WorldWideScience

Sample records for specific metabolic responses

  1. Organ-specific metabolic responses to drought in Pinus pinaster Ait.

    Science.gov (United States)

    de Miguel, Marina; Guevara, M Ángeles; Sánchez-Gómez, David; de María, Nuria; Díaz, Luis Manuel; Mancha, Jose A; Fernández de Simón, Brígida; Cadahía, Estrella; Desai, Nalini; Aranda, Ismael; Cervera, María-Teresa

    2016-05-01

    Drought is an important driver of plant survival, growth, and distribution. Water deficit affects different pathways of metabolism, depending on plant organ. While previous studies have mainly focused on the metabolic drought response of a single organ, analysis of metabolic differences between organs is essential to achieve an integrated understanding of the whole plant response. In this work, untargeted metabolic profiling was used to examine the response of roots, stems, adult and juvenile needles from Pinus pinaster Ait. full-sib individuals, subjected to a moderate and long lasting drought period. Cyclitols content showed a significant alteration, in response to drought in all organs examined, but other metabolites increased or decreased differentially depending on the analyzed organ. While a high number of flavonoids were only detected in aerial organs, an induction of the glutathione pathway was mainly detected in roots. This result may reflect different antioxidant mechanisms activated in aerial organs and roots. Metabolic changes were more remarkable in roots than in the other organs, highlighting its prominent role in the response to water stress. Significant changes in flavonoids and ascorbate metabolism were also observed between adult and juvenile needles, consistent with previously proven differential functional responses between the two developmental stages. Genetic polymorphisms in candidate genes coding for a Myb1 transcription factor and a malate dehydrogenase (EC 1.1.1.37) were associated with different concentration of phenylalanine, phenylpropanoids and malate, respectively. The results obtained will support further research on metabolites and genes potentially involved in functional mechanisms related to drought tolerance in trees. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities.

    Science.gov (United States)

    Lindh, Markus V; Figueroa, Daniela; Sjöstedt, Johanna; Baltar, Federico; Lundin, Daniel; Andersson, Agneta; Legrand, Catherine; Pinhassi, Jarone

    2015-01-01

    Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, increasing loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundances than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating a replacement effect. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating an adjustment effect. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, a priming effect resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial ecosystem process rates.

  3. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities

    Directory of Open Access Journals (Sweden)

    Markus V Lindh

    2015-04-01

    Full Text Available Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, intensifying loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2 and Bothnian Sea (salinity 3.6 water. Baltic Proper bacteria generally reached higher abundance than Bothnian Sea bacteria in both Baltic Proper and Bothnian Sea water, indicating a higher adaptability. Moreover, Baltic Proper bacteria growing in Bothnian Sea water consistently showed highest bacterial production and beta-glucosidase activity. These metabolic responses were accompanied by basin-specific changes in bacterial community structure. For example, Baltic Proper Pseudomonas and Limnobacter populations increased markedly in relative abundance in Bothnian Sea water, indicating replacement. In contrast, Roseobacter and Rheinheimera populations were stable or increased in abundance when challenged by either of the waters, indicating adjustment. Transplants to Bothnian Sea water triggered the initial emergence of particular Burkholderiaceae populations, and transplants to Baltic Proper water triggered Alteromonadaceae populations. Notably, in the subsequent re-transplant experiment, the original triggering, or priming effect, resulted in further increases to dominance of these populations. Correlated changes in community composition and metabolic activity were observed only in the transplant experiment, and only at relatively high phylogenetic resolution. This suggested an importance of successional progression for interpreting relationships between bacterial community composition and functioning. We infer that priming effects on bacterial community structure by natural episodic events or climate change induced forcing could translate into long-term changes in bacterial

  4. Metabolic Response of Soil Microorganisms to Frost: A New Perspective from Position-specific 13C Labeling

    Science.gov (United States)

    Bore, E. K.; Apostel, C.; Halicki, S.; Dippold, M. A.; Kuzyakov, Y.

    2016-12-01

    Cold adapted organisms and their biomolecules have received considerable attention in the last few decades, particularly in light of the perceived biotechnological potential. Mostly, these studies are based on pure isolated cultures from permafrost or permafrost samples with inherently adapted microbes. However, microbial activities in agricultural soils that are predominantly exposed to freeze conditions during winter in temperate ecosystems remain unclear. To analyze microbial metabolism at low soil temperatures, isotopomeres of position-specifically 13C labeled glucose were incubated at three temperature; 5 (control), -5 -20 oC. Soils were sampled after 1, 3 and 10 days (and after 30 days for samples at -20 °C). 13C was quantifed in CO2, bulk soil, microbial biomass and dissolved organic carbon (DOC). Highest 13C recovery in CO2 was obtained from C-1 position in control soil. Consequently, metabolic activity was dominated by pentose phosphate pathway at 5 °C. In contrast, metabolic behaviors switched towards a preferential respiration of the glucose C-4 position at -5 and -20 °C. High 13C recovery from C-4 position confirms previous studies suggesting that fermentation increases at subzero temperature. A 3-fold higher 13C recovery in microbial biomass at -5 °C than under control conditions points towards synthesis of intracellular antifreeze metabolites such as glycerol and ethanol and it is consistent with fermentative metabolism. A 5-fold higher 13C in bulk soil than microbial biomass at -20 °C does not reflect non-metabolized glucose because 13C recovery in DOC was less than 0.4% at day 1. Therefore, high 13C recovery in bulk soil at -20 °C was attributed to extracellular metabolites secreted to overcome frost. The shift in antifreeze mechanisms with temperature was brought about by shift in microbial community structure as indicated by incorporation into 13C into PLFA which was 2-fold higher in gram negative bacteria under control than frozen

  5. In vivo proton magnetic resonance spectroscopy reveals region specific metabolic responses to SIV infection in the macaque brain

    Directory of Open Access Journals (Sweden)

    Joo Chan-Gyu

    2009-06-01

    Full Text Available Abstract Background In vivo proton magnetic resonance spectroscopy (1H-MRS studies of HIV-infected humans have demonstrated significant metabolic abnormalities that vary by brain region, but the causes are poorly understood. Metabolic changes in the frontal cortex, basal ganglia and white matter in 18 SIV-infected macaques were investigated using MRS during the first month of infection. Results Changes in the N-acetylaspartate (NAA, choline (Cho, myo-inositol (MI, creatine (Cr and glutamine/glutamate (Glx resonances were quantified both in absolute terms and relative to the creatine resonance. Most abnormalities were observed at the time of peak viremia, 2 weeks post infection (wpi. At that time point, significant decreases in NAA and NAA/Cr, reflecting neuronal injury, were observed only in the frontal cortex. Cr was significantly elevated only in the white matter. Changes in Cho and Cho/Cr were similar across the brain regions, increasing at 2 wpi, and falling below baseline levels at 4 wpi. MI and MI/Cr levels were increased across all brain regions. Conclusion These data best support the hypothesis that different brain regions have variable intrinsic vulnerabilities to neuronal injury caused by the AIDS virus.

  6. Whole-transcriptome analysis of verocytotoxigenic Escherichia coli O157:H7 (Sakai suggests plant-species-specific metabolic responses on exposure to spinach and lettuce extracts.

    Directory of Open Access Journals (Sweden)

    Louise Crozier

    2016-07-01

    Full Text Available Verocytotoxigenic Escherichia coli (VTEC can contaminate crop plants, potentially using them as secondary hosts, which can lead to food-borne infection. Currently, little is known about the influence of the specific plant species on the success of bacterial colonisation. As such, we compared the ability of the VTEC strain, E. coli O157:H7 ‘Sakai’, to colonise the roots and leaves of four leafy vegetables: spinach (Spinacia oleracea, lettuce (Lactuca sativa, vining green pea (Pisum sativum and prickly lettuce (L. serriola, a wild relative of domesticated lettuce. Also, to determine the drivers of the initial response on interaction with plant tissue, the whole transcriptome of E. coli O157:H7 Sakai was analysed following exposure to plant extracts of varying complexity (spinach leaf lysates or root exudates, and leaf cell wall polysaccharides from spinach or lettuce. Plant extracts were used to reduce heterogeneity inherent in plant-microbe interactions and remove the effect of plant immunity. This dual approach provided information on the initial adaptive response of E. coli O157:H7 Sakai to the plant environment together with the influence of the living plant during bacterial establishment and colonisation. Results showed that both the plant tissue type and the plant species strongly influence the short-term (1 hour transcriptional response to extracts as well as longer-term (10 days plant colonisation or persistence. We show that propagation temperature (37 versus 18 oC has a major impact on the expression profile and therefore pre-adaptation of bacteria to a plant-relevant temperature is necessary to avoid misleading temperature-dependent wholescale gene-expression changes in response to plant material. For each of the plant extracts tested, the largest group of (annotated differentially regulated genes were associated with metabolism. However, large-scale differences in the metabolic and biosynthetic pathways between treatment types

  7. Precision metabolic engineering: The design of responsive, selective, and controllable metabolic systems.

    Science.gov (United States)

    McNerney, Monica P; Watstein, Daniel M; Styczynski, Mark P

    2015-09-01

    Metabolic engineering is generally focused on static optimization of cells to maximize production of a desired product, though recently dynamic metabolic engineering has explored how metabolic programs can be varied over time to improve titer. However, these are not the only types of applications where metabolic engineering could make a significant impact. Here, we discuss a new conceptual framework, termed "precision metabolic engineering," involving the design and engineering of systems that make different products in response to different signals. Rather than focusing on maximizing titer, these types of applications typically have three hallmarks: sensing signals that determine the desired metabolic target, completely directing metabolic flux in response to those signals, and producing sharp responses at specific signal thresholds. In this review, we will first discuss and provide examples of precision metabolic engineering. We will then discuss each of these hallmarks and identify which existing metabolic engineering methods can be applied to accomplish those tasks, as well as some of their shortcomings. Ultimately, precise control of metabolic systems has the potential to enable a host of new metabolic engineering and synthetic biology applications for any problem where flexibility of response to an external signal could be useful. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  8. Specific fatty acids as metabolic modulators in the dairy cow

    Directory of Open Access Journals (Sweden)

    J.A.A. Pires

    2008-07-01

    Full Text Available This review summarizes recent developments on the utilization of specific fatty acids to modulate bovine energy metabolism, with emphasis on the periparturient dairy cow. A number of experiments have assessed the effects of polyunsaturated fatty acids on bovine hepatic energy metabolism using in vitro and in vivo models. Treatment of hepatocytes with specific fatty acids altered energy metabolism in vitro. For example, linolenic acid seemed to decrease hepatocyte triacylglycerol accumulation. This effect was confirmed in vivo, using parenteral infusions of emulsions derived from different fat sources to feed-restricted non-lactating cows. Additionally, polyunsaturated fatty acids can increase whole body response to insulin, potentially enhancing antilipolytic effects of insulin and muscle protein anabolism in the bovine. There is limited literature on the effects of feeding fat sources rich in omega-3 polyunsaturated fatty acids, such as fish oil and linseed oil, on metabolism of periparturient dairy cows. Available research has yielded conflicting results which need further clarification. On the other hand, specific isomers of conjugated linoleic acid consistently induce milk fat depression and are able to decrease energy export in milk by periparturient dairy cows. Nonetheless, research is still needed to assess whether these effects will ultimately benefit productivity and health status of periparturient dairy cows. Limitations of available methods to protect fatty acids from ruminal biohydrogenation are also addressed.

  9. Selected Metabolic Responses to Skateboarding

    Science.gov (United States)

    Hetzler, Ronald K.; Hunt, Ian; Stickley, Christopher D.; Kimura, Iris F.

    2011-01-01

    Despite the popularity of skateboarding worldwide, the authors believe that no previous studies have investigated the metabolic demands associated with recreational participation in the sport. Although metabolic equivalents (METs) for skateboarding were published in textbooks, the source of these values is unclear. Therefore, the rise in…

  10. Substrate metabolism in the metabolic response to injury

    NARCIS (Netherlands)

    Romijn, J. A.

    2000-01-01

    In healthy subjects the metabolic response to starvation invokes regulatory mechanisms aimed at conservation of protein mass. This response is characterized by a decrease in energy expenditure and a progressive decrease in urinary N excretion. Many non-endocrine diseases induce anorexia and a

  11. Photoadaptations of photosynthesis and carbon metabolism by phytoplankton from McMurdo Sound, Antarctica. I. Species-specific and community responses to reduced irradiances

    International Nuclear Information System (INIS)

    Rivkin, R.B.; Voytek, M.A.

    1987-01-01

    Irradiance-dependent rates of photosynthesis and photosynthate labeling patterns were measured for phytoplankton in McMurdo Sound, Antarctica. Species-specific and traditional whole-water techniques were used to compare the physiological responses of algae collected in a high light environment at the ice edge and from a low light environment under the annual sea ice. There were differences among species within the same sample, for the same species isolated from high and low light environments, and when species-specific responses were compared with that of the natural assemblage. For algae collected beneath the sea ice, photosynthesis generally saturated at a lower irradiance, and the light-limited region of the P vs. I relationship had a steeper slope than for the same species collected at the ice edge. Low-light-adapted algae incorporated significantly less 14 C into proteins and more into low molecular weight compounds and lipids than the same species isolated from a high light environment. Under conditions where reduced rates of protein synthesis were coupled with high rates of carbon uptake, the measurement of photosynthesis may not accurately reflect the physiological condition of the phytoplankton

  12. Metabolic Responses to Weight Lifting

    Directory of Open Access Journals (Sweden)

    Arnold Nelson

    2017-04-01

    Full Text Available Editor's Note, The ability to lift heavy loads while performing multiple repetitions is not only highly correlated with muscle mass or the total number actomyosin interactions, but also metabolic functions that includes substrate concentrations and by-product removal.  Muscles use adenosine triphosphate (ATP in at least three locations during exercise; to run the actomyosin interaction, operate sarcoplasmic reticulum calcium pumps, and operate sarcolemma sodium and potassium pumps.  Weight lifting sessions are considered to be an intermittent activity that includes only a few second bursts of high force and/or velocity movements followed by rest periods of up to several minutes. Therefore, the anaerobic pathways such as the phosphagen and glycolytic systems are the initial pathways to respond due in part to the ability to match the increased rates of ATP depletion by increasing ATP production. After the initial resting ATP stores are used up, the phosphagen system starts contributing to ATP replenishment.  This system consists of reactions from the creatine kinase (CK pathway and the adenylate kinase (AK pathway.  However, the CK pathway can only work at max capacity for a short period for resting phosphocreatine (PCr concentrations are only about 4-6 times the amount of resting ATP stores.  Once the PCr concentrations are depleted, the AK reaction will begin by using two adenosine diphosphate (ADP to form one ATP and one adenosine monophosphate (AMP. Although ATP is produced in this pathway, this production of ATP does coincide with an increased concentration of AMP. This is problematic because increased AMP levels will in turn stimulate the adenylate deaminase reaction, which will produce ammonia (NH3. This conversion of AMP into NH3 will result in the muscle cell having a net loss of total adenine nucleotides available to resynthesize ATP.  Glycolysis is the next reaction in line, which increases its role in ATP replenishment as PCr

  13. Metabolic responses of Haliotis diversicolor to Vibrio parahaemolyticus infection.

    Science.gov (United States)

    Lu, Jie; Shi, Yanyan; Cai, Shuhui; Feng, Jianghua

    2017-01-01

    Vibrio parahemolyticus is a devastating bacterial pathogen that often causes outbreak of vibriosis in abalone Haliotis diversicolor. Elucidation of metabolic mechanisms of abalones in responding to V. parahemolyticus infection is essential for controlling the epidemic. In this work, 1 H NMR-based metabolomic techniques along with correlation and network analyses are used to investigate characteristic metabolites, as well as corresponding disturbed pathways in hepatopancreas and gill of H. diversicolor after V. parahemolyticus infection for 48 h. Results indicate that obvious gender- and tissue-specific metabolic responses are induced. Metabolic responses in female abalones are more clearly observed than those in males, which are primarily manifested in the accumulation of branched-chain amino acids and the depletion of organic osmolytes (homarine, betaine and taurine) in the infected gills of female abalones, as well as in the depletion of glutamate, branched-chain and aromatic amino acids in the infected hepatopancreases of female abalones. Moreover, based on major metabolic functions of the characteristic metabolites, we have found that V. parahemolyticus infection not only cause the disturbance in energy metabolism, nucleotide metabolism and osmotic balance, but also induce oxidative stress, immune stress and neurotoxic effect in different tissues with various mechanisms. Our study provides details of metabolic responses of abalones to V. parahemolyticus infection and will shed light on biochemical defence mechanisms of male and female hosts against pathogen infection. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Metabolic features of the cell danger response.

    Science.gov (United States)

    Naviaux, Robert K

    2014-05-01

    The cell danger response (CDR) is the evolutionarily conserved metabolic response that protects cells and hosts from harm. It is triggered by encounters with chemical, physical, or biological threats that exceed the cellular capacity for homeostasis. The resulting metabolic mismatch between available resources and functional capacity produces a cascade of changes in cellular electron flow, oxygen consumption, redox, membrane fluidity, lipid dynamics, bioenergetics, carbon and sulfur resource allocation, protein folding and aggregation, vitamin availability, metal homeostasis, indole, pterin, 1-carbon and polyamine metabolism, and polymer formation. The first wave of danger signals consists of the release of metabolic intermediates like ATP and ADP, Krebs cycle intermediates, oxygen, and reactive oxygen species (ROS), and is sustained by purinergic signaling. After the danger has been eliminated or neutralized, a choreographed sequence of anti-inflammatory and regenerative pathways is activated to reverse the CDR and to heal. When the CDR persists abnormally, whole body metabolism and the gut microbiome are disturbed, the collective performance of multiple organ systems is impaired, behavior is changed, and chronic disease results. Metabolic memory of past stress encounters is stored in the form of altered mitochondrial and cellular macromolecule content, resulting in an increase in functional reserve capacity through a process known as mitocellular hormesis. The systemic form of the CDR, and its magnified form, the purinergic life-threat response (PLTR), are under direct control by ancient pathways in the brain that are ultimately coordinated by centers in the brainstem. Chemosensory integration of whole body metabolism occurs in the brainstem and is a prerequisite for normal brain, motor, vestibular, sensory, social, and speech development. An understanding of the CDR permits us to reframe old concepts of pathogenesis for a broad array of chronic, developmental

  15. Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism

    Directory of Open Access Journals (Sweden)

    Yuanyuan Zhang

    2014-06-01

    Full Text Available Erythropoietin (EPO regulation of red blood cell production and its induction at reduced oxygen tension provides for the important erythropoietic response to ischemic stress. The cloning and production of recombinant human EPO has led to its clinical use in patients with anemia for two and half decades and has facilitated studies of EPO action. Reports of animal and cell models of ischemic stress in vitro and injury suggest potential EPO benefit beyond red blood cell production including vascular endothelial response to increase nitric oxide production, which facilitates oxygen delivery to brain, heart and other non-hematopoietic tissues. This review discusses these and other reports of EPO action beyond red blood cell production, including EPO response affecting metabolism and obesity in animal models. Observations of EPO activity in cell and animal model systems, including mice with tissue specific deletion of EPO receptor (EpoR, suggest the potential for EPO response in metabolism and disease.

  16. Context-specific metabolic networks are consistent with experiments.

    Directory of Open Access Journals (Sweden)

    Scott A Becker

    2008-05-01

    Full Text Available Reconstructions of cellular metabolism are publicly available for a variety of different microorganisms and some mammalian genomes. To date, these reconstructions are "genome-scale" and strive to include all reactions implied by the genome annotation, as well as those with direct experimental evidence. Clearly, many of the reactions in a genome-scale reconstruction will not be active under particular conditions or in a particular cell type. Methods to tailor these comprehensive genome-scale reconstructions into context-specific networks will aid predictive in silico modeling for a particular situation. We present a method called Gene Inactivity Moderated by Metabolism and Expression (GIMME to achieve this goal. The GIMME algorithm uses quantitative gene expression data and one or more presupposed metabolic objectives to produce the context-specific reconstruction that is most consistent with the available data. Furthermore, the algorithm provides a quantitative inconsistency score indicating how consistent a set of gene expression data is with a particular metabolic objective. We show that this algorithm produces results consistent with biological experiments and intuition for adaptive evolution of bacteria, rational design of metabolic engineering strains, and human skeletal muscle cells. This work represents progress towards producing constraint-based models of metabolism that are specific to the conditions where the expression profiling data is available.

  17. Deciphering hepatocellular responses to metabolic and oncogenic stress

    Directory of Open Access Journals (Sweden)

    Kathrina L. Marcelo

    2015-08-01

    Full Text Available Each cell type responds uniquely to stress and fractionally contributes to global and tissue-specific stress responses. Hepatocytes, liver macrophages (MΦ, and sinusoidal endothelial cells (SEC play functionally important and interdependent roles in adaptive processes such as obesity and tumor growth. Although these cell types demonstrate significant phenotypic and functional heterogeneity, their distinctions enabling disease-specific responses remain understudied. We developed a strategy for the simultaneous isolation and quantification of these liver cell types based on antigenic cell surface marker expression. To demonstrate the utility and applicability of this technique, we quantified liver cell-specific responses to high-fat diet (HFD or diethylnitrosamine (DEN, a liver-specific carcinogen, and found that while there was only a marginal increase in hepatocyte number, MΦ and SEC populations were quantitatively increased. Global gene expression profiling of hepatocytes, MΦ and SEC identified characteristic gene signatures that define each cell type in their distinct physiological or pathological states. Integration of hepatic gene signatures with available human obesity and liver cancer microarray data provides further insight into the cell-specific responses to metabolic or oncogenic stress. Our data reveal unique gene expression patterns that serve as molecular “fingerprints” for the cell-centric responses to pathologic stimuli in the distinct microenvironment of the liver. The technical advance highlighted in this study provides an essential resource for assessing hepatic cell-specific contributions to metabolic and oncogenic stress, information that could unveil previously unappreciated molecular mechanisms for the cellular crosstalk that underlies the continuum from metabolic disruption to obesity and ultimately hepatic cancer.

  18. Strategies to overcome HBV-specific T cell exhaustion: checkpoint inhibitors and metabolic re-programming.

    Science.gov (United States)

    Fisicaro, Paola; Boni, Carolina; Barili, Valeria; Laccabue, Diletta; Ferrari, Carlo

    2018-01-29

    HBV-specific T cells play a key role in antiviral protection and failure to control HBV is associated with severely dysfunctional T cell responses. Therefore, functional T cell reconstitution represents a potential way to treat chronically infected patients. The growing understanding of the dysregulated transcriptional/epigenetic and metabolic programs underlying T cell exhaustion allows to envisage functional T cell reconstitution strategies based on the combined/sequential use of compounds able to induce decline of antigen load, checkpoint modulation, metabolic and epigenetic reprogramming with possible boosting of functionally restored responses by specific vaccines. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Metabolic changes in serum metabolome in response to a meal.

    Science.gov (United States)

    Shrestha, Aahana; Müllner, Elisabeth; Poutanen, Kaisa; Mykkänen, Hannu; Moazzami, Ali A

    2017-03-01

    The change in serum metabolic response from fasting state to postprandial state provides novel insights into the impact of a single meal on human metabolism. Therefore, this study explored changes in serum metabolite profile after a single meal. Nineteen healthy postmenopausal women with normal glucose tolerance participated in the study. They received a meal consisting of refined wheat bread (50 g carbohydrates, 9 g protein, 4.2 g fat and 2.7 g dietary fibre), 40 g cucumber and 300 mL noncaloric orange drink. Blood samples were collected at fasting and five postprandial time points. Metabolic profile was measured by nuclear magnetic resonance and targeted liquid chromatography-mass spectrometry. Changes over time were assessed with multivariate models and ANOVA, with baseline as control. The metabolomic analyses demonstrated alterations in phospholipids, amino acids and their breakdown products, glycolytic products, acylcarnitines and ketone bodies after a single meal. More specifically, phosphatidylcholines, lysophosphatidylcholines and citrate displayed an overall declining pattern, while leucine, isoleucine, methionine and succinate increased initially but declined thereafter. A sharp decline in acylcarnitines and ketone bodies and increase in glycolytic products postprandially suggest a switch in the body's energy source from β-oxidation to glycolysis. Moreover, individuals with relatively high postprandial insulin responses generated a higher postprandial leucine responses compared to participants with lower insulin responses. The study demonstrated complex changes from catabolic to anabolic metabolism after a meal and indicated that the extent of postprandial responses is different between individuals with high and low insulin response.

  20. Understanding specificity in metabolic pathways-Structural biology of human nucleotide metabolism

    International Nuclear Information System (INIS)

    Welin, Martin; Nordlund, Paer

    2010-01-01

    Interactions are the foundation of life at the molecular level. In the plethora of activities in the cell, the evolution of enzyme specificity requires the balancing of appropriate substrate affinity with a negative selection, in order to minimize interactions with other potential substrates in the cell. To understand the structural basis for enzyme specificity, the comparison of structural and biochemical data between enzymes within pathways using similar substrates and effectors is valuable. Nucleotide metabolism is one of the largest metabolic pathways in the human cell and is of outstanding therapeutic importance since it activates and catabolises nucleoside based anti-proliferative drugs and serves as a direct target for anti-proliferative drugs. In recent years the structural coverage of the enzymes involved in human nucleotide metabolism has been dramatically improved and is approaching completion. An important factor has been the contribution from the Structural Genomics Consortium (SGC) at Karolinska Institutet, which recently has solved 33 novel structures of enzymes and enzyme domains in human nucleotide metabolism pathways and homologs thereof. In this review we will discuss some of the principles for substrate specificity of enzymes in human nucleotide metabolism illustrated by a selected set of enzyme families where a detailed understanding of the structural determinants for specificity is now emerging.

  1. Determinants of intra-specific variation in basal metabolic rate.

    Science.gov (United States)

    Konarzewski, Marek; Książek, Aneta

    2013-01-01

    Basal metabolic rate (BMR) provides a widely accepted benchmark of metabolic expenditure for endotherms under laboratory and natural conditions. While most studies examining BMR have concentrated on inter-specific variation, relatively less attention has been paid to the determinants of within-species variation. Even fewer studies have analysed the determinants of within-species BMR variation corrected for the strong influence of body mass by appropriate means (e.g. ANCOVA). Here, we review recent advancements in studies on the quantitative genetics of BMR and organ mass variation, along with their molecular genetics. Next, we decompose BMR variation at the organ, tissue and molecular level. We conclude that within-species variation in BMR and its components have a clear genetic signature, and are functionally linked to key metabolic process at all levels of biological organization. We highlight the need to integrate molecular genetics with conventional metabolic field studies to reveal the adaptive significance of metabolic variation. Since comparing gene expressions inter-specifically is problematic, within-species studies are more likely to inform us about the genetic underpinnings of BMR. We also urge for better integration of animal and medical research on BMR; the latter is quickly advancing thanks to the application of imaging technologies and 'omics' studies. We also suggest that much insight on the biochemical and molecular underpinnings of BMR variation can be gained from integrating studies on the mammalian target of rapamycin (mTOR), which appears to be the major regulatory pathway influencing the key molecular components of BMR.

  2. Metabolic Response of Maize Roots to Hyperosmotic Shock 1

    Science.gov (United States)

    Spickett, Corinne M.; Smirnoff, Nicholas; Ratcliffe, R. George

    1992-01-01

    31P nuclear magnetic resonance spectroscopy was used to study the response of maize (Zea mays L.) root tips to hyperosmotic shock. The aim was to identify changes in metabolism that might be relevant to the perception of low soil water potential and the subsequent adaptation of the tissue to these conditions. Osmotic shock was found to result in two different types of response: changes in metabolite levels and changes in intracellular pH. The most notable metabolic changes, which were produced by all the osmotica tested, were increases in phosphocholine and vacuolar phosphate, with a transient increase in cytoplasmic phosphate. It was observed that treatment with ionic and nonionic osmotica produced different effects on the concentrations of bioenergetically important metabolites. It is postulated that these changes are the result of hydrolysis of phosphatidylcholine and other membrane phospholipids, due to differential activation of specific membrane-associated phospholipases by changes in the surface tension of the plasmalemma. These events may be important in the detection of osmotic shock and subsequent acclimatization. A cytoplasmic alkalinization was also observed during hyperosmotic treatment, and this response, which is consistent with the activation of the plasmalemma H+-ATPase, together with the other metabolic changes, may suggest the existence of a complex and integrated mechanism of osmoregulation. PMID:16669012

  3. A systems approach to predict oncometabolites via context-specific genome-scale metabolic networks.

    Directory of Open Access Journals (Sweden)

    Hojung Nam

    2014-09-01

    Full Text Available Altered metabolism in cancer cells has been viewed as a passive response required for a malignant transformation. However, this view has changed through the recently described metabolic oncogenic factors: mutated isocitrate dehydrogenases (IDH, succinate dehydrogenase (SDH, and fumarate hydratase (FH that produce oncometabolites that competitively inhibit epigenetic regulation. In this study, we demonstrate in silico predictions of oncometabolites that have the potential to dysregulate epigenetic controls in nine types of cancer by incorporating massive scale genetic mutation information (collected from more than 1,700 cancer genomes, expression profiling data, and deploying Recon 2 to reconstruct context-specific genome-scale metabolic models. Our analysis predicted 15 compounds and 24 substructures of potential oncometabolites that could result from the loss-of-function and gain-of-function mutations of metabolic enzymes, respectively. These results suggest a substantial potential for discovering unidentified oncometabolites in various forms of cancers.

  4. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation

    NARCIS (Netherlands)

    Feige, Jérôme N.; Lagouge, Marie; Canto, Carles; Strehle, Axelle; Houten, Sander M.; Milne, Jill C.; Lambert, Philip D.; Mataki, Chikage; Elliott, Peter J.; Auwerx, Johan

    2008-01-01

    The NAD(+)-dependent deacetylase SIRT1 controls metabolic processes in response to low nutrient availability. We report the metabolic phenotype of mice treated with SRT1720, a specific and potent synthetic activator of SIRT1 that is devoid of direct action on AMPK. SRT1720 administration robustly

  5. Generalized framework for context-specific metabolic model extraction methods

    Directory of Open Access Journals (Sweden)

    Semidán eRobaina Estévez

    2014-09-01

    Full Text Available Genome-scale metabolic models are increasingly applied to investigate the physiology not only of simple prokaryotes, but also eukaryotes, such as plants, characterized with compartmentalized cells of multiple types. While genome-scale models aim at including the entirety of known metabolic reactions, mounting evidence has indicated that only a subset of these reactions is active in a given context, including: developmental stage, cell type, or environment. As a result, several methods have been proposed to reconstruct context-specific models from existing genome-scale models by integrating various types of high-throughput data. Here we present a mathematical framework that puts all existing methods under one umbrella and provides the means to better understand their functioning, highlight similarities and differences, and to help users in selecting a most suitable method for an application.

  6. Metabolic and adaptive immune responses induced in mice infected ...

    African Journals Online (AJOL)

    This study investigated metabolic and immuno-inflammatory responses of mice infected with tissue-dwelling larvae of Trichinella zimbabwensis and explored the relationship between infection, metabolic parameters and Th1/Th17 immune responses. Sixty (60) female BALB/c mice aged between 6 to 8 weeks old were ...

  7. Modeling metabolism and stage-specific growth of Plasmodium falciparum HB3 during the intraerythrocytic developmental cycle.

    Science.gov (United States)

    Fang, Xin; Reifman, Jaques; Wallqvist, Anders

    2014-10-01

    The human malaria parasite Plasmodium falciparum goes through a complex life cycle, including a roughly 48-hour-long intraerythrocytic developmental cycle (IDC) in human red blood cells. A better understanding of the metabolic processes required during the asexual blood-stage reproduction will enhance our basic knowledge of P. falciparum and help identify critical metabolic reactions and pathways associated with blood-stage malaria. We developed a metabolic network model that mechanistically links time-dependent gene expression, metabolism, and stage-specific growth, allowing us to predict the metabolic fluxes, the biomass production rates, and the timing of production of the different biomass components during the IDC. We predicted time- and stage-specific production of precursors and macromolecules for P. falciparum (strain HB3), allowing us to link specific metabolites to specific physiological functions. For example, we hypothesized that coenzyme A might be involved in late-IDC DNA replication and cell division. Moreover, the predicted ATP metabolism indicated that energy was mainly produced from glycolysis and utilized for non-metabolic processes. Finally, we used the model to classify the entire tricarboxylic acid cycle into segments, each with a distinct function, such as superoxide detoxification, glutamate/glutamine processing, and metabolism of fumarate as a byproduct of purine biosynthesis. By capturing the normal metabolic and growth progression in P. falciparum during the IDC, our model provides a starting point for further elucidation of strain-specific metabolic activity, host-parasite interactions, stress-induced metabolic responses, and metabolic responses to antimalarial drugs and drug candidates.

  8. Species-specific pharmacology of antiestrogens: role of metabolism

    International Nuclear Information System (INIS)

    Jordan, V.C.; Robinson, S.P.

    1987-01-01

    The nonsteroidal antiestrogen tamoxifen exhibits a paradoxial space species pharmacology. The drug is a full estrogen in the mouse, a partial estrogen/antiestrogen in humans and the rat, and an antiestrogen in the chick oviduct. Inasmuch as tamoxifen has antiestrogenic effects in vitro, differential metabolism of tamoxifen to estrogens might occur in the species in which it has antiestrogen pharmacology. Tamoxifen or its metabolite 4-hydroxytamoxifen could lose the alkylaminoethane side chain to form the estrogenic compound metabolite E of bisphenol. Sensitive metabolic studies with [ 3 H]tamoxifen in chicks, rats, and mice identified 4-hydroxytamoxifen as the major metabolite. Athymic mice with transplanted human breast tumors can be used to study the ability of tamoxifen to stimulate tissue or tumor growth. Estradiol caused the growth of transplanted breast cancer cells into solid tumors and a uterotrophic response. However, tamoxifen does not support tumor growth when administered alone, although it stimulates uterines growth. Since a similar profile of metabolites is sequestered in human mouse tissues, these studies strongly support the concept that the drug can selectively stimulate or inhibit events in the target tissues of different species without hometabolic intervention

  9. Manipulation of the metabolic response in clinical practice

    DEFF Research Database (Denmark)

    Kehlet, H

    2000-01-01

    morbidity. Effective afferent neural blockade with continuous epidural local anesthetic techniques inhibits a major part of the endocrine metabolic response, leading to improved protein economy but without important effects on inflammatory or immunologic responses. In contrast, pain treatment with other...... modalities such as nonsteroidal antiinflammatory drugs (NSAIDs) and opioids has only a small inhibitory effect on endocrine metabolic responses. Preoperative high-dose glucocorticoid therapy provides additional pain relief and improves pulmonary function, but it reduces the inflammatory response (acute......-phase proteins, cytokines, hyperthermia) and immune function. Minimally invasive surgery leaves the endocrine metabolic responses largely unaltered but reduces the inflammatory response and immune suppression. Thus several techniques are available to modify the stress responses in elective surgery patients...

  10. Metabolic response to exogenous ethanol in yeast

    Indian Academy of Sciences (India)

    In this study, we applied this approach to evaluate the effects of increasing concentration of exogenous ethanol on the Saccharomyces cerevisiae fermentative metabolism. We show that the STOCSY analysis correctly identifies the different types of correlations among the enriched metabolites involved in the fermentation, ...

  11. The metabolic response of Candida albicans to farnesol under hyphae-inducing conditions.

    Science.gov (United States)

    Han, Ting-Li; Cannon, Richard D; Villas-Bôas, Silas G

    2012-12-01

    Farnesol is a quorum-sensing molecule (QSM) produced, and sensed, by the polymorphic fungus, Candida albicans. This cell-to-cell communication molecule is known to suppress the hyphal formation of C. albicans at high cell density. Despite many studies investigating the signalling mechanisms by which QSMs influence the morphogenesis of C. albicans, the downstream metabolic effect of these signalling pathways in response to farnesol-mediated morphogenesis remains obscure. Here, we have used metabolomics to investigate the metabolic response of C. albicans upon exposure to farnesol under hyphae-inducing conditions. We have found a general up-regulation of central carbon metabolic pathways when hyphal formation was suppressed by farnesol evidenced by a considerably larger number of central carbon metabolic intermediates detected under this condition at an overall lower intracellular level. By combining the metabolic profiles from farnesol-exposed cells with previous metabolomics data for C. albicans undergoing morphogenesis, we have identified several metabolic pathways that are likely to be associated with the morphogenetic process of C. albicans, as well as metabolic pathways such as those involved in lipid metabolism that appeared to be specifically affected by farnesol. Therefore, our results provide important new insights into the metabolic role of farnesol in C. albicans metabolism. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  12. Prostate-specific antigen lowering effect of metabolic syndrome is influenced by prostate volume.

    Science.gov (United States)

    Choi, Woo Suk; Heo, Nam Ju; Paick, Jae-Seung; Son, Hwancheol

    2016-04-01

    To investigate the influence of metabolic syndrome on prostate-specific antigen levels by considering prostate volume and plasma volume. We retrospectively analyzed 4111 men who underwent routine check-ups including prostate-specific antigen and transrectal ultrasonography. The definition of metabolic syndrome was based on the modified Adult Treatment Panel III criteria. Prostate-specific antigen mass density (prostate-specific antigen × plasma volume / prostate volume) was calculated for adjusting plasma volume and prostate volume. We compared prostate-specific antigen and prostate-specific antigen mass density levels of participants with metabolic syndrome (metabolic syndrome group, n = 1242) and without metabolic syndrome (non-prostate-specific antigen metabolic syndrome group, n = 2869). To evaluate the impact of metabolic syndrome on prostate-specific antigen, linear regression analysis for the natural logarithm of prostate-specific antigen was used. Patients in the metabolic syndrome group had significantly older age (P prostate volume (P prostate-specific antigen (non-metabolic syndrome group vs metabolic syndrome group; 1.22 ± 0.91 vs 1.15 ± 0.76 ng/mL, P = 0.006). Prostate-specific antigen mass density in the metabolic syndrome group was still significantly lower than that in the metabolic syndrome group (0.124 ± 0.084 vs 0.115 ± 0.071 μg/mL, P = 0.001). After adjusting for age, prostate volume and plasma volume using linear regression model, the presence of metabolic syndrome was a significant independent factor for lower prostate-specific antigen (prostate-specific antigen decrease by 4.1%, P = 0.046). Prostate-specific antigen levels in patients with metabolic syndrome seem to be lower, and this finding might be affected by the prostate volume. © 2016 The Japanese Urological Association.

  13. Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism.

    Directory of Open Access Journals (Sweden)

    Eleanor C Saunders

    2014-01-01

    Full Text Available Leishmania parasites alternate between extracellular promastigote stages in the insect vector and an obligate intracellular amastigote stage that proliferates within the phagolysosomal compartment of macrophages in the mammalian host. Most enzymes involved in Leishmania central carbon metabolism are constitutively expressed and stage-specific changes in energy metabolism remain poorly defined. Using (13C-stable isotope resolved metabolomics and (2H2O labelling, we show that amastigote differentiation is associated with reduction in growth rate and induction of a distinct stringent metabolic state. This state is characterized by a global decrease in the uptake and utilization of glucose and amino acids, a reduced secretion of organic acids and increased fatty acid β-oxidation. Isotopomer analysis showed that catabolism of hexose and fatty acids provide C4 dicarboxylic acids (succinate/malate and acetyl-CoA for the synthesis of glutamate via a compartmentalized mitochondrial tricarboxylic acid (TCA cycle. In vitro cultivated and intracellular amastigotes are acutely sensitive to inhibitors of mitochondrial aconitase and glutamine synthetase, indicating that these anabolic pathways are essential for intracellular growth and virulence. Lesion-derived amastigotes exhibit a similar metabolism to in vitro differentiated amastigotes, indicating that this stringent response is coupled to differentiation signals rather than exogenous nutrient levels. Induction of a stringent metabolic response may facilitate amastigote survival in a nutrient-poor intracellular niche and underlie the increased dependence of this stage on hexose and mitochondrial metabolism.

  14. Proximal tubule-specific glutamine synthetase deletion alters basal and acidosis-stimulated ammonia metabolism

    Science.gov (United States)

    Lee, Hyun-Wook; Osis, Gunars; Handlogten, Mary E.; Lamers, Wouter H.; Chaudhry, Farrukh A.; Verlander, Jill W.

    2016-01-01

    Glutamine synthetase (GS) catalyzes the recycling of NH4+ with glutamate to form glutamine. GS is highly expressed in the renal proximal tubule (PT), suggesting ammonia recycling via GS could decrease net ammoniagenesis and thereby limit ammonia available for net acid excretion. The purpose of the present study was to determine the role of PT GS in ammonia metabolism under basal conditions and during metabolic acidosis. We generated mice with PT-specific GS deletion (PT-GS-KO) using Cre-loxP techniques. Under basal conditions, PT-GS-KO increased urinary ammonia excretion significantly. Increased ammonia excretion occurred despite decreased expression of key proteins involved in renal ammonia generation. After the induction of metabolic acidosis, the ability to increase ammonia excretion was impaired significantly by PT-GS-KO. The blunted increase in ammonia excretion occurred despite greater expression of multiple components of ammonia generation, including SN1 (Slc38a3), phosphate-dependent glutaminase, phosphoenolpyruvate carboxykinase, and Na+-coupled electrogenic bicarbonate cotransporter. We conclude that 1) GS-mediated ammonia recycling in the PT contributes to both basal and acidosis-stimulated ammonia metabolism and 2) adaptive changes in other proteins involved in ammonia metabolism occur in response to PT-GS-KO and cause an underestimation of the role of PT GS expression. PMID:27009341

  15. Possible stimuli for strength and power adaptation : acute metabolic responses.

    Science.gov (United States)

    Crewther, Blair; Cronin, John; Keogh, Justin

    2006-01-01

    The metabolic response to resistance exercise, in particular lactic acid or lactate, has a marked influence upon the muscular environment, which may enhance the training stimulus (e.g. motor unit activation, hormones or muscle damage) and thereby contribute to strength and power adaptation. Hypertrophy schemes have resulted in greater lactate responses (%) than neuronal and dynamic power schemes, suggesting possible metabolic-mediated changes in muscle growth. Factors such as age, sex, training experience and nutrition may also influence the lactate responses to resistance exercise and thereafter, muscular adaptation. Although the importance of the mechanical and hormonal stimulus to strength and power adaptation is well recognised, the contribution of the metabolic stimulus is largely unknown. Relatively few studies for example, have examined metabolic change across neuronal and dynamic power schemes, and not withstanding the fact that those mechanisms underpinning muscular adaptation, in relation to the metabolic stimulus, remain highly speculative. Inconsistent findings and methodological limitations within research (e.g. programme design, sampling period, number of samples) make interpretation further difficult. We contend that strength and power research needs to investigate those metabolic mechanisms likely to contribute to weight-training adaptation. Further research is also needed to examine the metabolic responses to different loading schemes, as well as interactions across age, sex and training status, so our understanding of how to optimise strength and power development is improved.

  16. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate

    DEFF Research Database (Denmark)

    Wone, B W M; Madsen, Per; Donovan, E R

    2015-01-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection...... on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols...... and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR...

  17. Discriminating response groups in metabolic and regulatory pathway networks.

    Science.gov (United States)

    Van Hemert, John L; Dickerson, Julie A

    2012-04-01

    Analysis of omics experiments generates lists of entities (genes, metabolites, etc.) selected based on specific behavior, such as changes in response to stress or other signals. Functional interpretation of these lists often uses category enrichment tests using functional annotations like Gene Ontology terms and pathway membership. This approach does not consider the connected structure of biochemical pathways or the causal directionality of events. The Omics Response Group (ORG) method, described in this work, interprets omics lists in the context of metabolic pathway and regulatory networks using a statistical model for flow within the networks. Statistical results for all response groups are visualized in a novel Pathway Flow plot. The statistical tests are based on the Erlang distribution model under the assumption of independent and identically Exponential-distributed random walk flows through pathways. As a proof of concept, we applied our method to an Escherichia coli transcriptomics dataset where we confirmed common knowledge of the E.coli transcriptional response to Lipid A deprivation. The main response is related to osmotic stress, and we were also able to detect novel responses that are supported by the literature. We also applied our method to an Arabidopsis thaliana expression dataset from an abscisic acid study. In both cases, conventional pathway enrichment tests detected nothing, while our approach discovered biological processes beyond the original studies. We created a prototype for an interactive ORG web tool at http://ecoserver.vrac.iastate.edu/pathwayflow (source code is available from https://subversion.vrac.iastate.edu/Subversion/jlv/public/jlv/pathwayflow). The prototype is described along with additional figures and tables in Supplementary Material. julied@iastate.edu Supplementary data are available at Bioinformatics online.

  18. Metabolic response to surgery in the cancer patient

    International Nuclear Information System (INIS)

    Brennan, M.F.

    1979-01-01

    The metabolic response to uncomplicated surgery in the patient undergoing primary therapy for malignancy is no different than the response to surgery of similar magnitude for benign disease. Hemodynamic, nutritional-endocrine, and convalescent changes are similar. However, with current aggressive approaches to the management of cancer, the patient often comes to surgery with evidence of major debilitating side effects from his progressive malignancy or from aggressive multimodality therapy. The surgeon must be aware of the consequences of the use of combination therapies on the expected metabolic response to surgery. Awareness of such problems such as the nutritional deficit will allow preventive methods to supercede mtabolic salvage procedures

  19. Isomer-specific regulation of metabolism and PPARgamma signaling by CLA in human preadipocytes

    DEFF Research Database (Denmark)

    Brown, J Mark; Boysen, Maria Sandberg; Jensen, Søren Skov

    2003-01-01

    Trans-10,cis-12 conjugated linoleic acid (CLA) has previously been shown to be the CLA isomer responsible for CLA-induced reductions in body fat in animal models, and we have shown that this isomer, but not the cis-9,trans-11 CLA isomer, specifically decreased triglyceride (TG) accumulation...... transporter 4 gene expression. Furthermore, trans-10,cis-12 CLA reduced oleic acid uptake and oxidation when compared with all other treatments. In parallel to CLA's effects on metabolism, trans-10,cis-12 CLA decreased, whereas cis-9,trans-11 CLA increased, the expression of peroxisome proliferator...

  20. Strain specific transcriptional response in Mycobacterium tuberculosis infected macrophages

    Directory of Open Access Journals (Sweden)

    Koo Mi-Sun

    2012-01-01

    Full Text Available Abstract Background Tuberculosis (TB, a bacterial infection caused by Mycobacterium tuberculosis (Mtb remains a significant health problem worldwide with a third of the world population infected and nearly nine million new cases claiming 1.1 million deaths every year. The outcome following infection by Mtb is determined by a complex and dynamic host-pathogen interaction in which the phenotype of the pathogen and the immune status of the host play a role. However, the molecular mechanism by which Mtb strains induce different responses during intracellular infection of the host macrophage is not fully understood. To explore the early molecular events triggered upon Mtb infection of macrophages, we studied the transcriptional responses of murine bone marrow-derived macrophages (BMM to infection with two clinical Mtb strains, CDC1551 and HN878. These strains have previously been shown to differ in their virulence/immunogenicity in the mouse and rabbit models of pulmonary TB. Results In spite of similar intracellular growth rates, we observed that compared to HN878, infection by CDC1551 of BMM was associated with an increased global transcriptome, up-regulation of a specific early (6 hours immune response network and significantly elevated nitric oxide production. In contrast, at 24 hours post-infection of BMM by HN878, more host genes involved in lipid metabolism, including cholesterol metabolism and prostaglandin synthesis were up-regulated, compared to infection with CDC1551. In association with the differences in the macrophage responses to infection with the 2 Mtb strains, intracellular CDC1551 expressed higher levels of stress response genes than did HN878. Conclusions In association with the early and more robust macrophage activation, intracellular CDC1551 cells were exposed to a higher level of stress leading to increased up-regulation of the bacterial stress response genes. In contrast, sub-optimal activation of macrophages and induction of

  1. Specifics of mental disorders of patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    K. I. Kleban

    2017-09-01

    Full Text Available In the general-somatic network there is a steady increase in the number of patients with psychosomatic disorders. Problems of providing adequate psychiatric and psychotherapeutic assistance to this category of patients are related to the motivation of patients to participate in psychological measures and the readiness of the medical system to provide comprehensive care on the basis of the biopsychosocial approach. Mental factors are involved both in the occurrence and course of a metabolic syndrome in the form of a patient's lifestyle and behavior patterns of healthy functioning, and is a consequence of somatic pathology. Mental factors are involved both in the occurrence and course of a metabolic syndrome in the form of a patient's lifestyle and behavior patterns of healthy functioning, and is a consequence of somatic pathology. So mental disorders of metabolic syndrome are manifested in the form of psychosocial maladaptation, neurotic, affective, personality, and organic disorders. Desynchronosis which is a factor of the development of a metabolic syndrome and characterizes the complex chronobiological component of the regulation of psychophysiological functions in norm and under the influence of stress, deserves special attention. Addressing the diagnosis of mental disorders associated with metabolic syndrome is precisely aimed at determining chronobiological disorders of psychosomatic integrated areas and is supposed to improve diagnostic and treatment process and to shorten the treatment of these disorders.

  2. Metabolic Response to Four Weeks of Muscular Endurance Resistance Training

    Directory of Open Access Journals (Sweden)

    John W. Farrell III

    2017-10-01

    Full Text Available Background: Previous investigations have shown that muscular endurance resistance training (MERT is conducive in improving the onset of blood lactate accumulation (OBLA. However, the metabolic response and time course for adaption is still unclear. Objective: The aims of the current study were to evaluate and track the metabolic response to an individual session of MERT as well as to assess performance adaptations of supplementing an aerobic exercise training program with four weeks of MERT. Methods: Seventeen aerobically active men were randomly assigned to either the experimental (EX or control group (CON, 9 EX and 8 CON. Baseline measures included a graded exercise test (GXT and 1-repetition maximum (1RM testing for leg press (LP, leg curl (LC, and leg extension (LE. CON continued their regular aerobic activity while the EX supplemented their regular aerobic exercise with 4 weeks of MERT. Results: No significant group differences were observed for all pre-training variables. Following four weeks of training no significant differences in cardiorespiratory or metabolic variables were observed for either group. However, significant improvements in LC and LE 1-RM were observed in EX compared to CON. Substantial accumulations in blood lactate were observed following each MERT session. Conclusion: Four weeks of MERT did not improve cardiorespiratory or metabolic variables, but did significantly improve LC and LE. MERT was also observed to induce a blood lactate response similar to that of HIIT. These findings suggest greater than four weeks is need to see metabolic adaptations conducive for improved aerobic performance using MERT.

  3. Glucocorticoids, metabolic adaptations and recovery : studies in specific mouse models

    NARCIS (Netherlands)

    Auvinen, Hanna Elina

    2013-01-01

    Today’s Western society and work promotes a sedentary lifestyle. This, coupled with high caloric food availability has increased obesity followed by an increased prevalence of the metabolic syndrome (MetS), type 2 diabetes (T2D) and cardiovascular diseases (CVD). Epidemiological data show a clear

  4. Dihydroceramide biology - Structure-specific metabolism and intracellular localization

    NARCIS (Netherlands)

    Kok, JW; NikolovaKarakashian, M; Klappe, K; Alexander, C; Merrill, AH

    1997-01-01

    This study utilized fluorescent analogs to characterize the intracellular transport and metabolism of dihydroceramide (DN-Cer), an intermediate in de novo sphingolipid biosynthesis, When 6-[N-(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]hexanoyl-DH-Cer (C-6-NBD-DH-Cer) was incubated with HT29, NRK, BHK,

  5. Aging obviates sex-specific physiological responses to exercise.

    Science.gov (United States)

    Deschenes, Michael R; Taylor, Jessica L; Mangis, Katherine A

    2013-01-01

    Both sex and aging have been shown to affect physiological responses to exercise. The aim of the present investigation was to determine whether aging impacted the sex-specific nature of physiological responses to exercise commonly noted among young adults. Ten aged men (69.0 ± 1.7 years; mean ± SE) and 10 aged women (71.6 ± 1.3 years) reporting similar levels of habitual physical activity performed a 30-min exercise session at 60-65% of their predetermined peak oxygen uptake. Cardiovascular, thermoregulatory, and metabolic variables were assessed before exercise, at the 15th and 30th min of exercise, and at 5 and 15 min into a passive postexercise recovery period. Variables of interest were statistically analyzed via two-way analysis of variance with repeated measures; significance was set at P physiological variable of interest were identified, but not once was a significant effect of group (i.e., sex) detected. Exercise-induced physiological responses to prolonged, moderate intensity exercise were similar among aged men and aged women. This evidence that the sexually dimorphic nature of physiological responses to exercise is obviated with age should be taken into account when prescribing health-related exercise training programs for older individuals. Copyright © 2013 Wiley Periodicals, Inc.

  6. Structural and metabolic responses of Ceratophyllum demersum to ...

    African Journals Online (AJOL)

    Eutrophication in water bodies affects the growth of aquatic plants. In this study, we conducted static experiments to better understand the structural and metabolic responses of Ceratophyllum demersum under eutrophication conditions. The anatomical structure, nitrogen (N) and phosphorous (P) levels in tissue, ...

  7. Modeling metabolic response to changes of enzyme amount in ...

    African Journals Online (AJOL)

    Based on the work of Hynne et al. (2001), in an in silico model of glycolysis, Saccharomyces cerevisiae is established by introducing an enzyme amount multiple factor (.) into the kinetic equations. The model is aimed to predict the metabolic response to the change of enzyme amount. With the help of .α, the amounts of ...

  8. Long-term salt stress responsive growth, carbohydrate metabolism ...

    African Journals Online (AJOL)

    We investigated the long-term responses of tobacco tissues to salt stress, with a particular interest for growth parameters, proline (Pro) accumulation, and carbohydrate metabolism. Exposure of 17-day-old tobacco plants to 0.2 M NaCl was followed by a higher decrease in dry matter in roots than shoots with a decrease of ...

  9. Integration of genome-scale metabolic networks into whole-body PBPK models shows phenotype-specific cases of drug-induced metabolic perturbation.

    Science.gov (United States)

    Cordes, Henrik; Thiel, Christoph; Baier, Vanessa; Blank, Lars M; Kuepfer, Lars

    2018-01-01

    Drug-induced perturbations of the endogenous metabolic network are a potential root cause of cellular toxicity. A mechanistic understanding of such unwanted side effects during drug therapy is therefore vital for patient safety. The comprehensive assessment of such drug-induced injuries requires the simultaneous consideration of both drug exposure at the whole-body and resulting biochemical responses at the cellular level. We here present a computational multi-scale workflow that combines whole-body physiologically based pharmacokinetic (PBPK) models and organ-specific genome-scale metabolic network (GSMN) models through shared reactions of the xenobiotic metabolism. The applicability of the proposed workflow is illustrated for isoniazid, a first-line antibacterial agent against Mycobacterium tuberculosis , which is known to cause idiosyncratic drug-induced liver injuries (DILI). We combined GSMN models of a human liver with N-acetyl transferase 2 (NAT2)-phenotype-specific PBPK models of isoniazid. The combined PBPK-GSMN models quantitatively describe isoniazid pharmacokinetics, as well as intracellular responses, and changes in the exometabolome in a human liver following isoniazid administration. Notably, intracellular and extracellular responses identified with the PBPK-GSMN models are in line with experimental and clinical findings. Moreover, the drug-induced metabolic perturbations are distributed and attenuated in the metabolic network in a phenotype-dependent manner. Our simulation results show that a simultaneous consideration of both drug pharmacokinetics at the whole-body and metabolism at the cellular level is mandatory to explain drug-induced injuries at the patient level. The proposed workflow extends our mechanistic understanding of the biochemistry underlying adverse events and may be used to prevent drug-induced injuries in the future.

  10. Determinants of inter-specific variation in basal metabolic rate.

    Science.gov (United States)

    White, Craig R; Kearney, Michael R

    2013-01-01

    Basal metabolic rate (BMR) is the rate of metabolism of a resting, postabsorptive, non-reproductive, adult bird or mammal, measured during the inactive circadian phase at a thermoneutral temperature. BMR is one of the most widely measured physiological traits, and data are available for over 1,200 species. With data available for such a wide range of species, BMR is a benchmark measurement in ecological and evolutionary physiology, and is often used as a reference against which other levels of metabolism are compared. Implicit in such comparisons is the assumption that BMR is invariant for a given species and that it therefore represents a stable point of comparison. However, BMR shows substantial variation between individuals, populations and species. Investigation of the ultimate (evolutionary) explanations for these differences remains an active area of inquiry, and explanation of size-related trends remains a contentious area. Whereas explanations for the scaling of BMR are generally mechanistic and claim ties to the first principles of chemistry and physics, investigations of mass-independent variation typically take an evolutionary perspective and have demonstrated that BMR is ultimately linked with a range of extrinsic variables including diet, habitat temperature, and net primary productivity. Here we review explanations for size-related and mass-independent variation in the BMR of animals, and suggest ways that the various explanations can be evaluated and integrated.

  11. LKB1 promotes metabolic flexibility in response to energy stress.

    Science.gov (United States)

    Parker, Seth J; Svensson, Robert U; Divakaruni, Ajit S; Lefebvre, Austin E; Murphy, Anne N; Shaw, Reuben J; Metallo, Christian M

    2017-09-01

    The Liver Kinase B1 (LKB1) tumor suppressor acts as a metabolic energy sensor to regulate AMP-activated protein kinase (AMPK) signaling and is commonly mutated in various cancers, including non-small cell lung cancer (NSCLC). Tumor cells deficient in LKB1 may be uniquely sensitized to metabolic stresses, which may offer a therapeutic window in oncology. To address this question we have explored how functional LKB1 impacts the metabolism of NSCLC cells using 13 C metabolic flux analysis. Isogenic NSCLC cells expressing functional LKB1 exhibited higher flux through oxidative mitochondrial pathways compared to those deficient in LKB1. Re-expression of LKB1 also increased the capacity of cells to oxidize major mitochondrial substrates, including pyruvate, fatty acids, and glutamine. Furthermore, LKB1 expression promoted an adaptive response to energy stress induced by anchorage-independent growth. Finally, this diminished adaptability sensitized LKB1-deficient cells to combinatorial inhibition of mitochondrial complex I and glutaminase. Together, our data implicate LKB1 as a major regulator of adaptive metabolic reprogramming and suggest synergistic pharmacological strategies for mitigating LKB1-deficient NSCLC tumor growth. Copyright © 2016. Published by Elsevier Inc.

  12. Effect of Lineage-Specific Metabolic Traits of Lactobacillus reuteri on Sourdough Microbial Ecology

    OpenAIRE

    Lin, Xiaoxi B.; Gänzle, Michael G.

    2014-01-01

    This study determined the effects of specific metabolic traits of Lactobacillus reuteri on its competitiveness in sourdoughs. The competitiveness of lactobacilli in sourdough generally depends on their growth rate; acid resistance additionally contributes to competitiveness in sourdoughs with long fermentation times. Glycerol metabolism via glycerol dehydratase (gupCDE) accelerates growth by the regeneration of reduced cofactors; glutamate metabolism via glutamate decarboxylase (gadB) increas...

  13. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity

    DEFF Research Database (Denmark)

    Brahe, Lena Kirchner; Le Chatelier, E; Prifti, E

    2015-01-01

    BACKGROUND: Gut microbial gene richness and specific bacterial species are associated with metabolic risk markers in humans, but the impact of host physiology and dietary habits on the link between the gut microbiota and metabolic markers remain unclear. The objective of this study was to identify...

  14. Reconstruction and Analysis of Human Kidney-Specific Metabolic Network Based on Omics Data

    Directory of Open Access Journals (Sweden)

    Ai-Di Zhang

    2013-01-01

    Full Text Available With the advent of the high-throughput data production, recent studies of tissue-specific metabolic networks have largely advanced our understanding of the metabolic basis of various physiological and pathological processes. However, for kidney, which plays an essential role in the body, the available kidney-specific model remains incomplete. This paper reports the reconstruction and characterization of the human kidney metabolic network based on transcriptome and proteome data. In silico simulations revealed that house-keeping genes were more essential than kidney-specific genes in maintaining kidney metabolism. Importantly, a total of 267 potential metabolic biomarkers for kidney-related diseases were successfully explored using this model. Furthermore, we found that the discrepancies in metabolic processes of different tissues are directly corresponding to tissue's functions. Finally, the phenotypes of the differentially expressed genes in diabetic kidney disease were characterized, suggesting that these genes may affect disease development through altering kidney metabolism. Thus, the human kidney-specific model constructed in this study may provide valuable information for the metabolism of kidney and offer excellent insights into complex kidney diseases.

  15. A strong response to selection on mass-independent maximal metabolic rate without a correlated response in basal metabolic rate.

    Science.gov (United States)

    Wone, B W M; Madsen, P; Donovan, E R; Labocha, M K; Sears, M W; Downs, C J; Sorensen, D A; Hayes, J P

    2015-04-01

    Metabolic rates are correlated with many aspects of ecology, but how selection on different aspects of metabolic rates affects their mutual evolution is poorly understood. Using laboratory mice, we artificially selected for high maximal mass-independent metabolic rate (MMR) without direct selection on mass-independent basal metabolic rate (BMR). Then we tested for responses to selection in MMR and correlated responses to selection in BMR. In other lines, we antagonistically selected for mice with a combination of high mass-independent MMR and low mass-independent BMR. All selection protocols and data analyses included body mass as a covariate, so effects of selection on the metabolic rates are mass adjusted (that is, independent of effects of body mass). The selection lasted eight generations. Compared with controls, MMR was significantly higher (11.2%) in lines selected for increased MMR, and BMR was slightly, but not significantly, higher (2.5%). Compared with controls, MMR was significantly higher (5.3%) in antagonistically selected lines, and BMR was slightly, but not significantly, lower (4.2%). Analysis of breeding values revealed no positive genetic trend for elevated BMR in high-MMR lines. A weak positive genetic correlation was detected between MMR and BMR. That weak positive genetic correlation supports the aerobic capacity model for the evolution of endothermy in the sense that it fails to falsify a key model assumption. Overall, the results suggest that at least in these mice there is significant capacity for independent evolution of metabolic traits. Whether that is true in the ancestral animals that evolved endothermy remains an important but unanswered question.

  16. Adipose tissue and metabolic and inflammatory responses to stroke are altered in obese mice

    Directory of Open Access Journals (Sweden)

    Michael J. Haley

    2017-10-01

    Full Text Available Obesity is an independent risk factor for stroke, although several clinical studies have reported that obesity improves stroke outcome. Obesity is hypothesised to aid recovery by protecting against post-stroke catabolism. We therefore assessed whether obese mice had an altered metabolic and inflammatory response to stroke. Obese ob/ob mice underwent a 20-min middle cerebral artery occlusion and 24-h reperfusion. Lipid metabolism and expression of inflammatory cytokines were assessed in the plasma, liver and adipose tissue. The obese-specific metabolic response to stroke was assessed in plasma using non-targeted ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS metabolomics coupled with univariate and multivariate analysis. Obesity had no effect on the extent of weight loss 24 h after stroke but affected the metabolic and inflammatory responses to stroke, predominantly affecting lipid metabolism. Specifically, obese mice had increases in plasma free fatty acids and expression of adipose lipolytic enzymes. Metabolomics identified several classes of metabolites affected by stroke in obese mice, including fatty acids and membrane lipids (glycerophospholipids, lysophospholipids and sphingolipids. Obesity also featured increases in inflammatory cytokines in the plasma and adipose tissue. Overall, these results demonstrate that obesity affected the acute metabolic and inflammatory response to stroke and suggest a potential role for adipose tissue in this effect. These findings could have implications for longer-term recovery and also further highlight the importance of considering comorbidities in preclinical stroke research, especially when identifying biomarkers for stroke. However, further work is required to assess whether these changes translate into long-term effects on recovery.

  17. AMPK regulates metabolism and survival in response to ionizing radiation

    International Nuclear Information System (INIS)

    Zannella, Vanessa E.; Cojocari, Dan; Hilgendorf, Susan; Vellanki, Ravi N.; Chung, Stephen; Wouters, Bradly G.; Koritzinsky, Marianne

    2011-01-01

    Background and purpose: AMPK is a metabolic sensor and an upstream inhibitor of mTOR activity. AMPK is phosphorylated by ionizing radiation (IR) in an ATM dependent manner, but the cellular consequences of this phosphorylation event have remained unclear. The objective of this study was to assess whether AMPK plays a functional role in regulating cellular responses to IR. Methods: The importance of AMPK expression for radiation responses was investigated using both MEFs (mouse embryo fibroblasts) double knockout for AMPK α1/α2 subunits and human colorectal carcinoma cells (HCT 116) with AMPK α1/α2 shRNA mediated knockdown. Results: We demonstrate here that IR results in phosphorylation of both AMPK and its substrate, ACC. IR moderately stimulated mTOR activity, and this was substantially exacerbated in the absence of AMPK. AMPK was required for IR induced expression of the mTOR inhibitor REDD1, indicating that AMPK restrains mTOR activity through multiple mechanisms. Likewise, cellular metabolism was deregulated following irradiation in the absence of AMPK, as evidenced by a substantial increase in oxygen consumption rates and lactate production. AMPK deficient cells showed impairment of the G1/S cell cycle checkpoint, and were unable to support long-term proliferation during starvation following radiation. Lastly, we show that AMPK proficiency is important for clonogenic survival after radiation during starvation. Conclusions: These data reveal novel functional roles for AMPK in regulating mTOR signaling, cell cycle, survival and metabolic responses to IR.

  18. Do diabetes and obesity affect the metabolic response to exercise?

    Science.gov (United States)

    Plomgaard, Peter; Weigert, Cora

    2017-07-01

    Exercise is recommended as therapeutic intervention for people at risk to develop type 2 diabetes to prevent or treat the disease. Recent studies on the influence of obesity and type 2 diabetes on the outcome of exercise programs are discussed. Poor glycemic control before an intervention can be a risk factor of reduced therapeutic benefit from exercise. But the acute metabolic response to exercise and the transcriptional profile of the working muscle is similar in healthy controls and type 2 diabetic patients, including but not limited to intact activation of skeletal muscle AMP-activated kinase signaling, glucose uptake and expression of peroxisome proliferator-activated receptor gamma coactivator 1α. The increase in plasma acylcarnitines during exercise is not influenced by type 2 diabetes or obesity. The hepatic response to exercise is dependent on the glucagon/insulin ratio and the exercise-induced increase in hepatokines such as fibroblast growth factor 21 and follistatin is impaired in type 2 diabetes and obesity, but consequences for the benefit from exercise are unknown yet. Severe metabolic dysregulation can reduce the benefit from exercise, but the intact response of key metabolic regulators in exercising skeletal muscle of diabetic patients demonstrates the effectiveness of exercise programs to treat the disease.

  19. A specific metabolic pattern related to the hallucinatory activity in schizophrenia

    International Nuclear Information System (INIS)

    Huret, J.D.; Martinot, J.L.; Lesur, A.; Mazoyer, B.; Pappata, S.; Syrota, A.; Baron, J.C.; Lemperiere, T.

    1988-01-01

    A clinical and PEI study using 18 F - fluorodesoxyglucose for measuring local cerebral glucose metabolism with the aim of showing a specific pattern related to the hallucinatory activity, is presented in schizophrenic patients all experiencing hallucinations or pseudo-halluccinations

  20. Larval starvation improves metabolic response to adult starvation in honey bees (Apis mellifera L.).

    Science.gov (United States)

    Wang, Ying; Campbell, Jacob B; Kaftanoglu, Osman; Page, Robert E; Amdam, Gro V; Harrison, Jon F

    2016-04-01

    Environmental changes during development have long-term effects on adult phenotypes in diverse organisms. Some of the effects play important roles in helping organisms adapt to different environments, such as insect polymorphism. Others, especially those resulting from an adverse developmental environment, have a negative effect on adult health and fitness. However, recent studies have shown that those phenotypes influenced by early environmental adversity have adaptive value under certain (anticipatory) conditions that are similar to the developmental environment, though evidence is mostly from morphological and behavioral observations and it is still rare at physiological and molecular levels. In the companion study, we applied a short-term starvation treatment to fifth instar honey bee larvae and measured changes in adult morphology, starvation resistance, hormonal and metabolic physiology and gene expression. Our results suggest that honey bees can adaptively respond to the predicted nutritional stress. In the present study, we further hypothesized that developmental starvation specifically improves the metabolic response of adult bees to starvation instead of globally affecting metabolism under well-fed conditions. Here, we produced adult honey bees that had experienced a short-term larval starvation, then we starved them for 12 h and monitored metabolic rate, blood sugar concentrations and metabolic reserves. We found that the bees that experienced larval starvation were able to shift to other fuels faster and better maintain stable blood sugar levels during starvation. However, developmental nutritional stress did not change metabolic rates or blood sugar levels in adult bees under normal conditions. Overall, our study provides further evidence that early larval starvation specifically improves the metabolic responses to adult starvation in honey bees. © 2016. Published by The Company of Biologists Ltd.

  1. Distinct Metabolic Requirements of Exhausted and Functional Virus-Specific CD8 T Cells in the Same Host.

    Science.gov (United States)

    Schurich, Anna; Pallett, Laura J; Jajbhay, Danyal; Wijngaarden, Jessica; Otano, Itziar; Gill, Upkar S; Hansi, Navjyot; Kennedy, Patrick T; Nastouli, Eleni; Gilson, Richard; Frezza, Christian; Henson, Sian M; Maini, Mala K

    2016-08-02

    T cells undergo profound metabolic changes to meet the increased energy demands of maintaining an antiviral response. We postulated that differences in metabolic reprogramming would shape the efficacy of CD8 T cells mounted against persistent viral infections. We found that the poorly functional PD-1(hi) T cell response against hepatitis B virus (HBV) had upregulated the glucose transporter, Glut1, an effect recapitulated by oxygen deprivation to mimic the intrahepatic environment. Glut1(hi) HBV-specific T cells were dependent on glucose supplies, unlike the more functional cytomegalovirus (CMV)-specific T cells that could utilize oxidative phosphorylation in the absence of glucose. The inability of HBV-specific T cells to switch to oxidative phosphorylation was accompanied by increased mitochondrial size and lower mitochondrial potential, indicative of mitochondrial dysfunction. Interleukin (IL)-12, which recovers HBV-specific T cell effector function, increased their mitochondrial potential and reduced their dependence on glycolysis. Our findings suggest that mitochondrial defects limit the metabolic plasticity of exhausted HBV-specific T cells. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Distinct Metabolic Requirements of Exhausted and Functional Virus-Specific CD8 T Cells in the Same Host

    Directory of Open Access Journals (Sweden)

    Anna Schurich

    2016-08-01

    Full Text Available T cells undergo profound metabolic changes to meet the increased energy demands of maintaining an antiviral response. We postulated that differences in metabolic reprogramming would shape the efficacy of CD8 T cells mounted against persistent viral infections. We found that the poorly functional PD-1hi T cell response against hepatitis B virus (HBV had upregulated the glucose transporter, Glut1, an effect recapitulated by oxygen deprivation to mimic the intrahepatic environment. Glut1hi HBV-specific T cells were dependent on glucose supplies, unlike the more functional cytomegalovirus (CMV-specific T cells that could utilize oxidative phosphorylation in the absence of glucose. The inability of HBV-specific T cells to switch to oxidative phosphorylation was accompanied by increased mitochondrial size and lower mitochondrial potential, indicative of mitochondrial dysfunction. Interleukin (IL-12, which recovers HBV-specific T cell effector function, increased their mitochondrial potential and reduced their dependence on glycolysis. Our findings suggest that mitochondrial defects limit the metabolic plasticity of exhausted HBV-specific T cells.

  3. Genetic response to metabolic fluctuations: correlation between central carbon metabolism and DNA replication in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Szalewska-Pałasz Agnieszka

    2011-03-01

    Full Text Available Abstract Background Until now, the direct link between central carbon metabolism and DNA replication has been demonstrated only in Bacillus. subtilis. Therefore, we asked if this is a specific phenomenon, characteristic for this bacterium and perhaps for its close relatives, or a more general biological rule. Results We found that temperature-sensitivity of mutants in particular genes coding for replication proteins could be suppressed by deletions of certain genes coding for enzymes of the central carbon metabolism. Namely, the effects of dnaA46(ts mutation could be suppressed by dysfunction of pta or ackA, effects of dnaB(ts by dysfunction of pgi or pta, effects of dnaE486(ts by dysfunction of tktB, effects of dnaG(ts by dysfunction of gpmA, pta or ackA, and effects of dnaN159(ts by dysfunction of pta or ackA. The observed suppression effects were not caused by a decrease in bacterial growth rate. Conclusions The genetic correlation exists between central carbon metabolism and DNA replication in the model Gram-negative bacterium, E. coli. This link exists at the steps of initiation and elongation of DNA replication, indicating the important global correlation between metabolic status of the cell and the events leading to cell reproduction.

  4. Thermal sensation and thermophysiological responses with metabolic step-changes

    DEFF Research Database (Denmark)

    Goto, Tomonobu; Toftum, Jørn; deDear, Richard

    2006-01-01

    at sedentary activity. In a second experimental series, subjects alternated between rest and exercise as well as between exercise at different intensities at two temperature levels. Measurements comprised skin and oesophageal temperatures, heart rate and subjective responses. Thermal sensation started to rise....... The sensitivity of thermal sensation to changes in core temperature was higher for activity down-steps than for up-steps. A model was proposed that estimates transient thermal sensation after metabolic step-changes. Based on predictions by the model, weighting factors were suggested to estimate a representative...... average metabolic rate with varying activity levels, e.g. for the prediction of thermal sensation by steady-state comfort models. The activity during the most recent 5 min should be weighted 65%, during the prior 10-5 min 25% and during the prior 20-10 min 10%....

  5. Effect of radiographic contrast agents on leukocyte metabolic response

    Energy Technology Data Exchange (ETDEWEB)

    Hernanz-Schulman, M. [Dept. of Pediatric Radiology, Vanderbilt Children' s Hospital, Nashville, TN (United States); Vanholder, R.; Waterloos, M.A. [Dept. of Internal Medicine, Nephrology Section, University Hospital, Gent (Belgium); Hakim, R.; Schulman, G. [Department of Nephrology, Vanderbilt University Medical Center, Nashville, TN (United States)

    2000-06-01

    Barium, at clinical dilutions, causes a significant increase of baseline ''resting state'' phagocytic activity, which in turn leads to significant blunting of subsequent response to phagocytic challenge and adversely affects the response to all bacteria tested. There is no baseline activation of leukocytes by the water-soluble media, although there was some inhibition (rather than activation) of leukocyte metabolic activity. The effect of the water-soluble media in bacteria was more complex (although inhibition is minor compared to barium). Our data demonstrate that barium is a significat activator of phagocytic cells, which results in deactivation of phagocytic response when challenged; these dsata serve to explain the enhanced adverse effect of barium in cased of fecal peritonitis. (orig.)

  6. Effect of radiographic contrast agents on leukocyte metabolic response

    International Nuclear Information System (INIS)

    Hernanz-Schulman, M.; Vanholder, R.; Waterloos, M.A.; Hakim, R.; Schulman, G.

    2000-01-01

    Barium, at clinical dilutions, causes a significant increase of baseline ''resting state'' phagocytic activity, which in turn leads to significant blunting of subsequent response to phagocytic challenge and adversely affects the response to all bacteria tested. There is no baseline activation of leukocytes by the water-soluble media, although there was some inhibition (rather than activation) of leukocyte metabolic activity. The effect of the water-soluble media in bacteria was more complex (although inhibition is minor compared to barium). Our data demonstrate that barium is a significant activator of phagocytic cells, which results in deactivation of phagocytic response when challenged; these data serve to explain the enhanced adverse effect of barium in cased of fecal peritonitis. (orig.)

  7. Sex differences in metabolic and adipose tissue responses to juvenile-onset obesity in sheep.

    Science.gov (United States)

    Bloor, Ian D; Sébert, Sylvain P; Saroha, Vivek; Gardner, David S; Keisler, Duane H; Budge, Helen; Symonds, Michael E; Mahajan, Ravi P

    2013-10-01

    Sex is a major factor determining adipose tissue distribution and the subsequent adverse effects of obesity-related disease including type 2 diabetes. The role of gender on juvenile obesity and the accompanying metabolic and inflammatory responses is not well established. Using an ovine model of juvenile onset obesity induced by reduced physical activity, we examined the effect of gender on metabolic, circulatory, and related inflammatory and energy-sensing profiles of the major adipose tissue depots. Despite a similar increase in fat mass with obesity between genders, males demonstrated a higher storage capacity of lipids within perirenal-abdominal adipocytes and exhibited raised insulin. In contrast, obese females became hypercortisolemic, a response that was positively correlated with central fat mass. Analysis of gene expression in perirenal-abdominal adipose tissue demonstrated the stimulation of inflammatory markers in males, but not females, with obesity. Obese females displayed increased expression of genes involved in the glucocorticoid axis and energy sensing in perirenal-abdominal, but not omental, adipose tissue, indicating a depot-specific mechanism that may be protective from the adverse effects of metabolic dysfunction and inflammation. In conclusion, young males are at a greater risk than females to the onset of comorbidities associated with juvenile-onset obesity. These sex-specific differences in cortisol and adipose tissue could explain the earlier onset of the metabolic-related diseases in males compared with females after obesity.

  8. Citric Acid Metabolism in Resistant Hypertension: Underlying Mechanisms and Metabolic Prediction of Treatment Response.

    Science.gov (United States)

    Martin-Lorenzo, Marta; Martinez, Paula J; Baldan-Martin, Montserrat; Ruiz-Hurtado, Gema; Prado, Jose Carlos; Segura, Julian; de la Cuesta, Fernando; Barderas, Maria G; Vivanco, Fernando; Ruilope, Luis Miguel; Alvarez-Llamas, Gloria

    2017-11-01

    Resistant hypertension (RH) affects 9% to 12% of hypertensive adults. Prolonged exposure to suboptimal blood pressure control results in end-organ damage and cardiovascular risk. Spironolactone is the most effective drug for treatment, but not all patients respond and side effects are not negligible. Little is known on the mechanisms responsible for RH. We aimed to identify metabolic alterations in urine. In addition, a potential capacity of metabolites to predict response to spironolactone was investigated. Urine was collected from 29 patients with RH and from a group of 13 subjects with pseudo-RH. For patients, samples were collected before and after spironolactone administration and were classified in responders (n=19) and nonresponders (n=10). Nuclear magnetic resonance was applied to identify altered metabolites and pathways. Metabolites were confirmed by liquid chromatography-mass spectrometry. Citric acid cycle was the pathway most significantly altered ( P citric acid cycle and deregulation of reactive oxygen species homeostasis control continue its activation after hypertension was developed. A metabolic panel showing alteration before spironolactone treatment and predicting future response of patients is shown. These molecular indicators will contribute optimizing the rate of control of RH patients with spironolactone. © 2017 American Heart Association, Inc.

  9. Climate Coping: Investigating Metabolic Responses in Crocosphaera watsonii

    Science.gov (United States)

    Harris, K.

    2016-02-01

    Climate change causes chemical alterations in the open oceans, such as warming which leads to stratification, affecting nutrient ratios. Changes in nutrient ratios result in species shifts and a change in phytoplankton physiology, affecting all marine life. Unicellular diazotrophic microorganisms play a vital role in our open ocean ecosystems. These organisms do so by implementing metabolic processes that contribute to various availability of nutrients including; nitrogen and carbon. The open ocean diazotrophs are represented by multiple strains of Crocosphaera watsonii. The specific aim of this study was to determine whether the phenotype in small and large strain C. watsonii differs, in response to exposure to altered temperature gradients, measured as changes in cell density, photosynthetic efficiency, and EPS production. Triplicate cultures of C. watsonii WH8501 and C. watsonii WH0003 were inoculated into 60 ml of sterile Vineyard Sound SO media at a 1:10 ratio. Each culture was grown under; warm light levels (˜63 µ E m-2 s-1) on a 14:10 day/night cycle at temperatures of 27oC or 29oC. C. watsonii WH8501 cultures were harvested on Day 11, and C. watsonii WH0003 cultures were harvested on Day 9. To evaluate cell growth, fluorescence measurements were taken daily. Aliquots of experimental cultures were evaluated for cell density using flow-cytrometry, photosynthetic efficiency using FIRe fluorescence, and EPS production using a TEP determination assay. Proteins were extracted and analyzed by LC-MS-MS mass spectrometry. There was a correlation between temperature and EPS production for the two strains, C. watsonii WH8501 had a significantly higher growth rate when grown at 29oC, and a lower growth rate at 27oC compared to C. watsonii WH0003. Cultures grown at 27oC produced more EPS than those grown at 29oC. However, overall C. watsonii WH0003 produced more EPS than C. watsonii WH8501. We an increase in the yield of photosystem II (Fv/Fm) in C. watsonii WH0003 vs

  10. The metabolic responses to aerial diffusion of essential oils.

    Directory of Open Access Journals (Sweden)

    Yani Wu

    Full Text Available Anxiety disorders are the most prevalent psychiatric disorders and affect a great number of people worldwide. Essential oils, take effects through inhalation or topical application, are believed to enhance physical, emotional, and spiritual well-being. Although clinical studies suggest that the use of essential oils may have therapeutic potential, evidence for the efficacy of essential oils in treating medical conditions remains poor, with a particular lack of studies employing rigorous analytical methods that capture its identifiable impact on human biology. Here, we report a comprehensive gas chromatography time-of-flight mass spectrometry (GC-TOFMS based metabonomics study that reveals the aromas-induced metabolic changes and the anxiolytic effect of aromas in elevated plus maze (EPM induced anxiety model rats. The significant alteration of metabolites in the EPM group was attenuated by aromas treatment, concurrent with the behavioral improvement with significantly increased open arms time and open arms entries. Brain tissue and urinary metabonomic analysis identified a number of altered metabolites in response to aromas intervention. These metabolic changes included the increased carbohydrates and lowered levels of neurotransmitters (tryptophan, serine, glycine, aspartate, tyrosine, cysteine, phenylalanine, hypotaurine, histidine, and asparagine, amino acids, and fatty acids in the brain. Elevated aspartate, carbohydrates (sucrose, maltose, fructose, and glucose, nucleosides and organic acids such as lactate and pyruvate were also observed in the urine. The EPM induced metabolic differences observed in urine or brain tissue was significantly reduced after 10 days of aroma inhalation, as noted with the loss of statistical significance on many of the metabolites in the aroma-EPM group. This study demonstrates, for the first time, that the metabonomics approach can capture the subtle metabolic changes resulting from exposure to essential oils

  11. Neuron- specific enolase level in patients with metabolic syndrome and its value forecasting acute stroke

    Directory of Open Access Journals (Sweden)

    Oral Ospanov

    2018-03-01

    Full Text Available Background Patients with metabolic syndrome are at a greater risk of experiencing a cerebrovascular event. Several studies show that patients with metabolic syndrome have asymptomatic ischemic brain injury. In this case, there is a need for rapid determination of asymptomatic brain lesions and prediction of acute stroke. Aims The aim of the study was to determine the neuron-specific enolase (NSE serum level in patients with metabolic syndrome and the value of this level for forecasting acute stroke. Methods The study used the following information to determine metabolic syndrome: waist circumference, total cholesterol, triglycerides, high-density lipoprotein cholesterol, blood pressure, and blood glucose. Doppler sonography mapping of the brachiocephalic trunk was held to determine the percentage of the carotid artery stenosis. To determine asymptomatic ischemic brain injury, the NSE serum marker was measured. Statistical processing of the measurements was performed using the H test and the Mann–Whitney test. The possible link between MS and NSE were determined by logistic regression analysis. Mathematical modeling was performed using logistic regression. Results There are statistically significant differences in NSE concentrations in groups with metabolic syndrome and ischemic stroke patients. This assertion is confirmed by logistic regression analysis, which revealed the existence of a relationship between metabolic syndrome and increased concentration of NSE. Conclusion Patients with metabolic syndrome have an increased concentration of NSE. This indicates the presence of asymptomatic ischemic neuronal damage. A prognostic model for determining the probability that patients with metabolic syndrome will have an acute stroke was developed.

  12. Tissue-Specific Peroxisome Proliferator Activated Receptor Gamma Expression and Metabolic Effects of Telmisartan

    Czech Academy of Sciences Publication Activity Database

    Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Landa, Vladimír; Kazdová, L.; Pravenec, Michal; Kurtz, T. W.

    2013-01-01

    Roč. 26, č. 6 (2013), s. 829-835 ISSN 0895-7061 R&D Projects: GA ČR(CZ) GAP303/10/0505; GA MŠk(CZ) LH11049; GA MŠk(CZ) LL1204; GA MŠk(CZ) 7E10067 Institutional support: RVO:67985823 Keywords : telmisartan * metabolic effects * tissue-specific Pparg knockout mice Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.402, year: 2013

  13. Non specific immune response in the African catfish ...

    African Journals Online (AJOL)

    Non specific immune response in the African catfish, Heterobranchus longifilis fed diets fortified with ethanolic extracts of selected traditional medicinal plants and disease resistance against Pseudomonas aeruginosa.

  14. Development of site specific response spectra

    International Nuclear Information System (INIS)

    Bernreuter, D.L.; Chen, J.C.; Savy, J.B.

    1987-03-01

    For a number of years the US Nuclear Regulatory Commission (NRC) has employed site specific spectra (SSSP) in their evaluation of the adequacy of the Safe Shutdown Earthquake (SSE). These spectra were developed only from the spectra of the horizontal components of the ground motion and from a very limited data set. As the data set has considerably increased for Eastern North America (ENA) and as more relevant data has become available from earthquakes occurring in other parts of the world (e.g., Italy), together with the fact that recent data indicated the importance of the vertical component, it became clear that an update of the SSSP's for ENA was desirable. The methodology used in this study is similar to the previous ones in that it used actual earthquake ground motion data with magnitudes within a certain range and recorded at distances and at sites similar to those that would be chosen for the definition of an SSE. An extensive analysis of the origin and size of the uncertainty is an important part of this study. The results of this analysis of the uncertainties is used to develop criteria for selecting the earthquake records to be used in the derivation of the SSSP's. We concluded that the SSSPs were not very sensitive to the distribution of the source to site distance of the earthquake records used in the analysis. That is, the variability (uncertainty) introduced by the range of distances was relatively small compared to the variability introduced by other factors. We also concluded that the SSSP are somewhat sensitive to the distribution of the magnitudes of these earthquakes, particularly at rock sites and, by inference, at shallow soil sites. We found that one important criterion in selecting records to generate SSSP is the depth of soil at the site

  15. Biomimetic catalysts responsive to specific chemical signals

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan [Iowa State Univ., Ames, IA (United States)

    2015-03-04

    Part 1. Design of Biomimetic Catalysts Based on Amphiphilic Systems The overall objective of our research is to create biomimetic catalysts from amphiphilic molecules. More specifically, we aim to create supramolecular systems that can be used to control the microenvironment around a catalytic center in a biomimetic fashion and apply the learning to construct supramolecular catalysts with novel functions found in enzymatic catalysts. We have prepared synthetic molecules (i.e., foldamers) that could fold into helical structures with nanometer-sized internal hydrophilic cavities. Cavities of this size are typically observed only in the tertiary and quaternary structures of proteins but were formed in our foldamer prepared in just a few steps from the monomer. Similar to many proteins, our foldamers displayed cooperativity in the folding/unfolding equilibrium and followed a two-state conformational transition. In addition, their conformational change could be triggered by solvent polarity, pH, or presence of metal ions and certain organic molecules. We studied their environmentally dependent conformational changes in solutions, surfactant micelles, and lipid bilayer membranes. Unlike conventional rigid supramolecular host, a foldamer undergoes conformational change during guest binding. Our study in the molecular recognition of an oligocholate host yielded some extremely exciting results. Cooperativity between host conformation and host–guest interactions was found to “magnify” weak binding interactions. In other words, since binding affinity is determined by the overall change of free energy during the binding, guest-induced conformational change of the host, whether near or far from the binding site, affects the binding. This study has strong implications in catalysis because enzymes have been hypothesized to harvest similar intramolecular forces to strengthen their binding with the transition state of an enzyme-catalyzed reaction. The supramolecular and

  16. Liposoluble vitamins in Crustacean feed: Metabolic and Histological responses.

    Science.gov (United States)

    Fernández-Gimenez, Analía Verónica

    2016-05-01

    Vitamins are vital for normal growth and survival of living organisms and they are distributed in feedstuffs in small quantities. This review is focused on the liposoluble vitamins (A, D, E and K) in the diets and metabolic responses of the Argentine penaeoid shrimps Pleoticus muelleri and Artemesia longinaris, distributed along the South American coast line. Growth, survival and histological analyses serve as indicators of the nutritional value derived from vitamin deficiency. Liposoluble vitamins are also related to stress, antioxidant defense and immune response of shrimps. Effective diet for shrimp culture that provide not only macronutrients including protein and lipid but also micronutrients such as vitamins for optimal growth is an ever improving subject. This review may help formulating suitable feeds for shrimps.

  17. Do diabetes and obesity affect the metabolic response to exercise?

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Weigert, Cora

    2017-01-01

    control before an intervention can be a risk factor of reduced therapeutic benefit from exercise. But the acute metabolic response to exercise and the transcriptional profile of the working muscle is similar in healthy controls and type 2 diabetic patients, including but not limited to intact activation...... of skeletal muscle AMP-activated kinase signaling, glucose uptake and expression of peroxisome proliferator-activated receptor gamma coactivator 1α. The increase in plasma acylcarnitines during exercise is not influenced by type 2 diabetes or obesity. The hepatic response to exercise is dependent......PURPOSE OF REVIEW: Exercise is recommended as therapeutic intervention for people at risk to develop type 2 diabetes to prevent or treat the disease. Recent studies on the influence of obesity and type 2 diabetes on the outcome of exercise programs are discussed. RECENT FINDINGS: Poor glycemic...

  18. Metabolic and cardiovascular responses to epinephrine in diabetic autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J; Richter, E; Madsbad, S

    1987-01-01

    with autonomic neuropathy (P less than 0.01) but was unchanged in the other groups. Since cardiac output increased to a similar extent in the three groups, the decrease in blood pressure was due to a significantly larger decrease (P less than 0.01) in total peripheral vascular resistance in the patients......Norepinephrine-induced vasoconstriction, which is mediated by alpha-adrenergic receptors, is accentuated in patients with autonomic neuropathy. In contrast, responses mediated by beta-adrenergic receptors, including vasodilatation and metabolic changes, have not been evaluated in these patients....... To study these responses, we administered epinephrine in a graded intravenous infusion (0.5 to 5 micrograms per minute) to seven diabetic patients without neuropathy, seven diabetic patients with autonomic neuropathy, and seven normal subjects. Mean arterial pressure decreased significantly in the patients...

  19. Metabolic response to glatiramer acetate therapy in multiple sclerosis patients

    Directory of Open Access Journals (Sweden)

    Lidia De Riccardis

    2016-12-01

    Full Text Available Glatiramer acetate (GA; Copaxone is a random copolymer of glutamic acid, lysine, alanine, and tyrosine used for the treatment of patients with multiple sclerosis (MS. Its mechanism of action has not been already fully elucidated, but it seems that GA has an immune-modulatory effect and neuro-protective properties. Lymphocyte mitochondrial dysfunction underlines the onset of several autoimmune disorders. In MS first diagnosis patients, CD4+, the main T cell subset involved in the pathogenesis of MS, undergo a metabolic reprogramming that consist in the up-regulation of glycolysis and in the down-regulation of oxidative phosphorylation. Currently, no works exist about CD4+ T cell metabolism in response to GA treatment. In order to provide novel insight into the potential use of GA in MS treatment, blood samples were collected from 20 healthy controls (HCs and from 20 RR MS patients prior and every 6 months during the 12 months of GA administration. GA treated patients' CD4+ T cells were compared with those from HCs analysing their mitochondrial activity through polarographic and enzymatic methods in association with their antioxidant status, through the analysis of SOD, GPx and CAT activities. Altogether, our findings suggest that GA is able to reduce CD4+ T lymphocytes' dysfunctions by increasing mitochondrial activity and their response to oxidative stress.

  20. Metabolic response to glatiramer acetate therapy in multiple sclerosis patients.

    Science.gov (United States)

    De Riccardis, Lidia; Ferramosca, Alessandra; Danieli, Antonio; Trianni, Giorgio; Zara, Vincenzo; De Robertis, Francesca; Maffia, Michele

    2016-12-01

    Glatiramer acetate (GA; Copaxone) is a random copolymer of glutamic acid, lysine, alanine, and tyrosine used for the treatment of patients with multiple sclerosis (MS). Its mechanism of action has not been already fully elucidated, but it seems that GA has an immune-modulatory effect and neuro-protective properties. Lymphocyte mitochondrial dysfunction underlines the onset of several autoimmune disorders. In MS first diagnosis patients, CD4 + , the main T cell subset involved in the pathogenesis of MS, undergo a metabolic reprogramming that consist in the up-regulation of glycolysis and in the down-regulation of oxidative phosphorylation. Currently, no works exist about CD4 + T cell metabolism in response to GA treatment. In order to provide novel insight into the potential use of GA in MS treatment, blood samples were collected from 20 healthy controls (HCs) and from 20 RR MS patients prior and every 6 months during the 12 months of GA administration. GA treated patients' CD4 + T cells were compared with those from HCs analysing their mitochondrial activity through polarographic and enzymatic methods in association with their antioxidant status, through the analysis of SOD, GPx and CAT activities. Altogether, our findings suggest that GA is able to reduce CD4 + T lymphocytes' dysfunctions by increasing mitochondrial activity and their response to oxidative stress.

  1. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    Science.gov (United States)

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  2. Mechanistic model of mass-specific basal metabolic rate: evaluation in healthy young adults.

    Science.gov (United States)

    Wang, Z; Bosy-Westphal, A; Schautz, B; Müller, M

    2011-12-01

    Mass-specific basal metabolic rate (mass-specific BMR), defined as the resting energy expenditure per unit body mass per day, is an important parameter in energy metabolism research. However, a mechanistic explanation for magnitude of mass-specific BMR remains lacking. The objective of the present study was to validate the applicability of a proposed mass-specific BMR model in healthy adults. A mechanistic model was developed at the organ-tissue level, mass-specific BMR = Σ( K i × F i ), where Fi is the fraction of body mass as individual organs and tissues, and K i is the specific resting metabolic rate of major organs and tissues. The Fi values were measured by multiple MRI scans and the K i values were suggested by Elia in 1992. A database of healthy non-elderly non-obese adults (age 20 - 49 yrs, BMI BMR of all subjects was 21.6 ± 1.9 (mean ± SD) and 21.7 ± 1.6 kcal/kg per day, respectively. The measured mass-specific BMR was correlated with the predicted mass-specific BMR (r = 0.82, P BMR, versus the average of measured and predicted mass-specific BMR. In conclusion, the proposed mechanistic model was validated in non-elderly non-obese adults and can help to understand the inherent relationship between mass-specific BMR and body composition.

  3. Metabolic response to optic centers to visual stimuli in the albino rat: anatomical and physiological considerations

    International Nuclear Information System (INIS)

    Toga, A.W.; Collins, R.C.

    1981-01-01

    The functional organization of the visual system was studied in the albino rat. Metabolic differences were measured using the 14 C-2-deoxyglucose (DG) autoradiographic technique during visual stimulation of one entire retina in unrestrained animals. All optic centers responded to changes in light intensity but to different degrees. The greatest change occurred in the superior colliculus, less in the lateral geniculate, and considerably less in second-order sites such as layer IV of visual cortex. These optic centers responded in particular to on/off stimuli, but showed no incremental change during pattern reversal or movement of orientation stimuli. Both the superior colliculus and lateral geniculate increased their metabolic rate as the frequency of stimulation increased, but the magnitude was twice as great in the colliculus. The histological pattern of metabolic change in the visual system was not homogenous. In the superior colliculus glucose utilization increased only in stratum griseum superficiale and was greatest in visuotopic regions representing the peripheral portions of the visual field. Similarly, in the lateral geniculate, only the dorsal nucleus showed an increased response to greater stimulus frequencies. Second-order regions of the visual system showed changes in metabolism in response to visual stimulation, but no incremental response specific for type or frequency of stimuli. To label proteins of axoplasmic transport to study the terminal fields of retinal projections 14 C-amino acids were used. This was done to study how the differences in the magnitude of the metabolic response among optic centers were related to the relative quantity of retinofugal projections to these centers

  4. Context-Specific Metabolic Model Extraction Based on Regularized Least Squares Optimization.

    Directory of Open Access Journals (Sweden)

    Semidán Robaina Estévez

    Full Text Available Genome-scale metabolic models have proven highly valuable in investigating cell physiology. Recent advances include the development of methods to extract context-specific models capable of describing metabolism under more specific scenarios (e.g., cell types. Yet, none of the existing computational approaches allows for a fully automated model extraction and determination of a flux distribution independent of user-defined parameters. Here we present RegrEx, a fully automated approach that relies solely on context-specific data and ℓ1-norm regularization to extract a context-specific model and to provide a flux distribution that maximizes its correlation to data. Moreover, the publically available implementation of RegrEx was used to extract 11 context-specific human models using publicly available RNAseq expression profiles, Recon1 and also Recon2, the most recent human metabolic model. The comparison of the performance of RegrEx and its contending alternatives demonstrates that the proposed method extracts models for which both the structure, i.e., reactions included, and the flux distributions are in concordance with the employed data. These findings are supported by validation and comparison of method performance on additional data not used in context-specific model extraction. Therefore, our study sets the ground for applications of other regularization techniques in large-scale metabolic modeling.

  5. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure.

    Science.gov (United States)

    Baud, Maxime O; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J; Petit, Jean-Marie

    2016-10-01

    Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment. © 2016 European Sleep Research Society.

  6. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.

    2016-05-03

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment.

  7. Application of chimeric mice with humanized liver for study of human-specific drug metabolism.

    Science.gov (United States)

    Bateman, Thomas J; Reddy, Vijay G B; Kakuni, Masakazu; Morikawa, Yoshio; Kumar, Sanjeev

    2014-06-01

    Human-specific or disproportionately abundant human metabolites of drug candidates that are not adequately formed and qualified in preclinical safety assessment species pose an important drug development challenge. Furthermore, the overall metabolic profile of drug candidates in humans is an important determinant of their drug-drug interaction susceptibility. These risks can be effectively assessed and/or mitigated if human metabolic profile of the drug candidate could reliably be determined in early development. However, currently available in vitro human models (e.g., liver microsomes, hepatocytes) are often inadequate in this regard. Furthermore, the conduct of definitive radiolabeled human ADME studies is an expensive and time-consuming endeavor that is more suited for later in development when the risk of failure has been reduced. We evaluated a recently developed chimeric mouse model with humanized liver on uPA/SCID background for its ability to predict human disposition of four model drugs (lamotrigine, diclofenac, MRK-A, and propafenone) that are known to exhibit human-specific metabolism. The results from these studies demonstrate that chimeric mice were able to reproduce the human-specific metabolite profile for lamotrigine, diclofenac, and MRK-A. In the case of propafenone, however, the human-specific metabolism was not detected as a predominant pathway, and the metabolite profiles in native and humanized mice were similar; this was attributed to the presence of residual highly active propafenone-metabolizing mouse enzymes in chimeric mice. Overall, the data indicate that the chimeric mice with humanized liver have the potential to be a useful tool for the prediction of human-specific metabolism of xenobiotics and warrant further investigation.

  8. Modification of nucleotide metabolism in relationship with differentiation and in response to irradiation in human tumour cells

    International Nuclear Information System (INIS)

    Wei, Shuang

    1998-01-01

    This research thesis reports the study of the metabolism of nucleotides in human tumour cells. The first part addresses the modifications of nucleotide (more specifically purine) metabolism in relationship with human melanoma cell proliferation and differentiation. The second part addresses the modifications of this metabolism in response to an irradiation in human colon tumour cells. For each part, the author proposes a bibliographic synthesis, and a presentation of studied cells and of methods used to grow cells, and respectively to proliferate and differentiate them or to irradiate them, and then discusses the obtained results [fr

  9. Biodistribution, binding specificity and metabolism of [{sup 18}F]fluoroethylflumazenil in rodents

    Energy Technology Data Exchange (ETDEWEB)

    Leveque, Philippe; Labar, Daniel; Gallez, Bernard E-mail: gallez@cmfa.ucl.ac.be

    2001-10-01

    Pre-clinical studies were carried out in order to characterize in rodents the biodistribution, the binding specificity and the metabolism of [{sup 18}F]Fluoroethylflumazenil ([{sup 18}F]FEF), a potential candidate for in vivo imaging of the benzodiazepine receptors. In vivo competition with flumazenil indicates that [{sup 18}F]FEF binds specifically to the benzodiazepine receptor in the brain. The accumulation of [{sup 18}F]FEF was significantly lower than using [{sup 3}H]Flumazenil. The rather low accumulation in the brain is due to a rapid metabolism of [{sup 18}F]FEF in hydrophylic metabolites which cannot cross the blood brain barrier, and are rapidly eliminated in the urine. Inhibition of the metabolism by acetaminophen (chemically induced hepatitis) led to a significant increase of the radioactivity found in the circulating blood and in the brain, while these results were not observed using classical inhibitors of the cytochrome CYP450, cimetidine and ketoconazole.

  10. Cell Wall Metabolism in Response to Abiotic Stress

    Science.gov (United States)

    Gall, Hyacinthe Le; Philippe, Florian; Domon, Jean-Marc; Gillet, Françoise; Pelloux, Jérôme; Rayon, Catherine

    2015-01-01

    This review focuses on the responses of the plant cell wall to several abiotic stresses including drought, flooding, heat, cold, salt, heavy metals, light, and air pollutants. The effects of stress on cell wall metabolism are discussed at the physiological (morphogenic), transcriptomic, proteomic and biochemical levels. The analysis of a large set of data shows that the plant response is highly complex. The overall effects of most abiotic stress are often dependent on the plant species, the genotype, the age of the plant, the timing of the stress application, and the intensity of this stress. This shows the difficulty of identifying a common pattern of stress response in cell wall architecture that could enable adaptation and/or resistance to abiotic stress. However, in most cases, two main mechanisms can be highlighted: (i) an increased level in xyloglucan endotransglucosylase/hydrolase (XTH) and expansin proteins, associated with an increase in the degree of rhamnogalacturonan I branching that maintains cell wall plasticity and (ii) an increased cell wall thickening by reinforcement of the secondary wall with hemicellulose and lignin deposition. Taken together, these results show the need to undertake large-scale analyses, using multidisciplinary approaches, to unravel the consequences of stress on the cell wall. This will help identify the key components that could be targeted to improve biomass production under stress conditions. PMID:27135320

  11. The effect of temperature and body weight on the routine metabolic rate and postprandial metabolic response in mulloway, Argyrosomus japonicus.

    Science.gov (United States)

    Pirozzi, Igor; Booth, Mark A

    2009-09-01

    Specific dynamic action (SDA) is the energy expended on the physiological processes associated with meal digestion and is strongly influenced by the characteristics of the meal and the body weight (BW) and temperature of the organism. This study assessed the effects of temperature and body weight on the routine metabolic rate (RMR) and postprandial metabolic response in mulloway, Argyrosomus japonicus. RMR and SDA were established at 3 temperatures (14, 20 and 26 degrees C). 5 size classes of mulloway ranging from 60 g to 1.14 kg were used to establish RMR with 3 of the 5 size classes (60, 120 and 240 g) used to establish SDA. The effect of body size on the mass-specific RMR (mg O(2) kg(-1) h(-1)) varied significantly depending on the temperature; there was a greater relative increase in the mass-specific RMR for smaller mulloway with increasing temperature. No statistical differences were found between the mass exponent (b) values at each temperature when tested against H(0): b=0.8. The gross RMR of mulloway (mg O(2) fish(-1) h(-1)) can be described as function of temperature (T; 14-26 degrees C) as: (0.0195T-0.0454)BW(g)(0.8) and the mass-specific RMR (mg O(2) kg(-1) h(-1)) can be described as: (21.042T-74.867)BW(g)(-0.2). Both SDA duration and time to peak SDA were influenced by temperature and body weight; SDA duration occurred within 41-89 h and peak time occurred within 17-38 h of feeding. The effect of body size on peak metabolic rate varied significantly depending on temperature, generally increasing with temperature and decreasing with increasing body size. Peak gross oxygen consumption (MO(2): mg O(2) fish(-1) h(-1)) scaled allometrically with BW. Temperature, but not body size, significantly affected SDA scope, although the difference was numerically small. There was a trend for MO(2) above RMR over the SDA period to increase with temperature; however, this was not statistically significant. The average proportion of energy expended over the SDA period

  12. Circulating interleukin-18: A specific biomarker for atherosclerosis-prone patients with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Nemoto Shinji

    2011-01-01

    Full Text Available Abstract Background Metabolic syndrome (MetS is associated with an increased risk of the development of atherosclerotic cardiovascular disease (CVD. Interleukin-18 (IL-18, which is a pleiotropic proinflammatory cytokine with important regulatory functions in the innate immune response system, plays a crucial role in vascular pathologies. IL-18 is also a predictor of cardiovascular death in patients with CVD and is involved in atherosclerotic plaque destabilization. Results In order to determine if circulating levels of IL-18 can serve as a specific biomarker for distinguishing MetS patients from pre-MetS subjects, we studied 78 patients with visceral fat deposition and 14 age-matched control subjects. Increased levels of IL-18 were observed more frequently in patients with MetS than in pre-MetS subjects and were positively associated with waist circumference. Serum levels of IL-18 were significantly reduced by a change in weight caused by lifestyle modifications. There was a significant interaction between waist circumference and serum IL-18 concentration. Weight loss of at least 5% of the body weight caused by lifestyle modification decreased IL-18 circulating levels relative to the reduction in waist circumference and blood pressure, suggesting that this degree of weight loss benefits the cardiovascular system. Conclusion IL-18 may be a useful biomarker of the clinical manifestations of MetS and for the management of the risk factors of CVD.

  13. Humoral and cell-mediated immune responses to influenza vaccination in equine metabolic syndrome (EMS) horses.

    Science.gov (United States)

    Elzinga, Sarah; Reedy, Stephanie; Barker, Virginia D; Chambers, Thomas M; Adams, Amanda A

    2018-05-01

    Obesity is an increasing problem in the equine population with recent reports indicating that the percentage of overweight horses may range anywhere from 20.6-51%. Obesity in horses has been linked to more serious health concerns such as equine metabolic syndrome (EMS). EMS is a serious problem in the equine industry given its defining characteristics of insulin dysregualtion and obesity, as well as the involvement of laminitis. Little research however has been conducted to determine the effects of EMS on routine healthcare of these horses, in particular how they respond to vaccination. It has been shown that obese humans and mice have decreased immune responses to vaccination. EMS may have similar effects on vaccine responses in horses. If this is the case, these animals may be more susceptible to disease, acting as unknown disease reservoirs. Therefore, we investigated the effects of EMS on immune responses to routine influenza vaccination. Twenty-five adult horses of mixed-sex and mixed-breed (8-21 years old) horses; 13 EMS and 12 non-EMS were selected. Within each group, 4 horses served as non-vaccinate saline controls and the remaining horses were vaccinated with a commercially available equine influenza vaccine. Vaccination (influenza or saline) was administered on weeks 0 and 3, and peripheral blood samples taken on week 0 prior to vaccination and on weeks 1, 2, 3, 4, and 5 post vaccination. Blood samples were used to measure hemagglutination inhibition (HI) titers and equine influenza specific IgGa, IgGb, and IgGT levels. Blood samples were also used to isolate peripheral blood mononuclear cells (PBMCs) for analysis of cell mediated immune (CMI) responses via real-time polymerase chain reaction (RT-PCR). All horses receiving influenza vaccination responded with significant increases (P equine influenza specific antibodies following vaccination compared to saline controls. EMS did not significantly affect (P > 0.05) humoral immune responses as measured

  14. Role of SUMO-specific protease 2 in reprogramming cellular glucose metabolism.

    Directory of Open Access Journals (Sweden)

    Shuang Tang

    Full Text Available Most cancer cells exhibit a shift in glucose metabolic strategy, displaying increased glycolysis even with adequate oxygen supply. SUMO-specific proteases (SENPs de-SUMOylate substrates including HIF1α and p53,two key regulators in cancer glucose metabolism, to regulate their activity, stability and subcellular localization. However, the role of SENPs in tumor glucose metabolism remains unclear. Here we report that SUMO-specific protease 2 (SENP2 negatively regulates aerobic glycolysis in MCF7 and MEF cells. Over-expression of SENP2 reduces the glucose uptake and lactate production, increasing the cellular ATP levels in MCF7 cells, while SENP2 knockout MEF cells show increased glucose uptake and lactate production along with the decreased ATP levels. Consistently, the MCF7 cells over-expressing SENP2 exhibit decreased expression levels of key glycolytic enzymes and an increased rate of glucose oxidation compared with control MCF7 cells, indicating inhibited glycolysis but enhanced oxidative mitochondrial respiration. Moreover, SENP2 over-expressing MCF7 cells demonstrated a reduced amount of phosphorylated AKT, whereas SENP2 knockout MEFs exhibit increased levels of phosphorylated AKT. Furthermore, inhibiting AKT phosphorylation by LY294002 rescued the phenotype induced by SENP2 deficiency in MEFs. In conclusion, SENP2 represses glycolysis and shifts glucose metabolic strategy, in part through inhibition of AKT phosphorylation. Our study reveals a novel function of SENP2 in regulating glucose metabolism.

  15. SU-C-303-02: Correlating Metabolic Response to Radiation Therapy with HIF-1alpha Expression

    International Nuclear Information System (INIS)

    Campos, D; Peeters, W; Nickel, K; Eliceiri, K; Kimple, R; Van Der Kogel, A; Kissick, M

    2015-01-01

    Purpose: To understand radiation induced alterations in cellular metabolism which could be used to assess treatment or normal tissue response to aid in patient-specific adaptive radiotherapy. This work aims to compare the metabolic response of two head and neck cell lines, one malignant (UM-SCC-22B) and one benign (Normal Oral Keratinocyte), to ionizing radiation. Responses are compared to alterations in HIF-1alpha expression. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Measurements of metabolism and HIF-1alpha expression were taken before and X minutes after a 10 Gy dose of radiation delivered via an orthovoltage x-ray source. In vitro changes in metabolic activity were measured via fluorescence lifetime imaging (FLIM) to assess the mean lifetime of NADH autofluorescence following a dose of 10 Gy. HIF-1alpha expression was measured via immunohistochemical staining of in vitro treated cells and expression was quantified using the FIJI software package. Results: FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways for malignant cells; whereas this benign cell line showed little change in metabolic signature. Immunohistochemical analysis showed significant changes in HIF-1alpha expression in response to 10 Gy of radiation that correlate to metabolic profiles. Conclusion: Radiation induces significant changes in metabolic activity and HIF-1alpha expression. These alterations occur on time scales approximating the duration of common radiation treatments (approximately tens of minutes). Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response

  16. SU-C-303-02: Correlating Metabolic Response to Radiation Therapy with HIF-1alpha Expression

    Energy Technology Data Exchange (ETDEWEB)

    Campos, D [University of Wisconsin Madison, Madison, WI (United States); Peeters, W [Radboud University Medical Center, Nijmegen, GA (United States); Nickel, K [University of Wisconsin, Madison, WI (United States); Eliceiri, K; Kimple, R; Van Der Kogel, A; Kissick, M [University of Wisconsin, Madison, Wisconsin (United States)

    2015-06-15

    Purpose: To understand radiation induced alterations in cellular metabolism which could be used to assess treatment or normal tissue response to aid in patient-specific adaptive radiotherapy. This work aims to compare the metabolic response of two head and neck cell lines, one malignant (UM-SCC-22B) and one benign (Normal Oral Keratinocyte), to ionizing radiation. Responses are compared to alterations in HIF-1alpha expression. These dynamics can potentially serve as biomarkers in assessing treatment response allowing for patient-specific adaptive radiotherapy. Methods: Measurements of metabolism and HIF-1alpha expression were taken before and X minutes after a 10 Gy dose of radiation delivered via an orthovoltage x-ray source. In vitro changes in metabolic activity were measured via fluorescence lifetime imaging (FLIM) to assess the mean lifetime of NADH autofluorescence following a dose of 10 Gy. HIF-1alpha expression was measured via immunohistochemical staining of in vitro treated cells and expression was quantified using the FIJI software package. Results: FLIM demonstrated a decrease in the mean fluorescence lifetime of NADH by 100 ps following 10 Gy indicating a shift towards glycolytic pathways for malignant cells; whereas this benign cell line showed little change in metabolic signature. Immunohistochemical analysis showed significant changes in HIF-1alpha expression in response to 10 Gy of radiation that correlate to metabolic profiles. Conclusion: Radiation induces significant changes in metabolic activity and HIF-1alpha expression. These alterations occur on time scales approximating the duration of common radiation treatments (approximately tens of minutes). Further understanding these dynamics has important implications with regard to improvement of therapy and biomarkers of treatment response.

  17. A tissue-specific approach to the analysis of metabolic changes in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Jürgen Hench

    Full Text Available The majority of metabolic principles are evolutionarily conserved from nematodes to humans. Caenorhabditis elegans has widely accelerated the discovery of new genes important to maintain organismic metabolic homeostasis. Various methods exist to assess the metabolic state in worms, yet they often require large animal numbers and tend to be performed as bulk analyses of whole worm homogenates, thereby largely precluding a detailed studies of metabolic changes in specific worm tissues. Here, we have adapted well-established histochemical methods for the use on C. elegans fresh frozen sections and demonstrate their validity for analyses of morphological and metabolic changes on tissue level in wild type and various mutant strains. We show how the worm presents on hematoxylin and eosin (H&E stained sections and demonstrate their usefulness in monitoring and the identification of morphological abnormalities. In addition, we demonstrate how Oil-Red-O staining on frozen worm cross-sections permits quantification of lipid storage, avoiding the artifact-prone fixation and permeabilization procedures of traditional whole-mount protocols. We also adjusted standard enzymatic stains for respiratory chain subunits (NADH, SDH, and COX to monitor metabolic states of various C. elegans tissues. In summary, the protocols presented here provide technical guidance to obtain robust, reproducible and quantifiable tissue-specific data on worm morphology as well as carbohydrate, lipid and mitochondrial energy metabolism that cannot be obtained through traditional biochemical bulk analyses of worm homogenates. Furthermore, analysis of worm cross-sections overcomes the common problem with quantification in three-dimensional whole-mount specimens.

  18. Metabolic and Transcriptional Response to Cofactor Perturbations in Escherichia coli

    DEFF Research Database (Denmark)

    Holm, Anders Koefoed; Blank, L.M.; Oldiges, M.

    2010-01-01

    Metabolic cofactors such as NADH and ATP play important roles in a large number of cellular reactions, and it is of great interest to dissect the role of these cofactors in different aspects of metabolism. Toward this goal, we overexpressed NADH oxidase and the soluble F1-ATPase in Escherichia coli...... of redox and energy metabolism and should help in developing metabolic engineering strategies in E. coli....

  19. Metabolic responses to pyruvate kinase deletion in lysine producing Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Wittmann Christoph

    2008-03-01

    Full Text Available Abstract Background Pyruvate kinase is an important element in flux control of the intermediate metabolism. It catalyzes the irreversible conversion of phosphoenolpyruvate into pyruvate and is under allosteric control. In Corynebacterium glutamicum, this enzyme was regarded as promising target for improved production of lysine, one of the major amino acids in animal nutrition. In pyruvate kinase deficient strains the required equimolar ratio of the two lysine precursors oxaloacetate and pyruvate can be achieved through concerted action of the phosphotransferase system (PTS and phosphoenolpyruvate carboxylase (PEPC, whereby a reduced amount of carbon may be lost as CO2 due to reduced flux into the tricarboxylic acid (TCA cycle. In previous studies, deletion of pyruvate kinase in lysine-producing C. glutamicum, however, did not yield a clear picture and the exact metabolic consequences are not fully understood. Results In this work, deletion of the pyk gene, encoding pyruvate kinase, was carried out in the lysine-producing strain C. glutamicum lysCfbr, expressing a feedback resistant aspartokinase, to investigate the cellular response to deletion of this central glycolytic enzyme. Pyk deletion was achieved by allelic replacement, verified by PCR analysis and the lack of in vitro enzyme activity. The deletion mutant showed an overall growth behavior (specific growth rate, glucose uptake rate, biomass yield which was very similar to that of the parent strain, but differed in slightly reduced lysine formation, increased formation of the overflow metabolites dihydroxyacetone and glycerol and in metabolic fluxes around the pyruvate node. The latter involved a flux shift from pyruvate carboxylase (PC to PEPC, by which the cell maintained anaplerotic supply of the TCA cycle. This created a metabolic by-pass from PEP to pyruvate via malic enzyme demonstrating its contribution to metabolic flexibility of C. glutamicum on glucose. Conclusion The metabolic

  20. Uptake, accumulation and metabolic response of ferricyanide in weeping willows.

    Science.gov (United States)

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2009-01-01

    The remediation potential and metabolic responses of plants to ferricyanide were investigated using pre-rooted weeping willows (Salix babylonica L.) grown hydroponically in growth chambers and treated with potassium ferricyanide. Positive responses were observed for the plants exposed to cyanide recovered in plant biomass was constant in all treatments, indicating that transport is a major limiting step for the uptake of ferricyanide by plants. The majority of the ferricyanide taken up from the growth media was possibly assimilated during transport through plants. The velocity of the removal processes can be described by Michaelis-Menten kinetics, and the half-saturation constant (K(M)) and the maximum removal capacity (v(max)) were estimated to be 228.1 mg CN L(-1) and 36.43 mg CN kg(-1) d(-1), respectively, using non-linear regression methods. These results suggest that weeping willows can take up, transport and assimilate ferricyanide; and phytoremediation is an option for cleaning up the environmental sites contaminated with cyanide complexes.

  1. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses.

    Science.gov (United States)

    Ou, Yang; Wang, Shang-Jui; Li, Dawei; Chu, Bo; Gu, Wei

    2016-11-01

    Although p53-mediated cell-cycle arrest, senescence, and apoptosis remain critical barriers to cancer development, the emerging role of p53 in cell metabolism, oxidative responses, and ferroptotic cell death has been a topic of great interest. Nevertheless, it is unclear how p53 orchestrates its activities in multiple metabolic pathways into tumor suppressive effects. Here, we identified the SAT1 (spermidine/spermine N 1 -acetyltransferase 1) gene as a transcription target of p53. SAT1 is a rate-limiting enzyme in polyamine catabolism critically involved in the conversion of spermidine and spermine back to putrescine. Surprisingly, we found that activation of SAT1 expression induces lipid peroxidation and sensitizes cells to undergo ferroptosis upon reactive oxygen species (ROS)-induced stress, which also leads to suppression of tumor growth in xenograft tumor models. Notably, SAT1 expression is down-regulated in human tumors, and CRISPR-cas9-mediated knockout of SAT1 expression partially abrogates p53-mediated ferroptosis. Moreover, SAT1 induction is correlated with the expression levels of arachidonate 15-lipoxygenase (ALOX15), and SAT1-induced ferroptosis is significantly abrogated in the presence of PD146176, a specific inhibitor of ALOX15. Thus, our findings uncover a metabolic target of p53 involved in ferroptotic cell death and provide insight into the regulation of polyamine metabolism and ferroptosis-mediated tumor suppression.

  2. Stress hormone release is a key component of the metabolic response to lipopolysaccharide (LPS): studies in hypopituitary and healthy subjects

    DEFF Research Database (Denmark)

    Bach, Ermina; Møller, Andreas Buch; Jørgensen, Jens Otto Lunde

    2016-01-01

    OBJECTIVE: Lipopolysaccharide (LPS) generates acute and chronic inflammatory and metabolic responses during acute illness and in the pathogenesis of the metabolic syndrome, type 2 diabetes and cardiovascular disease, but it is unclear whether these responses depend on intact pituitary release...... but not in HP. LPS increased whole body palmitate fluxes (3-fold) and decreased palmitate specific activity 40-50 % in CTR, but not in HP. G(0)/G(1) Switch Gene 2 (G0S2 - an inhibitor of lipolysis) adipose tissue mRNA was decreased in CTR. LPS increased phenylalanine fluxes significantly more in CTR, whereas...

  3. Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis.

    Science.gov (United States)

    Wood, C M; Milligan, C L; Walsh, P J

    1999-08-01

    Exposure to hyperoxia (500-600 torr) or low pH (4.5) for 72 h or NaHCO(3) infusion for 48 h were used to create chronic respiratory (RA) or metabolic acidosis (MA) or metabolic alkalosis in freshwater rainbow trout. During alkalosis, urine pH increased, and [titratable acidity (TA) - HCO(-)(3)] and net H(+) excretion became negative (net base excretion) with unchanged NH(+)(4) efflux. During RA, urine pH did not change, but net H(+) excretion increased as a result of a modest rise in NH(+)(4) and substantial elevation in [TA - HCO(-)(3)] efflux accompanied by a large increase in inorganic phosphate excretion. However, during MA, urine pH fell, and net H(+) excretion was 3.3-fold greater than during RA, reflecting a similar increase in [TA - HCO(-)(3)] and a smaller elevation in phosphate but a sevenfold greater increase in NH(+)(4) efflux. In urine samples of the same pH, [TA - HCO(-)(3)] was greater during RA (reflecting phosphate secretion), and [NH(+)(4)] was greater during MA (reflecting renal ammoniagenesis). Renal activities of potential ammoniagenic enzymes (phosphate-dependent glutaminase, glutamate dehydrogenase, alpha-ketoglutarate dehydrogenase, alanine aminotransferase, phosphoenolpyruvate carboxykinase) and plasma levels of cortisol, phosphate, ammonia, and most amino acids (including glutamine and alanine) increased during MA but not during RA, when only alanine aminotransferase increased. The differential responses to RA vs. MA parallel those in mammals; in fish they may be keyed to activation of phosphate secretion by RA and cortisol mobilization by MA.

  4. Studies of liver-specific metabolic reactions with 15N. 1

    International Nuclear Information System (INIS)

    Hirschberg, K.; Jung, K.; Faust, H.; Matkowitz, R.

    1987-01-01

    The 15 N tracer technique was used to investigate liver-specific reactions (urea and hippurate synthesis) for studying the metabolism in the healthy and damaged pig liver. After [ 15 N]ammonium chloride administration the tracer distribution on non-protein compounds of serum and urine was followed. Blood samplings before and after liver passage rendered possible a direct analysis of the [ 15 N]ammonium metabolism. The thioacetamide-induced liver damage was used as model for an acute liver intoxication. The capacity for urea synthesis was not influenced by means of this noxious substance, but the metabolism of amino acids and hippuric acid. The considerably depressed excretion of [ 15 N]hippurate seems to be a suitable indicator of liver disfunction. (author)

  5. Functional characterization of Foxp3-specific spontaneous immune responses

    DEFF Research Database (Denmark)

    Larsen, Susanne Købke; Munir, S; Andersen, Anders Woetmann

    2013-01-01

    Tumor-infiltrating CD4+CD25+ regulatory T cells (Tregs) are associated with an impaired prognosis in several cancers. The transcription factor forkhead box P3 (Foxp3) is generally expressed in Tregs. Here, we identify and characterize spontaneous cytotoxic immune responses to Foxp3-expressing cel....... Consequently, induction of Foxp3-specific cytotoxic T-cell responses appears as an attractive tool to boost spontaneous or therapeutically provoked immune responses, for example, for the therapy of cancer....

  6. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    Directory of Open Access Journals (Sweden)

    Huthmacher Carola

    2010-08-01

    Full Text Available Abstract Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicted life cycle stage specific metabolism with the help of a flux balance approach that integrates gene expression data. Predicted metabolite exchanges between parasite and host were found to be in good accordance with experimental findings when the parasite's metabolic network was embedded into that of its host (erythrocyte. Knock-out simulations identified 307 indispensable metabolic reactions within the parasite. 35 out of 57 experimentally demonstrated essential enzymes were recovered and another 16 enzymes, if additionally the assumption was made that nutrient uptake from the host cell is limited and all reactions catalyzed by the inhibited enzyme are blocked. This predicted set of putative drug targets, shown to be enriched with true targets by a factor of at least 2.75, was further analyzed with respect to homology to human enzymes, functional similarity to therapeutic targets in other organisms and their predicted potency for prophylaxis and disease treatment. Conclusions The results suggest that the set of essential enzymes predicted by our flux balance approach represents a promising starting point for further drug development.

  7. Acute metabolic and physiologic response of goats to narcosis

    Science.gov (United States)

    Schatte, C. L.; Bennett, P. B.

    1973-01-01

    Assessment of the metabolic consequences of exposure to elevated partial pressures of nitrogen and helium under normobaric and hyperbaric conditions in goats. The results include the finding that hyperbaric nitrogen causes and increase in metabolic rate and a general decrease in blood constituent levels which is interpreted as reflecting a shift toward fatty acid metabolism at the expense of carbohydrates. A similar but more pronounced pattern was observed with hyperbaric helium.

  8. Metabolic Communication between Astrocytes and Neurons via Bicarbonate-Responsive Soluble Adenylyl Cyclase

    OpenAIRE

    Choi, Hyun B.; Gordon, Grant R.J.; Zhou, Ning; Tai, Chao; Rungta, Ravi L.; Martinez, Jennifer; Milner, Teresa A.; Ryu, Jae K.; McLarnon, James G.; Tresguerres, Martin; Levin, Lonny R.; Buck, Jochen; MacVicar, Brian A.

    2012-01-01

    Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO3−) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response t...

  9. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory.

    Science.gov (United States)

    Alamgir, Kabir Md; Hojo, Yuko; Christeller, John T; Fukumoto, Kaori; Isshiki, Ryutaro; Shinya, Tomonori; Baldwin, Ian T; Galis, Ivan

    2016-02-01

    Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants. © 2015 John Wiley & Sons Ltd.

  10. Diabetogenic action of streptozotocin: relationship of dose to metabolic response

    Science.gov (United States)

    Junod, Alain; Lambert, André E.; Stauffacher, Werner; Renold, Albert E.

    1969-01-01

    The relationship between the dose of intravenously administered streptozotocin (a N-nitroso derivative of glucosamine) and the diabetogenic response has been explored by use of the following indices of diabetogenic action: serum glucose, urine volume, and glycosuria, ketonuria, serum immunoreactive insulin (IRI), and pancreatic IRI content. Diabetogenic activity could be demonstrated between the doses of 25 and 100 mg/kg, all indices used showing some degree of correlation with the dose administered. Ketonuria was only seen with the largest dose, 100 mg/kg. The most striking and precise correlation was that between the dose and the pancreatic IRI content 24 hr after administration of the drug, and it is suggested that this represents a convenient test system either for both related and unrelated beta cytotoxic compounds or for screening for modifying agents or antidiabetic substances of a novel type. Ability to produce graded depletion of pancreatic IRI storage capacity led to an analysis of the relationship between pancreatic IRI content and deranged carbohydrate metabolism. Abnormal glucose tolerance and insulin response were seen when pancreatic IRI was depleted by about one-third, while fasting hyperglycemia and gross glycosuria occurred when the depletion had reached two-thirds and three-quarters, respectively. The mild yet persistent anomaly produced by the lowest effective streptozotocin dose, 25 mg/kg, exhibits characteristics resembling the state of chemical diabetes in humans and might thus warrant further study as a possible model. Finally, the loss of the diabetogenic action of streptozotocin by pretreatment with nicotinamide was confirmed and was shown to be a function of the relative doses of nicotinamide and streptozotocin and of the interval between injections. PMID:4241908

  11. [Dissociation of antihypertensive and metabolic response to losartan and spironolactone in experimental rats with metabolic sindrome].

    Science.gov (United States)

    Machado, Hussen; Pinheiro, Helady Sanders; Terra, Marcella Martins; Guerra, Martha de Oliveira; de Paula, Rogerio Baumgratz; Peters, Vera Maria

    2012-01-01

    The treatment of arterial hypertension (AH) in patients with metabolic syndrome (MS) is a challenge, since non drug therapies are difficult to implement and optimal pharmacological treatment is not fully established. To assess the blockade of the rennin angiotensin aldosterone system (RAAS) in blood pressure (BP) in renal function and morphology in an experimental model of MS induced by high fat diet. Wistar rats were fed on high fat diet from the fourth week of life, for 20 weeks. The groups received Losartan or Spironolactone from the eighth week of life. We weekly evaluated the body weight and BP by tail plethysmography. At the end of the experiment oral glucose tolerance, lipid profile, creatinine clearance tests, and the direct measurement of BP were performed. A morphometric kidney analysis was performed. The administration of high-fat diet was associated with the development of MS, characterized by central fat accumulation, hypertension, hyperglycemia and hypertriglyceridemia. In this model there were no changes in renal histomorphometry. The blockade of angiotensin II (Ang II) receptor AT1 prevented the development of hypertension. The mineralocorticoid blockage did not have antihypertensive efficacy but was associated with reduction of abdominal fat. The dissociation of the antihypertensive response to the blockades of Ang II receptors and mineralocorticoid indicates the involvement of Ang II in the pathogenesis of hypertension associated with obesity. Reduction of central obesity with Spironolactone suggests the presence of mineralocorticoid adipogenic effect.

  12. Supplementation of Saccharomyces cerevisiae modulates the metabolic response to lipopolysaccharide challenge in feedlot steers

    Science.gov (United States)

    Live yeast has the potential to serve as an alternative to the use of low-dose supplementation of antibiotics in cattle due to the ability to alter ruminant metabolism; which in turn may influence the immune response. Therefore, the objective of this study was to determine the metabolic response to ...

  13. Open Automated Demand Response Communications Specification (Version 1.0)

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Koch, Ed; Hennage, Dan; Palensky, Peter; McParland, Charles

    2009-02-28

    The development of the Open Automated Demand Response Communications Specification, also known as OpenADR or Open Auto-DR, began in 2002 following the California electricity crisis. The work has been carried out by the Demand Response Research Center (DRRC), which is managed by Lawrence Berkeley National Laboratory. This specification describes an open standards-based communications data model designed to facilitate sending and receiving demand response price and reliability signals from a utility or Independent System Operator to electric customers. OpenADR is one element of the Smart Grid information and communications technologies that are being developed to improve optimization between electric supply and demand. The intention of the open automated demand response communications data model is to provide interoperable signals to building and industrial control systems that are preprogrammed to take action based on a demand response signal, enabling a demand response event to be fully automated, with no manual intervention. The OpenADR specification is a flexible infrastructure to facilitate common information exchange between the utility or Independent System Operator and end-use participants. The concept of an open specification is intended to allow anyone to implement the signaling systems, the automation server or the automation clients.

  14. Instantaneous Metabolic Cost of Walking: Joint-Space Dynamic Model with Subject-Specific Heat Rate.

    Directory of Open Access Journals (Sweden)

    Dustyn Roberts

    Full Text Available A subject-specific model of instantaneous cost of transport (ICOT is introduced from the joint-space formulation of metabolic energy expenditure using the laws of thermodynamics and the principles of multibody system dynamics. Work and heat are formulated in generalized coordinates as functions of joint kinematic and dynamic variables. Generalized heat rates mapped from muscle energetics are estimated from experimental walking metabolic data for the whole body, including upper-body and bilateral data synchronization. Identified subject-specific energetic parameters-mass, height, (estimated maximum oxygen uptake, and (estimated maximum joint torques-are incorporated into the heat rate, as opposed to the traditional in vitro and subject-invariant muscle parameters. The total model metabolic energy expenditure values are within 5.7 ± 4.6% error of the measured values with strong (R2 > 0.90 inter- and intra-subject correlations. The model reliably predicts the characteristic convexity and magnitudes (0.326-0.348 of the experimental total COT (0.311-0.358 across different subjects and speeds. The ICOT as a function of time provides insights into gait energetic causes and effects (e.g., normalized comparison and sensitivity with respect to walking speed and phase-specific COT, which are unavailable from conventional metabolic measurements or muscle models. Using the joint-space variables from commonly measured or simulated data, the models enable real-time and phase-specific evaluations of transient or non-periodic general tasks that use a range of (aerobic energy pathway similar to that of steady-state walking.

  15. The relationship between fat depot-specific preadipocyte differentiation and metabolic syndrome in obese women

    Directory of Open Access Journals (Sweden)

    N V Mazurina

    2013-03-01

    Full Text Available Реферат по материалам статьи The relationship between fat depot-specific preadipocyte differentiation and metabolic syndrome in obese women. Park HТ, Lee ES, Cheon EP, Lee DR, Yang K-S, Kim YT, Hur JY, Kim SH, Lee KW, Kim T. Clinical Endocrinology 2012; 76, 59-66.

  16. Acute metabolic response to fasted and postprandial exercise

    Directory of Open Access Journals (Sweden)

    Lima FD

    2015-08-01

    Full Text Available Filipe Dinato de Lima,1,2 Ana Luiza Matias Correia,1 Denilson da Silva Teixeira,2 Domingos Vasco da Silva Neto,2 Ítalo Sávio Gonçalves Fernandes,2 Mário Boratto Xavier Viana,2 Mateus Petitto,2 Rodney Antônio da Silva Sampaio,2 Sandro Nobre Chaves,2 Simone Teixeira Alves,2 Renata Aparecida Elias Dantas,2 Márcio Rabelo Mota2 1University of Brasília, Brasília, DF, Brazil; 2Universitary Center of Brasília (UniCEUB, Brasília, DF, BrazilAbstract: The aim of this study was to analyze the acute metabolic response to exercise in fasting and postprandial. For this, ten individuals were submitted to an incremental treadmill test, with an initial speed of 5 and 1 km/h increments every minute, with no inclination, and a body composition assessment. After this 1st day, all volunteers were submitted to two experimental procedures (fasting and postprandial, with an aerobic exercise performed for 36 minutes at 65% of maximal oxygen consumption. At postprandial procedure, all subjects ingested a breakfast containing 59.3 g of carbohydrate (76.73%, 9.97 g of protein (12.90%, 8.01 g of lipids (10.37%, with a total energy intake of 349.17 kcal. An analysis of plasma concentration of triglycerides, lactate, and glucose was performed in two stages: before and after exercise. The Shapiro–Wilk test was used to verify the normality of the data. For analysis of glucose concentration, plasma lactate, and triglycerides, we used a repeated measures analysis of variance factorial 2×2, with Bonferroni multiple comparison test. The significance level of P<0.05 was adopted. The results indicated a maintenance level of glucose at fasting and a decrease in glucose concentration at postprandial exercise. Both conditions increase plasma lactate. Triglycerides also increased in the two experimental conditions; however, after exercise fasting, the increase was significantly higher than in the postprandial exercise. These data suggest that both exercises could increase

  17. Basal metabolic regulatory responses and rhythmic activity of ...

    African Journals Online (AJOL)

    ... Rattus sp. Low concentrations of kola nut extract stimulated the heart by increasing rate and force of contraction as well as metabolic rate. Higher concentrations reduced rate and amplitude of beat resulting, at still higher concentrations in heart failure. Keywords: Kolanut, extract, basal metabolic rate, mammalian heart ...

  18. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    Science.gov (United States)

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  19. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions.

    Science.gov (United States)

    Gao, Bei; Bian, Xiaoming; Mahbub, Ridwan; Lu, Kun

    2017-02-01

    There is growing recognition of the significance of the gut microbiome to human health, and the association between a perturbed gut microbiome with human diseases has been established. Previous studies also show the role of environmental toxicants in perturbing the gut microbiome and its metabolic functions. The wide agricultural use of diazinon, an organophosphate insecticide, has raised serious environmental health concerns since it is a potent neurotoxicant. With studies demonstrating the presence of a microbiome-gut-brain axis, it is possible that gut microbiome perturbation may also contribute to diazinon toxicity. We investigated the impact of diazinon exposure on the gut microbiome composition and its metabolic functions in C57BL/6 mice. We used a combination of 16S rRNA gene sequencing, metagenomics sequencing, and mass spectrometry-based metabolomics profiling in a mouse model to examine the functional impact of diazinon on the gut microbiome. 16S rRNA gene sequencing revealed that diazinon exposure significantly perturbed the gut microbiome, and metagenomic sequencing found that diazinon exposure altered the functional metagenome. Moreover, metabolomics profiling revealed an altered metabolic profile arising from exposure. Of particular significance, these changes were more pronounced for male mice than for female mice. Diazinon exposure perturbed the gut microbiome community structure, functional metagenome, and associated metabolic profiles in a sex-specific manner. These findings may provide novel insights regarding perturbations of the gut microbiome and its functions as a potential new mechanism contributing to diazinon neurotoxicity and, in particular, its sex-selective effects. Citation: Gao B, Bian X, Mahbub R, Lu K. 2017. Sex-specific effects of organophosphate diazinon on the gut microbiome and its metabolic functions. Environ Health Perspect 125:198-206; http://dx.doi.org/10.1289/EHP202.

  20. Lack of significant metabolic abnormalities in mice with liver-specific disruption of 11β-hydroxysteroid dehydrogenase type 1.

    LENUS (Irish Health Repository)

    Lavery, Gareth G

    2012-07-01

    Glucocorticoids (GC) are implicated in the development of metabolic syndrome, and patients with GC excess share many clinical features, such as central obesity and glucose intolerance. In patients with obesity or type 2 diabetes, systemic GC concentrations seem to be invariably normal. Tissue GC concentrations determined by the hypothalamic-pituitary-adrenal (HPA) axis and local cortisol (corticosterone in mice) regeneration from cortisone (11-dehydrocorticosterone in mice) by the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) enzyme, principally expressed in the liver. Transgenic mice have demonstrated the importance of 11β-HSD1 in mediating aspects of the metabolic syndrome, as well as HPA axis control. In order to address the primacy of hepatic 11β-HSD1 in regulating metabolism and the HPA axis, we have generated liver-specific 11β-HSD1 knockout (LKO) mice, assessed biomarkers of GC metabolism, and examined responses to high-fat feeding. LKO mice were able to regenerate cortisol from cortisone to 40% of control and had no discernible difference in a urinary metabolite marker of 11β-HSD1 activity. Although circulating corticosterone was unaltered, adrenal size was increased, indicative of chronic HPA stimulation. There was a mild improvement in glucose tolerance but with insulin sensitivity largely unaffected. Adiposity and body weight were unaffected as were aspects of hepatic lipid homeostasis, triglyceride accumulation, and serum lipids. Additionally, no changes in the expression of genes involved in glucose or lipid homeostasis were observed. Liver-specific deletion of 11β-HSD1 reduces corticosterone regeneration and may be important for setting aspects of HPA axis tone, without impacting upon urinary steroid metabolite profile. These discordant data have significant implications for the use of these biomarkers of 11β-HSD1 activity in clinical studies. The paucity of metabolic abnormalities in LKO points to important compensatory effects by HPA

  1. Transgenerational effects enhance specific immune response in a wild passerine

    Directory of Open Access Journals (Sweden)

    Juli Broggi

    2016-03-01

    Full Text Available Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects. However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus in Sevilla, SE Spain with Newcastle disease virus (NDV vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks’ carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers.

  2. Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response.

    Science.gov (United States)

    Northrup, Laura; Sullivan, Bradley P; Hartwell, Brittany L; Garza, Aaron; Berkland, Cory

    2017-01-03

    Current therapies to treat autoimmune diseases often result in side effects such as nonspecific immunosuppression. Therapies that can induce antigen-specific immune tolerance provide an opportunity to reverse autoimmunity and mitigate the risks associated with global immunosuppression. In an effort to induce antigen-specific immune tolerance, co-administration of immunomodulators with autoantigens has been investigated in an effort to reprogram autoimmunity. To date, identifying immunomodulators that may skew the antigen-specific immune response has been ad hoc at best. To address this need, we utilized splenocytes obtained from mice with experimental autoimmune encephalomyelitis (EAE) in order to determine if certain immunomodulators may induce markers of immune tolerance following antigen rechallenge. Of the immunomodulatory compounds investigated, only dexamethasone modified the antigen-specific immune response by skewing the cytokine response and decreasing T-cell populations at a concentration corresponding to a relevant in vivo dose. Thus, antigen-educated EAE splenocytes provide an ex vivo screen for investigating compounds capable of skewing the antigen-specific immune response, and this approach could be extrapolated to antigen-educated cells from other diseases or human tissues.

  3. Effect of lineage-specific metabolic traits of Lactobacillus reuteri on sourdough microbial ecology.

    Science.gov (United States)

    Lin, Xiaoxi B; Gänzle, Michael G

    2014-09-01

    This study determined the effects of specific metabolic traits of Lactobacillus reuteri on its competitiveness in sourdoughs. The competitiveness of lactobacilli in sourdough generally depends on their growth rate; acid resistance additionally contributes to competitiveness in sourdoughs with long fermentation times. Glycerol metabolism via glycerol dehydratase (gupCDE) accelerates growth by the regeneration of reduced cofactors; glutamate metabolism via glutamate decarboxylase (gadB) increases acid resistance by generating a proton motive force. Glycerol and glutamate metabolisms are lineage-specific traits in L. reuteri; therefore, this study employed glycerol dehydratase-positive sourdough isolates of human-adapted L. reuteri lineage I, glutamate decarboxylase-positive strains of rodent-adapted L. reuteri lineage II, as well as mutants with deletions in gadB or gupCDE. The competitivenesses of the strains were quantified by inoculation of wheat and sorghum sourdoughs with defined strains, followed by propagation of doughs with a 10% inoculum and 12-h or 72-h fermentation cycles. Lineage I L. reuteri strains dominated sourdoughs propagated with 12-h fermentation cycles; lineage II L. reuteri strains dominated sourdoughs propagated with 72-h fermentation cycles. L. reuteri 100-23ΔgadB was outcompeted by its wild-type strain in sourdoughs fermented with 72-h fermentation cycles; L. reuteri FUA3400ΔgupCDE was outcompeted by its wild-type strain in sourdoughs fermented with both 12-h and 72-h fermentation cycles. Competition experiments with isogenic pairs of strains resulted in a constant rate of strain displacement of the less competitive mutant strain. In conclusion, lineage-specific traits of L. reuteri determine the competitiveness of this species in sourdough fermentations. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  4. Energetic and metabolic transient response of Saccharomyces cerevisiae to benzoic acid.

    Science.gov (United States)

    Kresnowati, M T A P; van Winden, W A; van Gulik, W M; Heijnen, J J

    2008-11-01

    Saccharomyces cerevisiae is known to be able to adapt to the presence of the commonly used food preservative benzoic acid with a large energy expenditure. Some mechanisms for the adaptation process have been suggested, but its quantitative energetic and metabolic aspects have rarely been discussed. This study discusses use of the stimulus response approach to quantitatively study the energetic and metabolic aspects of the transient adaptation of S. cerevisiae to a shift in benzoic acid concentration, from 0 to 0.8 mM. The information obtained also serves as the basis for further utilization of benzoic acid as a tool for targeted perturbation of the energy system, which is important in studying the kinetics and regulation of central carbon metabolism in S. cerevisiae. Using this experimental set-up, we found significant fast-transient (< 3000 s) increases in O(2) consumption and CO(2) production rates, of approximately 50%, which reflect a high energy requirement for the adaptation process. We also found that with a longer exposure time to benzoic acid, S. cerevisiae decreases the cell membrane permeability for this weak acid by a factor of 10 and decreases the cell size to approximately 80% of the initial value. The intracellular metabolite profile in the new steady-state indicates increases in the glycolytic and tricarboxylic acid cycle fluxes, which are in agreement with the observed increases in specific glucose and O(2) uptake rates.

  5. Responsive eLearning exercises to enhance student interaction with metabolic pathways.

    Science.gov (United States)

    Roesler, William J; Dreaver-Charles, Kristine

    2018-05-01

    Successful learning of biochemistry requires students to engage with the material. In the past this often involved students writing out pathways by hand, and more recently directing students to online resources such as videos, songs, and animated slide presentations. However, even these latter resources do not really provide students an opportunity to engage with the material in an active fashion. As part of an online introductory metabolism course that was developed at our university, we created a series of twelve online interactive activities using Adobe Captivate 9. These activities targeted glycolysis, gluconeogenesis, the pentose phosphate pathway, glycogen metabolism, the citric acid cycle, and fatty acid oxidation. The interactive exercises consisted of two types. One involved dragging objects such as names of enzymes or allosteric modifiers to their correct drop locations such as a particular point in a metabolic pathway, a specific enzyme, and so forth. A second type involved clicking on objects, locations within a pathway, and so forth, in response to a particular question. In both types of exercises, students received feedback on their decisions in order to enhance learning. The student feedback received on these activities was very positive, and indicated that they found them to increase their confidence in the material and that they had learned the key principles of each pathway. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):223-229, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  6. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism.

    Science.gov (United States)

    Shah, Meera; Su, Dan; Scheliga, Judith S; Pluskal, Tomáš; Boronat, Susanna; Motamedchaboki, Khatereh; Campos, Alexandre Rosa; Qi, Feng; Hidalgo, Elena; Yanagida, Mitsuhiro; Wolf, Dieter A

    2016-08-16

    The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Meera Shah

    2016-08-01

    Full Text Available The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer.

  8. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response

    Directory of Open Access Journals (Sweden)

    Hong Zhong

    2018-01-01

    Full Text Available In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  9. Role of MicroRNAs in Obesity-Induced Metabolic Disorder and Immune Response.

    Science.gov (United States)

    Zhong, Hong; Ma, Minjuan; Liang, Tingming; Guo, Li

    2018-01-01

    In all living organisms, metabolic homeostasis and the immune system are the most fundamental requirements for survival. Recently, obesity has become a global public health issue, which is the cardinal risk factor for metabolic disorder. Many diseases emanating from obesity-induced metabolic dysfunction are responsible for the activated immune system, including innate and adaptive responses. Of note, inflammation is the manifest accountant signal. Deeply studied microRNAs (miRNAs) have participated in many pathways involved in metabolism and immune responses to protect cells from multiple harmful stimulants, and they play an important role in determining the progress through targeting different inflammatory pathways. Thus, immune response and metabolic regulation are highly integrated with miRNAs. Collectively, miRNAs are the new targets for therapy in immune dysfunction.

  10. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response.

    Science.gov (United States)

    Watson, Emma; MacNeil, Lesley T; Arda, H Efsun; Zhu, Lihua Julie; Walhout, Albertha J M

    2013-03-28

    Expression profiles are tailored according to dietary input. However, the networks that control dietary responses remain largely uncharacterized. Here, we combine forward and reverse genetic screens to delineate a network of 184 genes that affect the C. elegans dietary response to Comamonas DA1877 bacteria. We find that perturbation of a mitochondrial network composed of enzymes involved in amino acid metabolism and the TCA cycle affects the dietary response. In humans, mutations in the corresponding genes cause inborn diseases of amino acid metabolism, most of which are treated by dietary intervention. We identify several transcription factors (TFs) that mediate the changes in gene expression upon metabolic network perturbations. Altogether, our findings unveil a transcriptional response system that is poised to sense dietary cues and metabolic imbalances, illustrating extensive communication between metabolic networks in the mitochondria and gene regulatory networks in the nucleus. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Bone metabolism and hand grip strength response to aerobic versus ...

    African Journals Online (AJOL)

    porosis is incomplete and has prompted our interest to identify the type of effective osteogenic exercise. ... between aerobic and resistance exercise training in non-insulin dependent ... paired glucose metabolism on bone health as well as to.

  12. Genetic variations in non-specific immune response to ...

    African Journals Online (AJOL)

    Non-specific immune response in three strains of Heterobranchus bidorsalis challenged with the bacterium Aeromonas hydrophilia was evaluated. The study was undertaken in three strains of H. bidorsalis from different ecological zones in Nigeria and the percentage cumulative mortality was lowest and significantly ...

  13. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    Science.gov (United States)

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  14. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  15. Metabolic and inflammatory responses to the common sweetener stevioside and a glycemic challenge in horses with equine metabolic syndrome.

    Science.gov (United States)

    Elzinga, S E; Rohleder, B; Schanbacher, B; McQuerry, K; Barker, V D; Adams, A A

    2017-07-01

    Extracts derived from the leaves of the stevia plant (stevioside) are commonly used as sweeteners for humans and horses. Stevioside appears to be safe for human consumption, including for individuals with insulin dysregulation. In the horse, the safety or metabolic effects of stevioside on normal animals or on those with metabolic dysfunction are unknown. Furthermore, the inflammatory response to a glycemic challenge or to stevioside in horses is not well defined. Therefore, the objective of this study was to measure the effects of stevioside and a glycemic challenge on insulin, glucose, and inflammatory responses in horses with a common metabolic dysfunction (equine metabolic syndrome or EMS) compared with non-EMS controls. To accomplish this, 15 horses were selected; 8 EMS and 7 age-matched controls. An oral sugar test was performed using Karo corn syrup (karo) or stevioside in a random crossover design. Horses were given 0.15 mL/kg body weight of karo or its equivalent grams of sugar in stevia dissolved in water. Blood samples were collected by jugular venipuncture before administration of either stevia or karo and at 60 and 240 min after administration. Serum was used for glucose and insulin determination and plasma for isolation of peripheral blood mononuclear cells (PBMCs) for inflammatory cytokine analysis via flow cytometry and reverse transcription PCR (RT-PCR). Stevia appeared to stimulate lower glycemic and insulinemic responses when compared to karo, in particular in EMS horses. EMS and control horses had inverse inflammatory responses to administration of either stevia or karo with EMS horses having a proinflammatory response (P ≤ 0.05). These data provide evidence as to why horses with EMS may be predisposed to developing laminitis, potentially as a result of an exaggerated inflammatory response to glycemic and insulinemic responses. Furthermore, the data provide new avenues for exploring mechanisms behind the syndrome, in particular when using a

  16. Radiation effects on tumor-specific DTH response, 2

    International Nuclear Information System (INIS)

    Nobusawa, Hiroshi; Hachisu, Reiko.

    1991-01-01

    Tumor-specific immunity was induced in C3H mice by immunizing with syngeneic MH134 hepatoma cells. Radiation sensitivity of anti-tumor activity of immunized spleen cells were examined and compared with the radiation sensitivity of the delayed-type hypersensitivity (DTH)-response. The spleen cells were irradiated in vitro, then mixed with the tumor cells. DTH-response intensity was determined from the footpad increment twenty-four hours after inoculation of tumor cells with immunized spleen cells. Anti-tumor activity of the spleen cells, based on growth inhibition of tumor cells, was measured by a cytostatic test in vivo with diffusion chambers. Tumor-specific DTH response was suppressed dose-dependently in the range of 12-24 Gy irradiation. No suppression was observed below 12 Gy. Without irradiation, growth of tumor cells was inhibited by immunized spleen cells more effectively than by normal spleen cells. Anti-tumor activity of immunized and normal spleen cells was diminished by irradiation doses of 20 Gy and 10 Gy, respectively. Comparing our report with others that analyzed the type of anti-tumor effector cells induced in this experimental system, we concluded that tumor-specific anti-tumor activity (tumor growth inhibition in vivo) that was radiosensitive at 10-20 Gy depended on a DTH-response. (author)

  17. Specific Physical Exercise Improves Energetic Metabolism in the Skeletal Muscle of Amyotrophic-Lateral- Sclerosis Mice

    Directory of Open Access Journals (Sweden)

    Céline Desseille

    2017-10-01

    Full Text Available Amyotrophic Lateral Sclerosis is an adult-onset neurodegenerative disease characterized by the specific loss of motor neurons, leading to muscle paralysis and death. Although the cellular mechanisms underlying amyotrophic lateral sclerosis (ALS-induced toxicity for motor neurons remain poorly understood, growing evidence suggest a defective energetic metabolism in skeletal muscles participating in ALS-induced motor neuron death ultimately destabilizing neuromuscular junctions. In the present study, we report that a specific exercise paradigm, based on a high intensity and amplitude swimming exercise, significantly improves glucose metabolism in ALS mice. Using physiological tests and a biophysics approach based on nuclear magnetic resonance (NMR, we unexpectedly found that SOD1(G93A ALS mice suffered from severe glucose intolerance, which was counteracted by high intensity swimming but not moderate intensity running exercise. Furthermore, swimming exercise restored the highly ALS-sensitive tibialis muscle through an autophagy-linked mechanism involving the expression of key glucose transporters and metabolic enzymes, including GLUT4 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH. Importantly, GLUT4 and GAPDH expression defects were also found in muscles from ALS patients. Moreover, we report that swimming exercise induced a triglyceride accumulation in ALS tibialis, likely resulting from an increase in the expression levels of lipid transporters and biosynthesis enzymes, notably DGAT1 and related proteins. All these data provide the first molecular basis for the differential effects of specific exercise type and intensity in ALS, calling for the use of physical exercise as an appropriate intervention to alleviate symptoms in this debilitating disease.

  18. Metabolic profiles show specific mitochondrial toxicities in vitro in myotube cells

    International Nuclear Information System (INIS)

    Xu Qiuwei; Vu, Heather; Liu Liping; Wang, Ting-Chuan; Schaefer, William H.

    2011-01-01

    Mitochondrial toxicity has been a serious concern, not only in preclinical drug development but also in clinical trials. In mitochondria, there are several distinct metabolic processes including fatty acid β-oxidation, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS), and each process contains discrete but often intimately linked steps. Interruption in any one of those steps can cause mitochondrial dysfunction. Detection of inhibition to OXPHOS can be complicated in vivo because intermediate endogenous metabolites can be recycled in situ or circulated systemically for metabolism in other organs or tissues. Commonly used assays for evaluating mitochondrial function are often applied to ex vivo or in vitro samples; they include various enzymatic or protein assays, as well as functional assays such as measurement of oxygen consumption rate, membrane potential, or acidification rates. Metabolomics provides quantitative profiles of overall metabolic changes that can aid in the unraveling of explicit biochemical details of mitochondrial inhibition while providing a holistic view and heuristic understanding of cellular bioenergetics. In this paper, we showed the application of quantitative NMR metabolomics to in vitro myotube cells treated with mitochondrial toxicants, rotenone and antimycin A. The close coupling of the TCA cycle to the electron transfer chain (ETC) in OXPHOS enables specific diagnoses of inhibition to ETC complexes by discrete biochemical changes in the TCA cycle.

  19. Development of an Age- and Gender-specific Model for Strontium Metabolism in Humans

    International Nuclear Information System (INIS)

    Shagina, N. B.; Degteva, M. O.; Tolstykh, E. I.

    2004-01-01

    This paper presents a development of a new biokinetic model for strontium, which accounts for age and gender differences of metabolism in humans. This model was developed based on the long-term follow-up of the residents living on the banks of the Techa River (Southern Urals, Russia) contaminated with 89,90Sr in 1950-1956. The new model uses the structure of ICRP model for strontium but model parameters have been estimated to account for age, gender and population differences in strontium retention and elimination. Estimates of age- and gender-specific model parameters were derived from (a) the results of long-term measurements of 90Sr-body burden for the Techa River population; (b) experimental studies of calcium and strontium metabolism in humans and (c) non-radiological data regarding bone metabolism (mineral content of the body, bone turnover, etc). As a result, the new model satisfactorily describes data on long-term retention of 90Sr in residents of the Techa River settlements of all ages and both genders and also data from studies during the period of global fallout in the UK and the USA and experimental data on strontium retention in humans. The new model can be used to calculate dose from 89,90Sr for the Techa River residents and also for other populations with similar parameters of skeletal maturation and also for other populations with similar parameters of skeletal maturation and involution. (Author) 27 refs

  20. Fiber specific changes in sphingolipid metabolism in skeletal muscles of hyperthyroid rats.

    Science.gov (United States)

    Chabowski, A; Zendzian-Piotrowska, M; Mikłosz, A; Łukaszuk, B; Kurek, K; Górski, J

    2013-07-01

    Thyroid hormones (T3, T4) are well known modulators of different cellular signals including the sphingomyelin pathway. However, studies regarding downstream effects of T3 on sphingolipid metabolism in skeletal muscle are scarce. In the present work we sought to investigate the effects of hyperthyroidism on the activity of the key enzymes of ceramide metabolism as well as the content of fundamental sphingolipids. Based on fiber/metabolic differences, we chose three different skeletal muscles, with diverse fiber compositions: soleus (slow-twitch oxidative), red (fast-twitch oxidative-glycolytic) and white (fast-twitch glycolytic) section of gastrocnemius. We demonstrated that T3 induced accumulation of sphinganine, ceramide, sphingosine, as well as sphingomyelin, mostly in soleus and in red, but not white section of gastrocnemius. Concomitantly, the activity of serine palmitoyltransferase and acid/neutral ceramidase was increased in more oxidative muscles. In conclusion, hyperthyroidism induced fiber specific changes in the content of sphingolipids that were relatively more related to de novo synthesis of ceramide rather than to its generation via hydrolysis of sphingomyelin.

  1. Sex-specific effects of dehydroepiandrosterone (DHEA) on glucose metabolism in the CNS.

    Science.gov (United States)

    Vieira-Marques, Claudia; Arbo, Bruno Dutra; Cozer, Aline Gonçalves; Hoefel, Ana Lúcia; Cecconello, Ana Lúcia; Zanini, Priscila; Niches, Gabriela; Kucharski, Luiz Carlos; Ribeiro, Maria Flávia M

    2017-07-01

    DHEA is a neuroactive steroid, due to its modulatory actions on the central nervous system (CNS). DHEA is able to regulate neurogenesis, neurotransmitter receptors and neuronal excitability, function, survival and metabolism. The levels of DHEA decrease gradually with advancing age, and this decline has been associated with age related neuronal dysfunction and degeneration, suggesting a neuroprotective effect of endogenous DHEA. There are significant sex differences in the pathophysiology, epidemiology and clinical manifestations of many neurological diseases. The aim of this study was to determine whether DHEA can alter glucose metabolism in different structures of the CNS from male and female rats, and if this effect is sex-specific. The results showed that DHEA decreased glucose uptake in some structures (cerebral cortex and olfactory bulb) in males, but did not affect glucose uptake in females. When compared, glucose uptake in males was higher than females. DHEA enhanced the glucose oxidation in both males (cerebral cortex, olfactory bulb, hippocampus and hypothalamus) and females (cerebral cortex and olfactory bulb), in a sex-dependent manner. In males, DHEA did not affect synthesis of glycogen, however, glycogen content was increased in the cerebral cortex and olfactory bulb. DHEA modulates glucose metabolism in a tissue-, dose- and sex-dependent manner to increase glucose oxidation, which could explain the previously described neuroprotective role of this hormone in some neurodegenerative diseases. Copyright © 2016. Published by Elsevier Ltd.

  2. Evaluation of Specific Metabolic Rates of Major Organs and Tissues: Comparison Between Nonobese and Obese Women

    OpenAIRE

    Wang, ZiMian; Ying, Zhiliang; Bosy-Westphal, Anja; Zhang, Junyi; Heller, Martin; Later, Wiebke; Heymsfield, Steven B.; Müller, Manfred J.

    2011-01-01

    Elia (1992) identified the specific resting metabolic rates (Ki) of major organs and tissues in young adults with normal weight: 200 for liver, 240 for brain, 440 for heart and kidneys, 13 for skeletal muscle, 4.5 for adipose tissue and 12 for residual mass (all units in kcal/kg per day). The aim of the present study was to assess the applicability of Elia’s Ki values for obese adults. A sample of young women (n = 80) was divided into two groups, nonobese (BMI

  3. Whole-body CO2 production as an index of the metabolic response to sepsis

    Science.gov (United States)

    Whole-body carbon dioxide (CO2) production (RaCO2) is an index of substrate oxidation and energy expenditure; therefore, it may provide information about the metabolic response to sepsis. Using stable isotope techniques, we determined RaCO2 and its relationship to protein and glucose metabolism in m...

  4. A single night light exposure acutely alters hormonal and metabolic responses in healthy participants

    Directory of Open Access Journals (Sweden)

    Mohammed S Albreiki

    2017-01-01

    Full Text Available Many animal studies have reported an association between melatonin suppression and the disturbance of metabolic responses; yet, few human studies have investigated bright light effects on metabolic and hormonal responses at night. This study investigated the impact of light on plasma hormones and metabolites prior to, and after, an evening meal in healthy participants. Seventeen healthy participants, 8 females (22.2 ± 2.59 years, mean ± s.d. and 9 males (22.8 ± 3.5 years were randomised to a two-way cross-over design protocol; dim light (DL (500 lux sessions, separated by at least seven days. Saliva and plasma samples were collected prior to and after a standard evening meal at specific intervals. Plasma non-esterified fatty acid (NEFA levels were significantly higher pre-meal in DL compared to BL (P < 0.01. Plasma glucose and insulin levels were significantly greater post-meal in the BL compared to DL session (P = 0.02, P = 0.001, respectively. Salivary melatonin levels were significantly higher in the DL compared to those in BL session (P = 0.005. BL at night was associated with significant increases in plasma glucose and insulin suggestive of glucose intolerance and insulin insensitivity. Raised pre-prandial NEFA levels may be due to changes in insulin sensitivity or the presence of melatonin and/or light at night. Plasma triglyceride (TAG levels were the same in both sessions. These results may explain some of the health issues reported in shift workers; however, further studies are needed to elucidate the cause of these metabolic changes.

  5. Metabolic responses of the Antarctic fishes Notothenia rossii and Notothenia coriiceps to sewage pollution.

    Science.gov (United States)

    Rodrigues, Edson; Feijó-Oliveira, Mariana; Suda, Cecília Nohome Kawagoe; Vani, Gannabathula Sree; Donatti, Lucélia; Rodrigues, Edson; Lavrado, Helena Passeri

    2015-10-01

    The present study aimed to assess the sewage effects of the Brazilian Antarctic Station Comandante Ferraz, Admiralty Bay, King George Island, on the hepatic metabolism (energetic, antioxidant, and arginase levels) and levels of plasma constituents of two Antarctic fish species Notothenia rossii and N. coriiceps. The bioassays were conducted under controlled temperature (0 °C) and salinity (35 psu), exposing the fish for 96 h, to sewage effluent diluted in seawater to 0.5 % (v/v). Liver homogenates were tested for the specific activities of the enzymes glucose-6-phosphatase (G6Pase), glycogen phosphorylase (GPase), hexokinase, citrate synthase, lactate dehydrogenase, malate dehydrogenase, glucose-6-phosphate dehydrogenase, superoxide dismutase, glutathione reductase, catalase, and arginase. Plasma levels of glucose, triacylglycerides, cholesterol, total protein, albumin, chloride, magnesium, calcium, and inorganic phosphate were also determined. In N. rossii, the decrease in citrate synthase and the increase in G6Pase and GPase suggested that the sewage effluent activated glycogenolysis and hepatic gluconeogenesis, whereas is N. coriiceps, only G6Pase levels were increased. In N. rossii, sewage effluent induced hypertriglyceridemia without modulating glucose plasma levels, in contrast to N. coriiceps, which developed hypoglycemia without elevating plasma triglyceride levels. The decrease in glutathione reductase levels in N. coriiceps and in superoxide dismutase and catalase in N. rossii suggest that these two species are susceptible to oxidative stress stemming from the production of reactive oxygen species. An increase in magnesium in N. rossii and a decrease in N. coriiceps showed that sewage effluent compromised the control of plasma levels of this cation. Although phylogenetically close, both species of Antarctic fish exhibited different metabolic responses to the sewage effluent, with N. coriiceps showing greater susceptibility to the toxic effects of the

  6. Metabolic imaging of tumor for diagnosis and response for therapy

    Science.gov (United States)

    Zagaynova, Elena; Shirmanova, Marina; Lukina, Maria; Dudenkova, Varvara; Ignatova, Nadezgda; Elagin, Vadim; Shlivko, Irena; Scheslavsky, Vladislav; Orlinskay, Natalia

    2018-02-01

    Nonlinear optical microscopy combined with fluorescence lifetime imaging is a non-invasive imaging technique, based on the study of fluorescence decay times of naturally occurring fluorescent molecules, enabling a noninvasive investigation of the biological tissue with subcellular resolution. Cancer exhibits altered cellular metabolism, which affects the autofluorescence of metabolic cofactors NAD(P)H and FAD. In this study features of tumor metabolism in different systems of organization (from cell culture to patient lesion) was showed. The observed differences in the relative contributions of free NAD(P)H and FAD testify to an increased a glycolytic metabolism in cancer cells compare to fibroblasts. In 3D spheroids, the cells of the proliferating zone had greater a1 and lower tm values than the cells of the quiescent zone, which likely is a consequence of their higher glycolytic rate. During the growth of colorectal cancer in the experimental mouse model, the contribution of the free component of NAD(P)H was increased. Dysplastic nevus and melanoma is characterized by raised contribution of free NADH compare to healthy skin. Therefore, melanoma cells had very short value of τ1.

  7. Opposite metabolic responses of shoots and roots to drought

    Czech Academy of Sciences Publication Activity Database

    Gargallo-Garriga, A.; Sardans, J.; Pérez-Trujillo, M.; Rivas-Ubach, A.; Oravec, Michal; Večeřová, Kristýna; Urban, Otmar; Jentsch, A.; Kreyling, J.; Beierkuhnlein, C.; Parella, T.; Penuelas, J.

    2014-01-01

    Roč. 4, č. 6829 (2014), s. 1-7 ISSN 2045-2322 Grant - others:AV ČR(CZ) M200871201 Institutional support: RVO:67179843 Keywords : shoot and roots * autotrophic and heterotrophic organs * environmental change * growth metabolism * water and nutirens Subject RIV: EH - Ecology, Behaviour Impact factor: 5.578, year: 2014

  8. Metabolic mapping of the brain's response to visual stimulation: studies in humans

    International Nuclear Information System (INIS)

    Phelps, M.E.; Kuhl, D.E.; Mazziotta, J.C.

    1981-01-01

    These studies demonstrated increasing glucose metabolic rates in the human primary (PVC) and associative (AVC) visual cortex as the complexity of visual scenes increased. The metabolic response of the AVC increased more rapidly with scene complexity than that of the PVC, indicating the greater involvement of the higher order AVC for complex visual interpretations. Increases in local metabolic activity by as much as a factor of 2 above that of control subjects with eyes closed indicate the wide range and metabolic reserve of the visual cortex

  9. Metabolic profiling of the response to an oral glucose tolerance test detects subtle metabolic changes.

    NARCIS (Netherlands)

    Wopereis, S.; Rubingh, C.M. de; Erk, M.J. van; Verheij, E.R.; Vliet, T. van; Cnubben, N.H.; Smilde, A.K.; Greef, J. van der; Ommen, B. van; Hendriks, H.F.

    2009-01-01

    BACKGROUND: The prevalence of overweight is increasing globally and has become a serious health problem. Low-grade chronic inflammation in overweight subjects is thought to play an important role in disease development. Novel tools to understand these processes are needed. Metabolic profiling is one

  10. Metabolic Response to Food Restriction in Military-Eligible Women, with a Gender Comparison

    National Research Council Canada - National Science Library

    Young, Vernon

    1998-01-01

    Two major series of investigations are being undertaken to explore the metabolic responses of women who meet military standards for body-weight and percent body-fat to the nutritional stressors of food restriction...

  11. Metabolic Response to Food Restriction in Military-Eligible Women, With a Gender Comparison

    National Research Council Canada - National Science Library

    Young, Vernon

    1996-01-01

    Two major series of investigations will be undertaken to explore the metabolic responses of women, who meet military standards of body-weight and percent body-fat to the nutritional stressors of food restriction...

  12. Metabolic Response to Food Restriction in Military-Eligible Women, with a Gender Comparison

    National Research Council Canada - National Science Library

    Young, Vernon

    1997-01-01

    Two major series of investigations are being undertaken to explore the metabolic responses of women who meet military standards for body-weight and percent body-fat to the nutritional stressors of food restriction...

  13. Metabolic response of Candida albicans to phenylethyl alcohol under hyphae-inducing conditions.

    Science.gov (United States)

    Han, Ting-Li; Tumanov, Sergey; Cannon, Richard D; Villas-Boas, Silas G

    2013-01-01

    Phenylethyl alcohol was one of the first quorum sensing molecules (QSMs) identified in C. albicans. This extracellular signalling molecule inhibits the hyphal formation of C. albicans at high cell density. Little is known, however, about the underlying mechanisms by which this QSM regulates the morphological switches of C. albicans. Therefore, we have applied metabolomics and isotope labelling experiments to investigate the metabolic changes that occur in C. albicans in response to phenylethyl alcohol under defined hyphae-inducing conditions. Our results showed a global upregulation of central carbon metabolism when hyphal development was suppressed by phenylethyl alcohol. By comparing the metabolic changes in response to phenylethyl alcohol to our previous metabolomic studies, we were able to short-list 7 metabolic pathways from central carbon metabolism that appear to be associated with C. albicans morphogenesis. Furthermore, isotope-labelling data showed that phenylethyl alcohol is indeed taken up and catabolised by yeast cells. Isotope-labelled carbon atoms were found in the majority of amino acids as well as in lactate and glyoxylate. However, isotope-labelled carbon atoms from phenylethyl alcohol accumulated mainly in the pyridine ring of NAD(+)/NADH and NADP(-/)NADPH molecules, showing that these nucleotides were the main products of phenylethyl alcohol catabolism. Interestingly, two metabolic pathways where these nucleotides play an important role, nitrogen metabolism and nicotinate/nicotinamide metabolism, were also short-listed through our previous metabolomics works as metabolic pathways likely to be closely associated with C. albicans morphogenesis.

  14. Specificity and sensitivity of NMR based urinary metabolic biomarker for radiation injury

    International Nuclear Information System (INIS)

    Tyagi, Ritu; Watve, Apurva; Khushu, Subash; Rana, Poonam

    2016-01-01

    Increasing burden of natural background radiation and terrestrial radionuclides is a big threat of radiation exposure to the population at large. It is necessary to develop biomarker of ionizing radiation exposure that can be used for mass screening in the event of a radiological mass casualty incident. Metabolomics has already been proven as an excellent developing prospect for capturing diseases specific metabolic signatures as possible biomarkers. The aim of the present study is to evaluate the sensitivity and specificity of the urinary metabolites after whole body radiation exposure which can further be used as early predictive marker. The PLS-DA based ROC curve depicted taurine as a biomarker of early radiation injury. This study along with other 'omics' technique will be useful to help design strategies for non-invasive radiation biodosimetry through metabolomics in human populations

  15. Development of baked and extruded functional foods from metabolic syndrome specific ingredient mix.

    Science.gov (United States)

    Miglani, Neetu; Bains, Kiran; Kaur, Harpreet

    2015-09-01

    The study was aimed to develop baked and extruded functional foods from Metabolic Syndrome (MS) specific designed ingredient mixes with optimum amino acid makeup using key food ingredients with functional properties such as whole cereals, legumes, skimmed milk powder, along with flaxseeds and fenugreek seeds. Two cereals viz. barley and oats and four pulses viz. mung bean, cowpea, bengal gram and soybean were blended in different proportions in order to balance the limiting amino acid lysine in the wheat flour. Three products namely bread, extruded snack and noodles prepared from twenty five ingredient mixes. Six ingredient mixes of breads and four ingredient mixes each of extruded snack and noodles specifically designed for MS patients were organoleptically at par with control wheat flour products. The acceptable products had significantly (p ≤ 0.05) higher lysine, crude protein, ash and fibre and low carbohydrates in compare control whole wheat flour products, hence appropriate for MS patients.

  16. Cardiovascular, hormonal and metabolic responses to graded exercise in juvenile diabetics with and without autonomic neuropathy

    DEFF Research Database (Denmark)

    Hilsted, J; Galbo, H; Christensen, N J

    1980-01-01

    Thirteen juvenile diabetics were studied in order to determine if decreased beat-to-beat variation during deep respiration, indicating abnormal autonomic nerve function, imply that cardiovascular, hormonal and metabolic responses are impaired. Patients with decreased beat-to-beat variation had to...... to be more heavily stressed during exercise to reach a certain heart rate or catecholamine level. The relation between other metabolic and hormonal response is discussed....

  17. Metabolic response to feeding in Tupinambis merianae: circadian rhythm and a possible respiratory constraint.

    Science.gov (United States)

    Klein, Wilfried; Perry, Steven F; Abe, Augusto S; Andrade, Denis V

    2006-01-01

    The diurnal tegu lizard Tupinambis merianae exhibits a marked circadian variation in metabolism that is characterized by the significant increase in metabolism during part of the day. These increases in metabolic rate, found in the fasting animal, are absent during the first 2 d after meal ingestion but reappear subsequently, and the daily increase in metabolic rate is added to the increase in metabolic rate caused by digestion. During the first 2 d after feeding, priority is given to digestion, while on the third and following days, the metabolic demands are clearly added to each other. This response seems to be a regulated response of the animal, which becomes less active after food ingestion, rather than an inability of the respiratory system to support simultaneous demands at the beginning of digestion. The body cavity of Tupinambis is divided into two compartments by a posthepatic septum (PHS). Animals that had their PHS surgically removed showed no significant alteration in the postprandial metabolic response compared to tegus with intact PHS. The maximal metabolic increment during digestion, the relative cost of meal digestion, and the duration of the process were virtually unaffected by the removal of the PHS.

  18. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J.; Petit, Jean-Marie

    2016-01-01

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs

  19. Site and strain-specific variation in gut microbiota profiles and metabolism in experimental mice.

    Directory of Open Access Journals (Sweden)

    Melissa K Friswell

    2010-01-01

    Full Text Available The gastrointestinal tract microbiota (GTM of mammals is a complex microbial consortium, the composition and activities of which influences mucosal development, immunity, nutrition and drug metabolism. It remains unclear whether the composition of the dominant GTM is conserved within animals of the same strain and whether stable GTMs are selected for by host-specific factors or dictated by environmental variables.The GTM composition of six highly inbred, genetically distinct strains of mouse (C3H, C57, GFEC, CD1, CBA nu/nu and SCID was profiled using eubacterial -specific PCR-DGGE and quantitative PCR of feces. Animals exhibited strain-specific fecal eubacterial profiles that were highly stable (c. >95% concordance over 26 months for C57. Analyses of mice that had been relocated before and after maturity indicated marked, reproducible changes in fecal consortia and that occurred only in young animals. Implantation of a female BDF1 mouse with genetically distinct (C57 and Agoutie embryos produced highly similar GTM profiles (c. 95% concordance between mother and offspring, regardless of offspring strain, which was also reflected in urinary metabolite profiles. Marked institution-specific GTM profiles were apparent in C3H mice raised in two different research institutions.Strain-specific data were suggestive of genetic determination of the composition and activities of intestinal symbiotic consortia. However, relocation studies and uterine implantation demonstrated the dominance of environmental influences on the GTM. This was manifested in large variations between isogenic adult mice reared in different research institutions.

  20. MR imaging of metabolic white matter diseases: Therapeutic response

    International Nuclear Information System (INIS)

    Gebarski, S.S.; Allen, R.

    1987-01-01

    In metabolic diseases affecting the brain, MR imaging abnormalities include white-matter signal aberrations suggesting myelination delay, dysmyelination and demyelination, pathologic iron storage, and finally, loss of substance usually in a nonspecific pattern. The authors suggest that MR imaging may have therapeutic implications: (1) classic galactosemia - white-matter signal aberration became normal after dietary therapy; (2) phenylketonuria - age- and sex-matched treated and nontreated adolescents showed marked differences in brain volume, with the treated patient's volume nearly normal; (3) maple syrup urine disease - gross white-matter signal aberration became nearly normal after dietary therapy; and (4) hyperglycinemia - relentless progression of white-matter signal aberration and loss of brain substance despite therapy. These data suggest that brain MR imaging may provide a therapeutic index in certain metabolic diseases

  1. Regulation of longevity by FGF21: Interaction between energy metabolism and stress responses.

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Kauppinen, Anu

    2017-08-01

    Fibroblast growth factor 21 (FGF21) is a hormone-like member of FGF family which controls metabolic multiorgan crosstalk enhancing energy expenditure through glucose and lipid metabolism. In addition, FGF21 acts as a stress hormone induced by endoplasmic reticulum stress and dysfunctions of mitochondria and autophagy in several tissues. FGF21 also controls stress responses and metabolism by modulating the functions of somatotropic axis and hypothalamic-pituitary-adrenal (HPA) pathway. FGF21 is a potent longevity factor coordinating interactions between energy metabolism and stress responses. Recent studies have revealed that FGF21 treatment can alleviate many age-related metabolic disorders, e.g. atherosclerosis, obesity, type 2 diabetes, and some cardiovascular diseases. In addition, transgenic mice overexpressing FGF21 have an extended lifespan. However, chronic metabolic and stress-related disorders involving inflammatory responses can provoke FGF21 resistance and thus disturb healthy aging process. First, we will describe the role of FGF21 in interorgan energy metabolism and explain how its functions as a stress hormone can improve healthspan. Next, we will examine both the induction of FGF21 expression via the integrated stress response and the molecular mechanism through which FGF21 enhances healthy aging. Finally, we postulate that FGF21 resistance, similarly to insulin resistance, jeopardizes human healthspan and accelerates the aging process. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Fagus sylvatica L. provenances maintain different leaf metabolic profiles and functional response

    Science.gov (United States)

    Aranda, Ismael; Sánchez-Gómez, David; de Miguel, Marina; Mancha, Jose Antonio; Guevara, María Angeles; Cadahía, Estrella; Fernández de Simón, María Brígida

    2017-07-01

    Most temperate forest tree species will suffer important environmental changes as result of the climate change. Adaptiveness to local conditions could change at different sites in the future. In this context, the study of intra-specific variability is important to clarify the singularity of different local populations. Phenotypic differentiation between three beech provenances covering a wide latitudinal range (Spain/ES, Germany/DE and Sweden/SE), was studied in a greenhouse experiment. Non-target leaf metabolite profiles and ecophysiological response was analyzed in well-watered and water stressed seedlings. There was a provenance-specific pattern in the relative concentrations of some leaf metabolites regardless watering treatment. The DE and SE from the center and north of the distribution area of the species showed a clear differentiation from the ES provenance in the relative concentration of some metabolites. Thus the ES provenance from the south maintained larger relative concentration of some organic and amino acids (e.g. fumaric and succinic acids or valine and isoleucine), and in some secondary metabolites (e.g. kaempferol, caffeic and ferulic acids). The ecophysiological response to mild water stress was similar among the three provenances as a consequence of the moderate water stress applied to seedlings, although leaf N isotope composition (δ15N) and leaf C:N ratio were higher and lower respectively in DE than in the other two provenances. This would suggest potential differences in the capacity to uptake and post-process nitrogen according to provenance. An important focus of the study was to address for the first time inter-provenance leaf metabolic diversity in beech from a non-targeted metabolic profiling approach that allowed differentiation of the three studied provenances.

  3. Cell type-specific responses to salinity - the epidermal bladder cell transcriptome of Mesembryanthemum crystallinum.

    Science.gov (United States)

    Oh, Dong-Ha; Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar; Lee, Sang-Yeol; Bohnert, Hans J; Dassanayake, Maheshi

    2015-08-01

    Mesembryanthemum crystallinum (ice plant) exhibits extreme tolerance to salt. Epidermal bladder cells (EBCs), developing on the surface of aerial tissues and specialized in sodium sequestration and other protective functions, are critical for the plant's stress adaptation. We present the first transcriptome analysis of EBCs isolated from intact plants, to investigate cell type-specific responses during plant salt adaptation. We developed a de novo assembled, nonredundant EBC reference transcriptome. Using RNAseq, we compared the expression patterns of the EBC-specific transcriptome between control and salt-treated plants. The EBC reference transcriptome consists of 37 341 transcript-contigs, of which 7% showed significantly different expression between salt-treated and control samples. We identified significant changes in ion transport, metabolism related to energy generation and osmolyte accumulation, stress signalling, and organelle functions, as well as a number of lineage-specific genes of unknown function, in response to salt treatment. The salinity-induced EBC transcriptome includes active transcript clusters, refuting the view of EBCs as passive storage compartments in the whole-plant stress response. EBC transcriptomes, differing from those of whole plants or leaf tissue, exemplify the importance of cell type-specific resolution in understanding stress adaptive mechanisms. No claim to original US government works. New Phytologist © 2015 New Phytologist Trust.

  4. Segment-specific responses of intestinal epithelium transcriptome to in-feed antibiotics in pigs.

    Science.gov (United States)

    Yu, Kaifan; Mu, Chunlong; Yang, Yuxiang; Su, Yong; Zhu, Weiyun

    2017-10-01

    Despite widespread use of antibiotics for treatment of human diseases and promotion of growth of agricultural animals, our understanding of their effects on the host is still very limited. We used a model in which pigs were fed with or without a cocktail of antibiotics and found, based on the denaturing gradient gel electrophoresis (DGGE) patterns, that the fecal bacteria from the treatment and control animals were distinct. Furthermore, the total bacterial population in the feces tended to be decreased by the antibiotic treatment ( P = 0.07), and the counts of Lactobacillus and Clostridium XIVa were significantly reduced ( P epithelium, we assessed gene expression profiles of the jejunum and ileum and their response to antibiotic administration. The results indicate that in-feed antibiotics increased expression of genes involved in immune functions in both the jejunum and ileum, some of which were clustered in the coexpression network. Gene ontology terms of metabolic processes were altered predominantly in the jejunum but not in the ileum. Notably, antibiotics diminished intestinal segment-specific transcriptional changes, especially for genes associated with metabolic functions. This study reveals segment-specific responses of host intestinal epithelium to in-feed antibiotics, which can be a valuable resource for deciphering antibiotic-microbiota-host interactions. Copyright © 2017 the American Physiological Society.

  5. Chronic myeloid leukemia patients sensitive and resistant to imatinib treatment show different metabolic responses.

    Directory of Open Access Journals (Sweden)

    Jiye A

    Full Text Available The BCR-ABL tyrosine kinase inhibitor imatinib is highly effective for chronic myeloid leukemia (CML. However, some patients gradually develop resistance to imatinib, resulting in therapeutic failure. Metabonomic and genomic profiling of patients' responses to drug interventions can provide novel information about the in vivo metabolism of low-molecular-weight compounds and extend our insight into the mechanism of drug resistance. Based on a multi-platform of high-throughput metabonomics, SNP array analysis, karyotype and mutation, the metabolic phenotypes and genomic polymorphisms of CML patients and their diverse responses to imatinib were characterized. The untreated CML patients (UCML showed different metabolic patterns from those of healthy controls, and the discriminatory metabolites suggested the perturbed metabolism of the urea cycle, tricarboxylic acid cycle, lipid metabolism, and amino acid turnover in UCML. After imatinib treatment, patients sensitive to imatinib (SCML and patients resistant to imatinib (RCML had similar metabolic phenotypes to those of healthy controls and UCML, respectively. SCML showed a significant metabolic response to imatinib, with marked restoration of the perturbed metabolism. Most of the metabolites characterizing CML were adjusted to normal levels, including the intermediates of the urea cycle and tricarboxylic acid cycle (TCA. In contrast, neither cytogenetic nor metabonomic analysis indicated any positive response to imatinib in RCML. We report for the first time the associated genetic and metabonomic responses of CML patients to imatinib and show that the perturbed in vivo metabolism of UCML is independent of imatinib treatment in resistant patients. Thus, metabonomics can potentially characterize patients' sensitivity or resistance to drug intervention.

  6. Metabolism

    Science.gov (United States)

    ... lin), which signals cells to increase their anabolic activities. Metabolism is a complicated chemical process, so it's not ... how those enzymes or hormones work. When the metabolism of body chemicals is ... Hyperthyroidism (pronounced: hi-per-THIGH-roy-dih-zum). Hyperthyroidism ...

  7. Specific and ultrasensitive ciprofloxacin detection by responsive photonic crystal sensor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rong; Wang, Yong [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); Yu, Li-Ping, E-mail: lipingyu@tju.edu.cn [Department of Chemistry, School of Science, Tianjin University, Tianjin 300072 (China); State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071 (China)

    2014-09-15

    Highlights: • Sensor was designed by integrating complexes into responsive photonic crystal. • Ternary tryptophan–zinc(II)–ciprofloxacin complexes were chosen for sensing. • Excellent sensing of ciprofloxacin was achieved in aqueous media. - Abstract: A new approach for specific and ultrasensitive measurement of ciprofloxacin has been developed by integrating ternary complexes into responsive photonic crystal (RPC). Tryptophan was first immobilized within the polyacrylamide hydrogel substrates of RPC. The determination of ciprofloxacin was via the existence of zinc(II) ions that function as a ‘bridge’ to form specific tryptophan–zinc(II)–ciprofloxacin complexes step by step, which resulted in a stepwise red-shift of the diffraction wavelength. A maximum wavelength shift from 798 to 870 nm for ciprofloxacin was observed when the RPC film was immersed in 10{sup −4} M ciprofloxacin. A linear relationship has been obtained between the Δλ of diffraction peak and logarithm of ciprofloxacin concentration at pH 5.0 in the range of 10{sup −10} to 10{sup −4} M. And the least detectable concentration in present work is about 5 × 10{sup −11} M. The results demonstrated that the as-designed ternary complexes-based RPC sensor exhibited high sensitivity, satisfactory specificity and excellent recoverability for sensing of ciprofloxacin in aqueous media and were validated by detecting ciprofloxacin in the eye-drop sample.

  8. Substrate specific effects of calcium on metabolism of rat heart mitochondria.

    Science.gov (United States)

    Panov, A V; Scaduto, R C

    1996-04-01

    Oxidative metabolism in the heart is tightly coupled to mechanical work. Because this coupling process is believed to involve Ca2+, the roles of mitochondrial Ca2+ in the regulation of oxidative phosphorylation was studied in isolated rat heart mitochondria. The electrical component of the mitochondrial membrane potential (delta psi) and the redox state of the pyridine nucleotides were determined during the oxidation of various substrates under different metabolic states. In the absence of added adenine nucleotides, the NADP+ redox couple was almost completely reduced, regardless of the specific substrate and the presence of Ca2+, whereas NAD+ couple redox state was highly dependent on the substrate type and the presence of Ca2+. Titration of respiration with ADP, in the presence of excess hexokinase and glucose, showed that both respiration and NAD(P)+ reduction were very sensitive to ADP. The maximal enzyme reaction rate of ADP-stimulated respiration Michaelis constants (Km) for ADP were dependent on the particular substrate employed. delta psi was much less sensitive to ADP. With either alpha-ketoglutarate or glutamate as substrate, Ca2+ significantly increased reduction of NAD(P)+.Ca2+ did not influence NAD(P)+ reduction with either acetylcarnitine or pyruvate as substrate. In the presence of ADP, delta psi was increased by Ca2+ at all metabolic states with glutamate plus malate, 0.5 mM alpha-ketoglutarate plus malate, or pyruvate plus malate as substrates. The data presented support the hypothesis that cardiac respiration is controlled by the availability of both Ca2+ and ADP to mitochondria. The data indicate that an increase in substrate supply to mitochondria can increase mitochondrial respiration at given level of ADP. This effect can be produced by Ca2+ with substrates such as glutamate, which utilize alpha-ketoglutarate dehydrogenase activity for oxidation. Increases in respiration by Ca2+ may mitigate an increase in ADP during periods of increased

  9. Metabolic Discrimination of Select List Agents by Monitoring Cellular Responses in a Multianalyte Microphysiometer

    Directory of Open Access Journals (Sweden)

    John Wikswo

    2009-03-01

    Full Text Available Harnessing the potential of cells as complex biosensors promises the potential to create sensitive and selective detectors for discrimination of biodefense agents. Here we present toxin detection and suggest discrimination using cells in a multianalyte microphysiometer (MMP that is capable of simultaneously measuring flux changes in four extracellular analytes (acidification rate, glucose uptake, oxygen uptake, and lactate production in real-time. Differential short-term cellular responses were observed between botulinum neurotoxin A and ricin toxin with neuroblastoma cells, alamethicin and anthrax protective antigen with RAW macrophages, and cholera toxin, muscarine, 2,4-dinitro-phenol, and NaF with CHO cells. These results and the post exposure dynamics and metabolic recovery observed in each case suggest the usefulness of cell-based detectors to discriminate between specific analytes and classes of compounds in a complex matrix, and furthermore to make metabolic inferences on the cellular effects of the agents. This may be particularly valuable for classifying unknown toxins.

  10. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  11. Neuron specific metabolic adaptations following multi-day exposures to oxygen glucose deprivation.

    Science.gov (United States)

    Zeiger, Stephanie L H; McKenzie, Jennifer R; Stankowski, Jeannette N; Martin, Jacob A; Cliffel, David E; McLaughlin, BethAnn

    2010-11-01

    Prior exposure to sub toxic insults can induce a powerful endogenous neuroprotective program known as ischemic preconditioning. Current models typically rely on a single stress episode to induce neuroprotection whereas the clinical reality is that patients may experience multiple transient ischemic attacks (TIAs) prior to suffering a stroke. We sought to develop a neuron-enriched preconditioning model using multiple oxygen glucose deprivation (OGD) episodes to assess the endogenous protective mechanisms neurons implement at the metabolic and cellular level. We found that neurons exposed to a five minute period of glucose deprivation recovered oxygen utilization and lactate production using novel microphysiometry techniques. Using the non-toxic and energetically favorable five minute exposure, we developed a preconditioning paradigm where neurons are exposed to this brief OGD for three consecutive days. These cells experienced a 45% greater survival following an otherwise lethal event and exhibited a longer lasting window of protection in comparison to our previous in vitro preconditioning model using a single stress. As in other models, preconditioned cells exhibited mild caspase activation, an increase in oxidized proteins and a requirement for reactive oxygen species for neuroprotection. Heat shock protein 70 was upregulated during preconditioning, yet the majority of this protein was released extracellularly. We believe coupling this neuron-enriched multi-day model with microphysiometry will allow us to assess neuronal specific real-time metabolic adaptations necessary for preconditioning. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Dealing with hunger: Metabolic stress responses in tumors

    Directory of Open Access Journals (Sweden)

    Michael A Reid

    2013-01-01

    Full Text Available Increased nutrient uptake and usage is a hallmark of many human malignancies. During the course of tumorigenesis, cancer cells often outstrip their local nutrient supply leading to periods of nutrient deprivation. Interestingly, cancer cells often develop strategies to adapt and survive these challenging conditions. Accordingly, understanding these processes is critical for developing therapies that target cancer metabolism. Exciting new progress has been made in elucidating the mechanisms used by cancer cells under nutrient restricted conditions. In this review, we highlight recent studies that have brought insight into how cancer cells deal with low nutrient environments.

  13. Specificity determinants for the abscisic acid response element ?

    OpenAIRE

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interac...

  14. Metabolic development of the porcine placenta in response to alterations in maternal or fetal homeostasis

    International Nuclear Information System (INIS)

    Namsey, T.G.; kasser, T.R.; Hausman, G.J.; Martin, R.J.

    1986-01-01

    Porcine placenta has been utilized as a model for elucidating contributions of both fetal and maternal tissues to metabolic activity of the placenta in response to a variety of stresses. Alloxan diabetes, food restriction and genetic obesity all produced alterations in placental metablolism with differences in responses of fetal and maternal placentas. Further analysis of nutrient untilization by the placenta produced dramatic differences in the partitioning of substrates by fetal and maternal tissues during placental development. Metabolic activity of maternal tissue contributed to overall placental metabolic activity to a greater degree than fetal tissue. However, experiments with in utero fetal decapitation indicated that some of differences between fetal and maternal placental metabolic activity may be due to the influence of fetal regulatory mechanisms. Maternal endometrium plays a critical role in metabolic response of uteroplacenta and thus availability of nutrients to the fetus and fetal placenta. Differences in metabolic development of fetal and maternal tissues suggested that regulation of placental metabolism may originate from fetal as well as maternal sources

  15. Sex-specific metabolic interactions between liver and adipose tissue in MCD diet-induced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Lee, Yun-Hee; Kim, Sou Hyun; Kim, Sang-Nam; Kwon, Hyun-Jung; Kim, Jeong-Dong; Oh, Ji Youn; Jung, Young-Suk

    2016-07-26

    Higher susceptibility to metabolic disease in male exemplifies the importance of sexual dimorphism in pathogenesis. We hypothesized that the higher incidence of non-alcoholic fatty liver disease in males involves sex-specific metabolic interactions between liver and adipose tissue. In the present study, we used a methionine-choline deficient (MCD) diet-induced fatty liver mouse model to investigate sex differences in the metabolic response of the liver and adipose tissue. After 2 weeks on an MCD-diet, fatty liver was induced in a sex-specific manner, affecting male mice more severely than females. The MCD-diet increased lipolytic enzymes in the gonadal white adipose tissue (gWAT) of male mice, whereas it increased expression of uncoupling protein 1 and other brown adipocyte markers in the gWAT of female mice. Moreover, gWAT from female mice demonstrated higher levels of oxygen consumption and mitochondrial content compared to gWAT from male mice. FGF21 expression was increased in liver tissue by the MCD diet, and the degree of upregulation was significantly higher in the livers of female mice. The endocrine effect of FGF21 was responsible, in part, for the sex-specific browning of gonadal white adipose tissue. Collectively, these data demonstrated that distinctively female-specific browning of white adipose tissue aids in protecting female mice against MCD diet-induced fatty liver disease.

  16. Influence of Niche-Specific Nutrients on Secondary Metabolism in Vibrionaceae

    DEFF Research Database (Denmark)

    Giubergia, Sonia; Phippen, Christopher; Gotfredsen, Charlotte Held

    2016-01-01

    was responsible for the antibacterial activity of Vibrio furnissii and Vibrio fluvialis These results suggest a role of chitin in the regulation of secondary metabolism in vibrios and demonstrate that considering bacterial ecophysiology during development of screening strategies will facilitate bioprospecting......Many factors, such as the substrate and the growth phase, influence biosynthesis of secondary metabolites in microorganisms. Therefore, it is crucial to consider these factors when establishing a bioprospecting strategy. Mimicking the conditions of the natural environment has been suggested...... as a means of inducing or influencing microbial secondary metabolite production. The purpose of the present study was to determine how the bioactivity of Vibrionaceae was influenced by carbon sources typical of their natural environment. We determined how mannose and chitin, compared to glucose, influenced...

  17. Autonomic nervous system response patterns specificity to basic emotions.

    Science.gov (United States)

    Collet, C; Vernet-Maury, E; Delhomme, G; Dittmar, A

    1997-01-12

    The aim of this study was to test the assumption that the autonomic nervous system responses to emotional stimuli are specific. A series of six slides was randomly presented to the subjects while six autonomic nervous system (ANS) parameters were recorded: skin conductance, skin potential, skin resistance, skin blood flow, skin temperature and instantaneous respiratory frequency. Each slide induced a basic emotion: happiness, surprise, anger, fear, sadness and disgust. Results have been first considered with reference to electrodermal responses (EDR) and secondly through thermo-vascular and respiratory variations. Classical as well as original indices were used to quantify autonomic responses. The six basic emotions were distinguished by Friedman variance analysis. Thus, ANS values corresponding to each emotion were compared two-by-two. EDR distinguished 13 emotion-pairs out of 15. 10 emotion-pairs were separated by skin resistance as well as skin conductance ohmic perturbation duration indices whereas conductance amplitude was only capable of distinguishing 7 emotion-pairs. Skin potential responses distinguished surprise and fear from sadness, and fear from disgust, according to their elementary pattern analysis in form and sign. Two-by-two comparisons of skin temperature, skin blood flow (estimated by the new non-oscillary duration index) and instantaneous respiratory frequency, enabled the distinction of 14 emotion-pairs out of 15. 9 emotion-pairs were distinguished by the non-oscillatory duration index values. Skin temperature was demonstrated to be different i.e. positive versus negative in response to anger and fear. The instantaneous respiratory frequency perturbation duration index was the only one capable of separating sadness from disgust. From the six ANS parameters study, different autonomic patterns were identified, each characterizing one of the six basic emotion used as inducing signals. No index alone, nor group of parameters (EDR and thermovascular

  18. Corticosterone-responsive and -unresponsive metabolic characteristics of adrenalectomized rats.

    Science.gov (United States)

    Hamelink, C R; Currie, P J; Chambers, J W; Castonguay, T W; Coscina, D V

    1994-09-01

    Glucocorticoids are important in influencing substrate flux through the metabolic pathways. This study was designed to answer the question "Does adrenalectomy (ADX) cause a shift toward fat metabolism as measured by a decrease in respiratory quotient (RQ)?" Male Sprague-Dawley rats were divided into four groups, ADX, ADX + 20% corticosterone (Cort) (ADX-20%), ADX + 40% Cort (ADX-40%), or sham-operated controls (Sham). ADX-20% received 50 mg and ADX-40% 100 mg Cort dissolved in 250-mg cholesterol pellets and placed subcutaneously. Each rat was monitored for 90 min four times both during a preoperative period and again after a 1-wk postsurgical recovery period in an indirect calorimeter. Cort prevented ADX-induced suppression of weight gain and food intake. ADX decreased motoric activity in both the light and dark periods. Cort restored activity to Sham levels. ADX decreased RQ only in the dark (0.858 ADX vs. 0.891 Sham) and was reversed only in the ADX-40% group. Energy expenditure (EE) was depressed in both the light and dark by ADX; Cort partially restored EE to Sham values in the light period.

  19. Greater impairment of postprandial triacylglycerol than glucose response in metabolic syndrome subjects with fasting hyperglycaemia.

    Science.gov (United States)

    Jackson, Kim G; Walden, Charlotte M; Murray, Peter; Smith, Adrian M; Minihane, Anne M; Lovegrove, Julie A; Williams, Christine M

    2013-08-01

    Studies have started to question whether a specific component or combinations of metabolic syndrome (MetS) components may be more important in relation to cardiovascular disease risk. Our aim was to examine the impact of the presence of raised fasting glucose as a MetS component on postprandial lipaemia. Men classified with the MetS underwent a sequential test meal investigation, in which blood samples were taken at regular intervals after a test breakfast (t=0 min) and lunch (t=330 min). Lipids, glucose and insulin were measured in the fasting and postprandial samples. MetS subjects with 3 or 4 components were subdivided into those without (n=34) and with (n=23) fasting hyperglycaemia (≥5.6 mmol/l), irrespective of the combination of components. Fasting lipids and insulin were similar in the two groups, with glucose significantly higher in the men with glucose as a MetS component (Pcurve (AUC) and incremental AUC (P ≤0.016) for the postprandial triacylglycerol (TAG) response in men with fasting hyperglycaemia. Greater glucose AUC (Pglucose to be an important predictor of the postprandial TAG and glucose response. Our data analysis has revealed a greater impairment of postprandial TAG than glucose response in MetS subjects with raised fasting glucose. The worsening of postprandial lipaemic control may contribute to the greater CVD risk reported in individuals with MetS component combinations which include hyperglycaemia. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. A validated disease specific prediction equation for resting metabolic rate in underweight patients with COPD

    Directory of Open Access Journals (Sweden)

    Anita Nordenson

    2010-09-01

    Full Text Available Anita Nordenson2, Anne Marie Grönberg1,2, Lena Hulthén1, Sven Larsson2, Frode Slinde11Department of Clinical Nutrition, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden; 2Department of Internal Medicine/Respiratory Medicine and Allergology, Sahlgrenska Academy at University of Gothenburg, SwedenAbstract: Malnutrition is a serious condition in chronic obstructive pulmonary disease (COPD. Successful dietary intervention calls for calculations of resting metabolic rate (RMR. One disease-specific prediction equation for RMR exists based on mainly male patients. To construct a disease-specific equation for RMR based on measurements in underweight or weight-losing women and men with COPD, RMR was measured by indirect calorimetry in 30 women and 11 men with a diagnosis of COPD and body mass index <21 kg/m2. The following variables, possibly influencing RMR were measured: length, weight, middle upper arm circumference, triceps skinfold, body composition by dual energy x-ray absorptiometry and bioelectrical impedance, lung function, and markers of inflammation. Relations between RMR and measured variables were studied using univariate analysis according to Pearson. Gender and variables that were associated with RMR with a P value <0.15 were included in a forward multiple regression analysis. The best-fit multiple regression equation included only fat-free mass (FFM: RMR (kJ/day = 1856 + 76.0 FFM (kg. To conclude, FFM is the dominating factor influencing RMR. The developed equation can be used for prediction of RMR in underweight COPD patients.Keywords: pulmonary disease, chronic obstructive, basal metabolic rate, malnutrition, body composition

  1. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring

    OpenAIRE

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    Background The mother?s consumption of high-fat food can affect glucose metabolism and the hypothalamic?pituitary?adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Methods Female rats were randomly divided into normal and high-fat diet groups and were fed in a...

  2. Dietary fatty acids linking postprandial metabolic response and chronic diseases.

    Science.gov (United States)

    Ortega, Almudena; Varela, Lourdes M; Bermudez, Beatriz; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J G

    2012-01-01

    Chronic diseases are by far one of the main causes of mortality in the world. One of the current global recommendations to counteract disability and premature death resulting from chronic diseases is to decrease the consumption of energy-dense high-fat diets, particularly those rich in saturated fatty acids (SFA). The most effective replacement for SFA in terms of risk factor outcomes for chronic disease are polyunsaturated fatty acids (PUFA) and monounsaturated fatty acids (MUFA). The biochemical basis for healthy benefits of such a dietary pattern has been widely evaluated under fasting conditions. However, the increasing amount of data available from multiple studies suggest that the postprandial state, i.e., "the period that comprises and follows a meal", plays an important, yet underappreciated, role in the genesis of numerous pathological conditions. In this review, the potential of MUFA, PUFA, and SFA to postprandially affect selected metabolic abnormalities related to chronic diseases is discussed.

  3. Response to Cardiac Resynchronization Therapy: The Muscular Metabolic Pathway

    Directory of Open Access Journals (Sweden)

    Jérémie Jaussaud

    2011-01-01

    245±140 seconds (=.01. Peak VO2, VE/VCO2, peak circulatory power and NYHA were improved after CRT (13±4 to16±5 ml/kg/min (<.05, 45±16 to 39±13 (<.01, 1805±844 to 2225±1171 mmHg.ml/kg/min (<.01 and 3±0.35 to 1.88±0.4 (=.01. In addition, left ventricular ejection fraction and end-systolic volumes were improved from 24±8 to 29±7% (<.01 and from 157±69 to 122±55 ml (<.01. Conclusion. We suggest that CRT leads to an increase in oxidative muscular metabolism and postponed anaerobic threshold reducing exaggerated hyperventilation during exercise.

  4. Sex-specific metabolic profiles of androgens and its main binding protein SHBG in a middle aged population without diabetes

    DEFF Research Database (Denmark)

    Piontek, Uwe; Wallaschofski, Henri; Kastenmüller, Gabi

    2017-01-01

    The role of androgens in metabolism with respect to sex-specific disease associations is poorly understood. Therefore, we aimed to provide molecular signatures in plasma and urine of androgen action in a sex-specific manner using state-of-the-art metabolomics techniques. Our study population...

  5. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments.

    Science.gov (United States)

    Srivastava, Anubhav; Philip, Nisha; Hughes, Katie R; Georgiou, Konstantina; MacRae, James I; Barrett, Michael P; Creek, Darren J; McConville, Malcolm J; Waters, Andrew P

    2016-12-01

    Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design.

  6. Stage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments.

    Directory of Open Access Journals (Sweden)

    Anubhav Srivastava

    2016-12-01

    Full Text Available Malaria parasites (Plasmodium spp. encounter markedly different (nutritional environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA metabolism in mosquito stages. Here we have used stable isotope labelling, targeted metabolomics and reverse genetics to map stage-specific changes in Plasmodium berghei carbon metabolism and determine the functional significance of these changes on parasite survival in the blood and mosquito stages. We show that glutamine serves as the predominant input into TCA metabolism in both asexual and sexual blood stages and is important for complete male gametogenesis. Glutamine catabolism, as well as key reactions in intermediary metabolism and CoA synthesis are also essential for ookinete to oocyst transition in the mosquito. These data extend our knowledge of Plasmodium metabolism and point towards possible targets for transmission-blocking intervention strategies. Furthermore, they highlight significant metabolic differences between Plasmodium species which are not easily anticipated based on genomics or transcriptomics studies and underline the importance of integration of metabolomics data with other platforms in order to better inform drug discovery and design.

  7. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    OpenAIRE

    Kim, Hyerang; Lee, Saningun; Choue, Ryowon

    2011-01-01

    Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collec...

  8. Mycobacteria-specific cytokine responses as correlates of treatment response in active and latent tuberculosis.

    Science.gov (United States)

    Clifford, Vanessa; Tebruegge, Marc; Zufferey, Christel; Germano, Susie; Forbes, Ben; Cosentino, Lucy; McBryde, Emma; Eisen, Damon; Robins-Browne, Roy; Street, Alan; Denholm, Justin; Curtis, Nigel

    2017-08-01

    A biomarker indicating successful tuberculosis (TB) therapy would assist in determining appropriate length of treatment. This study aimed to determine changes in mycobacteria-specific antigen-induced cytokine biomarkers in patients receiving therapy for latent or active TB, to identify biomarkers potentially correlating with treatment success. A total of 33 adults with active TB and 36 with latent TB were followed longitudinally over therapy. Whole blood stimulation assays using mycobacteria-specific antigens (CFP-10, ESAT-6, PPD) were done on samples obtained at 0, 1, 3, 6 and 9 months. Cytokine responses (IFN-γ, IL-1ra, IL-2, IL-10, IL-13, IP-10, MIP-1β, and TNF-α) in supernatants were measured by Luminex xMAP immunoassay. In active TB cases, median IL-1ra (with CFP-10 and with PPD stimulation), IP-10 (CFP-10, ESAT-6), MIP-1β (ESAT-6, PPD), and TNF-α (ESAT-6) responses declined significantly over the course of therapy. In latent TB cases, median IL-1ra (CFP-10, ESAT-6, PPD), IL-2 (CFP-10, ESAT-6), and IP-10 (CFP-10, ESAT-6) responses declined significantly. Mycobacteria-specific cytokine responses change significantly over the course of therapy, and their kinetics in active TB differ from those observed in latent TB. In particular, mycobacteria-specific IL-1ra responses are potential correlates of successful therapy in both active and latent TB. Copyright © 2017 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  9. Endocrine, metabolic and cardiovascular responses to adrenaline after abdominal surgery

    DEFF Research Database (Denmark)

    Hilsted, J; Wilken-Jensen, Charlotte; Birch, K

    1990-01-01

    Adrenaline-induced changes in heart rate, blood pressure, plasma adrenaline and noradrenaline, cortisol, glucagon, insulin, cAMP, glucose lactate, glycerol and beta-hydroxybutyrate were studied preoperatively and 4 and 24 h after skin incision in 8 patients undergoing elective cholecystectomy. Late...... postoperative responses of blood glucose, plasma cAMP, lactate and glycerol to adrenaline infusion were reduced, whereas other responses were unaffected. Blood glucose appearance and disappearance rate as assessed by [3H]3-glucose infusion was unchanged pre- and postoperatively. The increase in glucose...... appearance rate following adrenaline was similar pre- and postoperatively. These findings suggest that several beta-receptor-mediated responses to adrenaline are reduced after abdominal surgery....

  10. Studies of liver-specific metabolic reactions with /sup 15/N. 1. Metabolism of /sup 15/N-ammonium chloride in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Hirschberg, K; Jung, K; Faust, H; Matkowitz, R

    1987-07-01

    The /sup 15/N tracer technique was used to investigate liver-specific reactions (urea and hippurate synthesis) for studying the metabolism in the healthy and damaged pig liver. After (/sup 15/N)ammonium chloride administration the tracer distribution on non-protein compounds of serum and urine was followed. Blood samplings before and after liver passage rendered possible a direct analysis of the (/sup 15/N)ammonium metabolism. The thioacetamide-induced liver damage was used as model for an acute liver intoxication. The capacity for urea synthesis was not influenced by means of this noxious substance, but the metabolism of amino acids and hippuric acid. The considerably depressed excretion of (/sup 15/N)hippurate seems to be a suitable indicator of liver disfunction.

  11. KINETICS OF MODULATORY ROLE OF Cyperus esculentus L. ON THE SPECIFIC ACTIVITY OF KEY CARBOHYDRATE METABOLIZING ENZYMES.

    Science.gov (United States)

    Sabiu, Saheed; Ajani, Emmanuel Oladipo; Sunmonu, Taofik Olatunde; Ashafa, Anofi Omotayo Tom

    2017-01-01

    The continuous search for new lead compounds as viable inhibitors of specific enzymes linked to carbohydrate metabolism has intensified. Cyperus esculentus L. is one of the therapeutically implicated botanicals against several degenerative diseases including diabetes mellitus. This study evaluated the antioxidant and mechanism(s) of inhibitory potential of aqueous extract of C. esculentus on α-amylase and α-glucosidase in vitro . The extract was investigated for its radical scavenging and hypoglycaemic potentials using standard experimental procedures. Lineweaver-Burke plot was used to predict the manner in which the enzymes were inhibited. The data obtained revealed that the extract moderately and potently inhibited the specific activities of α -amylase and α -glucosidase, respectively. The inhibition was concentration-related with respective IC 50 values of 5.19 and 0.78 mg/mL relative to that of the control (3.72 and 3.55 mg/mL). The extract also significantly scavenged free radicals and the effects elicited could be ascribed to its phytoconstituents. The respective competitive and non-competitive mode of action of the extract is due to its inhibitory potentials on the activities of α -amylase and α -glucosidase. Going forward, in addition to completely characterize the exact compound(s) responsible for the elicited activity in this study, pertinent attention will be given to the in vivo evaluation of the identified constituents.

  12. The cross-tissue metabolic response of abalone (Haliotis midae) to functional hypoxia.

    Science.gov (United States)

    Venter, Leonie; Loots, Du Toit; Mienie, Lodewyk J; Jansen van Rensburg, Peet J; Mason, Shayne; Vosloo, Andre; Lindeque, Jeremie Z

    2018-03-23

    Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone ( Haliotis midae) subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids) for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  13. The cross-tissue metabolic response of abalone (Haliotis midae to functional hypoxia

    Directory of Open Access Journals (Sweden)

    Leonie Venter

    2018-03-01

    Full Text Available Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone (Haliotis midae subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia. This article has an associated First Person interview with the first author of the paper.

  14. Specificity determinants for the abscisic acid response element.

    Science.gov (United States)

    Sarkar, Aditya Kumar; Lahiri, Ansuman

    2013-01-01

    Abscisic acid (ABA) response elements (ABREs) are a group of cis-acting DNA elements that have been identified from promoter analysis of many ABA-regulated genes in plants. We are interested in understanding the mechanism of binding specificity between ABREs and a class of bZIP transcription factors known as ABRE binding factors (ABFs). In this work, we have modeled the homodimeric structure of the bZIP domain of ABRE binding factor 1 from Arabidopsis thaliana (AtABF1) and studied its interaction with ACGT core motif-containing ABRE sequences. We have also examined the variation in the stability of the protein-DNA complex upon mutating ABRE sequences using the protein design algorithm FoldX. The high throughput free energy calculations successfully predicted the ability of ABF1 to bind to alternative core motifs like GCGT or AAGT and also rationalized the role of the flanking sequences in determining the specificity of the protein-DNA interaction.

  15. Enhancement of Otolith Specific Ocular Responses Using Vestibular Stochastic Resonance

    Science.gov (United States)

    Fiedler, Matthew; De Dios, Yiri E.; Esteves, Julie; Galvan, Raquel; Wood, Scott; Bloomberg, Jacob; Mulavara, Ajitkumar

    2011-01-01

    Introduction: Astronauts experience disturbances in sensorimotor function after spaceflight during the initial introduction to a gravitational environment, especially after long-duration missions. Our goal is to develop a countermeasure based on vestibular stochastic resonance (SR) that could improve central interpretation of vestibular input and mitigate these risks. SR is a mechanism by which noise can assist and enhance the response of neural systems to relevant, imperceptible sensory signals. We have previously shown that imperceptible electrical stimulation of the vestibular system enhances balance performance while standing on an unstable surface. Methods: Eye movement data were collected from 10 subjects during variable radius centrifugation (VRC). Subjects performed 11 trials of VRC that provided equivalent tilt stimuli from otolith and other graviceptor input without the normal concordant canal cues. Bipolar stochastic electrical stimulation, in the range of 0-1500 microamperes, was applied to the vestibular system using a constant current stimulator through electrodes placed over the mastoid process behind the ears. In the VRC paradigm, subjects were accelerated to 216 deg./s. After the subjects no longer sensed rotation, the chair oscillated along a track at 0.1 Hz to provide tilt stimuli of 10 deg. Eye movements were recorded for 6 cycles while subjects fixated on a target in darkness. Ocular counter roll (OCR) movement was calculated from the eye movement data during periods of chair oscillations. Results: Preliminary analysis of the data revealed that 9 of 10 subjects showed an average increase of 28% in the magnitude of OCR responses to the equivalent tilt stimuli while experiencing vestibular SR. The signal amplitude at which performance was maximized was in the range of 100-900 microamperes. Discussion: These results indicate that stochastic electrical stimulation of the vestibular system can improve otolith specific responses. This will have a

  16. Plasticity in habitat use determines metabolic response of fish to global warming in stratified lakes.

    Science.gov (United States)

    Busch, Susan; Kirillin, Georgiy; Mehner, Thomas

    2012-09-01

    We used a coupled lake physics and bioenergetics-based foraging model to evaluate how the plasticity in habitat use modifies the seasonal metabolic response of two sympatric cold-water fishes (vendace and Fontane cisco, Coregonus spp.) under a global warming scenario for the year 2100. In different simulations, the vertically migrating species performed either a plastic strategy (behavioral thermoregulation) by shifting their population depth at night to maintain the temperatures occupied at current in-situ observations, or a fixed strategy (no thermoregulation) by keeping their occupied depths at night but facing modified temperatures. The lake physics model predicted higher temperatures above 20 m and lower temperatures below 20 m in response to warming. Using temperature-zooplankton relationships, the density of zooplankton prey was predicted to increase at the surface, but to decrease in hypolimnetic waters. Simulating the fixed strategy, growth was enhanced only for the deeper-living cisco due to the shift in thermal regime at about 20 m. In contrast, simulating the plastic strategy, individual growth of cisco and young vendace was predicted to increase compared to growth currently observed in the lake. Only growth rates of older vendace are reduced under future global warming scenarios irrespective of the behavioral strategy. However, performing behavioral thermoregulation would drive both species into the same depth layers, and hence will erode vertical microhabitat segregation and intensify inter-specific competition between the coexisting coregonids.

  17. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Cornelius, Nanna; Gregersen, Niels

    2015-01-01

    Mitochondria play a key role in overall cell physiology and health by integrating cellular metabolism with cellular defense and repair mechanisms in response to physiological or environmental changes or stresses. In fact, dysregulation of mitochondrial stress responses and its consequences...... in the form of oxidative stress, has been linked to a wide variety of diseases including inborn errors of metabolism. In this review we will summarize how the functional state of mitochondria -- and especially the concentration of reactive oxygen species (ROS), produced in connection with the respiratory...... chain -- regulates cellular stress responses by redox regulation of nuclear gene networks involved in repair systems to maintain cellular homeostasis and health. Based on our own and other's studies we re-introduce the ROS triangle model and discuss how inborn errors of mitochondrial metabolism...

  18. Irisin in response to exercise in humans with and without metabolic syndrome.

    Science.gov (United States)

    Huh, Joo Young; Siopi, Aikaterina; Mougios, Vassilis; Park, Kyung Hee; Mantzoros, Christos S

    2015-03-01

    Irisin is a recently identified exercise-induced myokine. However, the circulating levels of irisin in response to different types of exercise in subjects with metabolic syndrome are unknown. This study aimed to study the levels of irisin in healthy males and subjects with metabolic syndrome at baseline and in response to exercise. Each individual completed high-intensity interval exercise (HIIE), continuous moderate-intensity exercise (CME), and resistance exercise (RE) sessions in a random, crossover design. Percentage change in circulating irisin levels was examined. Two different irisin assays were used to compare the results of the RE study. Circulating irisin increased immediately after HIIE, CME, and RE and declined 1 hour later. The increase was greater in response to resistance compared with either high-intensity intermittent exercise or CME. Change in irisin in response to exercise did not differ between individuals with and without metabolic syndrome. Exercise is able to increase circulating irisin levels in individuals with the metabolic syndrome as well as healthy individuals. Whether this increase may contribute to the beneficial effects of exercise on patients with the metabolic syndrome remains to be studied further.

  19. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action

    International Nuclear Information System (INIS)

    McKelvie, Jennifer R.; Wolfe, David M.; Celejewski, Magda A.; Alaee, Mehran; Simpson, Andre J.; Simpson, Myrna J.

    2011-01-01

    Nuclear magnetic resonance (NMR) - based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms. - Highlights: → NMR-based earthworm metabolomic analysis of the toxic mode of action of various environmental contaminants. → Organic chemicals with different toxic modes of action resulted in varied metabolomic responses for E. fetida. → NMR-based metabolomics differentiates between the different modes of action associated with sub-lethal toxicity. - 1 H NMR metabolomics was used to identify potential biomarkers of organic contaminant exposure in Eisenia fetida earthworms.

  20. Metabolic responses of Eisenia fetida after sub-lethal exposure to organic contaminants with different toxic modes of action

    Energy Technology Data Exchange (ETDEWEB)

    McKelvie, Jennifer R.; Wolfe, David M.; Celejewski, Magda A. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4 (Canada); Alaee, Mehran [Environment Canada, 867 Lakeshore Rd., P.O. Box 5050, Burlington, ON L7R 4A6 (Canada); Simpson, Andre J. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4 (Canada); Simpson, Myrna J., E-mail: myrna.simpson@utoronto.ca [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail Toronto, ON M1C 1A4 (Canada)

    2011-12-15

    Nuclear magnetic resonance (NMR) - based metabolomics has the potential to identify toxic responses of contaminants within a mixture in contaminated soil. This study evaluated the metabolic response of Eisenia fetida after exposure to an array of organic compounds to determine whether contaminant-specific responses could be identified. The compounds investigated in contact tests included: two pesticides (carbaryl and chlorpyrifos), three pharmaceuticals (carbamazephine, estrone and caffeine), two persistent organohalogens (Aroclor 1254 and PBDE 209) and two industrial compounds (nonylphenol and dimethyl phthalate). Control and contaminant-exposed metabolic profiles were distinguished using principal component analysis and potential contaminant-specific biomarkers of exposure were found for several contaminants. These results suggest that NMR-based metabolomics offers considerable promise for differentiating between the different toxic modes of action (MOA) associated with sub-lethal toxicity to earthworms. - Highlights: > NMR-based earthworm metabolomic analysis of the toxic mode of action of various environmental contaminants. > Organic chemicals with different toxic modes of action resulted in varied metabolomic responses for E. fetida. > NMR-based metabolomics differentiates between the different modes of action associated with sub-lethal toxicity. - {sup 1}H NMR metabolomics was used to identify potential biomarkers of organic contaminant exposure in Eisenia fetida earthworms.

  1. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    Science.gov (United States)

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Metabolite Profiling and Transcript Analysis Reveal Specificities in the Response of a Berry Derived Cell Culture to Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Biruk eAyenew

    2015-09-01

    Full Text Available As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (2500 µmol m-2s-1, high temperature (40 0C and their combination in comparison to 25 0C and 100 µmol m-2s-1 under controlled condition. When LC-MS and GC-MS based metabolite profiling was implemented and integrated with targeted RT-qPCR transcript analysis specific responses were observed to the different cues. High light enhanced polyphenol metabolism while high temperature and its combination with high light induced amino acid and organic acid metabolism with additional effect on polyphenols. The trend of increment in TCA cycle genes like ATCs, ACo1 and IDH in the combined treatment might support the observed increment in organic acids, GABA shunt, and their derivatives. The apparent phenylalanine reduction with polyphenol increment under high light suggests enhanced fueling of the precursor towards the downstream phenylpropanoid pathway. In the polyphenol metabolism, a differential pattern of expression of flavonoid 3’,5’ hydroxylase and flavonoid 3’ hydroxylase was observed under high light and combined cues which were accompanied by characteristic metabolite profiles. High temperature decreased glycosylated cyanidin and peonidin forms while the combined cues increased acetylated and coumarylated peonidin forms. Transcription factors regulating anthocyanin metabolism and their methylation, MYB, OMT, UFGT and DFR, were expressed differentially among the treatments, overall in agreement with the metabolite profiles. Taken together these data provide insights into the coordination of central and secondary metabolism in relation to multiple abiotic stresses.

  3. Microbial Metabolism in Soil at Subzero Temperatures: Adaptation Mechanisms Revealed by Position-Specific 13C Labeling

    Directory of Open Access Journals (Sweden)

    Ezekiel K. Bore

    2017-05-01

    Full Text Available Although biogeochemical models designed to simulate carbon (C and nitrogen (N dynamics in high-latitude ecosystems incorporate extracellular parameters, molecular and biochemical adaptations of microorganisms to freezing remain unclear. This knowledge gap hampers estimations of the C balance and ecosystem feedback in high-latitude regions. To analyze microbial metabolism at subzero temperatures, soils were incubated with isotopomers of position-specifically 13C-labeled glucose at three temperatures: +5 (control, -5, and -20°C. 13C was quantified in CO2, bulk soil, microbial biomass, and dissolved organic carbon (DOC after 1, 3, and 10 days and also after 30 days for samples at -20°C. Compared to +5°C, CO2 decreased 3- and 10-fold at -5 and -20°C, respectively. High 13C recovery in CO2 from the C-1 position indicates dominance of the pentose phosphate pathway at +5°C. In contrast, increased oxidation of the C-4 position at subzero temperatures implies a switch to glycolysis. A threefold higher 13C recovery in microbial biomass at -5 than +5°C points to synthesis of intracellular compounds such as glycerol and ethanol in response to freezing. Less than 0.4% of 13C was recovered in DOC after 1 day, demonstrating complete glucose uptake by microorganisms even at -20°C. Consequently, we attribute the fivefold higher extracellular 13C in soil than in microbial biomass to secreted antifreeze compounds. This suggests that with decreasing temperature, intracellular antifreeze protection is complemented by extracellular mechanisms to avoid cellular damage by crystallizing water. The knowledge of sustained metabolism at subzero temperatures will not only be useful for modeling global C dynamics in ecosystems with periodically or permanently frozen soils, but will also be important in understanding and controlling the adaptive mechanisms of food spoilage organisms.

  4. Fiber Specific Changes in Sphingolipid Metabolism in Skeletal Muscles of Hyperthyroid Rats

    OpenAIRE

    Chabowski, A.; ?endzian-Piotrowska, M.; Mik?osz, A.; ?ukaszuk, B.; Kurek, K.; G?rski, J.

    2013-01-01

    Thyroid hormones (T3, T4) are well known modulators of different cellular signals including the sphingomyelin pathway. However, studies regarding downstream effects of T3 on sphingolipid metabolism in skeletal muscle are scarce. In the present work we sought to investigate the effects of hyperthyroidism on the activity of the key enzymes of ceramide metabolism as well as the content of fundamental sphingolipids. Based on fiber/metabolic differences, we chose three different skeletal muscles, ...

  5. [Response of arbuscular mycorrhizal fungal lipid metabolism to symbiotic signals in mycorrhiza].

    Science.gov (United States)

    Tian, Lei; Li, Yuanjing; Tian, Chunjie

    2016-01-04

    Arbuscular mycorrhizal (AM) fungi play an important role in energy flow and nutrient cycling, besides their wide distribution in the cosystem. With a long co-evolution, AM fungi and host plant have formed a symbiotic relationship, and fungal lipid metabolism may be the key point to find the symbiotic mechanism in arbusculart mycorrhiza. Here, we reviewed the most recent progress on the interaction between AM fungal lipid metabolism and symbiotic signaling networks, especially the response of AM fungal lipid metabolism to symbiotic signals. Furthermore, we discussed the response of AM fungal lipid storage and release to symbiotic or non-symbiotic status, and the correlation between fungal lipid metabolism and nutrient transfer in mycorrhiza. In addition, we explored the feedback of the lipolysis process to molecular signals during the establishment of symbiosis, and the corresponding material conversion and energy metabolism besides the crosstalk of fungal lipid metabolism and signaling networks. This review will help understand symbiotic mechanism of arbuscular mycorrhiza fungi and further application in ecosystem.

  6. Cancer-specific Therapeutic Potential of Resveratrol: Metabolic Approach against Hallmarks of Cancer

    Directory of Open Access Journals (Sweden)

    Dong Hoon Suh

    2013-08-01

    Full Text Available ABSTRACTCancer hallmarks include evading apoptosis, limitless replicative potential, sustained angiogenesis, tissue invasion and metastasis. Cancer cells undergo metabolic reprogramming and inevitably take advantage of glycolysis to meet the increased metabolic demand: rapid energy generation and macromolecular synthesis. Resveratrol, a polyphenolic phytoalexin, is known to exhibit pleiotropic anti-cancer effects most of which are linked to metabolic reprogramming in cancer cells. This review summarizes various anti-cancer effects of resveratrol in the context of cancer hallmarks in relation to metabolic reprogramming.

  7. Genotype-specific responses to light stress in eelgrass Zostera marina, a marine foundation plant

    DEFF Research Database (Denmark)

    Salo, Tiina Elina; Reusch, Thorsten B. H.

    2015-01-01

    , and their performance during light limitation and 4 wk of recovery was compared to non-shaded controls. In addition to growth and biomass, we investigated storage carbohydrates and quantified the expression of genes involved in carbohydrate metabolism, photosynthesis and control of oxidative stress. Plants showed......Within mono-specific meadows of clonal plants, genotypic diversity may functionally replace species diversity. Little is known about the variability in performance and plasticity of different genotypes towards anthropogenically induced stressors. In this field experiment we compared light......-limitation stress responses and recovery of different eelgrass Zostera marina genotypes to assess the variability in phenotypic plasticity and gene expression between different genotypes. Replicated monoculture plots of 4 genotypes were subjected to a simulated turbidity period of 4 wk using shading screens...

  8. Cytolytic T lymphocyte responses to metabolically inactivated stimulator cells. I. Metabolic inactivation impairs both CD and LD antigen signals

    International Nuclear Information System (INIS)

    Kelso, A.; Boyle, W.

    1982-01-01

    The effects of metabolic inactivation of spleen cells on antigen presentation to precursors of alloreactive cytolytic T lymphocytes (T/sub c/) were examined. By serological methods, populations inactivated by ultraviolet irradiation, glutaraldehyde fixation or plasma membrane isolation were found to retain normal levels of H-2K/D and Ia antigens. However, comparison of the antigen doses required to stimulate secondary T/sub c/ responses in mixed leukocyte culture showed that the inactivated preparations were approximately 10-fold less immunogenic than X-irradiated spleen cells. Their total inability to stimulate primary cytolytic responses pointed to at least a 100-fold impairment of immunogenicity for unprimed T/sub c/ precursors in the case of uv-irradiated and glutaraldehyde-treated stimulator cells, and at least a 10-fold impairment for membrane fragments. Experiments showing that the capacity of cell monolayers to absorb precursor T/sub c/ from unprimed spleen populations was reduced following uv-irradiation or glutaraldehyde treatment provided direct evidence that this loss of immunogenicity was due in part to suboptimal antigen presentation to precursor T/sub c/. It is concluded that, in addition to the traditional view that these treatments damage the ''LD'' signal to helper T lymphocytes, metabolic inactivation also impairs recognition of ''CD'' determinants by precursor T/sub c/

  9. Metabolic stress responses in Drosophila are modulated by brain neurosecretory cells that produce multiple neuropeptides.

    Directory of Open Access Journals (Sweden)

    Lily Kahsai

    Full Text Available In Drosophila, neurosecretory cells that release peptide hormones play a prominent role in the regulation of development, growth, metabolism, and reproduction. Several types of peptidergic neurosecretory cells have been identified in the brain of Drosophila with release sites in the corpora cardiaca and anterior aorta. We show here that in adult flies the products of three neuropeptide precursors are colocalized in five pairs of large protocerebral neurosecretory cells in two clusters (designated ipc-1 and ipc-2a: Drosophila tachykinin (DTK, short neuropeptide F (sNPF and ion transport peptide (ITP. These peptides were detected by immunocytochemistry in combination with GFP expression driven by the enhancer trap Gal4 lines c929 and Kurs-6, both of which are expressed in ipc-1 and 2a cells. This mix of colocalized peptides with seemingly unrelated functions is intriguing and prompted us to initiate analysis of the function of the ten neurosecretory cells. We investigated the role of peptide signaling from large ipc-1 and 2a cells in stress responses by monitoring the effect of starvation and desiccation in flies with levels of DTK or sNPF diminished by RNA interference. Using the Gal4-UAS system we targeted the peptide knockdown specifically to ipc-1 and 2a cells with the c929 and Kurs-6 drivers. Flies with reduced DTK or sNPF levels in these cells displayed decreased survival time at desiccation and starvation, as well as increased water loss at desiccation. Our data suggest that homeostasis during metabolic stress requires intact peptide signaling by ipc-1 and 2a neurosecretory cells.

  10. Metabolic responses in Candida tropicalis to complex inhibitors during xylitol bioconversion.

    Science.gov (United States)

    Wang, Shizeng; Li, Hao; Fan, Xiaoguang; Zhang, Jingkun; Tang, Pingwah; Yuan, Qipeng

    2015-09-01

    During xylitol fermentation, Candida tropicalis is often inhibited by inhibitors in hemicellulose hydrolysate. The mechanisms involved in the metabolic responses to inhibitor stress and the resistances to inhibitors are still not clear. To understand the inhibition mechanisms and the metabolic responses to inhibitors, a GC/MS-based metabolomics approach was performed on C. tropicalis treated with and without complex inhibitors (CI, including furfural, phenol and acetic acid). Partial least squares discriminant analysis was used to determine the metabolic variability between CI-treated groups and control groups, and 25 metabolites were identified as possible entities responsible for the discrimination caused by inhibitors. We found that xylose uptake rate and xylitol oxidation rate were promoted by CI treatment. Metabolomics analysis showed that the flux from xylulose to pentose phosphate pathway increased, and tricarboxylic acid cycle was disturbed by CI. Moreover, the changes in levels of 1,3-propanediol, trehalose, saturated fatty acids and amino acids showed different mechanisms involved in metabolic responses to inhibitor stress. The increase of 1,3-propanediol was considered to be correlated with regulating redox balance and osmoregulation. The increase of trehalose might play a role in protein stabilization and cellular membranes protection. Saturated fatty acids could cause the decrease of membrane fluidity and make the plasma membrane rigid to maintain the integrity of plasma membrane. The deeper understanding of the inhibition mechanisms and the metabolic responses to inhibitors will provide us with more information on the metabolism regulation during xylitol bioconversion and the construction of industrial strains with inhibitor tolerance for better utilization of bioresource. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    Science.gov (United States)

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.

  12. Synthesis of specifically deuterium-labelled pregnanolone and pregnanediol sulphates for metabolic studies in humans.

    Science.gov (United States)

    Baillie, T A; Sjövall, J; Herz, J E

    1975-10-01

    A synthesis is reported of 3beta-hydroxy-5alpha-pregnan-20-one sulphate and the disulphate and 3-monosulphate of 5alpha-pregnane-3beta,20alpha-diol, labelled specifically with deuterium in high isotopic purity for metabolic studies in humans. Base-catalyzed equilibration of 3beta-hydroxy-5alpha-25R-spirostan-12-one (hemcogenin, II) with deuterium oxide, followed by removal of the 12-keto group and degradation of the sapogenin side-chain afforded 3beta-hydroxy-5alpha-[11,11-2H2]pregn-16-en-20-one (VII). Further deuterium atoms were introduced at the 3alpha and 20beta positions by reductions with sodium borodeuteride and lithium aluminum deuteride, respectively. These reactions led to 3beta-hydroxy-5alpha-[3alpha,11,11-2H3]pregnan-20-one (X; isotopic purity 87.2%) and 5alpha-[3alpha,11,11,20beta-2H4]pregnane-3beta,20alpha-diol (XIV; isotopic purity 83.9%). The 3-sulphate of the pregnanolone and the 3,20-disulphate of the pregnanediol were prepared directly form the free alcohols, while the 3-monosulphate of the pregnanediol was obtained via 5alpha-[3alpha,11,11,20beta-2H4]pregnane-3beta,20alpha-diol 20-acetate (XVII).

  13. Aiptasia as a model to study metabolic diversity and specificity in cnidarian-dinoflagellate symbioses

    KAUST Repository

    Raedecker, Nils

    2017-11-23

    The symbiosis between cnidarian hosts and microalgae of the genus Symbiodinium provides the foundation of coral reefs in oligotrophic waters. Understanding the nutrient-exchange between these partners is key to identifying the fundamental mechanisms behind this symbiosis. However, deciphering the individual role of host and algal partners in the uptake and cycling of nutrients has proven difficult, given the endosymbiotic nature of this relationship. In this study, we highlight the advantages of the emerging model system Aiptasia to investigate the metabolic diversity and specificity of cnidarian-dinoflagellate symbiosis. For this, we combined traditional measurements with nano-scale secondary ion mass spectrometry (NanoSIMS) and stable isotope labeling to investigate carbon and nitrogen cycling both at the organismal scale and the cellular scale. Our results suggest that the individual nutrient assimilation by hosts and symbionts depends on the identity of their respective symbiotic partner. Further, δ13C enrichment patterns revealed that alterations in carbon fixation rates only affected carbon assimilation in the cnidarian host but not the algal symbiont, suggesting a \\'selfish\\' character of this symbiotic association. Based on our findings, we identify new venues for future research regarding the role and regulation of nutrient exchange in the cnidarian-dinoflagellate symbiosis. In this context, the model system approach outlined in this study constitutes a powerful tool set to address these questions.

  14. Morph-specific metabolic rate and the timing of reproductive senescence in a color polymorphic dragon.

    Science.gov (United States)

    Friesen, Christopher R; Johansson, Rasmus; Olsson, Mats

    2017-08-01

    Polymorphism has fascinated biologists for over a century because morphs persist within populations through evolutionary time in spite of showing disparate behavioral and physiological phenotypes; any one morph should go to fixation with the slightest fitness advantage over the others. Surely there must be trade-offs that balance selection on them. The polychromatic morphs of the Australian painted dragon lizard, Ctenophorus pictus, are one such system. The male color morphs of painted dragons have different physiological and behavioral traits including reproductive tactics, hormone levels, and the rate of body condition loss through the reproductive season. Due to their differences in physiology and reproductive tactics, we tested the hypotheses that male morphs would differ in resting metabolic rates (RMRs) and that the morphs' RMR would decline at different rates through the mating season. We found that bib-morphs (yellow gular patch) differ in RMR with bibbed (more aggressive) males having consistently higher RMR than non-bibbed males. Furthermore, we show that male dragons experience a decline in RMR as they age from reproductively active to inactive. We also found that the RMR of bibbed males has higher repeatability than non-bibbed males. Our results reinforce previous hypotheses about the morph-specific costs of bearing a gular patch in painted dragons. © 2017 Wiley Periodicals, Inc.

  15. Synthesis of specifically deuterated pregnanolone and pregnanediol sulphates for metabolic studies in pregant women

    International Nuclear Information System (INIS)

    Baillie, T.A.; Herz, J.E.; Anderson, R.A.; Sjovall, J.

    1975-01-01

    A series of specifically deuterated isomers of pregnanolone sulphate and pregnanediol mono- and disulphate have been synthesized for use in a study of the formation and metabolism of C 21 -steroid sulphates in the plasma of pregnant women. Hecogenin, the starting material for the synthesis, was equilibrated with NaO 2 H- 2 H 2 O and the resulting 11,11- 2 H 2 derivative converted directly to its tosylhydrazone. Reduction with sodium borohydride and degradation of the sapogenin side-chain gave 3β-hydroxy-5α-[11,11- 2 H 2 ] pregn-16-en-20-one (isotopic purity 91.6%). Further deuterium atoms were introduced in the 3α and 3α,20β positions by reductions with sodium borodeuteride and lithium aluminum deuteride, respectively. These reactions led to 3β-hydroxy-5α-[3α,11,11- 2 H 3 ] pregnan-20-one (isotopic purity 87.2%) and 5α-[3α,11,11,20β- 2 H 4 ] pregnane-3β,20α-diol (isotopic purity 83.9%). Steroids possessing the less readily accessible 3α-hydroxy-5α-[3β- 2 H] configuration were obtained, without loss of label, by epimerization of the 3β isomers. Pregnanolone sulphates and pregnanediol disulphates were prepared directly from the free alcohols, while the pregnanediol 3-monosulphates were synthesized from the appropriate pregnanediol 20-monoacetate derivatives

  16. Aiptasia as a model to study metabolic diversity and specificity in cnidarian-dinoflagellate symbioses

    KAUST Repository

    Raedecker, Nils; Raina, Jean-Baptiste; Pernice, Mathieu; Perna, Gabriela; Guagliardo, Paul; Killburn, Matt; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    The symbiosis between cnidarian hosts and microalgae of the genus Symbiodinium provides the foundation of coral reefs in oligotrophic waters. Understanding the nutrient-exchange between these partners is key to identifying the fundamental mechanisms behind this symbiosis. However, deciphering the individual role of host and algal partners in the uptake and cycling of nutrients has proven difficult, given the endosymbiotic nature of this relationship. In this study, we highlight the advantages of the emerging model system Aiptasia to investigate the metabolic diversity and specificity of cnidarian-dinoflagellate symbiosis. For this, we combined traditional measurements with nano-scale secondary ion mass spectrometry (NanoSIMS) and stable isotope labeling to investigate carbon and nitrogen cycling both at the organismal scale and the cellular scale. Our results suggest that the individual nutrient assimilation by hosts and symbionts depends on the identity of their respective symbiotic partner. Further, δ13C enrichment patterns revealed that alterations in carbon fixation rates only affected carbon assimilation in the cnidarian host but not the algal symbiont, suggesting a 'selfish' character of this symbiotic association. Based on our findings, we identify new venues for future research regarding the role and regulation of nutrient exchange in the cnidarian-dinoflagellate symbiosis. In this context, the model system approach outlined in this study constitutes a powerful tool set to address these questions.

  17. Gender-Specific Association of Desacylated Ghrelin with Subclinical Atherosclerosis in the Metabolic Syndrome.

    Science.gov (United States)

    Zanetti, Michela; Gortan Cappellari, Gianluca; Semolic, Annamaria; Burekovic, Ismet; Fonda, Maurizio; Cattin, Luigi; Barazzoni, Rocco

    2017-07-01

    Ghrelin, a gastric hormone with pleiotropic effects modulates vascular function and may influence atherosclerosis. Plasma ghrelin is reduced in the metabolic syndrome (MS), which is also characterized by early atherosclerosis. Ghrelin circulates in acylated (AG) and desacylated (DAG) forms. Their relative impact and that of gender on subclinical atherosclerosis in MS is unknown. To investigate potential associations of total, AG and DAG with carotid atherosclerosis and with gender in the MS. Plasma total ghrelin, AG, DAG and carotid artery IMT (cIMT) were measured in 46 MS patients (NCEP-ATP III criteria, 22M/24F). Compared with males, females had higher (p ghrelin nor AG and DAG were associated with cIMT in all MS patients nor in the male subgroup. In females, a negative (p ghrelin and AG. In multivariate modeling, DAG remained negatively (p <0.05) associated with cIMT after adjusting for plasma glucose and cardiovascular risk factors. These data indicate a negative independent association between DAG and cIMT in middle-aged women with the MS and suggest a gender-specific modulatory function of DAG in the development of atherosclerosis. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  18. Organ-Specific Metabolic Shifts of Flavonoids in Scutellaria baicalensis at Different Growth and Development Stages

    Directory of Open Access Journals (Sweden)

    Jingyuan Xu

    2018-02-01

    Full Text Available Scutellaria baicalensis Georgi is a traditional Chinese herbal medicine mainly containing flavonoids that contribute to its bioactivities. In this study, the distributions and dynamic changes of flavonoid levels in various organs of S. baicalensis at different development stages were investigated by UHPLC-QTOF-MS/MS and HPLC-DAD methods. The results indicated that the metabolic profiles of S. baicalensis changed with growth and development. During the initial germination stage, the seeds mainly contained flavonols. With growth, the main kinds of flavonoids in S. baicalensis changed from flavonols to flavanones and flavones. The results also revealed that the accumulation of flavonoids in S. baicalensis is organ-specific. The flavones without 4′-OH groups mainly accumulate in the root and the flavanones mainly accumulate in aerial organs. Dynamic accumulation analysis showed that the main flavonoids in the root of S. baicalensis accumulated rapidly before the full-bloom stage, then changed to a small extent. The results suggested the proper harvest time for the aerial parts was at the initial stage of reproductive growth and the flower buds should be collected before flowering. This study deepening the knowledge of S. baicalensis should provide valuable information for guiding the scientific cultivation of this plant and the development and utilization of S. baicalensis.

  19. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis.

    Science.gov (United States)

    Zwingmann, Claudia; Leibfritz, Dieter; Hazell, Alan S

    2003-06-01

    A central question in manganese neurotoxicity concerns mitochondrial dysfunction leading to cerebral energy failure. To obtain insight into the underlying mechanism(s), the authors investigated cell-specific pathways of [1-13C]glucose metabolism by high-resolution multinuclear NMR-spectroscopy. Five-day treatment of neurons with 100-micro mol/L MnCl(2) led to 50% and 70% decreases of ATP/ADP and phosphocreatine-creatine ratios, respectively. An impaired flux of [1-13C]glucose through pyruvate dehydrogenase, which was associated with Krebs cycle inhibition and hence depletion of [4-13C]glutamate, [2-13C]GABA, and [13C]glutathione, hindered the ability of neurons to compensate for mitochondrial dysfunction by oxidative glucose metabolism and further aggravated neuronal energy failure. Stimulated glycolysis and oxidative glucose metabolism protected astrocytes against energy failure and oxidative stress, leading to twofold increased de novo synthesis of [3-13C]lactate and fourfold elevated [4-13C]glutamate and [13C]glutathione levels. Manganese, however, inhibited the synthesis and release of glutamine. Comparative NMR data obtained from cocultures showed disturbed astrocytic function and a failure of astrocytes to provide neurons with substrates for energy and neurotransmitter metabolism, leading to deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy metabolism. The results suggest that, concomitant to impaired neuronal glucose oxidation, changes in astrocytic metabolism may cause a loss of intercellular homeostatic equilibrium, contributing to neuronal dysfunction in manganese neurotoxicity.

  20. Exercise training and work task induced metabolic and stress-related mRNA and protein responses in myalgic muscles

    DEFF Research Database (Denmark)

    Sjøgaard, Gisela; Zebis, Mette Kreutzfeldt; Kiilerich, Kristian

    2013-01-01

    healthy controls. Those with myalgia performed similar to 7 hrs repetitive stressful work and were subsequently randomized to 10 weeks of specific strength training, general fitness training, or reference intervention. Muscles biopsies were taken from the trapezius muscle at baseline, after work and after...... 10 weeks intervention. The main findings are that the capacity of carbohydrate oxidation was reduced in myalgic compared with healthy muscle. Repetitive stressful work increased mRNA content for heat shock proteins and decreased levels of key regulators for growth and oxidative metabolism......The aim was to assess mRNA and/or protein levels of heat shock proteins, cytokines, growth regulating, and metabolic proteins in myalgic muscle at rest and in response to work tasks and prolonged exercise training. A randomized controlled trial included 28 females with trapezius myalgia and 16...

  1. Population specific fitness response of Drosophila subobscura to lead pollution.

    Science.gov (United States)

    Kenig, Bojan; Stamenković-Radak, Marina; Andelković, Marko

    2013-04-01

    Differences in heavy metal tolerance among separate populations of the same species have often been interpreted as local adaptation. Persistence of differences after removing the stressor indicates that mechanisms responsible for the increased tolerance were genetically determined. Drosophila subobscura Collin (Diptera: Drosophilidae) populations were sampled from two localities with different history of heavy metal pollution, and reared for eight generations in the laboratory on a standard medium and on media with different concentrations of lead (Pb). To determine whether flies from different natural populations exposed to the Pb-contaminated media in the laboratory show population specific variability in fitness components over generations, experimental groups with different concentrations of lead were assayed in three generations (F2 , F5 , and F8 ) for fecundity, developmental time, and egg-to-adult viability. On the contaminated medium, fecundity was reduced in later generations and viability was increased, irrespective of the environmental origin of populations. For both populations, developmental time showed a tendency of slowing down on media with lead. Faster development was observed in later generations. Preadaptation to contamination, meaning higher fecundity, higher viability, and faster egg to adult development in all studied generations, was found in D. subobscura originating from the locality with a higher level of heavy metal pollution. © 2012 The Authors Insect Science © 2012 Institute of Zoology, Chinese Academy of Sciences.

  2. Role of the Mixed-Lineage Protein Kinase Pathway in the Metabolic Stress Response to Obesity

    Directory of Open Access Journals (Sweden)

    Shashi Kant

    2013-08-01

    Full Text Available Saturated free fatty acid (FFA is implicated in the metabolic response to obesity. In vitro studies indicate that FFA signaling may be mediated by the mixed-lineage protein kinase (MLK pathway that activates cJun NH2-terminal kinase (JNK. Here, we examined the role of the MLK pathway in vivo using a mouse model of diet-induced obesity. The ubiquitously expressed MLK2 and MLK3 protein kinases have partially redundant functions. We therefore compared wild-type and compound mutant mice that lack expression of MLK2 and MLK3. MLK deficiency protected mice against high-fat-diet-induced insulin resistance and obesity. Reduced JNK activation and increased energy expenditure contribute to the metabolic effects of MLK deficiency. These data confirm that the MLK pathway plays a critical role in the metabolic response to obesity.

  3. SirT1 regulates energy metabolism and response to caloric restriction in mice.

    Directory of Open Access Journals (Sweden)

    Gino Boily

    Full Text Available The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction.

  4. Organ-specific proteomics analysis for identification of response mechanism in soybean seedlings under flooding stress.

    Science.gov (United States)

    Khatoon, Amana; Rehman, Shafiq; Hiraga, Susumu; Makino, Takahiro; Komatsu, Setsuko

    2012-10-22

    Flooding is one of the severe environmental factors which impair growth and yield in soybean plant. To investigate the organ specific response mechanism of soybean under flooding stress, changes in protein species were analyzed using a proteomics approach. Two-day-old soybeans were subjected to flooding for 5 days. Proteins were extracted from root, hypocotyl and leaf, and separated by two-dimensional polyacrylamide gel electrophoresis. In root, hypocotyl and leaf, 51, 66 and 51 protein species were significantly changed, respectively, under flooding stress. In root, metabolism related proteins were increased; however these proteins were decreased in hypocotyl and leaf. In all 3 organs, cytoplasm localized proteins were decreased, and leaf chloroplastic proteins were also decreased. Isoflavone reductase was commonly decreased at protein level in all 3 organs; however, mRNA of isoflavone reductase gene was up-regulated in leaf under flooding stress. Biophoton emission was increased in all 3 organs under flooding stress. The up-regulation of isoflavone reductase gene at transcript level; while decreased abundance at protein level indicated that flooding stress affected the mRNA translation to proteins. These results suggest that concurrence in expression of isoflavone reductase gene at mRNA and protein level along with imbalance in other disease/defense and metabolism related proteins might lead to impaired growth of root, hypocotyl and leaf of soybean seedlings under flooding stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Radiographic and metabolic response rates following image-guided stereotactic radiotherapy for lung tumors

    International Nuclear Information System (INIS)

    Mohammed, Nasiruddin; Grills, Inga S.; Wong, Ching-Yee Oliver; Galerani, Ana Paula; Chao, Kenneth; Welsh, Robert; Chmielewski, Gary; Yan Di; Kestin, Larry L.

    2011-01-01

    Purpose: To evaluate radiographic and metabolic response after stereotactic body radiotherapy (SBRT) for early lung tumors. Materials and methods: Thirty-nine tumors were treated prospectively with SBRT (dose = 48-60 Gy, 4-5 Fx). Thirty-six cases were primary NSCLC (T1N0 = 67%; T2N0 = 25%); three cases were solitary metastases. Patients were followed using CT and PET at 6, 16, and 52 weeks post-SBRT, with CT follow-up thereafter. RECIST and EORTC criteria were used to evaluate CT and PET responses. Results: At median follow-up of 9 months (0.4-26), RECIST complete response (CR), partial response (PR), and stable disease (SD) rates were 3%, 43%, 54% at 6 weeks; 15%, 38%, 46% at 16 weeks; 27%, 64%, 9% at 52 weeks. Mean baseline tumor volume was reduced by 46%, 70%, 87%, and 96%, respectively at 6, 16, 52, and 72 weeks. Mean baseline maximum standardized uptake value (SUV) was 8.3 (1.1-20.3) and reduced to 3.4, 3.0, and 3.7 at 6, 16, and 52 weeks after SBRT. EORTC metabolic CR/PR, SD, and progressive disease rates were 67%, 22%, 11% at 6 weeks; 86%, 10%, 3% at 16 weeks; 95%, 5%, 0% at 52 weeks. Conclusions: SBRT yields excellent RECIST and EORTC based response. Metabolic response is rapid however radiographic response occurs even after 1-year post treatment.

  6. Metabolic Responses in Endothelial Cells Following Exposure to Ketone Bodies

    Directory of Open Access Journals (Sweden)

    Erika Meroni

    2018-02-01

    Full Text Available The ketogenic diet (KD is a high-fat, low-carbohydrate diet based on the induction of the synthesis of ketone bodies (KB. Despite its widespread use, the systemic impact of KD is not completely understood. The purpose of this study was to evaluate the effects of physiological levels of KB on HMEC-1 endothelial cells. To this aim, DNA oxidative damage and the activation of Nrf2, a known transcriptional factor involved in cell responses to oxidative stress, were assessed. The exposure of cells to KB exerted a moderate genotoxic effect, measured by a significant increase in DNA oxidative damage. However, cells pre-treated with KB for 48 h and subjected to a secondary oxidative insult (H2O2, significantly decreased DNA damage compared to control oxidized cells. This protection occurred by the activation of Nrf2 pathway. In KB-treated cells, we found increased levels of Nrf2 in nuclear extracts and higher gene expression of HO-1, a target gene of Nrf2, compared to control cells. These results suggest that KB, by inducing moderate oxidative stress, activate the transcription factor Nrf2, which induces the transcription of target genes involved in the cellular antioxidant defense system.

  7. Assessment of Psychophysiological Response and Specific Fine Motor Skills in Combat Units.

    Science.gov (United States)

    Sánchez-Molina, Joaquín; Robles-Pérez, José J; Clemente-Suárez, Vicente J

    2018-03-02

    Soldiers´ training and experience can influence the outcome of the missions, as well as their own physical integrity. The objective of this research was to analyze the psycho-physiological response and specific motor skills in an urban combat simulation with two units of infantry with different training and experience. psychophysiological parameters -Heart Rate, blood oxygen saturation, glucose and blood lactate, cortical activation, anxiety and heart rate variability-, as well as fine motor skills were analyzed in 31 male soldiers of the Spanish Army, 19 belonging to the Light Infantry Brigade, and 12 to the Heavy Forces Infantry Brigade, before and after an urban combat simulation. A combat simulation provokes an alteration of the psycho-physiological basal state in soldiers and a great unbalance in the sympathetic-vagal interaction. The specific training of Light Infantry unit involves lower metabolic, cardiovascular, and anxiogenic response not only previous, but mainly after a combat maneuver, than Heavy Infantry unit's. No differences were found in relation with fine motor skills, improving in both cases after the maneuver. This fact should be taken into account for betterment units´ deployment preparation in current theaters of operations.

  8. RNA metabolism in Xylella fastidiosa during cold adaptation and survival responses

    Science.gov (United States)

    Fastidious plant pathogen Xylella fastidiosa has a reduced ability to adapt to cold temperatures, limiting persistence in perennial hosts, such as grapevine, growing in colder regions. RNA metabolism is an essential part of bacterial response to low temperature, including inducible expression of RNA...

  9. The effect of environmental temperature on immune response and metabolism of the young chicken

    NARCIS (Netherlands)

    Henken, A.M.

    1982-01-01

    The effect of environmental temperature on immune response and metabolism was studied in young chickens. Immunization was performed by injecting intramuscularly 0.5 ml packed SRBC (sheep red blood cells) in both thighs of 32 days old pullets ( WarrenSSL ). The

  10. Chromium supplementation enhances the metabolic response of steers to lipopolysaccharide (LPS) challenge

    Science.gov (United States)

    The effect of chromium (Cr; KemTRACE®brandChromiumProprionate 0.04%, Kemin Industries) supplementation on the metabolic response to LPS challenge was examined. Steers (n=20; 235±4 kg body weight (BW)) received a premix that added 0 (Con) or 0.2 mg/kg Cr to the total diet (DM (dry matter) basis) for ...

  11. The structure of wheat bread influences the postprandial metabolic response in healthy men

    NARCIS (Netherlands)

    Eelderink, Coby; Noort, Martijn W. J.; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J.; Deacon, Carolyn F.; Rehfeld, Jens F.; Poutanen, Kaisa; Vonk, Roel J.; Oudhuis, Lizette; Priebe, Marion G.

    2015-01-01

    Postprandial high glucose and insulin responses after starchy food consumption, associated with an increased risk of developing several metabolic diseases, could possibly be improved by altering food structure. We investigated the influence of a compact food structure; different wheat products with

  12. Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects

    NARCIS (Netherlands)

    Kempen, K.P.G.; Saris, W.H.M.; Senden, J.M.G.; Menheere, P.P.C.A.; Blaak, E.E.; van Baak, M.A.

    1994-01-01

    Effects of energy restriction on acute adrenoceptor and metabolic responses to exercise in obese subjects. Kempen KP, Saris WH, Senden JM, Menheere PP, Blaak EE, van Baak MA. Department of Human Biology, University of Limburg, Maastricht, The Netherlands. This study was intended to investigate the

  13. Liquid scintillation vial for radiometric assay of lymphocyte carbohydrate metabolism in response to mitogens

    International Nuclear Information System (INIS)

    Tran, N.; Wagner, H.N. Jr.

    1978-01-01

    We have demonstrated that mitogens--i.e., PHA and Con.A--stimulate lymphocyte carbohydrate metabolism using a liquid-scintillation vial with conventional liquid-scintillation detectors. The results showed that this enclosed system can be useful for development of rapid in vitro tests of lymphocytes immune responsiveness, as well as for radiometric detection of bacterial growth in various gaseous atmospheres

  14. Origin of endotoxemia influences the metabolic response to endotoxin in dogs

    NARCIS (Netherlands)

    Moeniralam, H. S.; Bemelman, W. A.; Romijn, J. A.; Endert, E.; Ackermans, M. T.; van Lanschot, J. J.; Hermsen, R. C.; Sauerwein, H. P.

    1997-01-01

    Different routes of endotoxin administration have been used to mimic inflammatory and metabolic responses observed during sepsis. Because the origin of endotoxemia may affect the reactions to endotoxin, we compared the induction of tumor necrosis factor (TNF), interleukin-6 (IL-6), hormones, and

  15. Positron computed tomography studies of cerebral metabolic responses to complex motor tasks

    International Nuclear Information System (INIS)

    Phelps, M.E.; Mazziotta, J.C.

    1984-01-01

    Human motor system organization was explored in 8 right-handed male subjects using /sup 18/F-fluorodeoxyglucose and positron computed tomography to measure cerebral glucose metabolism. Five subjects had triple studies (eyes closed) including: control (hold pen in right hand without moving), normal size writing (subject repeatedly writes name) and large (10-15 X normal) name writing. In these studies normal and large size writing had a similar distribution of metabolic responses when compared to control studies. Activations (percent change from control) were in the range of 12-20% and occurred in the striatum bilaterally > contralateral Rolandic cortex > contralateral thalamus. No significant activations were observed in the ipsilateral thalamus, Rolandic cortex or cerebellum (supplementary motor cortex was not examined). The magnitude of the metabolic response in the striatum was greater with the large versus normal sized writing. This differential response may be due to an increased number and topographic distribution of neurons responding with the same average activity between tasks or an increase in the functional activity of the same neuronal population between the two tasks (present spatial resolution inadequate to differentiate). When subjects (N=3) performed novel sequential finger movements, the maximal metabolic response was in the contralateral Rolandic cortex > striatum. Such studies provide a means of exploring human motor system organization, motor learning and provide a basis for examining patients with motor system disorders

  16. Quantitative proteomics links metabolic pathways to specific developmental stages of the plant-pathogenic oomycete Phytophthora capsici.

    Science.gov (United States)

    Pang, Zhili; Srivastava, Vaibhav; Liu, Xili; Bulone, Vincent

    2017-04-01

    The oomycete Phytophthora capsici is a plant pathogen responsible for important losses to vegetable production worldwide. Its asexual reproduction plays an important role in the rapid propagation and spread of the disease in the field. A global proteomics study was conducted to compare two key asexual life stages of P. capsici, i.e. the mycelium and cysts, to identify stage-specific biochemical processes. A total of 1200 proteins was identified using qualitative and quantitative proteomics. The transcript abundance of some of the enriched proteins was also analysed by quantitative real-time polymerase chain reaction. Seventy-three proteins exhibited different levels of abundance between the mycelium and cysts. The proteins enriched in the mycelium are mainly associated with glycolysis, the tricarboxylic acid (or citric acid) cycle and the pentose phosphate pathway, providing the energy required for the biosynthesis of cellular building blocks and hyphal growth. In contrast, the proteins that are predominant in cysts are essentially involved in fatty acid degradation, suggesting that the early infection stage of the pathogen relies primarily on fatty acid degradation for energy production. The data provide a better understanding of P. capsici biology and suggest potential metabolic targets at the two different developmental stages for disease control. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  17. Species-specific roles of sulfolipid metabolism in acclimation of photosynthetic microbes to sulfur-starvation stress.

    Directory of Open Access Journals (Sweden)

    Norihiro Sato

    Full Text Available Photosynthetic organisms utilize sulfate for the synthesis of sulfur-compounds including proteins and a sulfolipid, sulfoquinovosyl diacylglycerol. Upon ambient deficiency in sulfate, cells of a green alga, Chlamydomonas reinhardtii, degrade the chloroplast membrane sulfolipid to ensure an intracellular-sulfur source for necessary protein synthesis. Here, the effects of sulfate-starvation on the sulfolipid stability were investigated in another green alga, Chlorella kessleri, and two cyanobacteria, Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942. The results showed that sulfolipid degradation was induced only in C. kessleri, raising the possibility that this degradation ability was obtained not by cyanobacteria, but by eukaryotic algae during the evolution of photosynthetic organisms. Meanwhile, Synechococcus disruptants concerning sqdB and sqdX genes, which are involved in successive reactions in the sulfolipid synthesis pathway, were respectively characterized in cellular response to sulfate-starvation. Phycobilisome degradation intrinsic to Synechococcus, but not to Synechocystis, and cell growth under sulfate-starved conditions were repressed in the sqdB and sqdX disruptants, respectively, relative to in the wild type. Their distinct phenotypes, despite the common loss of the sulfolipid, inferred specific roles of sqdB and sqdX. This study demonstrated that sulfolipid metabolism might have been developed to enable species- or cyanobacterial-strain dependent processes for acclimation to sulfate-starvation.

  18. Transcriptome Analysis Identifies Key Metabolic Changes in the Hooded Seal (Cystophora cristata Brain in Response to Hypoxia and Reoxygenation.

    Directory of Open Access Journals (Sweden)

    Mariana Leivas Müller Hoff

    Full Text Available The brain of diving mammals tolerates low oxygen conditions better than the brain of most terrestrial mammals. Previously, it has been demonstrated that the neurons in brain slices of the hooded seal (Cystophora cristata withstand hypoxia longer than those of mouse, and also tolerate reduced glucose supply and high lactate concentrations. This tolerance appears to be accompanied by a shift in the oxidative energy metabolism to the astrocytes in the seal while in terrestrial mammals the aerobic energy production mainly takes place in neurons. Here, we used RNA-Seq to compare the effect of hypoxia and reoxygenation in vitro on brain slices from the visual cortex of hooded seals. We saw no general reduction of gene expression, suggesting that the response to hypoxia and reoxygenation is an actively regulated process. The treatments caused the preferential upregulation of genes related to inflammation, as found before e.g. in stroke studies using mammalian models. Gene ontology and KEGG pathway analyses showed a downregulation of genes involved in ion transport and other neuronal processes, indicative for a neuronal shutdown in response to a shortage of O2 supply. These differences may be interpreted in terms of an energy saving strategy in the seal's brain. We specifically analyzed the regulation of genes involved in energy metabolism. Hypoxia and reoxygenation caused a similar response, with upregulation of genes involved in glucose metabolism and downregulation of the components of the pyruvate dehydrogenase complex. We also observed upregulation of the monocarboxylate transporter Mct4, suggesting increased lactate efflux. Together, these data indicate that the seal brain responds to the hypoxic challenge by a relative increase in the anaerobic energy metabolism.

  19. Hepatic injury induces contrasting response in liver and kidney to chemicals that are metabolically activated: Role of male sex hormone

    International Nuclear Information System (INIS)

    Kim, Young C.; Yim, Hye K.; Jung, Young S.; Park, Jae H.; Kim, Sung Y.

    2007-01-01

    Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomy also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards

  20. Category-specific visual responses: an intracranial study comparing gamma, beta, alpha and ERP response selectivity

    Directory of Open Access Journals (Sweden)

    Juan R Vidal

    2010-11-01

    Full Text Available The specificity of neural responses to visual objects is a major topic in visual neuroscience. In humans, functional magnetic resonance imaging (fMRI studies have identified several regions of the occipital and temporal lobe that appear specific to faces, letter-strings, scenes, or tools. Direct electrophysiological recordings in the visual cortical areas of epileptic patients have largely confirmed this modular organization, using either single-neuron peri-stimulus time-histogram or intracerebral event-related potentials (iERP. In parallel, a new research stream has emerged using high-frequency gamma-band activity (50-150 Hz (GBR and low-frequency alpha/beta activity (8-24 Hz (ABR to map functional networks in humans. An obvious question is now whether the functional organization of the visual cortex revealed by fMRI, ERP, GBR, and ABR coincide. We used direct intracerebral recordings in 18 epileptic patients to directly compare GBR, ABR, and ERP elicited by the presentation of seven major visual object categories (faces, scenes, houses, consonants, pseudowords, tools, and animals, in relation to previous fMRI studies. Remarkably both GBR and iERP showed strong category-specificity that was in many cases sufficient to infer stimulus object category from the neural response at single-trial level. However, we also found a strong discrepancy between the selectivity of GBR, ABR, and ERP with less than 10% of spatial overlap between sites eliciting the same category-specificity. Overall, we found that selective neural responses to visual objects were broadly distributed in the brain with a prominent spatial cluster located in the posterior temporal cortex. Moreover, the different neural markers (GBR, ABR, and iERP that elicit selectivity towards specific visual object categories present little spatial overlap suggesting that the information content of each marker can uniquely characterize high-level visual information in the brain.

  1. Tissue-specific metabolic activation and mutagenicity of 3-nitrobenzanthrone in MutaMouse.

    Science.gov (United States)

    Chen, Guosheng; Gingerich, John; Soper, Lynda; Douglas, George R; White, Paul A

    2008-10-01

    3-Nitrobenzanthrone (3-NBA) is a mutagen and suspected human carcinogen detected in diesel exhaust, airborne particulate matter, and urban soil. We investigated the tissue specific mutagenicity of 3-NBA at the lacZ locus of transgenic MutaMouse following acute single dose or 28-day repeated-dose oral administration. In the acute high dose (50 mg/kg) exposure, increased lacZ mutant frequency was observed in bone marrow and colonic epithelium, but not in liver and bladder. In the repeated-dose study, a dose-dependent increase in lacZ mutant frequency was observed in bone marrow and liver (2- and 4-fold increase above control), but not in lung or intestinal epithelium. In addition, a concentration-dependent increase in mutant frequency (8.5-fold above control) was observed for MutaMouse FE1 lung epithelial cells exposed in vitro. 1-Nitropyrene reductase, 3-NBA reductase, and acetyltransferase activities were measured in a variety of MutaMouse specimens in an effort to link metabolic activation and mutagenicity. High 3-NBA nitroreductase activities were observed in lung, liver, colon and bladder, and detectable N-acetyltransferase activities were found in all tissues except bone marrow. The relatively high 3-NBA nitroreductase activity in MutaMouse tissues, as compared with those in Salmonella TA98 and TA100, suggests that 3-NBA is readily reduced and activated in vivo. High 3-NBA nitroreductase levels in liver and colon are consistent with the elevated lacZ mutant frequency values, and previously noted inductions of hepatic DNA adducts. Despite an absence of induced lacZ mutations, the highest 3-NBA reductase activity was detected in lung. Further studies are warranted, especially following inhalation or intratracheal exposures. Published 2008 Wiley-Liss, Inc.

  2. Extreme Hypoxic Conditions Induce Selective Molecular Responses and Metabolic Reset in Detached Apple Fruit

    Science.gov (United States)

    Cukrov, Dubravka; Zermiani, Monica; Brizzolara, Stefano; Cestaro, Alessandro; Licausi, Francesco; Luchinat, Claudio; Santucci, Claudio; Tenori, Leonardo; Van Veen, Hans; Zuccolo, Andrea; Ruperti, Benedetto; Tonutti, Pietro

    2016-01-01

    The ripening physiology of detached fruit is altered by low oxygen conditions with profound effects on quality parameters. To study hypoxia-related processes and regulatory mechanisms, apple (Malus domestica, cv Granny Smith) fruit, harvested at commercial ripening, were kept at 1°C under normoxic (control) and hypoxic (0.4 and 0.8 kPa oxygen) conditions for up to 60 days. NMR analyses of cortex tissue identified eight metabolites showing significantly different accumulations between samples, with ethanol and alanine displaying the most pronounced difference between hypoxic and normoxic treatments. A rapid up-regulation of alcohol dehydrogenase and pyruvate-related metabolism (lactate dehydrogenase, pyruvate decarboxylase, alanine aminotransferase) gene expression was detected under both hypoxic conditions with a more pronounced effect induced by the lowest (0.4 kPa) oxygen concentration. Both hypoxic conditions negatively affected ACC synthase and ACC oxidase transcript accumulation. Analysis of RNA-seq data of samples collected after 24 days of hypoxic treatment identified more than 1000 genes differentially expressed when comparing 0.4 vs. 0.8 kPa oxygen concentration samples. Genes involved in cell-wall, minor and major CHO, amino acid and secondary metabolisms, fermentation and glycolysis as well as genes involved in transport, defense responses, and oxidation-reduction appeared to be selectively affected by treatments. The lowest oxygen concentration induced a higher expression of transcription factors belonging to AUX/IAA, WRKY, HB, Zinc-finger families, while MADS box family genes were more expressed when apples were kept under 0.8 kPa oxygen. Out of the eight group VII ERF members present in apple genome, two genes showed a rapid up-regulation under hypoxia, and western blot analysis showed that apple MdRAP2.12 proteins were differentially accumulated in normoxic and hypoxic samples, with the highest level reached under 0.4 kPa oxygen. These data suggest

  3. Identification of genes specifically required for the anaerobic metabolism of benzene in Geobacter metallireducens

    DEFF Research Database (Denmark)

    Zhang, Tian; Tremblay, Pier-Luc; Chaurasia, Akhilesh Kumar

    2014-01-01

    Although the biochemical pathways for the anaerobic degradation of many of the hydrocarbon constituents in petroleum reservoirs have been elucidated, the mechanisms for anaerobic activation of benzene, a very stable molecule, are not known. Previous studies have demonstrated that Geobacter...... metallireducens can anaerobically oxidize benzene to carbon dioxide with Fe(III) as the sole electron acceptor and that phenol is an intermediate in benzene oxidation. In an attempt to identify enzymes that might be involved in the conversion of benzene to phenol, whole-genome gene transcript abundance...... was compared in cells metabolizing benzene and cells metabolizing phenol. Eleven genes had significantly higher transcript abundance in benzene-metabolizing cells. Five of these genes had annotations suggesting that they did not encode proteins that could be involved in benzene metabolism and were not further...

  4. The metabolic cost of mounting an immune response in male brown anoles (Anolis sagrei).

    Science.gov (United States)

    Cox, Christian L; Peaden, Robert T; Cox, Robert M

    2015-09-09

    The tradeoff between reproduction and survival is central to life-history theory and is thought to reflect underlying energetic tradeoffs between reproduction and self-maintenance. Immune responses to parasites and pathogens are important components of self-maintenance in many species, but whether these defenses impose significant energetic costs has only been tested in a handful of organisms. We tested for a metabolic cost of mounting an immune response in the male brown anole (Anolis sagrei), a lizard in which we have previously shown that reproduction causes a marked reduction in immune response to the novel antigen phytohaemagglutinin (PHA). We treated captive male anoles with a subcutaneous injection of either PHA, which induces an immune response that manifests as localized swelling, or saline vehicle as a control. Prior to injection and at 24, 48, and 72 hr post-injection, we measured swelling at the site of injection and whole-animal resting metabolic rate (RMR) using stop-flow respirometry. Although we detected a robust swelling response to PHA at 24, 48, and 72 hr post-injection, mean RMR did not differ between treatments at any of these time points. However, within the PHA treatment group, RMR increased with the extent of swelling, suggesting a variable metabolic cost that scales with the magnitude of the induced immune response. Although individual anoles varied considerably in the extent to which they responded to PHA challenge, our results suggest that an immune response can impose a substantial metabolic cost (potentially as much as 63% above baseline RMR) for individuals that do respond maximally. J. Exp. Zool. 9999A:XX-XX, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Globular adiponectin ameliorates metabolic insulin resistance via AMPK-mediated restoration of microvascular insulin responses

    Science.gov (United States)

    Zhao, Lina; Fu, Zhuo; Wu, Jing; Aylor, Kevin W; Barrett, Eugene J; Cao, Wenhong; Liu, Zhenqi

    2015-01-01

    Abstract Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance, and microvasculature plays a critical role in the regulation of insulin action in muscle. Here we tested whether adiponectin replenishment could improve metabolic insulin sensitivity in male rats fed a high-fat diet (HFD) via the modulation of microvascular insulin responses. Male Sprague–Dawley rats were fed either a HFD or low-fat diet (LFD) for 4 weeks. Small resistance artery myograph changes in tension, muscle microvascular recruitment and metabolic response to insulin were determined. Compared with rats fed a LFD, HFD feeding abolished the vasodilatory actions of globular adiponectin (gAd) and insulin on pre-constricted distal saphenous arteries. Pretreatment with gAd improved insulin responses in arterioles isolated from HFD rats, which was blocked by AMP-activated protein kinase (AMPK) inhibition. Similarly, HFD abolished microvascular responses to either gAd or insulin and decreased insulin-stimulated glucose disposal by ∼60%. However, supplementing gAd fully rescued insulin’s microvascular action and significantly improved the metabolic responses to insulin in HFD male rats and these actions were abolished by inhibition of either AMPK or nitric oxide production. We conclude that HFD induces vascular adiponectin and insulin resistance but gAd administration can restore vascular insulin responses and improve insulin’s metabolic action via an AMPK- and nitric oxide-dependent mechanism in male rats. Key points Adiponectin is an adipokine with anti-inflammatory and anti-diabetic properties. Hypoadiponectinaemia is closely associated with endothelial dysfunction and insulin resistance in obesity and diabetes. Insulin resistance is present in muscle microvasculature and this may contribute to decreased insulin delivery to, and action in, muscle. In this study we examined whether adiponectin ameliorates metabolic insulin resistance by affecting muscle

  6. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis

    OpenAIRE

    Huthmacher, Carola; Hoppe, Andreas; Bulik, Sascha; Holzh?tter, Hermann-Georg

    2010-01-01

    Abstract Background Despite enormous efforts to combat malaria the disease still afflicts up to half a billion people each year of which more than one million die. Currently no approved vaccine is available and resistances to antimalarials are widely spread. Hence, new antimalarial drugs are urgently needed. Results Here, we present a computational analysis of the metabolism of Plasmodium falciparum, the deadliest malaria pathogen. We assembled a compartmentalized metabolic model and predicte...

  7. Metabolic specifics of women with a positive history of gestational diabetes

    OpenAIRE

    Jarošová, Adéla

    2017-01-01

    Gestational diabetes (GDM) is a disorder of glucose metabolism arising for the first time in pregnancy and spontaneously receding after birth. The issue of GDM is very topical since, according to the latest update of diagnostic criteria, up to 17% of pregnant women is threatened by this disorder. The incidence of GDM correlates with the increasing prevalence of overweight/obesity and metabolic syndrome. It is proved that women who have had gestational diabetes have an enormously increased ris...

  8. Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase.

    Science.gov (United States)

    Choi, Hyun B; Gordon, Grant R J; Zhou, Ning; Tai, Chao; Rungta, Ravi L; Martinez, Jennifer; Milner, Teresa A; Ryu, Jae K; McLarnon, James G; Tresguerres, Martin; Levin, Lonny R; Buck, Jochen; MacVicar, Brian A

    2012-09-20

    Astrocytes are proposed to participate in brain energy metabolism by supplying substrates to neurons from their glycogen stores and from glycolysis. However, the molecules involved in metabolic sensing and the molecular pathways responsible for metabolic coupling between different cell types in the brain are not fully understood. Here we show that a recently cloned bicarbonate (HCO₃⁻) sensor, soluble adenylyl cyclase (sAC), is highly expressed in astrocytes and becomes activated in response to HCO₃⁻ entry via the electrogenic NaHCO₃ cotransporter (NBC). Activated sAC increases intracellular cAMP levels, causing glycogen breakdown, enhanced glycolysis, and the release of lactate into the extracellular space, which is subsequently taken up by neurons for use as an energy substrate. This process is recruited over a broad physiological range of [K⁺](ext) and also during aglycemic episodes, helping to maintain synaptic function. These data reveal a molecular pathway in astrocytes that is responsible for brain metabolic coupling to neurons. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Muscular and metabolic responses to different Nordic walking techniques, when style matters.

    Science.gov (United States)

    Pellegrini, Barbara; Boccia, Gennaro; Zoppirolli, Chiara; Rosa, Raffaela; Stella, Federico; Bortolan, Lorenzo; Rainoldi, Alberto; Schena, Federico

    2018-01-01

    Due to poling action and upper body engagement, Nordic walking (NW) has additional health benefits with respect to conventional walking. The aim of this study was to evaluate the differences in muscle activation and metabolic responses between NW, performed with the technique suggested by NW instructors, and with some modifications in the way to move upper limb and poles. Ten NW instructors volunteered to walk on a treadmill at 5.5 km•h-1 in five conditions: walking (W), Nordic walking (NW), NW with a weak poling action (NWweak), with straight-upper limbs moving the shoulders (NWshoulder) and with elbow flexion-extension pattern and shoulder freezed (NWelbow). Poling forces, body segments and poles movement, upper and lower body muscle activation, as well as metabolic parameters were measured.All modified NW techniques elicited lower muscular activation and metabolic responses with respect to the suggested NW technique (P walking instructors, sport technicians and practitioners should be aware that any deviation from the technique usually suggested might lead to lower benefits. However it is worth to note that any walking technique with poles elicits higher metabolic responses and muscular activation than walking.

  10. Changes in energy metabolism in response to 48 h of overfeeding and fasting in Caucasians and Pima Indians

    DEFF Research Database (Denmark)

    Weyer, C; Vozarova, B; Ravussin, E

    2001-01-01

    Differences in the metabolic response to overfeeding and starvation may confer susceptibility or resistance to obesity in humans. To further examine this hypothesis, we assessed the changes in 24 h energy metabolism in response to short-term overfeeding and fasting in Caucasians (C) and Pima...... Indians (I), a population with a very high propensity for obesity....

  11. Investigating the Cellular and Metabolic Responses of World-Class Canoeists Training: A Sportomics Approach

    Directory of Open Access Journals (Sweden)

    Wagner Santos Coelho

    2016-11-01

    Full Text Available (1 Background: We have been using the Sportomics approach to evaluate biochemical and hematological changes in response to exercise. The aim of this study was to evaluate the metabolic and hematologic responses of world-class canoeists during a training session; (2 Methods: Blood samples were taken at different points and analyzed for their hematological properties, activities of selected enzymes, hormones, and metabolites; (3 Results: Muscle stress biomarkers were elevated in response to exercise which correlated with modifications in the profile of white blood cells, where a leukocyte rise was observed after the canoe session. These results were accompanied by an increase in other exercise intensity parameters such as lactatemia and ammonemia. Adrenocorticotropic hormone and cortisol increased during the exercise sessions. The acute rise in both erythrocytes and white blood profile were probably due to muscle cell damage, rather than hepatocyte integrity impairment; (4 Conclusion: The cellular and metabolic responses found here, together with effective nutrition support, are crucial to understanding the effects of exercise in order to assist in the creation of new training and recovery planning. Also we show that Sportomics is a primal tool for training management and performance improvement, as well as to the understanding of metabolic response to exercise.

  12. The effects of body temperature and mass on the postprandial metabolic responses of the African egg-eating snakes Dasypeltis scabra and Dasypeltis inornata.

    Science.gov (United States)

    Greene, Sara; McConnachie, Suzanne; Secor, Stephen; Perrin, Mike

    2013-06-01

    African egg-eating snakes (Dasypeltis) feed only on freshly laid bird eggs which they perforate within their esophagus before swallowing the liquid contents and regurgitating the empty shell. Compared to a snake's typical intact meal, the liquid diet of Dasypeltis would expectedly generate a more moderate postprandial metabolic response and specific dynamic action (SDA). Free-ranging Dasypeltis feed over a range of ambient temperatures and thereby experience predicted temperature-dependent shifts in the duration and magnitude of their postprandial metabolic response. Such shifts would undoubtedly be shared among different species and age classes of Dasypeltis. To examine these expectations, we measured pre- and postprandial metabolic rates of adult Dasypeltis inornata and adult and neonate Dasypeltis scabra in response to liquid egg meals weighing 20% of snake body mass at 20, 25, 27, 30, and 32 °C. With an increase in body temperature, postprandial metabolic profiles of neonate and adult snakes became narrower and shorter in duration. Specific dynamic action varied among temperature treatments, increasing from 20 to 32 °C. Standard metabolic rate, postprandial peak metabolic rate, and SDA scaled with mass exponents that typically did not differ from 1.0. As expected, Dasypeltis digesting a liquid egg diet experienced a more modest postprandial response and SDA, expending on average only 10.6% of the meal's energy on the breakdown, absorption, and assimilation of the egg meal, whereas other colubrids consuming intact rodent or fish meals expend on average 16.3% of the meal's energy on digestion and assimilation. Actively foraging and feeding throughout the avian egg laying season enable Dasypeltis to survive when eggs are not available. The adaptive suite of traits that enable Dasypeltis to consume eggs of large relative size and ingest only the liquid contents may also be joined by physiological adaptations specific to their liquid diet and extended bouts of

  13. Role of Glucocorticoids in the Response to Unloading of Muscle Protein and Amino Acid Metabolism

    Science.gov (United States)

    Tischler, M. E.; Jaspers, S. R.

    1985-01-01

    Intact control (weight bearing) and suspended rats gained weight at a similar rate during a 6 day period. Adrenaectomized (adx) weight bearing rats gained less weight during this period while adrenalectomized suspended rats showed no significant weight gain. Cortisol treatment of both of these groups of animals caused a loss of body weight. Results from these studies show several important findings: (1) Metabolic changes in the extensor digitorum longus muscle of suspended rats are due primarily to increased circulating gluccorticoids; (2) Metabolic changes in the soleus due to higher steroid levels are probably potentiated by greater numbers of receptors; and (3) Not all metabolic responses in the unloaded soleus muscle are due to direct action of elevated glucocorticoids or increased sensitivity to these hormones.

  14. Response of melanoma tumor phospholipid metabolism to chloroethyle nitrosourea: a high resolution proton NMR spectroscopy study.

    Science.gov (United States)

    Morvan, Daniel; Demidem, Aïcha; Madelmont, Jean-Claude

    2003-07-01

    Phospholipid metabolism is tightly involved in tumor growth regulation and tumor cell survival. The response of phospholipid metabolism to chloroethyle nitrosourea treatment is investigated in a murine B16 melanoma model. Measurements of phospholipid derivatives are performed on intact tumor tissue samples using one- and two-dimensional proton NMR spectroscopy. During the tumor growth inhibition phase under treatment, tumors overexpress phosphocholine, phosphoethanolamine, glycerophosphocholine and glycerophosphoethanolamine, whereas phosphatidylcholine and phosphatidylethanolamine levels are maintained to control levels. During re-growth, which remained quantitatively much below control growth, chloroethyle nitrosourea-treated melanoma tumors overexpress phosphocholine and phosphoethanolamine only. In treated melanoma, phosphatidylcholine levels show an inverse relationship with tumor growth rates. In conclusion, chloroethyle nitrosourea-treated melanoma tumors maintain their phosphatidylcholine levels and exhibit transformed phospholipid metabolism phenotype, by mechanisms that could participate in tumor cell survival.

  15. Specific Ion Effects in Thermo-Responsive Polymer Solutions

    DEFF Research Database (Denmark)

    Moghaddam, Saeed Zajforoushan

    Stimuli-responsive polymers are macromolecules that undergo a significant change in conformation and interactions in response to an external stimulus such as temperature and addition of salts. The applications of these materials are numerous ranging from biomedical applications to fabrication of ...

  16. Identification of stress responsive genes by studying specific relationships between mRNA and protein abundance.

    Science.gov (United States)

    Morimoto, Shimpei; Yahara, Koji

    2018-03-01

    Protein expression is regulated by the production and degradation of mRNAs and proteins but the specifics of their relationship are controversial. Although technological advances have enabled genome-wide and time-series surveys of mRNA and protein abundance, recent studies have shown paradoxical results, with most statistical analyses being limited to linear correlation, or analysis of variance applied separately to mRNA and protein datasets. Here, using recently analyzed genome-wide time-series data, we have developed a statistical analysis framework for identifying which types of genes or biological gene groups have significant correlation between mRNA and protein abundance after accounting for potential time delays. Our framework stratifies all genes in terms of the extent of time delay, conducts gene clustering in each stratum, and performs a non-parametric statistical test of the correlation between mRNA and protein abundance in a gene cluster. Consequently, we revealed stronger correlations than previously reported between mRNA and protein abundance in two metabolic pathways. Moreover, we identified a pair of stress responsive genes ( ADC17 and KIN1 ) that showed a highly similar time series of mRNA and protein abundance. Furthermore, we confirmed robustness of the analysis framework by applying it to another genome-wide time-series data and identifying a cytoskeleton-related gene cluster (keratin 18, keratin 17, and mitotic spindle positioning) that shows similar correlation. The significant correlation and highly similar changes of mRNA and protein abundance suggests a concerted role of these genes in cellular stress response, which we consider provides an answer to the question of the specific relationships between mRNA and protein in a cell. In addition, our framework for studying the relationship between mRNAs and proteins in a cell will provide a basis for studying specific relationships between mRNA and protein abundance after accounting for potential

  17. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    Directory of Open Access Journals (Sweden)

    Katsumi Iizuka

    2017-02-01

    Full Text Available Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase, fructolysis (Glut5, ketohexokinase, and lipogenesis (acetyl CoA carboxylase, fatty acid synthase. ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome.

  18. Dynamic Responses of Phosphorus Metabolism to Acute and Chronic Dietary Phosphorus-Limitation in Daphnia

    Directory of Open Access Journals (Sweden)

    Nicole D. Wagner

    2017-06-01

    Full Text Available Food quality is highly dynamic within lake ecosystems and varies spatially and temporally over the growing season. Consumers may need to continuously adjust their metabolism in response to this variation in dietary nutrient content. However, the rates of metabolic responses to changes in food nutrient content has received little direct study. Here, we examine responses in two metabolic phosphorus (P pools, ribonucleic acids (RNA and adenosine triphosphate (ATP, along with body mass and body P content in Daphnia magna exposed to chronic and acute dietary P-limitation. First, we examined food quality effects on animals consuming different food carbon (C:P quality over a 14 day period. Then, we raised daphnids on one food quality for 4 days, switched them to contrasting dietary treatments, and measured changes in their metabolic responses at shorter time-scales (over 48 h. Animal P, RNA, and ATP content all changed through ontogeny with adults containing relatively less of these pools with increasing body mass. Irrespective of age, Daphnia consuming high C:P diets had lower body %P, %RNA, %ATP, and mass compared to animals eating low C:P diets. Diet switching experiments revealed diet dependent changes in body %P, %RNA, %ATP, and animal mass within 48 h. We found that Daphnia switched from low to high C:P diets had some metabolic buffering capacity with decreases in body %P occurring after 24 h but mass remaining similar to initial diet conditions for 36 h after the diet switch. Switching Daphnia from low to high C:P diets caused a decrease in the RNA:P ratio after 48 h. Daphnia switched from high to low C:P diets increased their body P, RNA, and ATP content within 8–24 h. This switch from high to low C:P diets also led to increased RNA:P ratios in animal bodies. Overall, our study revealed that consumer P metabolism reflects both current and past diet due to more dynamic and rapid changes in P biochemistry than total body mass. This metabolic

  19. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting.

    Directory of Open Access Journals (Sweden)

    Alyaa M Abdel-Haleem

    2018-01-01

    Full Text Available Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale metabolic models (GeMMs of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1, choline, and pantothenate (vitamin B5 metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  20. Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress.

    Science.gov (United States)

    Baumgard, L H; Rhoads, R P

    2012-06-01

    Heat stress compromises efficient animal production by marginalizing nutrition, management, and genetic selection efforts to maximize performance endpoints. Modifying farm infrastructure has yielded modest success in mitigating heat stress-related losses, yet poor production during the summer remains arguably the costliest issue facing livestock producers. Reduced output (e.g., milk yield and muscle growth) during heat stress was traditionally thought to result from decreased nutrient intake (i.e., a classic biological response shared by all animals during environmental-induced hyperthermia). Our recent observations have begun to challenge this belief and indicate heat-stressed animals employ novel homeorhetic strategies to direct metabolic and fuel selection priorities independently of nutrient intake or energy balance. Alterations in systemic physiology support a shift in carbohydrate metabolism, evident by increased basal and stimulated circulating insulin concentrations. Perhaps most intriguing given the energetic shortfall of the heat-stressed animal is the apparent lack of basal adipose tissue mobilization coupled with a reduced responsiveness to lipolytic stimuli. Thus, the heat stress response markedly alters postabsorptive carbohydrate, lipid, and protein metabolism independently of reduced feed intake through coordinated changes in fuel supply and utilization by multiple tissues. Interestingly, the systemic, cellular, and molecular changes appear conserved amongst different species and physiological states. Ultimately, these changes result in the reprioritization of fuel selection during heat stress, which appears to be primarily responsible for reduced ruminant animal productivity during the warm summer months.

  1. On the Evolution of Specificity in Members of the Yeast Amino Acid Transporter Family as Parts of Specific Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Christos Gournas

    2018-05-01

    Full Text Available In the recent years, molecular modeling and substrate docking, coupled with biochemical and genetic analyses have identified the substrate-binding residues of several amino acid transporters of the yeast amino acid transporter (YAT family. These consist of (a residues conserved across YATs that interact with the invariable part of amino acid substrates and (b variable residues that interact with the side chain of the amino acid substrate and thus define specificity. Secondary structure sequence alignments showed that the positions of these residues are conserved across YATs and could thus be used to predict the specificity of YATs. Here, we discuss the potential of combining molecular modeling and structural alignments with intra-species phylogenetic comparisons of transporters, in order to predict the function of uncharacterized members of the family. We additionally define some orphan branches which include transporters with potentially novel, and to be characterized specificities. In addition, we discuss the particular case of the highly specific l-proline transporter, PrnB, of Aspergillus nidulans, whose gene is part of a cluster of genes required for the utilization of proline as a carbon and/or nitrogen source. This clustering correlates with transcriptional regulation of these genes, potentially leading to the efficient coordination of the uptake of externally provided l-Pro via PrnB and its enzymatic degradation in the cell.

  2. Apolipoprotein E-specific innate immune response in astrocytes from targeted replacement mice

    Directory of Open Access Journals (Sweden)

    Montine Thomas J

    2006-04-01

    Full Text Available Abstract Background Inheritance of the three different alleles of the human apolipoprotein (apo E gene (APOE are associated with varying risk or clinical outcome from a variety of neurologic diseases. ApoE isoform-specific modulation of several pathogenic processes, in addition to amyloid β metabolism in Alzheimer's disease, have been proposed: one of these is innate immune response by glia. Previously we have shown that primary microglia cultures from targeted replacement (TR APOE mice have apoE isoform-dependent innate immune activation and paracrine damage to neurons that is greatest with TR by the ε4 allele (TR APOE4 and that derives from p38 mitogen-activated protein kinase (p38MAPK activity. Methods Primary cultures of TR APOE2, TR APOE3 and TR APOE4 astrocytes were stimulated with lipopolysaccharide (LPS. ApoE secretion, cytokine production, and nuclear factor-kappa B (NF-κB subunit activity were measured and compared. Results Here we showed that activation of primary astrocytes from TR APOE mice with LPS led to TR APOE-dependent differences in cytokine secretion that were greatest in TR APOE2 and that were associated with differences in NF-κB subunit activity. Conclusion Our results suggest that LPS activation of innate immune response in TR APOE glia results in opposing outcomes from microglia and astrocytes as a result of TR APOE-dependent activation of p38MAPK or NF-κB signaling in these two cell types.

  3. Carbohydrate restriction improves the features of Metabolic Syndrome. Metabolic Syndrome may be defined by the response to carbohydrate restriction.

    Science.gov (United States)

    Volek, Jeff S; Feinman, Richard D

    2005-11-16

    surprising but has not been explicitly stated before. The known effects of CHO-induced hypertriglyceridemia, the HDL-lowering effect of low fat, high CHO interventions and the obvious improvement in glucose and insulin from CHO restriction should have made this evident. In addition, recent studies suggest that a subset of MetS, the ratio of TAG/HDL, is a good marker for insulin resistance and risk of CVD, and this indicator is reliably reduced by CHO restriction and exacerbated by high CHO intake. Inability to make this connection in the past has probably been due to the fact that individual responses have been studied in isolation as well as to the emphasis of traditional therapeutic approaches on low fat rather than low CHO. We emphasize that MetS is not a disease but a collection of markers. Individual physicians must decide whether high LDL, or other risk factors are more important than the features of MetS in any individual case but if MetS is to be considered it should be recognized that reducing CHO will bring improvement. Response of symptoms to CHO restriction might thus provide a new experimental criterion for MetS in the face of on-going controversy about a useful definition. As a guide to future research, the idea that control of insulin metabolism by CHO intake is, to a first approximation, the underlying mechanism in MetS is a testable hypothesis.

  4. Carbohydrate restriction improves the features of Metabolic Syndrome. Metabolic Syndrome may be defined by the response to carbohydrate restriction

    Directory of Open Access Journals (Sweden)

    Feinman Richard D

    2005-11-01

    conclusion is probably not surprising but has not been explicitly stated before. The known effects of CHO-induced hypertriglyceridemia, the HDL-lowering effect of low fat, high CHO interventions and the obvious improvement in glucose and insulin from CHO restriction should have made this evident. In addition, recent studies suggest that a subset of MetS, the ratio of TAG/HDL, is a good marker for insulin resistance and risk of CVD, and this indicator is reliably reduced by CHO restriction and exacerbated by high CHO intake. Inability to make this connection in the past has probably been due to the fact that individual responses have been studied in isolation as well as to the emphasis of traditional therapeutic approaches on low fat rather than low CHO. We emphasize that MetS is not a disease but a collection of markers. Individual physicians must decide whether high LDL, or other risk factors are more important than the features of MetS in any individual case but if MetS is to be considered it should be recognized that reducing CHO will bring improvement. Response of symptoms to CHO restriction might thus provide a new experimental criterion for MetS in the face of on-going controversy about a useful definition. As a guide to future research, the idea that control of insulin metabolism by CHO intake is, to a first approximation, the underlying mechanism in MetS is a testable hypothesis.

  5. Genome-resolved metaproteomic characterization of preterm infant gut microbiota development reveals species-specific metabolic shifts and variabilities during early life.

    Science.gov (United States)

    Xiong, Weili; Brown, Christopher T; Morowitz, Michael J; Banfield, Jillian F; Hettich, Robert L

    2017-07-10

    Establishment of the human gut microbiota begins at birth. This early-life microbiota development can impact host physiology during infancy and even across an entire life span. However, the functional stability and population structure of the gut microbiota during initial colonization remain poorly understood. Metaproteomics is an emerging technology for the large-scale characterization of metabolic functions in complex microbial communities (gut microbiota). We applied a metagenome-informed metaproteomic approach to study the temporal and inter-individual differences of metabolic functions during microbial colonization of preterm human infants' gut. By analyzing 30 individual fecal samples, we identified up to 12,568 protein groups for each of four infants, including both human and microbial proteins. With genome-resolved matched metagenomics, proteins were confidently identified at the species/strain level. The maximum percentage of the proteome detected for the abundant organisms was ~45%. A time-dependent increase in the relative abundance of microbial versus human proteins suggested increasing microbial colonization during the first few weeks of early life. We observed remarkable variations and temporal shifts in the relative protein abundances of each organism in these preterm gut communities. Given the dissimilarity of the communities, only 81 microbial EggNOG orthologous groups and 57 human proteins were observed across all samples. These conserved microbial proteins were involved in carbohydrate, energy, amino acid and nucleotide metabolism while conserved human proteins were related to immune response and mucosal maturation. We identified seven proteome clusters for the communities and showed infant gut proteome profiles were unstable across time and not individual-specific. Applying a gut-specific metabolic module (GMM) analysis, we found that gut communities varied primarily in the contribution of nutrient (carbohydrates, lipids, and amino acids

  6. Liver-Specific Deletion of Protein-Tyrosine Phosphatase 1B (PTP1B) Improves Metabolic Syndrome and Attenuates Diet-Induced Endoplasmic Reticulum Stress

    Science.gov (United States)

    Delibegovic, Mirela; Zimmer, Derek; Kauffman, Caitlin; Rak, Kimberly; Hong, Eun-Gyoung; Cho, You-Ree; Kim, Jason K.; Kahn, Barbara B.; Neel, Benjamin G.; Bence, Kendra K.

    2009-01-01

    OBJECTIVE—The protein tyrosine phosphatase PTP1B is a negative regulator of insulin signaling; consequently, mice deficient in PTP1B are hypersensitive to insulin. Because PTP1B−/− mice have diminished fat stores, the extent to which PTP1B directly regulates glucose homeostasis is unclear. Previously, we showed that brain-specific PTP1B−/− mice are protected against high-fat diet–induced obesity and glucose intolerance, whereas muscle-specific PTP1B−/− mice have increased insulin sensitivity independent of changes in adiposity. Here we studied the role of liver PTP1B in glucose homeostasis and lipid metabolism. RESEARCH DESIGN AND METHODS—We analyzed body mass/adiposity, insulin sensitivity, glucose tolerance, and lipid metabolism in liver-specific PTP1B−/− and PTP1Bfl/fl control mice, fed a chow or high-fat diet. RESULTS—Compared with normal littermates, liver-specific PTP1B−/− mice exhibit improved glucose homeostasis and lipid profiles, independent of changes in adiposity. Liver-specific PTP1B−/− mice have increased hepatic insulin signaling, decreased expression of gluconeogenic genes PEPCK and G-6-Pase, enhanced insulin-induced suppression of hepatic glucose production, and improved glucose tolerance. Liver-specific PTP1B−/− mice exhibit decreased triglyceride and cholesterol levels and diminished expression of lipogenic genes SREBPs, FAS, and ACC. Liver-specific PTP1B deletion also protects against high-fat diet–induced endoplasmic reticulum stress response in vivo, as evidenced by decreased phosphorylation of p38MAPK, JNK, PERK, and eIF2α and lower expression of the transcription factors C/EBP homologous protein and spliced X box-binding protein 1. CONCLUSIONS—Liver PTP1B plays an important role in glucose and lipid metabolism, independent of alterations in adiposity. Inhibition of PTP1B in peripheral tissues may be useful for the treatment of metabolic syndrome and reduction of cardiovascular risk in addition to

  7. Presentation : Development of an age-specific genome-scale model of skeletal muscle metabolism

    NARCIS (Netherlands)

    Cabbia, A.; van Riel, N.A.W.

    2017-01-01

    Skeletal myocytes are among the most metabolically active cell types, implicated in nutrient balance, contributing to the insulin-stimulated clearance of glucose from the blood, and secreting myokines that contribute in regulating inflammation and the ageing process. The loss of muscle mass and

  8. [Sensitivity and specificity of abdominal adiposity with metabolic syndrome in the elderly].

    Science.gov (United States)

    Alvero-Cruz, José Ramón; Fernández Vázquez, Rosalía; García Vega, María Del Mar; García Lavigne, Juan Antonio; Rodríguez Linares, María Victoria; Martínez Blanco, Javier

    It is recognised that abdominal adiposity is associated with cardiovascular risk factors, such as intolerance to glucose, hypertension and dyslipidaemia. The objective of the present study was to assess the relationship of trunk fat and visceral fat index, obtained by anthropometric and bioelectrical impedance, with metabolic syndrome (SM) in an elderly population. The study included 208 subjects (78 men and 130 women) with a mean age of 82.5 years. Abdominal obesity was assessed by anthropometry and bioelectrical impedance. ROC curves were calculated in order to assess the ability of these variables to diagnose metabolic syndrome. There are differences between men and women in body mass index, waist to height ratio, waist circumference, and bioelectrical impedance measurements as trunk fat and visceral fat (pvisceral fat ratio in men and women, respectively. There are different levels of predictive ability for metabolic syndrome according to gender. Trunk fat and visceral fat index and anthropometric measures have higher predictive ability for metabolic syndrome in men than in women. Copyright © 2016 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Metabolic responses to high protein diet in Korean elite bodybuilders with high-intensity resistance exercise

    Directory of Open Access Journals (Sweden)

    Choue Ryowon

    2011-07-01

    Full Text Available Abstract Background High protein diet has been known to cause metabolic acidosis, which is manifested by increased urinary excretion of nitrogen and calcium. Bodybuilders habitually consumed excessive dietary protein over the amounts recommended for them to promote muscle mass accretion. This study investigated the metabolic response to high protein consumption in the elite bodybuilders. Methods Eight elite Korean bodybuilders within the age from 18 to 25, mean age 21.5 ± 2.6. For data collection, anthropometry, blood and urinary analysis, and dietary assessment were conducted. Results They consumed large amounts of protein (4.3 ± 1.2 g/kg BW/day and calories (5,621.7 ± 1,354.7 kcal/day, as well as more than the recommended amounts of vitamins and minerals, including potassium and calcium. Serum creatinine (1.3 ± 0.1 mg/dl and potassium (5.9 ± 0.8 mmol/L, and urinary urea nitrogen (24.7 ± 9.5 mg/dl and creatinine (2.3 ± 0.7 mg/dl were observed to be higher than the normal reference ranges. Urinary calcium (0.3 ± 0.1 mg/dl, and phosphorus (1.3 ± 0.4 mg/dl were on the border of upper limit of the reference range and the urine pH was in normal range. Conclusions Increased urinary excretion of urea nitrogen and creatinine might be due to the high rates of protein metabolism that follow high protein intake and muscle turnover. The obvious evidence of metabolic acidosis in response to high protein diet in the subjects with high potassium intake and intensive resistance exercise were not shown in this study results. However, this study implied that resistance exercise with adequate mineral supplementation, such as potassium and calcium, could reduce or offset the negative effects of protein-generated metabolic changes. This study provides preliminary information of metabolic response to high protein intake in bodybuilders who engaged in high-intensity resistance exercise. Further studies will be needed to determine the effects of the intensity

  10. Deciphering the mechanisms involved in Portulaca oleracea (C4) response to drought: metabolic changes including crassulacean acid-like metabolism induction and reversal upon re-watering.

    Science.gov (United States)

    D'Andrea, Rodrigo Matías; Andreo, Carlos Santiago; Lara, María Valeria

    2014-11-01

    Portulaca oleracea is a C(4) plant; however, under drought it can change its carbon fixation metabolism into a crassulacean acid metabolism (CAM)-like one. While the C(3) -CAM shift is well known, the C(4) -CAM transition has only been described in Portulaca. Here, a CAM-like metabolism was induced in P. oleracea by drought and then reversed by re-watering. Physiological and biochemical approaches were undertaken to evaluate the drought and recovery responses. In CAM-like plants, chlorophyll fluorescence parameters were transitory affected and non-radiative energy dissipation mechanisms were induced. Induction of flavonoids, betalains and antioxidant machinery may be involved in photosynthetic machinery protection. Metabolic analysis highlights a clear metabolic shift, when a CAM-like metabolism is induced and then reversed. Increases in nitrogenous compounds like free amino acids and urea, and of pinitol could contribute to withstand drought. Reciprocal variations in arginase and urease in drought-stressed and in re-watered plants suggest urea synthesis is strictly regulated. Recovery of C(4) metabolism was accounted by CO(2) assimilation pattern and malate levels. Increases in glycerol and in polyamines would be of importance of re-watered plants. Collectively, in P. oleracea multiple strategies, from induction of several metabolites to the transitory development of a CAM-like metabolism, participate to enhance its adaptation to drought. © 2014 Scandinavian Plant Physiology Society.

  11. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    Directory of Open Access Journals (Sweden)

    Helin Tan

    Full Text Available Canola (Brassica napus is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld, phloem-peeling (Pe, and selective silique darkening (Sd. Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA, organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms

  12. Effect of dietary restriction on immune response of laboratory mice divergently selected for basal metabolic rate.

    Science.gov (United States)

    Książek, Aneta; Konarzewski, Marek

    2012-01-01

    To study whether dietary restriction (DR; 70% of ad lib. feeding)-elicited immunosuppression results from the trade-off between the costs of mounting an immune response and the metabolic costs of maintenance, we subjected mice from two divergent lines selected for high basal metabolic rate (H-BMR) and low BMR (L-BMR) to 4 wk of DR and then challenged them with keyhole limpet hemocyanin (KLH) antigen. Those line types differ genetically with respect to BMR and to the mass of metabolically expensive internal organs, which are larger in H-BMR mice. In mice of both line types, DR resulted in a significant reduction of body mass, an immune response, and the downsizing of spleen, lymph nodes, thymus, heart, and kidneys but not small intestines. DR resulted in a greater reduction of the spleen and lymph nodes in mice of the H-BMR line type, whereas the thymus was more affected in L-BMR line type. In contrast, immunization resulted in an increase of liver mass in DR mice of both line types. A comparison of the results of current and earlier studies on the same mouse line types suggests that metabolic trade-offs involving the costs of an immune response are more apparent when animals are forced to increase energy demands (e.g., by cold exposure) compared to when energy demands are decreased through DR. Our findings also suggest that divelrgent selection on BMR resulted in between-line-type differences in T-cell- and B-cell-mediated types of an immune response. More generally, our results indicate that production of a wide repertoire of antibodies is not correlated with high BMR.

  13. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Science.gov (United States)

    Xiao, Yang; Kwong, Mandy; Daemen, Anneleen; Belvin, Marcia; Liang, Xiaorong; Hatzivassiliou, Georgia; O'Brien, Thomas

    2016-01-01

    Nicotinamide adenine dinucleotide (NAD) is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM) to nicotinamide mononucleotide (NMN), the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334), one that shows intermediate sensitivity (NCI-H441), and one that is insensitive (LC-KJ). Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP) and had lower reactive oxygen species (ROS) levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  14. Metabolic Response to NAD Depletion across Cell Lines Is Highly Variable.

    Directory of Open Access Journals (Sweden)

    Yang Xiao

    Full Text Available Nicotinamide adenine dinucleotide (NAD is a cofactor involved in a wide range of cellular metabolic processes and is a key metabolite required for tumor growth. NAMPT, nicotinamide phosphoribosyltransferase, which converts nicotinamide (NAM to nicotinamide mononucleotide (NMN, the immediate precursor of NAD, is an attractive therapeutic target as inhibition of NAMPT reduces cellular NAD levels and inhibits tumor growth in vivo. However, there is limited understanding of the metabolic response to NAD depletion across cancer cell lines and whether all cell lines respond in a uniform manner. To explore this we selected two non-small cell lung carcinoma cell lines that are sensitive to the NAMPT inhibitor GNE-617 (A549, NCI-H1334, one that shows intermediate sensitivity (NCI-H441, and one that is insensitive (LC-KJ. Even though NAD was reduced in all cell lines there was surprising heterogeneity in their metabolic response. Both sensitive cell lines reduced glycolysis and levels of di- and tri-nucleotides and modestly increased oxidative phosphorylation, but they differed in their ability to combat oxidative stress. H1334 cells activated the stress kinase AMPK, whereas A549 cells were unable to activate AMPK as they contain a mutation in LKB1, which prevents activation of AMPK. However, A549 cells increased utilization of the Pentose Phosphate pathway (PPP and had lower reactive oxygen species (ROS levels than H1334 cells, indicating that A549 cells are better able to modulate an increase in oxidative stress. Inherent resistance of LC-KJ cells is associated with higher baseline levels of NADPH and a delayed reduction of NAD upon NAMPT inhibition. Our data reveals that cell lines show heterogeneous response to NAD depletion and that the underlying molecular and genetic framework in cells can influence the metabolic response to NAMPT inhibition.

  15. Metabolic cost of neuronal information in an empirical stimulus-response model

    Czech Academy of Sciences Publication Activity Database

    Košťál, Lubomír; Lánský, Petr; McDonnell, M.D.

    2013-01-01

    Roč. 107, č. 3 (2013), s. 355-365 ISSN 0340-1200 R&D Projects: GA ČR(CZ) GBP304/12/G069; GA ČR(CZ) GAP103/11/0282; GA ČR(CZ) GPP103/12/P558 Institutional support: RVO:67985823 Keywords : information capacity * metabolic cost * stimulus-response curve Subject RIV: FH - Neurology Impact factor: 1.933, year: 2013

  16. Exercise electrocardiographic responses and serum cystatin C levels among metabolic syndrome patients without overt diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Tanindi A

    2011-02-01

    Full Text Available Asli Tanindi1 Hilal Olgun1 Ayse Tuncel2 Bulent Celik3 Hatice Pasaoglu2 Bulent Boyaci11Department of Cardiology, 2Department of Medical Biochemistry, Faculty of Medicine, 3Department of Statistics, Faculty of Health Sciences, Gazi University, Ankara, TurkeyObjectives: An impaired heart rate response during exercise (chronotropic incompetence and an impaired heart rate recovery (HRR after exercise are predictors of cardiovascular risk and mortality. Cystatin C is a novel marker for cardiovascular disease. We aimed to investigate exercise electrocardiographic responses in patients with metabolic syndrome who were without overt diabetes mellitus, in addition to the association of serum cystatin C levels with the exercise electrocardiographic test results.Method: Forty-three consecutive patients admitted to a cardiology outpatient clinic without angina pectoris were recruited if they met criteria for metabolic syndrome but did not have overt diabetes mellitus. Serum cystatin C levels were measured, and all participants underwent exercise electrocardiographic testing. Patients who were found to have ischemia had a coronary angiography procedure.Results: The mean cystatin C level of patients was higher in metabolic syndrome group than healthy controls (610.1 ± 334.02 vs 337.3 ± 111.01 µg/L; P < 0.001. The percentage of patients with ischemia confirmed by coronary angiography was 13.9% in the metabolic syndrome group. Cystatin C levels in the ischemic patients of the metabolic syndrome group were higher than that in nonischemic patients (957.00 ± 375.6 vs 553.8 ± 295.3 µg /L; P = 0.005. Chronotropic incompetence was observed in 30.2% of the patients with metabolic syndrome compared with 16.7% in the control group (P = 0.186. Chronotropic response indices were 0.8 ± 0.18 versus 0.9 ± 0.10 for the two groups, respectively (P = 0.259. HRR was significantly lower in the metabolic syndrome patients compared with the controls (20.1 ± 8.01 vs 25.2

  17. Metabolomics Reveals Metabolically Healthy and Unhealthy Obese Individuals Differ in their Response to a Caloric Challenge.

    Directory of Open Access Journals (Sweden)

    Flavia Badoud

    Full Text Available To determine if metabolically healthy obese (MHO individuals have a different metabolic response to a standardized diet compared to lean healthy (LH and metabolically unhealthy obese (MUO individuals.Thirty adults (35-70 yrs were classified as LH, MHO, and MUO according to anthropometric and clinical measurements. Participants consumed a standardized high calorie meal (~1330 kcal. Blood glucose and insulin were measured at fasting, and 15, 30, 60, 90 and 120 min postprandially. Additional blood samples were collected for the targeted analysis of amino acids (AAs and derivatives, and fatty acids (FAs.The postprandial response (i.e., area under the curve, AUC for serum glucose and insulin were similar between MHO and LH individuals, and significantly lower than MUO individuals (p < 0.05. Minor differences were found in postprandial responses for AAs between MHO and MUO individuals, while three polyunsaturated FAs (linoleic acid, γ-linolenic acid, arachidonic acid showed smaller changes in serum after the meal in MHO individuals compared to MUO. Fasting levels for various AAs (notably branched-chain AA and FAs (e.g., saturated myristic and palmitic acids were found to correlate with glucose and insulin AUC.MHO individuals show preserved insulin sensitivity and a greater ability to adapt to a caloric challenge compared to MUO individuals.

  18. Sex-Specific Response Strategies in Mental Rotation

    Science.gov (United States)

    Hirnstein, Marco; Bayer, Ulrike; Hausmann, Markus

    2009-01-01

    The present study investigated whether the marked sex difference in the original mental rotation test (MRT) is simply a result of sex differences in response strategies. Thirty-four participants (17 males, 17 females) completed the revised Vandenberg and Kuse MRT [Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C.…

  19. Court Decisions Specific to Public School Responses to Student Concussions

    Science.gov (United States)

    Zirkel, Perry A.

    2016-01-01

    This article provides an up-to-date and comprehensive canvassing of the judicial case law concerning the responses to students with concussions in the public school context. The two categories of court decisions are (a) those concerning continued participation in interscholastic athletics, referred to under the rubric of "return to play"…

  20. Cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in obese Zucker rats.

    Science.gov (United States)

    Overton, J M; Williams, T D; Chambers, J B; Rashotte, M E

    2001-04-01

    The primary purpose of the study was to test the hypothesis that reduced leptin signaling is necessary to elicit the cardiovascular and metabolic responses to fasting. Lean (Fa/?; normal leptin receptor; n = 7) and obese (fa/fa; mutated leptin receptor; n = 8) Zucker rats were instrumented with telemetry transmitters and housed in metabolic chambers at 23 degrees C (12:12-h light-dark cycle) for continuous (24 h) measurement of metabolic and cardiovascular variables. Before fasting, mean arterial pressure (MAP) was higher (MAP: obese = 103 +/- 3; lean = 94 +/- 1 mmHg), whereas oxygen consumption (VO(2): obese = 16.5 +/- 0.3; lean = 18.6 +/- 0.2 ml. min(-1). kg(-0.75)) was lower in obese Zucker rats compared with their lean controls. Two days of fasting had no effect on MAP in either lean or obese Zucker rats, whereas VO(2) (obese = -3.1 +/- 0.3; lean = -2.9 +/- 0.1 ml. min(-1). kg(-0.75)) and heart rate (HR: obese = -56 +/- 4; lean = -42 +/- 4 beats/min) were decreased markedly in both groups. Fasting increased HR variability both in lean (+1.8 +/- 0.4 ms) and obese (+2.6 +/- 0.3 ms) Zucker rats. After a 6-day period of ad libitum refeeding, when all parameters had returned to near baseline levels, the cardiovascular and metabolic responses to 2 days of thermoneutrality (ambient temperature 29 degrees C) were determined. Thermoneutrality reduced VO(2) (obese = -2.4 +/- 0.2; lean = -3.3 +/- 0.2 ml. min(-1). kg(-0.75)), HR (obese = -46 +/- 5; lean = -55 +/- 4 beats/min), and MAP (obese = -13 +/- 6; lean = -10 +/- 1 mmHg) similarly in lean and obese Zucker rats. The results indicate that the cardiovascular and metabolic responses to fasting and thermoneutrality are conserved in Zucker rats and suggest that intact leptin signaling may not be requisite for the metabolic and cardiovascular responses to reduced energy intake.

  1. Aryl hydrocarbon receptor signaling modulates antiviral immune responses: ligand metabolism rather than chemical source is the stronger predictor of outcome.

    Science.gov (United States)

    Boule, Lisbeth A; Burke, Catherine G; Jin, Guang-Bi; Lawrence, B Paige

    2018-01-29

    The aryl hydrocarbon receptor (AHR) offers a compelling target to modulate the immune system. AHR agonists alter adaptive immune responses, but the consequences differ across studies. We report here the comparison of four agents representing different sources of AHR ligands in mice infected with influenza A virus (IAV): TCDD, prototype exogenous AHR agonist; PCB126, pollutant with documented human exposure; ITE, novel pharmaceutical; and FICZ, degradation product of tryptophan. All four compounds diminished virus-specific IgM levels and increased the proportion of regulatory T cells. TCDD, PCB126 and ITE, but not FICZ, reduced virus-specific IgG levels and CD8 + T cell responses. Similarly, ITE, PCB126, and TCDD reduced Th1 and Tfh cells, whereas FICZ increased their frequency. In Cyp1a1-deficient mice, all compounds, including FICZ, reduced the response to IAV. Conditional Ahr knockout mice revealed that all four compounds require AHR within hematopoietic cells. Thus, differences in the immune response to IAV likely reflect variances in quality, magnitude, and duration of AHR signaling. This indicates that binding affinity and metabolism may be stronger predictors of immune effects than a compound's source of origin, and that harnessing AHR will require finding a balance between dampening immune-mediated pathologies and maintaining sufficient host defenses against infection.

  2. The structure of wheat bread influences the postprandial metabolic response in healthy men.

    Science.gov (United States)

    Eelderink, Coby; Noort, Martijn W J; Sozer, Nesli; Koehorst, Martijn; Holst, Jens J; Deacon, Carolyn F; Rehfeld, Jens F; Poutanen, Kaisa; Vonk, Roel J; Oudhuis, Lizette; Priebe, Marion G

    2015-10-01

    Postprandial high glucose and insulin responses after starchy food consumption, associated with an increased risk of developing several metabolic diseases, could possibly be improved by altering food structure. We investigated the influence of a compact food structure; different wheat products with a similar composition were created using different processing conditions. The postprandial glucose kinetics and metabolic response to bread with a compact structure (flat bread, FB) was compared to bread with a porous structure (control bread, CB) in a randomized, crossover study with ten healthy male volunteers. Pasta (PA), with a very compact structure, was used as the control. The rate of appearance of exogenous glucose (RaE), endogenous glucose production, and glucose clearance rate (GCR) was calculated using stable isotopes. Furthermore, postprandial plasma concentrations of glucose, insulin, several intestinal hormones and bile acids were analyzed. The structure of FB was considerably more compact compared to CB, as confirmed by microscopy, XRT analysis (porosity) and density measurements. Consumption of FB resulted in lower peak glucose, insulin and glucose-dependent insulinotropic polypeptide (ns) responses and a slower initial RaE compared to CB. These variables were similar to the PA response, except for RaE which remained slower over a longer period after PA consumption. Interestingly, the GCR after FB was higher than expected based on the insulin response, indicating increased insulin sensitivity or insulin-independent glucose disposal. These results demonstrate that the structure of wheat bread can influence the postprandial metabolic response, with a more compact structure being more beneficial for health. Bread-making technology should be further explored to create healthier products.

  3. L-carnitine: a partner between immune response and lipid metabolism ?

    Directory of Open Access Journals (Sweden)

    Giuseppe Famularo

    1993-01-01

    Full Text Available The authors demonstrated that in vivo administered L-carnitine strongly ameliorated the immune response in both healthy individuals receiving Intralipid and ageing subjects with cardiovascular diseases, as shown by the enhancement of mixed lymphocyte reaction. Notably, in the latter group L-carnitine treatment also resulted in a significant reduction of serum levels of both cholesterol and triglycerides. Therefore, the hypothesis is that L-carnitine supplementation could ameliorate both the dysregulated immune response and the abnormal lipid metabolism in several conditions.

  4. Type 2 responses at the interface between immunity and fat metabolism.

    Science.gov (United States)

    Odegaard, Justin I; Chawla, Ajay

    2015-10-01

    Adipose tissue resident leukocytes are often cast solely as the effectors of obesity and its attendant pathologies; however, recent observations have demonstrated that these cells support and effect 'healthy' physiologic function as well as pathologic dysfunction. Importantly, these two disparate outcomes are underpinned by similarly disparate immune programs; type 2 responses instruct and promote metabolic normalcy, while type 1 responses drive tissue dysfunction. In this Review, we summarize the literature regarding type 2 immunity's role in adipose tissue physiology and allude to its potential therapeutic implications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Eplerenone ameliorates the phenotypes of metabolic syndrome with NASH in liver-specific SREBP-1c Tg mice fed high-fat and high-fructose diet.

    Science.gov (United States)

    Wada, Tsutomu; Miyashita, Yusuke; Sasaki, Motohiro; Aruga, Yusuke; Nakamura, Yuto; Ishii, Yoko; Sasahara, Masakiyo; Kanasaki, Keizo; Kitada, Munehiro; Koya, Daisuke; Shimano, Hitoshi; Tsuneki, Hiroshi; Sasaoka, Toshiyasu

    2013-12-01

    Because the renin-angiotensin-aldosterone system has been implicated in the development of insulin resistance and promotion of fibrosis in some tissues, such as the vasculature, we examined the effect of eplerenone, a selective mineralocorticoid receptor (MR) antagonist, on nonalcoholic steatohepatitis (NASH) and metabolic phenotypes in a mouse model reflecting metabolic syndrome in humans. We adopted liver-specific transgenic (Tg) mice overexpressing the active form of sterol response element binding protein-1c (SREBP-1c) fed a high-fat and fructose diet (HFFD) as the animal model in the present study. When wild-type (WT) C57BL/6 and liver-specific SREBP-1c Tg mice grew while being fed HFFD for 12 wk, body weight and epididymal fat weight increased in both groups with an elevation in blood pressure and dyslipidemia. Glucose intolerance and insulin resistance were also observed. Adipose tissue hypertrophy and macrophage infiltration with crown-like structure formation were also noted in mice fed HFFD. Interestingly, the changes noted in both genotypes fed HFFD were significantly ameliorated with eplerenone. HFFD-fed Tg mice exhibited the histological features of NASH in the liver, including macrovesicular steatosis and fibrosis, whereas HFFD-fed WT mice had hepatic steatosis without apparent fibrotic changes. Eplerenone effectively ameliorated these histological abnormalities. Moreover, the direct suppressive effects of eplerenone on lipopolysaccharide-induced TNFα production in the presence and absence of aldosterone were observed in primary-cultured Kupffer cells and bone marrow-derived macrophages. These results indicated that eplerenone prevented the development of NASH and metabolic abnormalities in mice by inhibiting inflammatory responses in both Kupffer cells and macrophages.

  6. Metabolic responses of primary and transformed cells to intracellular Listeria monocytogenes.

    Directory of Open Access Journals (Sweden)

    Nadine Gillmaier

    Full Text Available The metabolic response of host cells, in particular of primary mammalian cells, to bacterial infections is poorly understood. Here, we compare the carbon metabolism of primary mouse macrophages and of established J774A.1 cells upon Listeria monocytogenes infection using (13C-labelled glucose or glutamine as carbon tracers. The (13C-profiles of protein-derived amino acids from labelled host cells and intracellular L. monocytogenes identified active metabolic pathways in the different cell types. In the primary cells, infection with live L. monocytogenes increased glycolytic activity and enhanced flux of pyruvate into the TCA cycle via pyruvate dehydrogenase and pyruvate carboxylase, while in J774A.1 cells the already high glycolytic and glutaminolytic activities hardly changed upon infection. The carbon metabolism of intracellular L. monocytogenes was similar in both host cells. Taken together, the data suggest that efficient listerial replication in the cytosol of the host cells mainly depends on the glycolytic activity of the hosts.

  7. Photoacoustic microscopy of cerebral hemodynamic and oxygen-metabolic responses to anesthetics

    Science.gov (United States)

    Cao, Rui; Li, Jun; Ning, Bo; Sun, Naidi; Wang, Tianxiong; Zuo, Zhiyi; Hu, Song

    2017-02-01

    General anesthetics are known to have profound effects on cerebral hemodynamics and neuronal activities. However, it remains a challenge to directly assess anesthetics-induced hemodynamic and oxygen-metabolic changes from the true baseline under wakefulness at the microscopic level, due to the lack of an enabling technology for high-resolution functional imaging of the awake mouse brain. To address this challenge, we have developed head-restrained photoacoustic microscopy (PAM), which enables simultaneous imaging of the cerebrovascular anatomy, total concentration and oxygen saturation of hemoglobin (CHb and sO2), and blood flow in awake mice. From these hemodynamic measurements, two important metabolic parameters, oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen (CMRO2), can be derived. Side-by-side comparison of the mouse brain under wakefulness and anesthesia revealed multifaceted cerebral responses to isoflurane, a volatile anesthetic widely used in preclinical research and clinical practice. Key observations include elevated cerebral blood flow (CBF) and reduced oxygen extraction and metabolism.

  8. Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats.

    Science.gov (United States)

    Fang, Bing; Li, Jin Wang; Zhang, Ming; Ren, Fa Zheng; Pang, Guo Fang

    2018-01-01

    Chlorpyrifos is a commonly-used pesticide which was reported to interfere with hormone signaling and metabolism, however, little is known about its effect on gut microbiota. In this study, adult male rats fed a normal (NF) or high fat (HF) diet were exposed to 0.3 or 3.0 mg chlorpyrifos/kg bodyweight/day or vehicle alone for 9 weeks. Effects on bodyweight, serum levels of glucose, lipid, cytokines, and gut microbiome community structure were measured. The effects of chlorpyrifos on metabolism were dose- and diet-dependent, with NF-fed rats administered the low dose showing the largest metabolic changes. NF-fed rats exposed to chlorpyrifos exhibited a pro-obesity phenotype compared with their controls, whereas there was no difference in pro-obesity phenotype between HF-fed groups. Chlorpyrifos exposure significantly reduced serum insulin, C-peptide, and amylin concentrations in NF- and HF-fed rats, leaving serum glucose and lipid profiles unaffected. Chlorpyrifos exposure also significantly altered gut microbiota composition, including the abundance of opportunistic pathogens, short chain fatty acid-producing bacteria and other bacteria previously associated with obese and diabetic phenotypes. The abundance of bacteria associated with neurotoxicity and islet injury was also significantly increased by chlorpyrifos. Our results suggest risk assessments for chlorpyrifos exposure should consider other effects in addition to neurotoxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Metabolomics Analysis of Hormone-Responsive and Triple-Negative Breast Cancer Cell Responses to Paclitaxel Identify Key Metabolic Differences.

    Science.gov (United States)

    Stewart, Delisha A; Winnike, Jason H; McRitchie, Susan L; Clark, Robert F; Pathmasiri, Wimal W; Sumner, Susan J

    2016-09-02

    To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone receptor-positive Luminal A cell lines. Studies were conducted in the presence and absence of paclitaxel (Taxol). TNBC cell lines had higher levels of amino acids, branched-chain amino acids, nucleotides, and nucleotide sugars and lower levels of proliferation-related metabolites like choline compared with Luminal A cell lines. In the presence of paclitaxel, each cell line showed unique metabolic responses, with some similarities by type. For example, in the Luminal A cell lines, levels of lactate and creatine decreased while certain choline metabolites and myo-inositol increased with paclitaxel. In the TNBC cell lines levels of glutamine, glutamate, and glutathione increased, whereas lysine, proline, and valine decreased in the presence of drug. Profiling secreted inflammatory cytokines in the conditioned media demonstrated a greater response to paclitaxel in the hormone-positive Luminal cells compared with a secretion profile that suggested greater drug resistance in the TNBC cells. The most significant differences distinguishing the cell types based on pathway enrichment analyses were related to amino acid, lipid and carbohydrate metabolism pathways, whereas several biological pathways were differentiated between the cell lines following treatment.

  10. An Estrogen-Responsive Module in the Ventromedial Hypothalamus Selectively Drives Sex-Specific Activity in Females

    Directory of Open Access Journals (Sweden)

    Stephanie M. Correa

    2015-01-01

    Full Text Available Estrogen-receptor alpha (ERα neurons in the ventrolateral region of the ventromedial hypothalamus (VMHVL control an array of sex-specific responses to maximize reproductive success. In females, these VMHVL neurons are believed to coordinate metabolism and reproduction. However, it remains unknown whether specific neuronal populations control distinct components of this physiological repertoire. Here, we identify a subset of ERα VMHVL neurons that promotes hormone-dependent female locomotion. Activating Nkx2-1-expressing VMHVL neurons via pharmacogenetics elicits a female-specific burst of spontaneous movement, which requires ERα and Tac1 signaling. Disrupting the development of Nkx2-1+ VMHVL neurons results in female-specific obesity, inactivity, and loss of VMHVL neurons coexpressing ERα and Tac1. Unexpectedly, two responses controlled by ERα+ neurons, fertility and brown adipose tissue thermogenesis, are unaffected. We conclude that a dedicated subset of VMHVL neurons marked by ERα, NKX2-1, and Tac1 regulates estrogen-dependent fluctuations in physical activity and constitutes one of several neuroendocrine modules that drive sex-specific responses.

  11. Sex-specific responses of Populus deltoides to defoliation

    Directory of Open Access Journals (Sweden)

    Li Shuxin

    2017-12-01

    Full Text Available There has been an increasing interest in understanding the differential effects of sexual dimorphism on plant stress responses. However, there is no clear pattern in the responses of the sexes to defoliation. In this study, the effects of different severity of artificial defoliation on biomass production, total nonstructural carbohydrate (NSC concentration, and photosynthetic rate (PN of male and female Populus deltoides were examined. We used half and full defoliation to observe the differences between the sexes in three harvest dates (1 week, 4 weeks, and 8 weeks after treatments. We hypothesized that female and male P. deltoides compared with an undefoliated control would have compensatory growth in response to defoliation treatments. Results showed that half and full defoliation reduced the growth of both sexes. Following half defoliation, root growth was reduced, especially in males, at T2 (4 weeks after defoliation and T3 (8 weeks after defoliation, while males showed an increase in height increment under the half defoliation compared with the nondefoliation treatments. By contrast, females were more negatively affected by defoliation than males in terms of biomass after 8 weeks. One week after defoliation, PN increased significantly in females and males under half defoliation (+30%, +32%, respectively and full defoliation (+58%, +56%, respectively. However, 8 weeks after defoliation, there was little difference in PN between defoliated and undefoliated female cuttings. Increases in stomatal conductance (gs and leaf nitrogen were observed under fully defoliated female and male cuttings. Moreover, males had less NSC concentrations following half defoliation compared with females. Our results indicate that leaf compensatory growth in male cuttings of P. deltoides was maintained by obtaining greater photosynthetic capacity, higher leaf nitrogen, and lower NSC concentration following half and full defoliation. Our results highlight that

  12. Specific immunotherapy modifies allergen-specific CD4+ T cell responses in an epitope-dependent manner

    Science.gov (United States)

    Wambre, Erik; DeLong, Jonathan H.; James, Eddie A.; Torres-Chinn, Nadia; Pfützner, Wolfgang; Möbs, Christian; Durham, Stephen R.; Till, Stephen J.; Robinson, David; Kwok, William W.

    2014-01-01

    Background Understanding the mechanisms by which the immune system induces and controls allergic inflammation at the T cell epitope level is critical for the design of new allergy vaccine strategies. Objective To characterize allergen-specific T cell responses linked with allergy or peripheral tolerance and to determine how CD4+ T cell responses to individual allergen-derived epitopes change over allergen-specific immunotherapy (ASIT). Methods Timothy grass pollen (TGP) allergy was used as a model for studying grass pollen allergies. The breadth, magnitude, epitope hierarchy and phenotype of the DR04:01-restricted TGP-specific T cell responses in ten grass pollen allergic, five non-atopic and six allergy vaccine-treated individuals was determined using an ex vivo pMHCII-tetramer approach. Results CD4+ T cells in allergic individuals are directed to a broad range of TGP epitopes characterized by defined immunodominance hierarchy patterns and with distinct functional profiles that depend on the epitope recognized. Epitopes that are restricted specifically to either TH2 or TH1/TR1 responses were identified. ASIT was associated with preferential deletion of allergen-specific TH2 cells and without significant change in frequency of TH1/TR1 cells. Conclusions Preferential allergen-specific TH2-cells deletion after repeated high doses antigen stimulation can be another independent mechanism to restore tolerance to allergen during immunotherapy. PMID:24373351

  13. Increased sequence diversity coverage improves detection of HIV-Specific T cell responses

    DEFF Research Database (Denmark)

    Frahm, N.; Kaufmann, D.E.; Yusim, K.

    2007-01-01

    The accurate identification of HIV-specific T cell responses is important for determining the relationship between immune response, viral control, and disease progression. HIV-specific immune responses are usually measured using peptide sets based on consensus sequences, which frequently miss res...

  14. Spatial separation of photosynthesis and ethanol production by cell type-specific metabolic engineering of filamentous cyanobacteria.

    Science.gov (United States)

    Ehira, Shigeki; Takeuchi, Takuto; Higo, Akiyoshi

    2018-02-01

    Cyanobacteria, which perform oxygenic photosynthesis, have drawn attention as hosts for the direct production of biofuels and commodity chemicals from CO 2 and H 2 O using light energy. Although cyanobacteria capable of producing diverse chemicals have been generated by metabolic engineering, anaerobic non-photosynthetic culture conditions are often necessary for their production. In this study, we conducted cell type-specific metabolic engineering of the filamentous cyanobacterium Anabaena sp. PCC 7120, which forms a terminally differentiated cell called a heterocyst with a semi-regular spacing of 10-15 cells. Because heterocysts are specialized cells for nitrogen fixation, the intracellular oxygen level of heterocysts is maintained very low even when adjacent cells perform oxygenic photosynthesis. Pyruvate decarboxylase of Zymomonas mobilis and alcohol dehydrogenase of Synechocystis sp. PCC 6803 were exclusively expressed in heterocysts. Ethanol production was concomitant with nitrogen fixation in genetically engineered Anabaena sp. PCC 7120. Engineering of carbon metabolism in heterocysts improved ethanol production, and strain ET14, with an extra copy of the invB gene expressed from a heterocyst-specific promoter, produced 130.9 mg L -1 of ethanol after 9 days. ET14 produced 1681.9 mg L -1 of ethanol by increasing the CO 2 supply. Ethanol production per heterocyst cell was approximately threefold higher than that per cell of unicellular cyanobacterium. This study demonstrates the potential of heterocysts for anaerobic production of biofuels and commodity chemicals under oxygenic photosynthetic conditions.

  15. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting

    KAUST Repository

    Abdel-Haleem, Alyaa M.

    2018-01-04

    Several antimalarial drugs exist, but differences between life cycle stages among malaria species pose challenges for developing more effective therapies. To understand the diversity among stages and species, we reconstructed genome-scale models (GEMs) of metabolism for five life cycle stages and five species of Plasmodium spanning the blood, transmission, and mosquito stages. The stage-specific models of Plasmodium falciparum uncovered stage-dependent changes in central carbon metabolism and predicted potential targets that could affect several life cycle stages. The species-specific models further highlight differences between experimental animal models and the human-infecting species. Comparisons between human- and rodent-infecting species revealed differences in thiamine (vitamin B1), choline, and pantothenate (vitamin B5) metabolism. Thus, we show that genome-scale analysis of multiple stages and species of Plasmodium can prioritize potential drug targets that could be both anti-malarials and transmission blocking agents, in addition to guiding translation from non-human experimental disease models.

  16. Cardiovascular and Metabolic Responses to the Ingestion of Caffeinated Herbal Tea: Drink It Hot or Cold?

    Science.gov (United States)

    Maufrais, Claire; Sarafian, Delphine; Dulloo, Abdul; Montani, Jean-Pierre

    2018-01-01

    Aim: Tea is usually consumed at two temperatures (as hot tea or as iced tea). However, the importance of drink temperature on the cardiovascular system and on metabolism has not been thoroughly investigated. The purpose of this study was to compare the cardiovascular, metabolic and cutaneous responses to the ingestion of caffeinated herbal tea (Yerba Mate) at cold or hot temperature in healthy young subjects. We hypothesized that ingestion of cold tea induces a higher increase in energy expenditure than hot tea without eliciting any negative effects on the cardiovascular system. Methods: Cardiovascular, metabolic and cutaneous responses were analyzed in 23 healthy subjects (12 men and 11 women) sitting comfortably during a 30-min baseline and 90 min following the ingestion of 500 mL of an unsweetened Yerba Mate tea ingested over 5 min either at cold (~3°C) or hot (~55°C) temperature, according to a randomized cross-over design. Results: Averaged over the 90 min post-drink ingestion and compared to hot tea, cold tea induced (1) a decrease in heart rate (cold tea: -5 ± 1 beats.min -1 ; hot tea: -1 ± 1 beats.min -1 , p hot tea: +3.7%, p hot tea while decreasing cardiac load as suggested by the decrease in the double product. Further experiments are needed to evaluate the clinical impact of unsweetened caffeinated herbal tea at a cold temperature for weight control.

  17. Sex-Specific Muscular Maturation Responses Following Prenatal Exposure to Methylation-Related Micronutrients in Pigs

    Directory of Open Access Journals (Sweden)

    Michael Oster

    2017-01-01

    Full Text Available Supplementation of micronutrients involved in DNA methylation, particularly during pregnancy, is recommended because of its impacts on human health, but further evidence is needed regarding the effects of over-supplementation and differences between sexes. Here, a porcine model was used to assess effects of maternal supplementation with one-carbon-cycle compounds during prenatal and postnatal stages on offspring muscle development. Sows received either a standard diet (CON or a standard diet supplemented with folate, B6, B12, methionine, choline, and zinc (MET throughout gestation. Myogenesis-, growth-, and nutrient utilization-related transcript expression was assessed using quantitative PCR. Organismal phenotype and gene expression effects differed significantly between males and females. Male MET-offspring showed increased fetal weight during late pregnancy but decreased live weight postnatally, with compensatory transcriptional responses comprising myogenic key drivers (Pax7, MyoD1, myogenin. In contrast, female weights were unaffected by diet, and mRNA abundances corresponded to a phenotype of cellular reorganization via FABP3, FABP4, SPP1 and Insulin-like Growth Factor-signaling. These findings in an animal model suggest that supplementation during pregnancy with methylation-related micronutrients can promote sex-specific myogenic maturation processes related to organismal growth and muscle metabolism. The usage of maternal dietary supplements should be more carefully considered regarding its ability to promote fetal and postnatal health.

  18. Diurnal changes in CN metabolism and response of rice seedlings to UV-B radiation.

    Science.gov (United States)

    Yun, Hyejin; Lim, Sunhyung; Kim, Yangmin X; Lee, Yejin; Lee, Seulbi; Lee, Deogbae; Park, Keewoong; Sung, Jwakyung

    2018-03-13

    Plants regulate a number of primary metabolites, including carbohydrates, organic acids, and amino acids, in response to UV-B radiation. Therefore, it is essential to understand the time-dependent response of rice plants to UV-B stress. This study focused on the response of plants to UV-B at different leaf developmental phases (emerging, growing, and maturing) in an attempt to fully comprehend the metabolic shift. We analyzed the expression levels of genes related to starch/sucrose metabolism in the leaf blades of rice seedlings (Oryza sativa L. "Saechuchenog") exposed to UV-B irradiation for short (1 day) and long terms (5 days) using quantitative real-time polymerase chain reaction. We also examined the diurnal variations in the contents of primary metabolites using an established GCTOF-MS (gas chromatography time of flight-mass spectrometry) method. The results showed that the levels of primary metabolites were largely dependent upon the diurnal rhythm and leaf developmental phase. The young leaves (sink) produced and accumulated starch rather than sucrose. The short-term (4 h, 1 day) UV-B exposure inhibited sucrose synthesis, which could be the first target of UV-B radiation. Following short- and long-term (5 days) exposure to UV-B radiation, the dynamic response of primary metabolites was evaluated. It was found that the content of carbohydrates decreased throughout the period of exposure to UV-B stress, especially in terms of sucrose concentration. However, the content of the majority of amino acids increased after an early decrease. Our data revealed that the metabolic response, as well as the gene expression, differed with the period (intensity) of exposure to UV-B radiation and with the phase of leaf development. These findings provide new insights for a better understanding of the metabolic response of a variety of plant species exposed to a wide range of UV-B radiation. Copyright © 2018. Published by Elsevier GmbH.

  19. Responses of the metabolism of the larvae of Pocillopora damicornis to ocean acidification and warming.

    Directory of Open Access Journals (Sweden)

    Emily B Rivest

    Full Text Available Ocean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index for assessing the physiological plasticity of Pocillopora damicornis larvae from this site to conditions of ocean acidity and warming. Larvae were incubated for 6 hours in seawater containing combinations of CO2 concentration (450 and 950 µatm and temperature (28 and 30°C. Rates of larval oxygen consumption were higher at elevated temperatures. In contrast, high CO2 levels elicited depressed metabolic rates, especially for larvae released later in the spawning period. Rates of citrate synthase, a rate-limiting enzyme in aerobic metabolism, suggested a biochemical limit for increasing oxidative capacity in coral larvae in a warming, acidifying ocean. Biological responses were also compared between larvae released from adult colonies on the same day (cohorts. The metabolic physiology of Pocillopora damicornis larvae varied significantly by day of release. Additionally, we used environmental data collected on a reef in Moorea, French Polynesia to provide information about what adult corals and larvae may currently experience in the field. An autonomous pH sensor provided a continuous time series of pH on the natal fringing reef. In February/March, 2011, pH values averaged 8.075 ± 0.023. Our results suggest that without adaptation or acclimatization, only a portion of naïve Pocillopora damicornis larvae may have suitable metabolic phenotypes for maintaining function and fitness in an end-of-the century ocean.

  20. Metabolic response of Geobacter sulfurreducens towards electron donor/acceptor variation

    Directory of Open Access Journals (Sweden)

    Lovley Derek R

    2010-11-01

    Full Text Available Abstract Background Geobacter sulfurreducens is capable of coupling the complete oxidation of organic compounds to iron reduction. The metabolic response of G. sulfurreducens towards variations in electron donors (acetate, hydrogen and acceptors (Fe(III, fumarate was investigated via 13C-based metabolic flux analysis. We examined the 13C-labeling patterns of proteinogenic amino acids obtained from G. sulfurreducens cultured with 13C-acetate. Results Using 13C-based metabolic flux analysis, we observed that donor and acceptor variations gave rise to differences in gluconeogenetic initiation, tricarboxylic acid cycle activity, and amino acid biosynthesis pathways. Culturing G. sulfurreducens cells with Fe(III as the electron acceptor and acetate as the electron donor resulted in pyruvate as the primary carbon source for gluconeogenesis. When fumarate was provided as the electron acceptor and acetate as the electron donor, the flux analysis suggested that fumarate served as both an electron acceptor and, in conjunction with acetate, a carbon source. Growth on fumarate and acetate resulted in the initiation of gluconeogenesis by phosphoenolpyruvate carboxykinase and a slightly elevated flux through the oxidative tricarboxylic acid cycle as compared to growth with Fe(III as the electron acceptor. In addition, the direction of net flux between acetyl-CoA and pyruvate was reversed during growth on fumarate relative to Fe(III, while growth in the presence of Fe(III and acetate which provided hydrogen as an electron donor, resulted in decreased flux through the tricarboxylic acid cycle. Conclusions We gained detailed insight into the metabolism of G. sulfurreducens cells under various electron donor/acceptor conditions using 13C-based metabolic flux analysis. Our results can be used for the development of G. sulfurreducens as a chassis for a variety of applications including bioremediation and renewable biofuel production.

  1. Metabolic Responses and Pacing Strategies during Successive Sprint Skiing Time Trials

    DEFF Research Database (Denmark)

    Andersson, Erik; Holmberg, Hans-Christer; Ørtenblad, Niels

    2016-01-01

    PURPOSE: To examine the metabolic responses and pacing strategies during the performance of successive sprint time trials (STTs) in cross-country skiing. METHODS: Ten well-trained male cross-country skiers performed four self-paced 1300-m STTs on a treadmill, each separated by 45 min of recovery...... to estimate the anaerobic energy supply. RESULTS: The individual trial-to-trial variability in STT performance time was 1.3%, where variations in O2 deficit and V˙O2 explained 69% (P 0.05) of the variation in performance. The first and last STTs were equally fast (228 ± 10 s), and ~ 1...... on the first than second course half. In addition, metabolic rates were substantially higher (~_30%) for uphill than for flat skiing, indicating that pacing was regulated to the terrain. CONCLUSIONS: The fastest STTs were characterized primarily by a greater anaerobic energy production, which also explained 69...

  2. Sex-Specific Response to Stress in Populus

    Directory of Open Access Journals (Sweden)

    Nataliya V. Melnikova

    2017-10-01

    Full Text Available Populus is an effective model for genetic studies in trees. The genus Populus includes dioecious species, and the differences exhibited in males and females have been intensively studied. This review focused on the distinctions between male and female poplar and aspen plants under stress conditions, such as drought, salinity, heavy metals, and nutrient deficiency on morphological, physiological, proteome, and gene expression levels. In most studies, males of Populus species were more adaptive to the majority of the stress conditions and showed less damage, better growth, and higher photosynthetic capacity and antioxidant activity than that of the females. However, in two recent studies, no differences in non-reproductive traits were revealed for male and female trees. This discrepancy of the results could be associated with experimental design: different species and genotypes, stress conditions, types of plant materials, sampling sizes. Knowledge of sex-specific differences is crucial for basic and applied research in Populus species.

  3. Involvement of AMP - activated protein kinase in fat depot-specific metabolic changes during starvation

    Czech Academy of Sciences Publication Activity Database

    Šponarová, Jana; Mustard, K. J.; Horáková, Olga; Flachs, Pavel; Rossmeisl, Martin; Brauner, Petr; Bardová, Kristina; Thomason-Hughes, M.; Braunerová, Radka; Janovská, Petra; Hardie, D. G.; Kopecký, Jan

    2005-01-01

    Roč. 579, č. 27 (2005), s. 6105-6110 ISSN 0014-5793 R&D Projects: GA ČR(CZ) GA303/05/2580; GA AV ČR(CZ) KJB5011303 Grant - others:Wellcome Trust(GB) 02760; European Commission(XE) LSHM-CT-2004-005272; Diabetes UK(GB) Project Grant; Biotechnology and Biological Sciences Research Council(GB) Research Studentship; GA-(GB) Novo-Nordisk Institutional research plan: CEZ:AV0Z50110509 Keywords : lipid metabolism * AMPK * starvation Subject RIV: ED - Physiology Impact factor: 3.415, year: 2005

  4. Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase.

    Science.gov (United States)

    Blank, Lars M; Ionidis, Georgios; Ebert, Birgitta E; Bühler, Bruno; Schmid, Andreas

    2008-10-01

    A key limitation of whole-cell redox biocatalysis for the production of valuable, specifically functionalized products is substrate/product toxicity, which can potentially be overcome by using solvent-tolerant micro-organisms. To investigate the inter-relationship of solvent tolerance and energy-dependent biocatalysis, we established a model system for biocatalysis in the presence of toxic low logP(ow) solvents: recombinant solvent-tolerant Pseudomonas putida DOT-T1E catalyzing the stereospecific epoxidation of styrene in an aqueous/octanol two-liquid phase reaction medium. Using (13)C tracer based metabolic flux analysis, we investigated the central carbon and energy metabolism and quantified the NAD(P)H regeneration rate in the presence of toxic solvents and during redox biocatalysis, which both drastically increased the energy demands of solvent-tolerant P. putida. According to the driven by demand concept, the NAD(P)H regeneration rate was increased up to eightfold by two mechanisms: (a) an increase in glucose uptake rate without secretion of metabolic side products, and (b) reduced biomass formation. However, in the presence of octanol, only approximately 1% of the maximally observed NAD(P)H regeneration rate could be exploited for styrene epoxidation, of which the rate was more than threefold lower compared with operation with a non-toxic solvent. This points to a high energy and redox cofactor demand for cell maintenance, which limits redox biocatalysis in the presence of octanol. An estimated upper bound for the NAD(P)H regeneration rate available for biocatalysis suggests that cofactor availability does not limit redox biocatalysis under optimized conditions, for example, in the absence of toxic solvent, and illustrates the high metabolic capacity of solvent-tolerant P. putida. This study shows that solvent-tolerant P. putida have the remarkable ability to compensate for high energy demands by boosting their energy metabolism to levels up to an order of

  5. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress.

    Science.gov (United States)

    Guo, Rui; Yang, Zongze; Li, Feng; Yan, Changrong; Zhong, Xiuli; Liu, Qi; Xia, Xu; Li, Haoru; Zhao, Long

    2015-07-07

    It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.

  6. Similar metabolic responses to calorie restriction in lean and obese Zucker rats.

    Science.gov (United States)

    Chiba, Takuya; Komatsu, Toshimitsu; Nakayama, Masahiko; Adachi, Toshiyuki; Tamashiro, Yukari; Hayashi, Hiroko; Yamaza, Haruyoshi; Higami, Yoshikazu; Shimokawa, Isao

    2009-10-15

    Calorie restriction (CR), which is thought to be largely dependent on the neuroendocrine system modulated by insulin/insulin-like growth factor-I (IGF-I) and leptin signaling, decreases morbidity and increases lifespan in many organisms. To elucidate whether insulin and leptin sensitivities are indispensable in the metabolic adaptation to CR, we investigated the effects of CR on obese Zucker (fa/fa) rats and lean control (+/+) rats. CR did not fully improve insulin resistance in (fa/fa) rats. Nonetheless, CR induced neuropeptide Y (NPY) expression in the hypothalamic arcuate nucleus and metabolism related gene expression changes in the liver in (fa/fa) rats and (+/+) rats. Up-regulation of NPY augmented plasma corticosterone levels and suppressed pituitary growth hormone (GH) expression, thereby modulating adipocytokine production to induce tissue-specific insulin sensitivity. Thus, central NPY activation via peripheral signaling might play a crucial role in the effects of CR, even in insulin resistant and leptin receptor deficient conditions.

  7. Growth platform-dependent and -independent phenotypic and metabolic responses of Arabidopsis and its halophytic relative, Eutrema salsugineum, to salt stress.

    Science.gov (United States)

    Kazachkova, Yana; Batushansky, Albert; Cisneros, Aroldo; Tel-Zur, Noemi; Fait, Aaron; Barak, Simon

    2013-07-01

    Comparative studies of the stress-tolerant Arabidopsis (Arabidopsis thaliana) halophytic relative, Eutrema salsugineum, have proven a fruitful approach to understanding natural stress tolerance. Here, we performed comparative phenotyping of Arabidopsis and E. salsugineum vegetative development under control and salt-stress conditions, and then compared the metabolic responses of the two species on different growth platforms in a defined leaf developmental stage. Our results reveal both growth platform-dependent and -independent phenotypes and metabolic responses. Leaf emergence was affected in a similar way in both species grown in vitro but the effects observed in Arabidopsis occurred at higher salt concentrations in E. salsugineum. No differences in leaf emergence were observed on soil. A new effect of a salt-mediated reduction in E. salsugineum leaf area was unmasked. On soil, leaf area reduction in E. salsugineum was mainly due to a fall in cell number, whereas both cell number and cell size contributed to the decrease in Arabidopsis leaf area. Common growth platform-independent leaf metabolic signatures such as high raffinose and malate, and low fumarate contents that could reflect core stress tolerance mechanisms, as well as growth platform-dependent metabolic responses were identified. In particular, the in vitro growth platform led to repression of accumulation of many metabolites including sugars, sugar phosphates, and amino acids in E. salsugineum compared with the soil system where these same metabolites accumulated to higher levels in E. salsugineum than in Arabidopsis. The observation that E. salsugineum maintains salt tolerance despite growth platform-specific phenotypes and metabolic responses suggests a considerable degree of phenotypic and metabolic adaptive plasticity in this extremophile.

  8. The effect of aerobic exercise and starvation on growth performance and postprandial metabolic response in juvenile southern catfish (Silurus meridionalis).

    Science.gov (United States)

    Li, Xiu-Ming; Liu, Li; Yuan, Jian-Ming; Xiao, Yuan-Yuan; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-03-01

    To investigate the effects of aerobic exercise and starvation on growth performance, postprandial metabolic response and their interaction in a sedentary fish species, either satiation-fed or starved juvenile southern catfish (Silurus meridionalis) were exercised at 25 °C under three water velocities, i.e., nearly still water (control), 1 body length (bl) s(-1) and 2 bl s(-1), for eight weeks. Then, the feed intake (FI), food conversion efficiency (FCE), specific growth rate (SGR), morphological parameters, resting ṀO2 (ṀO2rest) and postprandial ṀO2 responses of the experimental fish were measured. Exercise at a low velocity (1 bl s(-1)) showed no effect on any growth performance parameter, whereas exercise at a high velocity (2 bl s(-1)) exhibited higher FI but similar SGR due to the extra energy expenditure from swimming and consequent decreased FCE. Starvation led to a significant body mass loss, whereas the effect intensified in both exercise groups. Exercise resulted in improved cardio-respiratory capacity, as indicated by increased gill and heart indexes, whereas it exhibited no effect on resting and postprandial metabolism in S. meridionalis. The starved fish displayed significantly larger heart, gill and digestive tract indexes compared with the feeding fish, suggesting selective maintenance of cardio-respiratory and digestive function in this fish species during starvation. However, starved fish still exhibited impaired digestive performance, as evidenced by the prolonged duration and low postprandial metabolic increase, and this effect was further exacerbated in both the 1 and 2 bl s(-1) exercise groups. These data suggest the following: (1) aerobic exercise produced no improvement in growth performance but may have led to the impairment of growth under insufficient food conditions; (2) the mass of different organs and tissues responded differently to aerobic exercise and starvation due to the different physiological roles they play; and (3

  9. Metabolic syndrome is associated with poor treatment response to antiviral therapy in chronic hepatitis C genotype 3 patients.

    Science.gov (United States)

    Aziz, Hafsa; Gill, Uzma; Raza, Abida; Gill, Muzaffar L

    2014-05-01

    Hepatitis C viral (HCV) infection is caused by an RNA virus. HCV infection is considered to induce systemic disease that causes steatosis, alters lipid metabolism, and results in metabolic syndrome. This study aimed to investigate the therapeutic outcome in HCV genotype 3 patients with metabolic syndrome. A total of 621 HCV-positive patients who visited the hospital for treatment were screened. Among these, 441 patients were enrolled for antiviral therapy. These enrolled patients were assessed for metabolic syndrome according to the International Diabetes Federation criteria. Group A included patients with metabolic syndrome and group B included patients without metabolic syndrome. All patients received peginterferon-α2a (180 μg/week) and ribavirin (10 mg/kg/day) for 6 months. The prevalence of metabolic syndrome in chronic HCV patients was 37.9%. We observed that metabolic syndrome was more common among female compared with male participants (43.9 vs. 28.8%, P=0.005). It was found that sustained virologic response (SVR) rates were significantly higher in the patients in group B (without metabolic syndrome) compared with the patients in group A who had metabolic syndrome (72.2 vs. 43.7%, Pmetabolic syndrome and a correlation of metabolic syndrome with nonresponse to antiviral therapy was observed. An interesting correlation among metabolic syndrome, age, and SVR was found: with age, SVR decreases, while metabolic syndrome increases. Metabolic syndrome has an influence on therapeutic outcomes in terms of SVR. Moreover, this information can identify patients who might have a low chance of attaining an SVR and a timely decision may protect the patients from the adverse effects of therapy.

  10. Specific effects of certain salts on nitrogen metabolism of young corn seedlings

    Directory of Open Access Journals (Sweden)

    Mohammad Hatata

    2014-01-01

    Full Text Available The effect of sodium and magnesium chlorides and sulphates on nitrogen metabolism of corn seedlings and their constituent parts have been studied. Treatment with all salts led to a decrease in the nitrogen content of the seedling as a whole, and the decrease became more pronounced with the increase of salt concentration, though these concentrations were too low to induce any osmotic action. The same trend of changes was noticed as regards nonprotein-N, whereas the opposite was recorded in reference to the changes; of protein-N. Higher concentrations of the salt solutions led to leaching out of more nonprotein-N than did lower concentrations. The study of the distribution of nitrogenous constituents among the different organs of the seedling showed that while the total-N content of the whole seedling decreased with the increase of salt concentration, the total-N content of the roots decreased markedly, and the total-N content of the tops decreased also but less whereas, the total-N content of the grains increased with the increase of salt concentration as compared with that in the control. As a result of disturbances of nitrogen metabolism under salinization, more ammonia and amides were accumulated in all seedling organs.

  11. Lineage-specific responses of microbial communities to environmental change.

    Science.gov (United States)

    Youngblut, Nicholas D; Shade, Ashley; Read, Jordan S; McMahon, Katherine D; Whitaker, Rachel J

    2013-01-01

    A great challenge facing microbial ecology is how to define ecologically relevant taxonomic units. To address this challenge, we investigated how changing the definition of operational taxonomic units (OTUs) influences the perception of ecological patterns in microbial communities as they respond to a dramatic environmental change. We used pyrosequenced tags of the bacterial V2 16S rRNA region, as well as clone libraries constructed from the cytochrome oxidase C gene ccoN, to provide additional taxonomic resolution for the common freshwater genus Polynucleobacter. At the most highly resolved taxonomic scale, we show that distinct genotypes associated with the abundant Polynucleobacter lineages exhibit divergent spatial patterns and dramatic changes over time, while the also abundant Actinobacteria OTUs are highly coherent. This clearly demonstrates that different bacterial lineages demand different taxonomic definitions to capture ecological patterns. Based on the temporal distribution of highly resolved taxa in the hypolimnion, we demonstrate that change in the population structure of a single genotype can provide additional insight into the mechanisms of community-level responses. These results highlight the importance and feasibility of examining ecological change in microbial communities across taxonomic scales while also providing valuable insight into the ecological characteristics of ecologically coherent groups in this system.

  12. Site-Specific Seismic Site Response Model for the Waste Treatment Plant, Hanford, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Rohay, Alan C.; Reidel, Steve P.

    2005-02-24

    This interim report documents the collection of site-specific geologic and geophysical data characterizing the Waste Treatment Plant site and the modeling of the site-specific structure response to earthquake ground motions.

  13. Effect of thoracoscopic esophagus cancer surgery on postoperative incision pain as well as non-specific and specific immune response

    Directory of Open Access Journals (Sweden)

    Jin-Long Wu1

    2017-04-01

    Full Text Available Objective: To explore the effect of thoracoscopic esophagus cancer surgery on postoperative incision pain as well as non-specific and specific immune response. Methods: 56 patients with esophageal cancer who accepted surgical treatment in our hospital between March 2011 and February 2016 were collected, the operation methods and related laboratory tests were reviewed, and then they were divided into the thoracoscope group (n=27 who accepted thoracoscopic surgery and the open surgery group (n=29 who accepted traditional thoracotomy. Before operation and 1 d after operation, immune scatter turbidimetry was used to detect serum levels of pain mediators, and flow cytometer was used to detect the levels of nonspecific immune indexes and specific immune indexes. Results: Before operation, the differences in serum pain mediators as well as nonspecific immune response and specific immune response indexes were not statistically significant between two groups of patients (P>0.05. 1 d after operation, serum pain mediators 5-HT, K+ and NE levels of thoracoscope group were lower than those of open surgery group (P<0.05; nonspecific immune response indexes NK cell as well as C3 and C4 levels in peripheral blood of thoracoscope group were significantly higher than those of open surgery group (P<0.05; specific immune response indexes CD4+, CD4+/CD8+, IgA and IgG levels in peripheral blood of thoracoscope group were significantly higher than those of open surgery group (P<0.05. Conclusion: Thoracoscopic esophagus cancer surgery causes less damage, has lighter inhibition on the immune response system, and is an ideal operation method for patients with early middle esophagus cancer.

  14. [Complete hormonal and metabolic response after iodine-131 metaiodobenzylguanidine treatment in a patient diagnosed of malignant pheochromocytoma].

    Science.gov (United States)

    García Alonso, M P; Balsa Bretón, M A; Paniagua Correa, C; Castillejos Rodríguez, L; Rodríguez Pelayo, E; Mendoza Paulini, A; Ortega Valle, A; Penín González, J

    2013-01-01

    Radiolabeled metaiodobenzylguanidine is an analogue of norepinephrine used to localize tumors that express the neurohormone transporters, specifically those derived from the neural crest having a neuroendocrine origin. It is also used to treat non-surgical metastases derived from them. A review of the literature revealed symptomatic improvements associated to a decrease in hormone levels in a significant percentage of patients after (131)I-MIBG treatment. However, complete tumor remission has been described only in very few cases and hardly ever when bone metastases exist. We present a case of a patient diagnosed of malignant pheochromocytoma who achieved complete hormonal and metabolic response after (131)I-MIBG treatment (600 mCi) in spite of the presence of bone metastases. Copyright © 2012 Elsevier España, S.L. and SEMNIM. All rights reserved.

  15. Specific fibre composition and metabolism of the rectus abdominis muscle of bovine Charolais cattle

    Science.gov (United States)

    2010-01-01

    Background An important variability of contractile and metabolic properties between muscles has been highlighted. In the literature, the majority of studies on beef sensorial quality concerns M. longissimus thoracis. M. rectus abdominis (RA) is easy to sample without huge carcass depreciation and may appear as an alternative to M. longissimus thoracis for fast and routine physicochemical analysis. It was considered interesting to assess the muscle fibres of M. rectus abdominis in comparison with M. longissimus thoracis (LT) and M. triceps brachii (TB) on the basis of metabolic and contractile properties, area and myosin heavy chain isoforms (MyHC) proportions. Immuno-histochemical, histochemical, histological and enzymological techniques were used. This research concerned two populations of Charolais cattle: RA was compared to TB in a population of 19 steers while RA was compared to LT in a population of 153 heifers. Results RA muscle had higher mean fibre areas (3350 μm2 vs 2142 to 2639 μm2) than the two other muscles. In RA muscle, the slow-oxidative fibres were the largest (3957 μm2) and the fast-glycolytic the smallest (2868 μm2). The reverse was observed in TB muscle (1725 and 2436 μm2 respectively). In RA muscle, the distinction between fast-oxidative-glycolytic and fast-glycolytic fibres appeared difficult or impossible to establish, unlike in the other muscles. Consequently the classification based on ATPase and SDH activities seemed inappropriate, since the FOG fibres presented rather low SDH activity in this muscle in comparison to the other muscles of the carcass. RA muscle had a higher proportion of I fibres than TB and LT muscles, balanced by a lower proportion either of IIX fibres (in comparison to TB muscle) or of IIA fibres (in comparison to LT muscle). However, both oxidative and glycolytic enzyme activities were lower in RA than in TB muscle, although the LDH/ICDH ratio was higher in RA muscle (522 vs 340). Oxidative enzyme activities were

  16. Identification of stress responsive genes by studying specific relationships between mRNA and protein abundance

    Directory of Open Access Journals (Sweden)

    Shimpei Morimoto

    2018-03-01

    Full Text Available Protein expression is regulated by the production and degradation of mRNAs and proteins but the specifics of their relationship are controversial. Although technological advances have enabled genome-wide and time-series surveys of mRNA and protein abundance, recent studies have shown paradoxical results, with most statistical analyses being limited to linear correlation, or analysis of variance applied separately to mRNA and protein datasets. Here, using recently analyzed genome-wide time-series data, we have developed a statistical analysis framework for identifying which types of genes or biological gene groups have significant correlation between mRNA and protein abundance after accounting for potential time delays. Our framework stratifies all genes in terms of the extent of time delay, conducts gene clustering in each stratum, and performs a non-parametric statistical test of the correlation between mRNA and protein abundance in a gene cluster. Consequently, we revealed stronger correlations than previously reported between mRNA and protein abundance in two metabolic pathways. Moreover, we identified a pair of stress responsive genes (ADC17 and KIN1 that showed a highly similar time series of mRNA and protein abundance. Furthermore, we confirmed robustness of the analysis framework by applying it to another genome-wide time-series data and identifying a cytoskeleton-related gene cluster (keratin 18, keratin 17, and mitotic spindle positioning that shows similar correlation. The significant correlation and highly similar changes of mRNA and protein abundance suggests a concerted role of these genes in cellular stress response, which we consider provides an answer to the question of the specific relationships between mRNA and protein in a cell. In addition, our framework for studying the relationship between mRNAs and proteins in a cell will provide a basis for studying specific relationships between mRNA and protein abundance after

  17. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism.

    Science.gov (United States)

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G

    2010-06-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.

  18. Increased response to insulin of glucose metabolism in the 6-day unloaded rat soleus muscle

    Science.gov (United States)

    Henriksen, Erik J.; Tischler, Marc E.; Johnson, David G.

    1986-01-01

    Hind leg muscles of female rats were unloaded by tail cast suspension for 6 days. In the fresh-frozen unloaded soleus, the significantly greater concentration of glycogen correlated with a lower activity ratio of glycogen phosphorylase (p less than 0.02). The activity ratio of glycogen synthase also was lower (p less than 0.001), possibly due to the higher concentration of glycogen. In isolated unloaded soleus, insulin (0.1 milliunit/ml) increased the oxidation of D(U-C-14) glucose, release of lactate and pyruvate, incorporation of D-(U-C-14) glucose into glycogen, and the concentration of glucose 6-phosphate more (p less than 0.05) than in the weight-bearing soleus. At physiological doses of insulin, the percent of maximal uptake of 2-deoxy-D-(1,2-H-3) glucose/muscle also was greater in the unloaded soleus. Unloading of the soleus increased, by 50 percent the concentration of insuling receptors, due to no decrease in total receptor number during muscle atrophy. This increase may account for the greater response of glucose metabolism to insulin in this muscle. The extensor digitorum longus, which generally shows little response to unloading, displayed no differential response of glucose metabolism to insulin.

  19. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses.

    Science.gov (United States)

    Webb, Tonya J; Carey, Gregory B; East, James E; Sun, Wenji; Bollino, Dominique R; Kimball, Amy S; Brutkiewicz, Randy R

    2016-08-01

    Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. The effect of metabolic alkalosis on the ventilatory response in healthy subjects.

    Science.gov (United States)

    Oppersma, E; Doorduin, J; van der Hoeven, J G; Veltink, P H; van Hees, H W H; Heunks, L M A

    2018-02-01

    Patients with acute respiratory failure may develop respiratory acidosis. Metabolic compensation by bicarbonate production or retention results in posthypercapnic alkalosis with an increased arterial bicarbonate concentration. The hypothesis of this study was that elevated plasma bicarbonate levels decrease respiratory drive and minute ventilation. In an intervention study in 10 healthy subjects the ventilatory response using a hypercapnic ventilatory response (HCVR) test was assessed, before and after administration of high dose sodium bicarbonate. Total dose of sodiumbicarbonate was 1000 ml 8.4% in 3 days. Plasma bicarbonate increased from 25.2 ± 2.2 to 29.2 ± 1.9 mmol/L. With increasing inspiratory CO 2 pressure during the HCVR test, RR, V t , Pdi, EAdi and V E increased. The clinical ratio ΔV E /ΔP et CO 2 remained unchanged, but Pdi, EAdi and V E were significantly lower after bicarbonate administration for similar levels of inspired CO 2 . This study demonstrates that in healthy subjects metabolic alkalosis decreases the neural respiratory drive and minute ventilation, as a response to inspiratory CO 2 . Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Global host metabolic response to Plasmodium vivax infection: a 1H NMR based urinary metabonomic study

    Directory of Open Access Journals (Sweden)

    Sengupta Arjun

    2011-12-01

    Full Text Available Abstract Background Plasmodium vivax is responsible for the majority of malarial infection in the Indian subcontinent. This species of the parasite is generally believed to cause a relatively benign form of the disease. However, recent reports from different parts of the world indicate that vivax malaria can also have severe manifestation. Host response to the parasite invasion is thought to be an important factor in determining the severity of manifestation. In this paper, attempt was made to determine the host metabolic response associated with P. vivax infection by means of NMR spectroscopy-based metabonomic techniques in an attempt to better understand the disease pathology. Methods NMR spectroscopy of urine samples from P. vivax-infected patients, healthy individuals and non-malarial fever patients were carried out followed by multivariate statistical analysis. Two data analysis techniques were employed, namely, Principal Component Analysis [PCA] and Orthogonal Projection to Latent Structure Discriminant Analysis [OPLS-DA]. Several NMR signals from the urinary metabolites were further selected for univariate comparison among the classes. Results The urine metabolic profiles of P. vivax-infected patients were distinct from those of healthy individuals as well as of non-malarial fever patients. A highly predictive model was constructed from urine profile of malarial and non-malarial fever patients. Several metabolites were found to be varying significantly across these cohorts. Urinary ornithine seems to have the potential to be used as biomarkers of vivax malaria. An increasing trend in pipecolic acid was also observed. The results suggest impairment in the functioning of liver as well as impairment in urea cycle. Conclusions The results open up a possibility of non-invasive analysis and diagnosis of P. vivax using urine metabolic profile. Distinct variations in certain metabolites were recorded, and amongst these, ornithine may have the

  2. Violation of specific indicators pigment and lipid metabolism in experimental pneumonia in an immobilization stress and correction of corvitin

    OpenAIRE

    Ferenc, N. M.

    2015-01-01

    Ferenc N. M. Violation of specific indicators pigment and lipid metabolism in experimental pneumonia in an immobilization stress and correction of corvitin. Journal of Education, Health and Sport. 2015;5(9):709-713. ISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.32430 http://ojs.ukw.edu.pl/index.php/johs/article/view/2015%3B5%289%29%3A709-713 https://pbn.nauka.gov.pl/works/658656 Formerly Journal of Health Sciences. ISSN 1429-9623 / 2300-665X. Archives 2011–2014 http://journ...

  3. Depot-Specific Changes in Fat Metabolism with Aging in a Type 2 Diabetic Animal Model.

    Science.gov (United States)

    Park, Se Eun; Park, Cheol-Young; Choi, Jung Mook; Chang, Eugene; Rhee, Eun-Jung; Lee, Won-Young; Oh, Ki Won; Park, Sung Woo; Kang, Eun Seok; Lee, Hyun Chul; Cha, Bong Soo

    2016-01-01

    Visceral fat accretion is a hallmark of aging and is associated with aging-induced metabolic dysfunction. PPARγ agonist was reported to improve insulin sensitivity by redistributing fat from visceral fat to subcutaneous fat. The purpose of this study was to investigate the underlying mechanisms by which aging affects adipose tissue remodeling in a type 2 diabetic animal model and through which PPARγ activation modulates aging-related fat tissue distribution. At the ages of 21, 31 and 43 weeks, OLETF rats as an animal model of type 2 diabetes were evaluated for aging-related effects on adipose tissue metabolism in subcutaneous and visceral fat depots. During aging, the ratio of visceral fat weight to subcutaneous fat weight (V/S ratio) increased. Aging significantly increased the mRNA expression of genes involved in lipogenesis such as lipoprotein lipase, fatty acid binding protein aP2, lipin 1, and diacylglycerol acyltransferase 1, which were more prominent in visceral fat than subcutaneous fat. The mRNA expression of adipose triglyceride lipase, which is involved in basal lipolysis and fatty acid recycling, was also increased, more in visceral fat compared to subcutaneous fat during aging. The mRNA levels of the genes associated with lipid oxidation were increased, whereas the mRNA levels of genes associated with energy expenditure showed no significant change during aging. PPARγ agonist treatment in OLETF rats resulted in fat redistribution with a decreasing V/S ratio and improved glucose intolerance. The genes involved in lipogenesis decreased in visceral fat of the PPARγ agonist-treated rats. During aging, fat distribution was changed by stimulating lipid uptake and esterification in visceral fat rather than subcutaneous fat, and by altering the lipid oxidation.

  4. Depot-Specific Changes in Fat Metabolism with Aging in a Type 2 Diabetic Animal Model.

    Directory of Open Access Journals (Sweden)

    Se Eun Park

    Full Text Available Visceral fat accretion is a hallmark of aging and is associated with aging-induced metabolic dysfunction. PPARγ agonist was reported to improve insulin sensitivity by redistributing fat from visceral fat to subcutaneous fat. The purpose of this study was to investigate the underlying mechanisms by which aging affects adipose tissue remodeling in a type 2 diabetic animal model and through which PPARγ activation modulates aging-related fat tissue distribution. At the ages of 21, 31 and 43 weeks, OLETF rats as an animal model of type 2 diabetes were evaluated for aging-related effects on adipose tissue metabolism in subcutaneous and visceral fat depots. During aging, the ratio of visceral fat weight to subcutaneous fat weight (V/S ratio increased. Aging significantly increased the mRNA expression of genes involved in lipogenesis such as lipoprotein lipase, fatty acid binding protein aP2, lipin 1, and diacylglycerol acyltransferase 1, which were more prominent in visceral fat than subcutaneous fat. The mRNA expression of adipose triglyceride lipase, which is involved in basal lipolysis and fatty acid recycling, was also increased, more in visceral fat compared to subcutaneous fat during aging. The mRNA levels of the genes associated with lipid oxidation were increased, whereas the mRNA levels of genes associated with energy expenditure showed no significant change during aging. PPARγ agonist treatment in OLETF rats resulted in fat redistribution with a decreasing V/S ratio and improved glucose intolerance. The genes involved in lipogenesis decreased in visceral fat of the PPARγ agonist-treated rats. During aging, fat distribution was changed by stimulating lipid uptake and esterification in visceral fat rather than subcutaneous fat, and by altering the lipid oxidation.

  5. Mutant Allele-Specific Uncoupling of PENETRATION3 Functions Reveals Engagement of the ATP-Binding Cassette Transporter in Distinct Tryptophan Metabolic Pathways1[OPEN

    Science.gov (United States)

    Lu, Xunli; Dittgen, Jan; Piślewska-Bednarek, Mariola; Molina, Antonio; Schneider, Bernd; Doubský, Jan; Schneeberger, Korbinian; Schulze-Lefert, Paul

    2015-01-01

    Arabidopsis (Arabidopsis thaliana) PENETRATION (PEN) genes quantitatively contribute to the execution of different forms of plant immunity upon challenge with diverse leaf pathogens. PEN3 encodes a plasma membrane-resident pleiotropic drug resistance-type ATP-binding cassette transporter and is thought to act in a pathogen-inducible and PEN2 myrosinase-dependent metabolic pathway in extracellular defense. This metabolic pathway directs the intracellular biosynthesis and activation of tryptophan-derived indole glucosinolates for subsequent PEN3-mediated efflux across the plasma membrane at pathogen contact sites. However, PEN3 also functions in abiotic stress responses to cadmium and indole-3-butyric acid (IBA)-mediated auxin homeostasis in roots, raising the possibility that PEN3 exports multiple functionally unrelated substrates. Here, we describe the isolation of a pen3 allele, designated pen3-5, that encodes a dysfunctional protein that accumulates in planta like wild-type PEN3. The specific mutation in pen3-5 uncouples PEN3 functions in IBA-stimulated root growth modulation, callose deposition induced with a conserved peptide epitope of bacterial flagellin (flg22), and pathogen-inducible salicylic acid accumulation from PEN3 activity in extracellular defense, indicating the engagement of multiple PEN3 substrates in different PEN3-dependent biological processes. We identified 4-O-β-d-glucosyl-indol-3-yl formamide (4OGlcI3F) as a pathogen-inducible, tryptophan-derived compound that overaccumulates in pen3 leaf tissue and has biosynthesis that is dependent on an intact PEN2 metabolic pathway. We propose that a precursor of 4OGlcI3F is the PEN3 substrate in extracellular pathogen defense. These precursors, the shared indole core present in IBA and 4OGlcI3F, and allele-specific uncoupling of a subset of PEN3 functions suggest that PEN3 transports distinct indole-type metabolites in distinct biological processes. PMID:26023163

  6. Central melanin-concentrating hormone influences liver and adipose metabolism via specific hypothalamic nuclei and efferent autonomic/JNK1 pathways.

    Science.gov (United States)

    Imbernon, Monica; Beiroa, Daniel; Vázquez, María J; Morgan, Donald A; Veyrat-Durebex, Christelle; Porteiro, Begoña; Díaz-Arteaga, Adenis; Senra, Ana; Busquets, Silvia; Velásquez, Douglas A; Al-Massadi, Omar; Varela, Luis; Gándara, Marina; López-Soriano, Francisco-Javier; Gallego, Rosalía; Seoane, Luisa M; Argiles, Josep M; López, Miguel; Davis, Roger J; Sabio, Guadalupe; Rohner-Jeanrenaud, Françoise; Rahmouni, Kamal; Dieguez, Carlos; Nogueiras, Ruben

    2013-03-01

    Specific neuronal circuits modulate autonomic outflow to liver and white adipose tissue. Melanin-concentrating hormone (MCH)-deficient mice are hypophagic, lean, and do not develop hepatosteatosis when fed a high-fat diet. Herein, we sought to investigate the role of MCH, an orexigenic neuropeptide specifically expressed in the lateral hypothalamic area, on hepatic and adipocyte metabolism. Chronic central administration of MCH and adenoviral vectors increasing MCH signaling were performed in rats and mice. Vagal denervation was performed to assess its effect on liver metabolism. The peripheral effects on lipid metabolism were assessed by real-time polymerase chain reaction and Western blot. We showed that the activation of MCH receptors promotes nonalcoholic fatty liver disease through the parasympathetic nervous system, whereas it increases fat deposition in white adipose tissue via the suppression of sympathetic traffic. These metabolic actions are independent of parallel changes in food intake and energy expenditure. In the liver, MCH triggers lipid accumulation and lipid uptake, with c-Jun N-terminal kinase being an essential player, whereas in adipocytes MCH induces metabolic pathways that promote lipid storage and decreases lipid mobilization. Genetic activation of MCH receptors or infusion of MCH specifically in the lateral hypothalamic area modulated hepatic lipid metabolism, whereas the specific activation of this receptor in the arcuate nucleus affected adipocyte metabolism. Our findings show that central MCH directly controls hepatic and adipocyte metabolism through different pathways. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. Role of the mixed-lineage protein kinase pathway in the metabolic stress response to obesity

    OpenAIRE

    Kant, Shashi; Barrett, Tamera; Vertii, Anastassiia; Noh, Yun Hee; Jung, Dae Young; Kim, Jason K.; Davis, Roger J.

    2013-01-01

    Saturated free fatty acid (FFA) is implicated in the metabolic response to obesity. In vitro studies indicate that FFA signaling may be mediated by the mixed-lineage protein kinase (MLK) pathway that activates cJun NH2-terminal kinase (JNK). Here, we examined the role of the MLK pathway in vivo using a mouse model of diet-induced obesity. The ubiquitously expressed MLK2 and MLK3 protein kinases have partially redundant functions. We therefore compared wild-type and compound mutant mice that l...

  8. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    Science.gov (United States)

    Yates, D. T.; Macko, A. R.; Nearing, M.; Chen, X.; Rhoads, R. P.; Limesand, S. W.

    2012-01-01

    Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization. PMID:22900186

  9. Developmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism

    Directory of Open Access Journals (Sweden)

    D. T. Yates

    2012-01-01

    Full Text Available Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR, skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation in fibers, are compromised. Fetal hypoglycemia and hypoxemia are complications that result from placental insufficiency. Hypoxemia elevates circulating catecholamines, and chronic hypercatecholaminemia has been shown to reduce fetal muscle development and growth. We have found evidence for adaptations in adrenergic receptor expression profiles in myoblasts and skeletal muscle of IUGR sheep fetuses with placental insufficiency. The relationship of β-adrenergic receptors shifts in IUGR fetuses because Adrβ2 expression levels decline and Adrβ1 expression levels are unaffected in myofibers and increased in myoblasts. This adaptive response would suppress insulin signaling, myoblast incorporation, fiber hypertrophy, and glucose oxidation. Furthermore, this β-adrenergic receptor expression profile persists for at least the first month in IUGR lambs and lowers their fatty acid mobilization. Developmental programming of skeletal muscle adrenergic receptors partially explains metabolic and endocrine differences in IUGR offspring, and the impact on metabolism may result in differential nutrient utilization.

  10. Tributyltin toxicity in abalone (Haliotis diversicolor supertexta) assessed by antioxidant enzyme activity, metabolic response, and histopathology.

    Science.gov (United States)

    Zhou, Jin; Zhu, Xiao-shan; Cai, Zhong-hua

    2010-11-15

    A toxicity test was performed to investigate the possible harmful effects of tributyltin (TBT) on abalone (Haliotis diversicolor supertexta). Animals were exposed to TBT in a range of environmentally relevant concentrations (2, 10 and 50 ng/L) for 30 days under laboratory conditions. TBT-free conditions were used as control treatments. The activity of antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD), and malondialdehyde (MDA), along with levels of haemolymph metabolites, and hepatopancreas histopathology were analyzed. The results showed that TBT decreased SOD activity, and increased POD level and MDA production in a dose-dependent way, indicating that oxidative injury was induced by TBT. Haemolymph metabolite measurements showed that TBT increased alanine and glutamate levels, and decreased glucose content, which suggested perturbation of energy metabolism. Elevated levels of acetate and pyruvate in the haemolymph indicated partial alteration of lipid metabolism. A decrease in lactate and an increase in succinate, an intermediate of the tricarboxylic acid (TCA) cycle, indicated disturbance of amino acid metabolism. Hepatopancreas tissues also exhibited inflammatory responses characterized by histopathological changes such as cell swelling, granular degeneration, and inflammation. Taken together, these results demonstrated that TBT was a potential toxin with a variety of deleterious effects on abalone. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Metabolic Profiling of Dendrobium officinale in Response to Precursors and Methyl Jasmonate

    Directory of Open Access Journals (Sweden)

    Chunyan Jiao

    2018-03-01

    Full Text Available Alkaloids are the main active ingredients in the medicinal plant Dendrobium officinale. Based on the published genomic and transcriptomic data, a proposed terpenoid indole alkaloid (TIA biosynthesis pathway may be present in D. officinale. In this study, protocorm-like bodies (PLBs with a high-yielding production of alkaloids were obtained by the optimization of tryptophan, secologanin and methyl jasmonate (MeJA treatment. The results showed that the total alkaloid content was 2.05 times greater than that of the control group when the PLBs were fed with 9 µM tryptophan, 6 µM secologanin and 100 µM MeJA after 36 days. HPLC analysis showed that strictosidine synthase (STR activity also increased in the treated plants. A total of 78 metabolites were identified using gas chromatography-mass spectrometry (GC-MS in combination with liquid chromatography-mass spectrometry (LC-MS methods; 29 differential metabolites were identified according to the multivariate statistical analysis. Among them, carapanaubine, a kind of TIA, exhibited dramatically increased levels. In addition, a possible underlying process of the metabolic flux from related metabolism to the TIA biosynthetic pathway was enhanced. These results provide a comprehensive view of the metabolic changes related to alkaloid biosynthesis, especially TIA biosynthesis, in response to tryptophan, secologanin and MeJA treatment.

  12. Lipidomic Adaptations in White and Brown Adipose Tissue in Response to Exercise Demonstrate Molecular Species-Specific Remodeling

    Directory of Open Access Journals (Sweden)

    Francis J. May

    2017-02-01

    Full Text Available Exercise improves whole-body metabolic health through adaptations to various tissues, including adipose tissue, but the effects of exercise training on the lipidome of white adipose tissue (WAT and brown adipose tissue (BAT are unknown. Here, we utilize MS/MSALL shotgun lipidomics to determine the molecular signatures of exercise-induced adaptations to subcutaneous WAT (scWAT and BAT. Three weeks of exercise training decrease specific molecular species of phosphatidic acid (PA, phosphatidylcholines (PC, phosphatidylethanolamines (PE, and phosphatidylserines (PS in scWAT and increase specific molecular species of PC and PE in BAT. Exercise also decreases most triacylglycerols (TAGs in scWAT and BAT. In summary, exercise-induced changes to the scWAT and BAT lipidome are highly specific to certain molecular lipid species, indicating that changes in tissue lipid content reflect selective remodeling in scWAT and BAT of both phospholipids and glycerol lipids in response to exercise training, thus providing a comprehensive resource for future studies of lipid metabolism pathways.

  13. Myeloid-specific deletion of NOX2 prevents the metabolic and neurologic consequences of high fat diet.

    Directory of Open Access Journals (Sweden)

    Jennifer K Pepping

    Full Text Available High fat diet-induced obesity is associated with inflammatory and oxidative signaling in macrophages that likely participates in metabolic and physiologic impairment. One key factor that could drive pathologic changes in macrophages is the pro-inflammatory, pro-oxidant enzyme NADPH oxidase. However, NADPH oxidase is a pleiotropic enzyme with both pathologic and physiologic functions, ruling out indiscriminant NADPH oxidase inhibition as a viable therapy. To determine if targeted inhibition of monocyte/macrophage NADPH oxidase could mitigate obesity pathology, we generated mice that lack the NADPH oxidase catalytic subunit NOX2 in myeloid lineage cells. C57Bl/6 control (NOX2-FL and myeloid-deficient NOX2 (mNOX2-KO mice were given high fat diet for 16 weeks, and subject to comprehensive metabolic, behavioral, and biochemical analyses. Data show that mNOX2-KO mice had lower body weight, delayed adiposity, attenuated visceral inflammation, and decreased macrophage infiltration and cell injury in visceral adipose relative to control NOX2-FL mice. Moreover, the effects of high fat diet on glucose regulation and circulating lipids were attenuated in mNOX2-KO mice. Finally, memory was impaired and markers of brain injury increased in NOX2-FL, but not mNOX2-KO mice. Collectively, these data indicate that NOX2 signaling in macrophages participates in the pathogenesis of obesity, and reinforce a key role for macrophage inflammation in diet-induced metabolic and neurologic decline. Development of macrophage/immune-specific NOX-based therapies could thus potentially be used to preserve metabolic and neurologic function in the context of obesity.

  14. Specific versus non-specific immune responses in an invertebrate species evidenced by a comparative de novo sequencing study.

    Directory of Open Access Journals (Sweden)

    Emeline Deleury

    Full Text Available Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5'-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5'-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance

  15. Regulation of lifespan, metabolism, and stress responses by the Drosophila SH2B protein, Lnk.

    Directory of Open Access Journals (Sweden)

    Cathy Slack

    2010-03-01

    Full Text Available Drosophila Lnk is the single ancestral orthologue of a highly conserved family of structurally-related intracellular adaptor proteins, the SH2B proteins. As adaptors, they lack catalytic activity but contain several protein-protein interaction domains, thus playing a critical role in signal transduction from receptor tyrosine kinases to form protein networks. Physiological studies of SH2B function in mammals have produced conflicting data. However, a recent study in Drosophila has shown that Lnk is an important regulator of the insulin/insulin-like growth factor (IGF-1 signaling (IIS pathway during growth, functioning in parallel to the insulin receptor substrate, Chico. As this pathway also has an evolutionary conserved role in the determination of organism lifespan, we investigated whether Lnk is required for normal lifespan in Drosophila. Phenotypic analysis of mutants for Lnk revealed that loss of Lnk function results in increased lifespan and improved survival under conditions of oxidative stress and starvation. Starvation resistance was found to be associated with increased metabolic stores of carbohydrates and lipids indicative of impaired metabolism. Biochemical and genetic data suggest that Lnk functions in both the IIS and Ras/Mitogen activated protein Kinase (MapK signaling pathways. Microarray studies support this model, showing transcriptional feedback onto genes in both pathways as well as indicating global changes in both lipid and carbohydrate metabolism. Finally, our data also suggest that Lnk itself may be a direct target of the IIS responsive transcription factor, dFoxo, and that dFoxo may repress Lnk expression. We therefore describe novel functions for a member of the SH2B protein family and provide the first evidence for potential mechanisms of SH2B regulation. Our findings suggest that IIS signaling in Drosophila may require the activity of a second intracellular adaptor, thereby yielding fundamental new insights into the

  16. Kinetics of antigen specific and non-specific polyclonal B-cell responses during lethal Plasmodium yoelii malaria

    Directory of Open Access Journals (Sweden)

    Laurence Rolland

    1992-06-01

    Full Text Available In order to study the kinetics and composition of the polyclonal B-cell activation associated to malaria infection, antigen-specific and non-specific B-cell responses were evaluated in the spleens of mice infected with Plasmodium yoelii 17 XL or injected with lysed erythrocytes or plasma from P. yoelii infected mice or with P. falciparum culture supernatants. Spleen/body weigth ratio, numbers of nucleated spleen cells and Immunoglobulin-containing and Immunoglobulin-secreting cells increased progressively during the course of infection,in parallel to the parasitemia. A different pattern of kinetics was observed when anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell plaque forming cells response were studied: maximum values were observed at early stages of infection, whereas the number of total Immunoglobulin-containing and Immunoglobulin-secreting cells were not yet altered. Conversely, at the end of infection, when these latter values reached their maximum, the anti-sheep red blood cell and anti-trinitrophenylated-sheep red blood cell specific responses were normal or even infranormal. In mice injected with Plasmodium-derived material, a higher increase in antigen-specific PFC was observed, as compared to the increase of Immunoglobulin-containing and Immunoglobulin-secreting cell numbers. This suggested a "preferential" (antigen-plus mitogen-induced stimulation of antigen-specific cells rather than a generalized non-specific (mitogen-induced triggering of B-lymphocytes. On the basis of these and previous results, it is suggested that polyclonal B-cell activation that takes place during the course of infection appears as a result of successive waves of antigen-specific B-cell activation.

  17. Hypothalamic miR-219 regulates individual metabolic differences in response to diet-induced weight cycling

    Directory of Open Access Journals (Sweden)

    Mariana Schroeder

    2018-03-01

    Full Text Available Consumption of a low calorie diet is the most common approach to lose weight. While generally effective at first, it is frequently followed by a relapse where the pre-diet weight is regained, and often exceeded. This pattern of repeated weight loss/regain is referred to as weight cycling and the resulting metabolic response varies greatly between individuals. Objective: We attempted to address the issue of individual differences in the response to weight cycling in male mice. Methods: We first exposed adult wild type mice to repeated cycles of high/low fat food. Next, using a lentiviral approach, we knocked-down or over-expressed miR-219 in the ventromedial hypothalamus (VMH of an additional mouse cohort and performed a full metabolic assessment. Results: Exposure of wild type males to weight cycling resulted in the division of the cohort into subsets of resistant versus metabolic-syndrome-prone (MS animals, which differed in their metabolic profile and hypothalamic miR-219 levels. Lentiviral knock-down of miR-219 in the VMH led to exacerbation of metabolic syndrome. In contrast, over-expression of miR-219 resulted in moderation of the metabolic syndrome phenotype. Conclusions: Our results suggest a role for miR-219 in the mediation of the metabolic phenotype resulting from repeated weight cycling. Keywords: Weight cycling, Metabolic syndrome, miRNAs, Ventromedial hypothalamus, High fat diet, Diabetes

  18. Energy metabolism and memory processing: role of glucose transport and glycogen in responses to adrenoceptor activation in the chicken.

    Science.gov (United States)

    Hutchinson, Dana S; Summers, Roger J; Gibbs, Marie E

    2008-06-15

    From experiments using a discriminated bead task in young chicks, we have defined when and where adrenoceptors (ARs) are involved in memory modulation. All three ARs subtypes (alpha(1)-, alpha(2)- and beta-ARs) are found in the chick brain and in regions associated with memory. Glucose and glycogen are important in the role of memory consolidation in the chick since increasing glucose levels improves memory consolidation while inhibiting glucose transporters (GLUTs) or glycogen breakdown inhibits memory consolidation. The selective beta(3)-AR agonist CL316243 enhances memory consolidation by a glucose-dependent mechanism and the administration of the non-metabolized glucose analogue 2-deoxyglucose reduces the ability of CL316243 to enhance memory. Agents that reduce glucose uptake by GLUTs and its incorporation into the glycolytic pathway also reduce the effectiveness of CL316243, but do not alter the dose-response relationship to the beta(2)-AR agonist zinterol. However, beta(2)-ARs do have a role in memory related to glycogen breakdown and inhibition of glycogenolysis reduces the ability of zinterol to enhance memory. Both beta(2)- and beta(3)-ARs are found on astrocytes from chick forebrain, and the actions of beta(3)-ARs on glucose uptake, and beta(2)-ARs on the breakdown of glycogen is consistent with an effect on astrocytic metabolism at the time of memory consolidation 30 min after training. We have shown that both beta(2)- and beta(3)-ARs can increase glucose uptake in chick astrocytes but do so by different mechanisms. This review will focus on the role of ARs on memory consolidation and specifically the role of energy metabolism on AR modulation of memory.

  19. Responsiveness and sensitivity of the Stroke Specific Quality of Life Scale Danish version

    DEFF Research Database (Denmark)

    Muus, Ingrid; Christensen, Doris; Petzold, Max

    2011-01-01

    To test responsiveness and sensitivity to change of the Stroke Specific Quality of Life Scale Danish version (SSQOL-DK) scores in patients following stroke.......To test responsiveness and sensitivity to change of the Stroke Specific Quality of Life Scale Danish version (SSQOL-DK) scores in patients following stroke....

  20. Mechanical and Metabolic Responses to Traditional and Cluster Set Configurations in the Bench Press Exercise.

    Science.gov (United States)

    García-Ramos, Amador; González-Hernández, Jorge M; Baños-Pelegrín, Ezequiel; Castaño-Zambudio, Adrián; Capelo-Ramírez, Fernando; Boullosa, Daniel; Haff, Guy G; Jiménez-Reyes, Pedro

    2017-10-20

    García-Ramos, A, González-Hernández, JM, Baños-Pelegrín, E, Castaño-Zambudio, A, Capelo-Ramírez, F, Boullosa, D, Haff, GG, and Jiménez-Reyes, P. Mechanical and metabolic responses to traditional and cluster set configurations in the bench press exercise. J Strength Cond Res XX(X): 000-000, 2017-This study aimed to compare mechanical and metabolic responses between traditional (TR) and cluster (CL) set configurations in the bench press exercise. In a counterbalanced randomized order, 10 men were tested with the following protocols (sets × repetitions [inter-repetition rest]): TR1: 3 × 10 (0-second), TR2: 6 × 5 (0-second), CL5: 3 × 10 (5-second), CL10: 3 × 10 (10-second), and CL15: 3 × 10 (15-second). The number of repetitions (30), interset rest (5 minutes), and resistance applied (10 repetition maximum) were the same for all set configurations. Movement velocity and blood lactate concentration were used to assess the mechanical and metabolic responses, respectively. The comparison of the first and last set of the training session revealed a significant decrease in movement velocity for TR1 (Effect size [ES]: -0.92), CL10 (ES: -0.85), and CL15 (ES: -1.08) (but not for TR2 [ES: -0.38] and CL5 [ES: -0.37]); while blood lactate concentration was significantly increased for TR1 (ES: 1.11), TR2 (ES: 0.90), and CL5 (ES: 1.12) (but not for CL10 [ES: 0.03] and CL15 [ES: -0.43]). Based on velocity loss, set configurations were ranked as follows: TR1 (-39.3 ± 7.3%) > CL5 (-20.2 ± 14.7%) > CL10 (-12.9 ± 4.9%), TR2 (-10.3 ± 5.3%), and CL15 (-10.0 ± 2.3%). The set configurations were ranked as follows based on the lactate concentration: TR1 (7.9 ± 1.1 mmol·L) > CL5 (5.8 ± 0.9 mmol·L) > TR2 (4.2 ± 0.7 mmol·L) > CL10 (3.5 ± 0.4 mmol·L) and CL15 (3.4 ± 0.7 mmol·L). These results support the use of TR2, CL10, and CL15 for the maintenance of high mechanical outputs, while CL10 and CL15 produce less metabolic stress than TR2.

  1. Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells.

    Science.gov (United States)

    Kawalekar, Omkar U; O'Connor, Roddy S; Fraietta, Joseph A; Guo, Lili; McGettigan, Shannon E; Posey, Avery D; Patel, Prachi R; Guedan, Sonia; Scholler, John; Keith, Brian; Snyder, Nathaniel W; Snyder, Nathaniel; Blair, Ian A; Blair, Ian; Milone, Michael C; June, Carl H

    2016-02-16

    Chimeric antigen receptors (CARs) redirect T cell cytotoxicity against cancer cells, providing a promising approach to cancer immunotherapy. Despite extensive clinical use, the attributes of CAR co-stimulatory domains that impact persistence and resistance to exhaustion of CAR-T cells remain largely undefined. Here, we report the influence of signaling domains of coreceptors CD28 and 4-1BB on the metabolic characteristics of human CAR T cells. Inclusion of 4-1BB in the CAR architecture promoted the outgrowth of CD8(+) central memory T cells that had significantly enhanced respiratory capacity, increased fatty acid oxidation and enhanced mitochondrial biogenesis. In contrast, CAR T cells with CD28 domains yielded effector memory cells with a genetic signature consistent with enhanced glycolysis. These results provide, at least in part, a mechanistic insight into the differential persistence of CAR-T cells expressing 4-1BB or CD28 signaling domains in clinical trials and inform the design of future CAR T cell therapies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Location-specific responses to thermal stress in larvae of the reef-building coral Montastraea faveolata.

    Directory of Open Access Journals (Sweden)

    Nicholas R Polato

    2010-06-01

    Full Text Available The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations.To test the hypothesis that larval transcription profiles reflect location-specific responses to thermal stress, symbiont-free gametes from three to four colonies of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico, fertilized, and raised under mean and elevated (up 1 to 2 degrees C above summer mean temperatures. These locations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among 1,310 unigenes were simultaneously characterized using custom cDNA microarrays, allowing investigation of gene expression patterns among larvae generated from wild populations under stress. Results show both conserved and location-specific variation in key processes including apoptosis, cell structuring, adhesion and development, energy and protein metabolism, and response to stress, in embryos of a reef-building coral.These results provide first insights into location-specific variation in gene expression in the face of gene flow, and support the hypothesis that coral host genomes may house adaptive potential needed to deal with changing environmental conditions.

  3. Ubiquitin-Specific Protease 2 Regulates Hepatic Gluconeogenesis and Diurnal Glucose Metabolism Through 11β-Hydroxysteroid Dehydrogenase 1

    Science.gov (United States)

    Molusky, Matthew M.; Li, Siming; Ma, Di; Yu, Lei; Lin, Jiandie D.

    2012-01-01

    Hepatic gluconeogenesis is important for maintaining steady blood glucose levels during starvation and through light/dark cycles. The regulatory network that transduces hormonal and circadian signals serves to integrate these physiological cues and adjust glucose synthesis and secretion by the liver. In this study, we identified ubiquitin-specific protease 2 (USP2) as an inducible regulator of hepatic gluconeogenesis that responds to nutritional status and clock. Adenoviral-mediated expression of USP2 in the liver promotes hepatic glucose production and exacerbates glucose intolerance in diet-induced obese mice. In contrast, in vivo RNA interference (RNAi) knockdown of this factor improves systemic glycemic control. USP2 is a target gene of peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α), a coactivator that integrates clock and energy metabolism, and is required for maintaining diurnal glucose homeostasis during restricted feeding. At the mechanistic level, USP2 regulates hepatic glucose metabolism through its induction of 11β-hydroxysteroid dehydrogenase 1 (HSD1) and glucocorticoid signaling in the liver. Pharmacological inhibition and liver-specific RNAi knockdown of HSD1 significantly impair the stimulation of hepatic gluconeogenesis by USP2. Together, these studies delineate a novel pathway that links hormonal and circadian signals to gluconeogenesis and glucose homeostasis. PMID:22447855

  4. Sexual dimorphism of growth plate prehypertrophic and hypertrophic chondrocytes in response to testosterone requires metabolism to dihydrotestosterone (DHT) by steroid 5-alpha reductase type 1.

    Science.gov (United States)

    Raz, P; Nasatzky, E; Boyan, B D; Ornoy, A; Schwartz, Z

    2005-05-01

    Rat costochondral growth plate chondrocytes exhibit sex-specific and cell maturation dependent responses to testosterone. Only male cells respond to testosterone, although testosterone receptors are present in both male and female cells, suggesting other mechanisms are involved. We examined the hypothesis that the sex-specific response of rat costochondral cartilage cells to testosterone requires further metabolism of the hormone to dihydrotestosterone (DHT). Resting zone (RC) and growth zone (GC, prehypertrophic and upper hypertrophic zones) chondrocytes from male and female Sabra strain rats exhibited sex-specific responses to testosterone and DHT: only male cells were responsive. Testosterone and DHT treatment for 24 h caused a comparable dose-dependent increase in [3H]-thymidine incorporation in quiescent preconfluent cultures of male GC cells, and a comparable increase in alkaline phosphatase specific activity in confluent cultures. RC cells responded in a differential manner to testosterone and DHT. Testosterone decreased DNA synthesis in male RC cells but DHT had no effect and alkaline phosphatase specific activity of male RC cells was unaffected by either hormone. Inhibition of steroid 5alpha-reductase activity with finasteride (1, 5, or 10 microg/ml), reduced the response of male GC cells to testosterone in a dose-dependent manner, indicating that metabolism to DHT was required. RT-PCR showed that both male and female cells expressed mRNAs for steroid 5alpha-reductase type 1 but lacked mRNAs for the type 2 form of the enzyme. Male cells also exhibited 5alpha-reductase activity but activity of this enzyme was undetectable in female cells. These observations show that sex-specific responses of rat growth zone chondrocytes to testosterone requires the further metabolism of the hormone to DHT and that the effect of DHT in the male growth plate is maturation-state dependent. Failure of female chondrocytes to respond to testosterone may reflect differences in

  5. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells

    DEFF Research Database (Denmark)

    Bro, Christoffer; Regenberg, Birgitte; Lagniel, G.

    2003-01-01

    Lithium is highly toxic to yeast when grown in galactose medium mainly because phosphoglucomutase, a key enzyme of galactose metabolism, is inhibited. We studied the global protein and gene expression profiles of Saccharomyces cerevisiae grown in galactose in different time intervals after addition...... of lithium. These results were related to physiological studies where both secreted and intracellular metabolites were determined. Microarray analysis showed that 664 open reading frames were down-regulated and 725 up-regulated in response to addition of lithium. Genes involved in transcription, translation......-regulated proteins were also identified as being changed on the mRNA level. Functional clusters obtained from proteome data were coincident with transcriptional clusters. Physiological studies showed that acetate, glycerol, and glycogen accumulate in response to lithium, as reflected in expression data, whereas...

  6. Proteomic Analysis of Metabolic Responses to Biofuels and Chemicals in Photosynthetic Cyanobacteria.

    Science.gov (United States)

    Sun, T; Chen, L; Zhang, W

    2017-01-01

    Recent progresses in various "omics" technologies have enabled quantitative measurements of biological molecules in a high-throughput manner. Among them, high-throughput proteomics is a rapidly advancing field that offers a new means to quantify metabolic changes at protein level, which has significantly facilitated our understanding of cellular process, such as protein synthesis, posttranslational modifications, and degradation in responding to environmental perturbations. Cyanobacteria are autotrophic prokaryotes that can perform oxygenic photosynthesis and have recently attracted significant attentions as one promising alternative to traditionally biomass-based "microbial cell factories" to produce green fuels and chemicals. However, early studies have shown that the low tolerance to toxic biofuels and chemicals represented one major hurdle for further improving productivity of the cyanobacterial production systems. To address the issue, metabolic responses and their regulation of cyanobacterial cells to toxic end-products need to be defined. In this chapter, we discuss recent progresses in interpreting cyanobacterial responses to biofuels and chemicals using high-throughput proteomics approach, aiming to provide insights and guidelines on how to enhance tolerance and productivity of biofuels or chemicals in the renewable cyanobacteria systems in the future. © 2017 Elsevier Inc. All rights reserved.

  7. Growth, metabolism and physiological response of the sea cucumber, Apostichopus japonicus Selenka during periods of inactivity

    Science.gov (United States)

    Du, Rongbin; Zang, Yuanqi; Tian, Xiangli; Dong, Shuanglin

    2013-03-01

    The growth, metabolism and physiological response of the sea cucumber, Apostichopus japonicus, were investigated during periods of inactivity. The body weight, oxygen consumption rate (OCR), activities of acidic phosphatase (ACP), alkaline phosphatase (AKP), catalase (CAT) and superoxide dismutase (SOD), and content of heat shock protein 70 (Hsp70) in the body wall and coelomic fluid of A. japonicus were measured during starvation, experimental aestivation and aestivation. The results showed that the body weight of sea cucumber in the three treatments decreased significantly during the experimental period ( P sea cucumber reduced in starvation and experimental aestivation treatments, but increased gradually in natural aestivation treatment. The activities of ACP and AKP of sea cucumber decreased gradually in all treatments, whereas those of SOD and CAT as well as Hsp70 content decreased in the starvation and experimental aestivation treatments and increased in natural aestivation treatment. The sea cucumber entered a state of aestivation at 24°C. To some extent, the animals in experimental aestivation were different from those in natural aestivation in metabolism and physiological response. These findings suggested that the aestivation mechanism of A. japonicus is complex and may not be attributed to the elevated temperature only.

  8. Correlations of Eisenia fetida metabolic responses to extractable phenanthrene concentrations through time

    Energy Technology Data Exchange (ETDEWEB)

    McKelvie, Jennifer R.; Wolfe, David M.; Celejewski, Magda; Simpson, Andre J. [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4 (Canada); Simpson, Myrna J., E-mail: myrna.simpson@utoronto.c [Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, Ontario, M1C 1A4 (Canada)

    2010-06-15

    Eisenia fetida earthworms were exposed to phenanthrene for thirty days to compare hydroxypropyl-beta-cyclodextrin (HPCD) extraction of soil and {sup 1}H NMR earthworm metabolomics as indicators of bioavailability. The phenanthrene 28-d LC{sub 50} value was 750 mg/kg (632-891, 95% confidence intervals) for the peat soil tested. The initial phenanthrene concentration was 319 mg/kg, which biodegraded to 16 mg/kg within 15 days, at which time HPCD extraction suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of {sup 1}H NMR spectra for E. fetida tissue extracts indicated that phenanthrene exposed and control earthworms differed throughout the 30 day experiment despite the low phenanthrene concentrations present after 15 days. This metabolic response was better correlated to total phenanthrene concentrations (Q{sup 2} = 0.59) than HPCD-extractable phenanthrene concentrations (Q{sup 2} = 0.46) suggesting that {sup 1}H NMR metabolomics offers considerable promise as a novel, molecular-level method to directly monitor the bioavailability of contaminants to earthworms in the environment. - Metabolic responses of Eisenia fetida earthworms to phenanthrene exposure are better correlated to total phenanthrene concentrations than to cyclodextrin-extractable concentrations through time.

  9. Time course of the response of carbohydrate metabolism to unloading of the soleus

    Science.gov (United States)

    Henriksen, Erik J.; Tischler, Marc E.

    1988-01-01

    The time course of the response of carbohydrate metabolism to unloading was studied in the soleus muscle of rats subjected to tail-cast suspension. In the fresh soleus, 12 hours of unloading led to higher concentrations of glycogen and lower activity ratios of both glycogen synthase and glycogen phosphorylase. These changes were still evident on day three. Thereafter, the increased glycogen concentration apparently diminished the activity ratio of glycogen synthase, leading to a subsequent fall in the total glycogen content after day one. After 24 hours of unloading, when no significant atrophy was detectable, there was no differential response to insulin for in vitro glucose metabolism. On day three, the soleus atrophied significantly and displayed a greater sensitivity to insulin for most of these parameters compared to the weight-bearing control muscle. However, insulin sensitivity for glycogen synthesis was unchanged. These results showed that the increased sensitivity to insulin of the unloaded soleus is associated with the degree of muscle atrophy, likely due to an increased insulin binding capacity relative to muscle mass. This study also showed that insulin regulation of glucose uptake and of glycogen synthesis is affected differentially in the unloaded soleus muscle.

  10. Noninvasive presymptomatic detection of Cercospora beticola infection and identification of early metabolic responses in sugar beet

    Directory of Open Access Journals (Sweden)

    Hans-Peter Mock

    2016-09-01

    Full Text Available Cercospora beticola is an economically significant fungal pathogen of sugar beet, and is the causative pathogen of Cercospora leaf spot. Selected host genotypes with contrasting degree of susceptibility to the disease have been exploited to characterize the patterns of metabolite responses to fungal infection, and to devise a pre-symptomatic, non-invasive method of detecting the presence of the pathogen. Sugar beet genotypes were analyzed for metabolite profiles and hyperspectral signatures. Correlation of data matrices from both approaches facilitated identification of candidates for metabolic markers. Hyperspectral imaging was highly predictive with a classification accuracy of 98.5-99.9 % in detecting C. beticola. Metabolite analysis revealed metabolites altered by the host as part of a successful defence response: these were L-DOPA, 12-hydroxyjasmonic acid 12-O-β-D-glucoside, pantothenic acid and 5-O-feruloylquinic acid. The accumulation of glucosylvitexin in the resistant cultivar suggests it acts as a constitutively-produced protectant. The study establishes a proof-of-concept for an unbiased, presymptomatic and non-invasive detection system for the presence of C. beticola. The test needs to be validated with a larger set of genotypes, to be scalable to the level of a crop improvement program, aiming to speed up the selection for resistant cultivars of sugar beet. Untargeted metabolic profiling is a valuable tool to identify metabolites which correlate with hyperspectral data.

  11. Correlations of Eisenia fetida metabolic responses to extractable phenanthrene concentrations through time

    International Nuclear Information System (INIS)

    McKelvie, Jennifer R.; Wolfe, David M.; Celejewski, Magda; Simpson, Andre J.; Simpson, Myrna J.

    2010-01-01

    Eisenia fetida earthworms were exposed to phenanthrene for thirty days to compare hydroxypropyl-β-cyclodextrin (HPCD) extraction of soil and 1 H NMR earthworm metabolomics as indicators of bioavailability. The phenanthrene 28-d LC 50 value was 750 mg/kg (632-891, 95% confidence intervals) for the peat soil tested. The initial phenanthrene concentration was 319 mg/kg, which biodegraded to 16 mg/kg within 15 days, at which time HPCD extraction suggested that phenanthrene was no longer bioavailable. Multivariate statistical analysis of 1 H NMR spectra for E. fetida tissue extracts indicated that phenanthrene exposed and control earthworms differed throughout the 30 day experiment despite the low phenanthrene concentrations present after 15 days. This metabolic response was better correlated to total phenanthrene concentrations (Q 2 = 0.59) than HPCD-extractable phenanthrene concentrations (Q 2 = 0.46) suggesting that 1 H NMR metabolomics offers considerable promise as a novel, molecular-level method to directly monitor the bioavailability of contaminants to earthworms in the environment. - Metabolic responses of Eisenia fetida earthworms to phenanthrene exposure are better correlated to total phenanthrene concentrations than to cyclodextrin-extractable concentrations through time.

  12. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring.

    Science.gov (United States)

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    The mother's consumption of high-fat food can affect glucose metabolism and the hypothalamic-pituitary-adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Female rats were randomly divided into normal and high-fat diet groups and were fed in accordance with their given diets from pre-pregnancy to the end of lactation. The offspring were divided into control (NC and HFC) and stress (NS and HFS) groups based on their mothers' diet and exposure to stress in adulthood. After the two-week stress induction period was over, an intraperitoneal glucose tolerance test (IPGTT) was performed and plasma glucose and insulin levels were assessed. The pancreas was then removed for measuring insulin secretion from the isolated islets as well as glucose transporter 2 mRNA expression and protein levels. According to the results obtained, plasma corticosterone concentrations increased significantly on days 1 and 14 of the stress induction period and were lower on the last day compared to on the first day. In both the NS and HFS groups, stress reduced plasma insulin concentration in the IPGTT without changing the plasma glucose concentration, suggesting an increased insulin sensitivity in the NS and HFS groups, although more markedly in the latter. Stress reduced insulin secretion (at high glucose concentrations) and increased glucose transporter 2 mRNA and protein expression, especially in the HFS group. Mothers' high-fat diet appears to intensify the stress response by changing the programming of the neuroendocrine system in the offspring.

  13. Gender comparison of psychophysical forces, cardiopulmonary, and muscle metabolic responses during a simulated cart pushing task.

    Science.gov (United States)

    Maikala, Rammohan V; Ciriello, Vincent M; Dempsey, Patrick G; O'Brien, Niall V

    2010-10-01

    The purpose was to compare psychophysiological responses between healthy male and female workers during dynamic pushing. Using a psychophysical approach, 27 participants chose an acceptable force that they could push over a 7.6m distance at a frequency of 1 push per min on a treadmill. On a separate day, cardiopulmonary (e.g., whole-body oxygen uptake, heart rate, ventilation volume) and muscle metabolic measurements (change in muscle blood volume [ΔtHb] and Tissue Oxygenation Index [TOI]) from the right and left gastrocnemius muscles were collected simultaneously while participants pushed the previously chosen acceptable force on the treadmill at a similar frequency and distance for 2h. Results showed no significant difference between men and women for integrated force exerted on the instrumented treadmill handle and cardiopulmonary responses. In contrast, women demonstrated 45.7% lower ΔtHb but 3.6% higher TOI in the gastrocnemius region as compared to men, suggesting a lower hemoglobin concentration in women and high venous oxygen saturation during pushing. When ΔtHb and TOI were corrected for both body mass and pushing force, the disparity in gender was retained, implying an increased muscle oxygen saturation per force development in women than men during pushing. In the left gastrocnemius region, ΔtHb was 60% lower and TOI was 5.7% higher in women than men, suggesting an uneven muscle loading during pushing. Overall, the gender similarity in cardiopulmonary responses versus disparity in muscle metabolic responses suggest the importance of evaluating human performance during physical work at both whole-body and localized muscle levels. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. A clade-specific Arabidopsis gene connects primary metabolism and senescence

    Science.gov (United States)

    Plants have to deal with environmental insults as they cannot move to escape from stressful conditions. To do so, they have evolved novel components that respond to the changing environments. A primary example is Qua Quine Starch (QQS, AT3G30720), an Arabidopsis thaliana-specific (orphan) gene that ...

  15. Proteomic Characterization of Armillaria mellea Reveals Oxidative Stress Response Mechanisms and Altered Secondary Metabolism Profiles

    Directory of Open Access Journals (Sweden)

    Cassandra Collins

    2017-09-01

    Full Text Available Armillaria mellea is a major plant pathogen. Yet, the strategies the organism uses to infect susceptible species, degrade lignocellulose and other plant material and protect itself against plant defences and its own glycodegradative arsenal are largely unknown. Here, we use a combination of gel and MS-based proteomics to profile A. mellea under conditions of oxidative stress and changes in growth matrix. 2-DE and LC-MS/MS were used to investigate the response of A. mellea to H2O2 and menadione/FeCl3 exposure, respectively. Several proteins were detected with altered abundance in response to H2O2, but not menadione/FeCl3 (i.e., valosin-containing protein, indicating distinct responses to these different forms of oxidative stress. One protein, cobalamin-independent methionine synthase, demonstrated a common response in both conditions, which may be a marker for a more general stress response mechanism. Further changes to the A. mellea proteome were investigated using MS-based proteomics, which identified changes to putative secondary metabolism (SM enzymes upon growth in agar compared to liquid cultures. Metabolomic analyses revealed distinct profiles, highlighting the effect of growth matrix on SM production. This establishes robust methods by which to utilize comparative proteomics to characterize this important phytopathogen.

  16. Magnetic resonance metabolic profiling of breast cancer tissue obtained with core needle biopsy for predicting pathologic response to neoadjuvant chemotherapy.

    Directory of Open Access Journals (Sweden)

    Ji Soo Choi

    Full Text Available The purpose of this study was to determine whether metabolic profiling of core needle biopsy (CNB samples using high-resolution magic angle spinning (HR-MAS magnetic resonance spectroscopy (MRS could be used for predicting pathologic response to neoadjuvant chemotherapy (NAC in patients with locally advanced breast cancer. After institutional review board approval and informed consent were obtained, CNB tissue samples were collected from 37 malignant lesions in 37 patients before NAC treatment. The metabolic profiling of CNB samples were performed by HR-MAS MRS. Metabolic profiles were compared according to pathologic response to NAC using the Mann-Whitney test. Multivariate analysis was performed with orthogonal projections to latent structure-discriminant analysis (OPLS-DA. Various metabolites including choline-containing compounds were identified and quantified by HR-MAS MRS in all 37 breast cancer tissue samples obtained by CNB. In univariate analysis, the metabolite concentrations and metabolic ratios of CNB samples obtained with HR-MAS MRS were not significantly different between different pathologic response groups. However, there was a trend of lower levels of phosphocholine/creatine ratio and choline-containing metabolite concentrations in the pathologic complete response group compared to the non-pathologic complete response group. In multivariate analysis, the OPLS-DA models built with HR-MAS MR metabolic profiles showed visible discrimination between the pathologic response groups. This study showed OPLS-DA multivariate analysis using metabolic profiles of pretreatment CNB samples assessed by HR- MAS MRS may be used to predict pathologic response before NAC, although we did not identify the metabolite showing statistical significance in univariate analysis. Therefore, our preliminary results raise the necessity of further study on HR-MAS MR metabolic profiling of CNB samples for a large number of cancers.

  17. Congener-specific metabolism and sequestration of dioxin-like compounds by cytochrome P450 1A induced in the liver of crows from Tokyo, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, M.; Iwata, H.; Tanabe, S. [Ehime Univ., Matsuyama (Japan); Yoneda, K.; Hashimoto, T. [Japan Wildlife Research Center, Tokyo (Japan)

    2004-09-15

    Jungle crow (JC; Corvus macrorhynchos) is a useful bioindicator for monitoring contaminants in urban areas, because this species is residential, occupies a same habitat as human, and feeds variety of foods including domestic waste and garbage. Therefore, JCs may accumulate environmental contaminants such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and coplanar polychlorinated biphenyls (Co-PCBs), which are released by human activities. Induction of cytochrome P450 (CYP) 1A is a responsive mechanism elicited by exposure to dioxinlike compounds including PCDDs/DFs and Co-PCBs. Toxicokinetic behavior of dioxin-like compounds in organisms is controlled by excretion, metabolism and absorption. These processes are, at least partly, dependent on CYP1A expression in addition to chemical structure and number of chlorine substitution of each congener. Low chlorinated congeners such as 2378-T{sub 4}CDD, 2378- T{sub 4}CDF, 12378-P{sub 5}CDD and 33'44'-PCB were easily metabolized by CYP1A1/2 in rat liver microsomes. PCDDs/DFs accumulate in hepatic tissue to a greater extent than adipose tissue in rats and mice. Recent study using transgenic CYP1A2 knockout mice demonstrated that CYP1A2 is responsible for the sequestration of 2378-T{sub 4}CDD and 23478-P{sub 5}CDF in hepatic tissue. Therefore, CYP1A is considered as a key factor responsible for toxicokinetics of dioxin-like compounds. However, there's no comprehensive data on the contribution of CYP1A to the toxicokinetics of dioxin-like congeners in wild populations. In this study, we investigated contamination levels of PCDDs/DFs and Co-PCBs in liver and breast muscle of JCs from Tokyo, Japan, and interactions of dioxin-like congeners with hepatic CYP to elucidate congener-specific toxicokinetics related to CYP expression in JC.

  18. Waterborne cadmium and nickel impact oxidative stress responses and retinoid metabolism in yellow perch

    International Nuclear Information System (INIS)

    Defo, Michel A.; Bernatchez, Louis; Campbell, Peter G.C.; Couture, Patrice

    2014-01-01

    Highlights: • Cd and Ni affected indicators of retinoid metabolism and oxidative stress in fish. • Liver rdh-2 transcription levels increase in fish exposed to waterborne Cd. • Liver REH and LdRAT activities increase with increasing kidney Cd concentration. • Changes at molecular levels do not always mean changes at the functional levels. • Multi-level biological approaches are needed when assessing fish metal toxicology. - Abstract: In this experiment, we studied the transcriptional and functional (enzymatic) responses of yellow perch (Perca flavescens) to metal stress, with a focus on oxidative stress and vitamin A metabolism. Juvenile yellow perch were exposed to two environmentally relevant concentrations of waterborne cadmium (Cd) and nickel (Ni) for a period of 6 weeks. Kidney Cd and Ni bioaccumulation significantly increased with increasing metal exposure. The major retinoid metabolites analyzed in liver and muscle decreased with metal exposure except at high Cd exposure where no variation was reported in liver. A decrease in free plasma dehydroretinol was also observed with metal exposure. In the liver of Cd-exposed fish, both epidermal retinol dehydrogenase 2 transcription level and corresponding enzyme activities retinyl ester hydrolase and lecithin dehydroretinyl acyl transferase increased. In contrast, muscle epidermal retinol dehydrogenase 2 transcription level decreased with Cd exposure. Among antioxidant defences, liver transcription levels of catalase, microsomal glutathione-S-transferase-3 and glucose-6-phosphate dehydrogenase were generally enhanced in Cd-exposed fish and this up-regulation was accompanied by an increase in the activities of corresponding enzymes, except for microsomal glutathione-S-transferase. No consistent pattern in antioxidant defence responses was observed between molecular and biochemical response when fish were exposed to Ni, suggesting a non-synchronous response of antioxidant defence in fish exposed to

  19. Waterborne cadmium and nickel impact oxidative stress responses and retinoid metabolism in yellow perch

    Energy Technology Data Exchange (ETDEWEB)

    Defo, Michel A. [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada); Bernatchez, Louis [Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Québec G1V 0A6 (Canada); Campbell, Peter G.C. [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada); Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca [Institut national de la recherche scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, Québec G1K 9A9 (Canada)

    2014-09-15

    Highlights: • Cd and Ni affected indicators of retinoid metabolism and oxidative stress in fish. • Liver rdh-2 transcription levels increase in fish exposed to waterborne Cd. • Liver REH and LdRAT activities increase with increasing kidney Cd concentration. • Changes at molecular levels do not always mean changes at the functional levels. • Multi-level biological approaches are needed when assessing fish metal toxicology. - Abstract: In this experiment, we studied the transcriptional and functional (enzymatic) responses of yellow perch (Perca flavescens) to metal stress, with a focus on oxidative stress and vitamin A metabolism. Juvenile yellow perch were exposed to two environmentally relevant concentrations of waterborne cadmium (Cd) and nickel (Ni) for a period of 6 weeks. Kidney Cd and Ni bioaccumulation significantly increased with increasing metal exposure. The major retinoid metabolites analyzed in liver and muscle decreased with metal exposure except at high Cd exposure where no variation was reported in liver. A decrease in free plasma dehydroretinol was also observed with metal exposure. In the liver of Cd-exposed fish, both epidermal retinol dehydrogenase 2 transcription level and corresponding enzyme activities retinyl ester hydrolase and lecithin dehydroretinyl acyl transferase increased. In contrast, muscle epidermal retinol dehydrogenase 2 transcription level decreased with Cd exposure. Among antioxidant defences, liver transcription levels of catalase, microsomal glutathione-S-transferase-3 and glucose-6-phosphate dehydrogenase were generally enhanced in Cd-exposed fish and this up-regulation was accompanied by an increase in the activities of corresponding enzymes, except for microsomal glutathione-S-transferase. No consistent pattern in antioxidant defence responses was observed between molecular and biochemical response when fish were exposed to Ni, suggesting a non-synchronous response of antioxidant defence in fish exposed to

  20. Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase

    Directory of Open Access Journals (Sweden)

    Papacchioli Velia

    2006-06-01

    Full Text Available Abstract Background Potato is a major staple food, and modification of its provitamin content is a possible means for alleviating nutritional deficiencies. beta-carotene is the main dietary precursor of vitamin A. Potato tubers contain low levels of carotenoids, composed mainly of the xanthophylls lutein, antheraxanthin, violaxanthin, and of xanthophyll esters. None of these carotenoids have provitamin A activity. Results We silenced the first dedicated step in the beta-epsilon- branch of carotenoid biosynthesis, lycopene epsilon cyclase (LCY-e, by introducing, via Agrobacterium-mediated transformation, an antisense fragment of this gene under the control of the patatin promoter. Real Time measurements confirmed the tuber-specific silencing of Lcy-e. Antisense tubers showed significant increases in beta-beta-carotenoid levels, with beta-carotene showing the maximum increase (up to 14-fold. Total carotenoids increased up to 2.5-fold. These changes were not accompanied by a decrease in lutein, suggesting that LCY-e is not rate-limiting for lutein accumulation. Tuber-specific changes in expression of several genes in the pathway were observed. Conclusion The data suggest that epsilon-cyclization of lycopene is a key regulatory step in potato tuber carotenogenesis. Upon tuber-specific silencing of the corresponding gene, beta-beta-carotenoid and total carotenoid levels are increased, and expression of several other genes in the pathway is modified.

  1. Genetic Variant in Flavin-Containing Monooxygenase 3 Alters Lipid Metabolism in Laying Hens in a Diet-Specific Manner

    OpenAIRE

    Wang, Jing; Long, Cheng; Zhang, Haijun; Zhang, Yanan; Wang, Hao; Yue, Hongyuan; Wang, Xiaocui; Wu, Shugeng; Qi, Guanghai

    2016-01-01

    Genetic variant T329S in flavin-containing monooxygenase 3 (FMO3) impairs trimethylamine (TMA) metabolism in birds. The TMA metabolism that under complex genetic and dietary regulation, closely linked to cardiovascular disease risk. We determined whether the genetic defects in TMA metabolism may change other metabolic traits in birds, determined whether the genetic effects depend on diets, and to identify genes or gene pathways that underlie the metabolic alteration induced by genetic and die...

  2. The composition and metabolism of faecal microbiota is specifically modulated by different dietary polysaccharides and mucin: an isothermal microcalorimetry study.

    Science.gov (United States)

    Adamberg, K; Kolk, K; Jaagura, M; Vilu, R; Adamberg, S

    2018-01-29

    The metabolic activity of colon microbiota is specifically affected by fibres with various monomer compositions, degree of polymerisation and branching. The supply of a variety of dietary fibres assures the diversity of gut microbial communities considered important for the well-being of the host. The aim of this study was to compare the impact of different oligo- and polysaccharides (galacto- and fructooligosaccharides, resistant starch, levan, inulin, arabinogalactan, xylan, pectin and chitin), and a glycoprotein mucin on the growth and metabolism of faecal microbiota in vitro by using isothermal microcalorimetry (IMC). Faecal samples from healthy donors were incubated in a phosphate-buffered defined medium with or without supplementation of a single substrate. The generation of heat was followed on-line, microbiota composition (V3-V4 region of the 16S rRNA using Illumina MiSeq v2) and concentrations of metabolites (HPLC) were determined at the end of growth. The multiauxic power-time curves obtained were substrate-specific. More than 70% of all substrates except chitin were fermented by faecal microbiota with total heat generation of up to 8 J/ml. The final metabolite patterns were in accordance with the microbiota changes. For arabinogalactan, xylan and levan, the fibre-affected distribution of bacterial taxa showed clear similarities (e.g. increase of Bacteroides ovatus and decrease of Bifidobacterium adolescentis). The formation of propionic acid, an important colon metabolite, was enhanced by arabinogalactan, xylan and mucin but not by galacto- and fructooligosaccharides or inulin. Mucin fermentation resulted in acetate, propionate and butyrate production in ratios previously observed for faecal samples, indicating that mucins may serve as major substrates for colon microbial population. IMC combined with analytical methods was shown to be an effective method for screening the impact of specific dietary fibres on functional changes in faecal microbiota.

  3. Metabolic regulation of inflammation.

    Science.gov (United States)

    Gaber, Timo; Strehl, Cindy; Buttgereit, Frank

    2017-05-01

    Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.

  4. Responses to high-fat challenges varying in fat type in subjects with different metabolic risk phenotypes: a randomized trial.

    Directory of Open Access Journals (Sweden)

    Susan J van Dijk

    Full Text Available The ability of subjects to respond to nutritional challenges can reflect the flexibility of their biological system. Nutritional challenge tests could be used as an indicator of health status but more knowledge on metabolic and immune responses of different subjects to nutritional challenges is needed. The aim of this study was to compare the responses to high-fat challenges varying in fat type in subjects with different metabolic risk phenotypes.In a cross-over design 42 men (age 50-70 y consumed three high-fat shakes containing saturated fat (SFA, monounsaturated fat (MUFA or n-3 polyunsaturated (PUFA. Men were selected on BMI and health status (lean, obese or obese diabetic and phenotyped with MRI for adipose tissue distribution. Before and 2 and 4 h after shake consumption blood was drawn for measurement of expression of metabolic and inflammation-related genes in peripheral blood mononuclear cells (PBMCs, plasma triglycerides (TAG, glucose, insulin, cytokines and ex vivo PBMC immune response capacity. The MUFA and n-3 PUFA challenge, compared to the SFA challenge, induced higher changes in expression of inflammation genes MCP1 and IL1β in PBMCs. Obese and obese diabetic subjects had different PBMC gene expression and metabolic responses to high-fat challenges compared to lean subjects. The MUFA challenge induced the most pronounced TAG response, mainly in obese and obese diabetic subjects.The PBMC gene expression response and metabolic response to high-fat challenges were affected by fat type and metabolic risk phenotype. Based on our results we suggest using a MUFA challenge to reveal differences in response capacity of subjects.ClinicalTrials.gov NCT00977262.

  5. Proprietary tomato extract improves metabolic response to high-fat meal in healthy normal weight subjects

    Directory of Open Access Journals (Sweden)

    Xavier Deplanque

    2016-10-01

    Full Text Available Background: Low-density lipoprotein (LDL oxidation is a risk factor for atherosclerosis. Lycopene and tomato-based products have been described as potent inhibitors of LDL oxidation. Objectives: To evaluate the effect of a 2-week supplementation with a carotenoid-rich tomato extract (CRTE standardized for a 1:1 ratio of lycopene and phytosterols, on post-prandial LDL oxidation after a high-fat meal. Design: In a randomized, double-blind, parallel-groups, placebo-controlled study, 146 healthy normal weight individuals were randomly assigned to a daily dose of CRTE standardized for tomato phytonutrients or placebo during 2 weeks. Oxidized LDL (OxLDL, glucose, insulin, and triglyceride (TG responses were measured for 8 h after ingestion of a high-fat meal before and at the end of intervention. Results: Plasma lycopene, phytofluene, and phytoene were increased throughout the study period in the CRTE group compared to placebo. CRTE ingestion significantly improved changes in OxLDL response to high-fat meal compared to placebo after 2 weeks (p<0.0001. Changes observed in glucose, insulin, and TG responses were not statistically significant after 2 weeks of supplementation, although together they may suggest a trend of favorable effect on metabolic outcomes after a high-fat meal. Conclusions: Two-week supplementation with CRTE increased carotenoids levels in plasma and improved oxidized LDL response to a high-fat meal in healthy normal weight individuals.

  6. Specificity and polyreactivity of the antibody response during natural HIV-1 infection

    OpenAIRE

    Wang, Xin

    2006-01-01

    The specificity and polyreactivity of the antibody response in natural HIV-1 infection were studied. First, to investigate the overall antibody response, overlapping linear peptides were used to screen sera taken from HIV-1-infected individuals. The polyclonal antibody response was relatively stable during long-term infection, compared with acute infection, and mostly directed against immunodominant regions. Low level, transient antibody responses were detected against membrane proximal exter...

  7. Metabolic Profile and Inflammatory Responses in Dairy Cows with Left Displaced Abomasum Kept under Small-Scaled Farm Conditions

    Directory of Open Access Journals (Sweden)

    Fenja Klevenhusen

    2015-10-01

    Full Text Available Left displaced abomasum (LDA is a severe metabolic disease of cattle with a strong negative impact on production efficiency of dairy farms. Metabolic and inflammatory alterations associated with this disease have been reported in earlier studies, conducted mostly in large dairy farms. This research aimed to: (1 evaluate metabolic and inflammatory responses in dairy cows affected by LDA in small-scaled dairy farms; and (2 establish an Animals 2015, 5 1022 association between lactation number and milk production with the outcome of metabolic variables. The cows with LDA had lower serum calcium (Ca, but greater concentrations of non-esterified fatty acids (NEFA and beta-hydroxy-butyrate (BHBA, in particular when lactation number was >2. Cows with LDA showed elevated levels of aspartate aminotransferase, glutamate dehydrogenase, and serum amyloid A (SAA, regardless of lactation number. In addition, this study revealed strong associations between milk yield and the alteration of metabolic profile but not with inflammation in the sick cows. Results indicate metabolic alterations, liver damage, and inflammation in LDA cows kept under small-scale farm conditions. Furthermore, the data suggest exacerbation of metabolic profile and Ca metabolism but not of inflammation and liver health with increasing lactation number and milk yield in cows affected by LDA.

  8. Metabolic Profile and Inflammatory Responses in Dairy Cows with Left Displaced Abomasum Kept under Small-Scaled Farm Conditions.

    Science.gov (United States)

    Klevenhusen, Fenja; Humer, Elke; Metzler-Zebeli, Barbara; Podstatzky-Lichtenstein, Leopold; Wittek, Thomas; Zebeli, Qendrim

    2015-10-13

    Left displaced abomasum (LDA) is a severe metabolic disease of cattle with a strong negative impact on production efficiency of dairy farms. Metabolic and inflammatory alterations associated with this disease have been reported in earlier studies, conducted mostly in large dairy farms. This research aimed to: (1) evaluate metabolic and inflammatory responses in dairy cows affected by LDA in small-scaled dairy farms; and (2) establish an Animals 2015, 5 1022 association between lactation number and milk production with the outcome of metabolic variables. The cows with LDA had lower serum calcium (Ca), but greater concentrations of non-esterified fatty acids (NEFA) and beta-hydroxy-butyrate (BHBA), in particular when lactation number was >2. Cows with LDA showed elevated levels of aspartate aminotransferase, glutamate dehydrogenase, and serum amyloid A (SAA), regardless of lactation number. In addition, this study revealed strong associations between milk yield and the alteration of metabolic profile but not with inflammation in the sick cows. Results indicate metabolic alterations, liver damage, and inflammation in LDA cows kept under small-scale farm conditions. Furthermore, the data suggest exacerbation of metabolic profile and Ca metabolism but not of inflammation and liver health with increasing lactation number and milk yield in cows affected by LDA.

  9. The metabolic enhancer piracetam attenuates mitochondrion-specific endonuclease G translocation and oxidative DNA fragmentation.

    Science.gov (United States)

    Gupta, Sonam; Verma, Dinesh Kumar; Biswas, Joyshree; Rama Raju, K Siva; Joshi, Neeraj; Wahajuddin; Singh, Sarika

    2014-08-01

    This study was performed to investigate the involvement of mitochondrion-specific endonuclease G in piracetam (P)-induced protective mechanisms. Studies have shown the antiapoptotic effects of piracetam but the mechanism of action of piracetam is still an enigma. To assess the involvement of endonuclease G in piracetam-induced protective effects, astrocyte glial cells were treated with lipopolysaccharide (LPS) and piracetam. LPS treatment caused significantly decreased viability, mitochondrial activity, oxidative stress, chromatin condensation, and DNA fragmentation, which were attenuated by piracetam cotreatment. Cotreatment of astrocytes with piracetam showed its significantly time-dependent absorption as observed with high-performance liquid chromatography. Astrocytes treated with piracetam alone showed enhanced mitochondrial membrane potential (MMP) in comparison to control astrocytes. However, in LPS-treated cells no significant alteration in MMP was observed in comparison to control cells. Protein and mRNA levels of the terminal executor of the caspase-mediated pathway, caspase-3, were not altered significantly in LPS or LPS + piracetam-treated astrocytes, whereas endonuclease G was significantly translocated to the nucleus in LPS-treated astrocytes. Piracetam cotreatment attenuated the LPS-induced endonuclease G translocation. In conclusion this study indicates that LPS treatment of astrocytes caused decreased viability, oxidative stress, mitochondrial dysfunction, chromatin condensation, DNA damage, and translocation of endonuclease G to the nucleus, which was inhibited by piracetam cotreatment, confirming that the mitochondrion-specific endonuclease G is one of the factors involved in piracetam-induced protective mechanisms. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Insula-specific responses induced by dental pain. A proton magnetic resonance spectroscopy study

    International Nuclear Information System (INIS)

    Gutzeit, A.; Weymarn, C. von; Froehlich, J.M.; Binkert, C.A.; Meier, D.; Meier, M.L.; Bruegger, M.; Ettlin, D.A.; Graf, N.

    2011-01-01

    To evaluate whether induced dental pain leads to quantitative changes in brain metabolites within the left insular cortex after stimulation of the right maxillary canine and to examine whether these metabolic changes and the subjective pain intensity perception correlate. Ten male volunteers were included in the pain group and compared with a control group of 10 other healthy volunteers. The pain group received a total of 87-92 electrically induced pain stimuli over 15 min to the right maxillary canine tooth. Contemporaneously, they evaluated the subjective pain intensity of every stimulus using an analogue scale. Neurotransmitter changes within the left insular cortex were evaluated by MR spectroscopy. Significant metabolic changes in glutamine (+55.1%), glutamine/glutamate (+16.4%) and myo-inositol (-9.7%) were documented during pain stimulation. Furthermore, there was a significant negative correlation between the subjective pain intensity perception and the metabolic levels of Glx, Gln, glutamate and N-acetyl aspartate. The insular cortex is a metabolically active region in the processing of acute dental pain. Induced dental pain leads to quantitative changes in brain metabolites within the left insular cortex resulting in significant alterations in metabolites. Negative correlation between subjective pain intensity rating and specific metabolites could be observed. (orig.)

  11. Insula-specific responses induced by dental pain. A proton magnetic resonance spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Gutzeit, A.; Weymarn, C. von; Froehlich, J.M.; Binkert, C.A. [Cantonal Hospital Winterthur, Department of Radiology, Winterthur (Switzerland); Meier, D. [University and ETH Zurich, Institute for Biomedical Engineering, Zurich (Switzerland); Meier, M.L.; Bruegger, M. [University of Zurich, Institute of Psychology, Division Neuropsychology, Zurich (Switzerland); Ettlin, D.A. [University of Zuerich, Center for Dental and Oral Medicine and Cranio-Maxillofacial Surgery, Clinic for Removable Prosthodontics, Masticatory Disorders and Special Care Dentistry, Zuerich (Switzerland); Graf, N. [University Hospital of Zurich, Clinical Trials Center, Center for Clinical Research, Zurich (Switzerland)

    2011-04-15

    To evaluate whether induced dental pain leads to quantitative changes in brain metabolites within the left insular cortex after stimulation of the right maxillary canine and to examine whether these metabolic changes and the subjective pain intensity perception correlate. Ten male volunteers were included in the pain group and compared with a control group of 10 other healthy volunteers. The pain group received a total of 87-92 electrically induced pain stimuli over 15 min to the right maxillary canine tooth. Contemporaneously, they evaluated the subjective pain intensity of every stimulus using an analogue scale. Neurotransmitter changes within the left insular cortex were evaluated by MR spectroscopy. Significant metabolic changes in glutamine (+55.1%), glutamine/glutamate (+16.4%) and myo-inositol (-9.7%) were documented during pain stimulation. Furthermore, there was a significant negative correlation between the subjective pain intensity perception and the metabolic levels of Glx, Gln, glutamate and N-acetyl aspartate. The insular cortex is a metabolically active region in the processing of acute dental pain. Induced dental pain leads to quantitative changes in brain metabolites within the left insular cortex resulting in significant alterations in metabolites. Negative correlation between subjective pain intensity rating and specific metabolites could be observed. (orig.)

  12. Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity.

    Science.gov (United States)

    Li, Tongyu; Li, Erchao; Suo, Yantong; Xu, Zhixin; Jia, Yongyi; Qin, Jian G; Chen, Liqiao; Gu, Zhimin

    2017-02-01

    The toxicity and poisoning mechanisms of sulfide were studied in Litopenaeus vannamei from the perspective of energy metabolism and metabolomics. The lethal concentrations of sulfide in L. vannamei (LC50) at 24h, 48h, 72h, and 96h were determined. Sulfide at a concentration of 0, 1/10 (425.5μg/L), and 1/5 (851μg/L) of the LC 50 at 96h was used to test the metabolic responses of L. vannamei for 21days. The chronic exposure of shrimp to a higher sulfide concentration of 851μg/L decreased shrimp survival but did not affect weight gain or the hepatopancreas index. The glycogen content in the hepatopancreas and muscle and the activity of hepatopancreas cytochrome C oxidase of the shrimp exposed to all sulfide concentrations were significantly lower, and the serum glucose and lactic acid levels and lactic acid dehydrogenase activity were significantly lower than those in the control. Metabolomics assays showed that shrimp exposed to sulfide had lower amounts of serum pyruvic acid, succinic acid, glycine, alanine, and proline in the 425.5μg/L group and phosphate, succinic acid, beta-alanine, serine, and l-histidine in the 851μg/L group than in the control. Chronic sulfide exposure could disturb protein synthesis in shrimp but enhance gluconeogenesis and substrate absorption for ATP synthesis and tricarboxylic acid cycles to provide extra energy to cope with sulfide stress. Chronic sulfide exposure could adversely affect the health status of L. vannamei, as indicated by the high amounts of serum n-ethylmaleamic acid, pyroglutamic acid, aspartic acid and phenylalanine relative to the control. This study indicates that chronic exposure of shrimp to sulfide can decrease health and lower survival through functional changes in gluconeogenesis, protein synthesis and energy metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. A specific primed immune response in Drosophila is dependent on phagocytes.

    Directory of Open Access Journals (Sweden)

    Linh N Pham

    2007-03-01

    Full Text Available Drosophila melanogaster, like other invertebrates, relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming Drosophila with a sublethal dose of Streptococcus pneumoniae protects against an otherwise-lethal second challenge of S. pneumoniae. This protective effect exhibits coarse specificity for S. pneumoniae and persists for the life of the fly. Although not all microbial challenges induced this specific primed response, we find that a similar specific protection can be elicited by Beauveria bassiana, a natural fly pathogen. To characterize this primed response, we focused on S. pneumoniae-induced protection. The mechanism underlying this protective effect requires phagocytes and the Toll pathway. However, activation of the Toll pathway is not sufficient for priming-induced protection. This work contradicts the paradigm that insect immune responses cannot adapt and will promote the search for similar responses overlooked in organisms with an adaptive immune response.

  14. Capturing the response of Clostridium acetobutylicum to chemical stressors using a regulated genome-scale metabolic model

    International Nuclear Information System (INIS)

    Dash, Satyakam; Mueller, Thomas J.; Venkataramanan, Keerthi P.; Papoutsakis, Eleftherios T.; Maranas, Costas D.

    2014-01-01

    Clostridia are anaerobic Gram-positive Firmicutes containing broad and flexible systems for substrate utilization, which have been used successfully to produce a range of industrial compounds. Clostridium acetobutylicum has been used to produce butanol on an industrial scale through acetone-butanol-ethanol (ABE) fermentation. A genome-scale metabolic (GSM) model is a powerful tool for understanding the metabolic capacities of an organism and developing metabolic engineering strategies for strain development. The integration of stress related specific transcriptomics information with the GSM model provides opportunities for elucidating the focal points of regulation

  15. Assessment of chitosan-affected metabolic response by peroxisome proliferator-activated receptor bioluminescent imaging-guided transcriptomic analysis.

    Directory of Open Access Journals (Sweden)

    Chia-Hung Kao

    Full Text Available Chitosan has been widely used in food industry as a weight-loss aid and a cholesterol-lowering agent. Previous studies have shown that chitosan affects metabolic responses and contributes to anti-diabetic, hypocholesteremic, and blood glucose-lowering effects; however, the in vivo targeting sites and mechanisms of chitosan remain to be clarified. In this study, we constructed transgenic mice, which carried the luciferase genes driven by peroxisome proliferator-activated receptor (PPAR, a key regulator of fatty acid and glucose metabolism. Bioluminescent imaging of PPAR transgenic mice was applied to report the organs that chitosan acted on, and gene expression profiles of chitosan-targeted organs were further analyzed to elucidate the mechanisms of chitosan. Bioluminescent imaging showed that constitutive PPAR activities were detected in brain and gastrointestinal tract. Administration of chitosan significantly activated the PPAR activities in brain and stomach. Microarray analysis of brain and stomach showed that several pathways involved in lipid and glucose metabolism were regulated by chitosan. Moreover, the expression levels of metabolism-associated genes like apolipoprotein B (apoB and ghrelin genes were down-regulated by chitosan. In conclusion, these findings suggested the feasibility of PPAR bioluminescent imaging-guided transcriptomic analysis on the evaluation of chitosan-affected metabolic responses in vivo. Moreover, we newly identified that downregulated expression of apoB and ghrelin genes were novel mechanisms for chitosan-affected metabolic responses in vivo.

  16. Muscle Damage and Metabolic Responses to Repeated-Sprint Running With and Without Deceleration.

    Science.gov (United States)

    Minahan, Clare L; Poke, Daniel P; Morrison, Jaime; Bellinger, Phillip M

    2018-04-04

    Minahan, CL, Poke, DP, Morrison, J, and Bellinger, PM. Muscle damage and metabolic responses to repeated-sprint running with and without deceleration. J Strength Cond Res XX(X): 000-000, 2017-This study aimed to determine whether repeated-sprint running with deceleration aggravates markers of muscle damage or delays the recovery of performance compared with repeated-sprint running without deceleration. Fourteen male team-sport athletes performed 2 randomly ordered testing sessions on a nonmotorized treadmill with one session requiring participants to decelerate (TMd) within 4 seconds before stopping or immediately step to the side of the treadmill belt at the completion of each sprint (TMa). Peak and mean velocities, speed decrement, blood lactate concentrations, and oxygen uptake were monitored during the repeated-sprint running protocols. Countermovement vertical jump (CMJ) performance, perceived muscle soreness, sit-and-reach flexibility, plasma creatine kinase (CK), lactate dehydrogenase (LDH), and myoglobin (Mb) concentrations were quantified immediately before and after and 45 minutes, 24 and 48 hours after repeated-sprint running protocols. Although muscle damage was indicated by increases in CK, LDH, and Mb (p ≤ 0.05) in both groups, there was no significant effect of condition (TMa vs. TMd) on any of the measured performance or physiological variables (p > 0.05). The present study indicated that the removal of deceleration from repeated-sprint running on a nonmotorized treadmill has no effect on metabolism or performance during or after repeated-sprint running or markers of muscle damage.

  17. Transcriptomic Changes in Response to Putrescine Production in Metabolically Engineered Corynebacterium glutamicum

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2017-10-01

    Full Text Available Putrescine is widely used in industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Although engineered Corynebacterium glutamicum has been successfully used to produce high levels of putrescine, the overall cellular physiological and metabolic changes caused by overproduction of putrescine remains unclear. To reveal the transcriptional changes that occur in response to putrescine production in an engineered C. glutamicum strain, a comparative transcriptomic analysis was carried out. Overproduction of putrescine resulted in transcriptional downregulation of genes involved in glycolysis; the TCA cycle, pyruvate degradation, biosynthesis of some amino acids, oxidative phosphorylation; vitamin biosynthesis (thiamine and vitamin 6, metabolism of purine, pyrimidine and sulfur, and ATP-, NAD-, and NADPH-consuming enzymes. The transcriptional levels of genes involved in ornithine biosynthesis and NADPH-forming related enzymes were significantly upregulated in the putrescine producing C. glutamicum strain PUT-ALE. Comparative transcriptomic analysis provided some genetic modification strategies to further improve putrescine production. Repressing ATP- and NADPH-consuming enzyme coding gene expression via CRISPRi enhanced putrescine production.

  18. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows.

    Science.gov (United States)

    Esposito, Giulia; Irons, Pete C; Webb, Edward C; Chapwanya, Aspinas

    2014-01-30

    The biological cycles of milk production and reproduction determine dairying profitability thus making management decisions dynamic and time-dependent. Diseases also negatively impact on net earnings of a dairy enterprise. Transition cows in particular face the challenge of negative energy balance (NEB) and/or disproportional energy metabolism (fatty liver, ketosis, subacute, acute ruminal acidosis); disturbed mineral utilization (milk fever, sub-clinical hypocalcemia); and perturbed immune function (retained placenta, metritis, mastitis). Consequently NEB and reduced dry matter intake are aggravated. The combined effects of all these challenges are reduced fertility and milk production resulting in diminishing profits. Risk factors such as NEB, inflammation and impairment of the immune response are highly cause-and-effect related. Thus, managing cows during the transition period should be geared toward reducing NEB or feeding specially formulated diets to improve immunity. Given that all cows experience a reduced feed intake and body condition, infection and inflammation of the uterus after calving, there is a need for further research on the immunology of transition dairy cows. Integrative approaches at the molecular, cellular and animal level may unravel the complex interactions between disturbed metabolism and immune function that predispose cows to periparturient diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Transcriptomic Changes in Response to Putrescine Production in Metabolically Engineered Corynebacterium glutamicum

    Science.gov (United States)

    Li, Zhen; Liu, Jian-Zhong

    2017-01-01

    Putrescine is widely used in industrial production of bioplastics, pharmaceuticals, agrochemicals, and surfactants. Although engineered Corynebacterium glutamicum has been successfully used to produce high levels of putrescine, the overall cellular physiological and metabolic changes caused by overproduction of putrescine remains unclear. To reveal the transcriptional changes that occur in response to putrescine production in an engineered C. glutamicum strain, a comparative transcriptomic analysis was carried out. Overproduction of putrescine resulted in transcriptional downregulation of genes involved in glycolysis; the TCA cycle, pyruvate degradation, biosynthesis of some amino acids, oxidative phosphorylation; vitamin biosynthesis (thiamine and vitamin 6), metabolism of purine, pyrimidine and sulfur, and ATP-, NAD-, and NADPH-consuming enzymes. The transcriptional levels of genes involved in ornithine biosynthesis and NADPH-forming related enzymes were significantly upregulated in the putrescine producing C. glutamicum strain PUT-ALE. Comparative transcriptomic analysis provided some genetic modification strategies to further improve putrescine production. Repressing ATP- and NADPH-consuming enzyme coding gene expression via CRISPRi enhanced putrescine production. PMID:29089930

  20. Metabolic and cardiorespiratory response in swimmers during head-out immersion: a prospective study.

    Science.gov (United States)

    Mesfar, Mohamed A; Zendah, Ines; Gharsalli, Houda; Ben Hassen, Chokri; Ghedira, Habib

    2012-11-01

    Sport represents a stress for the body. Many metabolic and cardiorespiratory changes are known during physical activity.However, litte is known in swimmers particularly during head-out immersion. To determine the metabolic and cardiorespiratory response in swimmers during head-out immersion. The energetic, cardiovascular function and ventilatory requirements of a 10 min steady state arm exercise performed by 13 healthy subjects in air and during immersion up to the hip in 26°C water were compared. The same ergometric work load was achieved with an average maximum oxygen uptake of 3.9 ± 2.63 l/min in air versus 3.55 ± 2.48 l/min in water (p=0.953). During exercise, the average values of minute ventilation, ventilation equivalent for oxygen, ventilation equivalent for CO2, peak expiratory flow, respiratory exchange ratio and heart rate were not different in water and in air. However, first ventilatory threshold was significantly higher in water than in air. The mean value of the first ventilatory threshold was 0.89 ± 0.23 l/min in air, and 1.08 ± 0.23 l/min in water immersion; (p=0.016). These results suggest that training swimmers favoring immersion (weight belts) may improve their aerobic capacity.

  1. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.: photosynthetic tissues and berries

    Directory of Open Access Journals (Sweden)

    Michael James Considine

    2015-02-01

    Full Text Available Research on sulfite metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils and questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/ sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the ‘ambient’ environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry’s exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO¬2 fumigation may extend for several months.

  2. Metabolic responses to sulfur dioxide in grapevine (Vitis vinifera L.): photosynthetic tissues and berries.

    Science.gov (United States)

    Considine, Michael J; Foyer, Christine H

    2015-01-01

    Research on sulfur metabolism in plants has historically been undertaken within the context of industrial pollution. Resolution of the problem of sulfur pollution has led to sulfur deficiency in many soils. Key questions remain concerning how different plant organs deal with reactive and potentially toxic sulfur metabolites. In this review, we discuss sulfur dioxide/sulfite assimilation in grape berries in relation to gene expression and quality traits, features that remain significant to the food industry. We consider the intrinsic metabolism of sulfite and its consequences for fruit biology and postharvest physiology, comparing the different responses in fruit and leaves. We also highlight inconsistencies in what is considered the "ambient" environmental or industrial exposures to SO2. We discuss these findings in relation to the persistent threat to the table grape industry that intergovernmental agencies will revoke the industry's exemption to the worldwide ban on the use of SO2 for preservation of fresh foods. Transcriptome profiling studies on fruit suggest that added value may accrue from effects of SO2 fumigation on the expression of genes encoding components involved in processes that underpin traits related to customer satisfaction, particularly in table grapes, where SO2 fumigation may extend for several months.

  3. Food odors trigger an endocrine response that affects food ingestion and metabolism.

    Science.gov (United States)

    Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R

    2015-08-01

    Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.

  4. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica M. V. Pino

    2017-05-01

    Full Text Available Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrPC and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism. In this study, we evaluated the effects of dietary iron restriction on brain ferritin levels, dopamine metabolism, and the expression levels of PrPC and α-synuclein. To achieve this goal, C57BL/6 mice were fed with iron restricted diet (IR or with normal diet (CTL for 1 month. IR reduced iron and ferritin levels in liver. Ferritin reduction was also observed in the hippocampus. However, in the striatum of IR group, ferritin level was increased, suggesting that under iron-deficient condition, each brain area might acquire distinct capacity to store iron. Increased lipid peroxidation was observed only in hippocampus of IR group, where ferritin level was reduced. IR also generated discrete results regarding dopamine metabolism of distinct brain regions: in striatum, the level of dopamine metabolites (DOPAC and HVA was reduced; in prefrontal cortex, only HVA was increased along with the enhanced MAO-A activity; in hippocampus, no alterations were observed. PrPC levels were increased only in the striatum of IR group, where ferritin level was also increased. PrPC is known to play roles in iron uptake. Thus, the increase of PrPC in striatum of IR group might be related to the increased ferritin level. α-synuclein was not altered in any regions. Abnormal accumulation of ferritin, increased MAO-A activity or lipid peroxidation are molecular features observed in several neurological

  5. Mammalian Tissue Response to Low Dose Ionizing Radiation: The Role of Oxidative Metabolism and Intercellular Communication

    Energy Technology Data Exchange (ETDEWEB)

    Azzam, Edouard I

    2013-01-16

    The objective of the project was to elucidate the mechanisms underlying the biological effects of low dose/low dose rate ionizing radiation in organs/tissues of irradiated mice that differ in their susceptibility to ionizing radiation, and in human cells grown under conditions that mimic the natural in vivo environment. The focus was on the effects of sparsely ionizing cesium-137 gamma rays and the role of oxidative metabolism and intercellular communication in these effects. Four Specific Aims were proposed. The integrated outcome of the experiments performed to investigate these aims has been significant towards developing a scientific basis to more accurately estimate human health risks from exposures to low doses ionizing radiation. By understanding the biochemical and molecular changes induced by low dose radiation, several novel markers associated with mitochondrial functions were identified, which has opened new avenues to investigate metabolic processes that may be affected by such exposure. In particular, a sensitive biomarker that is differentially modulated by low and high dose gamma rays was discovered.

  6. Responsible Practices are Culturally Embedded: Theoretical Considerations on Industry-Specific Corporate Social Responsibility

    OpenAIRE

    Beschorner, Thomas; Hajduk, Thomas

    2017-01-01

    In this paper, we develop our argument in three steps: Firstly, we elaborate on some theoretical perspectives for industry-specific CSR by referring to cultural business ethics, a theoretical approach which is located between purely business perspectives and purely normative perspectives on CSR. Secondly, we briefly introduce the papers of this special issue, which covers a wide range of theoretical approaches and empirical studies in the field of industry-specific CSR. Thirdly, we draw atten...

  7. Utilizing time-lapse micro-CT-correlated bisphosphonate binding kinetics and soft tissue-derived input functions to differentiate site-specific changes in bone metabolism in vivo.

    Science.gov (United States)

    Tower, R J; Campbell, G M; Müller, M; Glüer, C C; Tiwari, S

    2015-05-01

    The turnover of bone is a tightly regulated process between bone formation and resorption to ensure skeletal homeostasis. This process differs between bone types, with trabecular bone often associated with higher turnover than cortical bone. Analyses of bone by micro-computed tomography (micro-CT) reveal changes in structure and mineral content, but are limited in the study of metabolic activity at a single time point, while analyses of serum markers can reveal changes in bone metabolism, but cannot delineate the origin of any aberrant findings. To obtain a site-specific assessment of bone metabolic status, bisphosphonate binding kinetics were utilized. Using a fluorescently-labeled bisphosphonate, we show that early binding kinetics monitored in vivo using fluorescent molecular tomography (FMT) can monitor changes in bone metabolism in response to bone loss, stimulated by ovariectomy (OVX), or bone gain, resulting from treatment with the anabolic bone agent parathyroid hormone (PTH), and is capable of distinguishing different, metabolically distinct skeletal sites. Using time-lapse micro-CT, longitudinal bone turnover was quantified. The spine showed a significantly greater percent resorbing volume and surface in response to OVX, while mice treated with PTH showed significantly greater resorbing volume per bone surface in the spine and significantly greater forming surfaces in the knee. Correlation studies between binding kinetics and micro-CT suggest that forming surfaces, as assessed by time-lapse micro-CT, are preferentially reflected in the rate constant values while forming and resorbing bone volumes primarily affect plateau values. Additionally, we developed a blood pool correction method which now allows for quantitative multi-compartment analyses to be conducted using FMT. These results further expand our understanding of bisphosphonate binding and the use of bisphosphonate binding kinetics as a tool to monitor site-specific changes in bone metabolism in

  8. Metabolic response of Danaüs archippus and Saccharomyces cerevisiae to weak oscillatory magnetic fields

    Science.gov (United States)

    Russell, D. N.; Webb, S. J.

    1981-09-01

    Respiration of the insect larva, Danaüs archippus, and the yeast, Saccharomyces cerevisiae, in log phase has been monitored before and after an oscillatory magnetic insult of 0.005 Gauss rms amplitude and 40 50 min duration. Frequencies used were 10 16 Hz for the insect and 100 200 Hz for the yeast. Depression of as much as 30% in metabolic rate has been found to occur immediately after the field is both imposed and eliminated with a general recovery over the 30-min period thereafter both in and out of the imposed field, although complete recovery to original levels may take much longer. Evidence is given that the response may depend on the frequency pattern used. This data is used to formulate an hypothesis whereby changes in the geomagnetic field variability pattern may act as a biochronometric zeitgeber.

  9. Comparative Metabolomics Approach Detects Stress-Specific Responses during Coral Bleaching in Soft Corals.

    Science.gov (United States)

    Farag, Mohamed A; Meyer, Achim; Ali, Sara E; Salem, Mohamed A; Giavalisco, Patrick; Westphal, Hildegard; Wessjohann, Ludger A

    2018-06-01

    Chronic exposure to ocean acidification and elevated sea-surface temperatures pose significant stress to marine ecosystems. This in turn necessitates costly acclimation responses in corals in both the symbiont and host, with a reorganization of cell metabolism and structure. A large-scale untargeted metabolomics approach comprising gas chromatography mass spectrometry (GC-MS) and ultraperformance liquid chromatography coupled to high resolution mass spectrometry (UPLC-MS) was applied to profile the metabolite composition of the soft coral Sarcophyton ehrenbergi and its dinoflagellate symbiont. Metabolite profiling compared ambient conditions with response to simulated climate change stressors and with the sister species, S. glaucum. Among ∼300 monitored metabolites, 13 metabolites were modulated. Incubation experiments providing four selected upregulated metabolites (alanine, GABA, nicotinic acid, and proline) in the culturing water failed to subside the bleaching response at temperature-induced stress, despite their known ability to mitigate heat stress in plants or animals. Thus, the results hint to metabolite accumulation (marker) during heat stress. This study provides the first detailed map of metabolic pathways transition in corals in response to different environmental stresses, accounting for the superior thermal tolerance of S. ehrenbergi versus S. glaucum, which can ultimately help maintain a viable symbiosis and mitigate against coral bleaching.

  10. Metabolic responses to exogenous ghrelin in obesity and early after Roux-en-Y gastric bypass in humans.

    Science.gov (United States)

    Tamboli, Robyn A; Antoun, Joseph; Sidani, Reem M; Clements, Austin; Harmata, Emily E; Marks-Shulman, Pam; Gaylinn, Bruce D; Williams, Brandon; Clements, Ronald H; Albaugh, Vance L; Abumrad, Naji N

    2017-09-01

    Ghrelin is a gastric-derived hormone that stimulates growth hormone (GH) secretion and has a multi-faceted role in the regulation of energy homeostasis, including glucose metabolism. Circulating ghrelin concentrations are modulated in response to nutritional status, but responses to ghrelin in altered metabolic states are poorly understood. We investigated the metabolic effects of ghrelin in obesity and early after Roux-en-Y gastric bypass (RYGB). We assessed central and peripheral metabolic responses to acyl ghrelin infusion (1 pmol kg -1  min -1 ) in healthy, lean subjects (n = 9) and non-diabetic, obese subjects (n = 9) before and 2 weeks after RYGB. Central responses were assessed by GH and pancreatic polypeptide (surrogate for vagal activity) secretion. Peripheral responses were assessed by hepatic and skeletal muscle insulin sensitivity during a hyperinsulinaemic-euglycaemic clamp. Ghrelin-stimulated GH secretion was attenuated in obese subjects, but was restored by RYGB to a response similar to that of lean subjects. The heightened pancreatic polypeptide response to ghrelin infusion in the obese was attenuated after RYGB. Hepatic glucose production and hepatic insulin sensitivity were not altered by ghrelin infusion in RYGB subjects. Skeletal muscle insulin sensitivity was impaired to a similar degree in lean, obese and post-RYGB individuals in response to ghrelin infusion. These data suggest that obesity is characterized by abnormal central, but not peripheral, responsiveness to ghrelin that can be restored early after RYGB before significant weight loss. Further work is necessary to fully elucidate the role of ghrelin in the metabolic changes that occur in obesity and following RYGB. © 2017 John Wiley & Sons Ltd.

  11. Energy intake underreporting of adults in a household survey: the impact of using a population specific basal metabolic rate equation

    Directory of Open Access Journals (Sweden)

    Danielle Ribeiro de Souza

    2015-04-01

    Full Text Available The purpose of the present study was to identify energy intake (EI underreporting and to estimate the impact of using a population specific equation for the basal metabolic rate (BMR in a probability sample of adults from Niterói, Rio de Janeiro State, Brazil. A sample of 1,726 subjects participated in the study. EI was assessed by a 24-hour dietary recall and EI/BMR was computed with BMR estimated using internationally recommended equations as well as specific equations developed for the adult population of Niterói. Mean EI was 1,570.9 and 2,188.8kcal.day-1 for women and men, respectively. EI decreased with increasing age in both men and women. BMR estimated by the Brazilian equation was significantly lower than the values estimated by the international equation for all age, sex and nutritional status groups. In general, EI underreporting was found in at least 50% of the population, higher in women, and increased with increasing age and body mass index (BMI. The results of the present study confirm that EI is underreported, even when BMR is estimated using population-specific equations.

  12. Site-specific distribution of claudin-based paracellular channels with roles in biological fluid flow and metabolism.

    Science.gov (United States)

    Tanaka, Hiroo; Tamura, Atsushi; Suzuki, Koya; Tsukita, Sachiko

    2017-10-01

    The claudins are a family of membrane proteins with at least 27 members in humans and mice. The extracellular regions of claudin proteins play essential roles in cell-cell adhesion and the paracellular barrier functions of tight junctions (TJs) in epithelial cell sheets. Furthermore, the extracellular regions of some claudins function as paracellular channels in the paracellular barrier that allow the selective passage of water, ions, and/or small organic solutes across the TJ in the extracellular space. Structural analyses have revealed a common framework of transmembrane, cytoplasmic, and extracellular regions among the claudin-based paracellular barriers and paracellular channels; however, differences in the claudins' extracellular regions, such as their charges and conformations, determine their properties. Among the biological systems that involve fluid flow and metabolism, it is noted that hepatic bile flow, renal Na + reabsorption, and intestinal nutrient absorption are dynamically regulated via site-specific distributions of paracellular channel-forming claudins in tissue. Here, we focus on how site-specific distributions of claudin-2- and claudin-15-based paracellular channels drive their organ-specific functions in the liver, kidney, and intestine. © 2017 New York Academy of Sciences.

  13. A comparative study of the metabolic response in rainbow trout and Nile tilapia to changes in dietary macronutrient composition.

    Science.gov (United States)

    Figueiredo-Silva, A Cláudia; Saravanan, Subramanian; Schrama, Johan W; Panserat, Stéphane; Kaushik, Sadasivam; Geurden, Inge

    2013-03-14

    Metabolic mechanisms underlying the divergent response of rainbow trout (Oncorhynchus mykiss) and Nile tilapia (Oreochromis niloticus) to changes in dietary macronutrient composition were assessed. Fish were fed one of four isoenergetic diets having a digestible protein-to-digestible energy (DP:DE) ratio above or below the optimal DP:DE ratio for both species. At each DP:DE ratio, fat was substituted by an isoenergetic amount of digestible starch as the non-protein energy source (NPE). Dietary DP:DE ratio did not affect growth and only slightly lowered protein gains in tilapia. In rainbow trout fed diets with low DP:DE ratios, particularly with starch as the major NPE source, growth and protein utilisation were highly reduced, underlining the importance of NPE source in this species. We also observed species-specific responses of enzymes involved in amino acid catabolism, lipogenesis and gluconeogenesis to dietary factors. Amino acid transdeamination enzyme activities were reduced by a low dietary DP:DE ratio in both species and in tilapia also by the substitution of fat by starch as the NPE source. Such decreased amino acid catabolism at high starch intakes, however, did not lead to improved protein retention. Our data further suggest that a combination of increased lipogenic and decreased gluconeogenic enzyme activities accounts for the better use of carbohydrates and to the improved glycaemia control in tilapia compared with rainbow tront fed starch-enriched diets with low DP:DE ratio.

  14. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Science.gov (United States)

    Feng, Jianghua; Liu, Huili; Zhang, Limin; Bhakoo, Kishore; Lu, Lehui

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  15. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    Energy Technology Data Exchange (ETDEWEB)

    Feng Jianghua [Department of Physics, Fujian Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005 (China); Liu Huili; Zhang Limin [State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071 (China); Bhakoo, Kishore [Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A-STAR) 138667 (Singapore); Lu Lehui, E-mail: jianghua.feng@hotmail.com, E-mail: jianghua.feng@wipm.ac.cn [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022 (China)

    2010-10-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary {alpha}-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary {alpha}-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies ({beta}-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of

  16. An insight into the metabolic responses of ultra-small superparamagnetic particles of iron oxide using metabonomic analysis of biofluids

    International Nuclear Information System (INIS)

    Feng Jianghua; Liu Huili; Zhang Limin; Bhakoo, Kishore; Lu Lehui

    2010-01-01

    Ultra-small superparamagnetic particles of iron oxides (USPIO) have been developed as intravenous organ/tissue-targeted contrast agents to improve magnetic resonance imaging (MRI) in vivo. However, their potential toxicity and effects on metabolism have attracted particular attention. In the present study, uncoated and dextran-coated USPIO were investigated by analyzing both rat urine and plasma metabonomes using high-resolution NMR-based metabonomic analysis in combination with multivariate statistical analysis. The wealth of information gathered on the metabolic profiles from rat urine and plasma has revealed subtle metabolic changes in response to USPIO administration. The metabolic changes include the elevation of urinary α-hydroxy-n-valerate, o- and p-HPA, PAG, nicotinate and hippurate accompanied by decreases in the levels of urinary α-ketoglutarate, succinate, citrate, N-methylnicotinamide, NAG, DMA, allantoin and acetate following USPIO administration. The changes associated with USPIO administration included a gradual increase in plasma glucose, N-acetyl glycoprotein, saturated fatty acid, citrate, succinate, acetate, GPC, ketone bodies (β-hydroxybutyrate, acetone and acetoacetate) and individual amino acids, such as phenylalanine, lysine, isoleucine, glycine, glutamine and glutamate and a gradual decrease of myo-inositol, unsaturated fatty acid and triacylglycerol. Hence USPIO administration effects are reflected in changes in a number of metabolic pathways including energy, lipid, glucose and amino acid metabolism. The size- and surface chemistry-dependent metabolic responses and possible toxicity were observed using NMR analysis of biofluids. These changes may be attributed to the disturbances of hepatic, renal and cardiac functions following USPIO administrations. The potential biotoxicity can be derived from metabonomic analysis and serum biochemistry analysis. Metabonomic strategy offers a promising approach for the detection of subtle

  17. Necrosis-Driven Systemic Immune Response Alters SAM Metabolism through the FOXO-GNMT Axis

    Directory of Open Access Journals (Sweden)

    Fumiaki Obata

    2014-05-01

    Full Text Available Sterile inflammation triggered by endogenous factors is thought to contribute to the pathogenesis of acute and chronic inflammatory diseases. Here, we demonstrate that apoptosis-deficient mutants spontaneously develop a necrosis-driven systemic immune response in Drosophila and provide an in vivo model for studying the organismal response to sterile inflammation. Metabolomic analysis of hemolymph from apoptosis-deficient mutants revealed increased sarcosine and reduced S-adenosyl-methionine (SAM levels due to glycine N-methyltransferase (Gnmt upregulation. We showed that Gnmt was elevated in response to Toll activation induced by the local necrosis of wing epidermal cells. Necrosis-driven inflammatory conditions induced dFoxO hyperactivation, leading to an energy-wasting phenotype. Gnmt was cell-autonomously upregulated by dFoxO in the fat body as a possible rheostat for controlling energy loss, which functioned during fasting as well as inflammatory conditions. We propose that the dFoxO-Gnmt axis is essential for the maintenance of organismal SAM metabolism and energy homeostasis.

  18. The Metabolic Response to Stress and Infection in Critically Ill Children: The Opportunity of an Individualized Approach

    Directory of Open Access Journals (Sweden)

    Valentina De Cosmi

    2017-09-01

    Full Text Available The metabolic response to stress and infection is closely related to the corresponding requirements of energy and nutrients. On a general level, the response is driven by a complex endocrine network and related to the nature and severity of the insult. On an individual level, the effects of nutritional interventions are highly variable and a possible source of complications. This narrative review aims to discuss the metabolic changes in critically-ill children and the potential of developing personalized nutritional interventions. Through a literature search strategy, we have investigated the importance of blood glucose levels, the nutritional aspects of the different phases of acute stress response, and the reliability of the available tools to assess the energy expenditure. The dynamics of metabolism during stressful events reveals the difficult balance between risk of hypo- or hyperglycemia and under- or overfeeding. Within this context, individualized and accurate measurement of energy expenditure may help in defining the metabolic needs of patients. Given the variability of the metabolic response in critical conditions, randomized clinical studies in ill children are needed to evaluate the effect of individualized nutritional intervention on health outcomes.

  19. Maximal exercise electrocardiographic responses and coronary heart disease mortality among men with metabolic syndrome.

    Science.gov (United States)

    Lyerly, G William; Sui, Xuemei; Church, Timothy S; Lavie, Carl J; Hand, Gregory A; Blair, Steven N

    2010-03-01

    To examine the association between abnormal exercise electrocardiographic (E-ECG) test results and mortality (all-cause and that resulting from coronary heart disease [CHD] or cardiovascular disease [CVD]) in a large population of asymptomatic men with metabolic syndrome (MetS). A total of 9191 men (mean age, 46.9 years) met the criteria of having MetS. All completed a maximal E-ECG treadmill test (May 14, 1979, through April 9, 2001) and were without a previous CVD event or diabetes at baseline. Main outcomes were all-cause mortality, mortality due to CHD, and mortality due to CVD. Cox regression analysis was used to quantify the mortality risk according to E-ECG responses. During a follow-up of 14 years, 633 deaths (242 CVD and 150 CHD) were identified. Mortality rates and hazard ratios (HRs) across E-ECG responses were the following: for all-cause mortality: HR, 1.36; 95% confidence interval (CI), 1.09-1.70 for equivocal responses and HR, 1.41; 95% CI, 1.12-1.77 for abnormal responses (P(trend)<.001); for mortality due to CVD: HR, 1.29; 95% CI, 0.88-1.88 for equivocal responses and HR, 2.04; 95% CI, 1.46-2.84 for abnormal responses (P(trend)<.001); and for mortality due to CHD: HR, 1.62; 95% CI, 1.02-2.56 for equivocal responses and HR, 2.45; 95% CI, 1.62-3.69 for abnormal responses (P(trend)<.001). A positive gradient for CHD, CVD, and all-cause mortality rates across E-ECG categories within 3, 4, or 5 MetS components was observed (P<.001 for all). Among men with MetS, an abnormal E-ECG response was associated with higher risk of all-cause, CVD, and CHD mortality. These findings underscore the importance of E-ECG tests to identify men with MetS who are at risk of dying.

  20. Predicting Emotional Responses to Horror Films from Cue-Specific Affect.

    Science.gov (United States)

    Neuendorf, Kimberly A.; Sparks, Glenn G.

    1988-01-01

    Assesses individuals' fear and enjoyment reactions to horror films, applying theories of cognition and affect that predict emotional responses to a stimulus on the basis of prior affect toward specific cues included in that stimulus. (MM)

  1. Pharmacogenetic landscape of Metabolic Syndrome components drug response in Tunisia and comparison with worldwide populations.

    Science.gov (United States)

    Jmel, Haifa; Romdhane, Lilia; Ben Halima, Yosra; Hechmi, Meriem; Naouali, Chokri; Dallali, Hamza; Hamdi, Yosr; Shan, Jingxuan; Abid, Abdelmajid; Jamoussi, Henda; Trabelsi, Sameh; Chouchane, Lotfi; Luiselli, Donata; Abdelhak, Sonia; Kefi, Rym

    2018-01-01

    Genetic variation is an important determinant affecting either drug response or susceptibility to adverse drug reactions. Several studies have highlighted the importance of ethnicity in influencing drug response variability that should be considered during drug development. Our objective is to characterize the genetic variability of some pharmacogenes involved in the response to drugs used for the treatment of Metabolic Syndrome (MetS) in Tunisia and to compare our results to the worldwide populations. A set of 135 Tunisians was genotyped using the Affymetrix Chip 6.0 genotyping array. Variants located in 24 Very Important Pharmacogenes (VIP) involved in MetS drug response were extracted from the genotyping data. Analysis of variant distribution in Tunisian population compared to 20 worldwide populations publicly available was performed using R software packages. Common variants between Tunisians and the 20 investigated populations were extracted from genotyping data. Multidimensional screening showed that Tunisian population is clustered with North African and European populations. The greatest divergence was observed with the African and Asian population. In addition, we performed Inter-ethnic comparison based on the genotype frequencies of five VIP biomarkers. The genotype frequencies of the biomarkers rs3846662, rs1045642, rs7294 and rs12255372 located respectively in HMGCR, ABCB1, VKORC1 and TCF7L2 are similar between Tunisian, Tuscan (TSI) and European (CEU). The genotype frequency of the variant rs776746 located in CYP3A5 gene is similar between Tunisian and African populations and different from CEU and TSI. The present study shows that the genetic make up of the Tunisian population is relatively complex in regard to pharmacogenes and reflects previous historical events. It is important to consider this ethnic difference in drug prescription in order to optimize drug response to avoid serious adverse drug reactions. Taking into account similarities with

  2. Pharmacogenetic landscape of Metabolic Syndrome components drug response in Tunisia and comparison with worldwide populations

    Science.gov (United States)

    Jmel, Haifa; Romdhane, Lilia; Ben Halima, Yosra; Hechmi, Meriem; Naouali, Chokri; Dallali, Hamza; Hamdi, Yosr; Shan, Jingxuan; Abid, Abdelmajid; Jamoussi, Henda; Trabelsi, Sameh; Chouchane, Lotfi; Luiselli, Donata; Abdelhak, Sonia

    2018-01-01

    Genetic variation is an important determinant affecting either drug response or susceptibility to adverse drug reactions. Several studies have highlighted the importance of ethnicity in influencing drug response variability that should be considered during drug development. Our objective is to characterize the genetic variability of some pharmacogenes involved in the response to drugs used for the treatment of Metabolic Syndrome (MetS) in Tunisia and to compare our results to the worldwide populations. A set of 135 Tunisians was genotyped using the Affymetrix Chip 6.0 genotyping array. Variants located in 24 Very Important Pharmacogenes (VIP) involved in MetS drug response were extracted from the genotyping data. Analysis of variant distribution in Tunisian population compared to 20 worldwide populations publicly available was performed using R software packages. Common variants between Tunisians and the 20 investigated populations were extracted from genotyping data. Multidimensional screening showed that Tunisian population is clustered with North African and European populations. The greatest divergence was observed with the African and Asian population. In addition, we performed Inter-ethnic comparison based on the genotype frequencies of five VIP biomarkers. The genotype frequencies of the biomarkers rs3846662, rs1045642, rs7294 and rs12255372 located respectively in HMGCR, ABCB1, VKORC1 and TCF7L2 are similar between Tunisian, Tuscan (TSI) and European (CEU). The genotype frequency of the variant rs776746 located in CYP3A5 gene is similar between Tunisian and African populations and different from CEU and TSI. The present study shows that the genetic make up of the Tunisian population is relatively complex in regard to pharmacogenes and reflects previous historical events. It is important to consider this ethnic difference in drug prescription in order to optimize drug response to avoid serious adverse drug reactions. Taking into account similarities with

  3. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response

    International Nuclear Information System (INIS)

    Soto, Armando; DelRaso, Nicholas J.; Schlager, John J.; Chan, Victor T.

    2008-01-01

    , metabolism and transport, inflammatory response, proteasome-mediated degradation of oxidatively damaged cytosolic proteins, Ras protein signal transduction, TGF-beta signaling pathway and mRNA transcription, processing, splicing and transport. On the other hand, major metabolic pathways, which include carbohydrate metabolism, TCA cycle, oxidative phosphorylation, ATP synthesis coupled electron transport, amino acid metabolism and transport, lipid metabolism, nucleotide metabolism, and vitamin metabolism, and oxidative stress response including induction of antioxidant genes and glutathione metabolism are down-regulated. As tubular epithelia have strong energy demand for normal functions, down-regulation of energy metabolism after D-serine treatment may be related to the mechanism of its nephrotoxicity. In addition, hydrogen peroxide, a reactive oxygen species, is produced as a byproduct of the metabolism of D-serine by D-amino acid oxidase in the peroxisomes of the tubular epithelia. Down-regulation of pathways for antioxidant genes induction and glutathione metabolism will likely exacerbate the cytotoxicity of this reactive oxygen species. The observation that the genes involved in apoptosis, DNA repair, proteasome pathway for the degradation of oxidatively damaged cytosolic proteins were up-regulated lends some supports to this premise. Up-regulation of pathways of cell proliferation cycle, DNA replication and gene expression process, including mRNA transcription, processing, splicing, transport, translation initiation, and protein transport along with protein complex assembly, suggests ongoing tissue repair and regeneration. Consistent with the fibrogenic function of the TGF-beta signaling pathway in various experimental renal diseases, genes encoding major extracellular matrix components such as collagens, laminins, fibronectin 1 and tenascins are also strongly up-regulated. Taken together, the results of this study provide important insights into the molecular mechanism

  4. Lipid metabolic dose response to dietary alpha-linolenic acid in monk parrot (Myiopsitta monachus).

    Science.gov (United States)

    Petzinger, Christina; Heatley, J J; Bailey, Christopher A; Bauer, John E

    2014-03-01

    Monk parrots (Myiopsitta monachus) are susceptible to atherosclerosis, a progressive disease characterized by the formation of plaques in the arteries accompanied by underlying chronic inflammation. The family of n-3 fatty acids, especially eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA), have consistently been shown to reduce atherosclerotic risk factors in humans and other mammals. Some avian species have been observed to convert α-linolenic acid (18:3n-3, ALA) to EPA and DHA (Htin et al. in Arch Geflugelk 71:258-266, 2007; Petzinger et al. in J Anim Physiol Anim Nutr, 2013). Therefore, the metabolic effects of including flaxseed oil, as a source of ALA, in the diet at three different levels (low, medium, and high) on the lipid metabolism of Monk parrots was evaluated through measuring plasma total cholesterol (TC), free cholesterol (FC), triacylglycerols (TAG), and phospholipid fatty acids. Feed intake, body weight, and body condition score were also assessed. Thus the dose and possible saturation response of increasing dietary ALA at constant linoleic acid (18:2n-6, LNA) concentration on lipid metabolism in Monk parrots (M. monachus) was evaluated. Calculated esterified cholesterol in addition to plasma TC, FC, and TAG were unaltered by increasing dietary ALA. The high ALA group had elevated levels of plasma phospholipid ALA, EPA, and docosapentaenoic acid (DPAn-3, 22:5n-3). The medium and high ALA groups had suppressed plasma phospholipid 20:2n-6 and adrenic acid (22:4n-6, ADA) compared to the low ALA group. When the present data were combined with data from a previous study (Petzinger et al. in J Anim Physiol Anim Nutr, 2013) a dose response to dietary ALA was observed when LNA was constant. Plasma phospholipid ALA, EPA, DPAn-3, DHA, and total n-3 were positively correlated while 20:2n-6, di-homo-gamma-linoleic acid (20:3n-6Δ7), arachidonic acid (20:4n-6), ADA, and total n-6 were inversely correlated with dietary en% ALA.

  5. Adenocarcinomas of the esophagus: Response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET-CT

    International Nuclear Information System (INIS)

    Roedl, Johannes B.; Colen, Rivka R.; Holalkere, Nagaraj S.; Fischman, Alan J.; Choi, Noah C.; Blake, Michael A.

    2008-01-01

    Purpose: We determined whether evaluation of treatment response is feasible by measuring metabolic tumor volume parameters on 18F-FDG (Fluorodeoxyglucose) PET-CT (Positron emission tomography-Computed tomography). We compared the response evaluation based on metabolic tumor volume parameters to a histopathologic and clinical response evaluation (clinical response criteria: RECIST criteria = Response evaluation criteria in solid tumors, and WHO criteria = World health organization). Patients and methods: A total of 51 study subjects with adenocarcinomas (Type I due to Siewert classification) of the esophagus underwent PET-CT scans before and after neoadjuvant chemoradiotherapy. Tumor volume, maximum and mean standardized uptake values (SUV) were assessed before and after chemoradiotherapy. Furthermore, the total lesion glycolysis (TLG) was calculated by multiplying the tumor volume by the mean SUV of the volume. Clinical response evaluation was performed with endoscopic ultrasound and CT using RECIST and WHO criteria. The reference standard for treatment response was the postsurgical histopathology. Results: The decrease of tumor volume between the pre- and post-treatment PET-CT scans was a better predictor of histopathologic response and survival than the decrease of the SUV and of the clinical response evaluation based on RECIST and WHO criteria. The highest accuracy, however, was achieved when using the TLG for the identification of treatment responders. A decrease of the TLG by >78% between pre- and post-therapy scans predicted histopathologic response with a sensitivity and specificity of 91% and 93%, respectively. Conclusions: Tumor volume and TLG can be used to assess treatment response and survival in patients with esophageal adenocarcinoma

  6. Effect of 3,5,3'-triiodothyronine-induced hyperthyroidism on iodothyronine metabolism in the rat: evidence for tissue differences in metabolic responses.

    Science.gov (United States)

    Chopra, I J; Huang, T S; Hurd, R E; Solomon, D H

    1984-04-01

    tissues became maximal between 48 and 72 h after the initiation of T3 treatment. Our data suggest that most tissues, including some that have been considered unresponsive to thyroid hormones, e.g. brain and spleen, demonstrate substantial metabolic changes after T3 administration. The tissue responses are variable in degree; in some instances, they are specific for the substrate and type of tissue.(ABSTRACT TRUNCATED AT 400 WORDS)

  7. Transplant experiments uncover Baltic Sea basin-specific responses in bacterioplankton community composition and metabolic activities

    OpenAIRE

    Lindh, Markus V.; Figueroa, Daniela; Sjöstedt, Johanna; Baltar, Federico; Lundin, Daniel; Andersson, Agneta; Legrand, Catherine; Pinhassi, Jarone

    2015-01-01

    Anthropogenically induced changes in precipitation are projected to generate increased river runoff to semi-enclosed seas, intensifying loads of terrestrial dissolved organic matter and decreasing salinity. To determine how bacterial community structure and functioning adjust to such changes, we designed microcosm transplant experiments with Baltic Proper (salinity 7.2) and Bothnian Sea (salinity 3.6) water. Baltic Proper bacteria generally reached higher abundance than Bothnian Sea bacteria ...

  8. Subtype and pathway specific responses to anticancer compounds in breast cancer.

    Science.gov (United States)

    Heiser, Laura M; Sadanandam, Anguraj; Kuo, Wen-Lin; Benz, Stephen C; Goldstein, Theodore C; Ng, Sam; Gibb, William J; Wang, Nicholas J; Ziyad, Safiyyah; Tong, Frances; Bayani, Nora; Hu, Zhi; Billig, Jessica I; Dueregger, Andrea; Lewis, Sophia; Jakkula, Lakshmi; Korkola, James E; Durinck, Steffen; Pepin, François; Guan, Yinghui; Purdom, Elizabeth; Neuvial, Pierre; Bengtsson, Henrik; Wood, Kenneth W; Smith, Peter G; Vassilev, Lyubomir T; Hennessy, Bryan T; Greshock, Joel; Bachman, Kurtis E; Hardwicke, Mary Ann; Park, John W; Marton, Laurence J; Wolf, Denise M; Collisson, Eric A; Neve, Richard M; Mills, Gordon B; Speed, Terence P; Feiler, Heidi S; Wooster, Richard F; Haussler, David; Stuart, Joshua M; Gray, Joe W; Spellman, Paul T

    2012-02-21

    Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.

  9. Survivin-specific T-cell reactivity correlates with tumor response and patient survival

    DEFF Research Database (Denmark)

    Becker, Jürgen C; Andersen, Mads H; Hofmeister-Müller, Valeska

    2012-01-01

    Therapeutic vaccination directed to induce an anti-tumoral T-cell response is a field of extensive investigation in the treatment of melanoma. However, many vaccination trials in melanoma failed to demonstrate a correlation between the vaccine-specific immune response and therapy outcome. This has...

  10. Effects of alcohol consumption on the allergen-specific immune response in mice

    DEFF Research Database (Denmark)

    Linneberg, Allan; Roursgaard, Martin; Hersoug, Lars-Georg

    2008-01-01

    There is evidence that chronic alcohol consumption impairs the T-helper 1 (Th1) lymphocyte-regulated cell-mediated immune response possibly favoring a Th2 deviation of the immune response. Moreover, a few epidemiological studies have linked alcohol consumption to allergen-specific IgE sensitization....

  11. Physiological and Metabolic Changes of Purslane (Portulaca oleracea L.) in Response to Drought, Heat, and Combined Stresses

    Science.gov (United States)

    Jin, Rui; Wang, Yanping; Liu, Ruijie; Gou, Junbo; Chan, Zhulong

    2016-01-01

    Purslane (Portulaca oleracea L.) is a fleshy herbaceous plant. So far, little information is available on the response of this plant to combined drought and heat stress. In this study, changes in physiological and metabolic levels were characterized after treatments with drought, heat and combined stresses. Both individual and combined stress treatments increased malondialdehyde (MDA), electrolyte leakage (EL), O2•− and activities of superoxide dismutase (SOD), peroxidase (POD), while declined chlorophyll content. No significant differences were found between control and treatments in leaf water content (LWC) and catalase (CAT) activity. Additionally, 37 metabolic compounds were detected in purslane. Through pathway analysis, 17 metabolites were directly involved in the glycolysis metabolic pathway. The present study indicated that combined drought and heat stress caused more serious damage in purslane than individual stress. To survive, purslane has a high capability to cope with environmental stress conditions through activation of physiological and metabolic pathways. PMID:26779204

  12. Physiological and metabolic changes of purslane (Portulaca oleracea L. in response to drought, heat and combined stresses

    Directory of Open Access Journals (Sweden)

    Rui eJin

    2016-01-01

    Full Text Available Purslane (Portulaca oleracea L. is a fleshy herbaceous plant. So far, little information is available on the response of this plant to combined drought and heat stress. In this study, changes in physiological and metabolic levels were characterized after treatments with drought, heat and combined stresses. Both individual and combined stress treatments increased malondialdehyde (MDA, electrolyte leakage (EL, O2•− and activities of superoxide dismutase (SOD, peroxidase (POD, while declined chlorophyll content. No significant differences were found between control and treatments in leaf water content (LWC and catalase (CAT activity. Additionally, 37 metabolic compounds were detected in purslane. Through pathway analysis, 17 metabolites were directly involved in the glycolysis metabolic pathway. The present study indicated that combined drought and heat stress caused more serious damage in purslane than individual stress. To survive, purslane has a high capability to cope with environmental stress conditions through activation of physiological and metabolic pathways.

  13. Maize maintains growth in response to decreased nitrate supply through a highly dynamic and developmental stage-specific transcriptional response

    KAUST Repository

    Plett, Darren

    2015-06-02

    Elucidation of the gene networks underlying the response to N supply and demand will facilitate the improvement of the N uptake efficiency of plants. We undertook a transcriptomic analysis of maize to identify genes responding to both a non-growth-limiting decrease in NO3- provision and to development-based N demand changes at seven representative points across the life cycle. Gene co-expression networks were derived by cluster analysis of the transcript profiles. The majority of NO3--responsive transcription occurred at 11 (D11), 18 (D18) and 29 (D29) days after emergence, with differential expression predominating in the root at D11 and D29 and in the leaf at D18. A cluster of 98 probe sets was identified, the expression pattern of which is similar to that of the high-affinity NO3- transporter (NRT2) genes across the life cycle. The cluster is enriched with genes encoding enzymes and proteins of lipid metabolism and transport, respectively. These are candidate genes for the response of maize to N supply and demand. Only a few patterns of differential gene expression were observed over the entire life cycle; however, the composition of the classes of the genes differentially regulated at individual time points was unique, suggesting tightly controlled regulation of NO3--responsive gene expression. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Maize maintains growth in response to decreased nitrate supply through a highly dynamic and developmental stage-specific transcriptional response

    KAUST Repository

    Plett, Darren; Baumann, Ute; Schreiber, Andreas W.; Holtham, Luke; Kalashyan, Elena; Toubia, John; Nau, John; Beatty, Mary; Rafalski, Antoni; Dhugga, Kanwarpal S.; Tester, Mark A.; Garnett, Trevor; Kaiser, Brent N.

    2015-01-01

    Elucidation of the gene networks underlying the response to N supply and demand will facilitate the improvement of the N uptake efficiency of plants. We undertook a transcriptomic analysis of maize to identify genes responding to both a non-growth-limiting decrease in NO3- provision and to development-based N demand changes at seven representative points across the life cycle. Gene co-expression networks were derived by cluster analysis of the transcript profiles. The majority of NO3--responsive transcription occurred at 11 (D11), 18 (D18) and 29 (D29) days after emergence, with differential expression predominating in the root at D11 and D29 and in the leaf at D18. A cluster of 98 probe sets was identified, the expression pattern of which is similar to that of the high-affinity NO3- transporter (NRT2) genes across the life cycle. The cluster is enriched with genes encoding enzymes and proteins of lipid metabolism and transport, respectively. These are candidate genes for the response of maize to N supply and demand. Only a few patterns of differential gene expression were observed over the entire life cycle; however, the composition of the classes of the genes differentially regulated at individual time points was unique, suggesting tightly controlled regulation of NO3--responsive gene expression. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Evidence for strain-specific exometabolomic responses of the coccolithophore Emiliania huxleyi to grazing by the dinoflagellate Oxyrrhis marina.

    Directory of Open Access Journals (Sweden)

    Kelsey L Poulson-Ellestad

    2016-01-01

    Full Text Available The coccolithophore Emiliania huxleyi forms massive blooms and plays a critical role in global elemental cycles, sequestering significant amounts of atmospheric carbon dioxide on geological time scales via production of calcium carbonate coccoliths and emitting dimethyl sulfoniopropionate (DMSP which has the potential for increasing atmospheric albedo. Because grazing in pelagic systems is a major top-down force structuring microbial communities, the influence of grazers on E. huxleyi populations has been of interest to researchers. Roles of DMSP (and related metabolites in interactions between E. huxleyi and protist grazers have been investigated, however, little is known about the release of other metabolites that may influence, or be influenced by, such grazing interactions. We used high-resolution mass spectrometry in an untargeted approach to survey the suite of low molecular weight compounds released by four different E. huxleyi strains in response to grazing by the dinoflagellate Oxyrrhis marina. Overall, a strikingly small number of metabolites were detected from E. huxleyi and O. marina cells, but these were distinctly informative to construct metabolic footprints. At most, E. huxleyi strains shared 25% of released metabolites. Furthermore, there appeared to be no unified metabolic response in E. huxleyi strains to grazing; rather these responses were strain specific. Concentrations of several metabolites also positively correlated with grazer activities, including grazing, ingestion, and growth rates; however, no single metabolite responded uniformly across all strains of E. huxleyi tested. Regardless, grazing clearly transformed the constituents of dissolved organic matter produced by these marine microbes. This study addresses several technical challenges, and presents a platform to further study the influence of chemical cues in aquatic systems and demonstrates the impact of strain diversity and grazing on the complexity of

  16. Assessment of therapeutic response and treatment planning for brain tumors using metabolic and physiological MRI.

    Science.gov (United States)

    Nelson, Sarah J

    2011-07-01

    MRI is routinely used for diagnosis, treatment planning and assessment of response to therapy for patients with glioma. Gliomas are spatially heterogeneous and infiltrative lesions that are quite variable in terms of their response to therapy. Patients classified as having low-grade histology have a median overall survival of 7 years or more, but need to be monitored carefully to make sure that their tumor does not upgrade to a more malignant phenotype. Patients with the most aggressive grade IV histology have a median overall survival of 12-15 months and often undergo multiple surgeries and adjuvant therapies in an attempt to control their disease. Despite improvements in the spatial resolution and sensitivity of anatomic images, there remain considerable ambiguities in the interpretation of changes in the size of the gadolinium-enhancing lesion on T(1) -weighted images as a measure of treatment response, and in differentiating between treatment effects and infiltrating tumor within the larger T(2) lesion. The planning of focal therapies, such as surgery, radiation and targeted drug delivery, as well as a more reliable assessment of the response to therapy, would benefit considerably from the integration of metabolic and physiological imaging techniques into routine clinical MR examinations. Advanced methods that have been shown to provide valuable data for patients with glioma are diffusion, perfusion and spectroscopic imaging. Multiparametric examinations that include the acquisition of such data are able to assess tumor cellularity, hypoxia, disruption of normal tissue architecture, changes in vascular density and vessel permeability, in addition to the standard measures of changes in the volume of enhancing and nonenhancing anatomic lesions. This is particularly critical for the interpretation of the results of Phase I and Phase II clinical trials of novel therapies, which are increasingly including agents that are designed to have anti-angiogenic and anti

  17. Antarctic fish in a changing world: metabolic, osmoregulatory and endocrine stress response

    Directory of Open Access Journals (Sweden)

    Pedro Miguel Guerreiro

    2015-10-01

    Full Text Available Fish around Antarctic Peninsula are exposed to the fastest climate change rate in the planet, up to ten times higher than the global average. The evolution in extreme stenothermal isolation was a strong selective pressure for the development of a highly endemic fish fauna, with likely structural and functional constraints. To which extent can coastal notothenioid fish adjust to the conditions forecasted by the models of climate change? Experiments were run in the Arctowski (PL station at Admiralty Bay, King George Island, in 2012/13. Fish, Notothenia rossii and N. coriiceps, were collected by boat at 5-25 meter deep using fishing poles and were transferred to experimental tanks in cold rooms acclimated to natural temperatures (0-2°C. Fish were exposed to rapid/ gradual changes in water temperature or/and salinity (to 6-8°C using thermostat-controlled heaters, to 20-10‰ by addition of freshwater to recirculating tanks, over a period of up to 10 days to evaluate the response of several physiological processes. The stress endocrine axis was tested by injecting known blockers/ agonists of cortisol release and receptors. Exposure to altered conditions had no effect in immediate mortality. Increased temperature reduced overall activity and behavioral response to stimuli, although it had no clear effect on mobilization of energetic substrate. Both cortisol and gene expression of metabolic-related proteins and glucocorticoid- and mineralocorticoid receptors were modified after heat shock, but that the cortisol response to handling was reduced. The rise in temperature induced a dependent decrease in plasma osmolality while increasing branchial Na+/K+-ATPase activity, thus decreasing osmoregulatory efficiency. In conclusion, Antarctic fish are reactive to environmental change, but that their ability to accommodate rapid or adaptive responses may be compromised.

  18. Insulin response of the glucose and fatty acid metabolism in dry dairy cows across a range of body condition scores.

    Science.gov (United States)

    De Koster, J; Hostens, M; Van Eetvelde, M; Hermans, K; Moerman, S; Bogaert, H; Depreester, E; Van den Broeck, W; Opsomer, G

    2015-07-01

    The objective of the present research was to determine the insulin response of the glucose and fatty acid metabolism in dry dairy cows with a variable body condition score (BCS). Ten pregnant Holstein Friesian dairy cows (upcoming parity 2 to 5) were selected based on BCS at the beginning of the study (2mo before expected parturition date). During the study, animals were monitored weekly for BCS and backfat thickness and in the last 2wk, blood samples were taken for determination of serum nonesterified fatty acid (NEFA) concentration. Animals underwent a hyperinsulinemic euglycemic clamp test in the third week before the expected parturition date. The hyperinsulinemic euglycemic clamp test consisted of 4 consecutive insulin infusions with increasing insulin doses: 0.1, 0.5, 2, and 5mIU/kg per minute. For each insulin infusion period, a steady state was defined as a period of 30min where no or minor changes of the glucose infusion were necessary to keep the blood glucose concentration constant and near basal levels. During the steady state, the glucose infusion rate [steady state glucose infusion rate (SSGIR) in µmol/kg per minute] and NEFA concentration [steady state NEFA concentration (SSNEFA) in mmol/L] were determined and reflect the insulin response of the glucose and fatty acid metabolism. Dose response curves were created based on the insulin concentrations during the steady state and the SSGIR or SSNEFA. The shape of the dose response curves is determined by the concentration of insulin needed to elicit the half maximal effect (EC50) and the maximal SSGIR or the minimal SSNEFA for the glucose or fatty acid metabolism, respectively. The maximal SSGIR was negatively associated with variables reflecting adiposity of the cows (BCS, backfat thickness, NEFA concentration during the dry period, and absolute weight of the different adipose depots determined after euthanasia and dissection of the different depots), whereas the EC50 of the glucose metabolism was

  19. Mechanisms of metabonomic for a gateway drug: nicotine priming enhances behavioral response to cocaine with modification in energy metabolism and neurotransmitter level.

    Directory of Open Access Journals (Sweden)

    Hongyu Li

    Full Text Available Nicotine, one of the most commonly used drugs, has become a major concern because tobacco serves as a gateway drug and is linked to illicit drug abuse, such as cocaine and marijuana. However, previous studies mainly focused on certain genes or neurotransmitters which have already been known to participate in drug addiction, lacking endogenous metabolic profiling in a global view. To further explore the mechanism by which nicotine modifies the response to cocaine, we developed two conditioned place preference (CPP models in mice. In threshold dose model, mice were pretreated with nicotine, followed by cocaine treatment at the dose of 2 mg/kg, a threshold dose of cocaine to induce CPP in mice. In high-dose model, mice were only treated with 20 mg/kg cocaine, which induced a significant CPP. (1H nuclear magnetic resonance based on metabonomics was used to investigate metabolic profiles of the nucleus accumbens (NAc and striatum. We found that nicotine pretreatment dramatically increased CPP induced by 2 mg/kg cocaine, which was similar to 20 mg/kg cocaine-induced CPP. Interestingly, metabolic profiles showed considerable overlap between these two models. These overlapped metabolites mainly included neurotransmitters as well as the molecules participating in energy homeostasis and cellular metabolism. Our results show that the reinforcing effect of nicotine on behavioral response to cocaine may attribute to the modification of some specific metabolites in NAc and striatum, thus creating a favorable metabolic environment for enhancing conditioned rewarding effect of cocaine. Our findings provide an insight into the effect of cigarette smoking on cocaine dependence and the underlying mechanism.

  20. Road transport and diet affect metabolic response to exercise in horses.

    Science.gov (United States)

    Connysson, M; Muhonen, S; Jansson, A

    2017-11-01

    This study investigated the effects of transport and diet on metabolic response during a subsequent race-like test in Standardbred horses in training fed a forage-only diet and a 50:50 forage:oats diet. Six trained and raced Standardbred trotter mares were used. Two diets, 1 forage-only diet (FONLY) and 1 diet with 50% of DM intake from forage and 50% from oats (FOATS), were fed for two 29-d periods in a crossover design. At Day 21, the horses were subjected to transport for 100 km before and after they performed an exercise test (transport test [TT]). At Day 26, the horses performed a control test (CT), in which they were kept in their stall before and after the exercise test. Blood samples were collected throughout the study, and heart rate and water intake were recorded. Heart rate and plasma cortisol, glucose, and NEFA concentrations were greater for the TT than for the CT ( = 0.008, = 0.020, = 0.010, and = 0.0002, respectively) but were not affected by diet. Plasma acetate concentration was lower during the TT than during the CT ( = 0.034) and greater for the FONLY than for the FOATS ( = 0.003). There were no overall effects of the TT compared with the CT on total plasma protein concentration (TPP), but TPP was lower with the FONLY than with the FOATS ( = 0.016). There was no overall effect of the TT compared with the CT on water intake, but water intake was greater with the FONLY than the FOATS ( = 0.011). There were no overall effects of transport or diet on BW, plasma lactate, or plasma urea concentration. It was concluded that both transport and diet affect metabolic response during exercise in horses. Aerobic energy supply was most likely elevated by transportation and by the FONLY. The FONLY also decreased exercise-induced effects on extracellular fluid regulation. These results highlight the importance of experimental design in nutrition studies. If the aim is to examine how a diet affects exercise response in competition horses, transport should

  1. Modulation of the growth and metabolic response of cyanobacteria by the multifaceted activity of naringenin.

    Directory of Open Access Journals (Sweden)

    Beata Żyszka

    Full Text Available The interactions between the plant-derived bioflavonoid, naringenin, and prokaryotic microalgae representatives (cyanobacteria, were investigated with respect to its influence on the growth and metabolic response of these microorganisms. To achieve reliable results, the growth of cyanobacteria was determined based on measurements of chlorophyll content, morphological changes were assessed through microscopic observations, and the chemical response of cells was determined using liquid and gas chromatography (HPLC; GC-FID. The results show that micromolar levels of naringenin stimulated the growth of cyanobacteria. Increased growth was observed for halophilic strains at naringenin concentrations below 40 mg L-1, and in freshwater strains at concentrations below 20 mg L-1. The most remarkable stimulation was observed for the freshwater species Nostoc muscorum, which had a growth rate that was up to 60% higher than in the control. When naringenin was examined at concentrations above 40 mg L-1, the growth of the tested microorganisms was inhibited. Simultaneously, an intensive excretion of exopolysaccharides was observed. Microscopic observations strongly suggest that these effects resulted from a structural disturbance of cyanobacterial cell walls that was exerted by naringenin. This phenomenon, in combination with the absorption of naringenin into cell wall structures, influenced cell permeability and thus the growth of bacteria. Fortunately, almost all the naringenin added to the culture was incorporated into to cell substructures and could be recovered through extraction, raising the possibility that this modulator could be recycled.

  2. Consistency of metabolic responses and appetite sensations under postabsorptive and postprandial conditions.

    Science.gov (United States)

    Gonzalez, Javier T; Veasey, Rachel C; Rumbold, Penny L S; Stevenson, Emma J

    2012-10-01

    The present study aimed to investigate the reliability of metabolic and subjective appetite responses under fasted conditions and following consumption of a cereal-based breakfast. Twelve healthy, physically active males completed two postabsorption (PA) and two postprandial (PP) trials in a randomised order. In PP trials a cereal based breakfast providing 1859 kJ of energy was consumed. Expired gas samples were used to estimate energy expenditure and fat oxidation and 100mm visual analogue scales were used to determine appetite sensations at baseline and every 30 min for 120 min. Reliability was assessed using limits of agreement, coefficient of variation (CV), intraclass coefficient of correlation and 95% confidence limits of typical error. The limits of agreement and typical error were 292.0 and 105.5 kJ for total energy expenditure, 9.3 and 3.4 g for total fat oxidation and 22.9 and 8.3mm for time-averaged AUC for hunger sensations, respectively over the 120 min period in the PP trial. The reliability of energy expenditure and appetite in the 2h response to a cereal-based breakfast would suggest that an intervention requires a 211 kJ and 16.6mm difference in total postprandial energy expenditure and time-averaged hunger AUC to be meaningful, fat oxidation would require a 6.7 g difference which may not be sensitive to most meal manipulations. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    Directory of Open Access Journals (Sweden)

    Anastasia V. Ponasenko

    2017-01-01

    Full Text Available Infective endocarditis (IE is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE.

  4. Inherited Variation in Cytokine, Acute Phase Response, and Calcium Metabolism Genes Affects Susceptibility to Infective Endocarditis

    Science.gov (United States)

    Rutkovskaya, Natalia V.; Kondyukova, Natalia V.; Odarenko, Yuri N.; Kazachek, Yana V.; Tsepokina, Anna V.; Barbarash, Leonid S.

    2017-01-01

    Infective endocarditis (IE) is a septic inflammation of the endocardium. Recognition of microbial patterns, cytokine and acute phase responses, hemostasis features, and alterations in plasma lipid and calcium profile all have been reported to affect pathogenesis and clinical course of IE. Having recruited 123 patients with IE and 300 age-, sex-, and ethnicity-matched healthy blood donors, we profiled their genomic DNA for 35 functionally significant polymorphisms within the 22 selected genes involved in the abovementioned pathways, with the further genetic association analysis. We found that the G/A genotype of the rs1143634 polymorphism within the IL1B gene, the G/T genotype of the rs3212227 polymorphism within the IL12B gene, the A/G genotype of the rs1130864 polymorphism within the CRP gene, and the G allele of the rs1801197 polymorphism within the CALCR gene were associated with a decreased risk of IE whereas the T/T genotype of the rs1205 polymorphism within the CRP gene was associated with a higher risk of IE. Furthermore, heterozygous genotypes of the rs1143634 and rs3212227 polymorphisms were associated with the higher plasma levels of IL-1β and IL-12, respectively. Our results indicate that inherited variation in the cytokine, acute phase response, and calcium metabolism pathways may be linked to IE. PMID:28659664

  5. Metabolic response to Klebsiella pneumoniae infection in an experimental rat model.

    Directory of Open Access Journals (Sweden)

    Fangcong Dong

    Full Text Available Bacteremia, the presence of viable bacteria in the blood stream, is often associated with several clinical conditions. Bacteremia can lead to multiple organ failure if managed incorrectly, which makes providing suitable nutritional support vital for reducing bacteremia-associated mortality. In order to provide such information, we investigated the metabolic consequences of a Klebsiella pneumoniae (K. pneumoniae infection in vivo by employing a combination of (1H nuclear magnetic resonance spectroscopy and multivariate data analysis. K. pneumoniae was intravenously infused in rats; urine and plasma samples were collected at different time intervals. We found that K. pneumoniae-induced bacteremia stimulated glycolysis and the tricarboxylic acid cycle and also promoted oxidation of fatty acids and creatine phosphate to facilitate the energy-demanding host response. In addition, K. pneumoniae bacteremia also induced anti-endotoxin, anti-inflammatory and anti-oxidization responses in the host. Furthermore, bacteremia could cause a disturbance in the gut microbiotal functions as suggested by alterations in a range of amines and bacteria-host co-metabolites. Our results suggest that supplementation with glucose and a high-fat and choline-rich diet could ameliorate the burdens associated with bacteremia. Our research provides underlying pathological processes of bacteremia and a better understanding of the clinical and biochemical manifestations of bacteremia.

  6. Metabolomics reveals differences in postprandial responses to breads and fasting metabolic characteristics associated with postprandial insulin demand in postmenopausal women.

    Science.gov (United States)

    Moazzami, Ali A; Shrestha, Aahana; Morrison, David A; Poutanen, Kaisa; Mykkänen, Hannu

    2014-06-01

    Changes in serum metabolic profile after the intake of different food products (e.g., bread) can provide insight into their interaction with human metabolism. Postprandial metabolic responses were compared after the intake of refined wheat (RWB), whole-meal rye (WRB), and refined rye (RRB) breads. In addition, associations between the metabolic profile in fasting serum and the postprandial concentration of insulin in response to different breads were investigated. Nineteen postmenopausal women with normal fasting glucose and normal glucose tolerance participated in a randomized, controlled, crossover meal study. The test breads, RWB (control), RRB, and WRB, providing 50 g of available carbohydrate, were each served as a single meal. The postprandial metabolic profile was measured using nuclear magnetic resonance and targeted LC-mass spectrometry and was compared between different breads using ANOVA and multivariate models. Eight amino acids had a significant treatment effect (P insulin. Women with higher fasting concentrations of leucine and isoleucine and lower fasting concentrations of sphingomyelins and phosphatidylcholines had higher insulin responses despite similar glucose concentration after all kinds of bread (cross-validated ANOVA, P = 0.048). High blood concentration of branched-chain amino acids, i.e., leucine and isoleucine, has been associated with the increased risk of diabetes, which suggests that additional consideration should be given to bread proteins in understanding the beneficial health effects of different kinds of breads. The present study suggests that the fasting metabolic profile can be used to characterize the postprandial insulin demand in individuals with normal glucose metabolism that can be used for establishing strategies for the stratification of individuals in personalized nutrition. © 2014 American Society for Nutrition.

  7. Sustained exercise-trained juvenile black carp (Mylopharyngodon piceus at a moderate water velocity exhibit improved aerobic swimming performance and increased postprandial metabolic responses

    Directory of Open Access Journals (Sweden)

    Xiuming Li

    2018-02-01

    Full Text Available The objectives of this study were to examine whether sustained exercise training at four water velocities, i.e. nearly still water (control, 1 body length (BL s−1, 2 BL s−1 and 4 BL s−1, has effects on swimming performance and digestive metabolism in juvenile black carp (Mylopharyngodon piceus. The results demonstrated that fish subjected to sustained training at 2 and 4 BL s−1 showed significantly higher critical swimming speed (Ucrit and maximum metabolic rate (MMR over the control group. Fish subjected to sustained training at 1 and 2 BL s−1 showed a significantly (30 and 54% prolonged duration, 14 and 17% higher postprandial ṀO2 increment (i.e. ṀO2peak, and 62 and 92% more energy expended on specific dynamic action (SDA, respectively, after consuming a similar meal over fish kept in nearly still water. These results suggest that (1 sustained exercise training at a higher speed (2 or 4 BL s−1 had a positive influence on the aerobic swimming performance of juvenile M. piceus, which may be associated with improved aerobic metabolism; and (2 sustained exercise training at a lower speed (1 or 2 BL s−1 resulted in elevated postprandial metabolic responses in juvenile M. piceus.

  8. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens.

    Directory of Open Access Journals (Sweden)

    Chiou-Yueh Yeh

    Full Text Available Nasal mucosa is an immune responsive organ evidenced by eliciting both specific local secretory IgA and systemic IgG antibody responses with intra-nasal administration of antigens. Nevertheless, the role of nasal epithelial cells in modulating such responses is unclear. Human nasal epithelial cells (hNECs obtained from sinus mucosa of patients with chronic rhinosinusitis were cultured in vitro and firstly were stimulated by Lactococcus lactis bacterium-like particles (BLPs in order to examine their role on antibody production. Secondly, both antigens of immunodominant protein IDG60 from oral Streptococcus mutans and hemagglutinin (HA from influenza virus were tested to evaluate the specific antibody response. Stimulated hNECs by BLPs exhibited a significant increase in the production of interleukin-6 (IL-6, and thymic stromal lymphopoietin (TSLP. Conditioned medium of stimulated hNECs has effects on enhancing the proliferation of CD4+ T cells together with interferon-γ and IL-5 production, increasing the costimulatory molecules on dendritic cells and augmenting the production of IDG60 specific IgA, HA specific IgG, IgA by human peripheral blood lymphocytes. Such production of antigen specific IgG and IgA is significantly counteracted in the presence of IL-6 and TSLP neutralizing antibodies. In conclusion, properly stimulated hNECs may impart immuno-modulatory effects on the antigen-specific antibody response at least through the production of IL-6 and TSLP.

  9. The metabolic and temporal basis of muscle hypertrophy in response to resistance exercise.

    Science.gov (United States)

    Brook, Matthew S; Wilkinson, Daniel J; Smith, Kenneth; Atherton, Philip J

    2016-09-01

    Constituting ∼40% of body mass, skeletal muscle has essential locomotory and metabolic functions. As such, an insight into the control of muscle mass is of great importance for maintaining health and quality-of-life into older age, under conditions of cachectic disease and with rehabilitation. In healthy weight-bearing individuals, muscle mass is maintained by the equilibrium between muscle protein synthesis (MPS) and muscle protein breakdown; when this balance tips in favour of MPS hypertrophy occurs. Despite considerable research into pharmacological/nutraceutical interventions, resistance exercise training (RE-T) remains the most potent stimulator of MPS and hypertrophy (in the majority of individuals). However, the mechanism(s) and time course of hypertrophic responses to RE-T remain poorly understood. We would suggest that available data are very much in favour of the notion that the majority of hypertrophy occurs in the early phases of RE-T (though still controversial to some) and that, for the most part, continued gains are hard to come by. Whilst the mechanisms of muscle hypertrophy represent the culmination of mechanical, auto/paracrine and endocrine events, the measurement of MPS remains a cornerstone for understanding the control of hypertrophy - mainly because it is the underlying driving force behind skeletal muscle hypertrophy. Development of sophisticated isotopic techniques (i.e. deuterium oxide) that lend to longer term insight into the control of hypertrophy by sustained RE-T will be paramount in providing insights into the metabolic and temporal regulation of hypertrophy. Such technologies will have broad application in muscle mass intervention for both athletes and for mitigating disease/age-related cachexia and sarcopenia, alike.

  10. Metabolic response to different glycemic indexes of pre-exercise meal

    Directory of Open Access Journals (Sweden)

    Valéria Cristina de Faria

    2015-08-01

    Full Text Available INTRODUCTION: To ensure performance and health, the type of food and the time of pre-exercise ingestion should be considered by practitioners of morning physical activity. Objective: This study assessed the metabolic response after pre-exercise meals with different glycemic indexes (GI and in the fasting state adopting different types of hydration.METHODS: Twelve men performed four experimental tests; two with pre-exercise meals of high GI (HGI and low GI (LGI, and two were performed in the fasting state with hydration: water (H2O and carbohydrate drink (CHO. Each test consisted of a pre-exercise rest period of 30 minutes followed by 60 minutes of cycle ergometer with continuous load equivalent to 60% of the extrapolated maximal oxygen consumption (VO2MaxExt. During the exercise, participants were hydrated every 15 minutes with 3mL per kg body weight. During each experimental test, venous blood samples were obtained for fasting and at 15-minute intervals during rest, and every 20 minutes during exercise. The gas analysis was carried out in periods of 5 minutes every 20 minutes of exercise.RESULTS: There was no difference in substrate oxidation. After 20 minutes of exercise, pre-exercise food intake procedures showed similar behavior, having only reduced blood glucose levels compared to fasting procedures (p<0.01. There was maintenance of blood glucose at stable and higher levels during exercise in relation to the other tests in the fast procedure with CHO.CONCLUSION: The data suggest that despite the similar metabolic behavior between LGI and HGI meals, the adoption of a LGI meal before the morning exercise seems to be a more suitable feeding practice due to higher tendency of rebound hypoglycemia after HGI meal and when morning exercise is performed on fasting, hydration with CHO seems to minimize the hypoglycemic risk arising from that state.

  11. Similar metabolic responses in pigs and humans to breads with different contents and compositions of dietary fibers: a metabolomics study

    DEFF Research Database (Denmark)

    Nielsen, Kirstine Lykke; Hartvigsen, Merete; Hedemann, Mette Skou

    2014-01-01

    Background: In nutritional studies, pigs are often used as models for humans because of nutritional and physiologic similarities. However, evidence supporting similar metabolic responses to nutritional interventions is lacking. Objective: The objective was to establish whether pigs and humans...... respond similarly to a nutritional intervention. Using metabolomics, we compared the acute metabolic response to 4 test breads between conventional pigs (growing) and adult human subjects (with the metabolic syndrome). Design: Six catheterized pigs and 15 human subjects were tested in a randomized...... different basal metabolome concentrations in the plasma of pigs and humans. Humans had higher contents of phosphatidylcholines, oleic acid, and carnitine in plasma, possibly reflecting a higher intake of meats and fats. In pigs, betaine, choline, creatinine, tryptophan, and phenylalanine were higher...

  12. Antioxidant gene expression and metabolic responses of earthworms (Eisenia fetida) after exposure to various concentrations of hexabromocyclododecane.

    Science.gov (United States)

    Shi, Yajuan; Xu, Xiangbo; Chen, Juan; Liang, Ruoyu; Zheng, Xiaoqi; Shi, Yajing; Wang, Yurong

    2018-01-01

    Hexabromocyclododecane (HBCD), a ubiquitous suspected contaminant, is one of the world's most prominent brominated flame retardants (BFRs). In the present study, earthworms (Eisenia fetida) were exposed to HBCD. The expression of selected antioxidant enzyme genes was measured, and the metabolic responses were assessed using nuclear magnetic resonance (NMR) to identify the molecular mechanism of the antioxidant stress reaction and the metabolic reactions of earthworms to HBCD. A significant up-regulation (p  0.05). Principal component analysis (PCA) of the metabolic responses showed that all groups could be clearly differentiated, and the highest concentration dose group was the most distant from the control group. Except for fumarate, the measured metabolites, which included adenosine triphosphate (ATP), valine, lysine, glycine, betaine and lactate, revealed significant (p earthworm exposure studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Metabolic responses of Lactobacillus plantarum strains during fermentation and storage of vegetable and fruit juices.

    Science.gov (United States)

    Filannino, P; Cardinali, G; Rizzello, C G; Buchin, S; De Angelis, M; Gobbetti, M; Di Cagno, R

    2014-04-01

    Strains of Lactobacillus plantarum were grown and stored in cherry (ChJ), pineapple (PJ), carrot (CJ), and tomato (TJ) juices to mimic the chemical composition of the respective matrices. Wheat flour hydrolysate (WFH), whey milk (W), and MRS broth were also used as representatives of other ecosystems. The growth rates and cell densities of L. plantarum strains during fermentation (24 h at 30°C) and storage (21 days at 4°C) differed only in part, being mainly influenced by the matrix. ChJ and PJ were the most stressful juices for growth and survival. Overall, the growth in juices was negatively correlated with the initial concentration of malic acid and carbohydrates. The consumption of malic acid was noticeable for all juices, but mainly during fermentation and storage of ChJ. Decreases of branched-chain amino acids (BCAA)-with the concomitant increase of their respective branched alcohols-and His and increases of Glu and gamma-aminobutyric acid (GABA) were the main traits of the catabolism of free amino acids (FAA), which were mainly evident under less acidic conditions (CJ and TJ). The increase of Tyr was found only during storage of ChJ. Some aldehydes (e.g., 3-methyl-butanal) were reduced to the corresponding alcohols (e.g., 3-methyl-1-butanol). After both fermentation and storage, acetic acid increased in all fermented juices, which implied the activation of the acetate kinase route. Diacetyl was the ketone found at the highest level, and butyric acid increased in almost all fermented juices. Data were processed through multidimensional statistical analyses. Except for CJ, the juices (mainly ChJ) seemed to induce specific metabolic traits, which differed in part among the strains. This study provided more in-depth knowledge on the metabolic mechanisms of growth and maintenance of L. plantarum in vegetable and fruit habitats, which also provided helpful information to select the most suitable starters for fermentation of targeted matrices.

  14. Coping with Salt Water Habitats: Metabolic and Oxidative Responses to Salt Intake in the Rufous-Collared Sparrow

    Directory of Open Access Journals (Sweden)

    Pablo Sabat

    2017-09-01

    Full Text Available Many physiological adjustments occur in response to salt intake in several marine taxa, which manifest at different scales from changes in the concentration of individual molecules to physical traits of whole organisms. Little is known about the influence of salinity on the distribution, physiological performance, and ecology of passerines; specifically, the impact of drinking water salinity on the oxidative status of birds has been largely ignored. In this study, we evaluated whether experimental variations in the salt intake of a widely-distributed passerine (Zontotrichia capensis could generate differences in basal (BMR and maximum metabolic rates (Msum, as well as affect metabolic enzyme activity and oxidative status. We measured rates of energy expenditure of birds after 30-d acclimation to drink salt (SW or tap (fresh water (TW and assessed changes in the activity of mitochondrial enzymes (cytochrome c oxidase and citrate synthase in skeletal muscle, heart, and kidney. Finally, we evaluated the oxidative status of bird tissues by means of total antioxidant capacity (TAC and superoxide dismutase activities and lipid oxidative damage (Malondialdehyde, MDA. The results revealed a significant increase in BMR but not Msum, which resulted in a reduction in factorial aerobic scope in SW- vs. TW-acclimated birds. These changes were paralleled with increased kidney and intestine masses and catabolic activities in tissues, especially in pectoralis muscle. We also found that TAC and MDA concentrations were ~120 and ~400% higher, respectively in the liver of animals acclimated to the SW- vs. TW-treatment. Our study is the first to document changes in the oxidative status in birds that persistently drink saltwater, and shows that they undergo several physiological adjustments that range that range in scale from biochemical capacities (e.g., TAC and MDA to whole organism traits (e.g., metabolic rates. We propose that the physiological changes observed

  15. Genome-wide identification and expression profiling reveal tissue-specific expression and differentially-regulated genes involved in gibberellin metabolism between Williams banana and its dwarf mutant.

    Science.gov (United States)

    Chen, Jingjing; Xie, Jianghui; Duan, Yajie; Hu, Huigang; Hu, Yulin; Li, Weiming

    2016-05-27

    Dwarfism is one of the most valuable traits in banana breeding because semi-dwarf cultivars show good resistance to damage by wind and rain. Moreover, these cultivars present advantages of convenient cultivation, management, and so on. We obtained a dwarf mutant '8818-1' through EMS (ethyl methane sulphonate) mutagenesis of Williams banana 8818 (Musa spp. AAA group). Our research have shown that gibberellins (GAs) content in 8818-1 false stems was significantly lower than that in its parent 8818 and the dwarf type of 8818-1 could be restored by application of exogenous GA3. Although GA exerts important impacts on the 8818-1 dwarf type, our understanding of the regulation of GA metabolism during banana dwarf mutant development remains limited. Genome-wide screening revealed 36 candidate GA metabolism genes were systematically identified for the first time; these genes included 3 MaCPS, 2 MaKS, 1 MaKO, 2 MaKAO, 10 MaGA20ox, 4 MaGA3ox, and 14 MaGA2ox genes. Phylogenetic tree and conserved protein domain analyses showed sequence conservation and divergence. GA metabolism genes exhibited tissue-specific expression patterns. Early GA biosynthesis genes were constitutively expressed but presented differential regulation in different tissues in Williams banana. GA oxidase family genes were mainly transcribed in young fruits, thus suggesting that young fruits were the most active tissue involved in GA metabolism, followed by leaves, bracts, and finally approximately mature fruits. Expression patterns between 8818 and 8818-1 revealed that MaGA20ox4, MaGA20ox5, and MaGA20ox7 of the MaGA20ox gene family and MaGA2ox7, MaGA2ox12, and MaGA2ox14 of the MaGA2ox gene family exhibited significant differential expression and high-expression levels in false stems. These genes are likely to be responsible for the regulation of GAs content in 8818-1 false stems. Overall, phylogenetic evolution, tissue specificity and differential expression analyses of GA metabolism genes can provide a

  16. Metabolomics by proton nuclear magnetic resonance spectroscopy of the response to chloroethylnitrosourea reveals drug efficacy and tumor adaptive metabolic pathways.

    Science.gov (United States)

    Morvan, Daniel; Demidem, Aicha

    2007-03-01

    Metabolomics of tumors may allow discovery of tumor biomarkers and metabolic therapeutic targets. Metabolomics by two-dimensional proton high-resolution magic angle spinning nuclear magnetic resonance spectroscopy was applied to investigate metabolite disorders following treatment by chloroethylnitrosourea of murine B16 melanoma (n = 33) and 3LL pulmonary carcinoma (n = 31) in vivo. Treated tumors of both types resumed growth after a delay. Nitrosoureas provoke DNA damage but the metabolic consequences of genotoxic stress are little known yet. Although some differences were observed in the metabolite profile of untreated tumor types, the prominent metabolic features of the response to nitrosourea were common to both. During the growth inhibition phase, there was an accumulation of glucose (more than x10; P < 0.05), glutamine (x3 to 4; P < 0.01), and aspartate (x2 to 5; P < 0.01). This response testified to nucleoside de novo synthesis down-regulation and drug efficacy. However, this phase also involved the increase in alanine (P < 0.001 in B16 melanoma), the decrease in succinate (P < 0.001), and the accumulation of serine-derived metabolites (glycine, phosphoethanolamine, and formate; P < 0.01). This response witnessed the activation of pathways implicated in energy production and resumption of nucleotide de novo synthesis, thus metabolic pathways of DNA repair and adaptation to treatment. During the growth recovery phase, it remained polyunsaturated fatty acid accumulation (x1.5 to 2; P < 0.05) and reduced utilization of glucose compared with glutamine (P < 0.05), a metabolic fingerprint of adaptation. Thus, this study provides the proof of principle that metabolomics of tumor response to an anticancer agent may help discover metabolic pathways of drug efficacy and adaptation to treatment.

  17. Future arrangements for Great Britain's gas quality specifications. Government Response (including Summary of Responses) to consultation on future arrangements for Great Britain's gas quality specifications

    International Nuclear Information System (INIS)

    2007-01-01

    Last year the Government consulted on GB's future gas quality specifications. The background is that some streams of imported gases have an energy content that exceeds the upper limit specified in GB's current gas quality regulations. The policy issue was whether to stick with the current regulated specifications, but at the cost of having to process imported gas to bring it within those specifications; or, at some time after 2020, to adjust those specifications, but at the cost of having to check (and potentially change) approximately 45m domestic gas appliances in 22m households, to ensure that they are capable of burning the high energy gas safely (and with a residual safety risk that some appliances are missed). The Consultation Document sought views on the proposal (backed up by the Partial Regulatory Impact Assessment) to adopt the 'no change' option. In the light of the responses, this is what the Government now proposes. The associated Impact Assessment estimates the total net benefit of the 'no change' option at UK Pounds 1.5bn - 14bn, with a best estimate of UK Pounds 8bn (NPV, 2005). The risks for gas prices and security of supply (included in the Impact Assessment) are judged to be small. The Government proposes a 'forward plan', consisting of support for Ofgem's work on maximising the commercial flexibilities for the GB gas market to handle gases of different specifications, whilst continuing to engage in EU discussions on the gas quality issue. (Author)

  18. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations

    Directory of Open Access Journals (Sweden)

    Martino V. Franchi

    2017-07-01

    Full Text Available Skeletal muscle contracts either by shortening or lengthening (concentrically or eccentrically, respectively; however, the two contractions substantially differ from one another in terms of mechanisms of force generation, maximum force production and energy cost. It is generally known that eccentric actions generate greater force than isometric and concentric contractions and at a lower metabolic cost. Hence, by virtue of the greater mechanical loading involved in active lengthening, eccentric resistance training (ECC RT is assumed to produce greater hypertrophy than concentric resistance training (CON RT. Nonetheless, prevalence of either ECC RT or CON RT in inducing gains in muscle mass is still an open issue, with some studies reporting greater hypertrophy with eccentric, some with concentric and some with similar hypertrophy within both training modes. Recent observations suggest that such hypertrophic responses to lengthening vs. shortening contractions are achieved by different adaptations in muscle architecture. Whilst the changes in muscle protein synthesis in response to acute and chronic concentric and eccentric exercise bouts seem very similar, the molecular mechanisms regulating the myogenic adaptations to the two distinct loading stimuli are still incompletely understood.Thus, the present review aims to, (a critically discuss the literature on the contribution of eccentric vs. concentric loading to muscular hypertrophy and structural remodeling, and, (b clarify the molecular mechanisms that may regulate such adaptations.We conclude that, when matched for either maximum load or work, similar increase in muscle size is found between ECC and CON RT. However, such hypertrophic changes appear to be achieved through distinct structural adaptations, which may be regulated by different myogenic and molecular responses observed between lengthening and shortening contractions.

  19. Relaxation response induces temporal transcriptome changes in energy metabolism, insulin secretion and inflammatory pathways.

    Directory of Open Access Journals (Sweden)

    Manoj K Bhasin

    Full Text Available The relaxation response (RR is the counterpart of the stress response. Millennia-old practices evoking the RR include meditation, yoga and repetitive prayer. Although RR elicitation is an effective therapeutic intervention that counteracts the adverse clinical effects of stress in disorders including hypertension, anxiety, insomnia and aging, the underlying molecular mechanisms that explain these clinical benefits remain undetermined. To assess rapid time-dependent (temporal genomic changes during one session of RR practice among healthy practitioners with years of RR practice and also in novices before and after 8 weeks of RR training, we measured the transcriptome in peripheral blood prior to, immediately after, and 15 minutes after listening to an RR-eliciting or a health education CD. Both short-term and long-term practitioners evoked significant temporal gene expression changes with greater significance in the latter as compared to novices. RR practice enhanced expression of genes associated with energy metabolism, mitochondrial function, insulin secretion and telomere maintenance, and reduced expression of genes linked to inflammatory response and stress-related pathways. Interactive network analyses of RR-affected pathways identified mitochondrial ATP synthase and insulin (INS as top upregulated critical molecules (focus hubs and NF-κB pathway genes as top downregulated focus hubs. Our results for the first time indicate that RR elicitation, particularly after long-term practice, may evoke its downstream health benefits by improving mitochondrial energy production and utilization and thus promoting mitochondrial resiliency through upregulation of ATPase and insulin function. Mitochondrial resiliency might also be promoted by RR-induced downregulation of NF-κB-associated upstream and downstream targets that mitigates stress.

  20. Thermal and metabolic responses of military divers during a 6-hour static dive in cold water.

    Science.gov (United States)

    Riera, Florence; Horr, Reed; Xu, Xiaojiang; Melin, Bruno; Regnard, Jacques; Bourdon, Lionel

    2014-05-01

    Human thermal responses during prolonged whole-body immersion in cold water are of interest for the military, especially French SEALS. This study aims at describing the thermo-physiological responses. There were 10 male military divers who were randomly assigned to a full immersion in neutral (34 degrees C), moderately cold (18 degrees C), and cold (10 degrees C) water wearing their operational protective devices (5.5 mm wetsuit with 3.0 mm thick underwear) for 6 h in a static position. Rectal temperature (T(re)) and 14 skin temperatures (T(sk)), blood analysis (stress biomarkers, metabolic substrates), and oxygen consumption (Vo2) were collected. At 34 degrees C, there were no significant modifications of the thermo-physiological responses over time. The most interesting result was that rates of rectal temperature decrease (0.15 +/- 0.02 degrees C x min(-1)) were the same between the two cold stress experimental conditions (at 18 degrees C and 10 degrees C). At the final experiment, rectal temperature was not significantly different between the two cold stress experimental conditions. Mean T(sk) decreased significantly during the first 3 h of immersion and then stabilized at a lower level at 10 degrees C (25.6 +/- 0.8 degrees C) than at 18 degrees C (29.3 +/- 0.9 degrees C). Other results demonstrate that the well-trained subjects developed effective physiological reactions. However, these reactions are consistently too low to counterbalance the heat losses induced by cold temperature conditions and long-duration immersion. This study shows that providing divers with thermal protection is efficient for a long-duration immersion from a medical point of view, but not from an operational one when skin extremities were taken into account.

  1. Sex-Specific Association between Metabolic Abnormalities and Elevated Alanine Aminotransferase Levels in a Military Cohort: The CHIEF Study

    Directory of Open Access Journals (Sweden)

    Kai-Wen Chen

    2018-03-01

    Full Text Available The association of metabolic syndrome (MetS components with elevated serum alanine aminotransferase (ALT levels, a marker of hepatic injury, may differ between men and women. However, the sex-specific association in a military young population which has a low prevalence of MetS was unclear. We conducted a cross-sectional examination in 6738 men and 766 women, aged 18–50 years, from the cardiorespiratory fitness study in armed forces (CHIEF in eastern Taiwan. The components of MetS were defined according to the updated International Diabetes Federation (IDF ethnic criteria for Asians. Elevated ALT levels were defined as ≥40 U/L for both sexes and ≥30 U/L for women alternatively. Multivariate logistic regression analysis was performed to determine the sex-specific association between MetS components and elevated ALT. The prevalence of MetS and elevated ALT in men were 11.9% and 12.7% respectively, and in women were 3.5%, and 3.8% respectively. In men, high-density lipoprotein < 40 mg/dL, blood pressures ≥ 130/85 mmHg, serum triglycerides ≥ 150 mg/dL, and waist size ≥ 90 cm were associated with elevated ALT (odds ratios (OR and 95% confidence intervals: 1.59 (1.34–1.90, 1.40 (1.19–1.65, 2.00 (1.68–2.39, and 1.68 (1.38–2.04; all p < 0.001; whereas in women, only fasting plasma glucose ≥ 100 mg/dL was associated with elevated ALT ≥ 40 U/L (OR: 7.59 (2.35–24.51, p = 0.001 and ALT ≥ 30 U/L (2.67 (0.89–7.95, p = 0.08. Our findings suggest that the relationship between metabolic abnormalities and elevated ALT may differ by sex, possibly due to the MetS more prevalent in young adult men than in women.

  2. Telling metabolic stories to explore metabolomics data -- A case study on the Yeast response to cadmium exposure

    NARCIS (Netherlands)

    P.V. Milreu (Paulo); C.C. Klein (Cecilia); L. Cottret; V. Acuña (Vicente); E. Birmele; M. Borassi; C. Junot; A. Marchetti Spaccamela (Alberto); A. Morino; L. Stougie (Leen); F. Jourdan; P. Crescenzi; V. Lacroix; M.-F. Sagot (Marie-France)

    2014-01-01

    htmlabstractMotivation: The increasing availability of metabolomics data enables to better understand the metabolic processes involved in the immediate response of an organism to environmental changes and stress. The data usually come in the form of a list of metabolites whose concentrations

  3. Variations in insulin responsiveness in rat fat cells are due to metabolic differences rather than insulin binding

    DEFF Research Database (Denmark)

    Hansen, Finn Mølgård; Nilsson, Poul; Sonne, Ole

    1983-01-01

    -insulin to fat cells. Insulin binding was not correlated to the plasma insulin level which however was reflected in the lipoprotein lipase activity in the adipose tissue. In conclusion, these results indicate that variations in insulin responsiveness in fat cells are due to alterations in cellular metabolism...

  4. Metabolic response to 36 hours of fasting in young men born small vs appropriate for gestational age

    DEFF Research Database (Denmark)

    Jørgensen, Sine W; Brøns, Charlotte; Bluck, Les

    2015-01-01

    AIMS/HYPOTHESIS: Being born small for gestational age (SGA) is associated with an increased risk of type 2 diabetes in an affluent society, but could confer an improved chance of survival during sparse living conditions. We studied whether insulin action and other metabolic responses to prolonged...

  5. The FGF21 response to fructose predicts metabolic health and persists after bariatric surgery in obese humans

    NARCIS (Netherlands)

    ter Horst, Kasper W.; Gilijamse, Pim W.; Demirkiran, Ahmet; van Wagensveld, Bart A.; Ackermans, Mariette T.; Verheij, Joanne; Romijn, Johannes A.; Nieuwdorp, Max; Maratos-Flier, Eleftheria; Herman, Mark A.; Serlie, Mireille J.

    2017-01-01

    Objective: Fructose consumption has been implicated in the development of obesity and insulin resistance. Emerging evidence shows that fibroblast growth factor 21 (FGF21) has beneficial effects on glucose, lipid, and energy metabolism and may also mediate an adaptive response to fructose ingestion.

  6. Predictive value of PET response combined with baseline metabolic tumor volume in peripheral T-cell lymphoma patients

    DEFF Research Database (Denmark)

    Cottereau, Anne-Segolene; El-Galaly, Tarec C; Becker, Stéphanie

    2018-01-01

    Peripheral T-cell lymphoma (PTCL) is a heterogeneous group of aggressive non-Hodgkin lymphomas with poor outcomes with current therapy. We investigated if response assessed with Positron Emission Tomography/computed tomography (PET/CT) combined with baseline total metabolic tumor volume (TMTV) co...

  7. Metabolic response of porcine colon explants to in vitro infection by Brachyspira hyodysenteriae : a leap into disease pathophysiology

    NARCIS (Netherlands)

    Welle, Thijs; Hoekstra, Anna T.; Daemen, Ineke A.J.J.M.; Berkers, Celia R.; de Oliveira Costa, Matheus

    2017-01-01

    Introduction: Swine dysentery caused by Brachyspira hyodysenteriae is a production limiting disease in pig farming. Currently antimicrobial therapy is the only treatment and control method available. Objective: The aim of this study was to characterize the metabolic response of porcine colon

  8. Metabolic and transcriptional responses of gilthead sea bream (Sparus aurata L.) to environmental stress: New insights in fish mitochondrial phenotyping

    NARCIS (Netherlands)

    Bermejo-Nogales, A.; Nederlof, M.A.J.; Benedito-Palos, L.; Ballester-Lozano, G.F.; Folkedal, O.; Olsen, R.E.; Sitjà-Bobadilla, A.; Pérez-Sánchez, J.

    2014-01-01

    The aim of the current study was to phenotype fish metabolism and the transcriptionally-mediated response of hepatic mitochondria of gilthead sea bream to intermittent and repetitive environmental stressors: (i) changes in water temperature (T-ST), (ii) changes in water level and chasing (C-ST) and

  9. Protein kinase N2 regulates AMP kinase signaling and insulin responsiveness of glucose metabolism in skeletal muscle.

    Science.gov (United States)

    Ruby, Maxwell A; Riedl, Isabelle; Massart, Julie; Åhlin, Marcus; Zierath, Juleen R

    2017-10-01

    Insulin resistance is central to the development of type 2 diabetes and related metabolic disorders. Because skeletal muscle is responsible for the majority of whole body insulin-stimulated glucose uptake, regulation of glucose metabolism in this tissue is of particular importance. Although Rho GTPases and many of their affecters influence skeletal muscle metabolism, there is a paucity of information on the protein kinase N (PKN) family of serine/threonine protein kinases. We investigated the impact of PKN2 on insulin signaling and glucose metabolism in primary human skeletal muscle cells in vitro and mouse tibialis anterior muscle in vivo. PKN2 knockdown in vitro decreased insulin-stimulated glucose uptake, incorporation into glycogen, and oxidation. PKN2 siRNA increased 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling while stimulating fatty acid oxidation and incorporation into triglycerides and decreasing protein synthesis. At the transcriptional level, PKN2 knockdown increased expression of PGC-1α and SREBP-1c and their target genes. In mature skeletal muscle, in vivo PKN2 knockdown decreased glucose uptake and increased AMPK phosphorylation. Thus, PKN2 alters key signaling pathways and transcriptional networks to regulate glucose and lipid metabolism. Identification of PKN2 as a novel regulator of insulin and AMPK signaling may provide an avenue for manipulation of skeletal muscle metabolism. Copyright © 2017 the American Physiological Society.

  10. Metabolic responses to prolonged work during treadmill and water immersion running.

    Science.gov (United States)

    Frangolias, D D; Rhodes, E C; Taunton, J E; Belcastro, A N; Coutts, K D

    2000-12-01

    The primary aim of this study was to compare the physiological responses to prolonged treadmill (TM) and water immersion to the neck (WI) running at threshold intensity. Ten endurance runners performed TM and WI running VO2max tests. Subjects completed submaximal performance tests at ventilatory threshold (Tvent) intensities under TM and WI conditions and responses at 15 and 42 minutes examined. VO2 was lower in WI (p<0.05) at maximal effort and Tvent. The Tvent VO2 intensities interpolated from the TM and WI VO2max tests were performed in both TM (i.e., TM@TM(tvent),TM@WI(tvent), corresponding to 77.6 and 71.3% respectively of TM VO2max) and WI conditions (i.e., WI@TM(tvent), WI@WI(tvent), corresponding to 85.5% and 78.2% respectively of WI VO2max). Each of the dependent variables was analyzed using a 3-way repeated measures ANOVA (2 conditions X 2 exercise intensities X 7 time points during exercise). VO2max values were significantly lower in the WI (52.4(5.1) ml.kg(-1) min(-1)) versus TM (59.7(6.5) ml.kg(-1) min(-1)) condition. VO2 during submaximal tests were similar during the TM and WI conditions. HR and [BLa] responses to exercise at and above WI(tvent) were similar during short-term exercise, but values tended to be lower during prolonged exercise in the WI condition. There were no statistical differences in VE responses in the 2 conditions, however as with HR and [BLa] an upward trend was noted with TM exercise over the 42 minute duration of the tests. RPE at WI(tvent) was similar for TM and WI exercise sessions, however, RPE at TM(tvent) was higher during WI compared to TM running. Cardiovascular drift was observed during prolonged TM but not WI running. Results suggest differences in metabolic responses to prolonged submaximal exercise in WI, however it can be used effectively for cross training.

  11. Assessing responsiveness of generic and specific health related quality of life measures in heart failure

    Directory of Open Access Journals (Sweden)

    Johnson Jeffrey A

    2006-11-01

    Full Text Available Abstract Background Responsiveness, or sensitivity to clinical change, is an important consideration in selection of a health-related quality of life (HRQL measure for trials or clinical applications. Many approaches can be used to assess responsiveness, which may affect the interpretation of study results. We compared the relative responsiveness of generic and heart failure specific HRQL instruments, as measured both by common psychometric indices and by external clinical criteria. Methods We analyzed data collected at baseline and 6-weeks in 298 subjects with heart failure on the following HRQL measures: EQ-5D (US, UK, and VAS Scoring, Kansas City Cardiomyopathy Questionnaire (KCCQ (Clinical and Overall Summary Score, and RAND12 (Physical and Mental Component Summaries. Three external indicators of clinical change were used to classify subjects as improved, deteriorated, or unchanged: 6-minute walk test, New York Heart Association (NYHA class, and physician global rating of change. Four responsiveness statistics (T-test, effect size, Guyatt's responsiveness statistic, and standardized response mean were used to evaluate the responsiveness of the select measures. The median rank of each HRQL measure across responsiveness indices and clinical criteria was then determined. Results Average age of subjects was 60 years, 75 percent were male, and had moderate to severe heart failure symptoms. Overall, the KCCQ Summary Scores had the highest relative ranking, irrespective of the responsiveness index or external criterion used. Importantly, we observed that the relative ranking of responsiveness of the generic measures (i.e. EQ-5D, RAND12 was influenced by both the responsive indices and external criterion used. Conclusion The disease specific KCCQ was the most responsive HRQL measure assessing change over a 6-week period, although generic measures provide information for which the KCCQ is not suitable. The responsiveness of generic HRQL measures may

  12. Metabonomics-based analysis of Brachyspira pilosicoli's response to tiamulin reveals metabolic activity despite significant growth inhibition.

    Science.gov (United States)

    Le Roy, Caroline Ivanne; Passey, Jade Louise; Woodward, Martin John; La Ragione, Roberto Marcello; Claus, Sandrine Paule

    2017-06-01

    Pathogenic anaerobes Brachyspira spp. are responsible for an increasing number of Intestinal Spirochaetosis (IS) cases in livestock against which few approved treatments are available. Tiamulin is used to treat swine dysentery caused by Brachyspira spp. and recently has been used to handle avian intestinal spirochaetosis (AIS). The therapeutic dose used in chickens requires further evaluation since cases of bacterial resistance to tiamulin have been reported. In this study, we evaluated the impact of tiamulin at varying concentrations on the metabolism of B. pilosicoli using a 1 H-NMR-based metabonomics approach allowing the capture of the overall bacterial metabolic response to antibiotic treatment. Based on growth curve studies, tiamulin impacted bacterial growth even at very low concentration (0.008 μg/mL) although its metabolic activity was barely affected 72 h post exposure to antibiotic treatment. Only the highest dose of tiamulin tested (0.250 μg/mL) caused a major metabolic shift. Results showed that below this concentration, bacteria could maintain a normal metabolic trajectory despite significant growth inhibition by the antibiotic, which may contribute to disease reemergence post antibiotic treatment. Indeed, we confirmed that B. pilosicoli remained viable even after exposition to the highest antibiotic dose. This paper stresses the need to ensure new evaluation of bacterial viability post bacteriostatic exposure such as tiamulin to guarantee treatment efficacy and decrease antibiotic resistance development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Photoperiodic responses of depression-like behavior, the brain serotonergic system, and peripheral metabolism in laboratory mice.

    Science.gov (United States)

    Otsuka, Tsuyoshi; Kawai, Misato; Togo, Yuki; Goda, Ryosei; Kawase, Takahiro; Matsuo, Haruka; Iwamoto, Ayaka; Nagasawa, Mao; Furuse, Mitsuhiro; Yasuo, Shinobu

    2014-02-01

    Seasonal affective disorder (SAD) is characterized by depression during specific seasons, generally winter. The pathophysiological mechanisms underlying SAD remain elusive due to a limited number of animal models with high availability and validity. Here we show that laboratory C57BL/6J mice display photoperiodic changes in depression-like behavior and brain serotonin content. C57BL/6J mice maintained under short-day conditions, as compared to those under long-day conditions, demonstrated prolonged immobility times in the forced swimming test with lower brain levels of serotonin and its precursor l-tryptophan. Furthermore, photoperiod altered multiple parameters reflective of peripheral metabolism, including the ratio of plasma l-tryptophan to the sum of other large neutral amino acids that compete for transport across the blood-brain barrier, responses of circulating glucose and insulin to glucose load, sucrose intake under restricted feeding condition, and sensitivity of the brain serotonergic system to peripherally administered glucose. These data suggest that the mechanisms underlying SAD involve the brain-peripheral tissue network, and C57BL/6J mice can serve as a powerful tool for investigating the link between seasons and mood. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Modulation of Trypanosoma cruzi-specific T-cell responses after chemotherapy for chronic Chagas disease

    Directory of Open Access Journals (Sweden)

    María Cecilia Albareda

    2015-05-01

    Full Text Available The aim of this review is to describe the contributions of the knowledge of T-cell responses to the understanding of the physiopathology and the responsiveness to etiological treatment during the chronic phase of Chagas disease. T-helper (Th1 and interleukin (IL-10 Trypanosoma cruzi-specific T-cells have been linked to the asymptomatic phase or to severe clinical forms of the disease, respectively or vice versa, depending on the T. cruzi antigen source, the patient’s location and the performed immunological assays. Parasite-specific T-cell responses are modulated after benznidazole (BZ treatment in chronically T. cruzi-infected subjects in association with a significant decrease in T. cruzi-specific antibodies. Accumulating evidence has indicated that treatment efficacy during experimental infection with T. cruzi results from the combined action of BZ and the activation of appropriate immune responses in the host. However, strong support of this interaction in T. cruzi-infected humans remains lacking. Overall, the quality of T-cell responses might be a key factor in not only disease evolution, but also chemotherapy responsiveness. Immunological parameters are potential indicators of treatment response regardless of achievement of cure. Providing tools to monitor and provide early predictions of treatment success will allow the development of new therapeutic options.

  15. Slow-release carbohydrates: growing evidence on metabolic responses and public health interest. Summary of the symposium held at the 12th European Nutrition Conference (FENS 2015

    Directory of Open Access Journals (Sweden)

    Sophie Vinoy

    2016-07-01

    Full Text Available To draw attention to the necessity of considering differences in the digestibility of carbohydrates, and more specifically of starch, a symposium was held at the 12th European Nutrition Conference (FENS, which took place in Berlin from October 20 to 23, 2015. The purpose of this session was to present the consolidated knowledge and recent advances regarding the relationship between slow-release carbohydrates, metabolic responses, and public health issues. Three main topics were presented: 1 the definition of, sources of, and recognised interest in the glycaemic response to slowly digestible starch (SDS; 2 clinical evidence regarding the physiological effects of slow-release carbohydrates from cereal foods; and 3 interest in reducing the postprandial glycaemic response to help prevent metabolic diseases. Foods with the highest SDS content induce the lowest glycaemic responses, as the starch is protected from gelatinisation during processing. In humans, high-SDS food consumption induces slower glucose release, lower postprandial insulinaemia, and stimulation of gut hormones. Moreover, postprandial hyperglycaemia is an independent risk factor for type two diabetes mellitus (T2DM and cardiovascular disease (CVD. Therefore, given the plausible aetiologic mechanisms, we argue that postprandial glucose levels are relevant for health and disease and represent a meaningful target for intervention, for example, through dietary factors. This symposium was organised by Mondelez International R&D.

  16. Slow-release carbohydrates: growing evidence on metabolic responses and public health interest. Summary of the symposium held at the 12th European Nutrition Conference (FENS 2015).

    Science.gov (United States)

    Vinoy, Sophie; Laville, Martine; Feskens, Edith J M

    2016-01-01

    To draw attention to the necessity of considering differences in the digestibility of carbohydrates, and more specifically of starch, a symposium was held at the 12th European Nutrition Conference (FENS), which took place in Berlin from October 20 to 23, 2015. The purpose of this session was to present the consolidated knowledge and recent advances regarding the relationship between slow-release carbohydrates, metabolic responses, and public health issues. Three main topics were presented: 1) the definition of, sources of, and recognised interest in the glycaemic response to slowly digestible starch (SDS); 2) clinical evidence regarding the physiological effects of slow-release carbohydrates from cereal foods; and 3) interest in reducing the postprandial glycaemic response to help prevent metabolic diseases. Foods with the highest SDS content induce the lowest glycaemic responses, as the starch is protected from gelatinisation during processing. In humans, high-SDS food consumption induces slower glucose release, lower postprandial insulinaemia, and stimulation of gut hormones. Moreover, postprandial hyperglycaemia is an independent risk factor for type two diabetes mellitus (T2DM) and cardiovascular disease (CVD). Therefore, given the plausible aetiologic mechanisms, we argue that postprandial glucose levels are relevant for health and disease and represent a meaningful target for intervention, for example, through dietary factors. This symposium was organised by Mondelez International R&D.

  17. The regulation of growth and metabolism of kidney stem cells with regional specificity using extracellular matrix derived from kidney.

    Science.gov (United States)

    O'Neill, John D; Freytes, Donald O; Anandappa, Annabelle J; Oliver, Juan A; Vunjak-Novakovic, Gordana V

    2013-12-01

    Native extracellular matrix (ECM) that is secreted and maintained by resident cells is of great interest for cell culture and cell delivery. We hypothesized that specialized bioengineered niches for stem cells can be established using ECM-derived scaffolding materials. Kidney was selected as a model system because of the high regional diversification of renal tissue matrix. By preparing the ECM from three specialized regions of the kidney (cortex, medulla, and papilla; whole kidney, heart, and bladder as controls) in three forms: (i) intact sheets of decellularized ECM, (ii) ECM hydrogels, and (iii) solubilized ECM, we investigated how the structure and composition of ECM affect the function of kidney stem cells (with mesenchymal stem cells, MSCs, as controls). All three forms of the ECM regulated KSC function, with differential structural and compositional effects. KSCs cultured on papilla ECM consistently displayed lower proliferation, higher metabolic activity, and differences in cell morphology, alignment, and structure formation as compared to KSCs on cortex and medulla ECM, effects not observed in corresponding MSC cultures. These data suggest that tissue- and region-specific ECM can provide an effective substrate for in vitro studies of therapeutic stem cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Site-specific effects of apolipoprotein E expression on diet-induced obesity and white adipose tissue metabolic activation.

    Science.gov (United States)

    Hatziri, Aikaterini; Kalogeropoulou, Christina; Xepapadaki, Eva; Birli, Eleni; Karavia, Eleni A; Papakosta, Eugenia; Filou, Serafoula; Constantinou, Caterina; Kypreos, Kyriakos E

    2018-02-01

    Apolipoprotein E (APOE) has been strongly implicated in the development of diet induced obesity. In the present study, we investigated the contribution of brain and peripherally expressed human apolipoprotein E3 (APOE3), the most common human isoform, to diet induced obesity. In our studies APOE3 knock-in (Apoe3 knock-in ), Apoe-deficient (apoe -/- ) and brain-specific expressing APOE3 (Apoe3 brain ) mice were fed western-type diet for 12week and biochemical analyses were performed. Moreover, AAV-mediated gene transfer of APOE3 to apoe -/- mice was employed, as a means to achieve APOE3 expression selectively in periphery, since peripherally expressed APOE does not cross blood brain barrier (BBB) or blood-cerebrospinal fluid barrier (BCSFB). Our data suggest a bimodal role of APOE3 in visceral white adipose tissue (WAT) mitochondrial metabolic activation that is highly dependent on its site of expression and independent of postprandial dietary lipid deposition. Our findings indicate that brain APOE3 expression is associated with a potent inhibition of visceral WAT mitochondrial oxidative phosphorylation, leading to significantly reduced substrate oxidation, increased fat accumulation and obesity. In contrast, peripherally expressed APOE3 is associated with a notable shift of substrate oxidation towards non-shivering thermogenesis in visceral WAT mitochondria, leading to resistance to obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Age-Specific Determinants of Pulse Wave Velocity among Metabolic Syndrome Components, Inflammatory Markers, and Oxidative Stress.

    Science.gov (United States)

    Kim, Minkyung; Kim, Minjoo; Yoo, Hye Jin; Lee, Seung Yeon; Lee, Sang-Hyun; Lee, Jong Ho

    2018-02-01

    Pulse wave velocity (PWV) is thought to have different relationships with metabolic syndrome (MS) components, inflammatory markers, and oxidative stress, according to age. However, age-specific<