPECT=68.3±12.1% for 99m Tc-tetrofosmin; conventional SPECT= 56.0±11.7% and IQ-SPECT=61.5±12.2% for 201 Tl), quantitative parameters were not significantly different between

  4. Fusion imaging of computed tomographic pulmonary angiography and SPECT ventilation/perfusion scintigraphy: initial experience and potential benefit

    International Nuclear Information System (INIS)

    Harris, Benjamin; Bailey, Dale; Roach, Paul; Bailey, Elizabeth; King, Gregory

    2007-01-01

    The objective of this study was to examine the feasibility of fusing ventilation and perfusion data from single-photon emission computed tomography (SPECT) ventilation perfusion (V/Q) scintigraphy together with computed tomographic pulmonary angiography (CTPA) data. We sought to determine the accuracy of this fusion process. In addition, we correlated the findings of this technique with the final clinical diagnosis. Thirty consecutive patients (17 female, 13 male) who had undergone both CTPA and SPECT V/Q scintigraphy during their admission for investigation of potential pulmonary embolism were identified retrospectively. Image datasets from these two modalities were co-registered and fused using commercial software. Accuracy of the fusion process was determined subjectively by correlation between modalities of the anatomical boundaries and co-existent pleuro-parenchymal abnormalities. In all 30 cases, SPECT V/Q images were accurately fused with CTPA images. An automated registration algorithm was sufficient alone in 23 cases (77%). Additional linear z-axis scaling was applied in seven cases. There was accurate topographical co-localisation of vascular, parenchymal and pleural disease on the fused images. Nine patients who had positive CTPA performed as an initial investigation had co-localised perfusion defects on the subsequent fused CTPA/SPECT images. Three of the 11 V/Q scans initially reported as intermediate could be reinterpreted as low probability owing to co-localisation of defects with parenchymal or pleural pathology. Accurate fusion of SPECT V/Q scintigraphy to CTPA images is possible. This technique may be clinically useful in patients who have non-diagnostic initial investigations or in whom corroborative imaging is sought. (orig.)

  5. Applications of SPECT imaging of dopaminergic neurotransmission in neuropsychiatric disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kugaya, Akira; Fujita, Masahiro; Innis, R.B. [Yale Univ., New Haven, CT (United States). School of Medicine

    2000-02-01

    Single photon emission computed tomography (SPECT) tracers selective for pre- and post-synaptic targets have allowed measurements of several aspects of dopaminergic (DA) neurotransmission. In this article, we will first review our DA transporter imaging in Parkinson's disease. We have developed the in vivo dopamine transporter (DAT) imaging with [{sup 123}I]{beta}-CIT ((1R)-2{beta}-Carbomethoxy-3{beta}-(4-iodophenyl)tropane). This method showed that patients with Parkinson's disease have markedly reduced DAT levels in striatum, which correlated with disease severity and disease progression. Second, we applied DA imaging techniques in patients with schizophrenia. Using amphetamine as a releaser of DA, we observed the enhanced DA release, which was measured by imaging D2 receptors with [{sup 123}I]IBZM (iodobenzamide), in schizophrenics. Further we developed the measurement of basal synaptic DA levels by AMPT (alpha-methyl-paratyrosine)-induced unmasking of D2 receptors. Finally, we expanded our techniques to the measurement of extrastriatal DA receptors using [{sup 123}I]epidepride. The findings suggest that SPECT is a useful technique to measure DA transmission in human brain and may further our understanding of the pathophysiology of neuropsychiatric disorders. (author)

  6. Cervical SPECT Camera for Parathyroid Imaging

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-08-31

    Primary hyperparathyroidism characterized by one or more enlarged parathyroid glands has become one of the most common endocrine diseases in the world affecting about 1 per 1000 in the United States. Standard treatment is highly invasive exploratory neck surgery called Parathyroidectomy. The surgery has a notable mortality rate because of the close proximity to vital structures. The move to minimally invasive parathyroidectomy is hampered by the lack of high resolution pre-surgical imaging techniques that can accurately localize the parathyroid with respect to surrounding structures. We propose to develop a dedicated ultra-high resolution (~ 1 mm) and high sensitivity (10x conventional camera) cervical scintigraphic imaging device. It will be based on a multiple pinhole-camera SPECT system comprising a novel solid state CZT detector that offers the required performance. The overall system will be configured to fit around the neck and comfortably image a patient.

  7. In vivo quantification by SPECT of [{sup 123}I] ADAM bound to serotonin transporters in the brains of rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Ye, X.-X. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Hwang, J.-J. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Hsieh, J.-F. [Department of Nuclear Medicine, Chi-Mei Foundation Medical Center, Yungkang City 710, Taiwan (China); Chen, J.-C. [Institute of Radiological Sciences, National Yang-Ming University, Taipei 112, Taiwan (China)]. E-mail: jcchen@ym.edu.tw; Chou, Y.-T. [Institute of Physiology, National Yang-Ming University, Taipei 112, Taiwan (China); Tu, K.-Y. [Department of Nuclear Medicine, Mackey Memorial Hospital, Taipei, Taiwan 104 (China); Wey, S.-P. [Department of Medical Imaging and Radiological Sciences, Chang-Gung University, Taoyuan, Taiwan 333 (China); Ting Gann [Institute of Nuclear Energy Research, Tao- Yuan 335, Taiwan (China)

    2004-11-01

    Background: A novel radioiodine ligand [{sup 123}I] ADAM (2-((2-((dimethylamino)methyl)phenyl)thio)-5-iodophenylamine) has been suggested as a promising serotonin transporter (SERT) imaging agent for the central nervous system. In this study, the biodistribution of SERTs in the rabbit brain was investigated using [{sup 123}I] ADAM and mapping images of the same animal produced by both single-photon emission computed tomography (SPECT) and microautoradiography. A semiquantification method was adopted to deduce the optimum time for SPECT imaging, whereas the input for a simple fully quantitative tracer kinetic model was provided from arterial blood sampling data. Methods: SPECT imaging was performed on female rabbits postinjection of 185 MBq [{sup 123}I] ADAM. The time-activity curve obtained from the SPECT images was used to quantify the SERTs, for which the binding potential was calculated from the kinetic modeling of [{sup 123}I] ADAM. The kinetic data were analyzed by the nonlinear least squares method. The effects of the selective serotonin reuptake inhibitors fluoxetine and p-chloroamphetamine (PCA) on rabbits were also evaluated. After scanning, the same animal was sacrificed and the brain was removed for microautoradiography. Regions-of-interest were analyzed using both SPECT and microautoradiography images. The SPECT images were coregistered manually with the corresponding microautoradiography images for comparative study. Results: During the time interval 90-100 min postinjection, the peak specific binding levels in different brain regions were compared and the brain stem was shown to have the highest activity. The target-to-background ratio was 1.89{+-}0.02. Similar studies with fluoxetine and PCA showed a background level for SERT occupation. Microautoradiography demonstrated a higher level of anatomical details of the [{sup 123}I] ADAM distribution than that obtained by SPECT imaging of the rabbit brain. Conclusion: SPECT imaging of the rabbit brain with

  8. Simultaneous Tc-99m/I-123 dual-radionuclide myocardial perfusion/innervation imaging using Siemens IQ-SPECT with SMARTZOOM collimator

    International Nuclear Information System (INIS)

    Du, Yong; Frey, Eric C; Bhattacharya, Manojeet

    2014-01-01

    Simultaneous dual-radionuclide myocardial perfusion/innervation SPECT imaging can provide important information about the mismatch between scar tissue and denervated regions. The Siemens IQ-SPECT system developed for cardiac imaging uses a multifocal SMARTZOOM collimator to achieve a four-fold sensitivity for the cardiac region, compared to a typical parallel-hole low-energy high-resolution collimator, but without the data truncation that can result with conventional converging-beam collimators. The increased sensitivity allows shorter image acquisition times or reduced patient dose, making IQ-SPECT ideal for simultaneous dual-radionuclide SPECT, where reduced administrated activity is desirable in order to reduce patient radiation exposure. However, crosstalk is a major factor affecting the image quality in dual-radionuclide imaging. In this work we developed a model-based method that can estimate and compensate for the crosstalk in IQ-SPECT data. The crosstalk model takes into account interactions in the object and collimator-detector system. Scatter in the object was modeled using the effective source scatter estimation technique (ESSE), previously developed to model scatter with parallel-hole collimators. The geometric collimator-detector response was analytically modeled in the IQ-SPECT projector. The estimated crosstalk was then compensated for in an iterative reconstruction process. The new method was validated with data from both Monte Carlo simulations and physical phantom experiments. The results showed that the estimated crosstalk was in good agreement with simulated and measured results. After model-based compensation the images from simultaneous dual-radionuclide acquisitions were similar in quality to those from single-radionuclide acquisitions that did not have crosstalk contamination. The proposed model-based method can be used to improve simultaneous dual-radionuclide images acquired using IQ-SPECT. This work also demonstrates that ESSE scatter

  9. 99mTc-HYNIC-annexin V SPECT imaging of acute stroke and its response to neuroprotective therapy with anti-Fas ligand antibody

    International Nuclear Information System (INIS)

    Blankenberg, Francis G.; Kalinyak, Judy; Cheng, Danye; Goris, Michael L.; Liu, Liping; Koike, Maya; Yenari, Midori Anne; Green, Allan; Vanderheyden, Jean-Luc; Tong, David C.

    2006-01-01

    The first aim of the study was to determine whether 99m Tc-HYNIC-annexin V, a marker of cellular stress and apoptosis, can detect ischemic injury in patients with acute stroke. Secondly, we wished to test radiolabeled annexin's ability to monitor therapy in a rodent model of focal ischemic injury. SPECT imaging of patients was performed between 1 and 2 h after intravenous injection of 30 mCi (1,110 MBq) of tracer. Eight MFL4 (anti-FasL) antibody-treated (400 μg i.p. days 0 and 3) and 21 control adult male Sprague-Dawley rats underwent small animal SPECT imaging with 5-10 mCi (185-370 MBq) of tracer, 1 and 6 days after a 2-h intraluminal thread occlusion of the left middle cerebral artery. Two patients with acute stroke had regions of multifocal annexin uptake that correlated with sites of restricted diffusion on MRI. Anti-FasL antibody treatment significantly reduced annexin uptake by 92% with a 60% decrease in the number of caspase-8 staining (apoptotic) neurons on day 1. On day 6, treated animals had an 80% reduction in tracer uptake with a 75% decrease in infarct size as compared with controls. Annexin uptake in controls and treated animals (day 6) linearly correlated with infarct size (r 2 =0.603, p=0.0036) and the number of TUNEL-positive (apoptotic) nuclei (r 2 =0.728, p=0.00084). Annexin imaging shows foci of increased uptake at sites of ischemic injury in patients with acute stroke. Annexin imaging can assess the effects of therapy for ischemic cerebral injury in rats, suggesting its potential as a non-invasive indicator of drug efficacy in future clinical trials. (orig.)

  10. Initial experience with SPECT imaging of the brain using I-123 p-iodoamphetamine in focal epilepsy

    International Nuclear Information System (INIS)

    LaManna, M.M.; Sussman, N.M.; Harner, R.N.

    1989-01-01

    Nineteen patients with complex partial seizures refractory to medical treatment were examined with routine electroencephalography (EEG), video EEG monitoring, computed tomography or magnetic resonance imaging, neuropsychological tests and interictal single photon emission computed tomography (SPECT) with I-123 iodoamphetamine (INT). In 18 patients, SPECT identified areas of focal reduction in tracer uptake that correlated with the epileptogenic focus identified on the EEG. In addition, SPECT disclosed other areas of neurologic dysfunction as elicited on neuropsychological tests. Thus, IMP SPECT is a useful tool for localizing epileptogenic foci and their associated dynamic deficits

  11. Clinical Utility of SPECT/CT Imaging Post-Radioiodine Therapy: Does It Enhance Patient Management in Thyroid Cancer?

    Science.gov (United States)

    Hassan, Fahim U; Mohan, Hosahalli K

    2015-12-01

    The aim of this study was to evaluate post-therapy iodine-131 single-photon emission computed tomography/computed tomography ((131)I-SPECT/CT) imaging in comparison to conventional planar (131)I whole-body imaging, and to assess its clinical impact on the management of patients. We retrospectively reviewed planar (131)I whole-body and (131)I-SPECT/CT imaging findings in 67 patients who underwent (131)I therapy for thyroid cancer. Two nuclear medicine physicians reviewed the scans independently. The foci of increased tracer uptake were identified in the neck, thorax and elsewhere. Within the neck, the foci of (131)I-increased uptake were graded qualitatively as probable or definite uptake in thyroid remnants and probable or definite uptake in the lymph nodes. Serum thyroglobulin level, histopathology and other imaging findings served as the reference standard. Of the 67 patients, 57 (85%) had radioiodine avid disease and 10 (15%) demonstrated non-radioiodine avid disease. Overall, post-therapy (131)I-SPECT/CT downstaged lymph node staging in 10 patients and upstaged it in 4 patients. This translated into a change of management for 9/57 (16%) patients with radioiodine avid disease. A change of management was observed in 5/10 patients with non-radioiodine avid disease confirmed in the post-(131)I-SPECT/CT study. Additionally, clinically significant findings such as incidental lung cancer, symptomatic pleural effusion and consolidation were also diagnosed in both groups of patients. In patients with thyroid cancer, (131)I-SPECT/CT is a valuable addition to standard post-therapy planar imaging. SPECT/CT also improved diagnostic confidence and provided crucial clinical information leading to change of management for a significant number of these patients.

  12. SPECT in psychiatry

    International Nuclear Information System (INIS)

    Barocka, A.; Feistel, H.; Ebert, D.; Lungershausen, E.

    1993-01-01

    This review presents Single Photon Emission Computed Tomography (SPECT) as a powerful tool for clinical use and research in psychiatry. Its focus is on regional cerebral blood flow, measured with technetium labelled HMPAO. In addition, first results with brain receptor imaging, concerning dopamin-D 2 and benzodiazepine receptors, are covered. Due to major improvements in image quality, and impressive number of results has been accumulated in the past three years. The authors caution against using SPECT results as markers for disease entities. A finding like 'hypofrontality' is considered typical of a variety of mental disorders. Clearly both, more experience with SPECT and contributions from psychopathology, are needed. (orig.) [de

  13. The study of brain dopamine transporter 99Tcm-TRODAT-1 SPECT imaging

    International Nuclear Information System (INIS)

    Yang Jian; Su Min; Liu Xiuqian; Liang Weijuan; Zhao Bin; Xu Zhien

    2006-01-01

    Objective: To investigate the distribution character of 99 Tc m -2β-[N, N'-bis (2-mercaptoethyl) ethylenediamino] methyl, 3β-(4-chlorophenyl) tropane (TRODAT-1) in basal ganglia and the diagnostic value of SPECT imaging in Parkinson' s disease (PD). Methods: 99 Tc m -TRODAT-l SPECT imaging was performed in 30 PD patients and 16 age-matched healthy volunteers. Two semiquantitative analysis methods were used: (1)Striatum(ST)/cerebellum (CB) uptake ratio (ST/CB) was calculated by regions of interest (ROIs) in three transverse and sagittal slice. (2) ROIs were drawn manually on six subregions of both basal ganglia and also CB and occipital region(OC) as reference, and the corresponding uptake ratio of ROI/(OC + CB/2) was calculated. Results: The ST/CB in transverse and sagittal slice for the left and right were 1.55 ± 0.15, 1.58 ± 0.14 and 1.62 ± 0.17, 1.69 ± 0.16 respectively in healthy volunteers. The ST/CB and ROI/(OC + CB/2) in the basal ganglia of PD patients were significantly less than those of healthy volunteers (P 99 Tc m -TRODAT-1 SPECT imaging is an effective method in diagnosis of PD. (authors)

  14. Automated MicroSPECT/MicroCT Image Analysis of the Mouse Thyroid Gland.

    Science.gov (United States)

    Cheng, Peng; Hollingsworth, Brynn; Scarberry, Daniel; Shen, Daniel H; Powell, Kimerly; Smart, Sean C; Beech, John; Sheng, Xiaochao; Kirschner, Lawrence S; Menq, Chia-Hsiang; Jhiang, Sissy M

    2017-11-01

    The ability of thyroid follicular cells to take up iodine enables the use of radioactive iodine (RAI) for imaging and targeted killing of RAI-avid thyroid cancer following thyroidectomy. To facilitate identifying novel strategies to improve 131 I therapeutic efficacy for patients with RAI refractory disease, it is desired to optimize image acquisition and analysis for preclinical mouse models of thyroid cancer. A customized mouse cradle was designed and used for microSPECT/CT image acquisition at 1 hour (t1) and 24 hours (t24) post injection of 123 I, which mainly reflect RAI influx/efflux equilibrium and RAI retention in the thyroid, respectively. FVB/N mice with normal thyroid glands and TgBRAF V600E mice with thyroid tumors were imaged. In-house CTViewer software was developed to streamline image analysis with new capabilities, along with display of 3D voxel-based 123 I gamma photon intensity in MATLAB. The customized mouse cradle facilitates consistent tissue configuration among image acquisitions such that rigid body registration can be applied to align serial images of the same mouse via the in-house CTViewer software. CTViewer is designed specifically to streamline SPECT/CT image analysis with functions tailored to quantify thyroid radioiodine uptake. Automatic segmentation of thyroid volumes of interest (VOI) from adjacent salivary glands in t1 images is enabled by superimposing the thyroid VOI from the t24 image onto the corresponding aligned t1 image. The extent of heterogeneity in 123 I accumulation within thyroid VOIs can be visualized by 3D display of voxel-based 123 I gamma photon intensity. MicroSPECT/CT image acquisition and analysis for thyroidal RAI uptake is greatly improved by the cradle and the CTViewer software, respectively. Furthermore, the approach of superimposing thyroid VOIs from t24 images to select thyroid VOIs on corresponding aligned t1 images can be applied to studies in which the target tissue has differential radiotracer retention

  15. Determination of Three-Dimensional Left Ventricle Motion to Analyze Ventricular Dyssyncrony in SPECT Images

    DEFF Research Database (Denmark)

    de Sá Rebelo, Marina; Aarre, Ann Kirstine Hummelgaard; Clemmesen, Karen-Louise

    2010-01-01

    A method to compute three-dimension (3D) left ventricle (LV) motion and its color coded visualization scheme for the qualitative analysis in SPECT images is proposed. It is used to investigate some aspects of Cardiac Resynchronization Therapy (CRT). The method was applied to 3D gated-SPECT images...... sets from normal subjects and patients with severe Idiopathic Heart Failure, before and after CRT. Color coded visualization maps representing the LV regional motion showed significant difference between patients and normal subjects. Moreover, they indicated a difference between the two groups...

  16. TH-C-17A-06: A Hardware Implementation and Evaluation of Robotic SPECT: Toward Molecular Imaging Onboard Radiation Therapy Machines

    International Nuclear Information System (INIS)

    Yan, S; Touch, M; Bowsher, J; Yin, F; Cheng, L

    2014-01-01

    Purpose: To construct a robotic SPECT system and demonstrate its capability to image a thorax phantom on a radiation therapy flat-top couch. The system has potential for on-board functional and molecular imaging in radiation therapy. Methods: A robotic SPECT imaging system was developed utilizing a Digirad 2020tc detector and a KUKA KR150-L110 robot. An imaging study was performed with the PET CT Phantom, which includes 5 spheres: 10, 13, 17, 22 and 28 mm in diameter. Sphere-tobackground concentration ratio was 6:1 of Tc99m. The phantom was placed on a flat-top couch. SPECT projections were acquired with a parallel-hole collimator and a single pinhole collimator. The robotic system navigated the detector tracing the flat-top table to maintain the closest possible proximity to the phantom. For image reconstruction, detector trajectories were described by six parameters: radius-of-rotation, x and z detector shifts, and detector rotation θ, tilt ϕ and twist γ. These six parameters were obtained from the robotic system by calibrating the robot base and tool coordinates. Results: The robotic SPECT system was able to maneuver parallel-hole and pinhole collimated SPECT detectors in close proximity to the phantom, minimizing impact of the flat-top couch on detector-to-COR (center-ofrotation) distance. In acquisitions with background at 1/6th sphere activity concentration, photopeak contamination was heavy, yet the 17, 22, and 28 mm diameter spheres were readily observed with the parallel hole imaging, and the single, targeted sphere (28 mm diameter) was readily observed in the pinhole region-of-interest (ROI) imaging. Conclusion: Onboard SPECT could be achieved by a robot maneuvering a SPECT detector about patients in position for radiation therapy on a flat-top couch. The robot inherent coordinate frame could be an effective means to estimate detector pose for use in SPECT image reconstruction. PHS/NIH/NCI grant R21-CA156390-01A1

  17. The effect of acquisition interval and spatial resolution on dynamic cardiac imaging with a stationary SPECT camera

    International Nuclear Information System (INIS)

    Roberts, J; Maddula, R; Clackdoyle, R; DiBella, E; Fu, Z

    2007-01-01

    The current SPECT scanning paradigm that acquires images by slow rotation of multiple detectors in body-contoured orbits around the patient is not suited to the rapid collection of tomographically complete data. During rapid image acquisition, mechanical and patient safety constraints limit the detector orbit to circular paths at increased distances from the patient, resulting in decreased spatial resolution. We consider a novel dynamic rotating slant-hole (DyRoSH) SPECT camera that can collect full tomographic data every 2 s, employing three stationary detectors mounted with slant-hole collimators that rotate at 30 rpm. Because the detectors are stationary, they can be placed much closer to the patient than is possible with conventional SPECT systems. We propose that the decoupling of the detector position from the mechanics of rapid image acquisition offers an additional degree of freedom which can be used to improve accuracy in measured kinetic parameter estimates. With simulations and list-mode reconstructions, we consider the effects of different acquisition intervals on dynamic cardiac imaging, comparing a conventional three detector SPECT system with the proposed DyRoSH SPECT system. Kinetic parameters of a two-compartment model of myocardial perfusion for technetium-99m-teboroxime were estimated. When compared to a conventional SPECT scanner for the same acquisition periods, the proposed DyRoSH system shows equivalent or reduced bias or standard deviation values for the kinetic parameter estimates. The DyRoSH camera with a 2 s acquisition period does not show any improvement compared to a DyRoSH camera with a 10 s acquisition period

  18. The effect of acquisition interval and spatial resolution on dynamic cardiac imaging with a stationary SPECT camera

    Science.gov (United States)

    Roberts, J.; Maddula, R.; Clackdoyle, R.; Di Bella, E.; Fu, Z.

    2007-08-01

    The current SPECT scanning paradigm that acquires images by slow rotation of multiple detectors in body-contoured orbits around the patient is not suited to the rapid collection of tomographically complete data. During rapid image acquisition, mechanical and patient safety constraints limit the detector orbit to circular paths at increased distances from the patient, resulting in decreased spatial resolution. We consider a novel dynamic rotating slant-hole (DyRoSH) SPECT camera that can collect full tomographic data every 2 s, employing three stationary detectors mounted with slant-hole collimators that rotate at 30 rpm. Because the detectors are stationary, they can be placed much closer to the patient than is possible with conventional SPECT systems. We propose that the decoupling of the detector position from the mechanics of rapid image acquisition offers an additional degree of freedom which can be used to improve accuracy in measured kinetic parameter estimates. With simulations and list-mode reconstructions, we consider the effects of different acquisition intervals on dynamic cardiac imaging, comparing a conventional three detector SPECT system with the proposed DyRoSH SPECT system. Kinetic parameters of a two-compartment model of myocardial perfusion for technetium-99m-teboroxime were estimated. When compared to a conventional SPECT scanner for the same acquisition periods, the proposed DyRoSH system shows equivalent or reduced bias or standard deviation values for the kinetic parameter estimates. The DyRoSH camera with a 2 s acquisition period does not show any improvement compared to a DyRoSH camera with a 10 s acquisition period.

  19. Objective evaluation of reconstruction methods for quantitative SPECT imaging in the absence of ground truth.

    Science.gov (United States)

    Jha, Abhinav K; Song, Na; Caffo, Brian; Frey, Eric C

    2015-04-13

    Quantitative single-photon emission computed tomography (SPECT) imaging is emerging as an important tool in clinical studies and biomedical research. There is thus a need for optimization and evaluation of systems and algorithms that are being developed for quantitative SPECT imaging. An appropriate objective method to evaluate these systems is by comparing their performance in the end task that is required in quantitative SPECT imaging, such as estimating the mean activity concentration in a volume of interest (VOI) in a patient image. This objective evaluation can be performed if the true value of the estimated parameter is known, i.e. we have a gold standard. However, very rarely is this gold standard known in human studies. Thus, no-gold-standard techniques to optimize and evaluate systems and algorithms in the absence of gold standard are required. In this work, we developed a no-gold-standard technique to objectively evaluate reconstruction methods used in quantitative SPECT when the parameter to be estimated is the mean activity concentration in a VOI. We studied the performance of the technique with realistic simulated image data generated from an object database consisting of five phantom anatomies with all possible combinations of five sets of organ uptakes, where each anatomy consisted of eight different organ VOIs. Results indicate that the method provided accurate ranking of the reconstruction methods. We also demonstrated the application of consistency checks to test the no-gold-standard output.

  20. Incremental value of 99mTc-HYNIC-TOC SPECT/CT over whole-body planar scintigraphy and SPECT in patients with neuroendocrine tumours.

    Science.gov (United States)

    Trogrlic, Mate; Težak, Stanko

    2017-06-12

    The aim of this study was to evaluate the additional value of 99m Tc-HYNIC-TOC SPECT/CT over planar whole-body (WB) scintigraphy and SPECT alone in the detection and accurate localisation of neuroendocrine tumour (NET) lesions. This study included 65 patients with a definitive histological diagnosis of NET prior to scintigraphy. Planar WB scintigraphy, SPECT, and SPECT/CT images were acquired at 4 h post-administration of 670 MBq 99m Tc-HYNIC-TOC. Additional SPECT images at 10 min after tracer administration were also acquired. Clinical and imaging follow-up findings were considered as the reference standards (minimum follow-up period, 15 months). Patient and lesion-based analyses of the efficacies of the imaging modalities were performed. While 38 patients exhibited metastasis of NETs, 27 presented no evidence of metastasis. Upon patient-based analysis, the sensitivity and specificity of SPECT/CT were found to be 88.9 and 79.3 %, respectively. The diagnostic accuracies of WB scintigraphy, 4h-SPECT, and SPECT/CT were 72.3, 73.8, and 84.6 %, respectively. The area under curve (AUC) value for SPECT/CT (0.84) was the highest, followed by those for 4h-SPECT (0.75) and WB scintigraphy (0.74). The accuracy and AUC values of SPECT/CT were significantly better compared to those of WB scintigraphy (p < 0.001), 10 min-SPECT (p < 0.001), and 4 h-SPECT (p = 0.001). The findings of SPECT/CT led to the change in treatment plan of 11 patients (16.9 %). The sensitivity and diagnostic accuracy of SPECT/CT in the evaluation of NET lesions outperforms planar WB imaging or SPECT alone.

  1. Ocular melanoma: Detection using iodine-123-iodoamphetamine and SPECT imaging

    International Nuclear Information System (INIS)

    Dewey, S.H.; Leonard, J.C.

    1990-01-01

    Uptake of iodine-123-iodoamphetamine has been demonstrated in malignant melanoma using planar imaging techniques and has been used to detect an ocular melanoma at 12 hr postinjection. Using SPECT technique, an ocular melanoma is identified in a 64-yr-old male at 1 hr postinjection

  2. Use of images of ictal-inter-ictal SPECT subtraction superimposed on MRI in pharmaco-resistant partial epilepsies in infants

    International Nuclear Information System (INIS)

    Vera, P.; Kaminska, A.; Cieuta, C.; Mangin, F.; Frouin, V.; Dulac, O.; Chiron, C.

    1997-01-01

    To study the significance of ictal SPECT in the pre-surgical examination of infant epilepsies we have explored 16 infants aged 3 months to 18 years presenting partial pharmaco-resistant epilepsy. All of them have had an ictal SPECT under EEG - video recording than, two days after, an inter-ictal SPECT coupled to a 3D cerebral MRI. The perfusion tracer, the 99m Tc - ECD, was injected in average at 15 seconds after the outset of crisis. The image processing implied a matching of the two SPECT examinations by a 3D rigid superposition method, a normalization and than a inter-ictal-ictal image subtraction. Finally, the subtraction was matched and superimposed on the MRI. The SPECT subtraction image showed one or several centres of ictal hyper-output in 15 patients, while the separated visual ictal and inter-ictal images were contributory in 8 cases only. The 16. infant presented very short crises (<10 sec). In the cases when the outset point of crises could be established clinically (12 cases) and/or on EEG (8 cases) a hyper-output of concordant localization was recorded. In 5 infants who have had an electrocorticography, a concordance was obtained in all the cases except in an infant having very short crises the subtraction image did not show hyper-output. These preliminary results show that the ictal - inter-ictal SPECT subtraction images, adjusted on MRI, appears to be reliable in detecting the outset point of crises in infants and at the same time useful in guiding the positioning of intra-cranial electrodes prior to surgery intervention

  3. Evaluation of the parameters of SPECT images for yttrium-90 in radiosinoviorthesis; Avaliação dos parâmetros de aquisição de imagens SPECT para ítrio-90 em radiosinoviortese

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, B.C. de; Sáa, L.V. de, E-mail: bruce.de.toledo@gmail.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Física Médica; Ramos, S.M.; Coelho, F.A.; Thomas, S.; Souza, S.A. de; Pinheiro, M.A. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Hospital Universitário Clementino Fraga Filho

    2017-07-01

    Introduction: the evaluation of the distribution of radioactive material in the articulation by SPECT images after radiosinoviorthesis (RSO) can guarantee the efficacy of this therapy. However, Bremsstrahlung image quality has major limitations, necessitating studies on SPECT image acquisition parameters and yttrium-90 image reconstruction methods. Methods: SPECT images were obtained from an acrylic simulator containing four cylindrical inserts to simulate capturing lesions. The images were obtained with collimators of high, medium and low (HEGP, MEGP and LEHR) energy; 130 keV power window, 70% width and 64 x 64 matrix. The reconstruction methods used were: FBP and OSEM with different filters. Results: 45 results found. The images obtained with the MEGP and HEGP collimators presented better results than those obtained with the LEHR collimator. The OSEM reconstructions were superior when the MEGP and HEGP collimators were used. Conclusions: The acquisition of yttrium-90 SPECT images with MEGP collimators showed higher sensitivity, whereas those obtained with HEPG collimators presented lower noise. The image reconstruction methods have relevant importance in the image quality, showing a significant difference between the FBP and OSEM reconstructions and between the filters used.

  4. Evaluation of Tourette's syndrome by 99Tcm-TRODAT-1 SPECT imaging

    International Nuclear Information System (INIS)

    Dong Feng; Liu Hong; Meng Zhaowei; Tan Jian; Zhang Benshu

    2011-01-01

    Objective: To observe dopamine transporter (DAT) binding capacity using 99 Tc m -TRODAT-1 in drug-naive patients with Tourette's syndrome (TS) on SPECT imaging, and explore possible correlations between 99 Tc m -TRODAT-1 uptake ratio and TS patient's age, disease duration, and tic severity. Methods: Eighteen drug-naive TS patients, male 14, female 4, as well as 8 age- and gender-matched healthy subjects were recruited. Brain SPECT imaging was performed 2. 5 h after intravenous injection of 11.1 - 14.8 MBq/kg 99 Tc m -TRODAT-1. ROI was drawn on the striatum including its sub-regions of caudate and putamen, with cerebellum as the background. Striatum/cerebellum ratio was calculated. Comparisons of the ratios between TS patients and controls were carried out by independent-sample t-test. Pearson correlation analysis was performed between DAT uptake ratios of striatum and patients' age, disease duration, tic severity. Results: Compared with the control, higher symmetrically striatum uptake of 99 Tc m -TRODAT-1 in TS patients was observed (2.17±0.23 vs 1.87±0.24, t=2.957, P 0.05)and tic severity(r=0.345, P>0.05) scores were not significantly correlated with specific uptake ratios measured in the striatum. But there was significant negative correlation between disease duration and the specific uptake ratios (r=-0.483, P 99 Tc m -TRODAT-1 SPECT imaging may play an adjuvant role for initial evaluation of untreated TS. (authors)

  5. Prognostic value of gated 201Tl myocardial perfusion SPECT imaging in patients with coronary artery disease

    International Nuclear Information System (INIS)

    Li Zicheng; Chen Xiaoming; Xu Hao

    2006-01-01

    Objective: To study the prognostic value of gated 201 Tl myocardial perfusion SPECT imaging in patients with coronary artery disease and assessment of therapy strategy for the individual patient. Methods: Eighty-four patients underwent rest and exercise stress 201 Tl gated myocardial perfusion SPECT imaging and were followed up for (32.92 ± 16.77) months. Images were studied using 17 segments and 1 to 4 scoring. Global summed stress score (SSS), summed rest score (SRS) and summed difference score (SDS=SSS-SRS) were also calculated. Post-stress and rest ejection fraction (EF) were automatically measured. Results: Nine cardiac events occurred (3.90% per year). SSS, SDS, SRS and EF were the independent predictors of cardiac events (P 201 Tl myocardial perfusion SPECT imaging can provide prognostic assessment for the patients with coronary artery disease and guide in selection of therapeutic strategy. Among all of the indices SSS is the best predictors of cardiac events. (authors)

  6. A parallel Monte Carlo code for planar and SPECT imaging: implementation, verification and applications in (131)I SPECT.

    Science.gov (United States)

    Dewaraja, Yuni K; Ljungberg, Michael; Majumdar, Amitava; Bose, Abhijit; Koral, Kenneth F

    2002-02-01

    This paper reports the implementation of the SIMIND Monte Carlo code on an IBM SP2 distributed memory parallel computer. Basic aspects of running Monte Carlo particle transport calculations on parallel architectures are described. Our parallelization is based on equally partitioning photons among the processors and uses the Message Passing Interface (MPI) library for interprocessor communication and the Scalable Parallel Random Number Generator (SPRNG) to generate uncorrelated random number streams. These parallelization techniques are also applicable to other distributed memory architectures. A linear increase in computing speed with the number of processors is demonstrated for up to 32 processors. This speed-up is especially significant in Single Photon Emission Computed Tomography (SPECT) simulations involving higher energy photon emitters, where explicit modeling of the phantom and collimator is required. For (131)I, the accuracy of the parallel code is demonstrated by comparing simulated and experimental SPECT images from a heart/thorax phantom. Clinically realistic SPECT simulations using the voxel-man phantom are carried out to assess scatter and attenuation correction.

  7. Image viewing station for MR and SPECT : using personal computer

    International Nuclear Information System (INIS)

    Yim, Byung Il; Jeong, Eun Kee; Suh, Jin Suck; Kim, Myeong Joon

    1996-01-01

    Macro language was programmed to analyze and process on Macintosh personal computers, GEMR images digitally transferred from the MR main computer, with special interest in the interpretation of information such as patients data and imaging parameters under each image header. By this method, raw data(files) of certain patients may be digitally stored on a hard disk or CD ROM, and the quantitative analysis, interpretation and display is possible. Patients and images were randomly selected 4.X MR images were transferred through FTP using the ethernet network. 5.X and SPECT images were transferred using floppy diskettes. To process transferred images, an freely distributed software for Macintosh namely NIH Image, with its macro language, was used to import images and translate header information. To identify necessary information, a separate window named I nfo=txt , was made for each image series. MacLC, Centris650, and PowerMac6100/CD, 7100/CD, 8100/CD models with 256 color and RAM over 8Mbyte were used. Different versions of MR images and SPECT images were displayed simultaneously and a separate window named 'info-txt' was used to show all necessary information(name of the patient, unit number, date, TR, TE, FOV etc.). Additional information(diagnosis, pathologic report etc.) was stored in another text box in 'info-txt'. The size of the file for each image plane was about 149Kbytes and the images were stored in a step-like file folders. 4.X and 5.X GE Signa 1.5T images were successfully processed with Macintosh computer and NIH Image. This result may be applied to many fields and there is hope of a broader area of application with the linkage of NIH Image and a database program

  8. Simultaneous reconstruction and segmentation for dynamic SPECT imaging

    International Nuclear Information System (INIS)

    Burger, Martin; Rossmanith, Carolin; Zhang, Xiaoqun

    2016-01-01

    This work deals with the reconstruction of dynamic images that incorporate characteristic dynamics in certain subregions, as arising for the kinetics of many tracers in emission tomography (SPECT, PET). We make use of a basis function approach for the unknown tracer concentration by assuming that the region of interest can be divided into subregions with spatially constant concentration curves. Applying a regularised variational framework reminiscent of the Chan-Vese model for image segmentation we simultaneously reconstruct both the labelling functions of the subregions as well as the subconcentrations within each region. Our particular focus is on applications in SPECT with the Poisson noise model, resulting in a Kullback–Leibler data fidelity in the variational approach. We present a detailed analysis of the proposed variational model and prove existence of minimisers as well as error estimates. The latter apply to a more general class of problems and generalise existing results in literature since we deal with a nonlinear forward operator and a nonquadratic data fidelity. A computational algorithm based on alternating minimisation and splitting techniques is developed for the solution of the problem and tested on appropriately designed synthetic data sets. For those we compare the results to those of standard EM reconstructions and investigate the effects of Poisson noise in the data. (paper)

  9. Response analysis for an approximate 3-D image reconstruction in cone-beam SPECT

    International Nuclear Information System (INIS)

    Murayama, Hideo; Nohara, Norimasa

    1991-01-01

    Cone-beam single photon emission computed tomography (SPECT) offers the potential for a large increase in sensitivity as compared with parallel hole or fan-beam collimation. Three-dimensional image reconstruction was approximately accomplished by backprojecting filtered projections using a two-dimensional fan-beam algorithm. The cone-beam projection data were formed from mathematical phantoms as analytically derived line integrals of the density. In order to reduce the processing time, the filtered projections were backprojected into each plane parallel to the circle on which the focal point moved. Discrepancy of source position and degradation of resolution were investigated by computer simulation in three-dimensional image space. The results obtained suggest that, the nearer to the central plane or the axis of rotation, the less image degradation is performed. By introducing a parameter of angular difference between the focal point and a fixed point in the image space during rotation, degradation of the reconstructed image can be estimated for any cone-beam SPECT system. (author)

  10. Analysis of CT and PET/SPECT images for dosimetry calculation

    International Nuclear Information System (INIS)

    Massicano, Felipe; Massicano, Adriana V.F.; Silva, Natanael Gomes da; Cintra, Felipe Belonsi; Yoriyaz, Helio; Carvalho, Rodrigo Mueller de

    2009-01-01

    Computer images are routinely used in diagnostic centers and hospitals. In particular in the field of Nuclear Medicine they help in the diagnosis and planning therapy against cancer. In the case of the planning therapy the quantifying the distribution of dose in patients is very important, because it provides an estimate of the dose in the tumor and healthy tissues, allowing a greater understanding on the response and toxicity caused by this dose. The aim of this study is to analyze both kinds of images: CT and PET/SPECT and their potential utilization for dosimetry calculation. PET or SPECT images were analyzed using a Gamma Camera, brand Medis, model Nuclide-TH/22 through image acquisition of scanned phantoms containing a known activity inside their volume so that a relationship between the number of counts for each voxel in the image and the real activity will be constructed. The heterogeneous organism patient's is specified from the computed tomography (CT) through number of Hounsfield. However, there is not a simple correlation to convert Hounsfield numbers into material tissues, therefore, in this work we developed a software in Java to convert Hounsfield numbers in mass density. Moreover, the software provides a map of tissues and a text file containing the elemental weights to be used by the Monte Carlo transport code MCNP5 to perform dose calculations. (author)

  11. Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT

    International Nuclear Information System (INIS)

    Shokouhi, S; Peterson, T E; Metzler, S D; Wilson, D W

    2009-01-01

    We have designed a multi-pinhole collimator for a dual-headed, stationary SPECT system that incorporates high-resolution silicon double-sided strip detectors. The compact camera design of our system enables imaging at source-collimator distances between 20 and 30 mm. Our analytical calculations show that using knife-edge pinholes with small-opening angles or cylindrically shaped pinholes in a focused, multi-pinhole configuration in combination with this camera geometry can generate narrow sensitivity profiles across the field of view that can be useful for imaging small objects at high sensitivity and resolution. The current prototype system uses two collimators each containing 127 cylindrically shaped pinholes that are focused toward a target volume. Our goal is imaging objects such as a mouse brain, which could find potential applications in molecular imaging.

  12. Software-based hybrid perfusion SPECT/CT provides diagnostic accuracy when other pulmonary embolism imaging is indeterminate

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Nishant; Xie, Karen; Mar, Winnie; Anderson, Thomas M.; Carney, Benjamin; Mehta, Nikhil; Machado, Roberto; Blend, Michael J.; Lu, Yang [University of Illinois Hospital and Health Sciences System, Chicago (Korea, Republic of)

    2015-12-15

    To investigate the diagnostic performance of perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) in patients suspected to have pulmonary embolism (PE) but with indeterminate computed tomographic pulmonary angiography (CTPA) or planar ventilation/perfusion (V/Q) scans. This retrospective study included two groups of patients. Group I consisted of 49 patients with nondiagnostic CTPA. These 49 patients underwent subsequent V/Q scans. Further Q-SPECTs were obtained in patients with indeterminate planar images and fused with existing CTPA. Group II consisted of 182 non-CTPA patients with indeterminate V/Q scans. These 182 patients underwent further Q-SPECT and separate noncontrast low-dose CT chest. Fusion Q-SPECT/CT scans were obtained through FDA-approved software and interpreted according to published criteria as positive, negative, or indeterminate for PE. Upon retrospective analyses, the final diagnosis was made using composite reference standards including all available clinical and imaging information for at least 6-month follow-up. In group I patients, 1 was positive, 24 were negative, and another 24 (49 %, 24/49) were indeterminate. In the subsequent 24 Q-SPECT/CTPAs, 4 were positive, 19 were negative, and 1 was indeterminate (4.2 %, 1/24). In group II patients, 9 (4.9 %, 9/182) were indeterminate, 33 were positive, and 140 were negative. The combined nondiagnostic rate for Q-SPECT/CT was only 4.9 % (10/206). There was six false-negative and one false-positive Q-SPECT/CT examinations. The sensitivity, specificity, and positive and negative predictive value of Q-SPECT/CT were 85.7 % (36/42), 99.4 % (153/154), 97.3 % (36/37) and 96.2 % (153/159), respectively. Q-SPECT/CT improves the diagnostic rate with promising accuracy in diagnosing PE that yields a satisfactory clinical verdict, especially when the CTPA and planar V/Q scan are indeterminate.

  13. Effect of maintenance oral theophylline on dipyridamole-thallium-201 myocardial imaging using SPECT and dipyridamole-induced hemodynamic changes

    International Nuclear Information System (INIS)

    Daley, P.J.; Mahn, T.H.; Zielonka, J.S.; Krubsack, A.J.; Akhtar, R.; Bamrah, V.S.

    1988-01-01

    To evaluate the effect of maintenance oral theophylline therapy on the diagnostic efficacy of dipyridamole-thallium-201 single photon emission computed tomography (SPECT) imaging for coronary artery disease, dipyridamole-thallium-201 SPECT imaging was performed in eight men with documented coronary artery disease before initiation of theophylline treatment and repeated while these patients were receiving therapeutic doses of oral theophylline. Before theophylline treatment, intravenous dipyridamole caused a significant increase in heart rate, decrease in blood pressure, angina in seven of eight patients, and ST segment depression in four of eight patients. While they were being treated with theophylline, none of the patients had angina or ST segment depression, and there were no hemodynamic changes with intravenous dipyridamole. Before theophylline treatment, dipyridamole-thallium-201 SPECT imaging showed reversible perfusion defects in myocardial segments supplied by stenotic coronary arteries. With theophylline treatment, dipyridamole-thallium-201 SPECT showed total absence of reversible perfusion defects. Treatment with theophylline markedly reduced the diagnostic accuracy of dipyridamole-thallium-201 imaging for coronary artery disease

  14. Effects of attenuation map accuracy on attenuation-corrected micro-SPECT images

    NARCIS (Netherlands)

    Wu, C.; Gratama van Andel, H.A.; Laverman, P.; Boerman, O.C.; Beekman, F.J.

    2013-01-01

    Background In single-photon emission computed tomography (SPECT), attenuation of photon flux in tissue affects quantitative accuracy of reconstructed images. Attenuation maps derived from X-ray computed tomography (CT) can be employed for attenuation correction. The attenuation coefficients as well

  15. Clinical features and {sup 123}I-FP-CIT SPECT imaging in drug-induced parkinsonism and Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Corrales, Francisco J.; Escobar-Delgado, Teresa [Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurologia, Instituto de Biomedicina de Sevilla, Seville (Spain); Sanz-Viedma, Salome [Hospital Universitario Virgen del Rocio, Unidad Diagnostica de Medicina Nuclear, Seville (Spain); Garcia-Solis, David [Hospital Universitario Virgen del Rocio, Unidad Diagnostica de Medicina Nuclear, Seville (Spain); Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville (Spain); Mir, Pablo [Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, Unidad de Trastornos del Movimiento, Servicio de Neurologia, Instituto de Biomedicina de Sevilla, Seville (Spain); Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville (Spain); Hospital Universitario Virgen del Rocio, Unidad de Trastornos del Movimiento. Servicio de Neurologia, Seville (Spain)

    2010-03-15

    To determine clinical predictors and accuracy of {sup 123}I-FP-CIT SPECT imaging in the differentiation of drug-induced parkinsonism (DIP) and Parkinson's disease (PD). Several clinical features and {sup 123}I-FP-CIT SPECT images in 32 patients with DIP, 25 patients with PD unmasked by antidopaminergic drugs (PDu) and 22 patients with PD without a previous history of antidopaminergic treatment (PDc) were retrospectively evaluated. DIP and PD shared all clinical features except symmetry of parkinsonian signs which was more frequently observed in patients with DIP (46.9%) than in patients with PDu (16.0%, p<0.05) or PDc (4.5%, p<0.01). Qualitatively {sup 123}I-FP-CIT SPECT images were normal in 29 patients with DIP (90.6%) and abnormal in all patients with PD, and this imaging technique showed high levels of accuracy. DIP and PD are difficult to differentiate based on clinical signs. The precision of clinical diagnosis could be reliably enhanced by {sup 123}I-FP-CIT SPECT imaging. (orig.)

  16. {sup 99m}Tc-HYNIC-annexin V SPECT imaging of acute stroke and its response to neuroprotective therapy with anti-Fas ligand antibody

    Energy Technology Data Exchange (ETDEWEB)

    Blankenberg, Francis G.; Kalinyak, Judy; Cheng, Danye; Goris, Michael L. [Stanford University Hospital, Division of Pediatric Radiology/Department of Radiology, Palo Alto, CA (United States); Liu, Liping; Koike, Maya; Yenari, Midori Anne [University of California San Francisco and San Francisco Veterans Affairs Medical Center, Department of Neurology, San Francisco, CA (United States); Green, Allan; Vanderheyden, Jean-Luc [Theseus Imaging Corporation, Boston, MA (United States); Tong, David C. [Stanford University Hospital, Neurology and Neurological Sciences, Stanford, CA (United States)

    2006-05-15

    The first aim of the study was to determine whether {sup 99m}Tc-HYNIC-annexin V, a marker of cellular stress and apoptosis, can detect ischemic injury in patients with acute stroke. Secondly, we wished to test radiolabeled annexin's ability to monitor therapy in a rodent model of focal ischemic injury. SPECT imaging of patients was performed between 1 and 2 h after intravenous injection of 30 mCi (1,110 MBq) of tracer. Eight MFL4 (anti-FasL) antibody-treated (400 {mu}g i.p. days 0 and 3) and 21 control adult male Sprague-Dawley rats underwent small animal SPECT imaging with 5-10 mCi (185-370 MBq) of tracer, 1 and 6 days after a 2-h intraluminal thread occlusion of the left middle cerebral artery. Two patients with acute stroke had regions of multifocal annexin uptake that correlated with sites of restricted diffusion on MRI. Anti-FasL antibody treatment significantly reduced annexin uptake by 92% with a 60% decrease in the number of caspase-8 staining (apoptotic) neurons on day 1. On day 6, treated animals had an 80% reduction in tracer uptake with a 75% decrease in infarct size as compared with controls. Annexin uptake in controls and treated animals (day 6) linearly correlated with infarct size (r {sup 2}=0.603, p=0.0036) and the number of TUNEL-positive (apoptotic) nuclei (r {sup 2}=0.728, p=0.00084). Annexin imaging shows foci of increased uptake at sites of ischemic injury in patients with acute stroke. Annexin imaging can assess the effects of therapy for ischemic cerebral injury in rats, suggesting its potential as a non-invasive indicator of drug efficacy in future clinical trials. (orig.)

  17. The assessment of whole body bone SPECT in oncology

    International Nuclear Information System (INIS)

    Scortechini, Shonika

    2009-01-01

    Full text: Objectives: To assess the significance and practicability of oncology whole body bone SPECT as part of the standard skeletal survey and its impact on the traditional planar whole body bone imaging protocol. Method: Three consenting oncology patients were injected with a standard adult dose of Tc-99m MOP. Delayed Imaging of whole body sweep and SPECT acquisitions were performed on a Siemens Symbia T6. The patient was positioned supine with arms down with a SPECT scan length covering vortex to thighs. SPECT data was reconstructed and a single whole body zipped file created. Normal SPECT slices along with a cine/MIP of the zipped data were created for review. Results: Both image data sets were reviewed to assess if SPECT provided any further diagnostic clinical information not apparent in planer imaging. In our limited review, whole body SPECT did not add extra value to the planar whole body scans performed; it did however demonstrate vertebral involvement with greater resolution. The processing software and system limitations in seamlessly knitting data sets (creating image artefacts) was a major limiting factor in not pursuing further studies. Conclusion: Both imaging techniques offer differing advantages and limitations, however due to image artefact in the triple knitted SPECT approach with current software technology, it cannot be substituted for whole body imaging at this time.

  18. Normal anatomy of lung perfusion SPECT scintigraphy

    International Nuclear Information System (INIS)

    Moskowitz, G.W.; Levy, L.M.

    1987-01-01

    Ten patients studies for possible pulmonary embolic disease had normal lung perfusion planar and SPECT scintigraphy. A computer program was developed to superimpose the CT scans on corresponding SPECT images. Superimposition of CT scans on corresponding SPECT transaxial cross-sectional images, when available, provides the needed definition and relationships of adjacent organs. SPECT transaxial sections provide clear anatomic definition of perfusion defects without foreground and background lung tissue superimposed. The location, shape, and size of the perfusion defects can be readily assessed by SPECT. An algorithm was developed for the differentiation of abnormal pulmonary perfusion patterns from normal structures on variation

  19. Practical reconstruction protocol for quantitative 90Y bremsstrahlung SPECT/CT

    International Nuclear Information System (INIS)

    Siman, W.; Mikell, J. K.; Kappadath, S. C.

    2016-01-01

    Purpose: To develop a practical background compensation (BC) technique to improve quantitative 90 Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. Methods: All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2–16 cm) positioned below a 90 Y source and set at different distances (15–35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images. The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar 90 Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical 90 Y images. Results: The authors found that the most appropriate imaging EW range was 90–125 keV. BC was modeled as 0.53× images in the EW of 310–410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. Conclusions: The proposed EW-based BC model was developed for 90 Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion detectability and activity

  20. Functional Mechanism of Lung Mosaic CT Attenuation: Assessment with Deep-Inspiration Breath-Hold Perfusion SPECT-CT Fusion Imaging and Non-Breath-Hold Technegas SPECT

    International Nuclear Information System (INIS)

    Suga, K.; Yasuhiko, K.; Iwanaga, H.; Tokuda, O.; Matsunaga, N.

    2009-01-01

    Background: The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. Purpose: To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Material and Methods: Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. Results: On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Conclusion: Although further validation is

  1. Functional Mechanism of Lung Mosaic CT Attenuation: Assessment with Deep-Inspiration Breath-Hold Perfusion SPECT-CT Fusion Imaging and Non-Breath-Hold Technegas SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Suga, K.; Yasuhiko, K. (Dept. of Radiology, St. Hill Hospital, Ube, Yamaguchi (Japan)); Iwanaga, H.; Tokuda, O.; Matsunaga, N. (Dept. of Radiology, Yamaguchi Univ. School of Medicine, Ube, Yamaguchi (Japan))

    2009-01-15

    Background: The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. Purpose: To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Material and Methods: Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. Results: On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Conclusion: Although further validation is

  2. Functional mechanism of lung mosaic CT attenuation: assessment with deep-inspiration breath-hold perfusion SPECT-CT fusion imaging and non-breath-hold Technegas SPECT.

    Science.gov (United States)

    Suga, K; Yasuhiko, K; Iwanaga, H; Tokuda, O; Matsunaga, N

    2009-01-01

    The functional mechanism of lung mosaic computed tomography attenuation (MCA) in pulmonary vascular disease (PVD) and obstructive airway disease (OAD) has not yet been fully clarified. To clarify the mechanism of MCA in these diseases by assessing the relationship between regional lung function and CT attenuation change at MCA sites with the use of automated deep-inspiratory breath-hold (DIBrH) perfusion single-photon emission computed tomography (SPECT)-CT fusion images and non-breath-hold Technegas SPECT. Subjects were 42 PVD patients (31 pulmonary thromboembolism, four primary/two secondary pulmonary hypertension, and five Takayasu arteritis), 12 OAD patients (five acute asthma, four obliterative bronchiolitis, and three bronchiectasis), and 12 normal controls, all of whom had MCA on DIBrH CT. The relationship between regional lung function and CT attenuation change at the lung slices with MCA was assessed using DIBrH perfusion SPECT-CT fusion images and non-breath-hold Technegas SPECT. The severity of perfusion defects with or without MCA was quantified by regions-of-interest analysis. On DIBrH CT and perfusion SPECT, in contrast to no noticeable CT attenuation abnormality and fairly uniform perfusion in controls, 60 MCA and 274 perfusion defects in PVD patients, and 18 MCA and 61 defects in OAD patients were identified, with a total of 77 ventilation defects on Technegas SPECT in all patients. SPECT-CT correlation showed that, throughout the 78 MCA sites of all patients, lung perfusion was persistently decreased at low CT attenuation and preserved at intervening high CT attenuation, while lung ventilation was poorly correlated with CT attenuation change. The radioactivity ratios of reduced perfusion and the intervening preserved perfusion at the 78 perfusion defects with MCA were significantly lower than those at the remaining 257 defects without MCA (P<0.0001). Although further validation is required, our results indicate that heterogeneous pulmonary arterial

  3. Feasibility of a CdTe-based SPECT for high-resolution low-dose small animal imaging: a Monte Carlo simulation study

    International Nuclear Information System (INIS)

    Park, S-J; Yu, A R; Lee, Y-J; Kim, Y-S; Kim, H-J

    2014-01-01

    Dedicated single-photon-emission computed tomography (SPECT) systems based on pixelated semiconductors such as cadmium telluride (CdTe) are in development to study small animal models of human disease. In an effort to develop a high-resolution, low-dose system for small animal imaging, we compared a CdTe-based SPECT system and a conventional NaI(Tl)-based SPECT system in terms of spatial resolution, sensitivity, contrast, and contrast-to-noise ratio (CNR). In addition, we investigated the radiation absorbed dose and calculated a figure of merit (FOM) for both SPECT systems. Using the conventional NaI(Tl)-based SPECT system, we achieved a spatial resolution of 1.66 mm at a 30 mm source-to-collimator distance, and a resolution of 2.4-mm hot-rods. Using the newly-developed CdTe-based SPECT system, we achieved a spatial resolution of 1.32 mm FWHM at a 30 mm source-to-collimator distance, and a resolution of 1.7-mm hot-rods. The sensitivities at a 30 mm source-to-collimator distance were 115.73 counts/sec/MBq and 83.38 counts/sec/MBq for the CdTe-based SPECT and conventional NaI(Tl)-based SPECT systems, respectively. To compare quantitative measurements in the mouse brain, we calculated the CNR for images from both systems. The CNR from the CdTe-based SPECT system was 4.41, while that from the conventional NaI(Tl)-based SPECT system was 3.11 when the injected striatal dose was 160 Bq/voxel. The CNR increased as a function of injected dose in both systems. The FOM of the CdTe-based SPECT system was superior to that of the conventional NaI(Tl)-based SPECT system, and the highest FOM was achieved with the CdTe-based SPECT at a dose of 40 Bq/voxel injected into the striatum. Thus, a CdTe-based SPECT system showed significant improvement in performance compared with a conventional system in terms of spatial resolution, sensitivity, and CNR, while reducing the radiation dose to the small animal subject. Herein, we discuss the feasibility of a CdTe-based SPECT system for high

  4. Assessment of left ventricular performance by ECG-gated SPECT. Comparison with magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tadamura, Eiji; Inubushi, Masayuki; Kubo, Shigeto; Matsumoto, Keiichi; Yokoyama, Hiroshi; Fujita, Toru; Konishi, Junji [Kyoto Univ. (Japan). Faculty of Medicine

    1999-10-01

    In the measurement of a left ventricular volume, MIBI-QGS was compared with MRI. Because it became clear by the experiment using phantom that a volume calculated with QGS was smaller than the actual volume, data of clinical study were corrected. Subjects were 20 patients with coronary artery disease. Fourteen patients had anamnesis of myocardial infarct. ECG-gated SPECT was performed one hour after intravenous injection of MIBI (600 MBq) in rest. End diastolic volume (EDV), end systolic volume (ESV) and ejection fraction (EF) were calculated using QGS. Cine-MR image was obtained by using MR system of 1.5 Tesla within 1 week after SPECT. A condition was as follows; segmented k-space gradient echo with view sharing, TR=11 ms, TE=1.4 ms, flip angle 20 degree, field of view 32 cm, matrix 256 x 196, 8 lines per segment. LVEF, ESV and EF were analysed by Bland-Altman method, and the difference between MIBI-gated-SPECT and MRI was no problem. Horizontal dislocation image and vertical major axis dislocation image were provided. Minor axis crossing images of 10-12 slice were also filmed in order to cover all left ventricles. As a result, availability of MIBI-QGS became clear. Some factors which produces the measurement error are examined. (K.H.)

  5. Quantitative assessment of 201TlCl myocardial SPECT

    International Nuclear Information System (INIS)

    Uehara, Toshiisa

    1987-01-01

    Clinical evaluation of the quantitative analysis of Tl-201 myocardial tomography by SPECT (Single Photon Emission Computed Tomography) was performed in comparison with visual evaluation. The method of quantitative analysis has been already reported in our previous paper. In this study, the program of re-standardization in the case of lateral myocardial infarction was added. This program was useful mainly for the evaluation of lesions in the left circumflex coronary artery. Regarding the degree of diagnostic accuracy of myocardial infarction in general, quantitative evaluation of myocardial SPECT images was highest followed by visual evaluation of myocardial SPECT images, and visual evaluation of myocardial planar images. However, in the case of anterior myocardial infarction, visual evaluation of myocardial SPECT images has almost the same detectability as quantitative evaluation of myocardial SPECT images. In the case of infero-posterior myocardial infarction, quantitative evaluation was superior to visual evaluation. As for specificity, quantitative evaluation of SPECT images was slightly inferior to visual evaluation of SPECT images. An infarction map was made by quantitative analysis and this enabled us to determine the infarction site, extent and degree according to easily recognizable patterns. As a result, the responsible coronary artery lesion could be inferred correctly and the calculated infarction score could be correlated with the residual left ventricular function after myocardial infarction. (author)

  6. Radionuclide cisternography: SPECT and 3D-rendering. Radionuklidzisternographie: SPECT- und 3D-Technik

    Energy Technology Data Exchange (ETDEWEB)

    Henkes, H; Huber, G; Piepgras, U [Universitaet des Saarlandes, Homburg/Saar (Germany, F.R.). Abt. fuer Neuroradiologie; Hierholzer, J [Freie Univ. Berlin (Germany, F.R.). Strahlenklinik und Poliklinik; Cordes, M [British Columbia Univ., Vancouver, BC (Canada). Belzberg Lab. of Neuroscience

    1991-10-01

    Radionuclide cisternography is indicated in the clinical work-up for hydrocephalus, when searching for CSF leaks, and when testing whether or not intracranial cystic lesions are communicating with the adjacent subarachnoid space. This paper demonstrates the feasibility and diagnostic value of SPECT and subsequent 3D surface rendering in addition to conventional rectilinear CSF imaging in eight patients. Planar images allowed the evaluation of CSF circulation and the detection of CSF fistula. They were advantageous in examinations 48 h after application of {sup 111}In-DTPA. SPECT scans, generated 4-24 h after tracer application, were superior in the delineation of basal cisterns, especially in early scans; this was helpful in patients with pooling due to CSF fistula and in cystic lesions near the skull base. A major drawback was the limited image quality of delayed scans, when the SPECT data were degraded by a low count rate. 3D surface rendering was easily feasible from SPECT data and yielded high quality images. The presentation of the spatial distribution of nuclide-contaminated CSF proved especially helpful in the area of the basal cisterns. (orig.).

  7. Disappearance of myocardial perfusion defects on prone SPECT imaging: Comparison with cardiac magnetic resonance imaging in patients without established coronary artery disease

    Directory of Open Access Journals (Sweden)

    Hedén Bo

    2009-08-01

    Full Text Available Abstract Background It is of great clinical importance to exclude myocardial infarction in patients with suspected coronary artery disease who do not have stress-induced ischemia. The diagnostic use of myocardial perfusion single-photon emission computed tomography (SPECT in this situation is sometimes complicated by attenuation artifacts that mimic myocardial infarction. Imaging in the prone position has been suggested as a method to overcome this problem. Methods In this study, 52 patients without known prior infarction and no stress-induced ischemia on SPECT imaging were examined in both supine and prone position. The results were compared with cardiac magnetic resonance imaging (CMR with delayed-enhancement technique to confirm or exclude myocardial infarction. Results There were 63 defects in supine-position images, 37 of which disappeared in the prone position. None of the 37 defects were associated with myocardial infarction by CMR, indicating that all of them represented attenuation artifacts. Of the remaining 26 defects that did not disappear on prone imaging, myocardial infarction was confirmed by CMR in 2; the remaining 24 had no sign of ischemic infarction but 2 had other kinds of myocardial injuries. In 3 patients, SPECT failed to detect small scars identified by CMR. Conclusion Perfusion defects in the supine position that disappeared in the prone position were caused by attenuation, not myocardial infarction. Hence, imaging in the prone position can help to rule out ischemic heart disease for some patients admitted for SPECT with suspected but not documented ischemic heart disease. This would indicate a better prognosis and prevent unnecessary further investigations and treatment.

  8. SPECT I-123 iodoamphetamine brain imaging

    International Nuclear Information System (INIS)

    Tikofsky, R.S.; Liebman, A.; Hellman, R.S.; Collier, B.D.; Voslar, A.M.

    1988-01-01

    SPECT/IMP studies of 100 patients with a presumptive diagnosis of dementia were performed with a rotating gamma camera 15-20 minutes after intravenous injection of 3.5 mCi of IMP. Of these studies, 43 were interpreted as normal for age; 28 demonstrated decreased but not absent activity bilaterally in posterior parietal/occipital regions (consistent with Alzheimer-type dementia); 28 showed unilateral abnormalities in regional cerebral blood flow consistent with cerebrovascular disease; and one had mixed findings. Based on SPECT/IMP results, further diagnostic testing and/or management would be altered for 72% of patients, suggesting that SPECT/IMP provides valuable data, not available on clinical examination, to guide the evaluation and management of demented patients

  9. Brain SPECT

    International Nuclear Information System (INIS)

    Feistel, H.

    1991-01-01

    Brain SPECT investigations have gained broad acceptance since the introduction of the lipophilic tracer Tc-99m-HMPAO. Depending on equipment and objectives in different departments, the examinations can be divided into three groups: 1. Under normal conditions and standardised patient preparation the 'rest' SPECT can be performed in every department with a tomographic camera. In cerebrovascular disease there is a demand for determination of either the perfusion reserve in reversible ischemia or prognostic values in completed stroke. In cases of dementia, SPECT may yield useful results according to differential diagnosis. Central cerebral system involvement in immunologic disease may be estimated with higher sensitivity than in conventional brain imaging procedures. In psychiatric diseases there is only a relative indication for brain SPECT, since results during recent years have been contradictory and may be derived only in interventional manner. In brain tumor diagnostics SPECT with Tl-201 possibly permits grading. In inflammatory disease, especially in viral encephalitis, SPECT may be used to obtain early diagnosis. Normal pressure hydrocephalus can be distinguished from other forms of dementia and, consequently, the necessity for shunting surgery can be recognised. 2. In departments equipped for emergency cases an 'acute' SPECT can be performed in illnesses with rapid changing symptoms such as different forms of migraine, transient global amnesia, epileptic seizures (so-called 'ictal SPECT') or urgent forms like trauma. 3. In cooperation with several departments brain SPECT can be practised as an interventional procedure in clinical and in scientific studies. (orig./MG) [de

  10. A new reconstruction strategy for image improvement in pinhole SPECT

    International Nuclear Information System (INIS)

    Zeniya, Tsutomu; Watabe, Hiroshi; Kim, Kyeong Min; Teramoto, Noboru; Hayashi, Takuya; Iida, Hidehiro; Aoi, Toshiyuki; Sohlberg, Antti; Kudo, Hiroyuki

    2004-01-01

    Pinhole single-photon emission computed tomography (SPECT) is able to provide information on the biodistribution of several radioligands in small laboratory animals, but has limitations associated with non-uniform spatial resolution or axial blurring. We have hypothesised that this blurring is due to incompleteness of the projection data acquired by a single circular pinhole orbit, and have evaluated a new strategy for accurate image reconstruction with better spatial resolution uniformity. A pinhole SPECT system using two circular orbits and a dedicated three-dimensional ordered subsets expectation maximisation (3D-OSEM) reconstruction method were developed. In this system, not the camera but the object rotates, and the two orbits are at 90 and 45 relative to the object's axis. This system satisfies Tuy's condition, and is thus able to provide complete data for 3D pinhole SPECT reconstruction within the whole field of view (FOV). To evaluate this system, a series of experiments was carried out using a multiple-disk phantom filled with 99m Tc solution. The feasibility of the proposed method for small animal imaging was tested with a mouse bone study using 99m Tc-hydroxymethylene diphosphonate. Feldkamp's filtered back-projection (FBP) method and the 3D-OSEM method were applied to these data sets, and the visual and statistical properties were examined. Axial blurring, which was still visible at the edge of the FOV even after applying the conventional 3D-OSEM instead of FBP for single-orbit data, was not visible after application of 3D-OSEM using two-orbit data. 3D-OSEM using two-orbit data dramatically reduced the resolution non-uniformity and statistical noise, and also demonstrated considerably better image quality in the mouse scan. This system may be of use in quantitative assessment of bio-physiological functions in small animals. (orig.)

  11. Advantages of hybrid SPECT-CT imaging in preoperative localization of parathyroid glands in a patient with secondary hyperparathyroidism. A case report

    International Nuclear Information System (INIS)

    Cytawa, Wojciech; Teodorczyk, Jacek; Lass, Piotr

    2013-01-01

    Secondary hyperparathyroidism is a frequent complication of chronic renal failure. Patients resistant to pharmacotherapy are candidates for parathyroidectomy. Invasiveness of surgical treatment can be minimized by precise preoperative localization of parathyroid glands. Imaging modalities routinely used for this purpose are ultrasonography and MIBI-Tc99m scintigraphy. Our case report shows advantages of co-registered computer tomography and conventional SPECT imaging (SPECT/CT) in a patient with advanced secondary hyperparathyroidism successfully treated with surgery. Hybrid SPECT/CT parathyroid imaging enables better surgical planning and is superior to conventional scintigraphy

  12. Cerebral arteriovenous malformations. the relationship between clinical related events and rCBF SPECT imaging

    International Nuclear Information System (INIS)

    Sun Bo; Shi Xiangen

    1996-01-01

    To evaluate the relationship between clinical related events and rCBF SPECT imaging in patients with arteriovenous malformations (AVMs), the radioactive counting difference between normal and lesion site was divided by regional pixel considered as ischemic index (II). II was measured in 20 AVM cases and compared with patients' age, sex,neurological history and the size of lesions. The degree of rCBF reduction correlated with clinical neurological manifestation and showed no significant relationship with the age, sex and size of malformed vessels. II in patients with seizures was higher than that in patients with hemorrhage. The rCBF SPECT imaging may be useful for evaluation of the hemodynamics in AVMs

  13. Present and future of the hybrid imaging method SPECT/CT

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2013-01-01

    Full text: Introduction: Based on the data in the literature and on our 4 year clinical experience applied for the first time in our country hybrid imaging - single photon emission tomography combined with computed tomography (SPECT / CT) it is clear that to obtain comprehensive information about the function and structure of the studied organ; the time for the diagnosis and thus the start of adequate treatment become shorter. The resulting scintigraphic image is with better quality due to CT correction of ‘diffusion’ gamma radiation, which leads to greater diagnostic accuracy. What you will learn: complex imaging method is used mainly in the field of endocrinology, cardiology, oncology, orthopedics, pulmology, neurology, and neurosurgery. It can be prove a given disease by visualization and localization of the organ lesions and determine the stage of the tumor process, to plan the type of subsequent treatment, to follow the effects of the therapy, and to predict the effect of an interventional or miniinvasive surgical procedure. Discussion: The result of the application of the hybrid imaging method is a change in the interpretation of more than half of the studied patients and in the treatment in more than a quarter of them. Conclusion: The clinical indications for SPECT/CT, and evidence of increased diagnostic accuracy compared with self- administered scintigraphic or CT methods are continuous expanded

  14. Improved image quality for asymmetric double-focal cone-beam SPECT

    International Nuclear Information System (INIS)

    Cao, Z.J.; Tsui, B.M.W.

    1993-01-01

    To optimize both spatial resolution and detection efficiency in brain SPECT imaging using a rectangular camera, an asymmetric double-focal cone-beam collimator is proposed with the focal points located near the base plane of the patient's head. To fit the entire head into the field-of-view of the collimator with dimensions of 50cmx40cm and at a radius-of-rotation of 15 cm, the focal lengths of the collimator are 55 and 70 cm, respectively, in the transverse and axial directions. With this geometry, the artifacts in the reconstructed image produced by the Feldkamp algorithm are more severe compared to those in a symmetric cone-beam geometry, due to the larger vertex angle between the top of the head and the base plane. To improve the reconstructed image quality, a fully three-dimensional (3D) reconstruction algorithm developed previously for single-focal cone-beam SPECT was extended to the asymmetric double-focal cone-beam geometry. The algorithm involves nonstationary 2D filtering and a reprojection technique for estimation of the missing data caused by a single-orbit cone-beam geometry. The results from simulation studies with the 3D Defrise slab phantom demonstrated that the fully 3D algorithm provided a much improved image quality in terms of reduced slice-to-slice cross talks and shape elongation compared to that produced by the conventional Feldkamp algorithm

  15. Use of quantitative SPECT/CT reconstruction in 99mTc-sestamibi imaging of patients with renal masses.

    Science.gov (United States)

    Jones, Krystyna M; Solnes, Lilja B; Rowe, Steven P; Gorin, Michael A; Sheikhbahaei, Sara; Fung, George; Frey, Eric C; Allaf, Mohamad E; Du, Yong; Javadi, Mehrbod S

    2018-02-01

    Technetium-99m ( 99m Tc)-sestamibi single-photon emission computed tomography/computed tomography (SPECT/CT) has previously been shown to allow for the accurate differentiation of benign renal oncocytomas and hybrid oncocytic/chromophobe tumors (HOCTs) apart from other malignant renal tumor histologies, with oncocytomas/HOCTs showing high uptake and renal cell carcinoma (RCC) showing low uptake based on uptake ratios from non-quantitative single-photon emission computed tomography (SPECT) reconstructions. However, in this study, several tumors fell close to the uptake ratio cutoff, likely due to limitations in conventional SPECT/CT reconstruction methods. We hypothesized that application of quantitative SPECT/CT (QSPECT) reconstruction methods developed by our group would provide more robust separation of hot and cold lesions, serving as an imaging framework on which quantitative biomarkers can be validated for evaluation of renal masses with 99m Tc-sestamibi. Single-photon emission computed tomography data were reconstructed using the clinical Flash 3D reconstruction and QSPECT methods. Two blinded readers then characterized each tumor as hot or cold. Semi-quantitative uptake ratios were calculated by dividing lesion activity by background renal activity for both Flash 3D and QSPECT reconstructions. The difference between median (mean) hot and cold tumor uptake ratios measured 0.655 (0.73) with the QSPECT method and 0.624 (0.67) with the conventional method, resulting in increased separation between hot and cold tumors. Sub-analysis of 7 lesions near the separation point showed a higher absolute difference (0.16) between QPSECT and Flash 3D mean uptake ratios compared to the remaining lesions. Our finding of improved separation between uptake ratios of hot and cold lesions using QSPECT reconstruction lays the foundation for additional quantitative SPECT techniques such as SPECT-UV in the setting of renal 99m Tc-sestamibi and other SPECT/CT exams. With robust

  16. Study on the usefulness of whole body SPECT coronal image, MIP image in 67Ga scintigraphy

    International Nuclear Information System (INIS)

    Kawamura, Seiji

    2002-01-01

    In this study, we examined the usefulness of whole body coronal images and whole body cine display MIP images (CMIP) upon which image processing was carried out after whole body SPECT in comparison to the usefulness of whole body images (WB/SC) compensated by scattered radiation in tumor/inflammation scintigraphy with 67 Ga-citrate ( 67 Ga). Image interpretation was performed for the 120 patients with confirmed diagnoses, and the accuracy of their diagnoses was studied by three nuclear medical physicians and two clinical radiological technologists by means of sensitivity, specificity and ROC analysis. The resultant data show that sensitivity, specificity, accuracy and the area under the ROC curve Az in the WB/SC were approximately 65%, 86%, 74% and 0.724, respectively, whereas sensitivity, specificity, accuracy and Az of the image reading system in which CMIP is combined with whole body coronal images reconstructed by the OS-EM method were approximately 93%, 95%, 94% and 0.860, respectively. Furthermore, coronal images reconstructed by the OS-EM method tended to be superior to those produced by the FBP method in both diagnostic accuracy and ROC analysis. In conclusion, the image reading system in which CMIP is combined with whole body coronal images reconstructed by the OS-EM method was shown to be superior in diagnostic accuracy and ROC analysis. Our data suggest that whole body SPECT is an excellent technique as an alternative to WB/SC. (author)

  17. Technical Considerations of Phosphorous-32 Bremsstrahlung SPECT Imaging after Radio embolization of Hepatic Tumors: A Clinical Assessment with a Review of Imaging Parameters

    International Nuclear Information System (INIS)

    Pirayesh, E.; Amoui, M.; Khorrami, M.; Akhlaghpoor, Sh.; Tolooee, Sh.; PoorBeigi, H.; Sheibani, Sh.; Assadi, M.

    2014-01-01

    Bremsstrahlung (BS) imaging during radio embolization (RE) confirms the deposition of radiotracer in hepatic/extrahepatic tumors. The aim of this study is to demonstrate '3 2 P images and to optimize the imaging parameters. Materials and Methods. Thirty-nine patients with variable types of hepatic tumors, treated with the intra-arterial injection of 32 P, were included. All patients underwent BS SPECT imaging 24-72 h after tracer administration, using low energy high resolution (LEHR) (18 patients) or medium energy general purpose (MEGP) (21 patients) collimators. A grading scale from 1 to 4 was used to express the compatibility of the 32 P images with those obtained from CT/MRI. Results. Although the image quality obtained with the MEGP collimator was visually and quantitatively better than with the LEHR (76% concordance score versus 71%, resp.), there was no statistically significant difference between them. Conclusion. The MEGP collimator is the first choice for BS SPECT imaging. However, if the collimator change is time consuming (as in a busy center) or an MEGP collimator is not available, the LEHR collimator could be practical with acceptable images, especially in a SPECT study. In addition, BS imaging is a useful method to confirm the proper distribution of radiotherapeutic agents and has good correlation with anatomical findings.

  18. Assessment of the sources of error affecting the quantitative accuracy of SPECT imaging in small animals

    Energy Technology Data Exchange (ETDEWEB)

    Joint Graduate Group in Bioengineering, University of California, San Francisco and University of California, Berkeley; Department of Radiology, University of California; Gullberg, Grant T; Hwang, Andrew B.; Franc, Benjamin L.; Gullberg, Grant T.; Hasegawa, Bruce H.

    2008-02-15

    Small animal SPECT imaging systems have multiple potential applications in biomedical research. Whereas SPECT data are commonly interpreted qualitatively in a clinical setting, the ability to accurately quantify measurements will increase the utility of the SPECT data for laboratory measurements involving small animals. In this work, we assess the effect of photon attenuation, scatter and partial volume errors on the quantitative accuracy of small animal SPECT measurements, first with Monte Carlo simulation and then confirmed with experimental measurements. The simulations modeled the imaging geometry of a commercially available small animal SPECT system. We simulated the imaging of a radioactive source within a cylinder of water, and reconstructed the projection data using iterative reconstruction algorithms. The size of the source and the size of the surrounding cylinder were varied to evaluate the effects of photon attenuation and scatter on quantitative accuracy. We found that photon attenuation can reduce the measured concentration of radioactivity in a volume of interest in the center of a rat-sized cylinder of water by up to 50percent when imaging with iodine-125, and up to 25percent when imaging with technetium-99m. When imaging with iodine-125, the scatter-to-primary ratio can reach up to approximately 30percent, and can cause overestimation of the radioactivity concentration when reconstructing data with attenuation correction. We varied the size of the source to evaluate partial volume errors, which we found to be a strong function of the size of the volume of interest and the spatial resolution. These errors can result in large (>50percent) changes in the measured amount of radioactivity. The simulation results were compared with and found to agree with experimental measurements. The inclusion of attenuation correction in the reconstruction algorithm improved quantitative accuracy. We also found that an improvement of the spatial resolution through the

  19. U-SPECT-BioFluo : An integrated radionuclide, bioluminescence, and fluorescence imaging platform

    NARCIS (Netherlands)

    Van Oosterom, M.N.; Kreuger, R.; Buckle, T.; Mahn, W.A.; Bunschoten, A.; Josephson, L.; Van Leeuwen, F.W.B.; Beekman, F.J.

    2014-01-01

    Background: In vivo bioluminescence, fluorescence, and single-photon emission computed tomography (SPECT) imaging provide complementary information about biological processes. However, to date these signatures are evaluated separately on individual preclinical systems. In this paper, we introduce a

  20. Usefulness of corregistration and post-processing of MR and interictal SPECT images for localization of epileptogenic focus in children – preliminary report

    International Nuclear Information System (INIS)

    Miśko, Jolanta; Jurkiewicz, Elżbieta; Bekiesińska-Figatowska, Monika; Kamińska, Anna; Bachański, Zbigniew; Chełstowska, Sylwia; Walecki, Jerzy

    2011-01-01

    Children with focal epilepsy unresponsive to anticonvulsant therapy may become surgical candidates. Inter-ictal SPECT (SPECT-IN) studies demonstrate an area of hypoperfusion within the seizure focus in up to 50% of patients. The goal of this study was to evaluate the usefulness of corregistration of MR and SPECT-IN images for localization of the epileptogenic focus. Brain MRI and SPECT-IN were performed in 20 children (mean age 9.5). We found multifocal (3–6 perfusion deficits in 10 patients) or diffuse perfusion deficits (lobar) in all patients. In fused MR and SPECT images we evaluated average activity in volumes-of-interest (VOIs) outlined in each gray matter region with deficits. Average VOI activity below average total brain activity with at least 15% difference to the mirror VOI in the brain cortex on the opposite side of was considered as “true” perfusion deficit (TPD). In all children from our group, MRI and SPECT-IN image fusion and evaluation of TPD allowed to verify most of multifocal or diffuse deficits: in each of 12 patients we found 1 TPD, in each of 6 patients 2 TPD and in each of 2 patients 3 TPD. In 8 patients with 2 or 3 TPD we used scalp EEG or ictal SPECT for identification of one probable location of epileptogenic focus. In children with refractory focal epilepsy, image fusion of MRI and SPECT-IN with evaluation of TPD has potential clinical utility in localization of epileptogenic focus

  1. An automatic MRI/SPECT registration algorithm using image intensity and anatomical feature as matching characters: application on the evaluation of Parkinson's disease

    International Nuclear Information System (INIS)

    Lee, J.-D.; Huang, C.-H.; Weng, Y.-H.; Lin, K.-J.; Chen, C.-T.

    2007-01-01

    Single-photon emission computed tomography (SPECT) of dopamine transporters with 99m Tc-TRODAT-1 has recently been proposed to offer valuable information in assessing the functionality of dopaminergic systems. Magnetic resonance imaging (MRI) and SPECT imaging are important in the noninvasive examination of dopamine concentration in vivo. Therefore, this investigation presents an automated MRI/SPECT image registration algorithm based on a new similarity metric. This similarity metric combines anatomical features that are characterized by specific binding, the mean count per voxel in putamens and caudate nuclei, and the distribution of image intensity that is characterized by normalized mutual information (NMI). A preprocess, a novel two-cluster SPECT normalization algorithm, is also presented for MRI/SPECT registration. Clinical MRI/SPECT data from 18 healthy subjects and 13 Parkinson's disease (PD) patients are involved to validate the performance of the proposed algorithms. An appropriate color map, such as 'rainbow,' for image display enables the two-cluster SPECT normalization algorithm to provide clinically meaningful visual contrast. The proposed registration scheme reduces target registration error from >7 mm for conventional registration algorithm based on NMI to approximately 4 mm. The error in the specific/nonspecific 99m Tc-TRODAT-1 binding ratio, which is employed as a quantitative measure of TRODAT receptor binding, is also reduced from 0.45±0.22 to 0.08±0.06 among healthy subjects and from 0.28±0.18 to 0.12±0.09 among PD patients

  2. Prognostic value of normal stress-only myocardial perfusion imaging: a comparison between conventional and CZT-based SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Shu; Ottervanger, Jan Paul; Timmer, Jorik R. [Isala Hospital, Department of Cardiology, Zwolle (Netherlands); Mouden, Mohamed; Engbers, Elsemiek [Isala Hospital, Department of Cardiology, Zwolle (Netherlands); Isala Hospital, Department of Nuclear Medicine, Zwolle (Netherlands); Knollema, Siert; Jager, Pieter L. [Isala Hospital, Department of Nuclear Medicine, Zwolle (Netherlands)

    2016-02-15

    Single photon emission computed tomography (SPECT) myocardial perfusion imaging has proven to have prognostic importance in patients with suspected stable coronary artery disease (CAD). The recently introduced ultrafast cadmium zinc telluride (CZT)-based gamma cameras have been associated with less equivocal findings and more normal interpretations, allowing stress-only imaging to be performed more often. However, it is yet unclear whether normal stress-only CZT SPECT has comparable prognostic value as normally interpreted stress-only conventional SPECT. The study population consisted of 1,650 consecutive patients without known CAD with normal stress-only myocardial perfusion results with either conventional (n = 362) or CZT SPECT (n = 1,288). The incidence of major adverse cardiac events (MACE, all-cause death, non-fatal myocardial infarction and/or coronary revascularization) was compared between the conventional SPECT and CZT SPECT groups. Multivariable analyses using the Cox model were used to adjust for differences in baseline variables. Patients scanned with CZT were less often male (33 vs 39 %), had less often hypercholesterolaemia (41 vs 50 %) and had more often a family history of CAD (57 vs 49 %). At a median follow-up time of 37 months (interquartile range 28-45 months) MACE occurred in 68 patients. The incidence of MACE was 1.5 %/year in the CZT group, compared to 2.0 %/year in the conventional group (p = 0.08). After multivariate analyses, there was a trend to a lower incidence of MACE in the CZT SPECT group (hazard ratio 0.61, 95 % confidence interval 0.35-1.04, p = 0.07). The prognostic value of normal stress-only CZT SPECT is at least comparable and may be even better than that of normal conventional stress SPECT. (orig.)

  3. SPECT/CT and pulmonary embolism

    Energy Technology Data Exchange (ETDEWEB)

    Mortensen, Jann [Copenhagen University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); The Faroese National Hospital, Department of Medicine, Torshavn (Faroe Islands); Gutte, Henrik [Copenhagen University Hospital, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark); Herlev Hospital, Copenhagen University Hospital, Department of Radiology, Copenhagen (Denmark); University of Copenhagen, Cluster for Molecular Imaging, Faculty of Health Sciences, Copenhagen (Denmark)

    2014-05-15

    Acute pulmonary embolism (PE) is diagnosed either by ventilation/perfusion (V/P) scintigraphy or pulmonary CT angiography (CTPA). In recent years both techniques have improved. Many nuclear medicine centres have adopted the single photon emission CT (SPECT) technique as opposed to the planar technique for diagnosing PE. SPECT has been shown to have fewer indeterminate results and a higher diagnostic value. The latest improvement is the combination of a low-dose CT scan with a V/P SPECT scan in a hybrid tomograph. In a study comparing CTPA, planar scintigraphy and SPECT alone, SPECT/CT had the best diagnostic accuracy for PE. In addition, recent developments in the CTPA technique have made it possible to image the pulmonary arteries of the lungs in one breath-hold. This development is based on the change from a single-detector to multidetector CT technology with an increase in volume coverage per rotation and faster rotation. Furthermore, the dual energy CT technique is a promising modality that can provide functional imaging in combination with anatomical information. Newer high-end CT scanners and SPECT systems are able to visualize smaller subsegmental emboli. However, consensus is lacking regarding the clinical impact and treatment. In the present review, SPECT and SPECT in combination with low-dose CT, CTPA and dual energy CT are discussed in the context of diagnosing PE. (orig.)

  4. Practical reconstruction protocol for quantitative {sup 90}Y bremsstrahlung SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Siman, W.; Mikell, J. K.; Kappadath, S. C., E-mail: skappadath@mdanderson.org [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States)

    2016-09-15

    Purpose: To develop a practical background compensation (BC) technique to improve quantitative {sup 90}Y-bremsstrahlung single-photon emission computed tomography (SPECT)/computed tomography (CT) using a commercially available imaging system. Methods: All images were acquired using medium-energy collimation in six energy windows (EWs), ranging from 70 to 410 keV. The EWs were determined based on the signal-to-background ratio in planar images of an acrylic phantom of different thicknesses (2–16 cm) positioned below a {sup 90}Y source and set at different distances (15–35 cm) from a gamma camera. The authors adapted the widely used EW-based scatter-correction technique by modeling the BC as scaled images. The BC EW was determined empirically in SPECT/CT studies using an IEC phantom based on the sphere activity recovery and residual activity in the cold lung insert. The scaling factor was calculated from 20 clinical planar {sup 90}Y images. Reconstruction parameters were optimized in the same SPECT images for improved image quantification and contrast. A count-to-activity calibration factor was calculated from 30 clinical {sup 90}Y images. Results: The authors found that the most appropriate imaging EW range was 90–125 keV. BC was modeled as 0.53× images in the EW of 310–410 keV. The background-compensated clinical images had higher image contrast than uncompensated images. The maximum deviation of their SPECT calibration in clinical studies was lowest (<10%) for SPECT with attenuation correction (AC) and SPECT with AC + BC. Using the proposed SPECT-with-AC + BC reconstruction protocol, the authors found that the recovery coefficient of a 37-mm sphere (in a 10-mm volume of interest) increased from 39% to 90% and that the residual activity in the lung insert decreased from 44% to 14% over that of SPECT images with AC alone. Conclusions: The proposed EW-based BC model was developed for {sup 90}Y bremsstrahlung imaging. SPECT with AC + BC gave improved lesion

  5. The early diagnostic value of oral acetazolamide load combined with SPECT rCBF imaging in patients with transient ischemia attack in brain

    International Nuclear Information System (INIS)

    Liu Xintong; Zheng Zhiping; Qiao Suixian; Tang Anwu

    2001-01-01

    Objective: In order to assess the diagnostic value of acetazolamide (ACZ) combined with rCBF-SPECT imaging in patients with transient ischemia attack (TIA). Methods: SPECT imaging was performed before and after oral ACZ with visual and semiquantitative analysis of the images. Blood gas analysis was done before and after ACZ administration either. Results: After ACZ loading, in normal group, 99 Tc m -ECD was distributed symmetrically on correspondent parts of the brain and rCBF was generally increased. The blood pH was decreased and blood PCO 2 was increased, respectively in TIA group, the positive rate of hypoperfusion foci on SPECT images were increased from 5/6 to 6/6 in symptomatic patients and from 60% to 92% in asymptomatic patients. The total positive rate was 93%. Conclusion: Oral ACZ before SPECT imaging is a simple, reliable way for early diagnosis in patients with TIA

  6. I-123 Iofetamine SPECT scan in children with neurological disorders

    International Nuclear Information System (INIS)

    Flamini, J.R.; Konkol, R.J.; Wells, R.G.; Sty, J.R.

    1990-01-01

    I-123 Iofetamine (IMP) single photon emission computed tomography (SPECT) imaging of the brain in 42 patients (ages 14 days to 23 years) was compared with other localizing studies in children with neurological diseases. All had an EEG and at least one imaging study of the brain (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Seventy-eight percent of the patients had an EEG within 24-72 hours of the IMP-SPECT scan. Thirty-five (83%) had a history of seizures, and the remainder had other neurological conditions without a history of seizures. In most cases, a normal EEG reading with normal CT or MRI result predicted a normal SPECT study. When the EEG was abnormal the majority of the IMP-SPECT scans were abnormal and localized the abnormality to the same region. A comparison with CT and MRI showed that structural abnormalities involving the cortex were usually well demonstrated with IMP-SPECT imaging. Structural lesions confined to the white matter were generally not detectable with IMP-SPECT. In a few cases, SPECT scans revealed abnormalities in deep brain areas not identified by EEG. IMP-SPECT imaging is a valuable technique for the detection and localization of abnormal cerebral metabolic activity in children with seizure disorders. A correlation with CT or MRI is essential for proper interpretation of abnormalities detected with IMP SPECT imaging

  7. Evaluation of usefulness of thallium-201-SPECT and CT images in differential diagnosis between organizing pneumonia and primary lung cancer

    International Nuclear Information System (INIS)

    Nakamura, Kazuhiko; Fujiwara, Yoshio; Ogawa, Hirofumi; Nakano, Kenji; Ogawa, Toshihide

    2007-01-01

    We tried differential diagnosis between organizing pneumonia and primary lung cancer using CT and 201 Tl single photon emission computed tomography (SPECT) images. CT images were estimated margin, air space consolidation, air bronchogram, ground-glass attenuation, spicula and indentation of the lesions. 201 Tl SPECT images were evaluated early and delayed lesion-to-normal contralateral lung uptake ratio (ER and DR) and retention index (RI). Clearness of margin and ground-glass attenuation of CT images of organizing pneumonia were significant different from those of primary lung cancer. On the other hand, DR and RI of organizing pneumonia were significant lower than those of primary lung cancer. We emphasized that 201 Tl SPECT was useful to evaluate differential diagnosis between organizing pneumonia and primary lung cancer. (author)

  8. Creation and evaluation of complementary composite three-dimensional image in various brain diseases. An application of three-dimensional brain SPECT image and three-dimensional CT image

    International Nuclear Information System (INIS)

    Seiki, Yoshikatsu; Shibata, Iekado; Mito, Toshiaki; Sugo, Nobuo

    2000-01-01

    The purpose of this study was to develop 3D composite images for use in functional and anatomical evaluation of various cerebral pathologies. Imaging studies were performed in normal volunteers, patients with hydrocephalus and patients with brain tumor (meningioma and metastatic tumor) using a three-detector SPECT system (Prism 3000) and helical CT scanner (Xvigor). 123 I-IMP was used in normal volunteers and patients with hydrocephalus, and 201 TLCL in patients with brain tumor. An Application Visualization System-Medical Viewer (AVS-MV) was used on a workstation (Titan 2) to generate 3D images. A new program was developed by synthesizing surface rendering and volume rendering techniques. The clinical effects of shunt operations were successfully evaluated in patients with hydrocephalus by means of translucent 3D images of the deep brain. Changes in the hypoperfusion area around the cerebral ventricle were compared with morphological changes in the cerebral ventricle on CT. In addition to the information concerning the characteristics of brain tumors and surrounding edemas, hemodynamic changes and changeable hypoperfusion areas around the tumors were visualized on 3D composite CT and SPECT images. A new method of generating 3D composite images of CT and SPECT was developed by combining graphic data from different systems on the same workstation. Complementary 3D composite images facilitated quantitative analysis of brain volume and functional analysis in various brain diseases. (author)

  9. Motor activation SPECT for the neurosurgical diseases. Clinical application

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime

    1999-01-01

    We evaluated and analyzed the motor activation single photon emission computed tomography (M-SPECT) findings on patients with ischemic cerebrovascular diseases (CVD). The M-SPECT studies were carried out on 91 patients with ischemic cerebrovascular diseases. The M-SPECT study was performed using the finger opposition task in each case. The SPECT images were superimposed on the magnetic resonance images (MRIs) for each case using Image Fusion Software. The result of the M-SPECT was expressed as positive or negative. The cases with a marked increase of blood flow in the sensorio-motor cortex after the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among the 91 cases examined, 53 (58%) were categorized as positive in the M-SPECT study. Among the negative M-SPECT cases treated with revascularization surgery, there were some cases showing positive M-SPECT results postoperatively. The cases without any revascularization surgery did not change the M-SPECT findings in each during the follow-up period. The M-SPECT procedure for examining intracranial lesions could provide the cortical localization of the motor function. The M-SPECT procedure in the ischemic CVDs contributes to knowledge about the choices of treatment and the evaluation of the treatment result. (author)

  10. Motor activation SPECT for the neurosurgical diseases. Clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-08-01

    We evaluated and analyzed the motor activation single photon emission computed tomography (M-SPECT) findings on patients with ischemic cerebrovascular diseases (CVD). The M-SPECT studies were carried out on 91 patients with ischemic cerebrovascular diseases. The M-SPECT study was performed using the finger opposition task in each case. The SPECT images were superimposed on the magnetic resonance images (MRIs) for each case using Image Fusion Software. The result of the M-SPECT was expressed as positive or negative. The cases with a marked increase of blood flow in the sensorio-motor cortex after the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among the 91 cases examined, 53 (58%) were categorized as positive in the M-SPECT study. Among the negative M-SPECT cases treated with revascularization surgery, there were some cases showing positive M-SPECT results postoperatively. The cases without any revascularization surgery did not change the M-SPECT findings in each during the follow-up period. The M-SPECT procedure for examining intracranial lesions could provide the cortical localization of the motor function. The M-SPECT procedure in the ischemic CVDs contributes to knowledge about the choices of treatment and the evaluation of the treatment result. (author)

  11. Clinical use of digital retrospective image fusion of CT, MRI, FDG-PET and SPECT - fields of indications and results

    International Nuclear Information System (INIS)

    Lemke, A.J.; Niehues, S.M.; Amthauer, H.; Felix, R.; Rohlfing, T.; Hosten, N.

    2004-01-01

    Purpose: To evaluate the feasibility and the clinical benefits of retrospective digital image fusion (PET, SPECT, CT and MRI). Materials and methods: In a prospective study, a total of 273 image fusions were performed and evaluated. The underlying image acquisitions (CT, MRI, SPECT and PET) were performed in a way appropriate for the respective clinical question and anatomical region. Image fusion was executed with a software program developed during this study. The results of the image fusion procedure were evaluated in terms of technical feasibility, clinical objective, and therapeutic impact. Results: The most frequent combinations of modalities were CT/PET (n = 156) and MRI/PET (n = 59), followed by MRI/SPECT (n = 28), CT/SPECT (n = 22) and CT/MRI (n = 8). The clinical questions included following regions (more than one region per case possible): neurocranium (n = 42), neck (n = 13), lung and mediastinum (n = 24), abdomen (n = 181), and pelvis (n = 65). In 92.6% of all cases (n = 253), image fusion was technically successful. Image fusion was able to improve sensitivity and specificity of the single modality, or to add important diagnostic information. Image fusion was problematic in cases of different body positions between the two imaging modalities or different positions of mobile organs. In 37.9% of the cases, image fusion added clinically relevant information compared to the single modality. Conclusion: For clinical questions concerning liver, pancreas, rectum, neck, or neurocranium, image fusion is a reliable method suitable for routine clinical application. Organ motion still limits its feasibility and routine use in other areas (e.g., thorax). (orig.)

  12. Image fusion analysis of 99mTc-HYNIC-Tyr3-octreotide SPECT and diagnostic CT using an immobilisation device with external markers in patients with endocrine tumours

    International Nuclear Information System (INIS)

    Gabriel, Michael; Hausler, Florian; Moncayo, Roy; Decristoforo, Clemens; Virgolini, Irene; Bale, Reto; Kovacs, Peter

    2005-01-01

    The aim of this study was to assess the value of multimodality imaging using a novel repositioning device with external markers for fusion of single-photon emission computed tomography (SPECT) and computed tomography (CT) images. The additional benefit derived from this methodological approach was analysed in comparison with SPECT and diagnostic CT alone in terms of detection rate, reliability and anatomical assignment of abnormal findings with SPECT. Fifty-three patients (30 males, 23 females) with known or suspected endocrine tumours were studied. Clinical indications for somatostatin receptor (SSTR) scintigraphy (SPECT/CT image fusion) included staging of newly diagnosed tumours (n=14) and detection of unknown primary tumour in the presence of clinical and/or biochemical suspicion of neuroendocrine malignancy (n=20). Follow-up studies after therapy were performed in 19 patients. A mean activity of 400 MBq of 99m Tc-EDDA/HYNIC-Tyr 3 -octreotide was given intravenously. SPECT using a dual-detector scintillation camera and diagnostic multi-detector CT were sequentially performed. To ensure reproducible positioning, patients were fixed in an individualised vacuum mattress with modality-specific external markers for co-registration. SPECT and CT data were initially interpreted separately and the fused images were interpreted jointly in consensus by nuclear medicine and diagnostic radiology physicians. SPECT was true-positive (TP) in 18 patients, true-negative (TN) in 16, false-negative (FN) in ten and false-positive (FP) in nine; CT was TP in 18 patients, TN in 21, FP in ten and FN in four. With image fusion (SPECT and CT), the scan result was TP in 27 patients (50.9%), TN in 25 patients (47.2%) and FN in one patient, this FN result being caused by multiple small liver metastases; sensitivity was 95% and specificity, 100%. The difference between SPECT and SPECT/CT was statistically as significant as the difference between CT and SPECT/CT image fusion (P<0

  13. Significance of 99mTc-MIBI myocardial SPECT imaging in diagnosis of syndrome X

    International Nuclear Information System (INIS)

    Tian Yueqing; Liu Xiujie; Jiao Shubin

    1996-01-01

    To assess the value of myocardial imaging in the diagnosis of syndrome X, the study was performed with 99m Tc-MIBI myocardial SPECT imaging in 64 patients. The patients were divided into three groups: group 1 had 21 patients diagnosed as syndrome X, group 2 had 17 patients with chest pain and normal coronary arteries without ST segment depression during exercise, group 3 had 26 patients with the angina pectoris and coronary stenoses≥50%. The myocardial SPECT imaging of the three groups was compared qualitatively and semi-quantitatively. Myocardial imaging identified 11 cases of myocardial ischemia from 21 patients with syndrome X. The ischemic score of myocardial imaging was 1.1 +- 0.3 for syndrome X and 1.8 +- 0.7 for patients with coronary heart disease (CHD) angina pectoris (t = 3.1746, P<0.01). Myocardial imaging may partly show myocardial ischemia in patients with syndrome X. The extent of ischemia in patients with syndrome X was significantly less than that in patients with CHD angina pectoris

  14. Evaluation of the superselective radioligand [123I]PE2I for imaging of the dopamine transporter in SPECT

    DEFF Research Database (Denmark)

    Ziebell, Morten

    a B/I ratio of [123I]PE2I. This B/I ratio (2.7h) gave rise to steady state conditions and excellent reproducibility. Further, manual delineation of ROI directly on SPECT images performed equally well to a MRI-defined probability map based ROI delineation in terms of intrasubject variability of binding......Imaging of the dopamine transporter (DAT) with Single Photon Emission Computer Tomography (SPECT) has increasingly been used as a biomarker for the integrity of presynaptic dopaminergic nerve cells in patients with movement disorders. 123-I-labelled N-(3-iodoprop-2E-enyl)-2-β-carbomethoxy-3β-(4...... potential of DAT. Finally the in vivo SERT binding in DAT images obtained with [123I]FP-CIT was significant as compared to the [123I]PE2I image. [123I]PE2I is a super selective SPECT DAT radioligand with optimal kinetic properties for accurate quantification of the DAT availability in striatum. Apart from...

  15. Evaluation of the superselective radioligand [123I]PE2I for imaging of the dopamine transporter in SPECT

    DEFF Research Database (Denmark)

    Ziebell, Morten

    2011-01-01

    a B/I ratio of [123I]PE2I. This B/I ratio (2.7h) gave rise to steady state conditions and excellent reproducibility. Further, manual delineation of ROI directly on SPECT images performed equally well to a MRI-defined probability map based ROI delineation in terms of intrasubject variability of binding......Imaging of the dopamine transporter (DAT) with Single Photon Emission Computer Tomography (SPECT) has increasingly been used as a biomarker for the integrity of presynaptic dopaminergic nerve cells in patients with movement disorders. 123-I-labelled N-(3-iodoprop-2E-enyl)-2-ß-carbomethoxy-3ß-(4...... potential of DAT. Finally the in vivo SERT binding in DAT images obtained with [123I]FP-CIT was significant as compared to the [123I]PE2I image. [123I]PE2I is a super selective SPECT DAT radioligand with optimal kinetic properties for accurate quantification of the DAT availability in striatum. Apart from...

  16. FlipADAM: a potential new SPECT imaging agent for the serotonin transporter

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Julie L.; Deutsch, Eric C. [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Oya, Shunichi [Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Kung, Hank F., E-mail: kunghf@gmail.co [Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States); Department of Radiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104 (United States)

    2010-07-15

    Introduction: Single photon emission computed tomography (SPECT) imaging of the serotonin transporter (SERT) in the brain is a useful tool for examining normal physiological functions and disease states involving the serotonergic system. The goal of this study was to develop an improved SPECT radiotracer with faster kinetics than the current leading SPECT tracer, [{sup 123}I]ADAM, for selective SERT imaging. Methods: The in vitro binding affinities of (2-(2'-((dimethylamino)methyl)-4'-iodophenylthio)benzenamine) (FlipADAM) (1c), were determined using Hampshire pig kidney cells stably overexpressing the serotonin, norepinephrine (NET) or dopamine transporter (DAT). Localization of [{sup 125}I]FlipADAM (1c) was evaluated through biodistribution and autoradiography in male Sprague Dawley rats, and the specificity of binding was assessed by injecting selective SERT or NET inhibitors prior to [{sup 125}I]FlipADAM (1c). Results: FlipADAM (1c) displayed a high binding affinity for SERT (K{sub i}=1.0 nM) and good selectivity over NET and DAT binding (43-fold and 257-fold, respectively). [{sup 125}I]FlipADAM (1c) successfully penetrated the blood brain barrier, as evidenced by the brain uptake at 2 min (1.75% dose/g). [{sup 125}I]FlipADAM(1c) also had a good target to non-target (hypothalamus/cerebellum) ratio of 3.35 at 60 min post-injection. In autoradiography studies, [{sup 125}I]FlipADAM (1c) showed selective localization in SERT-rich brain regions such as the thalamic nuclei, amygdala, dorsal raphe nuclei and other areas. Conclusion: [{sup 125}I]FlipADAM (1c) exhibited faster clearance from the brain and time to binding equilibrium when compared to [{sup 125}I]2-(2'-((dimethylamino)methyl)-phenylthio)-5-iodophenylamine [{sup 125}I]ADAM (1b) and a higher target to non-target ratio when compared to [{sup 125}I]5-iodo-2-(2'-((dimethylamino)methyl)-phenylthio)benzyl alcohol [{sup 125}I]IDAM (1a). Therefore, [{sup 123}I]FlipADAM (1c) may be an improved

  17. Advances in SPECT Instrumentation (Including Small Animal Scanners). Chapter 4

    International Nuclear Information System (INIS)

    Di Domenico, G.; Zavattini, G.

    2009-01-01

    Fundamental major efforts have been devoted to the development of positron emission tomography (PET) imaging modality over the last few decades. Recently, a novel surge of interest in single photon emission computed tomography (SPECT) technology has occurred, particularly after the introduction of the hybrid SPECT-CT imaging system. This has led to a flourishing of investigations in new types of detectors and collimators, and to more accurate refinement of reconstruction algorithms. Along with SPECT-CT, new, fast gamma cameras have been developed for dedicated cardiac imaging. The existing gap between PET and SPECT in sensitivity and spatial resolution is progressively decreasing, and this trend is particularly apparent in the field of small animal imaging where the most important advances have been reported in SPECT tomographs. An outline of the basic features of SPECT technology, and of recent developments in SPECT instrumentation for both clinical applications and basic biological research on animal models is described. (author)

  18. Comparative analysis of MR imaging, Ictal SPECT and EEG in temporal lobe epilepsy: a prospective IAEA multi-center study

    Energy Technology Data Exchange (ETDEWEB)

    Zaknun, John J. [University Hospital of Innsbruck, Department of Nuclear Medicine, Innsbruck (Austria); International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Vienna (Austria); IAEA, Nuclear Medicine Section, Division of Human Health, Wagramer Strasse 5, P.O. Box 100, Wien (Austria); Bal, Chandrasekhar [All India Institute of Medical Sciences, Department of Nuclear Medicine, New Delhi (India); Maes, Alex [Katholieke Universiteit Leuven, Leuven (Belgium); AZ Groeninge, Department of Nuclear Medicine, Kortrijk (Belgium); Tepmongkol, Supatporn [Chulalongkorn University, Nuclear Medicine Division, Department of Radiology, Bangkok (Thailand); Vazquez, Silvia [Instituto de Investigaciones Neurologicas, FLENI, Department of Radiology, Buenos Aires (Argentina); Dupont, Patrick [Katholieke Universiteit Leuven, Leuven (Belgium); Dondi, Maurizio [Ospedale Maggiore, Department of Nuclear Medicine, Bologna (Italy); International Atomic Energy Agency (IAEA), Nuclear Medicine Section, Division of Human Health, Vienna (Austria)

    2008-01-15

    MR imaging, ictal single-photon emission CT (SPECT) and ictal EEG play important roles in the presurgical localization of epileptic foci. This multi-center study was established to investigate whether the complementary role of perfusion SPECT, MRI and EEG for presurgical localization of temporal lobe epilepsy could be confirmed in a prospective setting involving centers from India, Thailand, Italy and Argentina. We studied 74 patients who underwent interictal and ictal EEG, interictal and ictal SPECT and MRI before surgery of the temporal lobe. In all but three patients, histology was reported. The clinical outcome was assessed using Engel's classification. Sensitivity values of all imaging modalities were calculated, and the add-on value of SPECT was assessed. Outcome (Engel's classification) in 74 patients was class I, 89%; class II, 7%; class III, 3%; and IV, 1%. Regarding the localization of seizure origin, sensitivity was 84% for ictal SPECT, 70% for ictal EEG, 86% for MRI, 55% for interictal SPECT and 40% for interictal EEG. Add-on value of ictal SPECT was shown by its ability to correctly localize 17/22 (77%) of the seizure foci missed by ictal EEG and 8/10 (80%) of the seizure foci not detected by MRI. This prospective multi-center trial, involving centers from different parts of the world, confirms that ictal perfusion SPECT is an effective diagnostic modality for correctly identifying seizure origin in temporal lobe epilepsy, providing complementary information to ictal EEG and MRI. (orig.)

  19. Comparative analysis of MR imaging, Ictal SPECT and EEG in temporal lobe epilepsy: a prospective IAEA multi-center study

    International Nuclear Information System (INIS)

    Zaknun, John J.; Bal, Chandrasekhar; Maes, Alex; Tepmongkol, Supatporn; Vazquez, Silvia; Dupont, Patrick; Dondi, Maurizio

    2008-01-01

    MR imaging, ictal single-photon emission CT (SPECT) and ictal EEG play important roles in the presurgical localization of epileptic foci. This multi-center study was established to investigate whether the complementary role of perfusion SPECT, MRI and EEG for presurgical localization of temporal lobe epilepsy could be confirmed in a prospective setting involving centers from India, Thailand, Italy and Argentina. We studied 74 patients who underwent interictal and ictal EEG, interictal and ictal SPECT and MRI before surgery of the temporal lobe. In all but three patients, histology was reported. The clinical outcome was assessed using Engel's classification. Sensitivity values of all imaging modalities were calculated, and the add-on value of SPECT was assessed. Outcome (Engel's classification) in 74 patients was class I, 89%; class II, 7%; class III, 3%; and IV, 1%. Regarding the localization of seizure origin, sensitivity was 84% for ictal SPECT, 70% for ictal EEG, 86% for MRI, 55% for interictal SPECT and 40% for interictal EEG. Add-on value of ictal SPECT was shown by its ability to correctly localize 17/22 (77%) of the seizure foci missed by ictal EEG and 8/10 (80%) of the seizure foci not detected by MRI. This prospective multi-center trial, involving centers from different parts of the world, confirms that ictal perfusion SPECT is an effective diagnostic modality for correctly identifying seizure origin in temporal lobe epilepsy, providing complementary information to ictal EEG and MRI. (orig.)

  20. Study on the usefulness of whole body SPECT coronal image, MIP image in {sup 67}Ga scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Seiji [Kurume Univ., Fukuoka (Japan). Hospital; Ishibashi, Masatoshi; Kurata, Seiji; Morita, Seiichirou; Hayabuchi, Naofumi [Kurume Univ., Fukuoka (Japan). School of Medicine; Fukushima, Shigehiro [Kyushu Inst. of Design, Fukuoka (Japan). Graduate School of Auditory and Visual Communication Sciences; Umezaki, Noriyoshi [Daiichi Coll. of Pharmaceutical Sciences, Fukuoka (Japan)

    2002-05-01

    In this study, we examined the usefulness of whole body coronal images and whole body cine display MIP images (CMIP) upon which image processing was carried out after whole body SPECT in comparison to the usefulness of whole body images (WB/SC) compensated by scattered radiation in tumor/inflammation scintigraphy with {sup 67}Ga-citrate ({sup 67}Ga). Image interpretation was performed for the 120 patients with confirmed diagnoses, and the accuracy of their diagnoses was studied by three nuclear medical physicians and two clinical radiological technologists by means of sensitivity, specificity and ROC analysis. The resultant data show that sensitivity, specificity, accuracy and the area under the ROC curve Az in the WB/SC were approximately 65%, 86%, 74% and 0.724, respectively, whereas sensitivity, specificity, accuracy and Az of the image reading system in which CMIP is combined with whole body coronal images reconstructed by the OS-EM method were approximately 93%, 95%, 94% and 0.860, respectively. Furthermore, coronal images reconstructed by the OS-EM method tended to be superior to those produced by the FBP method in both diagnostic accuracy and ROC analysis. In conclusion, the image reading system in which CMIP is combined with whole body coronal images reconstructed by the OS-EM method was shown to be superior in diagnostic accuracy and ROC analysis. Our data suggest that whole body SPECT is an excellent technique as an alternative to WB/SC. (author)

  1. Applications of cerebral SPECT

    Energy Technology Data Exchange (ETDEWEB)

    McArthur, C., E-mail: claire.mcarthur@nhs.net [Department of Neuroradiology, Institute of Neurological Sciences, Glasgow (United Kingdom); Jampana, R.; Patterson, J.; Hadley, D. [Department of Neuroradiology, Institute of Neurological Sciences, Glasgow (United Kingdom)

    2011-07-15

    Single-photon emission computed tomography (SPECT) can provide three-dimensional functional images of the brain following the injection of one of a series of radiopharmaceuticals that crosses the blood-brain barrier and distributes according to cerebral perfusion, neurotransmitter, or cell density. Applications include differentiating between the dementias, evaluating cerebrovascular disease, preoperative localization of epileptogenic foci, diagnosing movement disorders, and evaluation of intracerebral tumours, while also proving a useful research tool. Unlike positronemission tomography (PET), SPECT imaging is widely available and can be performed in any department that has access to a rotating gamma camera. The purpose of this review is to demonstrate the utility of cerebral SPECT and increase awareness of its role in the investigation of neurological and psychiatric disorders.

  2. MR guided spatial normalization of SPECT scans

    International Nuclear Information System (INIS)

    Crouch, B.; Barnden, L.R.; Kwiatek, R.

    2010-01-01

    Full text: In SPECT population studies where magnetic resonance (MR) scans are also available, the higher resolution of the MR scans allows for an improved spatial normalization of the SPECT scans. In this approach, the SPECT images are first coregistered to their corresponding MR images by a linear (affine) transformation which is calculated using SPM's mutual information maximization algorithm. Non-linear spatial normalization maps are then computed either directly from the MR scans using SPM's built in spatial normalization algorithm, or, from segmented TI MR images using DARTEL, an advanced diffeomorphism based spatial normalization algorithm. We compare these MR based methods to standard SPECT based spatial normalization for a population of 27 fibromyalgia patients and 25 healthy controls with spin echo T 1 scans. We identify significant perfusion deficits in prefrontal white matter in FM patients, with the DARTEL based spatial normalization procedure yielding stronger statistics than the standard SPECT based spatial normalization. (author)

  3. Rest delayed images on 99mTc-MIBI myocardial SPECT as a noninvasive screen for the diagnosis of vasospastic angina pectoris

    International Nuclear Information System (INIS)

    Ono, Soichi; Yamaguchi, Hiroyuki; Takayama, Shin; Kurabe, Atsushi; Heito, Takayuki

    2002-01-01

    Diagnostic usefulness of 99m Tc-hexakis-2-methoxy isobutyl isonitrile (MIBI) myocardial SPECT at rest was examined in 39 cases of coronary vasospastic angina pectoris who were diagnosed by a positive reaction to ergonovine provocation. SPECT was performed 45 minutes (early image) and 3 hours (delayed image) after the intravenous injection of approximately 600 MBq of MIBI. Decrease in accumulation was ranked by four defect scores (0: normal; 1: slight decrease; 2: moderate decrease; 3: severe decrease) and the total defect score was evaluated semiquantitatively. The washout rate between the normal area and the spasm area was also evaluated quantitatively using bull's eye. As a result, 15 cases (15/39; 38.4%) showed decreased accumulation in the early image and 27 cases (27/39; 69.2%) showed decreased accumulation in the delayed image. All of the cases which showed decreased accumulation in the early image had decreased accumulation in the delayed image as well. In 6 cases (6/34; 17.6%) showed ST wave changes during exercise ECG and 16 cases (16/34: 47%) showed decreased accumulation in the exercise myocardial SPECT. The washout rate of MIBI in the decreased accumulation area was significantly higher than that of the normal area. Of 32 ergonovine induced vasospastic area, 23 areas (72%) exhibited decreased accumulation in the delayed image for the same area. Decreased accumulation in the delayed image in MIBI was due to the enhanced washout, which, in turn, indicated declined retention of MIBI by mitochondrial membrane. In coronary vasospastic angina pectoris, spasm induced ischemia was thought to have an effect on the mitochondria. This study suggested that even with a normal exercise ECG and exercise myocardial SPECT, there's a strong possibility of coronary vasospastic angina pectoris if a decreased accumulation was found in the delayed image in the MIBI myocardial SPECT at rest. Hence, in diagnosing coronary vasospastic angina pectoris, the delayed image in the

  4. Iodine-131 imaging using 284 keV photons with a small animal CZT-SPECT system dedicated to low-medium-energy photon detection.

    Science.gov (United States)

    Kojima, Akihiro; Gotoh, Kumiko; Shimamoto, Masako; Hasegawa, Koki; Okada, Seiji

    2016-02-01

    Iodine-131 is widely used for radionuclide therapy because of its β-particle and for diagnostic imaging employing its principal gamma ray. Since that principal gamma ray has the relatively high energy of 364 keV, small animal single-photon emission computed tomography (SPECT) imaging systems may be required to possess the ability to image such higher energy photons. The aim of this study was to investigate the possibility of imaging I-131 using its 284 keV photons instead of its 364 keV photons in a small animal SPECT imaging system dedicated to the detection of low-medium-energy photons (below 300 keV). The imaging system used was a commercially available preclinical SPECT instrument with CZT detectors that was equipped with multi-pinhole collimators and was accompanied by a CT imager. An energy window for I-131 imaging was set to a photopeak of 284 keV with a low abundance compared with 364 keV photons. Small line sources and two mice, one of each of two types, that were injected with NaI-131 were scanned. Although higher counts occurred at the peripheral region of the reconstructed images due to the collimator penetration by the 364 keV photons, the shape of the small line sources could be well visualized. The measured spatial resolution was relatively poor (~1.9 mm for full width at half maximum and ~3.9 mm for full width at tenth maximum). However, a good linear correlation between SPECT values and the level of I-131 radioactivity was observed. Furthermore, the uptake of NaI-131 to the thyroid gland for the two mice was clearly identified in the 3D-SPECT image fused with the X-ray CT image. We conclude that the use of an energy window set on the photopeak of 284 keV and the multi-pinhole collimator may permit I-131 imaging for a preclinical CZT-SPECT system that does not have the ability to acquire images using the 364 keV photons.

  5. In vivo quantification of {sup 177}Lu with planar whole-body and SPECT/CT gamma camera imaging

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Dale L. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Faculty of Health Sciences, University of Sydney, Cumberland, NSW (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Hennessy, Thomas M.; Willowson, Kathy P.; Henry, E. Courtney [Institute of Medical Physics, University of Sydney, Camperdown, NSW (Australia); Chan, David L.H. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); NETwork, Sydney Vital, St Leonards, Sydney, NSW (Australia); Aslani, Alireza [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Roach, Paul J. [Department of Nuclear Medicine, Royal North Shore Hospital, St Leonards, NSW 2065 (Australia); Sydney Medical School, University of Sydney, Camperdown, NSW (Australia)

    2015-09-17

    Advances in gamma camera technology and the emergence of a number of new theranostic radiopharmaceutical pairings have re-awakened interest in in vivo quantification with single-photon-emitting radionuclides. We have implemented and validated methodology to provide quantitative imaging of {sup 177}Lu for 2D whole-body planar studies and for 3D tomographic imaging with single-photon emission computed tomography (SPECT)/CT. Whole-body planar scans were performed on subjects to whom a known amount of [{sup 177}Lu]-DOTA-octreotate had been administered for therapy. The total radioactivity estimated from the images was compared with the known amount of the radionuclide therapy administered. In separate studies, venous blood samples were withdrawn from subjects after administration of [{sup 177}Lu]-DOTA-octreotate while a SPECT acquisition was in progress and the concentration of the radionuclide in the venous blood sample compared with that estimated from large blood pool structures in the SPECT reconstruction. The total radioactivity contained within an internal SPECT calibration standard was also assessed. In the whole-body planar scans (n = 28), the estimated total body radioactivity was accurate to within +4.6 ± 5.9 % (range −17.1 to +11.2 %) of the correct value. In the SPECT reconstructions (n = 12), the radioactivity concentration in the cardiac blood pool was accurate to within −4.0 ± 7.8 % (range −16.1 to +7.5 %) of the true value and the internal standard measurements (n = 89) were within 2.0 ± 8.5 % (range −16.3 to +24.2 %) of the known amount of radioactivity contained. In our hands, state-of-the-art hybrid SPECT/CT gamma cameras were able to provide accurate estimates of in vivo radioactivity to better than, on average, ±10 % for use in biodistribution and radionuclide dosimetry calculations.

  6. Hypoperfusion in baseline and cognitively activated brain SPECT imaging of adult and elderly patients with depression

    International Nuclear Information System (INIS)

    Zhao Jinhua; Lin Xiangtong; Jiang Kaida; Ang Qiuqing; Shi Shenxun; Xue Fangping

    2000-01-01

    Objective: To evaluate the rCBF abnormalities of the baseline and cognitively activated rCBF imaging in unmedicated adult and elderly patients with depression. Methods: The subjects were divided into four groups: depressed adults, normal adult controls, depressed elders and normal elderly controls. All depressed patients were unmedicated and the diagnoses (depression of moderate degree with accompanying somatization) were confirmed by the ICD-10 criteria. Age range of the 39 depressed adult patients was 17 - 55 years. 17 age-matched normal adult controls (age range 21 - 50 years) were studied under identical conditions. The age range of 18 depressed elderly patients was 62 - 76 years. 21 age-matched normal elderly controls (age range 60 - 72 years) were studied under identical conditions. Baseline and cognitively activated 99 Tc m -ECD SPECT were performed on 25 of the 39 adult patients with depression and 17 normal adult controls. Baseline 99 Tc m -ECD SPECT only was performed on the remaining 14 patients with depression. Baseline and cognitively activated 99 Tc m -ECD SPECT were performed on 12 of the 18 elderly patients with depression and 18 of the 21 normal elderly controls. Baseline 99 Tc m -ECD SPECT only was performed on the remaining elderly patients and 3 normal elderly controls. Results: 1) The characteristic abnormalities of baseline and cognitively activated brain SPECT imaging of depression in adults: the baseline rCBF values of frontal and temporal lobe decreased significantly and the activated rCBF values of frontal, temporal lobe decreased more evidently than that in the baseline imaging and additionally decreased activated rCBF values in parietal lobe were found. 2) The characteristic abnormalities of baseline and cognitively activated brain SPECT imaging of elderly patients with depression: the baseline rCBF values of frontal, temporal lobe and right basal ganglia decreased significantly and the activated rCBF values of frontal, temporal, right

  7. Does supplementation of contrast MR imaging with thallium-201 brain SPECT improve differentiation between benign and malignant ring-like contrast-enhanced cerebral lesions?

    International Nuclear Information System (INIS)

    Kita, Tamotsu; Hayashi, Katsumi; Yamamoto, Masayoshi; Kawauchi, Toshio; Sakata, Ikuko; Iwasaki, Yoshie; Kosuda, Shigeru

    2007-01-01

    The objective of this study was to determine whether thallium-201 ( 201 Tl) brain single photon emission computed tomography (SPECT) could supplement magnetic resonance (MR) imaging diagnostic information by visual comparison of two separate data sets from patients with ring-like contrast-enhanced cerebral lesions. A combination of MR imaging and 201 Tl brain SPECT sets obtained from 13 patients (10 men, 3 women) ranging in age from 26 years to 86 years (mean 61.0 years) were retrospectively reviewed. A total of 12 patients had a solitary lesion, and the others had multiple lesions. All but two intracranial foci were pathologically confirmed. The final diagnoses were six glioblastomas, two cerebral metastases from lung cancer, and one each of abscess, resolving hematoma, primary central nervous system lymphoma, toxoplasmosis, and radiation necrosis. The two separate image formats (MR images and SPECT) were shown to ten readers with practical experience. All of the MR images for each patient were shown to each reader first. After interpreting them, the readers were shown the SPECT images. Images were scored in terms of how benign or malignant the foci were on a 5-point scale from ''definitely benign'' to ''definitely malignant.'' The improvement in the performance of all ten readers was from 67.7% to 93.8% in mean accuracy (P=0.0028) and from 0.730 to 0.971 in mean Az value (P=0.0069) after they were shown the 201 Tl brain SPECT images. 201 Tl brain SPECT should substantially increase confidence in the diagnosis of intracranial lesions with ring-like contrast enhancement when MR imaging does not permit differentiation between benign and malignant disease. (author)

  8. Diagnostic impact of SPECT-CT in the assessment of endocrine tumors

    International Nuclear Information System (INIS)

    El Badaoui, A.; Clermont, H. de; Valli, N.; Caignon, J.M.; Fernandez, P.; Allard, M.; Barat, J.L.; Ducassou, D.; Clermont, H. de; Valli, N.; Caignon, J.M.; Fernandez, P.; Allard, M.; Barat, J.L.; Ducassou, D.; Clermont, H. de; Allard, M.

    2008-01-01

    Image fusion using single photon emission computed tomography - computed tomography (SPECT - CT) associates functional and morphological images. This study evaluates the added value of SPECT- CT, obtained with a hybrid SPECT- CT gamma camera, on anatomic localization and diagnostic impact in assessment of endocrine tumours and pheochromocytomas. Method: Six months prospective study was undertaken including 33 consecutive exams encompassing 20 Somatostatin Receptor Scintigraphies (S.R.S.) and 13 123 I-meta-iodo-benzyl-guanidine (Mibg) scans. Two experienced nuclear medicine physicians independently analysed independently planar and SPECT images in a first time, then, SPECT- CT fused images in a second time. They evaluated two parameters: SPECT- CT impact on anatomic localization (L.A.) and its diagnostic impact (I.D.). Each parameter was scored according three levels of evaluation. Results: An added value of SPECT- CT images was evidenced in 55% of cases on the anatomic localization and in 41% of the patients on the diagnostic impact. Therefore, a more important benefit was noted when SPECT was positive (L.A.: 90%; I.D.: 70%) than when it was negative (L.A.: 15%; I.D.: 8%). Furthermore, the added value proved higher for the S;R.S. compared to Mibg scans. Conclusion: SPECT- CT fusion images obtained by a hybrid system is more relevant to determine anatomic localization and more accurate than SPECT alone, particularly in the assessment of endocrine tumours. The added value of SPECT- CT seems to be lower for Mibg scans in the assessment of pheochromocytomas. (authors)

  9. Activity concentration measurements using a conjugate gradient (Siemens xSPECT) reconstruction algorithm in SPECT/CT.

    Science.gov (United States)

    Armstrong, Ian S; Hoffmann, Sandra A

    2016-11-01

    The interest in quantitative single photon emission computer tomography (SPECT) shows potential in a number of clinical applications and now several vendors are providing software and hardware solutions to allow 'SUV-SPECT' to mirror metrics used in PET imaging. This brief technical report assesses the accuracy of activity concentration measurements using a new algorithm 'xSPECT' from Siemens Healthcare. SPECT/CT data were acquired from a uniform cylinder with 5, 10, 15 and 20 s/projection and NEMA image quality phantom with 25 s/projection. The NEMA phantom had hot spheres filled with an 8 : 1 activity concentration relative to the background compartment. Reconstructions were performed using parameters defined by manufacturer presets available with the algorithm. The accuracy of activity concentration measurements was assessed. A dose calibrator-camera cross-calibration factor (CCF) was derived from the uniform phantom data. In uniform phantom images, a positive bias was observed, ranging from ∼6% in the lower count images to ∼4% in the higher-count images. On the basis of the higher-count data, a CCF of 0.96 was derived. As expected, considerable negative bias was measured in the NEMA spheres using region mean values whereas positive bias was measured in the four largest NEMA spheres. Nonmonotonically increasing recovery curves for the hot spheres suggested the presence of Gibbs edge enhancement from resolution modelling. Sufficiently accurate activity concentration measurements can easily be measured on images reconstructed with the xSPECT algorithm without a CCF. However, the use of a CCF is likely to improve accuracy further. A manual conversion of voxel values into SUV should be possible, provided that the patient weight, injected activity and time between injection and imaging are all known accurately.

  10. Synthesis of novel ligands for neuro-inflammation imaging using Positron Emission Tomography

    International Nuclear Information System (INIS)

    Cacheux, Fanny

    2016-01-01

    Neuro-inflammation plays an important role in many neuro-degenerative diseases (Alzheimer, Parkinson, Multiple sclerosis..) and recent developments in molecular imaging provide today new insights into the diagnostic and the treatment management of these diseases. Among the existing imaging techniques, the highly sensitive and quantitative nuclear modalities SPECT (single photon emission computed tomography) but especially PET (positron emission tomography) play key roles. My PhD program is devoted to the design and synthesis of novel radioligands, all dedicated to the imaging of specific targets and processes linked to neuro-inflammation. For this, PET and the short-lived positron-emitter fluorine-18 (T 1/2 : 109.8 min) remain the main focuses. The project has been divided into two sections, the first one concentrates on the development of novel ligands targeting the Translocator Protein 18 kDa (TSPO). Indeed, this target is today recognized as an early bio-marker of neuro-inflammatory processes and PK11195, an isoquinoline carboxamide labelled with carbon-11, was, in the late 80's, the first reported PET-radioligand. More recently, new compounds, all belonging to different chemical classes, have emerged and notably the pyrazolopyrimidine acetamide [ 11 C]DPA-713 and the pyridazinoindole acetamide [ 11 C]SSR180575. Within the first section of my PhD, novel derivatives of both DPA-713 and SSR180575 have been synthesized and in vitro characterized. Dedicated precursors for labelling were also developed for the most promising candidates, and radiolabelling has been performed. Some results have been presented at the 21. International Symposium on Radiopharmaceutical Sciences (Columbia, MO, USA - May 26-31, 2015).The second part of my PhD, deals with the development of ligands for alternative targets to the TSPO, like the type-2 cannabinoid receptor (CB2R) and the purinergic P2Y14/P2Y12 receptors, the latter emerging today as a hot topic for imaging opportunities

  11. Autoradiography study and SPECT imaging of reporter gene HSV1-tk expression in heart

    Energy Technology Data Exchange (ETDEWEB)

    Lan Xiaoli [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China)], E-mail: LXL730724@hotmail.com; Liu Ying; He Yong; Wu Tao; Zhang Binqing; Gao Zairong; An Rui [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China); Zhang Yongxue [Department of Nuclear Medicine, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei Province, 430022 (China)], E-mail: zhyx1229@163.com

    2010-04-15

    Aim: To demonstrate the feasibility and optimal conditions of imaging herpes simplex virus 1-thymidine kinase (HSV1-tk) gene transferred into hearts with {sup 131}I-2'-fluoro-2'-deoxy-1-{beta}-D-arabinofuranosyl-5-iodouracil ({sup 131}I-FIAU) using autoradiography (ARG) and single photon emission computed tomography (SPECT) in animal models. Methods: HSV1-tk inserted into adenovirus vector (Ad5-tk) and adenovirus (Ad5-null) was prepared. Rats or rabbits were divided into a study group receiving intramyocardial injection of Ad5-tk, and a control group receiving Ad-null injection. In the study group of rats, two sets of experiments, time-course study and dose-dependence study, were performed. In time-course experiments, rats were injected with {sup 131}I-FIAU on Days 1, 2, 3, 5 and 7, after transfection of 1x10{sup 8} pfu Ad5-tk, to study the feasibility and suitable time course for reporter gene imaging. In dose-dependence study, various titers of Ad5-tk (5x10{sup 8}, 1x10{sup 8}, 5x10{sup 7} and 1x10{sup 7} pfu) were used to determine the threshold and optimal viral titer needed for detection of gene expression. The gamma counts of hearts were measured. The rat myocardium was analyzed by ARG and reverse transcriptase-polymerase chain reaction (RT-PCR). SPECT whole-body planar imaging and cardiac tomographic imaging were performed in the rabbit models. Results: From the ARG images, rats injected with Ad5-tk showed significant {sup 131}I-FIAU activity in the anterolateral wall compared with background signals seen in the control Ad5-null rats. In time-course study, the highest radioactivity in the focal myocardium could be seen on Day 1, and then progressively declined with time. In dose-dependence study, the level of {sup 131}I-FIAU accumulation in the transfected myocardium declined with the decrease of Ad viral titers. From the ARG analysis and gamma counting, the threshold viral titer was 5x10{sup 7} pfu, and the optimal Ad titer was 1x10{sup 8} pfu

  12. Clinical evaluation of stress thallium spect in ischemic heart disease

    International Nuclear Information System (INIS)

    Sui, Osamu; Kimura, Nazuna; Soeki; Takeshi; Takeichi, Naoki; Shinohara, Hisanori; Tamura, Yoshiyuki; Fukuda, Nobuo

    1997-01-01

    Thallium SPECT was performed in patients with significant coronary artery stenosis, 67 cases were after maximal exercise and 74 cases were during coronary vasodilation induced by ATP (adenosine triphosphate) infusion. In patients suspected of angina pectoris, the sensitivity, specificity and predictive accuracy for detection of coronary artery disease (CAD) were 88%, 78% and 82% for exercise SPECT, and 100%, 72% and 84% for ATP SPECT studies, respectively. In patients with old myocardial infarction, these were 73%, 100% and 88% for exercise SPECT and 71%, 100% and 81% for ATP SPECT. These were 75%, 49% and 60% for treadmill exercise test in the patient group including both angina and myocardial infarction. For detection of diseased vessels, the diagnostic accuracy for left anterior descending artery and right coronary artery lesions was almost equal for ATP and exercise SPECT study, but ATP SPECT study was more sensitive than exercise SPECT study in detection of left circumflex artery lesions. ATP as well as exercise SPECT studies occasionally gave false positive results in patients with single-vessel disease. ATP as well as exercise SPECT studies underestimated the severity of multi-vessel disease. In general, the results of ATP SPECT imaging were highly concordant with the results of exercise SPECT imaging. ATP stress thallium SPECT imaging provided a safe and highly accurate diagnostic tool for detection of CAD. (author)

  13. PET/SPECT/CT multimodal imaging in a transgenic mouse model of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Boisgard, R.; Alberini, J.L.; Jego, B.; Siquier, K.; Theze, B.; Guillermet, S.; Tavitian, B. [Service Hospitalier Frederic Joliot, Institut d' Imagerie BioMedicale, CEA, 91 - Orsay (France); Inserm, U803, 91 - Orsay (France)

    2008-02-15

    Background. - In the therapy monitoring of breast cancer, conventional imaging methods include ultrasound, mammography, CT and MRI, which are essentially based on tumor size modifications. However these modifications represent a late consequence of the biological response and fail to differentiate scar or necrotic tissue from residual viable tumoral tissue. Therefore, a current objective is to develop tools able to predict early response to treatment. Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT) are imaging modalities able to provide extremely sensitive quantitative molecular data and are widely used in humans and animals. Results. - Mammary epithelial cells of female transgenic mice expressing the polyoma middle T onco-protein (Py M.T.), undergo four distinct stages of tumour progression, from pre malignant to malignant stages. Stages are identifiable in the mammary tissue and can lead to the development of distant metastases Longitudinal studies by dynamic whole body acquisitions by multimodal imaging including PET, SPECT and Computed Tomography (CT) allow following the tumoral evolution in Py M.T. mice in comparison with the histopathological analysis. At four weeks of age, mammary hyperplasia was identified by histopathology, but no abnormalities were found by palpation or detected by PET with 2-deoxy-2-[{sup 18}F]fluoro-D-glucose. Such as in some human mammary cancers, the sodium iodide sym-porter (N.I.S.) in tumoral mammary epithelial cells is expressed in this mouse model. In order to investigate the expression of N.I.S. in the Py M.T. mice mammary tumours, [{sup 99m}Tc]TcO{sub 4} imaging was performed with a dedicated SPECT/CT system camera (B.I.O.S.P.A.C.E. Gamma Imager/CT). Local uptake of [{sup 99m}Tc]TcO{sub 4} was detected as early as four weeks of age. The efficacy of chemotherapy was evaluated in this mouse model using a conventional regimen (Doxorubicine, 100 mg/ kg) administered weekly from nine to

  14. Detection of breast cancer microcalcification using 99mTc-MDP SPECT or Osteosense 750EX FMT imaging

    International Nuclear Information System (INIS)

    Felix, Dayo D.; Gore, John C.; Yankeelov, Thomas E.

    2015-01-01

    Background: In previous work, we demonstrated the presence of hydroxyapetite (type II microcalcification), HAP, in triple negative MDA-MB-231 breast cancer cells. We used 18 F-NaF to detect these types of cancers in mouse models as the free fluorine, 18 F − , binds to HAP similar to bone uptake. In this work, we investigate other bone targeting agents and techniques including 99m Tc-MDP SPECT and Osteosense 750EX FMT imaging as alternatives for breast cancer diagnosis via targeting HAP within the tumor microenvironment. Methods: Thirteen mice were injected subcutaneously in the right flank with 10 6 MDA-MB-231 cells. When the tumor size reached ~ 0.6 cm 3 , mice (n = 9) were injected with ~ 37 MBq of 99m Tc-MDP intravenously and then imaged one hour later in a NanoSPECT/CT or injected intravenously with 4 nmol/g of Osetosense 750EX and imaged 24 hours later in an FMT (n = 4). The imaging probe concentration in the tumor was compared to that of muscle. Following SPECT imaging, the tumors were harvested, sectioned into 10 μm slices, and underwent autoradiography or von Kossa staining to correlate 99m Tc-MDP binding with HAP distribution within the tumor. The SPECT images were normalized to the injected dose and regions-of-interest (ROIs) were drawn around bone, tumor, and muscle to obtain the radiotracer concentration in these regions in units of percent injected dose per unit volume. ROIs were drawn around bone and tumor in the FMT images as no FMT signal was observed in normal muscle. Results: Uptake of 99m Tc-MDP was observed in the bone and tumor with little or no uptake in the muscle with concentrations of 11.34 ± 1.46 (mean ± SD), 2.22 ± 0.95, and 0.05 ± 0.04 %ID/cc, respectively. Uptake of Osteosense 750EX was also observed in the bone and tumor with concentrations of 0.35 ± 0.07 (mean ± SD) and 0.04 ± 0.01 picomoles, respectively. No FMT signal was observed in the normal muscle. There was no significant difference in the bone-to-tumor ratio between

  15. Evaluation of the diagnostic performance of SPECT coupled to tomodensitometry (SPECT-CT) in the daily practice of bone scintigraphy at the Nuclear Medical station of Nancy

    International Nuclear Information System (INIS)

    Netter, F.; Journo, A.; Mayer, J.C.; Grandpierre, S.; Daragon, N.; Karcher, G.; Olivier, P.; Scigliano, S.

    2008-01-01

    Objective: The purpose of our study was to evaluate the diagnostic performance of SPECT coupled to computed axial tomography (SPECT- CT) in our daily practice of bone scintigraphy. Subjects and methods: SPECT- CT obtained as a complement to the planar bone scintigraphy in 39 patients were studied. Each type of image was retrospectively read by two different observers: a nuclear medicine physician who was unaware of SPECT- CT results analysed planar bone scintigraphy, a second one who was unaware of planar bone scintigraphy results analysed SPECT- CT images. In this population of patients, 17 patients were addressed in an oncologic setting. The 22 other patients were addressed for pain of indeterminate origin without neoplastic context. Results: In 13% of the cases, SPECT- CT specified the precise location of increased uptake foci seen on planar bone scintigraphy. In 38% of cases, SPECT- CT confirmed a diagnosis suspected by the planar bone scintigraphy. In 10% of cases, SPECT- CT established a diagnosis that was uncertain with planar bone scintigraphy. In 26% of cases, SPECT- CT brought no additional information. Finally in 3% of cases, SPECT- CT proved to be more sensitive than planar images. Conclusion: Our study demonstrates the utility of SPECT- CT in the daily practice of bone scintigraphy, this complementary imaging study benefited to 74% of our patients. (authors)

  16. Urokinase-type plasminogen activator receptor (uPAR) as a promising new imaging target

    DEFF Research Database (Denmark)

    Persson, Morten; Kjaer, Andreas

    2013-01-01

    modalities such as optical imaging, magnetic resonance imaging, single photon emission computer tomography (SPECT) and positron emission topography (PET). In this review, we will discuss recent advances in the development of uPAR-targeted imaging ligands according to imaging modality. In addition, we...... will discuss the potential future clinical application for uPAR imaging as a new imaging biomarker....

  17. SPECT and PET imaging in epilepsia

    International Nuclear Information System (INIS)

    Landvogt, C.

    2007-01-01

    In preoperative localisation of epileptogenic foci, nuclear medicine diagnostics plays a crucial role. FDG-PET is used as first line diagnostics. In case of inconsistent MRI, EEG and FDG-PET findings, 11 C-Flumazenil-PET or ictal and interictal perfusion-SPECT should be performed. Other than FDG, Flumazenil can help to identify the extend of the region, which should be resected. To enhance sensitivity and specificity, further data analysis using voxelbased statistical analyses or SISCOM (substraction ictal SPECT coregistered MRI) should be performed

  18. Functional brain imaging study in patients with anxiety disorders using SPECT

    International Nuclear Information System (INIS)

    Sun Da; Zhan Hongwei; Liu Hongbiao; Li Huichun

    2005-01-01

    Objective: To evaluate the changes of brain function in patients with anxiety disorders. Methods: Regional cerebral perfusion was investigated using SPECT in 65 patients with anxiety disorders dragnosed according to the fourth edition of the diagnostic and statistical manual of mental disorder (DSMTD) criteria and in a matched control group of 21 healthy volunteers. 65 cases of the patients were further divided into: drug treated group (31 patients) and non-drug treated group (34 patients). The mean ages of the patients and the controls were (39.2±26.1) and (34.4±9.7) years, respectively. The severity of the anxiety was assessed using the 17-item Hamilton Anxiety scale (mean: 24.8±5.5 and 24.7±7.5, respectively). After administration of 740-925 MBq 99 Tc m -ethylene cysteinate direct (ECD) brain SPECT image study was performed. For the semi- quantitative analysis of the data, the ratios of the mean counts/pixel in the different cerebral regions of interest (ROI) to that of cerebellum were calculated respectively as a regional perfusion index (RPI). Some patients had a repeated SPECT after three months of treatment. Results: 93.8% (61/65) patients had relative hypoperfusions in some cerebral regions. Compared with the control group, the patients had a significant decrease of regional cerebral blood flow (rCBF) in the bilateral frontal lobes, paralimbic system, temporal lobes and basal ganglia. The course of disease had negatively correlated with the changes of rCBF in both groups of patients. Follow-up SPECT study demonstrated increased rCBF related with the symptomatic improvement. Conclusions: Patients with anxiety disorders had profound dysfunction of the frontal and temporal cortices, and was closely related to the symptom and therapy. 99 Tc m -ECD brain SPECT may offer the most accurate assessment of response to therapy. . (authors)

  19. Accuracy evaluation of fusion of CT, MR, and SPECT images using commercially available software packages (SRS PLATO and IFS)

    International Nuclear Information System (INIS)

    Mongioj, Valeria; Brusa, Anna; Loi, Gianfranco; Pignoli, Emanuele; Gramaglia, Alberto; Scorsetti, Marta; Bombardieri, Emilio; Marchesini, Renato

    1999-01-01

    Purpose: A problem for clinicians is to mentally integrate information from multiple diagnostic sources, such as computed tomography (CT), magnetic resonance (MR), and single photon emission computed tomography (SPECT), whose images give anatomic and metabolic information. Methods and Materials: To combine this different imaging procedure information, and to overlay correspondent slices, we used commercially available software packages (SRS PLATO and IFS). The algorithms utilize a fiducial-based coordinate system (or frame) with 3 N-shaped markers, which allows coordinate transformation of a clinical examination data set (9 spots for each transaxial section) to a stereotactic coordinate system. The N-shaped markers were filled with fluids visible in each modality (gadolinium for MR, calcium chloride for CT, and 99m Tc for SPECT). The frame is relocatable, in the different acquisition modalities, by means of a head holder to which a face mask is fixed so as to immobilize the patient. Position errors due to the algorithms were obtained by evaluating the stereotactic coordinates of five sources detectable in each modality. Results: SPECT and MR position errors due to the algorithms were evaluated with respect to CT: Δx was ≤ 0.9 mm for MR and ≤ 1.4 mm for SPECT, Δy was ≤ 1 mm and ≤ 3 mm for MR and SPECT, respectively. Maximal differences in distance between estimated and actual fiducial centers (geometric mismatch) were in the order of the pixel size (0.8 mm for CT, 1.4 mm for MR, and 1.8 mm for SPECT). In an attempt to distinguish necrosis from residual disease, the image fusion protocol was studied in 35 primary or metastatic brain tumor patients. Conclusions: The image fusion technique has a good degree of accuracy as well as the potential to improve the specificity of tissue identification and the precision of the subsequent treatment planning

  20. Functional brain imaging with SPECT in normal again and dementia. Methodological, pathophysiological, and diagnostic aspects

    International Nuclear Information System (INIS)

    Waldemar, G.

    1996-03-01

    New developments in instrumentation, radiochemistry, and data analysis, particularly the introduction of 99m Tc-labeled brain-retained tracers for perfusion studies, have opened up a new era of single photon emission computed tomography (SPECT). In this review critical methodological issues relating to the SPECT instrument, the radioactive tracers, the scanning procedure, the data analysis and interpretation of data, and subject selection are discussed together with the changes in regional cerebral blood flow (rCBF) observed in normal aging. An overview is given of the topography and the pathophysiological and diagnostic significance of focal rCBF deficits in Alzheimer's disease and in other dementia disorders, in which SPECT is capable of early or preclinical disease detection. In Alzheimer's disease, the diagnostic sensitivity and specificity of focal rCBF deficits measured with SPECT and brain-retained tracers are very high, in particular when combined with medial temporal lob atrophy on CT. Together with neuropsychological testing, SPECT serves to map the topography of brain dysfunction. Thus, in the clinical setting, SPECT provides information that is supplemental to that obtained in other studies. Future applications include neuroreceptor studies and treatment studies, in which SPECT may serve as a diagnostic aid in the selection of patients and as a potential mean for monitoring treatment effects. Although positron emission tomography is the best characterized tool for addressing some of these clinical and research issues in dementia, only the less expensive and technically simpler SPECT technique will have the potential of being available as a screening diagnostic instrument in the clinical setting. It is concluded that, properly approached, functional brain imaging with SPECT represents an important tool in the diagnosis, management, and research of dementia disorders. (au) 251 refs

  1. Recent advances in the development of PET/SPECT probes for atherosclerosis imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Yoich; Kuge, Yuji [Hokkaido University, Sapporo (Japan)

    2016-12-15

    The rupture of vulnerable atherosclerotic plaques and subsequent thrombus formation are the major causes of myocardial and cerebral infarction. Accordingly, the detection of vulnerable plaques is important for risk stratification and to provide appropriate treatment. Inflammation imaging using 2-deoxy-2-[{sup 18}F]fluoro-D-glucose ({sup 18}F-FDG) has been most extensively studied for detecting vulnerable atherosclerotic plaques. It is of great importance to develop PET/SPECT probes capable of specifically visualizing the biological molecules involved in atherosclerotic plaque formation and/or progression. In this article, we review recent advances in the development of PET/SPECT probes for visualizing atherosclerotic plaques and their application to therapy monitoring, mainly focusing on experimental studies.

  2. Ictal cerebral perfusion patterns in partial epilepsy: SPECT subtraction

    International Nuclear Information System (INIS)

    Lee, Hyang Woon; Hong, Seung Bong; Tae, Woo Suk; Kim, Sang Eun; Seo, Dae Won; Jeong, Seung Cheol; Yi, Ji Young; Hong, Seung Chyul

    2000-01-01

    To investigate the various ictal perfusion patterns and find the relationships between clinical factors and different perfusion patterns. Interictal and ictal SPECT and SPECT subtraction were performed in 61 patients with partial epilepsy. Both positive images showing ictal hyperperfusion and negative images revealing ictal hypoperfusion were obtained by SPECT subtraction. The ictal perfusion patterns of subtracted SPECT were classified into focal hyperperfusion, hyperperfusion-plus, combined hyperperfusion-hypoperfusion, and focal hypoperfusion only. The concordance rates with epileptic focus were 91.8% in combined analysis of ictal hyperperfusion and hypoperfusion images of subtracted SPECT, 85.2% in hyperperfusion images only of subtracted SPECT, and 68.9% in conventional ictal SPECT analysis. Ictal hypoperfusion occurred less frequently in temporal lobe epilepsy (TLE) than extratemporal lobe epilepsy. Mesial temporal hyperperfusion alone was seen only in mesial TLE while lateral temporal hyperperfusion alone was observed only in neocortical TLE. Hippocampal sclerosis had much lower incidence of ictal hypoperfusion than any other pathology. Some patients showed ictal hypoperfusion at epileptic focus with ictal hyperperfusion in the neighboring brain regions where ictal discharges propagated. Hypoperfusion as well as hyperperfusion in ictal SPECT should be considered for localizing epileptic focus. Although the mechanism of ictal hypoperfusion could be an intra-ictal early exhaustion of seizure focus or a steal phenomenon by the propagation of ictal discharges to adjacent brain areas, further study is needed to elucidate it.=20

  3. Ictal cerebral perfusion patterns in partial epilepsy: SPECT subtraction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyang Woon; Hong, Seung Bong; Tae, Woo Suk; Kim, Sang Eun; Seo, Dae Won; Jeong, Seung Cheol; Yi, Ji Young; Hong, Seung Chyul [Sungkyunkwan Univ. School of Medicine, Seoul (Korea, Republic of)

    2000-06-01

    To investigate the various ictal perfusion patterns and find the relationships between clinical factors and different perfusion patterns. Interictal and ictal SPECT and SPECT subtraction were performed in 61 patients with partial epilepsy. Both positive images showing ictal hyperperfusion and negative images revealing ictal hypoperfusion were obtained by SPECT subtraction. The ictal perfusion patterns of subtracted SPECT were classified into focal hyperperfusion, hyperperfusion-plus, combined hyperperfusion-hypoperfusion, and focal hypoperfusion only. The concordance rates with epileptic focus were 91.8% in combined analysis of ictal hyperperfusion and hypoperfusion images of subtracted SPECT, 85.2% in hyperperfusion images only of subtracted SPECT, and 68.9% in conventional ictal SPECT analysis. Ictal hypoperfusion occurred less frequently in temporal lobe epilepsy (TLE) than extratemporal lobe epilepsy. Mesial temporal hyperperfusion alone was seen only in mesial TLE while lateral temporal hyperperfusion alone was observed only in neocortical TLE. Hippocampal sclerosis had much lower incidence of ictal hypoperfusion than any other pathology. Some patients showed ictal hypoperfusion at epileptic focus with ictal hyperperfusion in the neighboring brain regions where ictal discharges propagated. Hypoperfusion as well as hyperperfusion in ictal SPECT should be considered for localizing epileptic focus. Although the mechanism of ictal hypoperfusion could be an intra-ictal early exhaustion of seizure focus or a steal phenomenon by the propagation of ictal discharges to adjacent brain areas, further study is needed to elucidate it.

  4. A clinical study of thallium-201 SPECT in the diagnostic imaging of oral squamous cell carcinomas

    International Nuclear Information System (INIS)

    Satoh, Hitoshi

    2003-01-01

    Recently the usefulness of thallium 201 chloride (201Tl) as a tumor imaging agent for various tumors has been reported. However, the application of 201Tl SPECT to oral squamous cell carcinomas has not been established. The purpose of this study is to investigate the usefulness of 201Tl SPECT in the assessment of malignancy or in the differential diagnosis of oral squamous cell carcinomas from inflammatory diseases. Thirty-two patients with 33 primary oral squamous cell carcinomas and 4 patients with inflammatory disease were studied. SPECT images were acquired 15 minutes (early image) and 3 hours (delayed image) after the intravenous injection with 74 MBq 201Tl, and then early uptake ratio (ER), delayed uptake ratio (DR), and retention index (RI) were measured. The relations between these parameters and the size, the site, the degree of differentiation and the mode of invasion of the primary tumor were analyzed statistically. 201Tl SPECT correctly identified 32 of the 33 tumors, with 32 patients having oral squamous cell carcinoma, making the positive rate 97%. Significant negative correlation was observed between RI and major or minor axis of tumors; therefore, this study revealed that RI was influenced by the size of a tumor. In comparison with the average value of RI according to histopathological diagnosis, there was statistically significant difference (p=0.011) between carcinomas (0.80±0.16, n=30) and inflammatory diseases (0.58±0.04, n=4); thus, it was supposed that differential diagnosis between them could be possible. About the tumors with the range of minor-axis 20 mm-40 mm for little influence of tumor size to the RI, the tendency to decrease for the RI of well-differentiated group or low-invasive group was seen. For oral squamous cell carcinomas, 201Tl SPECT had a high positive rate. The application was suggested for use in the differential diagnosis between inflammatory disease and carcinomas, where clinical usefulness could be expected. (author)

  5. NP-59 SPECT/CT Imaging in Stage 1 Hypertensive and Atypical Primary Aldosteronism: A 5-Year Retrospective Analysis of Clinicolaboratory and Imaging Features

    Directory of Open Access Journals (Sweden)

    Yi-Chun Chen

    2013-01-01

    Full Text Available Objective. We retrospectively analyzed all primary aldosteronism (PA patients undergoing NP-59 SPECT/CT imaging with regard to their clinicolaboratory and imaging features, investigation, and outcomes. Material and Methods. 11 PA patients who presented to our hospital for NP-59 SPECT/CT imaging between April 2007 and March 2012 and managed here were analyzed. Results. Among 11 PA patients, eight (73% had stage 1 hypertension, three (27% stage 2 hypertension, four (36% normal plasma aldosterone concentration, nine (82% nonsuppressed plasma renin activity (PRA, six (55% normal aldosterone-renin-ratio (ARR, eight (73% serum potassium ≧3 mEq/L, seven (64% subclinical presentation, seven (64% negative confirmatory testing, and four (36% inconclusive results on CT scan and seven (64% on planar NP-59 scan. All 11 (100% patients had positive results on NP-59 SPECT/CT scan. Two (18% met typical triad and nine (82% atypical triad. Among nine atypical PA patients, three (33% had clinical presentation, six (67% subclinical presentation, six (67% negative confirmatory testing, and four (44% inconclusive results on CT scan and six (67% on planar NP-59 scan. All patients had improved outcomes. Significant differences between typical and atypical PA existed in PRA and ARR. Conclusions. NP-59 SPECT/CT may provide diagnostic potential in stage 1 hypertensive and atypical PA.

  6. Prediction of sentinel lymph node status using single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging of breast cancer.

    Science.gov (United States)

    Tomiguchi, Mai; Yamamoto-Ibusuki, Mutsuko; Yamamoto, Yutaka; Fujisue, Mamiko; Shiraishi, Shinya; Inao, Touko; Murakami, Kei-ichi; Honda, Yumi; Yamashita, Yasuyuki; Iyama, Ken-ichi; Iwase, Hirotaka

    2016-02-01

    Single-photon emission computed tomography (SPECT)/computed tomography (CT) improves the anatomical identification of sentinel lymph nodes (SNs). We aimed to evaluate the possibility of predicting the SN status using SPECT/CT. SN mapping using a SPECT/CT system was performed in 381 cases of clinically node-negative, operable invasive breast cancer. We evaluated and compared the values of SN mapping on SPECT/CT, the findings of other modalities and clinicopathological factors in predicting the SN status. Patients with SNs located in the Level I area were evaluated. Of the 355 lesions (94.8 %) assessed, six cases (1.6 %) were not detected using any imaging method. According to the final histological diagnosis, 298 lesions (78.2 %) were node negative and 83 lesions (21.7 %) were node positive. The univariate analysis showed that SN status was significantly correlated with the number of SNs detected on SPECT/CT in the Level I area (P = 0.0048), total number of SNs detected on SPECT/CT (P = 0.011), findings of planar lymphoscintigraphy (P = 0.011) and findings of a handheld gamma probe during surgery (P = 0.012). According to the multivariate analysis, the detection of multiple SNs on SPECT/CT imaging helped to predict SN metastasis. The number of SNs located in the Level I area detected using the SPECT/CT system may be a predictive factor for SN metastasis.

  7. Minimizing Patient-Specific Tracer Dose in Myocardial Perfusion Imaging Using CZT SPECT

    NARCIS (Netherlands)

    van Dijk, Joris David; Jager, Pieter L.; Ottervanger, Jan Paul; Slump, Cornelis H.; de Boer, Jaep; Oostdijk, Adrianus H.J.; van Dalen, Jorn A.

    Myocardial perfusion imaging (MPI) with SPECT is widely adopted in clinical practice but is associated with a relatively high radiation dose. The aim of this study was to determine the minimum product of tracer dose and scan time that will maintain diagnostic value for cadmium zinc telluride (CZT)

  8. Potential pitfalls of steatopygia on bone imaging using Tc99m MDP and role of SPECT

    International Nuclear Information System (INIS)

    Elgazzar, H; Elsaid, M; Omar, A; Al-Maskery, IB

    2004-01-01

    Body habbitus influence the quality of bone scintigraphy. Steatopygia (steato: fat, pygia: buttocks) may affect the quality of bone scan since it may lead to diagnostic pitfalls. Objective: The objective of this prospective study is to evaluate the effects of steatopygia on the appearance of the lumbar spine on bone scan and the role of SPECT in overcoming fat attenuation artifact if present. Method: Bone scintigraphy, including whole body bone scan, spot views and SPECT of the lumber spine, using a dual head gamma camera, were performed on thirty adult obese patients (13 males, 17 females) with an average weight of 90 kg. referred to the department for routine bone scan. Each patient was injected intravenously with 0.25 mCi/kg (9.25 Mbq of Tc-99m MDP, and their weight and height of each patient were recorded. Whole body scan was performed using 256 X 1024 matrix size and 8 min/meter speed. SPECT was performed using 128 X 128 matrix size, 20 second-32 projections and elliptical orbit around the lumbar spine. Spot views were acquired using 256X256 matrix size for 1000 Kcounts. Results: Twenty patients (67%) (6 males, 14 females) showed steatopygia with attenuation at the lower lumber vertebrae. Diminished uptake in the lower lumbar spine and edge effect artifacts were noted on planar images mimicking abnormalities. SPECT, especially in the sagittal axis, resolved these artifacts. Conclusion: Steatopygia should be considered in the interpretation of bone scans of obese patients to avoid diagnostic pitfalls. Adding SPECT of the lumber spine to the planar imaging improves the diagnostic accuracy in obese patients by overcoming the steatopygia effect seen on whole body and spot planar images. (authors)

  9. Dual head HIPDM SPECT imaging in the differential diagnosis of dementia with MR and CT correlation

    International Nuclear Information System (INIS)

    Wellman, H.N.; Gilmor, R.; Hendrie, H.; Mock, B.; Kapuscinski, A.; Appledorn, C.R.; Krepshaw, J.

    1985-01-01

    Dual head SPECT brain imaging was performed in 25 patients with a clinical diagnosis of dementia approximately one-half hour after a 5mCi dose of high purity (p,5n) I-123 HIPDM (N,N,N'-Trimethyl-N'-(2-hydroxy-3-methyl-5-iodobenzyl)- 1,3-propane diamine). Tomographic reconstruction used a 30th order, moderate cutoff (0.2) Butterworth filter found previously to optimize low noise and conspicuity. Most patients had CT and MR imaging and some patients were studied more than once. In approximately one-half of patients referred with a diagnosis of dementia of the Alzheimer's type, SPECT results were consistent with multiple infarct dementia (MID). MR studies in most of these patients with MID demonstrated multiple white matter defects correlating with multiple gray matter defects seen with SPECT and consistent with angiogenic disease of the Binswanger's type. While CT demonstrated cortical abnormalities in some patients, the findings were often nonspecific with enlarged ventricles and widened sulci

  10. Clinical use of digital retrospective image fusion of CT, MRI, FDG-PET and SPECT - fields of indications and results; Klinischer Einsatz der digitalen retrospektiven Bildfusion von CT, MRT, FDG-PET und SPECT - Anwendungsgebiete und Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Lemke, A.J.; Niehues, S.M.; Amthauer, H.; Felix, R. [Campus Virchow-Klinikum, Klinik fuer Strahlenheilkunde, Charite, Universitaetsmedizin Berlin (Germany); Rohlfing, T. [Dept. of Neurosurgery, Stanford Univ. (United States); Hosten, N. [Inst. fuer Diagnostische Radiologie, Ernst-Moritz-Arndt-Univ. Greifswald (Germany)

    2004-12-01

    Purpose: To evaluate the feasibility and the clinical benefits of retrospective digital image fusion (PET, SPECT, CT and MRI). Materials and methods: In a prospective study, a total of 273 image fusions were performed and evaluated. The underlying image acquisitions (CT, MRI, SPECT and PET) were performed in a way appropriate for the respective clinical question and anatomical region. Image fusion was executed with a software program developed during this study. The results of the image fusion procedure were evaluated in terms of technical feasibility, clinical objective, and therapeutic impact. Results: The most frequent combinations of modalities were CT/PET (n = 156) and MRI/PET (n = 59), followed by MRI/SPECT (n = 28), CT/SPECT (n = 22) and CT/MRI (n = 8). The clinical questions included following regions (more than one region per case possible): neurocranium (n = 42), neck (n = 13), lung and mediastinum (n = 24), abdomen (n = 181), and pelvis (n = 65). In 92.6% of all cases (n = 253), image fusion was technically successful. Image fusion was able to improve sensitivity and specificity of the single modality, or to add important diagnostic information. Image fusion was problematic in cases of different body positions between the two imaging modalities or different positions of mobile organs. In 37.9% of the cases, image fusion added clinically relevant information compared to the single modality. Conclusion: For clinical questions concerning liver, pancreas, rectum, neck, or neurocranium, image fusion is a reliable method suitable for routine clinical application. Organ motion still limits its feasibility and routine use in other areas (e.g., thorax). (orig.)

  11. Dopamine transporter imaging with [123I]FP-CIT SPECT: potential effects of drugs

    International Nuclear Information System (INIS)

    Booij, Jan; Kemp, Paul

    2008-01-01

    [ 123 I]N-ω-fluoropropyl-2β-carbomethoxy-3β-{4-iodophenyl}nortropane ([ 123 I]FP-CIT) single photon emission computed tomography (SPECT) is a frequently and routinely used technique to detect or exclude dopaminergic degeneration by imaging the dopamine transporter (DAT) in parkinsonian and demented patients. This technique is also used in scientific studies in humans, as well as in preclinical studies to assess the availability of DAT binding in the striatum. In routine clinical studies, but also in scientific studies, patients are frequently on medication and sometimes even use drugs of abuse. Moreover, in preclinical studies, animals will be anesthetized. Prescribed drugs, drugs of abuse, and anesthetics may influence the visual interpretation and/or quantification of [ 123 I]FP-CIT SPECT scans. Here, we discuss the basic principle of how drugs and anesthetics might influence the visual interpretation and/or quantification of [ 123 I]FP-CIT SPECT scans. We also review drugs which are likely to have a significant influence on the visual interpretation and/or quantification of [ 123 I]FP-CIT SPECT scans. Additionally, we discuss the evidence as to whether frequently prescribed drugs in parkinsonian and demented patients may have an influence on the visual interpretation and/or quantification of [ 123 I]FP-CIT SPECT scans. Finally, we discuss our recommendations as to which drugs should be ideally withdrawn before performing a [ 123 I]FP-CIT SPECT scan for routine clinical purposes. The decision to withdraw any medication must always be made by the specialist in charge of the patient's care and taking into account the pros and cons of doing so. (orig.)

  12. Automatic extraction of left ventricle in SPECT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Liu Li; Zhao Shujun; Yao Zhiming; Wang Daoyu

    1999-01-01

    An automatic method of extracting left ventricle from SPECT myocardial perfusion data was introduced. This method was based on the least square analysis of the positions of all short-axis slices pixels from the half sphere-cylinder myocardial model, and used a iterative reconstruction technique to automatically cut off the non-left ventricular tissue from the perfusion images. Thereby, this technique provided the bases for further quantitative analysis

  13. SPECT Myocardial Blood Flow Quantitation Concludes Equivocal Myocardial Perfusion SPECT Studies to Increase Diagnostic Benefits.

    Science.gov (United States)

    Chen, Lung-Ching; Lin, Chih-Yuan; Chen, Ing-Jou; Ku, Chi-Tai; Chen, Yen-Kung; Hsu, Bailing

    2016-01-01

    Recently, myocardial blood flow quantitation with dynamic SPECT/CT has been reported to enhance the detection of coronary artery disease in human. This advance has created important clinical applications to coronary artery disease diagnosis and management for areas where myocardial perfusion PET tracers are not available. We present 2 clinical cases that undergone a combined test of 1-day rest/dipyridamole-stress dynamic SPECT and ECG-gated myocardial perfusion SPECT scans using an integrated imaging protocol and demonstrate that flow parameters are capable to conclude equivocal myocardial perfusion SPECT studies, therefore increasing diagnostic benefits to add value in making clinical decisions.

  14. Detecting culprit vessel of coronary artery disease with SPECT 99Tcm-MIBI myocardial imaging

    International Nuclear Information System (INIS)

    Luan Zhaosheng; Zhou Wen; Peng Yong; Su Yuwen; Tian Jianhe; Gai lue; Sun Zhijun

    2002-01-01

    Objective: To assess the value of detecting culprit vessel of coronary artery disease (CAD) with SPECT 99 Tc m -MIBI myocardial imaging. Methods: Forty-six patients with CAD were studied. Every patients had multiple-vessel lesion showed by coronary arteriography and was treated by revascularization as percutaneous transluminal angioplasty (PTCA), coronary artery bypass graft (CABG) or laser holing. Exercise (EX), rest (RE) and intravenous infusion of nitroglycerine (NTG) SPECT 99 Tc m -MIBI myocardial imagings were performed before revascularization. Exercise and rest images revealed the myocardial ischemia. NTG images revealed myocardial viability. Culprit vessels were detected according to the defects showed by above mentioned images. The veracity of detected culprit vessels was tested with the outcome of the reperfusion therapy. Results: In this group, the coronary arteriography revealed 107 lesioned coronary arteries. Myocardial imaging detected 46 culprit vessels including 23 left anterior descending (LAD), 19 left circumflex coronary artery (LCX) and 4 right coronary artery (RCA). All 46 culprit vessels underwent revascularization and had nice outcome. The veracity of 99 Tc m -MIBI myocardial imaging detected culprit vessels was high according to patients' outcome. Conclusion: Exercise, rest and NTG 99 Tc m -MIBI myocardial imaging is a great method for detecting culprit vessels in multivessel coronary disease

  15. Fast GPU-based Monte Carlo code for SPECT/CT reconstructions generates improved 177Lu images.

    Science.gov (United States)

    Rydén, T; Heydorn Lagerlöf, J; Hemmingsson, J; Marin, I; Svensson, J; Båth, M; Gjertsson, P; Bernhardt, P

    2018-01-04

    Full Monte Carlo (MC)-based SPECT reconstructions have a strong potential for correcting for image degrading factors, but the reconstruction times are long. The objective of this study was to develop a highly parallel Monte Carlo code for fast, ordered subset expectation maximum (OSEM) reconstructions of SPECT/CT images. The MC code was written in the Compute Unified Device Architecture language for a computer with four graphics processing units (GPUs) (GeForce GTX Titan X, Nvidia, USA). This enabled simulations of parallel photon emissions from the voxels matrix (128 3 or 256 3 ). Each computed tomography (CT) number was converted to attenuation coefficients for photo absorption, coherent scattering, and incoherent scattering. For photon scattering, the deflection angle was determined by the differential scattering cross sections. An angular response function was developed and used to model the accepted angles for photon interaction with the crystal, and a detector scattering kernel was used for modeling the photon scattering in the detector. Predefined energy and spatial resolution kernels for the crystal were used. The MC code was implemented in the OSEM reconstruction of clinical and phantom 177 Lu SPECT/CT images. The Jaszczak image quality phantom was used to evaluate the performance of the MC reconstruction in comparison with attenuated corrected (AC) OSEM reconstructions and attenuated corrected OSEM reconstructions with resolution recovery corrections (RRC). The performance of the MC code was 3200 million photons/s. The required number of photons emitted per voxel to obtain a sufficiently low noise level in the simulated image was 200 for a 128 3 voxel matrix. With this number of emitted photons/voxel, the MC-based OSEM reconstruction with ten subsets was performed within 20 s/iteration. The images converged after around six iterations. Therefore, the reconstruction time was around 3 min. The activity recovery for the spheres in the Jaszczak phantom was

  16. Reliability evaluation of I-123 ADAM SPECT imaging using SPM software and AAL ROI methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bang-Hung [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taiwan (China); Tsai, Sung-Yi [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Imaging Medical, St.Martin De Porres Hospital, Chia-Yi, Taiwan (China); Wang, Shyh-Jen [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taiwan (China); Su, Tung-Ping; Chou, Yuan-Hwa [Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan (China); Chen, Chia-Chieh [Institute of Nuclear Energy Research, Longtan, Taiwan (China); Chen, Jyh-Cheng, E-mail: jcchen@ym.edu.tw [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (China)

    2011-08-21

    The level of serotonin was regulated by serotonin transporter (SERT), which is a decisive protein in regulation of serotonin neurotransmission system. Many psychiatric disorders and therapies were also related to concentration of cerebral serotonin. I-123 ADAM was the novel radiopharmaceutical to image SERT in brain. The aim of this study was to measure reliability of SERT densities of healthy volunteers by automated anatomical labeling (AAL) method. Furthermore, we also used statistic parametric mapping (SPM) on a voxel by voxel analysis to find difference of cortex between test and retest of I-123 ADAM single photon emission computed tomography (SPECT) images. Twenty-one healthy volunteers were scanned twice with SPECT at 4 h after intravenous administration of 185 MBq of {sup 123}I-ADAM. The image matrix size was 128x128 and pixel size was 3.9 mm. All images were obtained through filtered back-projection (FBP) reconstruction algorithm. Region of interest (ROI) definition was performed based on the AAL brain template in PMOD version 2.95 software package. ROI demarcations were placed on midbrain, pons, striatum, and cerebellum. All images were spatially normalized to the SPECT MNI (Montreal Neurological Institute) templates supplied with SPM2. And each image was transformed into standard stereotactic space, which was matched to the Talairach and Tournoux atlas. Then differences across scans were statistically estimated on a voxel by voxel analysis using paired t-test (population main effect: 2 cond's, 1 scan/cond.), which was applied to compare concentration of SERT between the test and retest cerebral scans. The average of specific uptake ratio (SUR: target/cerebellum-1) of {sup 123}I-ADAM binding to SERT in midbrain was 1.78{+-}0.27, pons was 1.21{+-}0.53, and striatum was 0.79{+-}0.13. The cronbach's {alpha} of intra-class correlation coefficient (ICC) was 0.92. Besides, there was also no significant statistical finding in cerebral area using SPM2

  17. Advance prediction of mild cognitive impairment (MCI) using 99mTc-ECD SPECT brain blood flow imaging

    International Nuclear Information System (INIS)

    Kawasaki, Yohsuke

    2008-01-01

    Mild Cognitive Impairment (MCI) is considered as a precursor state of Alzheimer disease (AD). Single photon emission computed tomography (SPECT) brain blood flow imaging was investigated in MCI and it's relevance to the prognosis of MCI was evaluated in an attempt define the characteristics of brain blood flow imaging of MCI (amnestic MCI; aMCI) converting to AD. Ninety-two patients over 60 years old with amnesia were studied. 99m Tc-ethyl cysteinate dimer (ECD) SPECT brain blood flow examinations of the subject under drug-free conditions were conducted and imaging was analyzed according to the first clinical diagnosis. Patients given a diagnosis of MCI on the first clinical diagnosis, were examined again after 2 years and the SPECT imaging before 2 years previously was classified and analyzed. Of them, there were 35 MCI patients, converting of 13 AD patients (37.1%; aMCI), 10 MCI patients (28.6%; non-converter), 4 depression patients (11.4%; Depression type MCI (dMCI)), 1 Geriatric psychosis patient, but 7 patients dropped out. In the aMCI group, relative hypoperfusion was recognized in the posterior cingulate and the precuneus. In the dMCI group, relative hypoperfusion was recognized in the dorsolateral prefrontal cortex (DLPFC) and the anterior cingulate. In the non-converter group, relative hypoperfusion was recognized in the basal forebrain. The hypoperfusion of the precuneus in aMCI, and the hypoperfusion of the right frontal lobe (DLPFC, dorsal-anterior cingulate) in dMCI were characteristic brain blood-flow abnormalities. We believe 99m Tc-ECD SPECT brain blood flow imaging to be useful in the diagnosis of aMCI and in the early detection of depression. (author)

  18. Accelerated 3D-OSEM image reconstruction using a Beowulf PC cluster for pinhole SPECT

    International Nuclear Information System (INIS)

    Zeniya, Tsutomu; Watabe, Hiroshi; Sohlberg, Antti; Iida, Hidehiro

    2007-01-01

    A conventional pinhole single-photon emission computed tomography (SPECT) with a single circular orbit has limitations associated with non-uniform spatial resolution or axial blurring. Recently, we demonstrated that three-dimensional (3D) images with uniform spatial resolution and no blurring can be obtained by complete data acquired using two-circular orbit, combined with the 3D ordered subsets expectation maximization (OSEM) reconstruction method. However, a long computation time is required to obtain the reconstruction image, because of the fact that 3D-OSEM is an iterative method and two-orbit acquisition doubles the size of the projection data. To reduce the long reconstruction time, we parallelized the two-orbit pinhole 3D-OSEM reconstruction process by using a Beowulf personal computer (PC) cluster. The Beowulf PC cluster consists of seven PCs connected to Gbit Ethernet switches. Message passing interface protocol was utilized for parallelizing the reconstruction process. The projection data in a subset are distributed to each PC. The partial image forward-and back-projected in each PC is transferred to all PCs. The current image estimate on each PC is updated after summing the partial images. The performance of parallelization on the PC cluster was evaluated using two independent projection data sets acquired by a pinhole SPECT system with two different circular orbits. Parallelization using the PC cluster improved the reconstruction time with increasing number of PCs. The reconstruction time of 54 min by the single PC was decreased to 10 min when six or seven PCs were used. The speed-up factor was 5.4. The reconstruction image by the PC cluster was virtually identical with that by the single PC. Parallelization of 3D-OSEM reconstruction for pinhole SPECT using the PC cluster can significantly reduce the computation time, whereas its implementation is simple and inexpensive. (author)

  19. Nuclear imaging in epilepsy

    International Nuclear Information System (INIS)

    Chun, Kyung Ah

    2007-01-01

    Correct localization of epileptogenic zone is important for the successful epilepsy surgery. Both ictal perfusion single photon emission computed tomography (SPECT) and interictal F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) can provide useful information in the presurgical localization of intractable partial epilepsy. These imaging modalities have excellent diagnostic sensitivity in medial temporal lobe epilepsy and provide good presurgical information in neocortical epilepsy. Also provide functional information about cellular functions to better understand the neurobiology of epilepsy and to better define the ictal onset zone, symptomatogenic zone, propagation pathways, functional deficit zone and surround inhibition zones. Multimodality imaging and developments in analysis methods of ictal perfusion SPECT and new PET ligand other than FDG help to better define the localization

  20. Nuclear imaging in epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Kyung Ah [Yeungnam University Hospital, Daegu (Korea, Republic of)

    2007-04-15

    Correct localization of epileptogenic zone is important for the successful epilepsy surgery. Both ictal perfusion single photon emission computed tomography (SPECT) and interictal F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) can provide useful information in the presurgical localization of intractable partial epilepsy. These imaging modalities have excellent diagnostic sensitivity in medial temporal lobe epilepsy and provide good presurgical information in neocortical epilepsy. Also provide functional information about cellular functions to better understand the neurobiology of epilepsy and to better define the ictal onset zone, symptomatogenic zone, propagation pathways, functional deficit zone and surround inhibition zones. Multimodality imaging and developments in analysis methods of ictal perfusion SPECT and new PET ligand other than FDG help to better define the localization.

  1. Development and labeling of EP-00652218 analogues, NK1 receptors antagonist, for PET and SPECT imaging

    International Nuclear Information System (INIS)

    Bagot-Gueret, C.

    2001-12-01

    The aim of this work was the synthesis and radiosynthesis of compounds labelled either with a positron emitter (fluorine-18, t 1/2 = 109 minutes) or with a gamma emitter (iodine-123, t 1/2 = 16.2 hours), for Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) studies. EP-00652218 is a novel potent antagonist, with a sub-nano-molar affinity towards the NK 1 receptors. In order to develop ligands that could be used either in PET or SPECT, we undertook the synthesis of poly-halogenated analogues of EP-00652218. Compound 17 was synthesized through two different synthetic pathways. A series of original compounds has been obtained from compound 17 by halogen exchanges on the naphthyridone or the benzene ring. These molecules were tested to determine their in vitro affinity towards NK 1 receptors. Compound 21 was labelled with fluorine-18 in 135 minutes and with a 20% radiochemical yield. Compound 26 was radioiodinated following reaction with Na 125 I (t 1/2 = 60.14 days) in a 18% radiochemical yield. Despite expectation, these analogues of EP-00652218 exhibited an insufficient affinity for NK 1 receptors (IC 50 = 10 -7 M) and thus unlikely usable for in vivo studies with PET and SPECT. (author)

  2. The synthesis of radioactive polymeric microspheres for SPECT imaging during embolization procedures

    International Nuclear Information System (INIS)

    Carvalheira, Luciana; Pinto, José C.C.S.; Souza, Marcio N. de

    2017-01-01

    Vascular embolization is an important clinical procedure, frequently used to reduce the size of a tumor, to facilitate the removal of a tumor during surgery or to define a treatment of tumor malformation. In addition, imaging is an important component for the evaluation and care of patients undergoing vascular embolization. Nowadays, during the embolization procedure, the radiologist uses the Angiography or Fluoroscopy (X-Ray images) technique to estimate devascularization, since only pathological examinations are able to show the exact location of the blockade and microspheres. SPECT imaging is widely used in Brazil and provides images of superior quality to the mentioned techniques. Therefore, radioactive polymeric microspheres can be used as radioembolization agents for SPECT imaging. This technique can improve the resolution of images and, consequently, the embolization procedure efficacy of uterine fibroids for example, by allowing the track of particles distribution in the veins and tumor, the homogeneity of this distribution and the end of the embolization procedure. In this work, we evaluate the copolymerization of 4-vinylphenol and vinyl acetate as a synthesis route for a new radioembolization agent. GPC analysis results showed that this comonomer presence improved the molar mass distribution. In addition, bulk polymerization tests and kinetic studies showed that the selected comonomer retards the reaction time, but does not decrease the conversion percentage. Indeed, this result points out the necessity of a comonomer chemical modification to improve yield results. (author)

  3. The synthesis of radioactive polymeric microspheres for SPECT imaging during embolization procedures

    Energy Technology Data Exchange (ETDEWEB)

    Carvalheira, Luciana; Pinto, José C.C.S.; Souza, Marcio N. de, E-mail: luciana@ien.gov.br, E-mail: nele@eq.ufrj.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEQ/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Vascular embolization is an important clinical procedure, frequently used to reduce the size of a tumor, to facilitate the removal of a tumor during surgery or to define a treatment of tumor malformation. In addition, imaging is an important component for the evaluation and care of patients undergoing vascular embolization. Nowadays, during the embolization procedure, the radiologist uses the Angiography or Fluoroscopy (X-Ray images) technique to estimate devascularization, since only pathological examinations are able to show the exact location of the blockade and microspheres. SPECT imaging is widely used in Brazil and provides images of superior quality to the mentioned techniques. Therefore, radioactive polymeric microspheres can be used as radioembolization agents for SPECT imaging. This technique can improve the resolution of images and, consequently, the embolization procedure efficacy of uterine fibroids for example, by allowing the track of particles distribution in the veins and tumor, the homogeneity of this distribution and the end of the embolization procedure. In this work, we evaluate the copolymerization of 4-vinylphenol and vinyl acetate as a synthesis route for a new radioembolization agent. GPC analysis results showed that this comonomer presence improved the molar mass distribution. In addition, bulk polymerization tests and kinetic studies showed that the selected comonomer retards the reaction time, but does not decrease the conversion percentage. Indeed, this result points out the necessity of a comonomer chemical modification to improve yield results. (author)

  4. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision

    International Nuclear Information System (INIS)

    Verberne, Hein J.; Eck-Smit, Berthe L.F. van; Wit, Tim C. de; Acampa, Wanda; Anagnostopoulos, Constantinos; Ballinger, Jim; Bengel, Frank; Bondt, Pieter De; Buechel, Ronny R.; Kaufmann, Philip A.; Cuocolo, Alberto; Flotats, Albert; Hacker, Marcus; Hindorf, Cecilia; Lindner, Oliver; Ljungberg, Michael; Lonsdale, Markus; Manrique, Alain; Minarik, David; Scholte, Arthur J.H.A.; Slart, Riemer H.J.A.; Traegaardh, Elin; Hesse, Birger

    2015-01-01

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/ publications/guidelines/2015 0 7 E ANM F INAL myocardial p erfusion g uideline.pdf. (orig.)

  5. Rapid gated Thallium-201 perfusion SPECT - clinically feasible?

    International Nuclear Information System (INIS)

    Wadhwa, S.S.; Mansberg, R.; Fernandes, V.B.; Wilkinson, D.; Abatti, D.

    1998-01-01

    Full text: Standard dose energy window optimised Thallium-201 (Tl-201) SPECT has about half the counts of a standard dose from Technetium-99m Sestamibi (Tc99m-Mibi) gated perfusion SPECT. This study investigates the clinical feasibility of rapid energy window optimised Tl-201 gated perfusion SPECT (gated-TI) and compares quantitative left ventricular ejection fraction (LVEF) and visually assessed image quality for wall motion and thickening to analogous values obtained from Tc99m-Mibi gated perfusion SPECT (gated - mibi). Methods: We studied 60 patients with a rest gated Tl-201 SPECT (100 MBq, 77KeV peak, 34% window, 20 sec/projection) followed by a post stress gated Sestamibi SPECT (1GBq, 140KeV, 20% window, 20 sec/projection) separate dual isotope protocol. LVEF quantitation was performed using commercially available software (SPECTEF, General Electric). Visual grading of image quality for wall thickening and motion was performed using a three-point scale (excellent, good and poor). Results: LVEF for gated Tl-201 SPECT was 59.6 ± 12.0% (Mean ± SD). LVEF for gated Sestamibi SPECT was 60.4 ±11.4% (Mean ± SD). These were not significantly different (P=0.27, T-Test). There was good correlation (r=0.9) between gated-TI and gated-mibi LVEF values. The quality of gated-Tl images was ranked as excellent, good and poor in 12, 50 and 38% of the patients respectively. Image quality was better in gated-mibi SPECT, with ratings of 12, 62 and 26% respectively. Conclusion: Rapid gated Thallium-201 acquisition with energy window optimisation can be effectively performed on majority of patients and offers the opportunity to assess not only myocardial perfusion and function, as with Technetium based agents, but also viability using a single day one isotope protocol

  6. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, D; Jung, J; Suh, T [The Catholic University of Korea, College of medicine, Department of biomedical engineering (Korea, Republic of)

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  7. SU-F-J-08: Quantitative SPECT Imaging of Ra-223 in a Phantom

    Energy Technology Data Exchange (ETDEWEB)

    Yue, J; Hobbs, R; Sgouros, G; Frey, E [Johns Hopkins University Baltimore, MD (United States)

    2016-06-15

    Purpose: Ra-223 therapy of prostate cancer bone metastases is being used to treat patients routinely. However, the absorbed dose distribution at the macroscopic and microscopic scales remains elusive, due to the inability to image the small activities injected. Accurate activity quantification through imaging is essential to calculate the absorbed dose in organs and sub-units in radiopharmaceutical therapy, enabling personalized absorbed dose-based treatment planning methodologies and more effective and optimal treatments. Methods: A 22 cm diameter by 20 cm long cylindrical phantom, containing a 3.52 cm diameter sphere, was used. A total of 2.01 MBq of Ra-223 was placed in the phantom with 177.6 kBq in the sphere. Images were acquired on a dual-head Siemens Symbia T16 gamma camera using three 20% full-width energy windows and centered at 84, 154, and 269 keV (120 projections, 360° rotation, 45 s per view). We have implemented reconstruction of Ra-223 SPECT projections using OS-EM (up to 20 iterations of 10 subsets) with compensation for attenuation using CT-based attenuation maps, collimator-detector response (CDR) (including septal penetration, scatter and Pb x-ray modeling), and scatter in the patient using the effective source scatter estimation (ESSE) method. The CDR functions and scatter kernels required for ESSE were computed using the SIMIND MC simulation code. All Ra-223 photon emissions as well as gamma rays from the daughters Rn-219 and Bi-211 were modeled. Results: The sensitivity of the camera in the three combined windows was 107.3 cps/MBq. The visual quality of the SPECT images was reasonably good and the activity in the sphere was 27% smaller than the true activity. This underestimation is likely due to partial volume effect. Conclusion: Absolute quantitative Ra-223 SPECT imaging is achievable with careful attention to compensate for image degrading factors and system calibration.

  8. Introduction of a novel ultrahigh sensitivity collimator for brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Park, Mi-Ae, E-mail: miaepark@bwh.harvard.edu; Kijewski, Marie Foley; Lyon, Morgan C.; Horky, Laura; Moore, Stephen C. [Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keijzers, Ronnie; Keijzers, Mark [Nuclear Fields USA, Des Plaines, Illinois 60018 (United States)

    2016-08-15

    Purpose: Noise levels of brain SPECT images are highest in central regions, due to preferential attenuation of photons emitted from deep structures. To address this problem, the authors have designed a novel collimator for brain SPECT imaging that yields greatly increased sensitivity near the center of the brain without loss of resolution. This hybrid collimator consisted of ultrashort cone-beam holes in the central regions and slant-holes in the periphery (USCB). We evaluated this collimator for quantitative brain imaging tasks. Methods: Owing to the uniqueness of the USCB collimation, the hole pattern required substantial variations in collimator parameters. To utilize the lead-casting technique, the authors designed two supporting plates to position about 37 000 hexagonal, slightly tapered pins. The holes in the supporting plates were modeled to yield the desired focal length, hole length, and septal thickness. To determine the properties of the manufactured collimator and to compute the system matrix, the authors prepared an array of point sources that covered the entire detector area. Each point source contained 32 μCi of Tc-99m at the first scan time. The array was imaged for 5 min at each of the 64 shifted locations to yield a 2-mm sampling distance, and hole parameters were calculated. The sensitivity was also measured using a point source placed along the central ray at several distances from the collimator face. High-count projection data from a five-compartment brain phantom were acquired with the three collimators on a dual-head SPECT/CT system. The authors calculated Cramer-Rao bounds on the precision of estimates of striatal and background activity concentration. In order to assess the new collimation system to detect changes in striatal activity, the authors evaluated the precision of measuring a 5% decrease in right putamen activity. The authors also reconstructed images of projection data obtained by summing data from the individual phantom

  9. Supervising PTCA treatment with a scheme of steps combination SPECT 99Tcm-MIBI myocardial imaging

    International Nuclear Information System (INIS)

    Luan Zhaosheng; Tian Jiahe; Peng Yong; Zhou Wen; Gai Luyue; Sun Zhijun; Su Yuwen; Liu Xiaohu

    2001-01-01

    Objective: To set up a useful supervising method around PTCA treatment. Methods: A scheme of steps combination SPECT 99 Tc m -MIBI myocardial imaging was devised. 87 patients with coronary artery disease were selected into the study. 3-step imaging, exercise, rest and intravenous infusion of nitroglycerine (NTG) imaging, was performed at 1 week before PTCA. 2-step imaging, exercise and rest imaging, was performed 1-2 weeks after PTCA. All of the indexes obtained from steps combination imaging before and after PTCA were contrasted with each other in pairs. Results: 1) Compared with outcome of clinical assessing, the imaging after PTCA could correctly assess PTCA outcome. 2) The myocardial defects showed in 3-step imaging before PTCA appeared to be ameliorated after PTCA and the amelioration showed in exercise imaging was more evident than that in rest imaging. The myocardial perfusion state revealed by NTG imaging was similar to that revealed by rest imaging after PTCA. 3) The 3-step imaging findings correlated with PTCA outcome, the best correlation was found between indexes of myocardial defect changes showed by NTG and exercise imaging and indexes of PTCA outcome (r = 0.9470, P 99 Tc m -MIBI myocardial SPECT imaging scheme is a very useful supervising method around PTCA. 2-step imaging after PTCA could assess outcome correctly, and 3-step imaging before it could predict outcome correctly, too

  10. Compton scatter correction in case of multiple crosstalks in SPECT imaging.

    Science.gov (United States)

    Sychra, J J; Blend, M J; Jobe, T H

    1996-02-01

    A strategy for Compton scatter correction in brain SPECT images was proposed recently. It assumes that two radioisotopes are used and that a significant portion of photons of one radioisotope (for example, Tc99m) spills over into the low energy acquisition window of the other radioisotope (for example, Tl201). We are extending this approach to cases of several radioisotopes with mutual, multiple and significant photon spillover. In the example above, one may correct not only the Tl201 image but also the Tc99m image corrupted by the Compton scatter originating from the small component of high energy Tl201 photons. The proposed extension is applicable to other anatomical domains (cardiac imaging).

  11. Implementation and Evaluation of Pinhole SPECT

    International Nuclear Information System (INIS)

    MacArtain Anne Marie

    2002-08-01

    The aim of this work was to implement Pinhole SPECT into a working Nuclear Medicine department. It has been reported that pinhole SPECT has been successfully performed to visualise pathology in ankle bones using gamma camera and the images were constructed using a standard filtered back-projection algorithm (Bahk YW, 1998). The objective of this study was to produce and evaluate this technique with the equipment available in the nuclear medicine department. The system performance was assessed using both the low-energy high resolution and the pinhole collimators. Phantoms constructed using capillary tubes, filled with technetium 99m (pertechnetate) were imaged in different arrays to identify possible limitations in the reconstruction software. A thyroid phantom with hot and cold inserts was also imaged. Data was acquired in ''tep-and-shoot'' mode as the camera was rotated 180 degrees or 360 degrees around the phantom. Images were reconstructed using standard parallel back-projection algorithm and a weighted backprojection algorithm (Nowak). An attempt was made to process images of the phantom in Matlab using the Iradon function modified by application of a cone-beam type algorithm (Feldkamp L, 1984). Visual comparison of static images between the pinhole and the LEHR collimators showed the expected improved spatial resolution of the pinhole images. Pinhole SPECT images should be reconstructed using the appropriate cone beam algorithm. However, it was established that reconstructing pinhole SPECT images using a standard parallel backprojection algorithm yielded results which were deemed to be clinically useful. The Nowak algorithm results were a distinct improvement on those achieved with the parallel backprojection algorithm. Likewise the results from the cone beam algorithm were better than the former but not as good as those obtained from the Nowak algorithm. This was due to the fact that the cone beam algorithm did not include a weighting factor. Implementation

  12. Tc-99m Ciprofloxacin SPECT of Pulmonary Tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min Kyung; Hwang, Kyung Hoon [Gachon University Gil Hospital, Incheon (Korea, Republic of); Yoon, Min Ki [Good Samaritan Hospital, Pohang (Korea, Republic of); Choe, Won Sick [Kangbuk Samsung Hospital, Seoul (Korea, Republic of)

    2010-06-15

    Tc-99m ciprofloxacin is available for imaging infection. However, there has been no study on employing single photon emission computed tomography (SPECT) with using Tc-99m ciprofloxacin to image active pulmonary tuberculosis. Therefore, we conducted this study to assess the efficacy of Tc-99m ciprofloxacin SPECT for imaging active pulmonary tuberculosis. Twenty-one participants were enrolled in this prospective study. They were divided into two groups according to the clinical and radiological assessment. Group one (Gr. 1) consisted of five normal volunteers and six patients with inactive pulmonary tuberculosis. Group two (Gr. 2) consisted of ten patients with active pulmonary tuberculosis. SPECT was performed 3 h after injecting 555 MBq (15 mCi) of Tc-99m ciprofloxacin. The findings of Tc-99m ciprofloxacin SPECT were interpreted by a nuclear medicine specialist and then the results were analyzed according to the patients' clinical and radiological classifications. The results of Tc-99m ciprofloxacin SPECT were as follows: eight true-positive cases, ten true-negative cases, one false-positive case and two false-negative cases. The sensitivity and specificity was 80.0% and 90.0%, respectively. The positive predictive value was 88.9% and the negative predictive value was 83.3%. Conclusions Tc-99m ciprofloxacin SPECT is feasible for imaging active pulmonary tuberculosis. It is a useful nuclear-imaging method for discriminating between the active and inactive tuberculosis states in patients with a past medical history of pulmonary tuberculosis.

  13. Evaluation and comparison of quantitative and qualitative effects of scattering in air and water media in planar and SPECT imaging

    International Nuclear Information System (INIS)

    Saeed Sarkar; Akram Abehesht

    2004-01-01

    In this research the scatter fraction (%SF) in air and water media in both planar and tomographic imaging was evaluated in order to find the differences and assist the nuclear medicine specialists in interpreting the images.Two small Perspex cylinders of equal dimensions, diameter = 5 cm and height = 5 cm, with an angle of 1200 relative to each other was fixed at the bottom of a 22 cm diameter and 26 cm height Perspex cylinder to make a scattering phantom. One of the cylinders was filled with water representing soft tissue while the other one was left empty (air). The big cylinder was filled with water up to the upper level of small cylinders. 2.5 mCi of 99m Tc was mixed uniformly with the water in the big cylinder. Both planar and tomographic images of the phantom were obtained by a single head SPECT system with %20 energy windows. %SF is defined as %SF = (cold/hot) where, cold and hot are the number of counts in ROIs of each small cold cylinder and big hot cylinder respectively. ROIs selected around the image of each cylinder were equal to the exact size of the objects. In planar image the %SF was found to be %3.24±0.03 and % 3.23±0.03 in air and water respectively. On the other hand the %SF in SPECT images were %6.12±0.05 and %4.47±0.04 in air and water respectively. In planar image no difference is seen in %SF between small cylinders containing air and water whereas in SPECT image the %SF in air cylinder is %27 more than the water cylinder. This has caused more blurred edges for the image of air cylinder. Lower %SF in the small water cylinder may be caused by absorption of scattered events in the water medium. The %SF in SPECT is almost twice the planar imaging for water medium, whereas on the average the %SF in planar imaging is almost %60 of the SPECT. These differences account for better contrast and sharper edges of small cold cylinders in planar imaging. (authors)

  14. Patient satisfaction with coronary CT angiography, myocardial CT perfusion, myocardial perfusion MRI, SPECT myocardial perfusion imaging and conventional coronary angiography

    Energy Technology Data Exchange (ETDEWEB)

    Feger, S.; Rief, M.; Zimmermann, E.; Richter, F.; Roehle, R. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Dewey, M. [Freie Universitaet Berlin, Department of Radiology, Charite - Universitaetsmedizin Berlin Campus Mitte, Humboldt-Universitaet zu Berlin, Berlin (Germany); Institut fuer Radiologie, Berlin (Germany); Schoenenberger, E. [Medizinische Hochschule Hannover, Department of Medicine, Hannover (Germany)

    2015-07-15

    To evaluate patient acceptance of noninvasive imaging tests for detection of coronary artery disease (CAD), including single-photon emission computed tomography myocardial perfusion imaging (SPECT-MPI), stress perfusion magnetic resonance imaging (MRI), coronary CT angiography (CTA) in combination with CT myocardial stress perfusion (CTP), and conventional coronary angiography (CCA). Intraindividual comparison of perception of 48 patients from the CORE320 multicentre multinational study who underwent rest and stress SPECT-MPI with a technetium-based tracer, combined CTA and CTP (both with contrast agent, CTP with adenosine), MRI, and CCA. The analysis was performed by using a validated questionnaire. Patients had significantly more concern prior to CCA than before CTA/CTP (p < 0.001). CTA/CTP was also rated as more comfortable than SPECT-MPI (p = 0.001). Overall satisfaction with CT was superior to that of MRI (p = 0.007). More patients preferred CT (46 %; p < 0.001) as a future diagnostic test. Regarding combined CTA/CTP, CTP was characterised by higher pain levels and an increased frequency of angina pectoris during the examination (p < 0.001). Subgroup analysis showed a higher degree of pain during SPECT-MPI with adenosine stress compared to physical exercise (p = 0.016). All noninvasive cardiac imaging tests are well accepted by patients, with CT being the preferred examination. (orig.)

  15. The future of SPECT in a time of PET

    International Nuclear Information System (INIS)

    Jansen, Floris P.; Vanderheyden, Jean-Luc

    2007-01-01

    As positron emission tomography (PET) imaging is becoming more prevalent in clinical practice, it is reasonable to ask if there will be a role for single photon emission computed tomography (SPECT) in the future. This article considers that question, focusing on areas where SPECT can differentiate itself from PET for fundamental reasons: breadth of available radionuclides, simultaneous imaging of multiple agents, cost-effectiveness and adaptability to specific imaging situations. The conclusion is that SPECT will continue to evolve and exist alongside PET and will grow the field of molecular imaging with improved efficiency and patient workflow

  16. Importance of SPECT/CT for knee and hip joint prostheses; Stellenwert der SPECT/CT bei Knie- und Hueftgelenkprothesen

    Energy Technology Data Exchange (ETDEWEB)

    Strobel, K.; Steurer-Dober, I.; Huellner, M.W.; Veit-Haibach, P.; Allgayer, B. [Luzerner Kantonsspital (Switzerland). Institut fuer Nuklearmedizin und Roentgendiagnostik

    2012-07-15

    Complications, such as loosening or infections are common problems after hip or knee arthroplasty. If conventional X-rays are equivocal bone scintigraphy is the classical second-line imaging modality. Single photon emission computed tomography/computed tomography (SPECT/CT) offers metabolic and morphologic information in one imaging step and is becoming increasingly more available in larger hospitals. The SPECT/CT procedure is a promising method and is increasingly being used in daily routine to evaluate joint arthroplasty. The additional benefit compared with classical conventional bone scintigraphy has to be evaluated in further prospective studies. In our hospital SPECT/CT regularly gives important additional information regarding prosthetic joint complications. SPECT/CT is increasingly being used as the second step imaging standard modality if conventional X-rays are equivocal. (orig.) [German] Komplikationen wie Lockerung und Infekt stellen ein haeufiges Problem nach Hueft- und Kniegelenkprothesen dar. Wenn die konventionelle Roentgenaufnahme nicht zum Ziel fuehrt, ist die klassische konventionelle Skelettszintigraphie die am haeufigsten verwendete ''Second-line''-Bildgebung. Die ''single photon emission computed tomography''/CT (SPECT/CT) bietet metabolische und morphologische Informationen bzgl. Prothesenkomplikationen in einem Untersuchungsgang und ist zunehmend in groesseren Kliniken verfuegbar. Die SPECT/CT ist eine viel versprechende Methode und wird im klinischen Alltag bei der Evaluation von Gelenkprothesen zunehmend eingesetzt. Es sind noch mehr prospektive Studien noetig, um die Leistungsfaehigkeit und den Zusatznutzen gegenueber der klassischen Szintigraphie zu evaluieren. In unserer Klinik wird die Knochenszintigraphie bei der Abklaerung von Prothesenkomplikationen zumeist mit einer SPECT/CT kombiniert und liefert regelmaessig wichtige Zusatzinformationen. Die SPECT/CT entwickelt sich zunehmend zum Standard

  17. Affordable CZT SPECT with dose-time minimization (Conference Presentation)

    Science.gov (United States)

    Hugg, James W.; Harris, Brian W.; Radley, Ian

    2017-03-01

    PURPOSE Pixelated CdZnTe (CZT) detector arrays are used in molecular imaging applications that can enable precision medicine, including small-animal SPECT, cardiac SPECT, molecular breast imaging (MBI), and general purpose SPECT. The interplay of gamma camera, collimator, gantry motion, and image reconstruction determines image quality and dose-time-FOV tradeoffs. Both dose and exam time can be minimized without compromising diagnostic content. METHODS Integration of pixelated CZT detectors with advanced ASICs and readout electronics improves system performance. Because historically CZT was expensive, the first clinical applications were limited to small FOV. Radiation doses were initially high and exam times long. Advances have significantly improved efficiency of CZT-based molecular imaging systems and the cost has steadily declined. We have built a general purpose SPECT system using our 40 cm x 53 cm CZT gamma camera with 2 mm pixel pitch and characterized system performance. RESULTS Compared to NaI scintillator gamma cameras: intrinsic spatial resolution improved from 3.8 mm to 2.0 mm; energy resolution improved from 9.8% to reconstruction, result in minimized dose and exam time. With CZT cost improving, affordable whole-body CZT general purpose SPECT is expected to enable precision medicine applications.

  18. Left ventricular functional parameters by gated SPECT myocardial perfusion imaging in a Latin American country.

    Science.gov (United States)

    Kapitan, Miguel; Beltran, Alvaro; Beretta, Mario; Mut, Fernando

    2018-04-01

    There is paucity of data on left ventricular (LV) functional parameters using gated SPECT myocardial perfusion imaging (MPI) from the Latin American region. This study provides detailed information in low-risk patients both at rest and during exercise. We studied 90 patients (50 men) with a very low likelihood of coronary artery disease. Gated-SPECT MPI was performed with Tc-99m MIBI using a 2-day protocol, with 16 frames/R-R cycle. The LV ejection fraction and volumes were not different between the rest and post-stress images. LVEF was 68 ± 7% post-stress and 70 ± 7% at rest in women, and 62 ± 7% and 63 ± 7%, respectively, in men (P = .19, .26). LV volumes were larger in men than women (P stress. Transient ischemic dilatation was similar, with upper limits of 1.20 and 1.19 in women and men, respectively (P = NS). These data could prove helpful for the interpretation of gated SPECT MPI data in Latin America using identical protocol as used in this study.

  19. 99mTc-bicisate (neurolite) SPECT brain imaging and cognitive impairment in dementia of the Alzheimer type

    DEFF Research Database (Denmark)

    Waldemar, G; Walovitch, R C; Andersen, A R

    1994-01-01

    of the Alzheimer type (DAT) and to examine the interreader agreement for visual reading of images in a multicenter SPECT study. Images for a total of 86 subjects were available for the blinded read. The images for 28 subjects were rated as noninterpretable due to technical inadequacies. Images for 58 subjects (45...

  20. Filter and slice thickness selection in SPECT image reconstruction

    International Nuclear Information System (INIS)

    Ivanovic, M.; Weber, D.A.; Wilson, G.A.; O'Mara, R.E.

    1985-01-01

    The choice of filter and slice thickness in SPECT image reconstruction as function of activity and linear and angular sampling were investigated in phantom and patient imaging studies. Reconstructed transverse and longitudinal spatial resolution of the system were measured using a line source in a water filled phantom. Phantom studies included measurements of the Data Spectrum phantom; clinical studies included tomographic procedures in 40 patients undergoing imaging of the temporomandibular joint. Slices of the phantom and patient images were evaluated for spatial of the phantom and patient images were evaluated for spatial resolution, noise, and image quality. Major findings include; spatial resolution and image quality improve with increasing linear sampling frequencies over the range of 4-8 mm/p in the phantom images, best spatial resolution and image quality in clinical images were observed at a linear sampling frequency of 6mm/p, Shepp and Logan filter gives the best spatial resolution for phantom studies at the lowest linear sampling frequency; smoothed Shepp and Logan filter provides best quality images without loss of resolution at higher frequencies and, spatial resolution and image quality improve with increased angular sampling frequency in the phantom at 40 c/p but appear to be independent of angular sampling frequency at 400 c/p

  1. Two dimensional polar display of cardiac blood pool SPECT

    International Nuclear Information System (INIS)

    Honda, Norinari; Machida, Kikuo; Mamiya, Toshio; Takahashi, Taku; Takishima, Teruo; Hasegawa, Noriko; Hashimoto, Masanori; Ohno, Ken

    1989-01-01

    A new method of ECG gated cardiac blood pool SPECT to illustrate the left ventricular (LV) wall motion in a single static image, two dimensional polar display (2DPD), was described. Circumferential profiles of the difference between end diastolic and end systolic short axis images of the LV were displayed in a similar way to the bull's eye plot of 201 Tl myocardial SPECT. The diagnoses by 2DPDs agreed with those by cinematic displays of ECG gated blood pool SPECT in 74 out of 84 segments (85.5%) of abnormal motion, and 155 out of 168 segments (80.3%) of normal motion. It is concluded that 2DPD can evaluate regional wall motion by a single static image in a significant number of patients, and is also useful in comparing with the bull's eye image of 201 Tl myorcardial SPECT. (orig.)

  2. Relation between lung perfusion defects and intravascular clots in acute pulmonary thromboembolism: assessment with breath-hold SPECT-CT pulmonary angiography fusion images.

    Science.gov (United States)

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Iwanaga, Hideyuki; Tokuda, Osamu; Matsunaga, Naofumi

    2008-09-01

    The relation between lung perfusion defects and intravascular clots in acute pulmonary thromboembolism (PTE) was comprehensively assessed on deep-inspiratory breath-hold (DIBrH) perfusion SPECT-computed tomographic pulmonary angiography (CTPA) fusion images. Subjects were 34 acute PTE patients, who had successfully performed DIBrH perfusion SPECT using a dual-headed SPECT and a respiratory tracking system. Automated DIBrH SPECT-CTPA fusion images were used to assess the relation between lung perfusion defects and intravascular clots detected by CTPA. DIBrH SPECT visualized 175 lobar/segmental or subsegmental defects in 34 patients, and CTPA visualized 61 intravascular clots at variable locations in 30 (88%) patients, but no clots in four (12%) patients. In 30 patients with clots, the fusion images confirmed that 69 (41%) perfusion defects (20 segmental, 45 subsegmental and 4 lobar defects) of total 166 defects were located in lung territories without clots, although the remaining 97 (58%) defects were located in lung territories with clots. Perfusion defect was absent in lung territories with clots (one lobar branch and three segmental branches) in four (12%) of these patients. In four patients without clots, nine perfusion defects including four segmental ones were present. Because of unexpected dissociation between intravascular clots and lung perfusion defects, the present fusion images will be a useful adjunct to CTPA in the diagnosis of acute PTE.

  3. A collimator optimization method for quantitative imaging: application to Y-90 bremsstrahlung SPECT.

    Science.gov (United States)

    Rong, Xing; Frey, Eric C

    2013-08-01

    Post-therapy quantitative 90Y bremsstrahlung single photon emission computed tomography (SPECT) has shown great potential to provide reliable activity estimates, which are essential for dose verification. Typically 90Y imaging is performed with high- or medium-energy collimators. However, the energy spectrum of 90Y bremsstrahlung photons is substantially different than typical for these collimators. In addition, dosimetry requires quantitative images, and collimators are not typically optimized for such tasks. Optimizing a collimator for 90Y imaging is both novel and potentially important. Conventional optimization methods are not appropriate for 90Y bremsstrahlung photons, which have a continuous and broad energy distribution. In this work, the authors developed a parallel-hole collimator optimization method for quantitative tasks that is particularly applicable to radionuclides with complex emission energy spectra. The authors applied the proposed method to develop an optimal collimator for quantitative 90Y bremsstrahlung SPECT in the context of microsphere radioembolization. To account for the effects of the collimator on both the bias and the variance of the activity estimates, the authors used the root mean squared error (RMSE) of the volume of interest activity estimates as the figure of merit (FOM). In the FOM, the bias due to the null space of the image formation process was taken in account. The RMSE was weighted by the inverse mass to reflect the application to dosimetry; for a different application, more relevant weighting could easily be adopted. The authors proposed a parameterization for the collimator that facilitates the incorporation of the important factors (geometric sensitivity, geometric resolution, and septal penetration fraction) determining collimator performance, while keeping the number of free parameters describing the collimator small (i.e., two parameters). To make the optimization results for quantitative 90Y bremsstrahlung SPECT more

  4. SPECT of the brain: Present and future

    International Nuclear Information System (INIS)

    Fazio, F.; Lenzi, G.L.

    1986-01-01

    In both PET and SPECT, most of the studies and the models have been addressed to two organs: brain and heart. So far, brain has certainly been investigated more. The several comparisons between planar scintigraphy and SPECT, between X-ray TCT and SPECT, and also between PET and SPECT, have tended to consider SPECT a cheap but scarcely useful tool for a nuclear medicine section. Again the authors feel that this is due to the fact that SPECT is really a ''physiological tomography'', with little known about its physiology or how it is measured. Thus the present state of the art of SPECT of the brain is characterized by a collection of data and reports on brain imaging and by a slowly growing basic understanding of the utilized modes. The introduction of a new brain-imaging radiopharmaceutical is immediately signaled by its ''first clinical application'' without parallel studies on the kinetics, the metabolic degradation, and the real suitability of the molecule as a tracer for measurement of regional CBF. Only a few attempts seek to narrow this discussion between clinic and biology, and the authors like to emphasize the need for nuclear medicine people to dedicate more time and effort

  5. Cerebral kinetics of the dopamine D{sub 2} receptor ligand [{sup 123}I]IBZM in mice

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Philipp T. [Department of Neurology, University Hospital Aachen, 52074 Aachen (Germany); Department of Nuclear Medicine, University Hospital Aachen, 52074 Aachen (Germany)], E-mail: pmeyer@ukaachen.de; Salber, Dagmar [C. and O. Vogt Institute of Brain Research, University Hospital Duesseldorf, 40225 Duesseldorf (Germany); Schiefer, Johannes [Department of Neurology, University Hospital Aachen, 52074 Aachen (Germany); Cremer, Markus [Institute of Neurosciences and Biophysics, Research Center Juelich, 52425 Juelich (Germany); Schaefer, Wolfgang M. [Department of Nuclear Medicine, University Hospital Aachen, 52074 Aachen (Germany); Kosinski, Christoph M. [Department of Neurology, University Hospital Aachen, 52074 Aachen (Germany); Langen, Karl-Josef [Institute of Neurosciences and Biophysics, Research Center Juelich, 52425 Juelich (Germany)

    2008-05-15

    Introduction: In vivo small animal imaging of the dopaminergic system is of great interest for basic and applied neurosciences, especially in transgenic mice. Small animal SPECT is particularly attractive because of its superior spatial resolution and tracer availability. We investigated the kinetics of the commercial dopamine D{sub 2} receptor (DZR) ligand [{sup 123}I]IBZM in mice as a prerequisite for an appropriate design of translational SPECT imaging between mice and humans. Methods: Cerebral kinetics of [{sup 123}I]IBZM under isoflurane anaesthesia were assessed by autoradiography in mice sacrificed at 30, 60, 120 and 200 min after iv injection. To explore the possible effects of isoflurane anaesthesia, an additional mice group was only anaesthetized for 20 min before being sacrificed at 140 min (putative time of single-scan SPECT analysis). Results: Maximum [{sup 123}I]IBZM uptake in the striatum (D{sub 2}R-rich; 10.5{+-}2.7 %ID/g) and cerebellum (D{sub 2}R-devoid; 2.4{+-}0.7 %ID/g) was observed at 30 min after injection. Thereafter, [{sup 123}I]IBZM uptake decreased slowly in striatum and rapidly in the cerebellum (200 min: 5.3{+-}1.9 and 0.4{+-}0.2 %ID/g, respectively). The striatum-to-cerebellum (S/C) [{sup 123}I]IBZM uptake ratio increased from 4.6{+-}1.2 at 30 min to 11.6{+-}2.6 at 120 min. The S/C ratio at 200 min was highly variable (17.8{+-}10.1), possibly indicating pseudo-equilibration in some animals. In mice, which were only anaesthetized between 120 and 140 min, a higher S/C ratio of 17.0{+-}5.1 was observed. Conclusions: The present study suggests that [{sup 123}I]IBZM is a suitable ligand for D{sub 2}R-SPECT in mice. Although a single-scan analysis may be a pragmatic semi-quantitative approach, tracer kinetic analyses on dynamic SPECT data should be pursued. The interfering effects of isoflurane anaesthesia need to be considered.

  6. Design and development of a high resolution animal SPECT scanner dedicated for rat and mouse imaging

    International Nuclear Information System (INIS)

    Sajedi, Salar; Zeraatkar, Navid; Moji, Vahideh; Farahani, Mohammad Hossein; Sarkar, Saeed; Arabi, Hossein; Teymoorian, Behnoosh; Ghafarian, Pardis; Rahmim, Arman; Reza Ay, Mohammad

    2014-01-01

    A dedicated small-animal SPECT system, HiReSPECT, was designed and developed to provide a high resolution molecular imaging modality in response to growing research demands. HiReSPECT is a dual-head system mounted on a rotating gantry. The detection system is based on pixelated CsI(Na) scintillator crystals coupled to two Hamamatsu H8500 Position Sensitive Photomultiplier Tubes in each head. Also, a high resolution parallel-hole collimator is applied to every head. The dimensions of each head are 50 mm×100 mm, enabling sufficient transaxial and axial fields-of-view (TFOV and AFOV), respectively, for coverage of the entire mouse in single-bed position imaging. However, a 50 mm TFOV is not sufficient for transaxial coverage of rats. To address this, each head can be rotated by 90 degrees in order to align the larger dimension of the heads with the short body axis, allowing tomographic data acquisition for rats. An innovative non-linear recursive filter was used for signal processing/detection. Resolution recovery was also embedded in the modified Maximum-Likelihood Expectation Maximization (MLEM) image reconstruction code to compensate for Collimator-Detector Response (CDR). Moreover, an innovative interpolation algorithm was developed to speed up the reconstruction code. The planar spatial resolution at the head surface and the image spatial resolutions were 1.7 mm and 1.2–1.6 mm, respectively. The measurements followed by post-processing showed that the observed count rate at 20% count loss is about 42 kcps. The system sensitivity at the collimator surface for heads 1 and 2 were 1.32 cps/µCi and 1.25 cps/µCi, respectively. The corresponding values were 1.18 cps/µCi and 1.02 cps/µCi at 8 cm distance from the collimator surfaces. In addition, whole-body scans of mice demonstrated appropriate imaging capability of the HiReSPECT

  7. Noninvasive quantification of myocardial perfusion heterogeneity by Markovian analysis in SPECT nuclear imaging

    International Nuclear Information System (INIS)

    Pons, G.

    2011-01-01

    Cardiovascular diseases are the leading cause of mortality worldwide, and third of these deaths are caused by coronary artery disease and rupture of vulnerable atherosclerotic plaques. The heterogeneous alteration of the coronary microcirculation is an early phenomenon associated with many cardiovascular risk factors that can strongly predict the subsequent development of coronary artery disease, and lead to the appearance of myocardial perfusion heterogeneity. Nuclear medicine allows the study of myocardial perfusion in clinical routine through scintigraphic scans performed after injection of a radioactive tracer of coronary blood flow. Analysis of scintigraphic perfusion images currently allows the detection of myocardial ischemia, but the ability of the technique to measure the perfusion heterogeneity in apparently normally perfused areas is unknown. The first part of this thesis focuses on a retrospective clinical study to determine the feasibility of myocardial perfusion heterogeneity quantification measured by Thallium-201 single photon emission computed tomography (SPECT) in diabetic patients compared with healthy subjects. The clinical study has demonstrated the ability of routine thallium-201 SPECT imaging to quantify greater myocardial perfusion heterogeneity in diabetic patients compared with normal subjects. The second part of this thesis tests the hypothesis that the myocardial perfusion heterogeneity could be quantified in small animal SPECT imaging by Thallium-201 and/or Technetium-99m-MIBI in an experimental study using two animal models of diabetes, and is correlated with histological changes. The lack of difference in myocardial perfusion heterogeneity between control and diabetic animals suggests that animal models are poorly suited, or that the technology currently available does not seem satisfactory to obtain similar results as the clinical study. (author)

  8. First realisation of a labelling kit of N.T.P. 15-5 ligand by {sup 99m}Tc in view of a clinical application in cartilage functional imaging; Premiere realisation d'une trousse de marquage du ligand NTP 15-5 par le 99mTc en vue d'une application clinique en imagerie fonctionnelle du cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Miot-Noirault, E.; Cachin, F.; Vidal, A.; Auzeloux, P.; Chezal, J.M.; Gaumet, V.; Askienazy, S. [Inserm, EA4231, UMR 990, 63 - Clermont-Ferrand (France); Guenu, S. [UFR de pharmacie, laboratoire de chimie analytique, 63 - Clermont-Ferrand (France); Askienazy, S. [Laboratoires Cyclopharma, 63 - Saint-Beauzire (France)

    2010-07-01

    We are working on a SPECT tracer for functional imaging of articular cartilage, the {sup 99m}Tc-NTP 15-5. This molecule has its application in degenerative diseases of cartilage (arthrosis, arthritis and chondrosarcoma). Excellent reports of cartilage versus tissues fixing ratios are obtained in different animal models as well as human anatomical parts. For clinical application, we present the development of a labelling kit by the technetium of the ligand NTP 15-5. (N.C.)

  9. Ejection fraction in myocardial perfusion imaging assessed with a dynamic phantom: comparison between IQ-SPECT and LEHR.

    Science.gov (United States)

    Hippeläinen, Eero; Mäkelä, Teemu; Kaasalainen, Touko; Kaleva, Erna

    2017-12-01

    Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF True ). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. The CT verification showed that the phantom EF settings were repeatable and accurate with the EF True being within 1% point from the manufacture's nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom's volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.

  10. Anatomically standardized statistical mapping of 123I-IMP SPECT in brain tumors

    International Nuclear Information System (INIS)

    Shibata, Yasushi; Akimoto, Manabu; Matsushita, Akira; Yamamoto, Tetsuya; Takano, Shingo; Matsumura, Akira

    2010-01-01

    123 I-iodoamphetamine Single Photon Emission Computed Tomography (IMP SPECT) is used to evaluate cerebral blood flow. However, application of IMP SPECT to patients with brain tumors has been rarely reported. Primary central nervous system lymphoma (PCNSL) is a rare tumor that shows delayed IMP uptake. The relatively low spatial resolution of SPECT is a clinical problem in diagnosing brain tumors. We examined anatomically standardized statistical mapping of IMP SPECT in patients with brain lesions. This study included 49 IMP SPECT images for 49 patients with brain lesions: 20 PCNSL, 1 Burkitt's lymphoma, 14 glioma, 4 other tumor, 7 inflammatory disease and 3 without any pathological diagnosis but a clinical diagnosis of PCNSL. After intravenous injection of 222 MBq of 123 I-IMP, early (15 minutes) and delayed (4 hours) images were acquired using a multi-detector SPECT machine. All SPECT data were transferred to a newly developed software program iNeurostat+ (Nihon Medi-physics). SPECT data were anatomically standardized on normal brain images. Regions of increased uptake of IMP were statistically mapped on the tomographic images of normal brain. Eighteen patients showed high uptake in the delayed IMP SPECT images (16 PCNSL, 2 unknown). Other tumor or diseases did not show high uptake of delayed IMP SPECT, so there were no false positives. Four patients with pathologically proven PCNSL showed no uptake in original IMP SPECT. These tumors were too small to detect in IMP SPECT. However, statistical mapping revealed IMP uptake in 18 of 20 pathologically verified PCNSL patients. A heterogeneous IMP uptake was seen in homogenous tumors in MRI. For patients with a hot IMP uptake, statistical mapping showed clearer uptake. IMP SPECT is a sensitive test to diagnose of PCNSL, although it produced false negative results for small posterior fossa tumor. Anatomically standardized statistical mapping is therefore considered to be a useful method for improving the diagnostic

  11. Baseline and cognition activated brain SPECT imaging in depression

    International Nuclear Information System (INIS)

    Zhao Jinhua; Lin Xiangtong; Jiang Kaida; Liu Yongchang; Xu Lianqin

    1998-01-01

    Purpose: To evaluate the regional cerebral blood flow (rCBF) abnormalities through the semiquantitative analysis of the baseline and cognition activated rCBF imaging in unmedicated depressed patients. Methods: 27 depressed patients unmedicated by anti-depressants were enrolled. The diagnosis (depression of moderate degree with somatization) was confirmed by the ICD-10 criteria. 15 age matched normal controls were studied under identical conditions. Baseline and cognition activated 99m Tc-ECD SPECT were performed on 21 of the 27 patients with depression and 13 of the 15 normal controls. Baseline 99m Tc-ECD SPECT alone were performed on the rest 6 patients with depression and 2 normal controls. The cognitive activation is achieved by Wisconsin Card Sorting Test (WCST). 1110 MBq of 99m Tc-ECD was administered by intravenous bolus injection 5 minutes after the onset of the WCST. Semi-quantitative analysis was conducted with the 7th, 8th, 9th, 10th, 11th slices of the transaxial imaging. rCBF ratios of every ROI were calculated using the average tissue activity in the region divided by the maximum activity in the cerebellum. Results: 1) The baseline rCBF of left frontal (0.720) and left temporal lobe (0.720) were decreased significantly in depressed patients comparing with those of the control subjects. 2) The activated rCBF of left frontal lobe (0.719) and left temporal lobe (0.690), left parietal lobe (0.701) were decreased evidently than those of the controls. Conclusions: 1) Hypoperfusions of left frontal and left temporal cortexes were identified in patients with depression. 2) The hypoperfusion of left frontal and left temporal cortexes may be the cause of cognition disorder and depressed mood in patients with depression. 3) Cognition activated brain perfusion imaging is helpful for making a more accurate diagnosis of depression

  12. Silicon Detectors for PET and SPECT

    Science.gov (United States)

    Cochran, Eric R.

    Silicon detectors use state-of-the-art electronics to take advantage of the semiconductor properties of silicon to produce very high resolution radiation detectors. These detectors have been a fundamental part of high energy, nuclear, and astroparticle physics experiments for decades, and they hold great potential for significant gains in both PET and SPECT applications. Two separate prototype nuclear medicine imaging systems have been developed to explore this potential. Both devices take advantage of the unique properties of high resolution pixelated silicon detectors, designed and developed as part of the CIMA collaboration and built at The Ohio State University. The first prototype is a Compton SPECT imaging system. Compton SPECT, also referred to as electronic collimation, is a fundamentally different approach to single photon imaging from standard gamma cameras. It removes the inherent coupling of spatial resolution and sensitivity in mechanically collimated systems and provides improved performance at higher energies. As a result, Compton SPECT creates opportunities for the development of new radiopharmaceuticals based on higher energy isotopes as well as opportunities to expand the use of current isotopes such as 131I due to the increased resolution and sensitivity. The Compton SPECT prototype consists of a single high resolution silicon detector, configured in a 2D geometry, in coincidence with a standard NaI scintillator detector. Images of point sources have been taken for 99mTc (140 keV), 131I (364keV), and 22Na (511 keV), demonstrating the performance of high resolution silicon detectors in a Compton SPECT system. Filtered back projection image resolutions of 10 mm, 7.5 mm, and 6.7 mm were achieved for the three different sources respectively. The results compare well with typical SPECT resolutions of 5-15 mm and validate the claims of improved performance in Compton SPECT imaging devices at higher source energies. They also support the potential of

  13. Juvenile spondylolysis: a comparative analysis of CT, SPECT and MRI

    International Nuclear Information System (INIS)

    Campbell, R.S.D.; Grainger, A.J.; Hide, I.G.; Papastefanou, S.; Greenough, C.G.

    2005-01-01

    To evaluate whether MRI correlates with CT and SPECT imaging for the diagnosis of juvenile spondylolysis, and to determine whether MRI can be used as an exclusive image modality. Juveniles and young adults with a history of extension low back pain were evaluated by MRI, CT and SPECT imaging. All images were reviewed blindly. Correlative analyses included CT vs MRI for morphological grading and SPECT vs MRI for functional grading. Finally, an overall grading system compared MRI vs CT and SPECT combined. Statistical analysis was performed using the kappa statistic. Seventy-two patients (mean age 16 years) were recruited. Forty pars defects were identified in 22 patients (31%), of which 25 were chronic non-union, five acute complete defects and ten acute incomplete fractures. Kappa scores demonstrated a high level of agreement for all comparative analyses. MRI vs SPECT (kappa: 0.794), MRI vs CT (kappa: 0.829) and MRI vs CT/SPECT (kappa: 0.786). The main causes of discrepancy were between MRI and SPECT for the diagnosis of stress reaction in the absence of overt fracture, and distinguishing incomplete fractures from intact pars or complete defects. MRI can be used as an effective and reliable first-line image modality for diagnosis of juvenile spondylolysis. However, localised CT is recommended as a supplementary examination in selected cases as a baseline for assessment of healing and for evaluation of indeterminate cases. (orig.)

  14. Juvenile spondylolysis: a comparative analysis of CT, SPECT and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, R.S.D. [Royal Liverpool University Hospital, Department of Radiology, Liverpool (United Kingdom); Grainger, A.J. [Leeds General Infirmary, Department of Radiology, Leeds (United Kingdom); Hide, I.G. [Freeman Hospital, Department of Radiology, Newcastle upon Tyne (United Kingdom); Papastefanou, S. [James Cook University Hospital, Department Radiology, Middlesbrough (United Kingdom); Greenough, C.G. [James Cook University Hospital, Department of Trauma and Orthopaedics, Middlesbrough (United Kingdom)

    2005-02-01

    To evaluate whether MRI correlates with CT and SPECT imaging for the diagnosis of juvenile spondylolysis, and to determine whether MRI can be used as an exclusive image modality. Juveniles and young adults with a history of extension low back pain were evaluated by MRI, CT and SPECT imaging. All images were reviewed blindly. Correlative analyses included CT vs MRI for morphological grading and SPECT vs MRI for functional grading. Finally, an overall grading system compared MRI vs CT and SPECT combined. Statistical analysis was performed using the kappa statistic. Seventy-two patients (mean age 16 years) were recruited. Forty pars defects were identified in 22 patients (31%), of which 25 were chronic non-union, five acute complete defects and ten acute incomplete fractures. Kappa scores demonstrated a high level of agreement for all comparative analyses. MRI vs SPECT (kappa: 0.794), MRI vs CT (kappa: 0.829) and MRI vs CT/SPECT (kappa: 0.786). The main causes of discrepancy were between MRI and SPECT for the diagnosis of stress reaction in the absence of overt fracture, and distinguishing incomplete fractures from intact pars or complete defects. MRI can be used as an effective and reliable first-line image modality for diagnosis of juvenile spondylolysis. However, localised CT is recommended as a supplementary examination in selected cases as a baseline for assessment of healing and for evaluation of indeterminate cases. (orig.)

  15. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT: 2015 revision

    Energy Technology Data Exchange (ETDEWEB)

    Verberne, Hein J.; Eck-Smit, Berthe L.F. van; Wit, Tim C. de [University of Amsterdam, Department of Nuclear Medicine, F2-238, Academic Medical Center, Amsterdam (Netherlands); Acampa, Wanda [National Council of Research, Institute of Biostructures and Bioimaging, Naples (Italy); Anagnostopoulos, Constantinos [Academy of Athens, Center for Experimental Surgery, Clinical and Translational Research, Biomedical Research Foundation, Athens (Greece); Ballinger, Jim [Guy' s Hospital - Guy' s and St Thomas' Trust Foundation, Department of Nuclear Medicine, London (United Kingdom); Bengel, Frank [Hannover Medical School, Department of Nuclear Medicine, Hannover (Germany); Bondt, Pieter De [OLV Hospital, Department of Nuclear Medicine, Aalst (Belgium); Buechel, Ronny R.; Kaufmann, Philip A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Cuocolo, Alberto [University Federico II, Department of Advanced Biomedical Sciences, Naples (Italy); Flotats, Albert [Universitat Autonoma de Barcelona, Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona (Spain); Hacker, Marcus [Medical University of Vienna, Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Vienna (Austria); Hindorf, Cecilia [Skaane University Hospital, Department of Radiation Physics, Lund (Sweden); Lindner, Oliver [University Hospital of the Ruhr-University Bochum, Heart and Diabetes Center North Rhine-Westphalia, Institute for Radiology, Nuclear Medicine and Molecular Imaging, Bad Oeynhausen (Germany); Ljungberg, Michael [Lund University, Department of Medical Radiation Physics, Lund (Sweden); Lonsdale, Markus [Bispebjerg Hospital, Department of Clinical Physiology and Nuclear Medicine, Copenhagen (Denmark); Manrique, Alain [Caen University Hospital, Department of Nuclear Medicine, Service Commun Investigations chez l' Homme, GIP Cyceron, Caen (France); Minarik, David [Skaane University Hospital, Radiation Physics, Malmoe (Sweden); Scholte, Arthur J.H.A. [Leiden University Medical Center, Department of Cardiology, Leiden (Netherlands); Slart, Riemer H.J.A. [University of Groningen, University Medical Center Groningen, Department of Nuclear Medicine and Molecular Imaging, Groningen (Netherlands); Traegaardh, Elin [Skaane University Hospital and Lund University, Clinical Physiology and Nuclear Medicine, Malmoe (Sweden); Hesse, Birger [University Hospital of Copenhagen, Department of Clinical Physiology and Nuclear Medicine and PET, Rigshospitalet, Copenhagen (Denmark)

    2015-11-15

    Since the publication of the European Association of Nuclear Medicine (EANM) procedural guidelines for radionuclide myocardial perfusion imaging (MPI) in 2005, many small and some larger steps of progress have been made, improving MPI procedures. In this paper, the major changes from the updated 2015 procedural guidelines are highlighted, focusing on the important changes related to new instrumentation with improved image information and the possibility to reduce radiation exposure, which is further discussed in relation to the recent developments of new International Commission on Radiological Protection (ICRP) models. Introduction of the selective coronary vasodilator regadenoson and the use of coronary CT-contrast agents for hybrid imaging with SPECT/CT angiography are other important areas for nuclear cardiology that were not included in the previous guidelines. A large number of minor changes have been described in more detail in the fully revised version available at the EANM home page: http://eanm.org/ publications/guidelines/2015{sub 0}7{sub E}ANM{sub F}INAL myocardial{sub p}erfusion{sub g}uideline.pdf. (orig.)

  16. Brain SPECT imaging in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Krausz, Y.; Yaffe, S.; Atlan, H.; Cohen, D.; Konstantini, S.; Meiner, Z.

    1991-01-01

    Temporal lobe epilepsy is diagnosed by clinical symptoms and signs and by localization of an epileptogenic focus. A brain SPECT study of two patients with temporal lobe epilepsy, using 99m Tc-HMPAO, was used to demonstrate a perfusion abnormality in the temporal lobe, while brain CT and MRI were non-contributory. The electroencephalogram, though abnormal, did not localize the diseased area. The potential role of the SPECT study in diagnosis and localization of temporal lobe epilepsy is discussed. (orig.)

  17. Radionuclide cisternography: SPECT and 3D-rendering

    International Nuclear Information System (INIS)

    Henkes, H.; Huber, G.; Piepgras, U.; Hierholzer, J.; Cordes, M.

    1991-01-01

    Radionuclide cisternography is indicated in the clinical work-up for hydrocephalus, when searching for CSF leaks, and when testing whether or not intracranial cystic lesions are communicating with the adjacent subarachnoid space. This paper demonstrates the feasibility and diagnostic value of SPECT and subsequent 3D surface rendering in addition to conventional rectilinear CSF imaging in eight patients. Planar images allowed the evaluation of CSF circulation and the detection of CSF fistula. They were advantageous in examinations 48 h after application of 111 In-DTPA. SPECT scans, generated 4-24 h after tracer application, were superior in the delineation of basal cisterns, especially in early scans; this was helpful in patients with pooling due to CSF fistula and in cystic lesions near the skull base. A major drawback was the limited image quality of delayed scans, when the SPECT data were degraded by a low count rate. 3D surface rendering was easily feasible from SPECT data and yielded high quality images. The presentation of the spatial distribution of nuclide-contaminated CSF proved especially helpful in the area of the basal cisterns. (orig.) [de

  18. Optimization of SPECT calibration for quantification of images applied to dosimetry with iodine-131

    International Nuclear Information System (INIS)

    Carvalho, Samira Marques de

    2018-01-01

    SPECT systems calibration plays an essential role in the accuracy of the quantification of images. In this work, in its first stage, an optimized SPECT calibration method was proposed for 131 I studies, considering the partial volume effect (PVE) and the position of the calibration source. In the second stage, the study aimed to investigate the impact of count density and reconstruction parameters on the determination of the calibration factor and the quantification of the image in dosimetry studies, considering the reality of clinical practice in Brazil. In the final step, the study aimed evaluating the influence of several factors in the calibration for absorbed dose calculation using Monte Carlo simulations (MC) GATE code. Calibration was performed by determining a calibration curve (sensitivity versus volume) obtained by applying different thresholds. Then, the calibration factors were determined with an exponential function adjustment. Images were performed with high and low counts densities for several source positions within the simulator. To validate the calibration method, the calibration factors were used for absolute quantification of the total reference activities. The images were reconstructed adopting two approaches of different parameters, usually used in patient images. The methodology developed for the calibration of the tomographic system was easier and faster to implement than other procedures suggested to improve the accuracy of the results. The study also revealed the influence of the location of the calibration source, demonstrating better precision in the absolute quantification considering the location of the target region during the calibration of the system. The study applied in the Brazilian thyroid protocol suggests the revision of the calibration of the SPECT system, including different positions for the reference source, besides acquisitions considering the Signal to Noise Ratio (SNR) of the images. Finally, the doses obtained with the

  19. Joint optimization of collimator and reconstruction parameters in SPECT imaging for lesion quantification

    International Nuclear Information System (INIS)

    McQuaid, Sarah J; Southekal, Sudeepti; Kijewski, Marie Foley; Moore, Stephen C

    2011-01-01

    Obtaining the best possible task performance using reconstructed SPECT images requires optimization of both the collimator and reconstruction parameters. The goal of this study is to determine how to perform this optimization, namely whether the collimator parameters can be optimized solely from projection data, or whether reconstruction parameters should also be considered. In order to answer this question, and to determine the optimal collimation, a digital phantom representing a human torso with 16 mm diameter hot lesions (activity ratio 8:1) was generated and used to simulate clinical SPECT studies with parallel-hole collimation. Two approaches to optimizing the SPECT system were then compared in a lesion quantification task: sequential optimization, where collimation was optimized on projection data using the Cramer–Rao bound, and joint optimization, which simultaneously optimized collimator and reconstruction parameters. For every condition, quantification performance in reconstructed images was evaluated using the root-mean-squared-error of 400 estimates of lesion activity. Compared to the joint-optimization approach, the sequential-optimization approach favoured a poorer resolution collimator, which, under some conditions, resulted in sub-optimal estimation performance. This implies that inclusion of the reconstruction parameters in the optimization procedure is important in obtaining the best possible task performance; in this study, this was achieved with a collimator resolution similar to that of a general-purpose (LEGP) collimator. This collimator was found to outperform the more commonly used high-resolution (LEHR) collimator, in agreement with other task-based studies, using both quantification and detection tasks.

  20. Differential diagnosis of regional cerebral hyperfixation of TC-99m HMPAO on SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Shirazi, P.; Konopka, L.; Crayton, J.W. [Loyola Univ. Medical Center, Maywood, IL (United States)] [and others

    1994-05-01

    Accurate diagnostic evaluation of patients with neurologic and neuropsychiatric disease is important because early treatment may halt disease progression and prevent impairment or disability. Cerebral hyperfixation of HMPAO has been ascribed to luxury perfusion following ischemic infarction. The present study sought to identify other conditions that also display radiotracer hyperfixation in order to develop a differential diagnosis of this finding on SPECT imaging. Two hundred fifty (n=250) successive cerebral SPECT images were reviewed for evidence of HMPAO hyperfixation. Hyperfixation was defined as enhanced focal perfusion surrounded by a zone of diminished or normal cerebral perfusion. All patients were scanned after intravenous injection of 25 mCi Tc-99m HMPAO. Volume-rendered and oblique images were obtained with a Trionix triple-head SPECT system using ultra high resolution fan beam collimators. Thirteen (13/250; 5%) of the patients exhibited regions of HMPAO hyperfixation. CT or MRI abnormalities were detected in 6/13 cases. Clinical diagnoses in these patients included intractable psychosis, post-traumatic stress disorder, alcohol and narcotic dependence, major depression, acute closed-head trauma, hypothyroidism, as well as subacute ischemic infarction. A wide variety of conditions may be associated with cerebral hyperfixation of HMPAO. These conditions include neurologic and psychiatric diagnoses, and extend the consideration of hyperfixation beyond ischemic infarction. Consequently, a differential diagnosis of HMPAO hyperfixation may be broader than originally considered, and this may suggest a fundamental role for local cerebral hyperperfusion. Elucidation of the fundamental mechanism(s) for cerebral hyperperfusion requires further investigation.

  1. Optimization of imaging parameters for SPECT scans of [99mTc]TRODAT-1 using Taguchi analysis.

    Directory of Open Access Journals (Sweden)

    Cheng-Kai Huang

    Full Text Available Parkinson's disease (PD is a neurodegenerative disease characterized by progressive loss of dopaminergic neurons in the basal ganglia. Single photon emission computed tomography (SPECT scans using [99mTc]TRODAT-1 can image dopamine transporters and provide valuable diagnostic information of PD. In this study, we optimized the scanning parameters for [99mTc]TRODAT-1/SPECT using the Taguchi analysis to improve image quality. SPECT scans were performed on forty-five healthy volunteers according to an L9 orthogonal array. Three parameters were considered, including the injection activity, uptake duration, and acquisition time per projection. The signal-to-noise ratio (SNR was calculated from the striatum/occipital activity ratio as an image quality index. Ten healthy subjects and fifteen PD patients were used to verify the optimal parameters. The estimated optimal parameters were 962 MBq for [99mTc]TRODAT-1 injection, 260 min for uptake duration, and 60 s/projection for data acquisition. The uptake duration and time per projection were the two dominant factors which had an F-value of 18.638 (38% and 25.933 (53%, respectively. Strong cross interactions existed between the injection activity/uptake duration and injection activity/time per projection. Therefore, under the consideration of as low as reasonably achievable (ALARA for radiation protection, we can decrease the injection activity to 740 MBq. The image quality remains almost the same for clinical applications.

  2. Dopamine transporter imaging with [I-123]IPT SPECT in normal controls and Parkinson's patients: Feasibility study of a simplified SPECT scan protocol

    International Nuclear Information System (INIS)

    Kim, H. J.; Bong, J. K.; Nam, K. P.; Yang, S. O.; Moon, D. H.; Ryu, J. S.; Lee, H. K.

    1997-01-01

    [I-123]IPT has been used to measure changes in dopamine trasnporters with Parkinson's patients (PP). However, 2 hrs of imaging time without movement of patient's head partially limits its widespread use in routine clinical SPECT protocol. The purpose of this study was to evaluate the feasibility of a simplified IPT SPECT scan protocol using three 10 min scan data obtained at 0-10, 55-65, and 110-120 min postinjection and compared to current protocol using 23 scans obtained from O-120 min to quantify dopamine transporter binding in normal controls (NC) and PP. IPT labeled with 6.74±0.88mCi of I-123 was intravenously injected into 12 NC (age: 41±9) and 22 PP (age : 55±8) and the 5 min dynamic SPECT data were acquired for 2 hrs with Trionix triple-headed SPECT camera. SPECT images were reconstructed and attenuation corrected. [I-123] IPT quickly penetratd the blood-brain barrier and began to Ioacalize higher concentrations at the basal ganglia at 20 min after injection. The transporter parameter was measured using a variation of graphical analysis (VGA) and area ratio method (ARM) that derive the distribution volume ratios (R v =V 3 /V 2 for VGA, R A =V 3 /V 2 for ARM ) from multiple scan data without blood data, R v ' and R A ' measured from three 10 min scan data and compared with R v and R A measured from 23 scans for both NC and PP, (R v ', R v ') or NC and PP were (1.83±0.29, 2.21±0.34) and (0.63±0.34, 0.77±0.31), respectively. (R v ', R A ) for NC and PP were (1.11±0.22, 1.62±0.28) and (0.43±0.21, 0.65±0.24), respectively, Both (R v ', R v ) and (R A ', R A ) for NC were clearly separated from those for PP. R' v and R' A underestimated R v and R A by 18.4% and 33.5%, respectively, but R v ' and R A ' showed excellent correlations with R v (r=0.95) and R A (r=0.97), respectively. The results indicate that the three 10 min scan protocol may be feasible and allows us to differentiate dopamine transporter parameters in PP from those in NC

  3. PET and SPECT in neurology

    Energy Technology Data Exchange (ETDEWEB)

    Dierckx, Rudi A.J.O. [Groningen University Medical Center (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Ghent Univ. (Belgium). Dept. of Radiology and Nuclear Medicine; Vries, Erik F.J. de; Waarde, Aren van [Groningen University Medical Center (Netherlands). Dept. of Nuclear Medicine and Molecular Imaging; Otte, Andreas (ed.) [Univ. of Applied Sciences Offenburg (Germany). Faculty of Electrical Engineering and Information Technology

    2014-07-01

    PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.

  4. PET and SPECT in neurology

    International Nuclear Information System (INIS)

    Dierckx, Rudi A.J.O.; Ghent Univ.; Vries, Erik F.J. de; Waarde, Aren van; Otte, Andreas

    2014-01-01

    PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.

  5. Interactions of collimation, sampling and filtering on spect spatial resolution

    International Nuclear Information System (INIS)

    Tsui, B.M.W.; Jaszczak, R.J.

    1984-01-01

    The major factors which affect the spatial resolution of single-photon emission computer tomography (SPECT) include collimation, sampling and filtering. A theoretical formulation is presented to describe the relationship between these factors and their effects on the projection data. Numerical calculations were made using commercially available SPECT systems and imaging parameters. The results provide an important guide for proper selection of the collimator-detector design, the imaging and the reconstruction parameters to avoid unnecessary spatial resolution degradation and aliasing artifacts in the reconstructed image. In addition, the understanding will help in the fair evaluation of different SPECT systems under specific imaging conditions

  6. Dopamine transporter imaging with [{sup 123}I]FP-CIT SPECT: potential effects of drugs

    Energy Technology Data Exchange (ETDEWEB)

    Booij, Jan [University of Amsterdam, Department of Nuclear Medicine, Academic Medical Center, Amsterdam (Netherlands); Kemp, Paul [Southampton University Hospitals Trust, Department of Nuclear Medicine, Southampton (United Kingdom)

    2008-02-15

    [{sup 123}I]N-{omega}-fluoropropyl-2{beta}-carbomethoxy-3{beta}-{l_brace}4-iodophenyl{r_brace}nortropane ([{sup 123}I]FP-CIT) single photon emission computed tomography (SPECT) is a frequently and routinely used technique to detect or exclude dopaminergic degeneration by imaging the dopamine transporter (DAT) in parkinsonian and demented patients. This technique is also used in scientific studies in humans, as well as in preclinical studies to assess the availability of DAT binding in the striatum. In routine clinical studies, but also in scientific studies, patients are frequently on medication and sometimes even use drugs of abuse. Moreover, in preclinical studies, animals will be anesthetized. Prescribed drugs, drugs of abuse, and anesthetics may influence the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Here, we discuss the basic principle of how drugs and anesthetics might influence the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. We also review drugs which are likely to have a significant influence on the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Additionally, we discuss the evidence as to whether frequently prescribed drugs in parkinsonian and demented patients may have an influence on the visual interpretation and/or quantification of [{sup 123}I]FP-CIT SPECT scans. Finally, we discuss our recommendations as to which drugs should be ideally withdrawn before performing a [{sup 123}I]FP-CIT SPECT scan for routine clinical purposes. The decision to withdraw any medication must always be made by the specialist in charge of the patient's care and taking into account the pros and cons of doing so. (orig.)

  7. High-resolution tomography of positron emitters with clustered pinhole SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Goorden, Marlies C; Beekman, Freek J [Section of Radiation Detection and Medical Imaging, Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)], E-mail: m.c.goorden@tudelft.nl

    2010-03-07

    State-of-the-art small-animal single photon emission computed tomography (SPECT) enables sub-half-mm resolution imaging of radio-labelled molecules. Due to severe photon penetration through pinhole edges, current multi-pinhole SPECT is not suitable for high-resolution imaging of photons with high energies, such as the annihilation photons emitted by positron emitting tracers (511 keV). To deal with this edge penetration, we introduce here clustered multi-pinhole SPECT (CMP): each pinhole in a cluster has a narrow opening angle to reduce photon penetration. Using simulations, CMP is compared with (i) a collimator with traditional pinholes that is currently used for sub-half-mm imaging of SPECT isotopes (U-SPECT-II), and (ii), like (i) but with collimator thickness adapted to image high-energy photons (traditional multi-pinhole SPECT, TMP). At 511 keV, U-SPECT-II is able to resolve the 0.9 mm rods of an iteratively reconstructed Jaszczak-like capillary hot rod phantom, and while TMP only leads to small improvements, CMP can resolve rods as small as 0.7 mm. Using a digital tumour phantom, we show that CMP resolves many details not assessable with standard USPECT-II and TMP collimators. Furthermore, CMP makes it possible to visualize uptake of positron emitting tracers in sub-compartments of a digital mouse striatal brain phantom. This may open up unique possibilities for analysing processes such as those underlying the function of neurotransmitter systems. Additional potential of CMP may include (i) the imaging of other high-energy single-photon emitters (e.g. I-131) and (ii) localized imaging of positron emitting tracers simultaneously with single photon emitters, with an even better resolution than coincidence PET.

  8. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Energy Technology Data Exchange (ETDEWEB)

    Razali, Azhani Mohd, E-mail: azhani@nuclearmalaysia.gov.my; Abdullah, Jaafar, E-mail: jaafar@nuclearmalaysia.gov.my [Plant Assessment Technology (PAT) Group, Industrial Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang (Malaysia)

    2015-04-29

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  9. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    International Nuclear Information System (INIS)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-01-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm

  10. Image reconstruction of single photon emission computed tomography (SPECT) on a pebble bed reactor (PBR) using expectation maximization and exact inversion algorithms: Comparison study by means of numerical phantom

    Science.gov (United States)

    Razali, Azhani Mohd; Abdullah, Jaafar

    2015-04-01

    Single Photon Emission Computed Tomography (SPECT) is a well-known imaging technique used in medical application, and it is part of medical imaging modalities that made the diagnosis and treatment of disease possible. However, SPECT technique is not only limited to the medical sector. Many works are carried out to adapt the same concept by using high-energy photon emission to diagnose process malfunctions in critical industrial systems such as in chemical reaction engineering research laboratories, as well as in oil and gas, petrochemical and petrochemical refining industries. Motivated by vast applications of SPECT technique, this work attempts to study the application of SPECT on a Pebble Bed Reactor (PBR) using numerical phantom of pebbles inside the PBR core. From the cross-sectional images obtained from SPECT, the behavior of pebbles inside the core can be analyzed for further improvement of the PBR design. As the quality of the reconstructed image is largely dependent on the algorithm used, this work aims to compare two image reconstruction algorithms for SPECT, namely the Expectation Maximization Algorithm and the Exact Inversion Formula. The results obtained from the Exact Inversion Formula showed better image contrast and sharpness, and shorter computational time compared to the Expectation Maximization Algorithm.

  11. Preliminary application of SPECT three dimensional brain imaging in normal controls and patients with cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Zhaosheng, Luan; Pengyong,; Xiqin, Sun; Wei, Wang; Huisheng, Liu; Wen, Zhou [88 Hospital PLA, Taian, SD (China). Dept. of Nuclear Medicine

    1992-11-01

    10 normal controls and 32 cerebral infarction patients were examined with SPECT three-dimensional (3D) and sectional imaging. The result shows that 3D brain imaging has significant value in the diagnosis of cerebral infarction. 3D brain imaging is superior to sectional imaging in determining the location and size of superficial lesions. For the diagnosis of deep lesions, it is better to combine 3D brain imaging with sectional imaging. The methodology of 3D brain imaging is also discussed.

  12. Preliminary application of SPECT three dimensional brain imaging in normal controls and patients with cerebral infarction

    International Nuclear Information System (INIS)

    Luan Zhaosheng; Pengyong; Sun Xiqin; Wang Wei; Liu Huisheng; Zhou Wen

    1992-01-01

    10 normal controls and 32 cerebral infarction patients were examined with SPECT three-dimensional (3D) and sectional imaging. The result shows that 3D brain imaging has significant value in the diagnosis of cerebral infarction. 3D brain imaging is superior to sectional imaging in determining the location and size of superficial lesions. For the diagnosis of deep lesions, it is better to combine 3D brain imaging with sectional imaging. The methodology of 3D brain imaging is also discussed

  13. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  14. Proceedings of clinical SPECT [single photon emission computed tomography] symposium

    International Nuclear Information System (INIS)

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base

  15. Initial experience with SPECT examinations using [123I]IBZM as a D2-dopamine receptor antagonist in Parkinson's disease

    International Nuclear Information System (INIS)

    Cordes, M.; Henkes, H.; Hierholzer, J.; Eichstaedt, H.; Felix, R.; Laudahn, D.; Braeu, H.; Girke, W.; Kramp, W.

    1991-01-01

    [ 123 I]IBZM is a new radioactive labelled ligand which has a high affinity and specificity to D2-dopamine receptors. The in vivo kinetics of [ 123 I]IBZM were studied in patients with unilateral and bilateral accentuated idiopathic Parkinson's disease. The uptake in the basal ganglias and the imaging properties of this D2 receptor antagonist as a radiopharmaceutical for SPECT examinations had to be investigated. 5 patients, aged 42-66 years, (2m/3f) were examined. Each patient received 185 MBq [ 123 I]IBZM intravenously. Blood samples were taken 0-120 min post injection (p.i.) and time activity curves were plotted. Three SPECT examinations were performed (I: 30-50 min; II: 50-70 min; and III: 70-90 min p.i.). The count rates (counts/pixel) in the basal ganglias and the cerebellum were measured for each SPECT series on transverse slices using the region-of-interest technique. The time-activity curve of [ 123 I]IBZM shows a rapid decline in plasma during the first 10 min followed by a plateau until 120 min after injection. The SPECT examinations demonstrate the highest count rate in the basal ganglia during SPECT series III (i.e., 70-90 min p.i.). The side-to-side difference of the count rates were in the range of 3 percent in four patients, and 10 percent in one patient. The biokinetic data of [ 123 I]IBZM make this substance capable as a radiopharmaceutical for SPECT examinations. The basal ganglia are best visualized 70-90 min p.i., thus [ 123 I]IBZM seems to be a promising imaging agent for diseases of the D2-dopaminergic receptor system. (author). 7 refs.; 4 figs.; 4 tabs

  16. The incorporation of SPECT functional lung imaging into inverse radiotherapy planning for non-small cell lung cancer

    International Nuclear Information System (INIS)

    Christian, Judith A.; Partridge, Mike; Nioutsikou, Elena; Cook, Gary; McNair, Helen A.; Cronin, Bernadette; Courbon, Frederic; Bedford, James L.; Brada, Michael

    2005-01-01

    Background and purpose: Patients with non-small cell lung cancer (NSCLC) often have inhomogeneous lung perfusion. Radiotherapy planning computed tomography (CT) scans have been accurately co-registered with lung perfusion single photon emission computed tomography (SPECT) scans to design radiotherapy treatments which limit dose to healthy 'perfused' lung. Patients and methods: Patients with localised NSCLC had CT and SPECT scans accurately co-registered in the planning system. The SPECT images were used to define a volume of perfused 'functioning' lung (FL). Inverse planning software was used to create 3D-conformal plans, the planning objective being either to minimise the dose to whole lungs (WL) or to minimise the dose to FL. Results: Four plans were created for each of six patients. The mean difference in volume between WL and FL was 1011.7 cm 3 (range 596.2-1581.1 cm 3 ). One patient with bilateral upper lobe perfusion deficits had a 16% reduction in FLV 2 (the percentage volume of functioning lung receiving ≥20 Gy). The remaining patients had inhomogeneous perfusion deficits such that inverse planning was not able to sufficiently optimise beam angles to avoid functioning lung. Conclusion: SPECT perfusion images can be accurately co-registered with radiotherapy planning CT scans and may be helpful in creating treatment plans for patients with large perfusion deficits

  17. SPECT imaging evaluation in movement disorders: far beyond visual assessment

    Energy Technology Data Exchange (ETDEWEB)

    Badiavas, Kosmas [General Hospital, Medical Physics Department, Thessaloniki (Greece); Molyvda, Elisavet; Psarrakos, Kyriakos [Medical Physics Dept., General Hospital, Thessaloniki (Greece); Iakovou, Ioannis; Karatzas, Nikolaos [Medical Physical Dept., Aristotle Univ., Thessaloniki (Greece); Tsolaki, Magdalini [3. Neurology Clinic, Aristotle Univ., Thessaloniki (Greece)

    2011-04-15

    Single photon emission computed tomography (SPECT) imaging with {sup 123}I-FP-CIT is of great value in differentiating patients suffering from Parkinson's disease (PD) from those suffering from essential tremor (ET). Moreover, SPECT with {sup 123}I-IBZM can differentiate PD from Parkinson's ''plus'' syndromes. Diagnosis is still mainly based on experienced observers' visual assessment of the resulting images while many quantitative methods have been developed in order to assist diagnosis since the early days of neuroimaging. The aim of this work is to attempt to categorize, briefly present and comment on a number of semi-quantification methods used in nuclear medicine neuroimaging. Various arithmetic indices have been introduced with region of interest (ROI) manual drawing methods giving their place to automated procedures, while advancing computer technology has allowed automated image registration, fusion and segmentation to bring quantification closer to the final diagnosis based on the whole of the patient's examinations results, clinical condition and response to therapy. The search for absolute quantification has passed through neuroreceptor quantification models, which are invasive methods that involve tracer kinetic modelling and arterial blood sampling, a practice that is not commonly used in a clinical environment. On the other hand, semi-quantification methods relying on computers and dedicated software try to elicit numerical information out of SPECT images. The application of semi-quantification methods aims at separating the different patient categories solving the main problem of finding the uptake in the structures of interest. The semi-quantification methods which were studied fall roughly into three categories, which are described as classic methods, advanced automated methods and pixel-based statistical analysis methods. All these methods can be further divided into various subcategories. The plethora of

  18. Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: results of the multicentre SPAG (SPECT Attenuation Correction vs Gated) study

    International Nuclear Information System (INIS)

    Genovesi, Dario; Giorgetti, Assuero; Gimelli, Alessia; Kusch, Annette; D'Aragona Tagliavia, Irene; Casagranda, Mirta; Marzullo, Paolo; Cannizzaro, Giorgio; Giubbini, Raffaele; Bertagna, Francesco; Fagioli, Giorgio; Rossi, Massimiliano; Romeo, Annadina; Bertolaccini, Pietro; Bonini, Rita

    2011-01-01

    In clinical myocardial single photon emission computed tomography (SPECT), attenuation artefacts may cause a loss of specificity in the identification of diseased vessels that can be corrected by means of gated SPECT (GSPECT) acquisition or CT attenuation correction (AC). The purpose of this multicentre study was to assess the impact of GSPECT and AC on the diagnostic performance of myocardial scintigraphy, according to patient's sex, body mass index (BMI) and site of coronary artery disease (CAD). We studied a group of 104 patients who underwent coronary angiography within 1 month before or after the SPECT study. Patients with a BMI > 27 were considered ''overweight''. Attenuation-corrected and standard GSPECT early images were randomly interpreted by three readers blinded to the clinical data. In the whole group, GSPECT and AC showed a diagnostic accuracy of 86.5% (sensitivity 82%, specificity 93%) and 77% (sensitivity 75.4%, specificity 81.4%), respectively (p < 0.05). In women, when anterior ischaemia was matched with CAD, AC failed to show any increase in specificity (AC 63.6% vs GSPECT 63.6%) with evident loss of sensitivity (AC 72.7% vs GSPECT 90.9%). AC significantly improved SPECT specificity in the identification of right CAD in overweight men (AC 100% vs GSPECT 66.7%, p <0.05). AC improved specificity in the evaluation of right CAD in overweight men. In the other evaluable subgroups specificity was not significantly affected while sensitivity was frequently reduced. (orig.)

  19. Impact of attenuation correction and gated acquisition in SPECT myocardial perfusion imaging: results of the multicentre SPAG (SPECT Attenuation Correction vs Gated) study

    Energy Technology Data Exchange (ETDEWEB)

    Genovesi, Dario; Giorgetti, Assuero; Gimelli, Alessia; Kusch, Annette; D' Aragona Tagliavia, Irene; Casagranda, Mirta; Marzullo, Paolo [Fondazione CNR-Regione Toscana ' ' G. Monasterio' ' , Nuclear Medicine, Pisa (Italy); Cannizzaro, Giorgio [A.O.V. Cervello, Nuclear Medicine, Palermo (Italy); Giubbini, Raffaele; Bertagna, Francesco [Spedali Civili, Nuclear Medicine, Brescia (Italy); Fagioli, Giorgio; Rossi, Massimiliano; Romeo, Annadina [Ospedale Maggiore, Nuclear Medicine, Bologna (Italy); Bertolaccini, Pietro; Bonini, Rita [Ospedale SS Giacomo e Cristoforo, Nuclear Medicine, Massa (Italy)

    2011-10-15

    In clinical myocardial single photon emission computed tomography (SPECT), attenuation artefacts may cause a loss of specificity in the identification of diseased vessels that can be corrected by means of gated SPECT (GSPECT) acquisition or CT attenuation correction (AC). The purpose of this multicentre study was to assess the impact of GSPECT and AC on the diagnostic performance of myocardial scintigraphy, according to patient's sex, body mass index (BMI) and site of coronary artery disease (CAD). We studied a group of 104 patients who underwent coronary angiography within 1 month before or after the SPECT study. Patients with a BMI > 27 were considered ''overweight''. Attenuation-corrected and standard GSPECT early images were randomly interpreted by three readers blinded to the clinical data. In the whole group, GSPECT and AC showed a diagnostic accuracy of 86.5% (sensitivity 82%, specificity 93%) and 77% (sensitivity 75.4%, specificity 81.4%), respectively (p < 0.05). In women, when anterior ischaemia was matched with CAD, AC failed to show any increase in specificity (AC 63.6% vs GSPECT 63.6%) with evident loss of sensitivity (AC 72.7% vs GSPECT 90.9%). AC significantly improved SPECT specificity in the identification of right CAD in overweight men (AC 100% vs GSPECT 66.7%, p <0.05). AC improved specificity in the evaluation of right CAD in overweight men. In the other evaluable subgroups specificity was not significantly affected while sensitivity was frequently reduced. (orig.)

  20. SPECT/CT in the Diagnosis of Skull Base Osteomyelitis

    International Nuclear Information System (INIS)

    Damle, Nishikant Avinash; Kumar, Rakesh; Kumar, Praveen; Jaganthan, Sriram; Patnecha, Manish; Bal, Chandrasekhar; Bandopadhyaya, Gurupad; Malhotra, Arun

    2011-01-01

    Skull base osteomyelitis is a potentially fatal disease. We demonstrate here the utility of SPECT/CT in diagnosing this entity, which was not obvious on a planar bone scan. A 99mT c MDP bone scan with SPECT/CT was carried out on a patient with clinically suspected skull base osteomyelitis. Findings were correlated with contrast enhanced CT (CECT) and MRI. Planar images were equivocal, but SPECT/CT showed intense uptake in the body of sphenoid and petrous temporal bone as well as the atlas corresponding to irregular bone destruction on CT and MRI. These findings indicate that SPECT/CT may have an additional role beyond planar imaging in the detection of skull base osteomyelitis.

  1. SPECT and PET imaging in epilepsia; SPECT und PET in der Diagnostik von Epilepsien

    Energy Technology Data Exchange (ETDEWEB)

    Landvogt, C. [Mainz Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin

    2007-09-15

    In preoperative localisation of epileptogenic foci, nuclear medicine diagnostics plays a crucial role. FDG-PET is used as first line diagnostics. In case of inconsistent MRI, EEG and FDG-PET findings, {sup 11}C-Flumazenil-PET or ictal and interictal perfusion-SPECT should be performed. Other than FDG, Flumazenil can help to identify the extend of the region, which should be resected. To enhance sensitivity and specificity, further data analysis using voxelbased statistical analyses or SISCOM (substraction ictal SPECT coregistered MRI) should be performed.

  2. Contralateral thalamic hypoperfusion on brain perfusion SPECT

    International Nuclear Information System (INIS)

    Lee, Seok Mo; Bae, Sang Kyun; Yoo, Kyung Moo; Yum, Ha Yong

    2000-01-01

    Brain perfusion single photon emission computed tomography (SPECT) is useful for the localization of cerebrovascular lesion and sometimes reveals more definite lesion than radiologic imaging modality such as CT or MRI does. The purpose of this study was to evaluate the diagnostic usefulness of brain perfusion SPECT in patients with hemisensory impairment. Thirteen consecutive patients (M:F= 8:5, mean age = 48) who has hemisensory impairment were included. Brain perfusion SPECT was performed after intravenous injection of 1110 MBq of Tc-99m ECD. The images were obtained using a dual-head gamma camera with ultra-high resolution collimator. Semiquantitative analysis was performed after placing multiple ROIs on cerebral cortex, basal ganglia, thalamus and cerebellum. There were 10 patients with left hemisensory impairment and 3 patients with right-sided symptom. Only 2 patients revealed abnormal signal change in the thalamus on MRI. But brain perfusion SPECT showed decreased perfusion in the thalamus in 9 patients. Six patients among 10 patients with left hemisensory impairment revealed decreased perfusion in the contralateral thalamus on brain SPECT. The other 4 patients revealed no abnormality. Two patients among 3 patients with right hemisensory impairment also showed decreased perfusion in the contralateral thalamus on brain SPECT. One patients with right hemisensory impairment showed ipsilateral perfusion decrease. Two patients who had follow-up brain perfusion SEPCT after treatment revealed normalization of perfusion in the thalamus. Brain perfusion SPECT might be a useful tool in diagnosing patients with hemisensory impairment

  3. Chilaiditi's syndrome demonstrated by SPECT/CT

    Directory of Open Access Journals (Sweden)

    Nalini S Perumal

    2009-11-01

    Full Text Available Purpose: Chilaiditi’s syndrome is a rare condition commonly diagnosed as an incidental radiological finding. The aim of this report is to show the role of SPECT-CT in this syndrome and state the functional and anatomical role of this hybrid imaging modality. Materials and Methods: A case report. Results: A 49-year-old female patient was referred for gallium-67 citrate for a possible granulomatous myositis and underwent SPECT-CT of the abdomen to assess the area of decreased gallium uptake on planar images of the liver. The combined SPECT and CT modality demonstrated findings consistent with the clinical evidence of Chilaiditi’s syndrome. The anatomical part of this hybrid modality made it easier to evaluate the area of gallium lack of uptake which was due to air in the colon. Conclusion: This case does not only show the role of SPECT-CT in this syndrome but also suggest that the use of such modality should be considered whenever available in the evaluation of patients in whom the localization of active disease becomes imperative.

  4. Evaluation of Parallel and Fan-Beam Data Acquisition Geometries and Strategies for Myocardial SPECT Imaging

    Science.gov (United States)

    Qi, Yujin; Tsui, B. M. W.; Gilland, K. L.; Frey, E. C.; Gullberg, G. T.

    2004-06-01

    This study evaluates myocardial SPECT images obtained from parallel-hole (PH) and fan-beam (FB) collimator geometries using both circular-orbit (CO) and noncircular-orbit (NCO) acquisitions. A newly developed 4-D NURBS-based cardiac-torso (NCAT) phantom was used to simulate the /sup 99m/Tc-sestamibi uptakes in human torso with myocardial defects in the left ventricular (LV) wall. Two phantoms were generated to simulate patients with thick and thin body builds. Projection data including the effects of attenuation, collimator-detector response and scatter were generated using SIMSET Monte Carlo simulations. A large number of photon histories were generated such that the projection data were close to noise free. Poisson noise fluctuations were then added to simulate the count densities found in clinical data. Noise-free and noisy projection data were reconstructed using the iterative OS-EM reconstruction algorithm with attenuation compensation. The reconstructed images from noisy projection data show that the noise levels are lower for the FB as compared to the PH collimator due to increase in detected counts. The NCO acquisition method provides slightly better resolution and small improvement in defect contrast as compared to the CO acquisition method in noise-free reconstructed images. Despite lower projection counts the NCO shows the same noise level as the CO in the attenuation corrected reconstruction images. The results from the channelized Hotelling observer (CHO) study show that FB collimator is superior to PH collimator in myocardial defect detection, but the NCO shows no statistical significant difference from the CO for either PH or FB collimator. In conclusion, our results indicate that data acquisition using NCO makes a very small improvement in the resolution over CO for myocardial SPECT imaging. This small improvement does not make a significant difference on myocardial defect detection. However, an FB collimator provides better defect detection than a

  5. The Use of Quantitative SPECT/CT Imaging to Assess Residual Limb Health

    Science.gov (United States)

    2017-10-01

    of secondary health ef- fects following traumatic extremity injuries places a significant physical and psychosocial burden on SMs with LL and LS...been reported as the most important health -related physical condition con- tributing to a reduced QoL among veterans who had sustained a traumatic...AWARD NUMBER: W81XWH-15-1-0669 TITLE: The Use of Quantitative SPECT/CT Imaging to Assess Residual Limb Health PRINCIPAL INVESTIGATOR

  6. Quantitative 177Lu-SPECT/CT imaging and validation of a commercial dosimetry software

    International Nuclear Information System (INIS)

    D'Ambrosio, L.; Aloj, L.; Morisco, A.; Aurilio, M.; Prisco, A.; Di Gennaro, F.; Lastoria, S.; Madesani, D.

    2015-01-01

    Full text of publication follows. Aim: 3D dosimetry is an appealing yet complex application of SPECT/CT in patients undergoing radionuclide therapy. In this study we have developed a quantitative imaging protocol and we have validated commercially available dosimetry software (Dosimetry Tool-kit Package, GE Heathcare) in patients undergoing 177 Lu-DOTATATE therapy. Materials and methods: dosimetry tool-kit uses multi SPECT/CT and/or WB planar datasets for quantifying changes in radiopharmaceutical uptake over time to determine residence times. This software includes tools for performing reconstruction of SPECT/CT data, registration of all scans to a common reference, segmentation of the different organs, creating time activity curves, curve fitting and calculation of residence times. All acquisitions were performed using a hybrid dual-head SPECT-CT camera (Discovery 670, GE Heathcare) equipped with medium energy collimator using a triple-energy window. SPECT images were reconstructed using an iterative reconstruction algorithm with attenuation, scatter and collimator depth-dependent three-dimensional resolution recovery correction. Camera sensitivity and dead time were evaluated. Accuracy of activity quantification was performed on a large homogeneous source with addition of attenuating/scattering medium. A NEMA/IEC body phantom was utilized to measure the recovery coefficient that the software does not take into account. The residence times for organs at risk were calculated in five patients. OLINDA-EXM software was used to calculate absorbed doses. Results: 177 Lu-sensitivity factor was 13 counts/MBq/s. Dead time was <3% with 1.11 GBq in the field of view. The measured activity was consistent with the decay-corrected calibrated activity for large volumes (>100 cc). The recovery coefficient varied from 0.71 (26.5 ml) to 0.16 (2.5 ml) in the absence of background activity and from 0.58 to 0.13 with a source to background activity concentration ratio 20:1. The

  7. Combined SPECT/CT improves detection of initial bone invasion and determination of resection margins in squamous cell carcinoma of the head and neck compared to conventional imaging modalities

    Energy Technology Data Exchange (ETDEWEB)

    Kolk, A. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Oral and Maxillofacial Surgery, Munich (Germany); Klinikum rechts der Isar, Technische Universitaet Muenchen, Klinik und Poliklinik fuer Mund-Kiefer und Gesichtschirurgie, Muenchen (Germany); Schuster, T. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Institute of Medical Statistics and Epidemiology, Munich (Germany); Chlebowski, A.; Kesting, M.; Bissinger, O.; Weitz, J. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Oral and Maxillofacial Surgery, Munich (Germany); Lange, P. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Diagnostic Radiology, Munich (Germany); Scheidhauer, K.; Schwaiger, M.; Dinges, J. [Technische Universitaet Muenchen, Klinikum rechts der Isar, Department of Nuclear Medicine, Munich (Germany)

    2014-07-15

    Knowledge of the presence and extent of bone infiltration is crucial for planning the resection of potential bone-infiltrating squamous cell carcinomas of the head and neck (HNSCC). Routinely, plain-film radiography, multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) are used for preoperative staging, but they show relatively high rates of false-positive and false-negative findings. Scintigraphy with {sup 99m}Tc-bisphosphonate has the ability to show increased metabolic bone activity. If combined with anatomical imaging (e.g. (SPECT)/CT), it facilitates the precise localization of malignant bone lesions. The aim of this study was to analyse the indications and advantages of SPECT/CT compared with standard imaging modalities and histology with regard to specificity and sensitivity A longitudinally evaluated group of 30 patients with biopsy-proven HNSCC adjacent to the mandible underwent {sup 99m}Tc-bisphosphonate SPECT/CT, MRI, MSCT and conventional radiography before partial or rim resection of the mandible was performed. Bone infiltration was first evaluated with plain films, MSCT and MRI. In a second reading, SPECT/CT data were taken into account. The results (region and certainty of bone invasion) were evaluated among the different imaging modalities and finally compared with histological specimens from surgical resection as the standard of reference. For a better evaluation of the hybrid property of SPECT/CT, a retrospectively evaluated group of 20 additional patients with tumour locations similar to those of the longitudinally examined SPECT/CT group underwent SPECT, MSCT and MRI. To assess the influence of dental foci on the specificity of the imaging modalities, all patients were separated into two subgroups depending on the presence or absence of teeth in the area of potential tumour-bone contact. Histologically proven bone infiltration was found in 17 patients (57 %) when analysed by conventional imaging modalities. SPECT/CT data

  8. Combined SPECT/CT improves detection of initial bone invasion and determination of resection margins in squamous cell carcinoma of the head and neck compared to conventional imaging modalities

    International Nuclear Information System (INIS)

    Kolk, A.; Schuster, T.; Chlebowski, A.; Kesting, M.; Bissinger, O.; Weitz, J.; Lange, P.; Scheidhauer, K.; Schwaiger, M.; Dinges, J.

    2014-01-01

    Knowledge of the presence and extent of bone infiltration is crucial for planning the resection of potential bone-infiltrating squamous cell carcinomas of the head and neck (HNSCC). Routinely, plain-film radiography, multislice computed tomography (MSCT) and magnetic resonance imaging (MRI) are used for preoperative staging, but they show relatively high rates of false-positive and false-negative findings. Scintigraphy with 99m Tc-bisphosphonate has the ability to show increased metabolic bone activity. If combined with anatomical imaging (e.g. (SPECT)/CT), it facilitates the precise localization of malignant bone lesions. The aim of this study was to analyse the indications and advantages of SPECT/CT compared with standard imaging modalities and histology with regard to specificity and sensitivity A longitudinally evaluated group of 30 patients with biopsy-proven HNSCC adjacent to the mandible underwent 99m Tc-bisphosphonate SPECT/CT, MRI, MSCT and conventional radiography before partial or rim resection of the mandible was performed. Bone infiltration was first evaluated with plain films, MSCT and MRI. In a second reading, SPECT/CT data were taken into account. The results (region and certainty of bone invasion) were evaluated among the different imaging modalities and finally compared with histological specimens from surgical resection as the standard of reference. For a better evaluation of the hybrid property of SPECT/CT, a retrospectively evaluated group of 20 additional patients with tumour locations similar to those of the longitudinally examined SPECT/CT group underwent SPECT, MSCT and MRI. To assess the influence of dental foci on the specificity of the imaging modalities, all patients were separated into two subgroups depending on the presence or absence of teeth in the area of potential tumour-bone contact. Histologically proven bone infiltration was found in 17 patients (57 %) when analysed by conventional imaging modalities. SPECT/CT data revealed

  9. Partial volume correction in SPECT reconstruction with OSEM

    Energy Technology Data Exchange (ETDEWEB)

    Erlandsson, Kjell, E-mail: k.erlandsson@ucl.ac.uk [Institute of Nuclear Medicine, University College London and University College London Hospital, London NW1 2BU (United Kingdom); Thomas, Ben; Dickson, John; Hutton, Brian F. [Institute of Nuclear Medicine, University College London and University College London Hospital, London NW1 2BU (United Kingdom)

    2011-08-21

    SPECT images suffer from poor spatial resolution, which leads to partial volume effects due to cross-talk between different anatomical regions. By utilising high-resolution structural images (CT or MRI) it is possible to compensate for these effects. Traditional partial volume correction (PVC) methods suffer from various limitations, such as correcting a single region only, returning only regional mean values, or assuming a stationary point spread function (PSF). We recently presented a novel method in which PVC was combined with the reconstruction process in order to take into account the distance dependent PSF in SPECT, which was based on filtered backprojection (FBP) reconstruction. We now present a new method based on the iterative OSEM algorithm, which has advantageous noise properties compared to FBP. We have applied this method to a series of 10 brain SPECT studies performed on healthy volunteers using the DATSCAN tracer. T1-weighted MRI images were co-registered to the SPECT data and segmented into 33 anatomical regions. The SPECT data were reconstructed using OSEM, and PVC was applied in the projection domain at each iteration. The correction factors were calculated by forward projection of a piece-wise constant image, generated from the segmented MRI. Images were also reconstructed using FBP and standard OSEM with and without resolution recovery (RR) for comparison. The images were evaluated in terms of striatal contrast and regional variability (CoV). The mean striatal contrast obtained with OSEM, OSEM-RR and OSEM-PVC relative to FBP were 1.04, 1.42 and 1.53, respectively, and the mean striatal CoV values are 1.05, 1.53, 1.07. Both OSEM-RR and OSEM-PVC results in images with significantly higher contrast as compared to FBP or OSEM, but OSEM-PVC avoids the increased regional variability of OSEM-RR due to improved structural definition.

  10. Sequential 123I-iododexetimide scans in temporal lobe epilepsy: comparison with neuroimaging scans (MR imaging and 18F-FDG PET imaging)

    International Nuclear Information System (INIS)

    Mohamed, Armin; Eberl, Stefan; Henderson, David; Beveridge, Scott; Constable, Chris; Fulham, Michael J.; Kassiou, Michael; Zaman, Aysha; Lo, Sing Kai

    2005-01-01

    Muscarinic acetylcholine receptors (mAChRs) play an important role in the generation of seizures. Single-photon emission computed tomography (SPECT) with 123 I-iododexetimide (IDEX) depicts tracer uptake by mAChRs. Our aims were to: (a) determine the optimum time for interictal IDEX SPECT imaging; (b) determine the accuracy of IDEX scans in the localisation of seizure foci when compared with video EEG and MR imaging in patients with temporal lobe epilepsy (TLE); (c) characterise the distribution of IDEX binding in the temporal lobes and (d) compare IDEX SPECT and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in identifying seizure foci. We performed sequential scans using IDEX SPECT imaging at 0, 3, 6 and 24 h in 12 consecutive patients with refractory TLE undergoing assessment for epilepsy surgery. Visual and region of interest analyses of the mesial, lateral and polar regions of the temporal lobes were used to compare IDEX SPECT, FDG PET and MR imaging in seizure onset localisation. The 6-h IDEX scan (92%; κ=0.83, p=0.003) was superior to the 0-h (36%; κ=0.01, p>0.05), 3-h (55%; κ=0.13, p>0.05) and 24-h IDEX scans in identifying the temporal lobe of seizure origin. The 6-h IDEX scan correctly predicted the temporal lobe of seizure origin in two patients who required intracranial EEG recordings to define the seizure onset. Reduced ligand binding was most marked at the temporal pole and mesial temporal structures. IDEX SPECT was superior to interictal FDG PET (75%; κ=0.66, p=0.023) in seizure onset localisation. MR imaging was non-localising in two patients in whom it was normal and in another patient in whom there was bilateral symmetrical hippocampal atrophy. The 6-h IDEX SPECT scan is a viable alternative to FDG PET imaging in seizure onset localisation in TLE. (orig.)

  11. Correction for patient and organ movement in SPECT: application to exercise thallium-201 cardiac imaging

    International Nuclear Information System (INIS)

    Geckle, W.J.; Frank, T.L.; Links, J.M.; Becker, L.C.

    1988-01-01

    We describe a technique for correction of artifacts in exercise 201 Tl single photon emission computed tomography (SPECT) images arising from abrupt or gradual translational movement of the heart during acquisition. The procedure involves the tracking of the center of the heart in serial projection images using an algorithm which we call diverging squares. Each projection image is then realigned in the x-y plane so that the heart center conforms to the projected position of a fixed point in space. The shifted projections are reconstructed using the normal filtered backprojection algorithm. In validation studies, the motion correction procedure successfully eliminated movement artifacts in a heart phantom. Image quality was also improved in over one-half of 36 exercise thallium patient studies. The corrected images had smoother and more continuous left ventricular walls, greater clarity of the left ventricular cavity, and reduced streak artifacts. Rest injected or redistribution images, however, were often made worse, due to reduced heart to liver activity ratios and poor tracking of the heart center. Analysis of curves of heart position versus projection angle suggests that translation of the heart is common during imaging after exercise, and results from both abrupt patient movements, and a gradual upward shift of the heart. Our motion correction technique appears to represent a promising new approach for elimination of movement artifacts and enhancement of resolution in exercise 201 Tl cardiac SPECT images

  12. Comparison of the prognostic value of SPECT after nitrate administration and metabolic imaging by PET in patients with ischaemic left ventricular dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Sorrentino, Anna R.; Acampa, Wanda; Mainolfi, Ciro; Salvatore, Marco; Cuocolo, Alberto [University Federico II, Department of Biomorphological and Functional Sciences, Institute of Biostructures and Bioimages of the National Council of Research, Naples (Italy); Petretta, Mario [University Federico II, Department of Internal Medicine, Cardiovascular and Immunological Sciences, Naples (Italy)

    2007-04-15

    We compared the prognostic value of {sup 99m}Tc-tetrofosmin single-photon emission computed tomography (SPECT) after nitrate administration and positron emission tomography (PET) with {sup 18}F-fluorodeoxyglucose (FDG) in patients with ischaemic left ventricular (LV) dysfunction. Eighty-nine patients with previous myocardial infarction and LV dysfunction (LV ejection fraction 33 {+-} 10%) underwent {sup 99m}Tc-tetrofosmin SPECT under control conditions (baseline) and after sublingual administration of 10 mg of isosorbide dinitrate (nitrate). Within 1 week, all patients underwent PET imaging with {sup 18}F-FDG. Four patients were excluded because of inadequate FDG uptake caused by severe diabetes. Follow-up data were obtained by phone contact with patients and by review of hospital or physicians' records. Cardiac death, myocardial infarction and late revascularisation for unstable angina were considered as events. Follow-up data were not available in three patients. Follow-up was 96% complete at a mean period of 29 {+-} 19 months. At baseline SPECT, 59 (72%) patients had evidence of viable myocardium, while 23 did not. Of these latter patients, 12 (52%) demonstrated viable myocardium after nitrate and 13 (56%) had preserved metabolic activity. Cardiac events (cardiac death, myocardial infarction and late revascularisation for unstable angina) occurred in 24 (29%) patients. Event-free survival was similar in patients with and patients without viable myocardium at baseline SPECT (p = 0.8). In contrast, event-free survival was lower in patients with viable myocardium at nitrate SPECT and PET compared to those without viable myocardium (both p<0.05). In patients with ischaemic LV dysfunction, the prognostic value of SPECT imaging after nitrate is comparable to that of PET metabolic imaging. (orig.)

  13. Utility of MDP bone SPECT in the detection of osseous invasion in craniofacial malignancies

    International Nuclear Information System (INIS)

    Saeed, S.; Haq, S.; Sohaib, M.; Khan, A.N.

    2002-01-01

    Aim: The study was designed to observe the role of SPECT imaging for the detection of osseous invasion in craniofacial malignancies. Material and Methods: Radionuclide bone imaging with Tc-99m MDP was done on 20 patients with different craniofacial malignancies. The planar imaging comprised of anterior, lateral and oblique lateral views of the skull. SPECT imaging was done taking 64 views of the skull in a 360 deg. circular path, each of 40 seconds with 128x128 matrix. Visual interpretation of the scans was done and a score of 0, 1, or 2 allocated, representing a lesion as definitely absent, doubtful or definitely present, respectively. SPECT images were compared with planar scans. Results: SPECT was proven superior to planar imaging and radiographs in detection as well as efficient demonstration of the extent of osseous invasion of a craniofacial cancer. The sensitivity was 100% for SPECT, 83.3% for planar and 33.3% for radiographs. Conclusion: SPECT imaging of the skull can serve as an extremely useful complementary investigation in the patients with craniofacial malignancies to assess them for osseous invasion, particularly in tumors likely to invade the skull base

  14. Respiratory lung motion analysis using a nonlinear motion correction technique for respiratory-gated lung perfusion SPECT images

    International Nuclear Information System (INIS)

    Ue, Hidenori; Haneishi, Hideaki; Iwanaga, Hideyuki; Suga, Kazuyoshi

    2007-01-01

    This study evaluated the respiratory motion of lungs using a nonlinear motion correction technique for respiratory-gated single photon emission computed tomography (SPECT) images. The motion correction technique corrects the respiratory motion of the lungs nonlinearly between two-phase images obtained by respiratory-gated SPECT. The displacement vectors resulting from respiration can be computed at every location of the lungs. Respiratory lung motion analysis is carried out by calculating the mean value of the body axis component of the displacement vector in each of the 12 small regions into which the lungs were divided. In order to enable inter-patient comparison, the 12 mean values were normalized by the length of the lung region along the direction of the body axis. This method was applied to 25 Technetium (Tc)-99m-macroaggregated albumin (MAA) perfusion SPECT images, and motion analysis results were compared with the diagnostic results. It was confirmed that the respiratory lung motion reflects the ventilation function. A statistically significant difference in the amount of the respiratory lung motion was observed between the obstructive pulmonary diseases and other conditions, based on an unpaired Student's t test (P<0.0001). A difference in the motion between normal lungs and lungs with a ventilation obstruction was detected by the proposed method. This method is effective for evaluating obstructive pulmonary diseases such as pulmonary emphysema and diffuse panbronchiolitis. (author)

  15. Lymphoscintigraphic sentinel node identification in patients with breast cancer: the role of SPECT-CT

    International Nuclear Information System (INIS)

    Lerman, H.; Metser, U.; Lievshitz, G.; Sperber, F.; Shneebaum, S.; Even-Sapir, E.

    2006-01-01

    Lymph node status is a major factor in determining the stage, appropriate therapy and outcome in patients with breast cancer. It is therefore of clinical importance to accurately identify all sentinel nodes (SNs) for each individual tumour before surgery. The purpose of this study was to assess the role of SPECT-CT lymphoscintigraphy in SN identification in patients with breast cancer. Lymphoscintigraphy comprising planar and SPECT-CT acquisition was performed in 157 consecutive patients with breast cancer (mean age 54.7±10.6, range 27-81 years) with a palpable mass (n=100), with a non-palpable mass (n=52) or post lumpectomy (n=5). Planar and SPECT-CT images were interpreted separately and the two imaging techniques were compared with respect to their ability to identify hot nodes. Planar imaging alone was negative for identification of hot nodes in 15% of the patients. SPECT-CT alone was negative in 10% and both techniques were negative in 9% of the patients. Forty-six of the total of 361 (13%) hot nodes identified by lymphoscintigraphy were detected only on SPECT-CT, including 21 nodes obscured by the scattered radiation from the injection site, nine adjacent nodes misinterpreted on planar images as a single node and 16 nodes which were missed on planar images and detected on SPECT data. SPECT-CT detected additional sites of drainage unexpected on planar images, including axillary (n=23 patients), internal mammary (n=5 patients), interpectoral (n=3 patients) and intramammary (n=2 patients) lymph node sites. Fourteen of the 329 (4%) hot lesions seen on planar images were false positive non-nodal sites of uptake that were accurately assessed by SPECT-CT and further validated by surgery. In a single patient, SPECT-CT was negative while planar images identified the SN. (orig.)

  16. SPECT/CT in pediatric patient management

    International Nuclear Information System (INIS)

    Nadel, Helen R.

    2014-01-01

    Hybrid SPECT/CT imaging is becoming the standard of care in pediatric imaging. Indications are mainly for oncologic imaging including mIBG scintigraphy for neuroblastoma and I-123 post surgical imaging of children with thyroid carcinoma, bone scintigraphy for back pain, children referred from sports medicine and neurodevelopmentally delayed children presenting with pain symptoms. The studies provide improved diagnostic accuracy, and oncologic imaging that includes optimized CT as part of the SPECT/CT study may decrease the number of studies and sedation procedures an individual child may need. The studies, however, must be tailored on an individual basis as the addition of the CT study can increase exposure to the child and should only be performed after appropriate justification and with adherence to optimized low dose pediatric protocols. (orig.)

  17. SPECT/CT in pediatric patient management

    Energy Technology Data Exchange (ETDEWEB)

    Nadel, Helen R. [British Columbia Children' s Hospital, University of British Columbia, Pediatric Radiologist and Nuclear Medicine Physician, Division of Nuclear Medicine Department of Radiology, Vancouver, British Columbia (Canada)

    2014-05-15

    Hybrid SPECT/CT imaging is becoming the standard of care in pediatric imaging. Indications are mainly for oncologic imaging including mIBG scintigraphy for neuroblastoma and I-123 post surgical imaging of children with thyroid carcinoma, bone scintigraphy for back pain, children referred from sports medicine and neurodevelopmentally delayed children presenting with pain symptoms. The studies provide improved diagnostic accuracy, and oncologic imaging that includes optimized CT as part of the SPECT/CT study may decrease the number of studies and sedation procedures an individual child may need. The studies, however, must be tailored on an individual basis as the addition of the CT study can increase exposure to the child and should only be performed after appropriate justification and with adherence to optimized low dose pediatric protocols. (orig.)

  18. Benzodiazepine receptor imaging with iomazenil SPECT in aphasic patients with cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Koshi, Yasuhiko; Kitamura, Shin; Ohyama, Masashi [Nippon Medical School, Tokyo (Japan)] (and others)

    1999-08-01

    To investigate the relationship between prognosis of aphasia and neuronal damage in the cerebral cortex, we evaluated the distribution of central-type benzodiazepine receptor (BZR) binding in post-stroke aphasics with [{sup 123}I]iomazenil and SPECT. We performed iomazenil SPECT in six aphasic patients (aged from 45 to 75 years; all right-handed) with unilateral left cerebral infarction. Three patients showed signs of Broca's aphasia and the other three Wernicke's aphasia. Cerebral blood flow (CBF) imaging was performed with [{sup 123}I]iodoamphetamine (IMP). The regions of interest (ROIs) on both images were set in the cerebral cortex, cerebellar cortex and language relevant area in both hemispheres. Three patients were classified in the mild prognosis group and the other three in the moderate prognosis group. The left language-relevant area was more closely concerned with the difference in aphasic symptoms than the right one in both BZR and CBF distribution, but the ipsilateral to the contralateral ratio (I/C ratio) in the language-relevant areas in the BZR distribution was significantly lower in the moderate prognosis group than in the mild prognosis group, although no difference was seen for these values between the two groups in the CBF distribution. These results suggest that BZR imaging, which makes possible an increase in neuronal cell viability in the cerebral cortex, is useful not only for clarifying the aphasic symptoms but also for evaluating the prognosis of aphasia in patients with cerebral infarction. (author)

  19. Benzodiazepine receptor imaging with iomazenil SPECT in aphasic patients with cerebral infarction

    International Nuclear Information System (INIS)

    Koshi, Yasuhiko; Kitamura, Shin; Ohyama, Masashi

    1999-01-01

    To investigate the relationship between prognosis of aphasia and neuronal damage in the cerebral cortex, we evaluated the distribution of central-type benzodiazepine receptor (BZR) binding in post-stroke aphasics with [ 123 I]iomazenil and SPECT. We performed iomazenil SPECT in six aphasic patients (aged from 45 to 75 years; all right-handed) with unilateral left cerebral infarction. Three patients showed signs of Broca's aphasia and the other three Wernicke's aphasia. Cerebral blood flow (CBF) imaging was performed with [ 123 I]iodoamphetamine (IMP). The regions of interest (ROIs) on both images were set in the cerebral cortex, cerebellar cortex and language relevant area in both hemispheres. Three patients were classified in the mild prognosis group and the other three in the moderate prognosis group. The left language-relevant area was more closely concerned with the difference in aphasic symptoms than the right one in both BZR and CBF distribution, but the ipsilateral to the contralateral ratio (I/C ratio) in the language-relevant areas in the BZR distribution was significantly lower in the moderate prognosis group than in the mild prognosis group, although no difference was seen for these values between the two groups in the CBF distribution. These results suggest that BZR imaging, which makes possible an increase in neuronal cell viability in the cerebral cortex, is useful not only for clarifying the aphasic symptoms but also for evaluating the prognosis of aphasia in patients with cerebral infarction. (author)

  20. Assessment of early radiation effects on the liver. Comparison of SPECT and MR

    International Nuclear Information System (INIS)

    Masui, T.

    1996-01-01

    Purpose: To evaluate the early effects of radiation on the liver using single photon emission CT (SPECT) with 99m Tc-phytate combined with a pinhole collimator and MR imaging with superparamagnetic iron oxide (SPIO) and to compare 2 modalities regarding the assessment of the reticuloendothelial cell function. Material and Methods: The right sides of the livers of 12 anesthetized rats were irradiated with X-rays (4000 Cgy). On the 3rd and 4th days postirradiation, SPECT and MR imaging pre- and postcontrast were performed. Results: On SPECT, the irradiated areas appeared as areas with reduced 99m Tc-phytate uptake in 9 rats. In the remaining 3 rats, irradiated lesions were not evident on SPECT. On the early postcontrast MR images, differential negative enhancement of the irradiated and nonirradiated areas in the same 9 rats as on SPECT was apparent. However, on the later postcontrast images of 3 of these rats, the irradiated areas, which were brighter than the nonirradiated areas, were visually less clear than those on the earlier postcontrast images. In the remaining 3 rats, no radiation damag was evident on MR images. Conclusion: SPECT with 99m Tc-phytate and early postcontrast MR imaging with SPIO can show early radiation damage of the liver. The serial assessment of the postcontrast MR images provides functional information on the Kupffer cells. (orig.)

  1. Alzheimer disease: Quantitative analysis of I-123-iodoamphetamine SPECT brain imaging

    International Nuclear Information System (INIS)

    Hellman, R.S.; Tikofsky, R.S.; Collier, B.D.; Hoffmann, R.G.; Palmer, D.W.; Glatt, S.L.; Antuono, P.G.; Isitman, A.T.; Papke, R.A.

    1989-01-01

    To enable a more quantitative diagnosis of senile dementia of the Alzheimer type (SDAT), the authors developed and tested a semiautomated method to define regions of interest (ROIs) to be used in quantitating results from single photon emission computed tomography (SPECT) of regional cerebral blood flow performed with N-isopropyl iodine-123-iodoamphetamine. SPECT/IMP imaging was performed in ten patients with probable SDAT and seven healthy subjects. Multiple ROIs were manually and semiautomatically generated, and uptake was quantitated for each ROI. Mean cortical activity was estimated as the average of the mean activity in 24 semiautomatically generated ROIs; mean cerebellar activity was determined from the mean activity in separate ROIs. A ratio of parietal to cerebellar activity less than 0.60 and a ratio of parietal to mean cortical activity less than 0.90 allowed correct categorization of nine of ten and eight of ten patients, respectively, with SDAT and all control subjects. The degree of diminished mental status observed in patients with SDAT correlated with both global and regional changes in IMP uptake

  2. Effect of an elliptical orbit on SPECT resolution and image uniformity

    International Nuclear Information System (INIS)

    Gottschalk, S.; Salem, D.

    1982-01-01

    This paper studies the impact of elliptical motion on SPECT resolution and detector flood correction as implemented in a Technicare Omega 500. Bringing the detector closer to the object improves detector resolution in each view, which results in improved resolution in the reconstructed image. In the Omega 500 the elliptical orbit is realized by a succession of translational and rotational motions of the detector head. This introduces motion of the detector center relative to the object center. Statistical fluctuations in the flood correction matrix due to the finite acquisition time result in ring artifacts for the circular orbit. The relative center motion of an elliptical orbit results in an averaging of the flood correction noise and a significant reduction in artifacts. These two aspects of SPECT spatial resolution and flood correction response improvement in elliptical orbit have been analyzed through computer simulations for point sources and a uniform activity 20 x 30 cm ellipse. Results compared a 35 cm diameter circular orbit to a 35 x 25 cm elliptical orbit

  3. [Time consumption and quality of an automated fusion tool for SPECT and MRI images of the brain].

    Science.gov (United States)

    Fiedler, E; Platsch, G; Schwarz, A; Schmiedehausen, K; Tomandl, B; Huk, W; Rupprecht, Th; Rahn, N; Kuwert, T

    2003-10-01

    Although the fusion of images from different modalities may improve diagnostic accuracy, it is rarely used in clinical routine work due to logistic problems. Therefore we evaluated performance and time needed for fusing MRI and SPECT images using a semiautomated dedicated software. PATIENTS, MATERIAL AND METHOD: In 32 patients regional cerebral blood flow was measured using (99m)Tc ethylcystein dimer (ECD) and the three-headed SPECT camera MultiSPECT 3. MRI scans of the brain were performed using either a 0,2 T Open or a 1,5 T Sonata. Twelve of the MRI data sets were acquired using a 3D-T1w MPRAGE sequence, 20 with a 2D acquisition technique and different echo sequences. Image fusion was performed on a Syngo workstation using an entropy minimizing algorithm by an experienced user of the software. The fusion results were classified. We measured the time needed for the automated fusion procedure and in case of need that for manual realignment after automated, but insufficient fusion. The mean time of the automated fusion procedure was 123 s. It was for the 2D significantly shorter than for the 3D MRI datasets. For four of the 2D data sets and two of the 3D data sets an optimal fit was reached using the automated approach. The remaining 26 data sets required manual correction. The sum of the time required for automated fusion and that needed for manual correction averaged 320 s (50-886 s). The fusion of 3D MRI data sets lasted significantly longer than that of the 2D MRI data. The automated fusion tool delivered in 20% an optimal fit, in 80% manual correction was necessary. Nevertheless, each of the 32 SPECT data sets could be merged in less than 15 min with the corresponding MRI data, which seems acceptable for clinical routine use.

  4. SPECT/CT: main applications in nuclear medicine

    International Nuclear Information System (INIS)

    Perera Pintado, Alejandro; Torres Aroche, Leonel A.; Vergara Gil, Alex; Batista Cuéllar, Juan F.; Prats Capote, Anaís

    2017-01-01

    SPECT/CT has represented not only the possibility of acquiring anatomical and functional images in one single study, but also a revolution for the clinical management of several diseases, taking the better of each one of these imaging modalities. The present work is aimed at presenting an overview of the most important applications of the SPECT/CT in the field of oncology, cardiology and neurology. New technological advances in the design of innovative solid state detectors and related equipment have had a positive effect on the performance of this kind of dual modality. This hybrid technique improves the sensitivity and the specificity of gammagraphic studies, as well as shortens the acquisition times and gives attenuation correction of co-registered images, which, in turn, makes their analysis easier. Some of the main applications for the study of oncological diseases are the following: localization and follow-up of different kinds of tumors, their metastasis and relapses, as well as the optimization of radiotherapy doses. This technique has been useful to evaluate the coronary artery disease allowing an adequate attenuation correction of images, the determination of calcium score, and performing angio-CT studies, according to the CT quality. SPECT/CT has also gained ground in the assessment of some neurological diseases. Conclusions: The introduction of new technological advances and radiopharmaceuticals thus predicting a more relevant place for SPECT/CT in clinical practice. (author)

  5. Absolute quantitative total-body small-animal SPECT with focusing pinholes

    International Nuclear Information System (INIS)

    Wu, Chao; Have, Frans van der; Vastenhouw, Brendan; Beekman, Freek J.; Dierckx, Rudi A.J.O.; Paans, Anne M.J.

    2010-01-01

    In pinhole SPECT, attenuation of the photon flux on trajectories between source and pinholes affects quantitative accuracy of reconstructed images. Previously we introduced iterative methods that compensate for image degrading effects of detector and pinhole blurring, pinhole sensitivity and scatter for multi-pinhole SPECT. The aim of this paper is (1) to investigate the accuracy of the Chang algorithm in rodents and (2) to present a practical Chang-based method using body outline contours obtained with optical cameras. Here we develop and experimentally validate a practical method for attenuation correction based on a Chang first-order method. This approach has the advantage that it is employed after, and therefore independently from, iterative reconstruction. Therefore, no new system matrix has to be calculated for each specific animal. Experiments with phantoms and animals were performed with a high-resolution focusing multi-pinhole SPECT system (U-SPECT-II, MILabs, The Netherlands). This SPECT system provides three additional optical camera images of the animal for each SPECT scan from which the animal contour can be estimated. Phantom experiments demonstrated that an average quantification error of -18.7% was reduced to -1.7% when both window-based scatter correction and Chang correction based on the body outline from optical images were applied. Without scatter and attenuation correction, quantification errors in a sacrificed rat containing sources with known activity ranged from -23.6 to -9.3%. These errors were reduced to values between -6.3 and +4.3% (with an average magnitude of 2.1%) after applying scatter and Chang attenuation correction. We conclude that the modified Chang correction based on body contour combined with window-based scatter correction is a practical method for obtaining small-animal SPECT images with high quantitative accuracy. (orig.)

  6. Validation of brain tumour imaging with p-[123I]iodo-l-phenylalanine and SPECT

    International Nuclear Information System (INIS)

    Hellwig, Dirk; Sell, Nadja; Schaefer, Andrea; Kirsch, Carl-Martin; Samnick, Samuel; Ketter, Ralf; Moringlane, Jean R.; Romeike, Bernd F.M.

    2005-01-01

    The aims of this prospective study were to validate single-photon emission computed tomography (SPECT) with p-[ 123 I]iodo-l-phenylalanine (IPA) in brain tumours and to evaluate its potential for the characterisation of indeterminate brain lesions. In 45 patients with indeterminate brain lesions or suspected progression of glioma, amino acid uptake was studied using IPA-SPECT and compared with the final diagnosis established by biopsy or serial imaging. After image fusion of IPA-SPECT and magnetic resonance imaging, the presence of tumour was visually determined by two independent observers. IPA uptake was quantified as the ratio between maximum uptake in the suspicious lesion and mean uptake in unaffected brain. Primary brain tumours were present in 35 cases (12 low-grade and 23 high-grade gliomas). Non-neoplastic brain lesions were confirmed in seven cases (three dysplasias, three inflammatory lesions, one lesion after effective therapy). Visual analysis showed a high concordance between the two observers (kappa=0.90, p<0.001), with sensitivity and specificity of 86% and 100% for the discrimination of primary brain tumours and non-neoplastic lesions. At 30 min p.i., IPA uptake in primary brain tumours was higher than that in non-neoplastic lesions (1.70±0.36 vs 1.14±0.18, p<0.05). Brain metastases showed no increased uptake (1.13±0.22, n=3). The persistent retention of IPA in low-grade gliomas without disruption of the blood-brain barrier was visualised up to 24 h p.i. Low-grade and high-grade gliomas showed equivalent IPA uptake (1.72±0.37 vs 1.67±0.36 at 30 min, p=0.745). IPA shows long and specific retention in gliomas. IPA is a promising and safe radiopharmaceutical for the visualisation of gliomas and the characterisation of indeterminate brain lesions. (orig.)

  7. Imaging the DNA damage response with PET and SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Knight, James C.; Koustoulidou, Sofia; Cornelissen, Bart [University of Oxford, CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, Oxford (United Kingdom)

    2017-06-15

    DNA integrity is constantly challenged by endogenous and exogenous factors that can alter the DNA sequence, leading to mutagenesis, aberrant transcriptional activity, and cytotoxicity. Left unrepaired, damaged DNA can ultimately lead to the development of cancer. To overcome this threat, a series of complex mechanisms collectively known as the DNA damage response (DDR) are able to detect the various types of DNA damage that can occur and stimulate the appropriate repair process. Each DNA damage repair pathway leads to the recruitment, upregulation, or activation of specific proteins within the nucleus, which, in some cases, can represent attractive targets for molecular imaging. Given the well-established involvement of DDR during tumorigenesis and cancer therapy, the ability to monitor these repair processes non-invasively using nuclear imaging techniques may facilitate the earlier detection of cancer and may also assist in monitoring response to DNA damaging treatment. This review article aims to provide an overview of recent efforts to develop PET and SPECT radiotracers for imaging of DNA damage repair proteins. (orig.)

  8. Quantification of GABAA receptors in the rat brain with [123I]Iomazenil SPECT from factor analysis-denoised images

    International Nuclear Information System (INIS)

    Tsartsalis, Stergios; Moulin-Sallanon, Marcelle; Dumas, Noé; Tournier, Benjamin B.; Ghezzi, Catherine; Charnay, Yves; Ginovart, Nathalie; Millet, Philippe

    2014-01-01

    Purpose: In vivo imaging of GABA A receptors is essential for the comprehension of psychiatric disorders in which the GABAergic system is implicated. Small animal SPECT provides a modality for in vivo imaging of the GABAergic system in rodents using [ 123 I]Iomazenil, an antagonist of the GABA A receptor. The goal of this work is to describe and evaluate different quantitative reference tissue methods that enable reliable binding potential (BP) estimations in the rat brain to be obtained. Methods: Five male Sprague–Dawley rats were used for [ 123 I]Iomazenil brain SPECT scans. Binding parameters were obtained with a one-tissue compartment model (1TC), a constrained two-tissue compartment model (2TC c ), the two-step Simplified Reference Tissue Model (SRTM2), Logan graphical analysis and analysis of delayed-activity images. In addition, we employed factor analysis (FA) to deal with noise in data. Results: BP ND obtained with SRTM2, Logan graphical analysis and delayed-activity analysis was highly correlated with BP F values obtained with 2TC c (r = 0.954 and 0.945 respectively, p c and SRTM2 in raw and FA-denoised images (r = 0.961 and 0.909 respectively, p ND values from raw images while scans of only 70 min are sufficient from FA-denoised images. These images are also associated with significantly lower standard errors of 2TC c and SRTM2 BP values. Conclusion: Reference tissue methods such as SRTM2 and Logan graphical analysis can provide equally reliable BP ND values from rat brain [ 123 I]Iomazenil SPECT. Acquisitions, however, can be much less time-consuming either with analysis of delayed activity obtained from a 20-minute scan 50 min after tracer injection or with FA-denoising of images

  9. The manifestation of 18F-FDG imaging of coincidence SPECT in benign pulmonary diseases

    International Nuclear Information System (INIS)

    Miao Jisheng; Liu Jinjun; Wu Jiyong; Pan Huizhong; Wang Huoqiang; Shen Yi; Shi Degang

    2001-01-01

    Objective: To study the uptake of the 18 F-FDG in the benign pulmonary diseases with dual head SPECT coincidence detection system. Methods: Scanning were performed with dual head SPECT coincidence detection system for patients with pulmonary diseases,the uptake and the imaging characteristic of the diseases were analysed. Results: 1) In 28 tuberculosis (TB) patients, 19 cases with a negative imaging (68%, 19/28), whereas 9 cases with a positive result (32%, 9/28). The T/N value of the TB is 1.7 +- 1.2, but the T/N of the lung cancer is 4.1 +- 2.4, significantly different from them. In the skin PPD test, 9 cases with positive scans showed a 16.2 (12 - 22) mm diameter red spot, but 7 cases of negative scans with a 8.6 (0 - 15) mm diameter, both also have a significant difference. 2) Out of the 8 patients suffered from sarcoidosis, among them 5 active stage with positive scans, whereas another 3 remission cases with negative results. 3) In 18 inflammation cases, positive imagings were showed in 6 patients with cryptococcosis, mycoplasma pneumonia, mycosis, organized pneumonia, lung abscess and bacteria pneumonia. Conclusions: In some benign pulmonary diseases, 18 F-FDG imaging can be positive also. Analysing the characteristic of the imaging could rise specificity in lung cancer and also give some new clues to treatment of these benign pulmonary diseases

  10. Tc99m-Tetrofosmin and Thallium-201 SPECT imaging of pituitary tumors: Preliminary results

    International Nuclear Information System (INIS)

    Yarman, S.; Mudun, A.

    2002-01-01

    Aim: It has been reported that pituitary adenomas accumulate Thallium -201(Tl-201), Tc99m-sestamibi and In111-Octreotide. These agents maybe useful in the diagnosis and follow-up of pituitary adenomas. Tc99m-tetrofosmin also has been shown as an tumor seeking agent in various tumors. The aim of this study is to evaluate the accumulation of Tc99m-tetrofosmin in pituitary adenomas and compare the results to Tl-201 SPECT. Methods: We performed Tc99m-Tetrofosmin and Tl-201 SPECT imaging on 5 patients (pts) with pituitary tumors, 3 patients with acromegaly, 1 patient with macro prolactinoma, and 1 patient with nonfunctional tumor (1 female, 4 male, age range: 26-50). SPECT imaging of cranium were obtained 20 min after intravenous injection of 111 MBq Tl-201 and 555 MBq Tc99m-Tetrofosmin on different days with a dual head gamma camera. All but one patient had surgical therapy. One patient had medical treatment. One patient had post surgical imaging with both Tetrofosmin and Tl-201 and 2 pts had only with Thallium. Semiquantitative analysis were performed by calculating tumor to background ratio from the mean counts of the created ROI's. Results: All adenomas showed prominent uptake with both Thallium and Tetrofosmin. The mean tumor to background ratios were 2.3 (range: 1.2-4.29) with Thallium and 3.57 (range: 1.6-6.86) with Tetrofosmin. Post therapy images showed no significant uptake in pituitary region with both agents in 2 patients. Post therapy mean Thallium uptake ratio in 3 pts was 1.64. One patient with acromegaly showed no decrease in thallium uptake, but showed some decrease in tetrofosmin uptake. Conclusion: Although our patient number is limited, these preliminary results indicate that Tc99m-tetrofosmin has also strong affinity for pituitary adenomas as does Thallium, either the adenoma is functioning or non-functioning. It may have a potential value to evaluate the response to therapy

  11. Resolution-recovery-embedded image reconstruction for a high-resolution animal SPECT system.

    Science.gov (United States)

    Zeraatkar, Navid; Sajedi, Salar; Farahani, Mohammad Hossein; Arabi, Hossein; Sarkar, Saeed; Ghafarian, Pardis; Rahmim, Arman; Ay, Mohammad Reza

    2014-11-01

    The small-animal High-Resolution SPECT (HiReSPECT) is a dedicated dual-head gamma camera recently designed and developed in our laboratory for imaging of murine models. Each detector is composed of an array of 1.2 × 1.2 mm(2) (pitch) pixelated CsI(Na) crystals. Two position-sensitive photomultiplier tubes (H8500) are coupled to each head's crystal. In this paper, we report on a resolution-recovery-embedded image reconstruction code applicable to the system and present the experimental results achieved using different phantoms and mouse scans. Collimator-detector response functions (CDRFs) were measured via a pixel-driven method using capillary sources at finite distances from the head within the field of view (FOV). CDRFs were then fitted by independent Gaussian functions. Thereafter, linear interpolations were applied to the standard deviation (σ) values of the fitted Gaussians, yielding a continuous map of CDRF at varying distances from the head. A rotation-based maximum-likelihood expectation maximization (MLEM) method was used for reconstruction. A fast rotation algorithm was developed to rotate the image matrix according to the desired angle by means of pre-generated rotation maps. The experiments demonstrated improved resolution utilizing our resolution-recovery-embedded image reconstruction. While the full-width at half-maximum (FWHM) radial and tangential resolution measurements of the system were over 2 mm in nearly all positions within the FOV without resolution recovery, reaching around 2.5 mm in some locations, they fell below 1.8 mm everywhere within the FOV using the resolution-recovery algorithm. The noise performance of the system was also acceptable; the standard deviation of the average counts per voxel in the reconstructed images was 6.6% and 8.3% without and with resolution recovery, respectively. Copyright © 2014 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  12. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    International Nuclear Information System (INIS)

    Timmins, Rachel; Klein, Ran; Petryk, Julia; Marvin, Brian; Kemp, Robert A. de; Ruddy, Terrence D.; Wells, R. Glenn; Wei, Lihui

    2015-01-01

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress. Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision

  13. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, Rachel; Klein, Ran; Petryk, Julia; Marvin, Brian; Kemp, Robert A. de; Ruddy, Terrence D.; Wells, R. Glenn, E-mail: gwells@ottawaheart.ca [Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7 (Canada); Wei, Lihui [Nordion, Inc., Ottawa, Ontario K2K 1X8 (Canada)

    2015-09-15

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress. Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision.

  14. Can perfusion SPECT aid CTPA interpretation?

    International Nuclear Information System (INIS)

    Gradinscak, D. J.; Roach, P.; Bailey, E.; Kueh, S.

    2009-01-01

    Full text:Objective: To determine whether fusion of perfusion SPECT and CTPA improves the diagnostic accuracy of CTPA. Methods: 35 patients with suspected PE who underwent both CTPA and SPECT V/Q within 48 hours were included. Of these, the majority (n=30) had PE as determined by the V/Q SPECT scan and the others (n=5) were negative for PE. The clinical reports of CTPA were reviewed and pulmonary emboli tabulated based on anatomical location. A second radiologist, blinded to the results of the clinical read and the V/Q SPECT scan, reviewed the CTPA with and without perfusion SPECT fusion for assistance. Results: A total 57 PE were reported on the clinical reports and 60 PE identified on the blinded read. Fused CTPA/perfursion SPECT images identified a further 5 PE not identified on the clinical read (8% increase) and 2 PE not identified on the blinded read (3% increase). The additional emboli detected resulted in a change in final diagnosis from PE negative to PE positive in 2 patients (6%) compared with the clinical read and 1 patient (3%) compared with the blinded read without SPECT fusion. Conclusion: Fused CTPA-SPECT perfusion improves the sensitivity of CTPA for the detection of PE in a small number of patients. Fused data may help guide the radiologist to identify sites of PE on CTPA.

  15. [Image fusion of gated-SPECT and CT angiography in coronary artery disease. Importance of anatomic-functional correlation].

    Science.gov (United States)

    Nazarena Pizzi, M; Aguadé Bruix, S; Cuéllar Calabria, H; Aliaga, V; Candell Riera, J

    2010-01-01

    A 77-year old patient was admitted for acute coronary syndrome without ST elevation. His risk was stratified using the myocardial perfusion gated SPECT, mild inferior ischemia being observed. Thus, medical therapy was optimized and the patient was discharged. He continued with exertional dyspnea so a coronary CT angiography was performed. It revealed severe lesions in the proximal RCA. SPECT-CT fusion images correlated the myocardial perfusion defect with a posterior descending artery from the RCA, in a co-dominant coronary area. Subsequently, cardiac catheterism was indicated for his treatment. The current use of image fusion studies is limited to patients in whom it is difficult to attribute a perfusion defect to a specific coronary artery. In our patient, the fusion images helped to distinguish between the RCA and the circumflex artery as the culprit artery of ischemia. Copyright © 2010 Elsevier España, S.L. y SEMNIM. All rights reserved.

  16. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    International Nuclear Information System (INIS)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo; Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro; Kato, Rikio

    2005-01-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99m Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I AC μb with Chang's attenuation correction factor. The scatter component image is estimated by convolving I AC μb with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99m Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  17. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method.

    Science.gov (United States)

    Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.

  18. Ideal flood field images for SPECT uniformity correction

    International Nuclear Information System (INIS)

    Oppenheim, B.E.; Appledorn, C.R.

    1984-01-01

    Since as little as 2.5% camera non-uniformity can cause disturbing artifacts in SPECT imaging, the ideal flood field images for uniformity correction would be made with the collimator in place using a perfectly uniform sheet source. While such a source is not realizable the equivalent images can be generated by mapping the activity distribution of a Co-57 sheet source and correcting subsequent images of the source with this mapping. Mapping is accomplished by analyzing equal-time images of the source made in multiple precisely determined positions. The ratio of counts detected in the same region of two images is a measure of the ratio of the activities of the two portions of the source imaged in that region. The activity distribution in the sheet source is determined from a set of such ratios. The more source positions imaged in a given time, the more accurate the source mapping, according to results of a computer simulation. A 1.9 mCi Co-57 sheet source was shifted by 12 mm increments along the horizontal and vertical axis of the camera face to 9 positions on each axis. The source was imaged for 20 min in each position and 214 million total counts were accumulated. The activity distribution of the source, relative to the center pixel, was determined for a 31 x 31 array. The integral uniformity was found to be 2.8%. The RMS error for such a mapping was determined by computer simulation to be 0.46%. The activity distribution was used to correct a high count flood field image for non-uniformities attributable to the Co-57 source. Such a corrected image represents camera plus collimator response to an almost perfectly uniform sheet source

  19. Sequential {sup 123}I-iododexetimide scans in temporal lobe epilepsy: comparison with neuroimaging scans (MR imaging and {sup 18}F-FDG PET imaging)

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Armin [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); Royal Prince Alfred Hospital, Comprehensive Epilepsy Service, Camperdown, NSW (Australia); University of Sydney, Faculty of Medicine, Sydney, NSW (Australia); Eberl, Stefan; Henderson, David; Beveridge, Scott; Constable, Chris [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); Fulham, Michael J. [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); Kassiou, Michael [Royal Prince Alfred Hospital, Department of PET and Nuclear Medicine, Camperdown, NSW (Australia); University of Sydney, Department of Pharmacology, Sydney, NSW (Australia); Zaman, Aysha [University of Sydney, Faculty of Medicine, Sydney, NSW (Australia); Lo, Sing Kai [University of Sydney, Institute of International Health, Sydney, NSW (Australia)

    2005-02-01

    Muscarinic acetylcholine receptors (mAChRs) play an important role in the generation of seizures. Single-photon emission computed tomography (SPECT) with {sup 123}I-iododexetimide (IDEX) depicts tracer uptake by mAChRs. Our aims were to: (a) determine the optimum time for interictal IDEX SPECT imaging; (b) determine the accuracy of IDEX scans in the localisation of seizure foci when compared with video EEG and MR imaging in patients with temporal lobe epilepsy (TLE); (c) characterise the distribution of IDEX binding in the temporal lobes and (d) compare IDEX SPECT and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in identifying seizure foci. We performed sequential scans using IDEX SPECT imaging at 0, 3, 6 and 24 h in 12 consecutive patients with refractory TLE undergoing assessment for epilepsy surgery. Visual and region of interest analyses of the mesial, lateral and polar regions of the temporal lobes were used to compare IDEX SPECT, FDG PET and MR imaging in seizure onset localisation. The 6-h IDEX scan (92%; {kappa}=0.83, p=0.003) was superior to the 0-h (36%; {kappa}=0.01, p>0.05), 3-h (55%; {kappa}=0.13, p>0.05) and 24-h IDEX scans in identifying the temporal lobe of seizure origin. The 6-h IDEX scan correctly predicted the temporal lobe of seizure origin in two patients who required intracranial EEG recordings to define the seizure onset. Reduced ligand binding was most marked at the temporal pole and mesial temporal structures. IDEX SPECT was superior to interictal FDG PET (75%; {kappa}=0.66, p=0.023) in seizure onset localisation. MR imaging was non-localising in two patients in whom it was normal and in another patient in whom there was bilateral symmetrical hippocampal atrophy. The 6-h IDEX SPECT scan is a viable alternative to FDG PET imaging in seizure onset localisation in TLE. (orig.)

  20. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  1. SPECT versus planar scintigraphy for quantification of splenic sequestration of 111In-labelled platelets

    International Nuclear Information System (INIS)

    Savolainen, S.; Helsinki Univ. Central Hospital

    1992-01-01

    The splenic uptake of thrombocytes and spleen size were studied in 25 patients with idiopathic thrombocytopenic purpura (ITP) using two methods: anterior/posterior scintigraphy and single photon emission computed tomography (SPECT). Various factors (acquisition and reconstruction protocols) influencing the quality of 111 In SPECT were studied. The splenic uptake, measured by SPECT, was found to be significantly higher in patients with a high level of autoantibodies in the blood than in patients without such antibodies. The correlation between the spleen SPECT volume and the geometric mean size calculated as geometric mean of anterior and posterior images differed by more than 50% from the SPECT volume in some patients. Based on these observations and on the results of phantom studies, it is concluded that a reasonable estimate of the spleen:liver uptake ratio may be obtained using planar imaging, but to estimate the spleen volume and the absolute splenic uptake of platelets SPECT imaging is needed, in spite of the present technical limitations of SPECT. (Author)

  2. Improved quantification in single-pinhole and multiple-pinhole SPECT using micro-CT information

    International Nuclear Information System (INIS)

    Vanhove, Christian; Bossuyt, Axel; Defrise, Michel; Lahoutte, Tony

    2009-01-01

    The purpose of this study was to demonstrate the feasibility of accurate quantification in pinhole SPECT using micro-CT information. Pinhole SPECT scans were performed using a clinical dual-head gamma camera. Each pinhole SPECT scan was followed by a micro-CT acquisition. Functional and anatomical images were coregistered using six point sources visible with both modalities. Pinhole SPECT images were reconstructed iteratively. Attenuation correction was based on micro-CT information. Scatter correction was based on dual and triple-energy window methods. Phantom and animal experiments were performed. A phantom containing nine vials was filled with different concentrations of 99m Tc. Three vials were also filled with CT contrast agent to increase attenuation. Activity concentrations measured on the pinhole SPECT images were compared with activity concentrations measured by the dose calibrator. In addition, 11 mice were injected with 99m Tc-labelled Nanobodies. After acquiring functional and anatomical images, the animals were killed and the liver activity was measured using a gamma-counter. Activity concentrations measured on the reconstructed images were compared with activity concentrations measured with the gamma counter. The phantom experiments demonstrated an average error of -27.3 ± 15.9% between the activity concentrations measured on the uncorrected pinhole SPECT images and in the dose calibrator. This error decreased significantly to -0.1 ± 7.3% when corrections were applied for nonuniform attenuation and scatter. The animal experiment revealed an average error of -18.4 ± 11.9% between the activity concentrations measured on the uncorrected pinhole SPECT images and measured with the gamma counter. This error decreased to -7.9 ± 10.4% when attenuation and scatter correction was applied. Attenuation correction obtained from micro-CT data in combination with scatter correction allows accurate quantification in pinhole SPECT. (orig.)

  3. The use of SPECT in the study of depression

    International Nuclear Information System (INIS)

    Yu Jing; The Second Affiliated Hospital of Dalian Medical Univ., Dalian; Tang Yiyuan

    2007-01-01

    Functional imaging is an effective methods in the study of psychological disturbances. The SPECT imaging methods commonly used in the study of depression are cerebral blood flow imaging, cerebral metabolic imaging and neuroreceptor imaging, which reflect the cerebral blood perfusion, cerebral metabolism, and the distribution and function of neuroreceptors respectively. The techniques in data processing include and statistical parametric mapping. This review summarizes the feature of the imaging and data processing methods, the manifestation of SPECT images in depressive patients, the brain region with abnormal blood flow and the findings in neuroreceptor imaging; analyzes the problems in current reports and prospects future studies. (authors)

  4. Investigating the role of SPECT/CT in dynamic sentinel lymph node biopsy for penile cancers

    Energy Technology Data Exchange (ETDEWEB)

    Saad, Ziauddin Zia; Bomanji, Jamshed [University College Hospitals London, Department of Nuclear Medicine, London (United Kingdom); UCLH NHS Foundation Trust, Institute of Nuclear Medicine, 5th Floor, London (United Kingdom); Omorphos, Savvas; Malone, Peter; Nigam, Raj; Muneer, Asif [University College Hospitals London, Department of Urology, London (United Kingdom); Michopoulou, Sofia; Gacinovic, Svetislav [University College Hospitals London, Department of Nuclear Medicine, London (United Kingdom)

    2017-07-15

    Currently, most centres use 2-D planar lymphoscintigraphy when performing dynamic sentinel lymph node biopsy in penile cancer patients with clinically impalpable inguinal nodes. This study aimed to investigate the role of SPECT/CT following 2-D planar lymphoscintigraphy (dynamic and static) in the detection and localization of sentinel lymph nodes in the groin. A qualitative (visual) review was performed on planar followed by SPECT/CT lymphoscintigraphy in 115 consecutive patients (age 28-86 years) who underwent injection of {sup 99m}Tc-nanocolloid followed by immediate acquisition of dynamic (20 min) and early static scans (5 min) initially and further delayed static (5 min) images at 120 min followed by SPECT/CT imaging. The lymph nodes detected in each groin on planar lymphoscintigraphy and SPECT/CT were compared. A total of 440 and 467 nodes were identified on planar scintigraphy and SPECT/CT, respectively. Overall, SPECT/CT confirmed the findings of planar imaging in 28/115 cases (24%). In the remaining 87 cases (76%), gross discrepancies were observed between planar and SPECT/CT images. SPECT/CT identified 17 instances of skin contamination (16 patients, 13%) and 36 instances of in-transit lymphatic tract activity (24 patients, 20%) that had been interpreted as tracer-avid lymph nodes on planar imaging. In addition, SPECT/CT identified 53 tracer-avid nodes in 48 patients (42%) that were not visualized on planar imaging and led to reclassification of the drainage basins (pelvic/inguinal) of 27 tracer-avid nodes. The addition of SPECT/CT improved the rate of detection of true tracer-avid lymph nodes and delineated their precise (3-D) anatomic localization in drainage basins. (orig.)

  5. Impact of additional SPECT in bone scanning in tumor patients with suspected metastatic bone disease

    International Nuclear Information System (INIS)

    Apostolova, I.; Goelcuek, E.; Buchert, R.; Brenner, W.; Bohuslavizki, K.H.

    2009-01-01

    The aim of this study was to investigate the additional value of single-photon emission computed tomography (SPECT) for patient staging compared to planar bone scanning in an unselected cohort of cancer patients. The study included 271 consecutive tumor patients in whom planar imaging and two-bed position SPECT of the spine and the pelvis had been performed. Retrospective image interpretation was performed independently for planar and SPECT scans. Findings were categorized as 'benign', 'equivocal', or malignant' on a lesion base, and as 'no metastatic disease', 'equivocal', or metastatic disease' on a patient base. Four hundred and forty seven lesions were detected by SPECT. Missing of lesions in planar images was rare (4.3% of all SPECT lesions). Planar findings differed from SPECT findings in 149 lesions (33.3%). Most of these 'inconsistent' lesions were rated as equivocal in the planar images but benign (14.5% of all lesions) or malignant (11.0%) by SPECT. On a patient base, 81.6% of patients with planar equivocal staging were classified as either benign (55.3%) or malignant (26.3%) by SPECT. Patients definitively staged as 'no metastatic disease' or 'metastatic disease' in planar images were staged differently by SPECT in only 3.7% of cases (up-staging in 2.6% and down-staging in 1.1%). Single-photon emission computed tomography changed a definite staging as based on planar images in less than 4% of the patients. In patients with planar equivocal staging, however, SPECT allowed a definite diagnosis in more than 80% of these cases, and, thus, should be performed routinely in patients with equivocal findings. (author)

  6. An efficient algorithm for reconstruction of spect images in the presence of spatially varying attenuation

    International Nuclear Information System (INIS)

    Zeeberg, B.R.; Bacharach, S.; Carson, R.; Green, M.V.; Larson, S.M.; Soucaille, J.F.

    1985-01-01

    An algorithm is presented which permits the reconstruction of SPECT images in the presence of spatially varying attenuation. The algorithm considers the spatially variant attenuation as a perturbation of the constant attenuation case and computes a reconstructed image and a correction image to estimate the effects of this perturbation. The corrected image will be computed from these two images and is of comparable quality both visually and quantitatively to those simulated for zero or constant attenuation taken as standard reference images. In addition, the algorithm is time efficient, in that the time required is approximately 2.5 times that for a standard convolution-back projection algorithm

  7. Impact of right-ventricular apical pacing on the optimal left-ventricular lead positions measured by phase analysis of SPECT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Hung, Guang-Uei; Huang, Jin-Long; Lin, Wan-Yu; Tsai, Shih-Chung; Wang, Kuo-Yang; Chen, Shih-Ann; Lloyd, Michael S.; Chen, Ji

    2014-01-01

    The use of SPECT phase analysis to optimize left-ventricular (LV) lead positions for cardiac resynchronization therapy (CRT) was performed at baseline, but CRT works as simultaneous right ventricular (RV) and LV pacing. The aim of this study was to assess the impact of RV apical (RVA) pacing on optimal LV lead positions measured by SPECT phase analysis. This study prospectively enrolled 46 patients. Two SPECT myocardial perfusion scans were acquired under sinus rhythm with complete left bundle branch block and RVA pacing, respectively, following a single injection of 99m Tc-sestamibi. LV dyssynchrony parameters and optimal LV lead positions were measured by the phase analysis technique and then compared between the two scans. The LV dyssynchrony parameters were significantly larger with RVA pacing than with sinus rhythm (p ∝0.01). In 39 of the 46 patients, the optimal LV lead positions were the same between RVA pacing and sinus rhythm (kappa = 0.861). In 6 of the remaining 7 patients, the optimal LV lead positions were along the same radial direction, but RVA pacing shifted the optimal LV lead positions toward the base. The optimal LV lead positions measured by SPECT phase analysis were consistent, no matter whether the SPECT images were acquired under sinus rhythm or RVA pacing. In some patients, RVA pacing shifted the optimal LV lead positions toward the base. This study supports the use of baseline SPECT myocardial perfusion imaging to optimize LV lead positions to increase CRT efficacy. (orig.)

  8. Preliminary Experience with Small Animal SPECT Imaging on Clinical Gamma Cameras

    Directory of Open Access Journals (Sweden)

    P. Aguiar

    2014-01-01

    Full Text Available The traditional lack of techniques suitable for in vivo imaging has induced a great interest in molecular imaging for preclinical research. Nevertheless, its use spreads slowly due to the difficulties in justifying the high cost of the current dedicated preclinical scanners. An alternative for lowering the costs is to repurpose old clinical gamma cameras to be used for preclinical imaging. In this paper we assess the performance of a portable device, that is, working coupled to a single-head clinical gamma camera, and we present our preliminary experience in several small animal applications. Our findings, based on phantom experiments and animal studies, provided an image quality, in terms of contrast-noise trade-off, comparable to dedicated preclinical pinhole-based scanners. We feel that our portable device offers an opportunity for recycling the widespread availability of clinical gamma cameras in nuclear medicine departments to be used in small animal SPECT imaging and we hope that it can contribute to spreading the use of preclinical imaging within institutions on tight budgets.

  9. A circular multifocal collimator for 3D SPECT imaging

    International Nuclear Information System (INIS)

    Guillemaud, R.; Grangeat, P.

    1993-01-01

    In order to improve sensitivity of 3D Single Photon Emission Tomography (SPECT) image, a cone-beam collimator can be used. A new circular multifocal collimator is proposed. The multiple focal points are distributed on a transaxial circle which is the trajectory of the focal points during the circular acquisition. This distribution provides a strong focusing at the center of the detector like a cone-beam collimator, with a good sensitivity, and a weak transaxial focusing at the periphery. A solution for an analytical multifocal reconstruction algorithm has been derived. Grangeat algorithm is proposed to use for this purpose in order to reconstruct with a good sensitivity the region of interest. (R.P.) 3 refs

  10. What is the difference in the hybrid imaging techniques - SPECT/CT and PET-CT and is there any advantage of their application?

    International Nuclear Information System (INIS)

    Kostadinova, I.

    2012-01-01

    The hybrid imaging methods - Single Photon Emission Tomography-Computer Tomography /SPECT-CT / and Positron Emission Tomography-Computer Tomography / PET-CT/ allow receiving of combined image of two different techniques. In such a way it is possible to superimpose detailed anatomical image of the multislice spiral computer tomography with specific and sensitive molecular images of the SPECT and PET in a single study, allowing utilization of the full possibilities of the both techniques. They have advantages and disadvantages, which basically stem from the differences in the used radiopharmaceuticals and their physical properties. In PET- CT - positron emitters are applied, most often 18F and 11C, while in SPECT-CT - single photon emitters, most often 99m Tc and 131 I. A disadvantage of PET is a high cost, which is produced in cyclotron and its logistics is complicated. The great advantage of PET is its better spatial resolution, compared to SPECT, because of the possibility for simultaneous detection of pared photons and better registration. These techniques, especially PET-CT are nowadays the most increasing imaging methods in the world in making diagnosis, staging and following the effect of treatment in patients with oncological, neurological, cardiological, orthopedic diseases and infections. Recently, they are applied for the purposes of radiotherapy planning on the basis of the metabolically active tumor. As a final result, compared to the conventional techniques - roentgenography, CT and MRI, it is possible in many cases to make an early and more precise diagnosis, saving patients' time and using most appropriate treatment. As a conclusion it is clear, that the hybrid imaging has future and its application will increase. (author)

  11. Effective of deep breath-hold SPECT in torso area. Examination concerning improvement of resolution

    International Nuclear Information System (INIS)

    Kawai, Takashi; Horiuchi, Shoji; Hayashi, Masuo; Sugibayashi, Keiichi

    2007-01-01

    The routine single photon emission computed tomography (SPECT) gives images with reduced resolution of internal organs like diaphragm due to breathing movements. In the present study, authors developed a breath-hold (BH) SPECT method where SPECT projection data were acquired during BH, and examined its usefulness. Equipments used were all Toshiba's dual-detector SPECT system E.CAM, image processor GMS-5500 A/PI, fusion software ART, and CT scanner Aquillion/M8. SPECT data were alternatively acquired at steps during BH and free breath (FB), for an entire step-and-shoot SPECT cycle, and acquisition time for 1 step (view) was set to be 10-15 sec depending on the subject's BH ability. Data from BH and FB views were extracted to get respective SPECT images. An evaluation was first done for a phantom simulating the breathing lung, an elliptical acrylic shell where a balloon connected with an ambu bag was placed. Two point sources of 99m Tc (14 MBq) were attached on the balloon. The phantom study revealed BH method did not give any artifacts. Clinically, 201 Tl-SPECT images of patients with lung tumors were compared for resolution between BH and FB and for their accuracy of registration by superimposing on CT images. Such results were observed as that, when FB gave two regions of Tl accumulation, BH, one region agreeing with the one lesion in the CT image, and that, when Tl accumulation was visualized in BH, but not in FB due to its overlapping with the liver area. Thus BH method could reduce respiratory motion artifacts to improve resolution, and was thought applicable to other imaging methods. (R.T.)

  12. Neuroreceptor and its transporters imaging by PET and SPECT in heroin addiction

    International Nuclear Information System (INIS)

    Yuan Jie; Liu Xingdang; Han Mei

    2013-01-01

    Heroin abuse can cause prominent hazardous effects,including the collapse of social,economic status and health. The research of heroin addiction mechanism has got some progress, but the neurotransmitter and receptor mechanism are still not clear. This review discussed potential neurobiology mechanisms of heroin addiction, including opioid receptor, dopamine receptors and dopamine transporters in different brain areas when exposed to heroin and the application of PET and SPECT imaging of Neuroreceptor and its transporters in heroin addiction research. (authors)

  13. Development of advanced industrial SPECT system with 12-gonal diverging-collimator

    International Nuclear Information System (INIS)

    Park, Jang Guen; Jung, Sung-Hee; Kim, Jong Bum; Moon, Jinho; Han, Min Cheol; Kim, Chan Hyeong

    2014-01-01

    Industrial single photon emission computed tomography (SPECT) is a promising diagnosis technique to investigate the dynamic behavior of process media. In the present study, a 12-gonal industrial SPECT system was developed using diverging collimators, and its performance was compared with those of hexagonal and 24-gonal systems. Of all of the systems, the 12-gonal type showed the best performance, providing (1) a detection-efficiency map without edge artifacts, (2) the best image resolution, and (3) reconstruction images that correctly furnish multi-source information. Based on the performance of the three different types of configurations, a SPECT system with 12-gonal type configuration was found most suitable for investigating and visualization of flow dynamics in industrial process systems. - highlights: • Industrial SPECT provides the dynamic behavior of multiphase industrial processes. • The present study compared performance of various industrial SPECT systems. • The 12-gonal SPECT system with diverging-collimator provides the best performance

  14. An analytical simulation technique for cone-beam CT and pinhole SPECT

    International Nuclear Information System (INIS)

    Zhang Xuezhu; Qi Yujin

    2011-01-01

    This study was aimed at developing an efficient simulation technique with an ordinary PC. The work involved derivation of mathematical operators, analytic phantom generations, and effective analytical projectors developing for cone-beam CT and pinhole SPECT imaging. The computer simulations based on the analytical projectors were developed by ray-tracing method for cone-beam CT and voxel-driven method for pinhole SPECT of degrading blurring. The 3D Shepp-Logan, Jaszczak and Defrise phantoms were used for simulation evaluations and image reconstructions. The reconstructed phantom images were of good accuracy with the phantoms. The results showed that the analytical simulation technique is an efficient tool for studying cone-beam CT and pinhole SPECT imaging. (authors)

  15. Clinical application of heart rate-synchronized myocardial SPECT with {sup 99m}Tc-labeled imaging agents for myocardial blood flow

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Tsunehiko; Uehara, Toshiisa; Fukuchi, Kazuki; Tsujimura, Eiichiro; Hasegawa, Shinji; Ito, Yasushi; Hashimoto, Katsuji; Matsuda, Shinichi; Yutani, Kenji [Osaka Univ., Suita (Japan). Biomedical Research Center

    1996-11-01

    Application of gated SPECT to assess multiple heart functions simultaneously in authors` facility was reported. The myocardial SPECT at rest was performed 1 hr after intravenous administration of 740 MBq of {sup 99m}Tc-sestamibi with Toshiba 3-detector type gamma camera GCA9300/HG. R wave monitored by ECG was used as a trigger to record images of 360deg direction (90 sec/6deg direction, 20 directions x 3). Data were processed by Toshiba GMS-5500A or Hitachi-Medico RW3000. Percent CI (count increase at a myocardial region) was calculated by =(ES-ED)=/ED x 100, where ES and ED were computed by circumferential profile analysis of reconstruction images at the end-systole and end-diastole stages, respectively. Left ventricular ejection fraction was calculated from %AC (area change between areas of left ventricle at end-systolic and -diasystolic stages). Ventricular wall-motion was assessed by bullet display of the gated SPECT images. The present procedure is expected to be widely used as a routine test of the myocardial functions and is beneficial from a viewpoint of cost/performance. (K.H.)

  16. Synthesis and Evaluation of Tricarbonyl 99mTc-Labeled 2-(4-Chlorophenyl-imidazo[1,2-a]pyridine Analogs as Novel SPECT Imaging Radiotracer for TSPO-Rich Cancer

    Directory of Open Access Journals (Sweden)

    Ji Young Choi

    2016-07-01

    Full Text Available The 18-kDa translocator protein (TSPO levels are associated with brain, breast, and prostate cancer progression and have emerged as viable targets for cancer therapy and imaging. In order to develop highly selective and active ligands with a high affinity for TSPO, imidazopyridine-based TSPO ligand (CB256, 3 was prepared as the precursor. 99mTc- and Re-CB256 (1 and 2, respectively were synthesized in high radiochemical yield (74.5% ± 6.4%, decay-corrected, n = 5 and chemical yield (65.6% by the incorporation of the [99mTc(CO3(H2O3]+ and (NEt42[Re(CO3Br3] followed by HPLC separation. Radio-ligand 1 was shown to be stable (>99% when incubated in human serum for 4 h at 37 °C with a relatively low lipophilicity (logD = 2.15 ± 0.02. The rhenium-185 and -187 complex 2 exhibited a moderate affinity (Ki = 159.3 ± 8.7 nM for TSPO, whereas its cytotoxicity evaluated on TSPO-rich tumor cell lines was lower than that observed for the precursor. In vitro uptake studies of 1 in C6 and U87-MG cells for 60 min was found to be 9.84% ± 0.17% and 7.87% ± 0.23% ID, respectively. Our results indicated that 99mTc-CB256 can be considered as a potential new TSPO-rich cancer SPECT imaging agent and provides the foundation for further in vivo evaluation.

  17. Development of an MR-compatible SPECT system (MRSPECT) for simultaneous data acquisition

    Science.gov (United States)

    Hamamura, Mark J.; Ha, Seunghoon; Roeck, Werner W.; Tugan Muftuler, L.; Wagenaar, Douglas J.; Meier, Dirk; Patt, Bradley E.; Nalcioglu, Orhan

    2010-03-01

    In medical imaging, single-photon emission computed tomography (SPECT) can provide specific functional information while magnetic resonance imaging (MRI) can provide high spatial resolution anatomical information as well as complementary functional information. In this study, we developed a miniaturized dual-modality SPECT/MRI (MRSPECT) system and demonstrated the feasibility of simultaneous SPECT and MRI data acquisition, with the possibility of whole-body MRSPECT systems through suitable scaling of components. For our MRSPECT system, a cadmium-zinc-telluride (CZT) nuclear radiation detector was interfaced with a specialized radiofrequency (RF) coil and placed within a whole-body 4 T MRI system. Various phantom experiments characterized the interaction between the SPECT and MRI hardware components. The metallic components of the SPECT hardware altered the B0 field and generated a non-uniform reduction in the signal-to-noise ratio (SNR) of the MR images. The presence of a magnetic field generated a position shift and resolution loss in the nuclear projection data. Various techniques were proposed to compensate for these adverse effects. Overall, our results demonstrate that accurate, simultaneous SPECT and MRI data acquisition is feasible, justifying the further development of MRSPECT for either small-animal imaging or whole-body human systems by using appropriate components.

  18. SPECT-CT bone scintigraphy in cancer patients

    International Nuclear Information System (INIS)

    Sergieva, S; Alexandrova, A.; Nikolova, N.; Dimcheva, M.; Baichev, G.

    2012-01-01

    Full text: Introduction: SPECT-CT study allows the precise correlation between functional and morphological data on the same image. Methods: Whole body bone scan (WBBS) is a diagnostic modality still firmly established as a valuable tool to assess skeleton abnormalities. CT is an imaging method for characterizing destruction of the bone spongy lesions, their consolidation or calcium accumulation. This fact allows differentiation of the osteolytic metastases from the osteosclerotic and mixed lesions and also from degenerative ones. Whole body bone scan followed by SPECT-CT scanning increases the accuracy of the study and potentially accelerates the diagnosis of the patient based on a single imaging session. This is especially important in cancer patients. Results and discussion: After retrospectively review of WBBS and SPECT-CT fused images 141 bone lesions in 89 pts were analyzed The skeletal findings with previously uncertain character were classified as definitely benign, indeterminate or definitely malignant. 1. 47 (33%) of all lesions in 36 pts could be correlated with benign degenerative findings on SPECT-CT images. 5 (3%) lesions in 3 of these pts were indeterminate on the SPECT-CT images. They were localized in the area of articulation parts and corpus of the thoracic vertebra and ribs. After additional MRT examination and 6 months follow-up these changes were considered degenerative: osteopathy changes and presence of spondyloarthrosis and osteochondrosis; compression fractures due to advanced osteoporosis. These pts were with prolonged chormono/chemotherapy; chronic inflammatory disease of the coxofemoral articulation, coxarthrosis, aseptic necrosis of the femoral head and postoperative sacroiliitis; post-traumatic fractures or surgical intervention; hyperplastic degenerative lesions in the skeleton and asymmetrical pelvic bone structures due to M. Paget. 2. 41 (28,1%) single osseous metastatic spots (up to 3 foci) were scanned in 31 pts. 3. 13 (10

  19. Clinical application of 99Tcm-TRODAT-1 SPECT imaging of dopamine transporter in monitoring the state of Parkinson's disease

    International Nuclear Information System (INIS)

    Deng Huaifu; Hu Ping

    2005-01-01

    To discuss the applicability of 99 Tc m -TRODAT-1 SPECT imaging of dopamine transporter in monitoring the state of Parkinson's disease (PD), 20 patients with PD and a control group of 14 healthy subjects were chosen to conduct dopamine transporter (DAT) imaging by SPECT with 99 Tc m -TRODAT-1. The radioactive ratio between bilateral striatum and cerebellum and the asymmetry index (Al) of bilateral striatum were computed by using the region of interest (ROI) technology. Meanwhile, the PD patients were classified by the improved Hoehn-Yahr Disability Score and then evaluated by Unified Parkinson's Disease Rating Scale (UPDRS). The findings show that there is a negative correlation between the bilateral ST/CB mean of the PD and the Hoehn-Yahr grading of the patients' state of illness, the UPDRS score, the patients' self-caring ability, the ability to move around. As for the asymmetry index AI PD , there was a positive correlation with the duration of disease, and a significant difference between the PD and the control group, with the former much higher than the latter. Therefore, the dopamine transporter imaging by SPECT with 99 Tc m -TRODAT-1 can monitor the state of Parkinson's disease, and show the symptom severity of Parkinson's disease. (authors)

  20. Frequencies and implications of discordant findings of interictal SPECT and itcal SPECT in patients with intractable epilepsy

    International Nuclear Information System (INIS)

    Lee, D. S.; Lee, S. K.; Jeong, J. K.; Lee, M. C.; Ko, C. S.

    1997-01-01

    Interictal SPECT could be used at best as a reference image to ictal SPECT, and cause sometimes confusion if it had given unexplained discordant findings from ictal SPECT. We investigated implications of discordant findings which occurred in 26 among 268 which found their epileptogenic zones using ictal EEG and/or operative outcome. Sensitivity of interictal SPECT was only 36%. Among these 268, 69 patients had no structural lesions on MR, 14 of whom had decreased perfusion on interictal SPECT (8 trues and 6 falses (adjacent or contralateral)). Structural lesion were found in 199 on MR, 103 of whom had decreased perfusion (89 trues and 14 falses). Among 26 having discordant cases, 10 interictal SPECT were proved wrong after operation and/or invasive EEG and the other 16 were on speculation using PET and ictal EEG. Ictal hyperperfusion was observed in 14 patients in these interictal SPECT. Six ictal studies were found postictal accompanied by contralateral propagation or not. Two patients had dual pathology, and the remaining 2 unknown. Interictal SPECT was done on the 2nd day after ictal study(24), the 3rd day (18), the 4th day(16), the 5th day (23). Four among 24 interictal studies (17%) of the 2nd day and the other 4 among 57 of 3rd to 5th day revealed ictal hyperperfusion on interictal SPECT. Six interictal studies (2.7% among 221) acquired on the indifferent day showed also ictal hyperperfusion. We could suggest that the next day is not desirable for interictal SPECT after ictal study, as ictal hyperperfusion on interictal study confounded more than postictal findings of ictal SPECT in the discrete localization than reassuring ictal study

  1. Frequencies and implications of discordant findings of interictal SPECT and itcal SPECT in patients with intractable epilepsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D S; Lee, S K; Jeong, J K; Lee, M C; Ko, C S [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    1997-07-01

    Interictal SPECT could be used at best as a reference image to ictal SPECT, and cause sometimes confusion if it had given unexplained discordant findings from ictal SPECT. We investigated implications of discordant findings which occurred in 26 among 268 which found their epileptogenic zones using ictal EEG and/or operative outcome. Sensitivity of interictal SPECT was only 36%. Among these 268, 69 patients had no structural lesions on MR, 14 of whom had decreased perfusion on interictal SPECT (8 trues and 6 falses (adjacent or contralateral)). Structural lesion were found in 199 on MR, 103 of whom had decreased perfusion (89 trues and 14 falses). Among 26 having discordant cases, 10 interictal SPECT were proved wrong after operation and/or invasive EEG and the other 16 were on speculation using PET and ictal EEG. Ictal hyperperfusion was observed in 14 patients in these interictal SPECT. Six ictal studies were found postictal accompanied by contralateral propagation or not. Two patients had dual pathology, and the remaining 2 unknown. Interictal SPECT was done on the 2nd day after ictal study(24), the 3rd day (18), the 4th day(16), the 5th day (23). Four among 24 interictal studies (17%) of the 2nd day and the other 4 among 57 of 3rd to 5th day revealed ictal hyperperfusion on interictal SPECT. Six interictal studies (2.7% among 221) acquired on the indifferent day showed also ictal hyperperfusion. We could suggest that the next day is not desirable for interictal SPECT after ictal study, as ictal hyperperfusion on interictal study confounded more than postictal findings of ictal SPECT in the discrete localization than reassuring ictal study.

  2. Y-90 SPECT ML image reconstruction with a new model for tissue-dependent bremsstrahlung production using CT information: a proof-of-concept study

    Science.gov (United States)

    Lim, Hongki; Fessler, Jeffrey A.; Wilderman, Scott J.; Brooks, Allen F.; Dewaraja, Yuni K.

    2018-06-01

    While the yield of positrons used in Y-90 PET is independent of tissue media, Y-90 SPECT imaging is complicated by the tissue dependence of bremsstrahlung photon generation. The probability of bremsstrahlung production is proportional to the square of the atomic number of the medium. Hence, the same amount of activity in different tissue regions of the body will produce different numbers of bremsstrahlung photons. Existing reconstruction methods disregard this tissue-dependency, potentially impacting both qualitative and quantitative imaging of heterogeneous regions of the body such as bone with marrow cavities. In this proof-of-concept study, we propose a new maximum-likelihood method that incorporates bremsstrahlung generation probabilities into the system matrix, enabling images of the desired Y-90 distribution to be reconstructed instead of the ‘bremsstrahlung distribution’ that is obtained with existing methods. The tissue-dependent probabilities are generated by Monte Carlo simulation while bone volume fractions for each SPECT voxel are obtained from co-registered CT. First, we demonstrate the tissue dependency in a SPECT/CT imaging experiment with Y-90 in bone equivalent solution and water. Visually, the proposed reconstruction approach better matched the true image and the Y-90 PET image than the standard bremsstrahlung reconstruction approach. An XCAT phantom simulation including bone and marrow regions also demonstrated better agreement with the true image using the proposed reconstruction method. Quantitatively, compared with the standard reconstruction, the new method improved estimation of the liquid bone:water activity concentration ratio by 40% in the SPECT measurement and the cortical bone:marrow activity concentration ratio by 58% in the XCAT simulation.

  3. Transmission computed tomography data acquisition with a SPECT system

    International Nuclear Information System (INIS)

    Greer, K.L.; Harris, C.C.; Jaszczak, R.J.; Coleman, R.E.; Hedlund, L.W.; Floyd, C.E.; Manglos, S.H.

    1987-01-01

    Phantom and animal transmission computed tomography (TCT) scans were performed with a camera-based single photon emission computed tomography (SPECT) system to determine system linearity as a function of object density, which is important in the accurate determination of attenuation coefficients for SPECT attenuation compensation. Results from phantoms showed promise in providing a linear relationship in measuring density while maintaining good image resolution. Animal images were essentially free of artifacts. Transmission computed tomography scans derived from a SPECT system appear to have the potential to provide data suitable for incorporation in an attenuation compensation algorithm at relatively low (calculated) radiation doses to the subjects

  4. ADDITIONAL VALUE OF POST-THERAPY 131 I SPECT/CT IN PATIENTS WITH DIFFERENTIATED THYROID CANCER

    Directory of Open Access Journals (Sweden)

    Satyawati Deswal

    2017-03-01

    Full Text Available BACKGROUND Generally, it is seen that SPECT/CT images are more useful than the planar images. We compared post-therapy 131 I imaging findings on planar and SPECT/CT scans to assess the clinical utility of SPECT/CT in management of patients with differentiated thyroid cancer. MATERIALS AND METHODS Post-therapy imaging was performed at 4-7 (when 5mR/hrs. exposure rate were observed by the survey meter days after 131 I administration and all patients underwent whole-body scintigraphy and SPECT/CT scanning on the same day. A generalised McNemar 1 was used to determine to establish the agreement between planar whole-body imaging and SPECT/CT for the assignment of benign, equivocal and malignant findings. RESULTS In 44 patients, 32 of the 44 patients underwent postsurgical 131 I ablation of residual thyroid tissue and 12 of 44 patients, 2 patients were treated twice. Hence, a total of 46 scans were analysed. SPECT/CT helped to localise focal iodine uptake and characterise it as either normal or abnormal thereby reducing the need for additional imaging studies. In post-thyroidectomy patients, SPECT/CT findings affected the ATA risk classification with implications for management by changing the interval for clinical followup and the need for additional imaging and laboratory tests. Our study found an 11% change in nodal status in the postsurgical group. Change in patient management was observed in 18%. CONCLUSION SPECT/CT enabled more accurate characterisation of focal iodine accumulation in patients.

  5. Comparison of 131I whole-body imaging, 131I SPECT/CT, and 18F-FDG PET/CT in the detection of metastatic thyroid cancer

    International Nuclear Information System (INIS)

    Oh, Jong-Ryool; Chong, Ari; Kim, Jahae; Kang, Sae-Ryung; Song, Ho-Chun; Bom, Hee-Seung; Byun, Byung-Hyun; Hong, Sun-Pyo; Yoo, Su-Woong; Kim, Dong-Yeon; Min, Jung-Joon

    2011-01-01

    The aim of this study was to compare 131 I whole-body scintigraphy (WBS), WBS with 131 I single photon emission computed tomography/computed tomography (SPECT/CT), and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT in the detection of distant metastases of differentiated thyroid cancer (DTC). A total of 140 patients with 258 foci of suspected distant metastases were evaluated. 131 I WBS, 131 I SPECT/CT, and 18 F-FDG PET/CT images were interpreted separately. The final diagnosis was obtained from histopathologic study, serum thyroglobulin level, other imaging modalities, and/or clinical follow-up. Of the 140 patients with 258 foci, 46 patients with 166 foci were diagnosed as positive for distant metastasis. The sensitivity, specificity, and diagnostic accuracy of each imaging modality were 65, 55, and 59%, respectively, for 131 I WBS; 65, 95, and 85% for 131 I SPECT/CT, respectively; and 61, 98, and 86%, respectively, for 18 F-FDG PET/CT in patient-based analyses. Lesion-based analyses demonstrated that both SPECT/CT and PET/CT were superior to WBS (p 18 F-FDG PET/CT presented the highest diagnostic performance in patients who underwent multiple challenges of radioiodine therapy. (orig.)

  6. Motor activation SPECT for the neurosurgical diseases. Examination protocol and basic study

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hiroshi; Kawaguchi, Shoichiro; Sakaki, Toshisuke; Imai, Teruhiko; Ohishi, Hajime [Nara Medical Univ., Kashihara (Japan)

    1999-07-01

    We examined and analyzed the region activated by the unilateral finger opposition task using motor activation single photon emission computed tomography (M-SPECT). M-SPECT studies were carried out on 11 cases, all of whom were normal volunteers (mean age: 49.4 years), none of whom showed any abnormal findings on magnetic resonance images (MRIs) or any neurological abnormalities. The SPECT images for each case were superimposed on the MRIs using Image Fusion Software. The result of the M-SPECT study was expressed as positive or negative. The cases with a marked increase of blood flow in the sensori-motor cortex during the finger opposition task were categorized as positive, and those cases showing no marked increase of blood flow were categorized as negative. Among 11 patients, 10 cases (90.9%) showed positive M-SPECT findings, and the eleventh case showed negative M-SPECT findings. The asymmetry index (AI) was calculated on the sensorio-motor cortex in the SPECT images before and after motor activation, with the 10 cases with positive M-SPECT having an AI before motor activation of 0.99{+-}0.06 (mean{+-}standard deviation) and an AI after motor activation of 1.14{+-}0.07. This change was statistically significant (p<0.05). In the single case categorized as negative, the AI before motor activation was 1.04, and the AI after motor activation was 1.01. There was no significant difference of AI values between the resting and motor activation stages. The positive M-SPECT was seen in 90.9% of the normal volunteer series using a visual inspection method. In these cases, the blood flow in the sensorio-motor cortex significantly increased after application of the finger opposition task using the semi-quantitative method. (author)

  7. Myocardial multilayer strain does not provide additional value for detection of myocardial viability assessed by SPECT imaging over and beyond standard strain.

    Science.gov (United States)

    Orloff, Elisabeth; Fournier, Pauline; Bouisset, Frédéric; Moine, Thomas; Cournot, Maxime; Elbaz, Meyer; Carrié, Didier; Galinier, Michel; Lairez, Olivier; Cognet, Thomas

    2018-05-14

    The aim of this study was to evaluate the value of multilayer strain analysis to the assessment of myocardial viability (MV) through the comparison of both speckle tracking echocardiography and single-photon emission computed tomography (SPECT) imaging. We also intended to determine which segmental longitudinal strain (LS) cutoff value would be optimal to discriminate viable myocardium. We included 47 patients (average age: 61 ± 11 years) referred to our cardiac imaging center for MV evaluation. All patients underwent transthoracic echocardiography with measures of LS, SPECT, and coronary angiography. In all, 799 segments were analyzed. We correlated myocardial tracer uptake by SPECT with sub-endocardial, sub-epicardial, and mid-segmental LS values with r = .514 P Multilayer strain analysis does not evaluate MV with more accuracy than standard segmental LS analysis. © 2018 Wiley Periodicals, Inc.

  8. Development of radiodiagnostics for image diagnosis of intracerebral dopamine receptor

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, Motoi; Kitamura, Hideaki; Nakajima, Takashi [Saigata, National Hospital, Niigata (Japan)

    1998-02-01

    Single photon emission tomography (SPECT) able to evaluate the local blood flow in the brain is a safety and effective system for clinical diagnosis and pathological evaluation of incurable neulopsychotic diseases. Development of receptor imaging agents for SPECT, which has not been approved are progressing now. Using gerbits as an animal model for cerebrovascular diseases, an investigation was made on {sup 125}I-Iomazenil (Ro16-0154), an antagonist of benzodiazepin receptor in CNS as well as dopamine receptor ligands. {sup 125}I-Iomazenil was found to markedly accumulate in the regions; cerebral cortex (especially, layer VI and V), amygdala, thalamus, hypothalamus, nigra, cerebellar cortex, etc., where benzodiazepin is specifically localized. The accumulation was inhibited by preadministered flumazenil, indicating that {sup 125}I-Iomazenil can bind to the benzodiazepin receptor in CNS. The present study demonstrated that the late images of {sup 123}I-Iomazenil-SPECT are useful for detecting a lesion in the crebral cortex and cerabellar one, but it was unable to image out a lesion in the dentate-red nuclei due to DRPLA or Joseph disease. Therefore, {sup 123}I-Iomazenil was thought to be a valuable radiomedicine for imaging out and pathological evaluation. (M.N.)

  9. Tc-99m-MDP/Ga-67 SPECT in the evaluation of otitis externa

    International Nuclear Information System (INIS)

    Tumeh, S.S.; Hamdan, U.; Desisto, W.; English, R.J.

    1988-01-01

    Four patients with otitis externa were studied with Tc-99m MDP and Ga-67 single photon emission computed tomography (SPECT). In addition to the abnormal uptake in the external ear seen with planar imaging, SPECT demonstrated mastoid uptake (proved clinically) that was not appreciated with planar imaging in three patients, one of whom had negative x-ray computed tomographic (CT) findings. In one patient, SPECT demonstrated midline uptake in the skull base that was not depicted by x-ray CF.No false-positive results were seen. The authors conclude that Tc-99m MDP/Ga-67 SPECT is superior to planar imaging and should be used in the evaluation of otitis externa

  10. Evaluating the effect of a third-party implementation of resolution recovery on the quality of SPECT bone scan imaging using visual grading regression.

    Science.gov (United States)

    Hay, Peter D; Smith, Julie; O'Connor, Richard A

    2016-02-01

    The aim of this study was to evaluate the benefits to SPECT bone scan image quality when applying resolution recovery (RR) during image reconstruction using software provided by a third-party supplier. Bone SPECT data from 90 clinical studies were reconstructed retrospectively using software supplied independent of the gamma camera manufacturer. The current clinical datasets contain 120×10 s projections and are reconstructed using an iterative method with a Butterworth postfilter. Five further reconstructions were created with the following characteristics: 10 s projections with a Butterworth postfilter (to assess intraobserver variation); 10 s projections with a Gaussian postfilter with and without RR; and 5 s projections with a Gaussian postfilter with and without RR. Two expert observers were asked to rate image quality on a five-point scale relative to our current clinical reconstruction. Datasets were anonymized and presented in random order. The benefits of RR on image scores were evaluated using ordinal logistic regression (visual grading regression). The application of RR during reconstruction increased the probability of both observers of scoring image quality as better than the current clinical reconstruction even where the dataset contained half the normal counts. Type of reconstruction and observer were both statistically significant variables in the ordinal logistic regression model. Visual grading regression was found to be a useful method for validating the local introduction of technological developments in nuclear medicine imaging. RR, as implemented by the independent software supplier, improved bone SPECT image quality when applied during image reconstruction. In the majority of clinical cases, acquisition times for bone SPECT intended for the purposes of localization can safely be halved (from 10 s projections to 5 s) when RR is applied.

  11. Relationship between pre-reconstruction filter and accuracy of registration software based on mutual-information maximization. A study of SPECT-MR brain phantom images

    International Nuclear Information System (INIS)

    Mito, Suzuko; Magota, Keiichi; Arai, Hiroshi; Omote, Hidehiko; Katsuura, Hidenori; Suzuki, Kotaro; Kubo Naoki

    2005-01-01

    Image registration technique is becoming an increasingly important tool in SPECT. Recently, software based on mutual-information maximization has been developed for automatic multimodality image registration. The accuracy of the software is important for its application to image registration. During SPECT reconstruction, the projection data are pre-filtered in order to reduce Poisson noise, commonly using a Butterworth filter. We have investigated the dependence of the absolute accuracy of MRI-SPECT registration on the cut-off frequencies of a range of Butterworth filters. This study used a 3D Hoffman phantom (Model No. 9000, Data-spectrum Co.). For the reference volume, an magnetization prepared rapid gradient echo (MPRage) sequence was performed on a Vision MRI (Siemence, 1.5 T). For the floating volumes, SPECT data of a phantom including 99m Tc 85 kBq/mL were acquired by a GCA-9300 (Toshiba Medical Systems Co.). During SPECT, the orbito-meatal (OM) line of the phantom was tilted by 5 deg and 15 deg to mimic the incline of a patient's head. The projection data were pre-filtered with Butterworth filters (cut-off frequency varying between 0.24 to 0.94 cycles/cm in 0.02 steps, order 8). The automated registrations were performed using iNRT β version software (Nihon Medi. Co.) and the rotation angles of SPECT for registration were noted. In this study, the registrations of all SPECT data were successful. Graphs of registration rotation angles against cut-off frequencies were scattered and showed no correlation between the two. The registration rotation angles ranged with changing cut-off frequency from -0.4 deg to +3.8 deg at a 5 deg tilt and from +12.7 deg to +19.6 deg at a 15 deg tilt. The registration rotation angles showed variation even for slight differences in cut-off frequencies. The absolute errors were a few degrees for any cut-off frequency. Regardless of the cut-off frequency, automatic registration using this software provides similar results. (author)

  12. The research on biodistribution of bearing sarcoma mice and rabbit SPECT imaging of 177Lu-DOTMP

    International Nuclear Information System (INIS)

    Deng Xinrong; Xiang Xueqin; Li Fenglin; Fan Caiyun; Liu Zihua; Luo Zhifu; Chen Yang

    2012-01-01

    Cyclen (1, 4, 7, 10-tetraazacyclododecane) and H 3 PO 3 were used to synthesis DOTMP (1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-Tetraaminomethylenephosphonate), and then DOTMP was labelled with 177 Lu. The research of biodistribution of 177 Lu-DOTMP in model mice bearing S180 sarcoma and SPECT imaging in Japanese white rabbit were also carried out. The results of biodistribution of bearing S180 mice indicated that 177 Lu-DOTMP cleared rapidly from blood and was selectively delivered to target bone. The radioactivity uptake was mainly in bone and less in other organs and tissues. The results of SPECT imaging of Japanese white rabbit showed that the radioactivity was accumulated in bladder. 177 Lu-DOTMP was mainly excreted by kidney. The uptake of the activity in the skeleton was observed significantly within 22 h post-injection and it became quite significant at 46 h post-injection. It indicated that 177 Lu-DOTMP has good bone targeting and is worthy of further study. (authors)

  13. Development of a practical image-based scatter correction method for brain perfusion SPECT: comparison with the TEW method

    Energy Technology Data Exchange (ETDEWEB)

    Shidahara, Miho; Kato, Takashi; Kawatsu, Shoji; Yoshimura, Kumiko; Ito, Kengo [National Center for Geriatrics and Gerontology Research Institute, Department of Brain Science and Molecular Imaging, Obu, Aichi (Japan); Watabe, Hiroshi; Kim, Kyeong Min; Iida, Hidehiro [National Cardiovascular Center Research Institute, Department of Investigative Radiology, Suita (Japan); Kato, Rikio [National Center for Geriatrics and Gerontology, Department of Radiology, Obu (Japan)

    2005-10-01

    An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with {sup 99m}Tc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I{sub AC}{sup {mu}}{sup b} with Chang's attenuation correction factor. The scatter component image is estimated by convolving I{sub AC}{sup {mu}}{sup b} with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and {sup 99m}Tc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine. (orig.)

  14. Single photon emission computerized tomography (SPECT)

    International Nuclear Information System (INIS)

    Ganatra, R.D.

    1992-01-01

    Tomography in nuclear medicine did not originate after the introduction of X-ray computerized tomography (CT). Even in the days of rectilinear scanner, tomography was attempted with multiple detector heads rotating around the patient, but the counts at each plane were never very high to obtain a satisfactory image. A high resolution focusing collimator can look at different depths but taking several slices in one projection was a time consuming process. Rectilinear scanners lose lot of counts in the collimator to look at one point, at on time, in one plane. It is true that attempts to do tomography with gamma camera really got a boost after the success of CT. By that time, algorithms for doing reconstruction of images also were highly refined and for advanced. Clinical application of SPECT has become widespread now, because of the development of suitable radiopharmaceuticals and improvement in instrumentation. The SPECT provides a direct measure of regional organ function and is performed with nuclides such as 123 I and 99 Tc m that emit a mono-image photon during their decay. SPECT is far less expensive than positron emission tomography

  15. Single photon emission computerized tomography (SPECT)

    Energy Technology Data Exchange (ETDEWEB)

    Ganatra, R D

    1993-12-31

    Tomography in nuclear medicine did not originate after the introduction of X-ray computerized tomography (CT). Even in the days of rectilinear scanner, tomography was attempted with multiple detector heads rotating around the patient, but the counts at each plane were never very high to obtain a satisfactory image. A high resolution focusing collimator can look at different depths but taking several slices in one projection was a time consuming process. Rectilinear scanners lose lot of counts in the collimator to look at one point, at on time, in one plane. It is true that attempts to do tomography with gamma camera really got a boost after the success of CT. By that time, algorithms for doing reconstruction of images also were highly refined and for advanced. Clinical application of SPECT has become widespread now, because of the development of suitable radiopharmaceuticals and improvement in instrumentation. The SPECT provides a direct measure of regional organ function and is performed with nuclides such as {sup 123}I and {sup 99}Tc{sup m} that emit a mono-image photon during their decay. SPECT is far less expensive than positron emission tomography

  16. Interest of the SPECT-CT to D.M.S.A.-V images merging in the management of thyroid medullary carcinomas; Interets de la fusion d'image TEMP-TDM au DMSA-V dans la prise en charge des carcinomes medullaires de la thyroide

    Energy Technology Data Exchange (ETDEWEB)

    Menemani, A.; Mebarki, M.; Slama, A.; Khellil, N.; Meghelli, S.; Lachachi, B.; Krim, M.; Merad, S.; Berber, N. [CHU Tlemcen, Service de medecine nucleaire (Algeria)

    2010-07-01

    Purpose: hybrid imaging associating SPECT and CT, integers functional and anatomical data. The aim of this communication is to present the contribution of the SPECT coupled to CT with D.M.S.A. V. in our daily practice of the medullary thyroid carcinomas management. Conclusions: the SPECT/CT got by a system of images merging allows a better anatomical location and improves the management of thyroid medullary carcinomas. (N.C.)

  17. Tc-99m MAG3 SPECT on transplanted kidney

    International Nuclear Information System (INIS)

    Ryu, Jong Gul; Kim, Soon; Zeon, Seok Kil

    1999-01-01

    This study was designed to evaluate the usefulness of a technetium-99m mercaptoacetyltriglycine (Tc-99m MAG3) single photon emission computed tomography (SPECT) performed on transplanted kidney. Thirty renal transplant patients were included in this study. Planar scan was performed for 30 minutes using 555 MBq Tc-99m MAG3. A post-voiding SPECT scan was acquired on the third, seventh, fourteenth and twenty eighth day after transplantation. SPECT scan showed interpretable image quality in 26 of 30 patients (86.7%) and 84 in 120 scans (70%). Fourteen of 26 patients with interpretable SPECT image showed decreased or increased radioactivity, but only 5 had abnormal findings on the planar scan. Focal SPECT defects were seen in allografts with normal function (n=3), acute tubular necrosis (n=3), and acute rejection (n=2). The defects are thought to reflect focally underperfused renal parenchyme or, in normal allografts, an artifact from uneven radioactivity distribution. Four of 10 paints with renal arterial variation showed focally decreased radioactivity and SPECT helped guide further studies that confirmed the exact cause. Five of 10 patients with acute tubular necrosis or acute rejection showed focally decreased radioactivity, but its relation to the patients' clinical course was not clear. Focally increased radioactivity was observed in 5 allografts with normal function and 1 with double ureter in which local clearance delay was observed. Tc-99m MAG3 SPECT renal scan can detect additional focal abnormalities compared to planar scan. Further study is necessary to elucidate the exact clinical significance of the SPECT findings

  18. Scatter and attenuation correction in SPECT

    International Nuclear Information System (INIS)

    Ljungberg, Michael

    2004-01-01

    The adsorbed dose is related to the activity uptake in the organ and its temporal distribution. Measured count rate with scintillation cameras is related to activity through the system sensitivity, cps/MBq. By accounting for physical processes and imaging limitations we can measure the activity at different time points. Correction for physical factor, such as attenuation and scatter is required for accurate quantitation. Both planar and SPECT imaging can be used to estimate activities for radiopharmaceutical dosimetry. Planar methods have been the most widely used but is a 2D technique. With accurate modelling for imagine in iterative reconstruction, SPECT methods will prove to be more accurate

  19. Synthesis and Evaluation of Tricarbonyl 99mTc-Labeled 2-(4-Chloro)phenyl-imidazo[1,2-a]pyridine Analogs as Novel SPECT Imaging Radiotracer for TSPO-Rich Cancer

    Science.gov (United States)

    Choi, Ji Young; Iacobazzi, Rosa Maria; Perrone, Mara; Margiotta, Nicola; Cutrignelli, Annalisa; Jung, Jae Ho; Park, Do Dam; Moon, Byung Seok; Denora, Nunzio; Kim, Sang Eun; Lee, Byung Chul

    2016-01-01

    The 18-kDa translocator protein (TSPO) levels are associated with brain, breast, and prostate cancer progression and have emerged as viable targets for cancer therapy and imaging. In order to develop highly selective and active ligands with a high affinity for TSPO, imidazopyridine-based TSPO ligand (CB256, 3) was prepared as the precursor. 99mTc- and Re-CB256 (1 and 2, respectively) were synthesized in high radiochemical yield (74.5% ± 6.4%, decay-corrected, n = 5) and chemical yield (65.6%) by the incorporation of the [99mTc(CO)3(H2O)3]+ and (NEt4)2[Re(CO)3Br3] followed by HPLC separation. Radio-ligand 1 was shown to be stable (>99%) when incubated in human serum for 4 h at 37 °C with a relatively low lipophilicity (logD = 2.15 ± 0.02). The rhenium-185 and -187 complex 2 exhibited a moderate affinity (Ki = 159.3 ± 8.7 nM) for TSPO, whereas its cytotoxicity evaluated on TSPO-rich tumor cell lines was lower than that observed for the precursor. In vitro uptake studies of 1 in C6 and U87-MG cells for 60 min was found to be 9.84% ± 0.17% and 7.87% ± 0.23% ID, respectively. Our results indicated that 99mTc-CB256 can be considered as a potential new TSPO-rich cancer SPECT imaging agent and provides the foundation for further in vivo evaluation. PMID:27399688

  20. Evaluation of 99Tcm-trodat-1 SPECT/CT imaging in the diagnosis of parkinson's disease in early stage

    International Nuclear Information System (INIS)

    Liu Xiaohua; Tai Jian; Zhang Fuhai; Xiao Qian; Jia Qiang; Dong Feng

    2004-01-01

    Parkinson's disease is a progressive neurodegenerative disorder characterized by a selective loss of dopamine in the striatum with age. At present, the diagnosis of Parkinson's disease is mainly remained in clinical standard. According to the clinical symptoms and the response to DOPA treatment, it is not difficult to diagnose typical PD. But it is difficult to diagnose early stage PD, which lacks the typical clinical symptoms and signs. A 99Tcm -labeled tropane derivative that binds to dopamine transporter with high selectivity is [2- [ [2- [ [ [3- (4-chlorophenyl)- 8-methyl- 8-azabicyclo [3,2,1 ] oct-2-yl]methyl] (2-mercaptoethyl)amino] eth yl]amino]ethanethiolato(3-)-N2,N2',S2,S2'] oxo-[1R-(exo-exo)] (TRODAT-1). Objective: The purpose of this study is to evaluate the clinical application of 99Tcm-TRODAT-1 SPECT/CT imaging in the diagnosis of Parkinson's disease (PD) in early stage. Methods: Twenty-four patients with early-stage idiopathic Parkinson's disease were recruited. For all patients, the severity was assessed by the Hoehnand Yahrscale. Twenty-four early stage PD patients (15 Hoehn Yahr stage I and 9 Hoehn Yahr stage II), eight advanced PD patients and ten healthy volunteers (five men, five women) were studied by 99Tcm-TRODAT-1 SPECT/CT imaging. 99Tcm-TRODAT-1 was prepared from a lyophilized kit. Brain SPECT imaging was performed 2 hours after injection, using GE Discovery VH equipped with FanBeam collimators. Data were obtained using energy window of 20% centered on 140 KEV for 99Tcm. The brain SPECT data were acquired after Hawkeye CT acquisition. Regions of interest were delineated over the striata and the cerebella, and the ratios of striatum-to-cerebellum (ST/CB) were calculated. Specific uptake in the striatum and its subregions, including the putamen and caudate nucleus, was calculated and compared with that of the other side as well as that of healthy volunteers. Results: Dopamine transporter (DAT) imaging of the 10 healthy volunteers showed

  1. Improved detection of sentinel lymph nodes in SPECT/CT images acquired using a low- to medium-energy general-purpose collimator.

    Science.gov (United States)

    Yoneyama, Hiroto; Tsushima, Hiroyuki; Kobayashi, Masato; Onoguchi, Masahisa; Nakajima, Kenichi; Kinuya, Seigo

    2014-01-01

    The use of the low-energy high-resolution (LEHR) collimator for lymphoscintigraphy causes the appearance of star-shaped artifacts at injection sites. The aim of this study was to confirm whether the lower resolution of the low- to medium-energy general-purpose (LMEGP) collimator is compensated by decrease in the degree of septal penetration and the reduction in star-shaped artifacts. A total of 106 female patients with breast cancer, diagnosed by biopsy, were enrolled in this study. Tc phytate (37 MBq, 1 mCi) was injected around the tumor, and planar and SPECT/CT images were obtained after 3 to 4 hours. When sentinel lymph nodes (SLNs) could not be identified from planar and SPECT/CT images by using the LEHR collimator, we repeated the study with the LMEGP collimator. Planar imaging performed using the LEHR and LEHR + LMEGP collimators positively identified SLNs in 96.2% (102/106) and 99.1% (105/106) of the patients, respectively. Using combination of planar and SPECT/CT imaging with the LEHR and LEHR + LMEGP collimators, SLNs were positively identified in 97.2% (103/106) and 100% (106/106) of the patients, respectively. The LMEGP collimator provided better results than the LEHR collimator because of the lower degree of septal penetration. The use of the LMEGP collimator improved SLN detection.

  2. Diagnostic sensitivity of Tc-99m HYNIC PSMA SPECT/CT in prostate carcinoma: A comparative analysis with Ga-68 PSMA PET/CT.

    Science.gov (United States)

    Lawal, Ismaheel O; Ankrah, Alfred O; Mokgoro, Neo P; Vorster, Mariza; Maes, Alex; Sathekge, Mike M

    2017-08-01

    Emerging data from published studies are demonstrating the superiority of Ga-68 PSMA PET/CT imaging in prostate cancer. However, the low yield of the Ge-68/Ga-68 from which Gallium-68 is obtained and fewer installed PET/CT systems compared to the SPECT imaging systems may limit its availability. We, therefore, evaluated in a head-to-head comparison, the diagnostic sensitivity of Ga-68 PSMA PET/CT and Tc-99m PSMA SPECT/CT in patients with prostate cancer. A total of 14 patients with histologically confirmed prostate cancer were prospectively recruited to undergo Ga-68 PSMA PET/CT and Tc-99m HYNIC PSMA SPECT/CT. The mean age of patients was 67.21 ± 8.15 years and the median PSA level was 45.18 ng/mL (range = 1.51-687 ng/mL). SUVmax of all lesions and the size of lymph nodes with PSMA avidity on Ga-68 PSMA PET/CT were determined. Proportions of these lesions detected on Tc-99m HYNIC PSMA SPECT/CT read independent of PET/CT findings were determined. A total of 46 lesions were seen on Ga-68 PSMA PET/CT localized to the prostate (n = 10), lymph nodes (n = 24), and bones (n = 12). Of these, Tc-99m HYNIC PSMA SPECT/CT detected 36 lesions: Prostate = 10/10 (100%), lymph nodes = 15/24 (62.5%), and bones = 11/12 (91.7%) with an overall sensitivity of 78.3%. Lesions detected on Tc-99m HYNIC PSMA SPECT/CT were bigger in size (P Tc-99m HYNIC PSMA SPECT/CT. In a univariate analysis, Lymph node size (P = 0.033) and the SUVmax of all lesions (P = 0.007) were significant predictors of lesion detection on Tc-99m HYNIC PSMA SPECT/CT. Tc-99m HYNIC PSMA may be a useful in imaging of prostate cancer although with a lower sensitivity for lesion detection compared to Ga-68 PSMA PET/CT. Its use is recommended when Ga-68 PSMA is not readily available, in planning radio-guided surgery or the patient is being considered for radio-ligand therapy with Lu-177 PSMA. It performs poorly in detecting small-sized lesions hence its use is not recommended

  3. SPECT image analysis using statistical parametric mapping in patients with temporal lobe epilepsy associated with hippocampal sclerosis

    International Nuclear Information System (INIS)

    Shiraki, Junko

    2004-01-01

    The author examined interictal 123 I-IMP SPECT images using statistical parametric mapping (SPM) in 19 temporal lobe epilepsy patients who revealed hippocampal sclerosis with MRI. Decreased regional cerebral blood flow (rCBF) were shown for eight patients in the medial temporal lobe, six patients in the lateral temporal lobe and five patients in the both medial and lateral temporal lobe. These patients were classified into two types; medial type and lateral type, the former decreased rCBF only in medial and the latter decreased rCBF in the other temporal area. Correlation of rCBF and clinical parameters in the lateral type, age at seizure onset was significantly older (p=0.0098, t-test) than those of patients in the medial type. SPM analysis for interictal SPECT of temporal lobe epilepsy clarified location of decreased rCBF and find correlations with clinical characteristics. In addition, SPM analysis of SPECT was useful to understand pathophysiology of the epilepsy. (author)

  4. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo [Ajou University School of Medicine, Suwon (Korea, Republic of); Lee, Jae Sung [Seoul national University College of Medicine, Seoul (Korea, Republic of)

    2002-07-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5{+-}3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis.

  5. Comparison of normal adult and children brain SPECT imaging using statistical parametric mapping(SPM)

    International Nuclear Information System (INIS)

    Lee, Myoung Hoon; Yoon, Seok Nam; Joh, Chul Woo; Lee, Dong Soo; Lee, Jae Sung

    2002-01-01

    This study compared rCBF pattern in normal adult and normal children using statistical parametric mapping (SPM). The purpose of this study was to determine distribution pattern not seen visual analysis in both groups. Tc-99m ECD brain SPECT was performed in 12 normal adults (M:F=11:1, average age 35 year old) and 6 normal control children (M:F=4:2, 10.5±3.1y) who visited psychiatry clinic to evaluate ADHD. Their brain SPECT revealed normal rCBF pattern in visual analysis and they were diagnosed clinically normal. Using SPM method, we compared normal adult group's SPECT images with those of 6 normal children subjects and measured the extent of the area with significant hypoperfusion and hyperperfusion (p<0.001, extent threshold=16). The areas of both angnlar gyrus, both postcentral gyrus, both superior frontal gyrus, and both superior parietal lobe showed significant hyperperfusion in normal adult group compared with normal children group. The areas of left amygdala gyrus, brain stem, both cerebellum, left globus pallidus, both hippocampal formations, both parahippocampal gyrus, both thalamus, both uncus, both lateral and medial occipitotemporal gyrus revealed significantly hyperperfusion in the children. These results demonstrated that SPM can say more precise anatomical area difference not seen visual analysis

  6. Cerebrovascular disease in newborn infants: report of three cases with clinical follow-up and brain SPECT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Moura-Ribeiro, Maria Valeriana L. de; Ciasca, Sylvia Maria; Vale-Cavalcanti, Mariza; Etchebehere, Elba C.S.C.; Camargo, Edwaldo E. [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Ciencias Medicas

    1999-07-01

    The clinical and neurological findings of three neonates with the diagnosis of cerebrovascular disease are reported. The neuropsychological evaluation disclosed impairment of fine motor function, coordination, language, perception and behavioral disturbances. Brain SPECT imaging revealed perfusional deficits in the three cases. (author)

  7. Cerebrovascular disease in newborn infants: report of three cases with clinical follow-up and brain SPECT imaging

    International Nuclear Information System (INIS)

    Moura-Ribeiro, Maria Valeriana L. de; Ciasca, Sylvia Maria; Vale-Cavalcanti, Mariza; Etchebehere, Elba C.S.C.; Camargo, Edwaldo E.

    1999-01-01

    The clinical and neurological findings of three neonates with the diagnosis of cerebrovascular disease are reported. The neuropsychological evaluation disclosed impairment of fine motor function, coordination, language, perception and behavioral disturbances. Brain SPECT imaging revealed perfusional deficits in the three cases. (author)

  8. Clinical significance of diffuse slow washout pattern (DSWO) on the exercise stress 201Tl SPECT myocardial imaging: Correlative study with influencing factors

    International Nuclear Information System (INIS)

    Wang Qian; Fumiko Nakanishi; Shusuke Sone

    1994-01-01

    DSWO shown on the Bull's eye images was found in 98 of 1234 patients suspected of having coronary artery disease and examined with 201 Tl myocardial SPECT imaging. 48 of these 98 patients underwent coronary arteriography. Comparison studies were performed between Bull's eye SPECT image, coronary arteriography and laboratory data. DSWO was found in 11 cases with single vessel disease (1VD), 18 cases with double vessel disease (2VD) and 21 cases with triple vessel disease (3VD). Three of 58 cases with stenosis of a cardiomyopathy. In the CAD group, DSWO appeared frequently accompanying hypertension, hyperlipemia and diabetes mellitus. These complications tended to increase in patients with 1VD and the stenosis less than 75%

  9. Sci—Thur PM: Imaging — 05: Calibration of a SPECT/CT camera for quantitative SPECT with 99mTc

    International Nuclear Information System (INIS)

    Gaudin, Émilie; Montégiani, Jean-François; Després, Philippe; Beauregard, Jean-Mathieu

    2014-01-01

    While quantitation is the norm in PET, it is not widely available yet in SPECT. This work's aim was to calibrate a commercially available SPECT/CT system to perform quantitative SPECT. Counting sensitivity, dead-time (DT) constant and partial volume effect (PVE) of the system were assessed. A dual-head Siemens SymbiaT6 SPECT/CT camera equipped with low energy high-resolution collimators was studied. 99m Tc was the radioisotope of interest because of its wide usage in nuclear medicine. First, point source acquisitions were performed (activity: 30–990MBq). Further acquisitions were then performed with a uniform Jaszczak phantom filled with water at high activity (25–5000MBq). PVE was studied using 6 hot spheres (diameters: 9.9–31.2 mm) filled with 99m Tc (2.8MBq/cc) in the Jaszczak phantom, which was: (1) empty, (2) water-filled and (3) water-filled with low activity (0.1MBq/cc). The data was reconstructed with the Siemens's Flash3D iterative algorithm with 4 subsets and 8 iterations, attenuation-correction (AC) and scatter-correction (SC). DT modelling was based on the total spectrum counting rate. Sensitivity was assessed using AC-SC reconstructed SPECT data. Sensitivity and DT for the sources were 99.51±1.46cps/MBq and 0.60±0.04µs. For the phantom, sensitivity and DT were 109.9±2.3cps/MBq and 0.62±0.13µs. The recovery-coefficient varied from 5% for the 9.9mm, to 80% for the 31.2mm spheres. With our calibration methods, both sensitivity and DT constant of the SPECT camera had little dependence on the object geometry and attenuation. For small objects of known size, recovery-coefficient can be applied to correct PVE. Clinical quantitative SPECT appears to be possible and has many potential applications

  10. Time consumption and quality of an automated fusion tool for SPECT and MRI images of the brain

    International Nuclear Information System (INIS)

    Fiedler, E.; Platsch, G.; Schwarz, A.; Schmiedehausen, K.; Kuwert, T.; Tomandl, B.; Huk, W.; Rupprecht, Th.; Rahn, N.

    2003-01-01

    Aim: Although the fusion of images from different modalities may improve diagnostic accuracy, it is rarely used in clinical routine work due to logistic problems. Therefore we evaluated performance and time needed for fusing MRI and SPECT images using a semiautomated dedicated software. Patients, material and method: In 32 patients regional cerebral blood flow was measured using 99m Tc ethylcystein dimer (ECD) and the three-headed SPECT camera MultiSPECT 3. MRI scans of the brain were performed using either a 0,2 T Open or a 1,5 T Sonata. Twelve of the MRI data sets were acquired using a 3 D-T1 w MPRAGE sequence, 20 with a 2D acquisition technique and different echo sequences. Image fusion was performed on a Syngo workstation using an entropy minimizing algorithm by an experienced user of the software. The fusion results were classified. We measured the time needed for the automated fusion procedure and in case of need that for manual realignment after automated, but insufficient fusion. Results: The mean time of the automated fusion procedure was 123 s. It was for the 2D significantly shorter than for the 3D MRI datasets. For four of the 2D data sets and two of the 3D data sets an optimal fit was reached using the automated approach. The remaining 26 data sets required manual correction. The sum of the time required for automated fusion and that needed for manual correction averaged 320 s (50-886 s). Conclusion: The fusion of 3D MRI data sets lasted significantly longer than that of the 2D MRI data. The automated fusion tool delivered in 20% an optimal fit, in 80% manual correction was necessary. Nevertheless, each of the 32 SPECT data sets could be merged in less than 15 min with the corresponding MRI data, which seems acceptable for clinical routine use. (orig.) [de

  11. Comparison of {sup 131}I whole-body imaging, {sup 131}I SPECT/CT, and {sup 18}F-FDG PET/CT in the detection of metastatic thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Jong-Ryool; Chong, Ari; Kim, Jahae; Kang, Sae-Ryung; Song, Ho-Chun; Bom, Hee-Seung [Chonnam National University Hospital, Department of Nuclear Medicine, Clinical Medicine Research Center, Gwangju (Korea, Republic of); Byun, Byung-Hyun; Hong, Sun-Pyo; Yoo, Su-Woong [Chonnam National University Hwasun Hospital, Department of Nuclear Medicine, Clinical Medicine Research Center, Hwasun, Jeonnam (Korea, Republic of); Kim, Dong-Yeon [Dongguk University, Department of Chemistry, Seoul (Korea, Republic of); Chonnam National University Hospital, Department of Nuclear Medicine, Clinical Medicine Research Center, Gwangju (Korea, Republic of); Min, Jung-Joon [Chonnam National University Hwasun Hospital, Department of Nuclear Medicine, Clinical Medicine Research Center, Hwasun, Jeonnam (Korea, Republic of); Center for Biomedical Human Resources at Chonnam National University, Brain Korea 21 Project, Gwangju (Korea, Republic of)

    2011-08-15

    The aim of this study was to compare {sup 131}I whole-body scintigraphy (WBS), WBS with {sup 131}I single photon emission computed tomography/computed tomography (SPECT/CT), and {sup 18}F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT in the detection of distant metastases of differentiated thyroid cancer (DTC). A total of 140 patients with 258 foci of suspected distant metastases were evaluated. {sup 131}I WBS, {sup 131}I SPECT/CT, and {sup 18}F-FDG PET/CT images were interpreted separately. The final diagnosis was obtained from histopathologic study, serum thyroglobulin level, other imaging modalities, and/or clinical follow-up. Of the 140 patients with 258 foci, 46 patients with 166 foci were diagnosed as positive for distant metastasis. The sensitivity, specificity, and diagnostic accuracy of each imaging modality were 65, 55, and 59%, respectively, for {sup 131}I WBS; 65, 95, and 85% for {sup 131}I SPECT/CT, respectively; and 61, 98, and 86%, respectively, for {sup 18}F-FDG PET/CT in patient-based analyses. Lesion-based analyses demonstrated that both SPECT/CT and PET/CT were superior to WBS (p<0.001) in all patient groups. SPECT/CT was superior to WBS and PET/CT (p<0.001) in patients who received a single challenge of radioiodine therapy, whereas PET/CT was superior to WBS (p=0.005) and SPECT/CT (p=0.013) in patients who received multiple challenges. Both SPECT/CT and PET/CT demonstrated high diagnostic performance in detecting metastatic thyroid cancer. SPECT/CT was highly accurate in patients who underwent a single challenge of radioiodine therapy. In contrast, {sup 18}F-FDG PET/CT presented the highest diagnostic performance in patients who underwent multiple challenges of radioiodine therapy. (orig.)

  12. A filtering approach to image reconstruction in 3D SPECT

    International Nuclear Information System (INIS)

    Bronnikov, Andrei V.

    2000-01-01

    We present a new approach to three-dimensional (3D) image reconstruction using analytical inversion of the exponential divergent beam transform, which can serve as a mathematical model for cone-beam 3D SPECT imaging. We apply a circular cone-beam scan and assume constant attenuation inside a convex area with a known boundary, which is satisfactory in brain imaging. The reconstruction problem is reduced to an image restoration problem characterized by a shift-variant point spread function which is given analytically. The method requires two computation steps: backprojection and filtering. The modulation transfer function (MTF) of the filter is derived by means of an original methodology using the 2D Laplace transform. The filter is implemented in the frequency domain and requires 2D Fourier transform of transverse slices. In order to obtain a shift-invariant cone-beam projection-backprojection operator we resort to an approximation, assuming that the collimator has a relatively large focal length. Nevertheless, numerical experiments demonstrate surprisingly good results for detectors with relatively short focal lengths. The use of a wavelet-based filtering algorithm greatly improves the stability to Poisson noise. (author)

  13. Myocardial viability assessment with dynamic low-dose iodine-123-iodophenylpentadecanoic acid metabolic imaging: comparison with myocardial biopsy and reinjection SPECT thallium after myocardial infarction.

    Science.gov (United States)

    Murray, G L; Schad, N C; Magill, H L; Vander Zwaag, R

    1994-04-01

    Aggressive cardiac revascularization requires recognition of stunned and hibernating myocardium, and cost considerations may well govern the technique used. Dynamic low-dose (1 mCi) [123I]iodophenylpentadecanoic acid (IPPA) metabolic imaging is a potential alternative to PET using either 18FDG or 15O-water. Resting IPPA images were obtained from patients with severe ischemic cardiomyopathy, and transmural myocardial biopsies were obtained during coronary bypass surgery to confirm viability. Thirty-nine of 43 (91%) biopsies confirmed the results of the IPPA images with a sensitivity for viability of 33/36 (92%) and a specificity of 6/7 (86%). Postoperatively, wall motion improved in 80% of IPPA-viable, dysfunctional segments. Furthermore, when compared to reinjection thallium (SPECT-TI) scans after myocardial infarction, IPPA-SPECT-TI concordance occurred in 27/35 (77%) (K = 0.536, p = 0.0003). Similar to PET, IPPA demonstrated more viability than SPECT-TI, 26/35 (74%) versus 18/35 (51%) (p = 0.047). Metabolic IPPA cardiac viability imaging is a safe, inexpensive technique that may be a useful alternative to PET.

  14. 111In-Pentetreotide SPECT/CT in Pulmonary Carcinoid.

    Science.gov (United States)

    Chiaravalloti, Agostino; Spanu, Angela; Danieli, Roberta; Dore, Francesca; Piras, Bastiana; Falchi, Antonio; Tavolozza, Mario; Madeddu, Giuseppe; Schillaci, Orazio

    2015-07-01

    We evaluated somatostatin receptor scintigraphy (SRS) with (111)In-pentetreotide incremental value in pulmonary carcinoid (PC) diagnosis compared to contrast enhanced Computed Tomography (ceCT). We enrolled 81 patients with ascertained PC, 39 at initial staging and 42 in follow-up; the primary tumor had already been excised in 68 cases. Single Photon emission Computed Tomography (SPECT) images were reconstructed with the iterative method and fused with non-enhanced Computed tomography (CT) images. Primary PC or metastatic lesions were ascertained in 55/81 patients and SPECT/CT was positive in 50/55 cases, while ceCT was positive in 44/55. Comparing SPECT/CT with ceCT results, we found a sensitivity of 96 vs. 87.5%, and specificity of 92% vs. 97% for the detection of primary lesion or recurrent disease. A total of 198 lesions were ascertained at SPECT/CT, while 161 at ceCT, with values of sensitivity and specificity of 85.5% and 84.6% for SRS and 75.2% and 90.5% respectively. (111)In-Pentetreotide SPECT/CT proved to be more sensitive and accurate than ceCT, thus enhancing its role in evaluating patients with PC. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. SPECT/CT for imaging of the spine and pelvis in clinical routine: a physician's perspective of the adoption of SPECT/CT in a clinical setting with a focus on trauma surgery

    Energy Technology Data Exchange (ETDEWEB)

    Scheyerer, Max J.; Zimmermann, Stefan M.; Osterhoff, Georg; Simmen, Hans-Peter; Werner, Clement M.L. [University Hospital Zurich, Department of Surgery, Division of Trauma Surgery, Zuerich (Switzerland); Pietsch, Carsten [University Hospital Zurich, Department of Medical Radiology, Division of Nuclear Medicine, Zurich (Switzerland)

    2014-05-15

    Injuries of the axial skeleton are an important field of work within orthopaedic surgery and traumatology. Most lesions following trauma may be diagnosed by means of conventional plain radiography, computed tomography or magnetic resonance imaging. However, for some aspects SPECT/ CT can be helpful even in a trauma setting. In particular, the combination of highly sensitive but nonspecific scintigraphy with nonsensitive but highly specific computed tomography makes it particularly useful in anatomically complex regions such as the pelvis and spine. From a trauma surgeon's point of view, the four main indications for nuclear medicine imaging are the detection of (occult) fractures, and the imaging of inflammatory bone and joint diseases, chronic diseases and postoperative complications such as instability of instrumentation or implants. The aim of the present review was to give an overview of the adoption of SPECT/CT in a clinical setting. (orig.)

  16. Evaluation of the effects of rehabilitation exercise on cerebral infarction with 99Tcm-ECD SPECT brain imaging

    International Nuclear Information System (INIS)

    Jiang Ningyi; Lu Xianping; Liu Xingguang; Xiao Xiuhong; Xu Jianxing

    2003-01-01

    Objective: To investigate the therapeutic effects of motor therapy on hemiplegia with SPECT brain perfusion imaging. Methods: The study population consisted of 59 patients with cerebral infarction, and all patients were treated with motor therapy. Among them, 30 cases were assigned to undertake single bridging exercise and 29 cases passive exercise. SPECT brain perfusion imaging was performed before and after motor therapy under the same condition, and the regional cerebral blood flow (rCBF) changes were compared and analysed with visual and semi-quantitative methods; in addition, the relationship between rCBF changes and scores of Fugl-Meyer or Barthel index were also analysed. Results: After motor therapy, various degrees of radioactivity increase were compared with the pretreatment radioactivity hypoperfusion in patients with cerebral infarction, and showed that motor therapy could evidently improve rCBF of regional hypoperfusion. The posttreatment rCBF was higher than the pretreatment level (P<0.01), and the rCBF of group of single bridging was higher than that of passive exercise group. And the changes of rCBF were all significant after motor therapy. In addition, the variation of the rCBF after motor therapy was positively correlated with the variation of Fugl-Meyer and Barthel score. Conclusions: SPECT brain perfusion imaging can serve as a useful method for evaluating the effectiveness of motor therapy in cerebral infarction rehabilitation. The single bridging exercise and the passive exercise are both beneficial to brain rehabilitation, but the former improves the rCBF in lesions better than the later does

  17. Bone SPECT-CT: An additional diagnostic tool for undiagnosed wrist pain.

    Science.gov (United States)

    Shirley, R A; Dhawan, R T; Rodrigues, J N; Evans, D M

    2016-10-01

    Diagnosis of wrist pain can be difficult to determine with clinical examination and conventional imaging techniques alone. Bone SPECT-CT (single-photon emission tomography with computerized tomography) is a hybrid imaging technique that overlays functional bone scintigraphy in tomographic/3D mode with conventional CT. Data from the two modalities are complementary; areas of abnormal bone metabolism can be localized with anatomical precision, hitherto lacking in conventional bone scans, while structural information from the CT scan further embellishes the diagnostic information. Over the last 6 years, one surgeon (David Evans) has used bone SPECT and later bone SPECT-CT as an additional line of investigation. This is a series of 21 consecutive patients with wrist pain that could not be diagnostically resolved with the usual combination of history, examination, and conventional imaging, and therefore underwent bone SPECT-CT. Clinical and imaging findings, management, and outcomes of these cases are discussed to explore the potential role of this hybrid functional modality in hand and wrist surgical practice. Copyright © 2016. Published by Elsevier Ltd.

  18. Biphasic thallium 201 SPECT-imaging for the noninvasive diagnosis of myocardial perfusion abnormalities in a child with Kawasaki disease--a case report

    International Nuclear Information System (INIS)

    Hausdorf, G.; Nienaber, C.A.; Spielman, R.P.

    1988-01-01

    The mucocutaneous lymph node syndrome (Kawasaki disease) is of increasing importance for the pediatric cardiologist, for coronary aneurysms with the potential of thrombosis and subsequent stenosis can develop in the course of the disease. The authors report a 2 1/2-year-old female child in whom, fourteen months after the acute phase of Kawasaki disease, myocardial infarction occurred. Biphasic thallium 201 SPECT-imaging using dipyridamole depicted anterior wall ischemia and inferolateral infarction. This case demonstrates that noninvasive vasodilation-redistribution thallium 201 SPECT-imaging has the potential to predict reversible myocardial perfusion defects and myocardial necrosis, even in small infants with Kawasaki disease

  19. The origins of SPECT and SPECT/CT

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Brian F. [University College London, Institute of Nuclear Medicine, London (United Kingdom); University of Wollongong, Centre for Medical Radiation Physics, Wollongong, NSW (Australia)

    2014-05-15

    Single photon emission computed tomography (SPECT) has a long history of development since its initial demonstration by Kuhl and Edwards in 1963. Although clinical utility has been dominated by the rotating gamma camera, there have been many technological innovations with the recent popularity of organ-specific dedicated SPECT systems. The combination of SPECT and CT evolved from early transmission techniques used for attenuation correction with the initial commercial systems predating the release of PET/CT. The development and acceptance of SPECT/CT has been relatively slow with continuing debate as to what cost/performance ratio is justified. Increasingly, fully diagnostic CT is combined with SPECT so as to facilitate optimal clinical utility. (orig.)

  20. PET and SPECT in psychiatry

    International Nuclear Information System (INIS)

    Dierckx, Rudi A.J.O.; Otte, Andreas; Vries, Erik F.J. de; Waarde, Aren van

    2014-01-01

    Covers classical psychiatric disorders as well as other subjects such as suicide, sleep, eating disorders, and autism. Emphasis on a multidisciplinary approach. Written by internationally acclaimed experts. PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects - such as suicide, sleep, eating disorders, and autism - are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.