WorldWideScience

Sample records for specific anti-telomerase approaches

  1. Telomerase – future drug target enzyme?

    Directory of Open Access Journals (Sweden)

    Tomaž Langerholc

    2012-06-01

    Full Text Available Eucaryotic chromosome endings (telomeres replication problem was solved in the 1980’s by discovery of the telomerase enzyme. The Nobel Prize in Physiology or Medicine was awarded in 2009 for the discovery of telomerase. Altered telomerase expression in cancer, and human dream of eternal youth have accelerated the development of pharmacological telomerase inhibitors and activators. However, after 15 years of development they are still not available on the market. In the present article we reviewed pharmacological agents that target telomerase activity, which have entered clinical trials. Current drugs in development are mostly not intended to be used alone, as telomerase inhibitors under clinical trials are used in combination with the existing chemotherapeutics and anti-telomerase vaccines in combination with immuno-stimulants. Apart from cancer and aging, there are other diseases linked to deregulated activity of telomerase/telomeres and we also discuss technical and legal problems that researchers encounter in developing anti-telomerase therapy. Given the pace of development, first anti-telomerase drugs might appear on the market in the next 5 years.

  2. Telomerase Protects Werner Syndrome Lineage-Specific Stem Cells from Premature Aging

    Directory of Open Access Journals (Sweden)

    Hoi-Hung Cheung

    2014-04-01

    Full Text Available Werner syndrome (WS patients exhibit premature aging predominantly in mesenchyme-derived tissues, but not in neural lineages, a consequence of telomere dysfunction and accelerated senescence. The cause of this lineage-specific aging remains unknown. Here, we document that reprogramming of WS fibroblasts to pluripotency elongated telomere length and prevented telomere dysfunction. To obtain mechanistic insight into the origin of tissue-specific aging, we differentiated iPSCs to mesenchymal stem cells (MSCs and neural stem/progenitor cells (NPCs. We observed recurrence of premature senescence associated with accelerated telomere attrition and defective synthesis of the lagging strand telomeres in MSCs, but not in NPCs. We postulate this “aging” discrepancy is regulated by telomerase. Expression of hTERT or p53 knockdown ameliorated the accelerated aging phenotypein MSC, whereas inhibition of telomerase sensitized NPCs to DNA damage. Our findings unveil a role for telomerase in the protection of accelerated aging in a specific lineage of stem cells.

  3. Telomeres and Telomerase in Hematopoietic Dysfunction: Prognostic Implications and Pharmacological Interventions

    Directory of Open Access Journals (Sweden)

    Theresa Vasko

    2017-10-01

    Full Text Available Leukocyte telomere length (TL has been suggested as a marker of biological age in healthy individuals, but can also reflect inherited and acquired hematopoietic dysfunctions or indicate an increased turnover of the hematopoietic stem and progenitor cell compartment. In addition, TL is able to predict the response rate of tyrosine kinase inhibitor therapy in chronic myeloid leukemia (CML, indicates clinical outcomes in chronic lymphocytic leukemia (CLL, and can be used as screening tool for genetic sequencing of selected genes in patients with inherited bone marrow failure syndromes (BMFS. In tumor cells and clonal hematopoietic disorders, telomeres are continuously stabilized by reactivation of telomerase, which can selectively be targeted by telomerase-specific therapy. The use of the telomerase inhibitor Imetelstat in patients with essential thrombocythmia or myelofibrosis as well as the use of dendritic cell-based telomerase vaccination in AML patients with complete remissions are promising examples for anti-telomerase targeted strategies in hematologic malignancies. In contrast, the elevation in telomerase levels through treatment with androgens has become an exciting clinical intervention for patients with BMFS. Here, we review recent developments, which highlight the impact of telomeres and telomerase targeted therapies in hematologic dysfunctions.

  4. Troglitazone suppresses telomerase activity independently of PPARγ in estrogen-receptor negative breast cancer cells

    International Nuclear Information System (INIS)

    Rashid-Kolvear, Fariborz; Taboski, Michael AS; Nguyen, Johnny; Wang, Dong-Yu; Harrington, Lea A; Done, Susan J

    2010-01-01

    Breast cancer is one the highest causes of female cancer death worldwide. Many standard chemotherapeutic agents currently used to treat breast cancer are relatively non-specific and act on all rapidly dividing cells. In recent years, more specific targeted therapies have been introduced. It is known that telomerase is active in over 90% of breast cancer tumors but inactive in adjacent normal tissues. The prevalence of active telomerase in breast cancer patients makes telomerase an attractive therapeutic target. Recent evidence suggests that telomerase activity can be suppressed by peroxisome proliferator activated receptor gamma (PPARγ). However, its effect on telomerase regulation in breast cancer has not been investigated. In this study, we investigated the effect of the PPARγ ligand, troglitazone, on telomerase activity in the MDA-MB-231 breast cancer cell line. Real time RT-PCR and telomerase activity assays were used to evaluate the effect of troglitazone. MDA-MB-231 cells had PPARγ expression silenced using shRNA interference. We demonstrated that troglitazone reduced the mRNA expression of hTERT and telomerase activity in the MDA-MB-231 breast cancer cell line. Troglitazone reduced telomerase activity even in the absence of PPARγ. In agreement with this result, we found no correlation between PPARγ and hTERT mRNA transcript levels in breast cancer patients. Statistical significance was determined using Pearson correlation and the paired Student's t test. To our knowledge, this is the first time that the effect of troglitazone on telomerase activity in breast cancer cells has been investigated. Our data suggest that troglitazone may be used as an anti-telomerase agent; however, the mechanism underlying this inhibitory effect remains to be determined

  5. Telomerase Inhibitors from Natural Products and Their Anticancer Potential

    Directory of Open Access Journals (Sweden)

    Kumar Ganesan

    2017-12-01

    Full Text Available Telomeres and telomerase are nowadays exploring traits on targets for anticancer therapy. Telomerase is a unique reverse transcriptase enzyme, considered as a primary factor in almost all cancer cells, which is mainly responsible to regulate the telomere length. Hence, telomerase ensures the indefinite cell proliferation during malignancy—a hallmark of cancer—and this distinctive feature has provided telomerase as the preferred target for drug development in cancer therapy. Deactivation of telomerase and telomere destabilization by natural products provides an opening to succeed new targets for cancer therapy. This review aims to provide a fundamental knowledge for research on telomere, working regulation of telomerase and its various binding proteins to inhibit the telomere/telomerase complex. In addition, the review summarizes the inhibitors of the enzyme catalytic subunit and RNA component, natural products that target telomeres, and suppression of transcriptional and post-transcriptional levels. This extensive understanding of telomerase biology will provide indispensable information for enhancing the efficiency of rational anti-cancer drug design.

  6. Dietary restriction ameliorates haematopoietic ageing independent of telomerase, whilst lack of telomerase and short telomeres exacerbates the ageing phenotype.

    Science.gov (United States)

    Al-Ajmi, Nouf; Saretzki, Gabriele; Miles, Colin; Spyridopoulos, Ioakim

    2014-10-01

    Ageing is associated with an overall decline in the functional capacity of tissues and stem cells, including haematopoietic stem and progenitor cells (HSPCs), as well as telomere dysfunction. Dietary restriction (DR) is a recognised anti-ageing intervention that extends lifespan and improves health in several organisms. To investigate the role of telomeres and telomerase in haematopoietic ageing, we compared the HSPC profile and clonogenic capacity of bone marrow cells from wild type with telomerase-deficient mice and the effect of DR on these parameters. Compared with young mice, aged wild type mice demonstrated a significant accumulation of HSPCs (1.3% vs 0.2%, P=0.002) and elevated numbers of granulocyte/macrophage colony forming units (CFU-GM, 26.4 vs 17.3, P=0.0037) consistent with myeloid "skewing" of haematopoiesis. DR was able to restrict the increase in HSPC number as well as the myeloid "skewing" in aged wild type mice. In order to analyse the influence of short telomeres on the ageing phenotype we examined mice lacking the RNA template for telomerase, TERC(-/-). Telomere shortening resulted in a similar bone marrow phenotype to that seen in aged mice, with significantly increased HSPC numbers and an increased formation of all myeloid colony types but at a younger age than wild type mice. However, an additional increase in erythroid colonies (BFU-E) was also evident. Mice lacking telomerase reverse transcriptase without shortened telomeres, TERT(-/-), also presented with augmented haematopoietic ageing which was ameliorated by DR, demonstrating that the effect of DR was not dependent on the presence of telomerase in HSPCs. We conclude that whilst shortened telomeres mimic some aspects of haematopoietic ageing, both shortened telomeres and the lack of telomerase produce specific phenotypes, some of which can be prevented by dietary restriction. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Telomerase as a potential anticancer target: growth inhibition and genomic instability.

    Science.gov (United States)

    Faraoni, Isabella; Graziani, Grazia

    2000-02-01

    Stabilization of telomere length in chromosomes by an RNA-dependent DNA polymerase (telomerase) appears to be responsible for the replicative immortality of cancer cells. These findings provide the rational basis for generating experimental models to develop anti-telomerase drugs. However, there is conflicting evidence in the literature about the outcome of telomerase inhibition. While tumor cytostatic and cytotoxic effects associated with telomerase inhibition have been described, absence of telomerase has been associated with genetic instability and tumor development. Therefore, a therapeutic strategy based on telomerase inhibition will likely have to cope with problems related to innate or acquired mechanisms of drug resistance and possibly to therapy-related tumors. Copyright 2000 Harcourt Publishers Ltd.

  8. AZT as a telomerase inhibitor

    International Nuclear Information System (INIS)

    Gomez, Daniel E.; Armando, Romina G.; Alonso, Daniel F.

    2012-01-01

    Telomerase is a highly specialized reverse transcriptase (RT) and the maintenance of telomeric length is determined by this specific enzyme. The human holoenzyme telomerase is a ribonucleoprotein composed by a catalytic subunit, hTERT, an RNA component, hTR, and a group of associated proteins. Telomerase is normally expressed in embryonic cells and is repressed during adulthood. The enzyme is reexpressed in around 85% of solid tumors. This observation makes it a potential target for developing drugs that could be developed for therapeutic purposes. The identification of the hTERT as a functional catalytic RT prompted studies of inhibiting telomerase with the HIV RT inhibitor azidothymidine (AZT). Previously, we have demonstrated that AZT binds preferentially to telomeres, inhibits telomerase and enhances tumor cell senescence, and apoptosis after AZT treatment in breast mammary adenocarcinoma cells. Since then, several studies have considered AZT for telomerase inhibition and have led to potential clinical strategies for anticancer therapy. This review covers present thinking of the inhibition of telomerase by AZT and future treatment protocols using the drug.

  9. Genotoxicity studies on DNA-interactive telomerase inhibitors with application as anti-cancer agents.

    Science.gov (United States)

    Harrington, Dean J; Cemeli, Eduardo; Carder, Joanna; Fearnley, Jamie; Estdale, Sian; Perry, Philip J; Jenkins, Terence C; Anderson, Diana

    2003-01-01

    Telomerase-targeted strategies have aroused recent interest in anti-cancer chemotherapy, because DNA-binding drugs can interact with high-order tetraplex rather than double-stranded (duplex) DNA targets in tumour cells. However, the protracted cell-drug exposure times necessary for clinical application require that telomerase inhibitory efficacy must be accompanied by both low inherent cytotoxicity and the absence of mutagenicity/genotoxicity. For the first time, the genotoxicity of a number of structurally diverse DNA-interactive telomerase inhibitors is examined in the Ames test using six Salmonella typhimurium bacterial strains (TA1535, TA1537, TA1538, TA98, TA100, and TA102). DNA damage induced by each agent was also assessed using the Comet assay with human lymphocytes. The two assay procedures revealed markedly different genotoxicity profiles that are likely to reflect differences in metabolism and/or DNA repair between bacterial and mammalian cells. The mutational spectrum for a biologically active fluorenone derivative, shown to be mutagenic in the TA100 strain, was characterised using a novel and rapid assay method based upon PCR amplification of a fragment of the hisG46 allele, followed by RFLP analysis. Preliminary analysis indicates that the majority (84%) of mutations induced by this compound are C --> A transversions at position 2 of the missense proline codon of the hisG46 allele. However, despite its genotoxic bacterial profile, this fluorenone agent gave a negative response in the Comet assay, and demonstrates how unwanted systemic effects (e.g., cytotoxicity and genotoxicity) can be prevented or ameliorated through suitable molecular fine-tuning of a candidate drug in targeted human tumour cells. Copyright 2003 Wiley-Liss, Inc.

  10. Down-regulation of telomerase activity in DLD-1 human colorectal adenocarcinoma cells by tocotrienol

    International Nuclear Information System (INIS)

    Eitsuka, Takahiro; Nakagawa, Kiyotaka; Miyazawa, Teruo

    2006-01-01

    As high telomerase activity is detected in most cancer cells, inhibition of telomerase by drug or dietary food components is a new strategy for cancer prevention. Here, we investigated the inhibitory effect of vitamin E, with particular emphasis on tocotrienol (unsaturated vitamin E), on human telomerase in cell-culture study. As results, tocotrienol inhibited telomerase activity of DLD-1 human colorectal adenocarcinoma cells in time- and dose-dependent manner, interestingly, with δ-tocotrienol exhibiting the highest inhibitory activity. Tocotrienol inhibited protein kinase C activity, resulting in down-regulation of c-myc and human telomerase reverse transcriptase (hTERT) expression, thereby reducing telomerase activity. In contrast to tocotrienol, tocopherol showed very weak telomerase inhibition. These results provide novel evidence for First time indicating that tocotrienol acts as a potent candidate regulator of telomerase and supporting the anti-proliferative function of tocotrienol

  11. Native gel electrophoresis of human telomerase distinguishes active complexes with or without dyskerin

    Science.gov (United States)

    Gardano, Laura; Holland, Linda; Oulton, Rena; Le Bihan, Thierry; Harrington, Lea

    2012-01-01

    Telomeres, the ends of linear chromosomes, safeguard against genome instability. The enzyme responsible for extension of the telomere 3′ terminus is the ribonucleoprotein telomerase. Whereas telomerase activity can be reconstituted in vitro with only the telomerase RNA (hTR) and telomerase reverse transcriptase (TERT), additional components are required in vivo for enzyme assembly, stability and telomere extension activity. One such associated protein, dyskerin, promotes hTR stability in vivo and is the only component to co-purify with active, endogenous human telomerase. We used oligonucleotide-based affinity purification of hTR followed by native gel electrophoresis and in-gel telomerase activity detection to query the composition of telomerase at different purification stringencies. At low salt concentrations (0.1 M NaCl), affinity-purified telomerase was ‘supershifted’ with an anti-dyskerin antibody, however the association with dyskerin was lost after purification at 0.6 M NaCl, despite the retention of telomerase activity and a comparable yield of hTR. The interaction of purified hTR and dyskerin in vitro displayed a similar salt-sensitive interaction. These results demonstrate that endogenous human telomerase, once assembled and active, does not require dyskerin for catalytic activity. Native gel electrophoresis may prove useful in the characterization of telomerase complexes under various physiological conditions. PMID:22187156

  12. Dynamic telomerase gene suppression via network effects of GSK3 inhibition.

    Directory of Open Access Journals (Sweden)

    Alan E Bilsland

    2009-07-01

    Full Text Available Telomerase controls telomere homeostasis and cell immortality and is a promising anti-cancer target, but few small molecule telomerase inhibitors have been developed. Reactivated transcription of the catalytic subunit hTERT in cancer cells controls telomerase expression. Better understanding of upstream pathways is critical for effective anti-telomerase therapeutics and may reveal new targets to inhibit hTERT expression.In a focused promoter screen, several GSK3 inhibitors suppressed hTERT reporter activity. GSK3 inhibition using 6-bromoindirubin-3'-oxime suppressed hTERT expression, telomerase activity and telomere length in several cancer cell lines and growth and hTERT expression in ovarian cancer xenografts. Microarray analysis, network modelling and oligonucleotide binding assays suggested that multiple transcription factors were affected. Extensive remodelling involving Sp1, STAT3, c-Myc, NFkappaB, and p53 occurred at the endogenous hTERT promoter. RNAi screening of the hTERT promoter revealed multiple kinase genes which affect the hTERT promoter, potentially acting through these factors. Prolonged inhibitor treatments caused dynamic expression both of hTERT and of c-Jun, p53, STAT3, AR and c-Myc.Our results indicate that GSK3 activates hTERT expression in cancer cells and contributes to telomere length homeostasis. GSK3 inhibition is a clinical strategy for several chronic diseases. These results imply that it may also be useful in cancer therapy. However, the complex network effects we show here have implications for either setting.

  13. Telomerase and the search for the end of cancer.

    Science.gov (United States)

    Mocellin, Simone; Pooley, Karen A; Nitti, Donato

    2013-02-01

    Many of the fundamental molecular mechanisms underlying tumor biology remain elusive and, thus, developing specific anticancer therapies remains a challenge. The recently discovered relationships identified among telomeres, telomerase, aging, and cancer have opened a new avenue in tumor biology research that may revolutionize anticancer therapy. This review summarizes the critical aspects of telomerase biology that underpin the development of novel telomerase-targeting therapies for malignant diseases, and special regard is given to the aspects of telomerase that make it such an appealing target, such as the widespread expression of telomerase in cancers. Despite significant progress, issues remain to be addressed before telomerase-based therapies are truly effective and we include critical discussion of the results obtained thus far. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Detection of telomerase activity using microchip electrophoresis.

    Science.gov (United States)

    Karasawa, Koji; Arakawa, Hidetoshi

    2015-07-01

    Telomerase participates in malignant transformation or immortalization of cells and thus has attracted attention as an anticancer drug target and diagnostic tumor marker. The telomeric repeat amplification protocol (TRAP) and improved TRAP methods (TRAP-fluorescence, TRAP-hybridization, etc.) are widely used forms of this telomerase assay. However, these approaches generally employ acrylamide gel electrophoresis after amplification of telomeric repeats by polymerase chain reaction (PCR), making these TRAP methods time consuming and technically demanding. In this study we developed a novel telomerase assay using microchip electrophoresis for rapid and highly sensitive detection of telomerase activity in cancer cells. The mixed gel of 0.8% hydroxypropyl methylcellulose (HPMC) and 0.3% polyethylene oxide (PEO) with SYBR Gold (fluorescent reagent) was used for microchip electrophoresis. As a result, the product amplified by a telomerase-positive cell could be measured in one cell per assay and detected with high reproducibility (CV=0.67%) in the short time of 100s. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Premature aging in telomerase-deficient zebrafish

    Directory of Open Access Journals (Sweden)

    Monique Anchelin

    2013-09-01

    The study of telomere biology is crucial to the understanding of aging and cancer. In the pursuit of greater knowledge in the field of human telomere biology, the mouse has been used extensively as a model. However, there are fundamental differences between mouse and human cells. Therefore, additional models are required. In light of this, we have characterized telomerase-deficient zebrafish (Danio rerio as the second vertebrate model for human telomerase-driven diseases. We found that telomerase-deficient zebrafish show p53-dependent premature aging and reduced lifespan in the first generation, as occurs in humans but not in mice, probably reflecting the similar telomere length in fish and humans. Among these aging symptoms, spinal curvature, liver and retina degeneration, and infertility were the most remarkable. Although the second-generation embryos died in early developmental stages, restoration of telomerase activity rescued telomere length and survival, indicating that telomerase dosage is crucial. Importantly, this model also reproduces the disease anticipation observed in humans with dyskeratosis congenita (DC. Thus, telomerase haploinsufficiency leads to anticipation phenomenon in longevity, which is related to telomere shortening and, specifically, with the proportion of short telomeres. Furthermore, p53 was induced by telomere attrition, leading to growth arrest and apoptosis. Importantly, genetic inhibition of p53 rescued the adverse effects of telomere loss, indicating that the molecular mechanisms induced by telomere shortening are conserved from fish to mammals. The partial rescue of telomere length and longevity by restoration of telomerase activity, together with the feasibility of the zebrafish for high-throughput chemical screening, both point to the usefulness of this model for the discovery of new drugs able to reactivate telomerase in individuals with DC.

  16. An Alternate Splicing Variant of the Human Telomerase Catalytic Subunit Inhibits Telomerase Activity

    Directory of Open Access Journals (Sweden)

    Xiaoming Yi

    2000-09-01

    Full Text Available Telomerase, a cellular reverse transcriptase, adds telomeric repeats to chromosome ends. In normal human somatic cells, telomerase is repressed and telomeres progressively shorten, leading to proliferative senescence. Introduction of the telomerase (hTERT cDNA is sufficient to produce telomerase activity and immortalize normal human cells, suggesting that the repression of telomerase activity is transcriptional. The telomerase transcript has been shown to have at least six alternate splicing sites (four insertion sites and two deletion sites, and variants containing both or either of the deletion sites are present during development and in a panel of cancer cell lines we surveyed. One deletion (β site and all four insertions cause premature translation terminations, whereas the other deletion (α site is 36 by and lies within reverse transcriptase (RT motif A, suggesting that this deletion variant may be a candidate as a dominant-negative inhibitor of telomerase. We have cloned three alternately spliced hTERT variants that contain the α,β or both α and,β deletion sites. These alternate splicing variants along with empty vector and wild-type hTERT were introduced into normal human fibroblasts and several telomerase-positive immortal and tumor cell lines. Expression of the α site deletion variant (hTERT α− construct was confirmed by Western blotting. We found that none of the three alternate splicing variants reconstitutes telomerase activity in fibroblasts. However, hTERT α− inhibits telomerase activities in telomerase-positive cells, causes telomere shortening and eventually cell death. This alternately spliced dominant-negative variant may be important in understanding telomerase regulation during development, differentiation and in cancer progression.

  17. Telomerase activity is spontaneously increased in lymphocytes from patients with atopic dermatitis and correlates with cellular proliferation

    DEFF Research Database (Denmark)

    Wu, Kehuai; Volke, Anne Rehné; Lund, Marianne

    1999-01-01

    blood mononuclear cells (PBMC) were isolated from 15 patients with AD and 13 healthy donors. Cells were stimulated with purified protein derivative (PPD) of tuberculin (10 microg/ml), interleukin 2 (IL-2) (100 U/ml), anti-CD3 monoclonal antibody (anti-CD3) (1 microg/ml), anti-CD3 plus IL-2......-thymidine incorporation. We found that telomerase activity in non-stimulated PBMC from patients with AD was significantly up-regulated without any stimulation during the 72 h of in vitro incubation. The most potent stimulator of telomerase activity was SEA, followed by anti-CD3 plus IL-2, anti-CD3 alone, and PPD. IL-2...

  18. Telomerase activity in gastric cancer.

    Science.gov (United States)

    Hiyama, E; Yokoyama, T; Tatsumoto, N; Hiyama, K; Imamura, Y; Murakami, Y; Kodama, T; Piatyszek, M A; Shay, J W; Matsuura, Y

    1995-08-01

    Although many genetic alterations have been reported in gastric cancer, it is not known whether all gastric tumors are capable of indefinite proliferative potential, e.g., immortality. The expression of telomerase and stabilization of telomeres are concomitant with the attainment of immortality in tumor cells; thus, the measurement of telomerase activity in clinically obtained tumor samples may provide important information useful both as a diagnostic marker to detect immortal cancer cells in clinical materials and as a prognostic indicator of patient outcome. Telomerase activity was analyzed in 66 primary gastric cancers with the use of a PCR-based assay. The majority of tumors (85%) displayed telomerase activity, but telomerase was undetectable in 10 tumors (15%), 8 of which were early stage tumors. Most of the tumors with telomerase activity were large and of advanced stages, including metastases. Survival rate of patients of tumors with detectable telomerase activity was significantly shorter than that of those without telomerase activity. Alterations of telomere length (reduced/elongated terminal restriction fragments) were detected in 14 of 66 (21%) gastric cancers, and all 14 had telomerase activity. Cellular DNA contents revealed that all 22 aneuploid tumors had detectable telomerase activity. The present results indicate that telomerase activation may be required as a critical step in the multigenetic process of tumorigenesis, and that telomerase is frequently but not always activated as a late event in gastric cancer progression.

  19. Re: Role of Telomeres and Telomerase in Cancer

    Directory of Open Access Journals (Sweden)

    Shay JW

    2016-03-01

    Full Text Available The most important difference between cancer and normall cells is the ability to continuous proliferation. This activation works due to telomeres and telomerase enzyme. Fifty years ago, Leonard Hayflick discovered that cultured normal humans cells have a limited capacity to divide. Today, this withdrawal from the cell cycle after a certain number of cellular divisions (replicative senescence is known to be triggered as a result of shortened telomeres. Studies on telomeres and telomerase have begun to provide additional information about aging and cancer development and have created new opportunities in the field of regenerative medicine for telomeropathies. Progressive telomere shortening from cell division (replicative aging provides a barrier for tumor progression. Continuous cell growth in malignancy correlates with the reactivation of telomerase. Telomerase is a cellular reverse transcriptase that adds new deoxyribonucleic acid (DNA onto the telomeres that are located at the ends of chromosomes. Telomeres consist of many kilobases of TTAGGG nucleotide repeats. The telomeric nucleotide repeats shorten with each cell division due to replication problems (DNA repair and oxidative damage. Quiescent/senescent state of the cell bypass can be accomplished by abrogating cell cycle checkpoint genes (such as TP53, p16INK4a, pRb. Telomerase is detected in approximately 90% of all malignant tumors. This telomerase activation has emerged as a target for cancer treatment. Telomerase therapeutics are classified as gene therapy (hTERT-telomerase catalytic protein component, hTR-telomerase functional, immunotherapy (Imetalstat-telomerase template antagonist, and small molecule inhibitors. In the near future, more specific researches on telomers and telomerase will contribute to aging/immortality studies (as stem cells and to discover new biomarkers for malignant tissue or anticancer therapeutics.

  20. Mixed Integer Linear Programming based machine learning approach identifies regulators of telomerase in yeast.

    Science.gov (United States)

    Poos, Alexandra M; Maicher, André; Dieckmann, Anna K; Oswald, Marcus; Eils, Roland; Kupiec, Martin; Luke, Brian; König, Rainer

    2016-06-02

    Understanding telomere length maintenance mechanisms is central in cancer biology as their dysregulation is one of the hallmarks for immortalization of cancer cells. Important for this well-balanced control is the transcriptional regulation of the telomerase genes. We integrated Mixed Integer Linear Programming models into a comparative machine learning based approach to identify regulatory interactions that best explain the discrepancy of telomerase transcript levels in yeast mutants with deleted regulators showing aberrant telomere length, when compared to mutants with normal telomere length. We uncover novel regulators of telomerase expression, several of which affect histone levels or modifications. In particular, our results point to the transcription factors Sum1, Hst1 and Srb2 as being important for the regulation of EST1 transcription, and we validated the effect of Sum1 experimentally. We compiled our machine learning method leading to a user friendly package for R which can straightforwardly be applied to similar problems integrating gene regulator binding information and expression profiles of samples of e.g. different phenotypes, diseases or treatments. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Telomerase Repeated Amplification Protocol (TRAP).

    Science.gov (United States)

    Mender, Ilgen; Shay, Jerry W

    2015-11-20

    Telomeres are found at the end of eukaryotic linear chromosomes, and proteins that bind to telomeres protect DNA from being recognized as double-strand breaks thus preventing end-to-end fusions (Griffith et al. , 1999). However, due to the end replication problem and other factors such as oxidative damage, the limited life span of cultured cells (Hayflick limit) results in progressive shortening of these protective structures (Hayflick and Moorhead, 1961; Olovnikov, 1973). The ribonucleoprotein enzyme complex telomerase-consisting of a protein catalytic component hTERT and a functional RNA component hTR or hTERC - counteracts telomere shortening by adding telomeric repeats to the end of chromosomes in ~90% of primary human tumors and in some transiently proliferating stem-like cells (Shay and Wright, 1996; Shay and Wright, 2001). This results in continuous proliferation of cells which is a hallmark of cancer. Therefore, telomere biology has a central role in aging, cancer progression/metastasis as well as targeted cancer therapies. There are commonly used methods in telomere biology such as Telomere Restriction Fragment (TRF) (Mender and Shay, 2015b), Telomere Repeat Amplification Protocol (TRAP) and Telomere dysfunction Induced Foci (TIF) analysis (Mender and Shay, 2015a). In this detailed protocol we describe Telomere Repeat Amplification Protocol (TRAP). The TRAP assay is a popular method to determine telomerase activity in mammalian cells and tissue samples (Kim et al. , 1994). The TRAP assay includes three steps: extension, amplification, and detection of telomerase products. In the extension step, telomeric repeats are added to the telomerase substrate (which is actually a non telomeric oligonucleotide, TS) by telomerase. In the amplification step, the extension products are amplified by the polymerase chain reaction (PCR) using specific primers (TS upstream primer and ACX downstream primer) and in the detection step, the presence or absence of telomerase is

  2. Targeting telomerase and DNA repair in human cancers

    International Nuclear Information System (INIS)

    Prakash Hande, M.

    2014-01-01

    Telomerase reactivation is essential for telomere maintenance in human cancer cells ensuring indefinite proliferation. Targeting telomere homeostasis has become one of the promising strategies in the therapeutic management of tumours. One major potential drawback, however, is the time lag between telomerase inhibition and critically shortened telomeres triggering cell death, allowing cancer cells to acquire drug resistance. Numerous studies over the last decade have highlighted the role of DNA repair proteins such as Poly (ADP-Ribose) Polymerase-1 (PARP-1), and DNA-dependent protein kinase (DNA-PKcs) in the maintenance of telomere homoeostasis. Dysfunctional telomeres, resulting from the loss of telomeric DNA repeats or the loss of function of telomere-associated proteins trigger DNA damage responses similar to that observed for double strand breaks. We have been working on unravelling such synthetic lethality in cancer cells and this talk would be on one such recently concluded study that demonstrates that inhibition of DNA repair pathways, i.e., NHEJ pathway and that of telomerase could be an alternative strategy to enhance anti-tumour effects and circumvent the possibility of drug resistance. (author)

  3. Effective control of acute myeloid leukaemia and acute lymphoblastic leukaemia progression by telomerase specific adoptive T-cell therapy.

    Science.gov (United States)

    Sandri, Sara; De Sanctis, Francesco; Lamolinara, Alessia; Boschi, Federico; Poffe, Ornella; Trovato, Rosalinda; Fiore, Alessandra; Sartori, Sara; Sbarbati, Andrea; Bondanza, Attilio; Cesaro, Simone; Krampera, Mauro; Scupoli, Maria T; Nishimura, Michael I; Iezzi, Manuela; Sartoris, Silvia; Bronte, Vincenzo; Ugel, Stefano

    2017-10-20

    Telomerase (TERT) is a ribonucleoprotein enzyme that preserves the molecular organization at the ends of eukaryotic chromosomes. Since TERT deregulation is a common step in leukaemia, treatments targeting telomerase might be useful for the therapy of hematologic malignancies. Despite a large spectrum of potential drugs, their bench-to-bedside translation is quite limited, with only a therapeutic vaccine in the clinic and a telomerase inhibitor at late stage of preclinical validation. We recently demonstrated that the adoptive transfer of T cell transduced with an HLA-A2-restricted T-cell receptor (TCR), which recognize human TERT with high avidity, controls human B-cell chronic lymphocytic leukaemia (B-CLL) progression without severe side-effects in humanized mice. In the present report, we show the ability of our approach to limit the progression of more aggressive leukemic pathologies, such as acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). Together, our findings demonstrate that TERT-based adoptive cell therapy is a concrete platform of T cell-mediated immunotherapy for leukaemia treatment.

  4. A Smart DNA Tweezer for Detection of Human Telomerase Activity.

    Science.gov (United States)

    Xu, Xiaowen; Wang, Lei; Li, Kan; Huang, Qihong; Jiang, Wei

    2018-03-06

    Reliable and accurate detection of telomerase activity is crucial to better understand its role in cancer cells and to further explore its function in cancer diagnosis and treatment. Here, we construct a smart DNA tweezer (DT) for detection of telomerase activity. The DT is assembled by three specially designed single-stranded oligonucleotides: a central strand dually labeled with donor/acceptor fluorophores and two arm strands containing overhangs complementary to telomerase reaction products (TRPs). It can get closed through hybridization with TRPs and get reopen through strand displacement reaction by TRPs' complementary sequences. First, under the action of telomerase, telomerase binding substrates (TS) are elongated to generate TRPs ended with telomeric repeats (TTAGGG) n . TRPs hybridize with the two arm overhangs cooperatively and strain DT to closed state, inducing an increased fluorescence resonance energy transfer (FRET) efficiency, which is utilized for telomerase activity detection. Second, upon introduction of a removal strand (RS) complementary to TRPs, the closed DT is relaxed to open state via the toehold-mediated strand displacement, inducing a decreased FRET efficiency, which is utilized for determination of TRP length distribution. The detection limit of telomerase activity is equivalent to 141 cells/μL for HeLa cells, and telomerase-active cellular extracts can be differentiated from telomerase-inactive cellular extracts. Furthermore, TRPs owning 1, 2, 3, 4, and ≥5 telomeric repeats are identified to account for 25.6%, 20.5%, 15.7%, 12.5%, and 25.7%, respectively. The proposed strategy will offer a new approach for reliable, accurate detection of telomerase activity and product length distribution for deeper studying its role and function in cancer.

  5. [Telomerase activity in uveal melanomas].

    Science.gov (United States)

    Rohrbach, J M; Riedinger, C; Wild, M; Partsch, M

    2000-05-01

    The maximum number of cell divisions of a certain cell population is genetically fixed so that aging cells become non-dividing (senescent) at least. This replicative life span, also known as "Hayflick limit", is probably defined by a "critical" length of the telomeres. Telomeres are special DNA-sequences located at the four ends of the chromosomes which are shortened with each cell cycle. Cells of most, but not all malignant tumours have been shown to reactivate the enzyme telomerase so that telomeres can be reconstructed, "Hayflick limit" can be overcome, and unlimited cell division can be established. This study was undertaken to elucidate whether telomerase reactivation is used by uveal melanoma cells. Fresh tumour tissue was removed from 10 untreated uveal melanomas after enucleation. Telomerase activity was determined using a PCR ELISA according to the Telomeric Repeat Amplification Protocol (TRAP). Normal tissue of the skin and the conjunctiva served as control. Telomerase activity was detectable in 90% of the investigated uveal melanomas. All control specimens were telomerase negative. Uveal melanoma growth seems to depend on telomerase reactivation. Thus, telomerase inhibition could offer a new principle for uveal melanoma therapy in the future.

  6. Dioxin exerts anti-estrogenic actions in a novel dioxin-responsive telomerase-immortalized epithelial cell line of the porcine oviduct (TERT-OPEC).

    Science.gov (United States)

    Hombach-Klonisch, Sabine; Pocar, Paola; Kauffold, Johannes; Klonisch, Thomas

    2006-04-01

    Oviduct epithelial cells are important for the nourishment and survival of ovulated oocytes and early embryos, and they respond to the steroid hormones estrogen and progesterone. Endocrine-disrupting polyhalogenated aromatic hydrocarbons (PHAH) are environmental toxins that act in part through the ligand-activated transcription factor arylhydrocarbon receptor (AhR; dioxin receptor), and exposure to PHAH has been shown to decrease fertility. To investigate effects of PHAHs on the oviduct epithelium as a potential target tissue of dioxin-type endocrine disruptors, we have established a novel telomerase-immortalized oviduct porcine epithelial cell line (TERT-OPEC). TERT-OPEC exhibited active telomerase and the immunoreactive epithelial marker cytokeratin but lacked the stromal marker vimentin. TERT-OPEC contained functional estrogen receptor (ER)-alpha and AhR, as determined by the detection of ER-alpha- and AhR-specific target molecules. Treatment of TERT-OPEC with the AhR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) resulted in a significant increase in the production of the cytochrome P-450 microsomal enzyme CYP1A1. Activated AhR caused a downregulation of ER nuclear protein fraction and significantly decreased ER-signaling in TERT-OPEC as determined by ERE-luciferase transient transfection assays. In summary, the TCDD-induced and AhR-mediated anti-estrogenic responses by TERT-OPEC suggest that PHAH affect the predominantly estrogen-dependent differentiation of the oviduct epithelium within the fallopian tube. This action then alters the local endocrine milieu, potentially resulting in a largely unexplored cause of impaired embryonic development and female infertility.

  7. Reversibility of Defective Hematopoiesis Caused by Telomere Shortening in Telomerase Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Aparna Raval

    Full Text Available Telomere shortening is common in bone marrow failure syndromes such as dyskeratosis congenita (DC, aplastic anemia (AA and myelodysplastic syndromes (MDS. However, improved knowledge of the lineage-specific consequences of telomere erosion and restoration of telomere length in hematopoietic progenitors is required to advance therapeutic approaches. We have employed a reversible murine model of telomerase deficiency to compare the dependence of erythroid and myeloid lineage differentiation on telomerase activity. Fifth generation Tert-/- (G5 Tert-/- mice with shortened telomeres have significant anemia, decreased erythroblasts and reduced hematopoietic stem cell (HSC populations associated with neutrophilia and increased myelopoiesis. Intracellular multiparameter analysis by mass cytometry showed significantly reduced cell proliferation and increased sensitivity to activation of DNA damage checkpoints in erythroid progenitors and in erythroid-biased CD150hi HSC, but not in myeloid progenitors. Strikingly, Cre-inducible reactivation of telomerase activity restored hematopoietic stem and progenitor cell (HSPC proliferation, normalized the DNA damage response, and improved red cell production and hemoglobin levels. These data establish a direct link between the loss of TERT activity, telomere shortening and defective erythropoiesis and suggest that novel strategies to restore telomerase function may have an important role in the treatment of the resulting anemia.

  8. Telomerase activity and its association with psychological stress, mental disorders, lifestyle factors and interventions: A systematic review.

    Science.gov (United States)

    Deng, W; Cheung, S T; Tsao, S W; Wang, X M; Tiwari, A F Y

    2016-02-01

    To summarise and discuss the association between telomerase activity and psychological stress, mental disorders and lifestyle factors. A systematic review was carried out to identify prospective or retrospective studies and interventions published up to June 2015 that reported associations between telomerase activity and psychological stress, mental disorders and lifestyle factors. Electronic data bases of PubMed, ProQuest, CINAHL and Google Scholar were searched. Twenty six studies on humans measured telomerase activity in peripheral blood mononuclear cells (PBMCs) or leukocytes and examined its association with psychological stress, mental disorders and lifestyle factors. Of those studies, three reported significantly decreased telomerase activity in individuals under chronic psychological stress. Interestingly, one of the three studies found that acute laboratory psychological stress significantly increased telomerase activity. Nine studies reported mixed results on association between mental disorders and telomerase activity. Of the nine studies, five reported that major depressive disorder (MDD) was associated with significantly increased telomerase activity. In thirteen out of fourteen studies on lifestyle factors, it was reported that physical exercise, diet micronutrient supplementation, mindfulness meditation, Qigong practice or yoga mediation resulted in increase in telomerase activity. In addition, two studies on animal models showed that depression-like behaviour was associated with decreased hippocampus telomerase activity. Five animal studies showed that physical exercise increased telomerase activity by cell-type-specific and genotype-specific manners. Although multi-facet results were reported on the association between telomerase activity and psychological stress, mental disorders and lifestyle factors, there were some consistent findings in humans such as (1) decreased telomerase activity in individuals under chronic stress, (2) increased

  9. Telomerases: chemistry, biology, and clinical applications

    National Research Council Canada - National Science Library

    Lue, Neal F; Autexier, Chantal

    2012-01-01

    .... Other topics include telomerase biogenesis, transcriptional and post-translational regulation, off-telomere functions of telomerase and the role of telomerase in cellular senescence, aging and cancer...

  10. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 (2.).

    Science.gov (United States)

    Lin, Yue; Yang, Linlin; Yue, Guiyin; Chen, Lifen; Qiu, Bin; Guo, Longhua; Lin, Zhenyu; Chen, Guonan

    2016-10-01

    Telomerase is one of the most common markers of human malignant tumors, such as uterine, stomach, esophageal, breast, colorectal, laryngeal squamous cell, thyroid, bladder, and so on. It is necessary to develop some sensitive but convenient detection methods for telomerase activity determination. In this study, a label-free and ultrasensitive electrochemiluminescence (ECL) biosensor has been fabricated to detect the activity of telomerase extracted from HeLa cells. Thiolated telomerase substrate (TS) primer was immobilized on the gold electrode surface through gold-sulfur (Au-S) interaction and then elongated by telomerase specifically. Then, it was hybridized with complementary DNA to form double-stranded DNA (dsDNA) fragments on the electrode surface, and Ru(phen)3 (2+) has been intercalated into the dsDNA grooves to act as the ECL probe. The enhanced ECL intensity has a linear relationship with the number of HeLa cells in the range of 5∼5000 and with a detection limit of 2 HeLa cells. The proposed ECL biosensor has high specificity to telomerase in the presence of common interferents. The relative standard deviations (RSDs) were HeLa cells. The proposed method provides a convenient approach for telomerase-related cancer screening or diagnosis.

  11. Fundamental mechanisms of telomerase action in yeasts and mammals: understanding telomeres and telomerase in cancer cells.

    Science.gov (United States)

    Armstrong, Christine A; Tomita, Kazunori

    2017-03-01

    Aberrant activation of telomerase occurs in 85-90% of all cancers and underpins the ability of cancer cells to bypass their proliferative limit, rendering them immortal. The activity of telomerase is tightly controlled at multiple levels, from transcriptional regulation of the telomerase components to holoenzyme biogenesis and recruitment to the telomere, and finally activation and processivity. However, studies using cancer cell lines and other model systems have begun to reveal features of telomeres and telomerase that are unique to cancer. This review summarizes our current knowledge on the mechanisms of telomerase recruitment and activation using insights from studies in mammals and budding and fission yeasts. Finally, we discuss the differences in telomere homeostasis between normal cells and cancer cells, which may provide a foundation for telomere/telomerase targeted cancer treatments. © 2017 The Authors.

  12. Current Perspectives of Telomerase Structure and Function in Eukaryotes with Emerging Views on Telomerase in Human Parasites.

    Science.gov (United States)

    Dey, Abhishek; Chakrabarti, Kausik

    2018-01-24

    Replicative capacity of a cell is strongly correlated with telomere length regulation. Aberrant lengthening or reduction in the length of telomeres can lead to health anomalies, such as cancer or premature aging. Telomerase is a master regulator for maintaining replicative potential in most eukaryotic cells. It does so by controlling telomere length at chromosome ends. Akin to cancer cells, most single-cell eukaryotic pathogens are highly proliferative and require persistent telomerase activity to maintain constant length of telomere and propagation within their host. Although telomerase is key to unlimited cellular proliferation in both cases, not much was known about the role of telomerase in human parasites (malaria, Trypanosoma , etc.) until recently. Since telomerase regulation is mediated via its own structural components, interactions with catalytic reverse transcriptase and several factors that can recruit and assemble telomerase to telomeres in a cell cycle-dependent manner, we compare and discuss here recent findings in telomerase biology in cancer, aging and parasitic diseases to give a broader perspective of telomerase function in human diseases.

  13. Association of telomerase activity with radio- and chemosensitivity of neuroblastomas

    Directory of Open Access Journals (Sweden)

    Willich Normann

    2010-07-01

    Full Text Available Abstract Background Telomerase activity compensates shortening of telomeres during cell division and enables cancer cells to escape senescent processes. It is also supposed, that telomerase is associated with radio- and chemoresistance. In the here described study we systematically investigated the influence of telomerase activity (TA and telomere length on the outcome of radio- and chemotherapy in neuroblastoma. Methods We studied the effects on dominant negative (DN mutant, wild type (WT of the telomerase catalytic unit (hTERT using neuroblastoma cell lines. The cells were irradiated with 60Co and treated with doxorubicin, etoposide, cisplatin and ifosfamide, respectively. Viability was determined by MTS/MTT-test and the GI50 was calculated. Telomere length was measured by southernblot analysis and TA by Trap-Assay. Results Compared to the hTERT expressing cells the dominant negative cells showed increased radiosensitivity with decreased telomere length. Independent of telomere length, telomerase negative cells are significantly more sensitive to irradiation. The effect of TA knock-down or overexpression on chemosensitivity were dependent on TA, the anticancer drug, and the chemosensitivity of the maternal cell line. Conclusions Our results supported the concept of telomerase inhibition as an antiproliferative treatment approach in neuroblastomas. Telomerase inhibition increases the outcome of radiotherapy while in combination with chemotherapy the outcome depends on drug- and cell line and can be additive/synergistic or antagonistic. High telomerase activity is one distinct cancer stem cell feature and the here described cellular constructs in combination with stem cell markers like CD133, Aldehyddehydrogenase-1 (ALDH-1 or Side population (SP may help to investigate the impact of telomerase activity on cancer stem cell survival under therapy.

  14. The AAA-ATPase NVL2 is a telomerase component essential for holoenzyme assembly

    Energy Technology Data Exchange (ETDEWEB)

    Her, Joonyoung [Departments of Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749 (Korea, Republic of); Chung, In Kwon, E-mail: topoviro@yonsei.ac.kr [Departments of Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Identification of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. Black-Right-Pointing-Pointer NVL2 associates with catalytically active telomerase via an interaction with hTERT. Black-Right-Pointing-Pointer NVL2 is a telomerase component essential for holoenzyme assembly. Black-Right-Pointing-Pointer ATP-binding activity of NVL2 is required for hTERT binding and telomerase assembly. -- Abstract: Continued cell proliferation requires telomerase to maintain functional telomeres that are essential for chromosome integrity. Although the core enzyme includes a telomerase reverse transcriptase (TERT) and a telomerase RNA component (TERC), a number of auxiliary proteins have been identified to regulate telomerase assembly, localization, and enzymatic activity. Here we describe the characterization of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. NVL2 interacts and co-localizes with hTERT in the nucleolus. NLV2 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT. Depletion of endogenous NVL2 by small interfering RNA led to a decrease in hTERT without affecting the steady-state levels of hTERT mRNA, thereby reducing telomerase activity, suggesting that NVL2 is an essential component of the telomerase holoenzyme. We also found that ATP-binding activity of NVL2 is required for hTERT binding as well as telomerase assembly. Our findings suggest that NVL2, in addition to its role in ribosome biosynthesis, is essential for telomerase biogenesis and provides an alternative approach for inhibiting telomerase activity in cancer.

  15. Active Yeast Telomerase Shares Subunits with Ribonucleoproteins RNase P and RNase MRP.

    Science.gov (United States)

    Lemieux, Bruno; Laterreur, Nancy; Perederina, Anna; Noël, Jean-François; Dubois, Marie-Line; Krasilnikov, Andrey S; Wellinger, Raymund J

    2016-05-19

    Telomerase is the ribonucleoprotein enzyme that replenishes telomeric DNA and maintains genome integrity. Minimally, telomerase activity requires a templating RNA and a catalytic protein. Additional proteins are required for activity on telomeres in vivo. Here, we report that the Pop1, Pop6, and Pop7 proteins, known components of RNase P and RNase MRP, bind to yeast telomerase RNA and are essential constituents of the telomerase holoenzyme. Pop1/Pop6/Pop7 binding is specific and involves an RNA domain highly similar to a protein-binding domain in the RNAs of RNase P/MRP. The results also show that Pop1/Pop6/Pop7 function to maintain the essential components Est1 and Est2 on the RNA in vivo. Consistently, addition of Pop1 allows for telomerase activity reconstitution with wild-type telomerase RNA in vitro. Thus, the same chaperoning module has allowed the evolution of functionally and, remarkably, structurally distinct RNPs, telomerase, and RNases P/MRP from unrelated progenitor RNAs. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. RPA facilitates telomerase activity at chromosome ends in budding and fission yeasts.

    Science.gov (United States)

    Luciano, Pierre; Coulon, Stéphane; Faure, Virginie; Corda, Yves; Bos, Julia; Brill, Steven J; Gilson, Eric; Simon, Marie-Noelle; Géli, Vincent

    2012-04-18

    In Saccharomyces cerevisiae, the telomerase complex binds to chromosome ends and is activated in late S-phase through a process coupled to the progression of the replication fork. Here, we show that the single-stranded DNA-binding protein RPA (replication protein A) binds to the two daughter telomeres during telomere replication but only its binding to the leading-strand telomere depends on the Mre11/Rad50/Xrs2 (MRX) complex. We further demonstrate that RPA specifically co-precipitates with yKu, Cdc13 and telomerase. The interaction of RPA with telomerase appears to be mediated by both yKu and the telomerase subunit Est1. Moreover, a mutation in Rfa1 that affects both the interaction with yKu and telomerase reduces the dramatic increase in telomere length of a rif1Δ, rif2Δ double mutant. Finally, we show that the RPA/telomerase association and function are conserved in Schizosaccharomyces pombe. Our results indicate that in both yeasts, RPA directly facilitates telomerase activity at chromosome ends.

  17. Telomerase Inhibition by a New Synthetic Derivative of the Aporphine Alkaloid Boldine

    Directory of Open Access Journals (Sweden)

    Sakineh Kazemi Noureini

    2018-04-01

    Full Text Available Telomerase, the enzyme responsible for cell immortality, is an important target in anti-cancer drug discovery. Boldine, an abundant aporphine alkaloid of Peumus boldus, is known to inhibit telomerase at non-toxic concentrations. Cytotoxicity of N-benzylsecoboldine hydrochloride (BSB, a synthetic derivative of boldine, was determined using the MTT method in MCF7 and MDA-MB231 cells. Aliquots of cell lysates were incubated with various concentrations of BSB in qTRAP (quantitative telomere repeat amplification protocol-ligand experiments before substrate elongation by telomerase or amplification by hot-start Taq polymerase. The crystal structure of TERT, the catalytic subunit of telomerase from Tribolium castaneum, was used for docking and molecular dynamics analysis. The qTRAP-ligand data gave an IC50 value of about 0.17 ± 0.1 µM for BSB, roughly 400 times stronger than boldine, while the LD50 in the cytotoxicity assays were 12.5 and 21.88 µM, respectively, in cells treated for 48 h. Although both compounds interacted well with the active site, MD analysis suggests a second binding site with which BSB interacts via two hydrogen bonds, much more strongly than boldine. Theoretical analyses also evaluated the IC50 for BSB as submicromolar. BSB, with greater hydrophobicity and flexibility than boldine, represents a promising structure to inhibit telomerase at non-toxic concentrations.

  18. Telomerase Activation in Atherosclerosis and Induction of Telomerase Reverse Transcriptase Expression by Inflammatory Stimuli in Macrophages

    Science.gov (United States)

    Gizard, Florence; Heywood, Elizabeth B.; Findeisen, Hannes M.; Zhao, Yue; Jones, Karrie L.; Cudejko, Cèline; Post, Ginell R.; Staels, Bart; Bruemmer, Dennis

    2010-01-01

    Objective Telomerase serves as a critical regulator of tissue renewal. Although telomerase activity is inducible in response to various environmental cues, it remains unknown whether telomerase is activated during the inflammatory remodeling underlying atherosclerosis formation. To address this question, we investigated in the present study the regulation of telomerase in macrophages and during atherosclerosis development in LDL-receptor-deficient mice. Methods and Results We demonstrate that inflammatory stimuli activate telomerase in macrophages by inducing the expression of the catalytic subunit telomerase reverse transcriptase (TERT). Reporter and chromatin immunoprecipitation assays identified a previously unrecognized NF-κB response element in the TERT promoter, to which NF-κB is recruited during inflammation. Inhibition of NF-κB signaling completely abolished the induction of TERT expression, characterizing TERT as a bona fide NF-κB target gene. Furthermore, functional experiments revealed that TERT-deficiency results in a senescent cell phenotype. Finally, we demonstrate high levels of TERT expression in macrophages of human atherosclerotic lesions and establish that telomerase is activated during atherosclerosis development in LDL-receptor-deficient mice. Conclusion These results characterize TERT as a previously unrecognized NF-κB target gene in macrophages and demonstrate that telomerase is activated during atherosclerosis. This induction of TERT expression prevents macrophage senescence and may have important implications for the development of atherosclerosis. PMID:21106948

  19. Detection of telomerase activity by the TRAP assay and its variants and alternatives.

    Science.gov (United States)

    Fajkus, Jirí

    2006-09-01

    Telomerase activity is closely connected to problems of cellular immortality, proliferative capacity, differentiation, cancer and aging. Correspondingly, techniques for its detection have been essential for progress in telomere biology and are of still increasing importance in molecular diagnostics and therapy of cancer. This article reviews the development of the telomere repeat amplification protocol (TRAP) and its various modifications as the most widespread assay to detect and measure telomerase activity. Alternative possibilities of telomerase activity detection are also discussed which make it possible to omit the PCR-mediated amplification of telomerase products. These approaches are based on recent advances in highly sensitive detection systems.

  20. When Telomerase Causes Telomere Loss.

    Science.gov (United States)

    Glousker, Galina; Lingner, Joachim

    2018-02-05

    Telomerase counteracts telomere shortening, preventing cellular senescence. Telomerase deficiency causes telomere syndromes because of premature telomere exhaustion in highly proliferative cells. Paradoxically, in a recent issue of Cell, Margalef et al. (2018) demonstrate that telomerase causes telomere loss in cells lacking the RTEL1 helicase, which is defective in Hoyeraal-Hreidarsson syndrome (HHS). Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Telomerase as an emerging target to fight cancer--opportunities and challenges for nanomedicine.

    Science.gov (United States)

    Philippi, C; Loretz, B; Schaefer, U F; Lehr, C M

    2010-09-01

    Telomerase as an enzyme is responsible for the renewal of the chromosomal ends, the so-called telomeres. By preventing them from shortening with each cell cycle, telomerase is able to inhibit cellular senescence and apoptosis. Telomerase activity, which is detectable in the majority of cancer cells, allows them to maintain their proliferative capacity. The thus obtained immortality of those cells again is a key to their malignancy. Based on these discoveries, it is obvious that telomerase inhibitors would represent an innovative approach to fight cancer, and a variety of such candidate molecules are currently in the pipeline. Telomerase inhibitors largely fall in two classes of compounds: small synthetic molecules and nucleotide-based biologicals. For several candidates, some proof of concept studies have been demonstrated, either on cell cultures or in animal models. But the same studies also revealed that inefficient delivery is largely limiting the translational step into the clinic. The most appealing feature of telomerase inhibitors, which distinguishes them from conventional anticancer drugs, is probably seen in their intrinsic non-toxicity to normal cells. Nevertheless, efficient delivery to the target cells, i.e. to the tumor, is still required. Here, some well-known biopharmaceutical problems such as insufficient solubility, permeability or even metabolic stability are frequently encountered. To address these challenges, there is a clear need for adequate delivery technologies, for example by using nanomedicines, that would allow to overcome their biopharmaceutical shortcomings and to warrant a sufficient bioavailability at the target side. This review first briefly explains the concept of telomerase and telomerase inhibition in cancer therapy. It secondly aims to provide an overview of the different currently known telomerase inhibitors. Finally, the biopharmaceutical limitations of these molecules are discussed as well as the possibilities to overcome

  2. Telomerase in lung cancer diagnostics

    International Nuclear Information System (INIS)

    Kovkarova, E.; Stefanovski, T.; Dimov, A.; Naumovski, J.

    2003-01-01

    Background. Telomerase is a ribonucleoprotein that looks after the telomeric cap of the linear chromosomes maintaining its length. It is over expressed in tumour tissues, but not in normal somatic cells. Therefore the aim of this study was to determine the telomerase activity in lung cancer patients as novel marker for lung cancer detection evaluating the influence of tissue/cell obtaining technique. Material and methods. Using the TRAP (telomeric repeat amplification protocol), telomerase activity was determined in material obtained from bronchobiopsy (60 lung cancer patients compared with 20 controls) and washings from transthoracic fine needle aspiration biopsy performed in 10 patients with peripheral lung tumours. Results. Telomerase activity was detected in 75% of the lung cancer bronchobyopsies, and in 100% in transthoracic needle washings. Conclusions. Measurement of telomerase activity can contribute in fulfilling the diagnosis of lung masses and nodules suspected for lung cancer. (author)

  3. Telomerase activity as a marker for malignancy in feline tissues.

    Science.gov (United States)

    Cadile, C D; Kitchell, B E; Biller, B J; Hetler, E R; Balkin, R G

    2001-10-01

    To establish the diagnostic significance of the telomeric repeat amplification protocol (TRAP) assay in detecting feline malignancies. Solid tissue specimens collected from 33 client-owned cats undergoing diagnostic or therapeutic procedures at the University of Illinois Veterinary Medical Teaching Hospital between July 1997 and September 1999 and an additional 20 tissue samples were collected from 3 clinically normal control cats euthanatized at the conclusion of an unrelated study. The TRAP assay was used for detection of telomerase activity. Each result was compared to its respective histopathologic diagnosis. Twenty-nine of 31 malignant and 1 of 22 benign or normal tissue samples had telomerase activity, indicating 94% sensitivity and 95% specificity of the TRAP assay in our laboratory. The diagnostic significance of telomerase activity has been demonstrated in humans and recently in dogs by our laboratory. We tested feline samples to determine whether similar patterns of telomerase activity exist. On the basis of our results, the TRAP assay may be clinically useful in providing a rapid diagnosis of malignancy in cats. The telomerase enzyme may also serve as a therapeutic target in feline tumors.

  4. Differential Regulation of Telomerase Reverse Transcriptase Promoter Activation and Protein Degradation by Histone Deacetylase Inhibition.

    Science.gov (United States)

    Qing, Hua; Aono, Jun; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-06-01

    Telomerase reverse transcriptase (TERT) maintains telomeres and is rate limiting for replicative life span. While most somatic tissues silence TERT transcription resulting in telomere shortening, cells derived from cancer or cardiovascular diseases express TERT and activate telomerase. In the present study, we demonstrate that histone deacetylase (HDAC) inhibition induces TERT transcription and promoter activation. At the protein level in contrast, HDAC inhibition decreases TERT protein abundance through enhanced degradation, which decreases telomerase activity and induces senescence. Finally, we demonstrate that HDAC inhibition decreases TERT expression during vascular remodeling in vivo. These data illustrate a differential regulation of TERT transcription and protein stability by HDAC inhibition and suggest that TERT may constitute an important target for the anti-proliferative efficacy of HDAC inhibitors. © 2015 Wiley Periodicals, Inc.

  5. Zoning of mucosal phenotype, dysplasia, and telomerase activity measured by telomerase repeat assay protocol in Barrett's esophagus

    NARCIS (Netherlands)

    Going, JJ; Fletcher-Monaghan, AJ; Neilson, L; Wisman, BA; van der Zee, A; Stuart, RC; Keith, WN

    2004-01-01

    Glandular dysplasia in Barrett's esophagus may regress spontaneously but can also progress to cancer. The human telomerase RNA template and the human telomerase reverse transcriptase enzyme which do not, of themselves, correlate strongly with telomerase activity, are too often overexpressed in

  6. Tetrahymena telomerase protein p65 induces conformational changes throughout telomerase RNA (TER) and rescues telomerase reverse transcriptase and TER assembly mutants.

    Science.gov (United States)

    Berman, Andrea J; Gooding, Anne R; Cech, Thomas R

    2010-10-01

    The biogenesis of the Tetrahymena telomerase ribonucleoprotein particle (RNP) is enhanced by p65, a La family protein. Single-molecule and biochemical studies have uncovered a hierarchical assembly of the RNP, wherein the binding of p65 to stems I and IV of telomerase RNA (TER) causes a conformational change that facilitates the subsequent binding of telomerase reverse transcriptase (TERT) to TER. We used purified p65 and variants of TERT and TER to investigate the conformational rearrangements that occur during RNP assembly. Nuclease protection assays and mutational analysis revealed that p65 interacts with and stimulates conformational changes in regions of TER beyond stem IV. Several TER mutants exhibited telomerase activity only in the presence of p65, revealing the importance of p65 in promoting the correct RNP assembly pathway. In addition, p65 rescued TERT assembly mutants but not TERT activity mutants. Taken together, these results suggest that p65 stimulates telomerase assembly and activity in two ways. First, by sequestering stems I and IV, p65 limits the ensemble of structural conformations of TER, thereby presenting TERT with the active conformation of TER. Second, p65 acts as a molecular buttress within the assembled RNP, mutually stabilizing TER and TERT in catalytically active conformations.

  7. Telomere lengthening and other functions of telomerase.

    Science.gov (United States)

    Rubtsova, M P; Vasilkova, D P; Malyavko, A N; Naraikina, Yu V; Zvereva, M I; Dontsova, O A

    2012-04-01

    Telomerase is an enzyme that maintains the length of the telomere. The telomere length specifies the number of divisions a cell can undergo before it finally dies (i.e. the proliferative potential of cells). For example, telomerase is activated in embryonic cell lines and the telomere length is maintained at a constant level; therefore, these cells have an unlimited fission potential. Stem cells are characterized by a lower telomerase activity, which enables only partial compensation for the shortening of telomeres. Somatic cells are usually characterized by the absence of telomerase activity. Telomere shortening leads to the attainment of the Hayflick limit, the transition of cells to a state of senescence. The cells subsequently enter a state of crisis, accompanied by massive cell death. The surviving cells become cancer cells, which are capable both of dividing indefinitely and maintaining telomere length (usually with the aid of telomerase). Telomerase is a reverse transcriptase. It consists of two major components: telomerase RNA (TER) and reverse transcriptase (TERT). TER is a non-coding RNA, and it contains the region which serves as a template for telomere synthesis. An increasing number of articles focussing on the alternative functions of telomerase components have recently started appearing. The present review summarizes data on the structure, biogenesis, and functions of telomerase.

  8. DETECTION OF TELOMERASE ACTIVITY IN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    Yang Wentao; Xu Liangzhong; Zhang Taiming; Zhu weiping; Li Xiaomei; Jin Aiping

    1998-01-01

    Objective:To investigate the significance of telomerase activity in breast carcinoma with its respect to axillary lymph node status. Methods: Telomerase activity was analyzed in 88 breast carcinomas and 16benign breast lesions, using polymerase chain reaction (PCR)-based telomeric repeat amplification protocol (TRAP) assay. Results: Telomerase activity was detected in 75 (85%) of 88 breast carcinomas (including three breast carcinomas in situ which were all positive for telomerase activity), whereas in benign breast lesions analyzed only 2(12.5%) of 16 cases were positive for telomerase activity. The difference between the two groups was statistically significant (P<0.001). Besides,telomerase activity was expressed significantly higher in node-positive breast carcinoma (93%) than in nodenegative ones (77%) (P<0.05). Conclusion: Our results suggest that telomerase activation plays an important role during breast carcinoma development. It is possible that this enzyme may serve as an early indication of breast carcinoma.

  9. Telomerase and mammalian ageing: a critical appraisal.

    Science.gov (United States)

    Goyns, M H; Lavery, W L

    2000-03-13

    The telomeres that occur at the end of chromosomes are maintained by the activity of telomerase and are thought to be important protective factors in maintaining the integrity of chromosomes. It now appears that in vitro replicative senescence, which has been observed in cultured somatic cells, is due to a loss of telomere length in those cells, caused by inactivity of telomerase. This has led to the proposition that telomerase activity is an important determinant in organismal ageing. However, many cells in the body do not proliferate regularly and therefore will not lose telomere length. Cells that do proliferate frequently have now been shown to have active telomerase. Other cells, such as fibroblasts, that do not have telomerase activity but proliferate only occasionally may not reach the Hayflick limit during the lifetime of an animal. There is also no correlation between telomere length and the maximal lifespan exhibited by different species. Studies of telomerase knock-out mice have reported some aspects of accelerated ageing after three generations, but the relevance of these observations to normal ageing remains unconvincing. The role of telomerase in producing immortal tumour cells and the possibility that activation of telomerase is an important event in malignant transformation is similarly controversial and open to alternative interpretations. The significance of these and other observations, and how they define the role of telomerase in ageing, is discussed.

  10. The effect of β-ionone on telomerase activity in the human leukemia cell line K562

    Directory of Open Access Journals (Sweden)

    Zohreh Faezizadeh

    2015-06-01

    Full Text Available Background: Telomerase is highly activated in most human cancer cells, therefore, its inhibition has been proposed as a novel and promising strategy for cancer therapy. Many plant-derived anticancer agents act through inhibition of telomerase activity and induction of apoptosis. β-ionone, a carotenoid compound isolated from Roseaceae, has been reported to possess anticancer properties. The present study was undertaken to examine the mechanism of β-ionone-induced apoptosis in human leukemia cell line K562 with special emphasis on its role in telomerase inhibition. Method: In this study the anti-proliferation effect of β-ionone on K562 cells was evaluated by MTT assay. Apoptosis rate was detected by Hoechst staining and flow cytometry analysis. Telomerase activity was measured by (TRAP ELISA assay. Results: Exposure of K562 cells to β-ionone caused a dose-dependent decrease in proliferation. Flow cytometry analysis and Hoechst staining showed that percentage of apoptotic cells markedly increased with an increase in β-ionone concentration. Compared to control cells, treatment of K562 cells with β-ionone resulted in a significant decrease of telomerase activity. Moreover, a positive correlation was detected between telomerase inhibition and apoptosis induction in the treated K562 cells. Conclusion: Based on these results, β-ionone is an appropriate candidate for inhibiting telomerase activity in K562 cells. Therefore, it may be utilized as a novel drug against some leukemia cell lines.

  11. Telomerase Inhibition by Everolimus Suppresses Smooth Muscle Cell Proliferation and Neointima Formation Through Epigenetic Gene Silencing

    Directory of Open Access Journals (Sweden)

    Jun Aono, MD, PhD

    2016-01-01

    Full Text Available Proliferation of smooth muscle cells (SMCs during neointima formation is prevented by drug-eluting stents. The replicative capacity of mammalian cells is enhanced by telomerase expression; however, the contribution of telomerase to the proliferative response underlying neointima formation and its potential role as a pharmacological target are unknown. The present study investigated the mechanisms underlying the mitogenic function of telomerase, and tested the hypothesis that everolimus, which is commonly used on drug-eluting stents, suppresses SMC proliferation by targeting telomerase. Inhibition of neointima formation by everolimus was lost in mice overexpressing telomerase reverse transcriptase (TERT, indicating that repression of telomerase confers the anti-proliferative efficacy of everolimus. Everolimus reduced TERT expression in SMC through an Ets-1-dependent inhibition of promoter activation. The inhibition of TERT-dependent SMC proliferation by everolimus occurred in the absence of telomere shortening but rather as a result of a G1→S-phase arrest. Although everolimus failed to inhibit phosphorylation of the retinoblastoma protein as the gatekeeper of S-phase entry, it potently repressed downstream target genes. Chromatin immunoprecipitation assays demonstrated that TERT induced E2F binding to S-phase gene promoters and supported histone acetylation. These effects were sensitive to inhibition by everolimus. These results characterize telomerase as a previously unrecognized target for the antiproliferative activity of everolimus, and further identify a novel mitogenic pathway in SMC that depends on the epigenetic activation of S-phase gene promoters by TERT.

  12. siRNA inhibition of telomerase enhances the anti-cancer effect of doxorubicin in breast cancer cells

    International Nuclear Information System (INIS)

    Dong, Xuejun; Liu, Anding; Zer, Cindy; Feng, Jianguo; Zhen, Zhuan; Yang, Mingfeng; Zhong, Li

    2009-01-01

    Doxorubicin is an effective breast cancer drug but is hampered by a severe, dose-dependent toxicity. Concomitant administration of doxorubicin and another cancer drug may be able to sensitize tumor cells to the cytotoxicity of doxorubicin and lowers the therapeutic dosage. In this study, we examined the combined effect of low-dose doxorubicin and siRNA inhibition of telomerase on breast cancer cells. We found that when used individually, both treatments were rapid and potent apoptosis inducers; and when the two treatments were combined, we observed an enhanced and sustained apoptosis induction in breast cancer cells. siRNA targeting the mRNA of the protein component of telomerase, the telomerase reverse transcriptase (hTERT), was transfected into two breast cancer cell lines. The siRNA inhibition was confirmed by RT-PCR and western blot on hTERT mRNA and protein levels, respectively, and by measuring the activity level of telomerase using the TRAP assay. The effect of the hTERT siRNA on the tumorigenicity of the breast cancer cells was also studied in vivo by injection of the siRNA-transfected breast cancer cells into nude mice. The effects on cell viability, apoptosis and senescence of cells treated with hTERT siRNA, doxorubicin, and the combined treatment of doxorubicin and hTERT siRNA, were examined in vitro by MTT assay, FACS and SA-β-galactosidase staining. The hTERT siRNA effectively knocked down the mRNA and protein levels of hTERT, and reduced the telomerase activity to 30% of the untreated control. In vivo, the tumors induced by the hTERT siRNA-transfected cells were of reduced sizes, indicating that the hTERT siRNA also reduced the tumorigenic potential of the breast cancer cells. The siRNA treatment reduced cell viability by 50% in breast cancer cells within two days after transfection, while 0.5 μM doxorubicin treatment had a comparable effect but with a slower kinetics. The combination of hTERT siRNA and 0.5 μM doxorubicin killed twice as many

  13. Meningiomas, dicentric chromosomes, gliomas, and telomerase activity.

    Science.gov (United States)

    Carroll, T; Maltby, E; Brock, I; Royds, J; Timperley, W; Jellinek, D

    1999-08-01

    Lack of telomere maintenance during cell replication leads to telomere erosion and loss of function. This can result in telomere associations which probably cause the dicentric chromosomes seen in some tumour cells. One mechanism of telomere maintenance in dividing cells is the action of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening during cell division. Over 90 per cent of extracranial malignant neoplasms have been found to have telomerase activity. This study sought to determine if there was a relationship between absence of telomerase activity and presence of dicentric chromosomes in meningiomas and to what extent the other main group of central nervous system tumours, the gliomas, expressed telomerase activity. Telomerase activity was measured on 25 meningiomas and 29 gliomas. Four of the meningiomas were atypical variants and 11 were positive for dicentric chromosomes. Twenty-five of 29 gliomas were glioblastoma multiforme tumours. Measures were taken to ensure absence of false positives due to primer-dimer interaction and false negatives due to protein degradation or the presence of Taq polymerase inhibitors. All 25 meningiomas and the four low-grade gliomas (WHO grade II) were telomerase activity-negative. Seven (28 per cent) of the 25 glioblastoma multiforme tumours showed telomerase activity. The absence of telomerase activity in meningiomas and the high frequency of telomere associations support the hypothesis that these tumours are benign, transformed but pre-crisis. The relatively low frequency of telomerase activity in the malignant glioblastoma multiforme suggests that most of these tumours may have other mechanisms of telomere maintenance and that the potentially therapeutic telomerase inhibitors will not be of great value in the future management of the majority of patients suffering from these tumours. Copyright 1999 John Wiley & Sons, Ltd.

  14. Augmented telomerase activity, reduced telomere length and the presence of alternative lengthening of telomere in renal cell carcinoma: plausible predictive and diagnostic markers.

    Science.gov (United States)

    Pal, Deeksha; Sharma, Ujjawal; Khajuria, Ragini; Singh, Shrawan Kumar; Kakkar, Nandita; Prasad, Rajendra

    2015-05-15

    In this study, we analyzed 100 cases of renal cell carcinoma (RCC) for telomerase activity, telomere length and alternative lengthening of telomeres (ALT) using the TRAP assay, TeloTTAGGG assay kit and immunohistochemical analysis of ALT associated promyelocytic leukemia (PML) bodies respectively. A significantly higher (P=0.000) telomerase activity was observed in 81 cases of RCC which was correlated with clinicopathological features of tumor for instance, stage (P=0.008) and grades (P=0.000) but not with the subtypes of RCC (P = 0.355). Notwithstanding, no correlation was found between telomerase activity and subtypes of RCC. Strikingly, the telomere length was found to be significantly shorter in RCC (P=0.000) to that of corresponding normal renal tissues and it is well correlated with grades (P=0.016) but not with stages (P=0.202) and subtypes (P=0.669) of RCC. In this study, telomere length was also negatively correlated with the age of patients (r(2)=0.528; P=0.000) which supports the notion that it could be used as a marker for biological aging. ALT associated PML bodies containing PML protein was found in telomerase negative cases of RCC. It suggests the presence of an ALT pathway mechanism to maintain the telomere length in telomerase negative RCC tissues which was associated with high stages of RCC, suggesting a prevalent mechanism for telomere maintenance in high stages. In conclusion, the telomerase activity and telomere length can be used as a diagnostic as well as a predictive marker in RCC. The prevalence of ALT mechanism in high stages of RCC is warranted for the development of anti-ALT inhibitors along with telomerase inhibitor against RCC as a therapeutic approach. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A Cajal body-independent pathway for telomerase trafficking in mice

    International Nuclear Information System (INIS)

    Tomlinson, Rebecca L.; Li, Jian; Culp, Bradley R.; Terns, Rebecca M.; Terns, Michael P.

    2010-01-01

    The intranuclear trafficking of human telomerase involves a dynamic interplay between multiple nuclear sites, most notably Cajal bodies and telomeres. Cajal bodies are proposed to serve as sites of telomerase maturation, storage, and assembly, as well as to function in the cell cycle-regulated delivery of telomerase to telomeres in human cells. Here, we find that telomerase RNA does not localize to Cajal bodies in mouse cells, and instead resides in separate nuclear foci throughout much of the cell cycle. However, as in humans, mouse telomerase RNA (mTR) localizes to subsets of telomeres specifically during S phase. The localization of mTR to telomeres in mouse cells does not require coilin-containing Cajal bodies, as mTR is found at telomeres at similar frequencies in cells from wild-type and coilin knockout mice. At the same time, we find that human TR localizes to Cajal bodies (as well as telomeres) in mouse cells, indicating that the distinct trafficking of mTR is attributable to an intrinsic property of the RNA (rather than a difference in the mouse cell environment such as the properties of mouse Cajal bodies). We also find that during S phase, mTR foci coalesce into short chains, with at least one of the conjoined mTR foci co-localizing with a telomere. These findings point to a novel, Cajal body-independent pathway for telomerase biogenesis and trafficking in mice.

  16. A Cajal body-independent pathway for telomerase trafficking in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, Rebecca L.; Li, Jian; Culp, Bradley R.; Terns, Rebecca M., E-mail: rterns@bmb.uga.edu; Terns, Michael P., E-mail: mterns@bmb.uga.edu

    2010-10-15

    The intranuclear trafficking of human telomerase involves a dynamic interplay between multiple nuclear sites, most notably Cajal bodies and telomeres. Cajal bodies are proposed to serve as sites of telomerase maturation, storage, and assembly, as well as to function in the cell cycle-regulated delivery of telomerase to telomeres in human cells. Here, we find that telomerase RNA does not localize to Cajal bodies in mouse cells, and instead resides in separate nuclear foci throughout much of the cell cycle. However, as in humans, mouse telomerase RNA (mTR) localizes to subsets of telomeres specifically during S phase. The localization of mTR to telomeres in mouse cells does not require coilin-containing Cajal bodies, as mTR is found at telomeres at similar frequencies in cells from wild-type and coilin knockout mice. At the same time, we find that human TR localizes to Cajal bodies (as well as telomeres) in mouse cells, indicating that the distinct trafficking of mTR is attributable to an intrinsic property of the RNA (rather than a difference in the mouse cell environment such as the properties of mouse Cajal bodies). We also find that during S phase, mTR foci coalesce into short chains, with at least one of the conjoined mTR foci co-localizing with a telomere. These findings point to a novel, Cajal body-independent pathway for telomerase biogenesis and trafficking in mice.

  17. Telomere elongation in immortal human cells without detectable telomerase activity.

    Science.gov (United States)

    Bryan, T M; Englezou, A; Gupta, J; Bacchetti, S; Reddel, R R

    1995-09-01

    Immortalization of human cells is often associated with reactivation of telomerase, a ribonucleoprotein enzyme that adds TTAGGG repeats onto telomeres and compensates for their shortening. We examined whether telomerase activation is necessary for immortalization. All normal human fibroblasts tested were negative for telomerase activity. Thirteen out of 13 DNA tumor virus-transformed cell cultures were also negative in the pre-crisis (i.e. non-immortalized) stage. Of 35 immortalized cell lines, 20 had telomerase activity as expected, but 15 had no detectable telomerase. The 15 telomerase-negative immortalized cell lines all had very long and heterogeneous telomeres of up to 50 kb. Hybrids between telomerase-negative and telomerase-positive cells senesced. Two senescent hybrids demonstrated telomerase activity, indicating that activation of telomerase is not sufficient for immortalization. Some hybrid clones subsequently recommenced proliferation and became immortalized either with or without telomerase activity. Those without telomerase activity also had very long and heterogeneous telomeres. Taken together, these data suggest that the presence of lengthened or stabilized telomeres is necessary for immortalization, and that this may be achieved either by the reactivation of telomerase or by a novel and as yet unidentified mechanism.

  18. A novel peptide-nucleotide dual vaccine of human telomerase reverse transcriptase induces a potent cytotoxic T-cell response in vivo

    International Nuclear Information System (INIS)

    Guo, Hong; Hao, Jia; Wu, Chao; Shi, Yun; Zhao, Xiao-yan; Fang, Dian-chun

    2007-01-01

    Human telomerase reverse transcriptase (hTERT) is highly expressed in over 85% of human cancers, which makes it a broadly applicable molecular target for cancer therapy. Several groups have demonstrated that hTERT can efficiently evoke specific cytotoxic T lymphocytes (CTL) responses for malignant tumors. In the present study, we developed a novel virus-like particulate peptide-nucleotide dual vaccine (PNDV) of hTERT, which was composed of a low-affinity epitope variant with encoding full-length gene in the same virus-size particulate. We verified the formation of PNDV by DNA retarding assay, DNase I protection assay and transmission electron microscopy, and confirmed its immunogenicity and transfection activities in mammalian cells. Furthermore, in vivo immunization of HLA-A2.1 transgenic mice generated efficient IFN-γ secretion and hTERT-specific CTLs which are known to cause selective cell death of telomerase positive gastrointestinal cancer cells. To our knowledge, this represents the first report on collocating a low-affinity epitope variant with a full-length hTERT gene for anti-cancer vaccine design. This novel strategy for vaccine design not only enables enhanced immunity to a universal tumor antigen, but also has the potential to generate CTLs effective in telomerase-positive tumor cells of diverse tissue origins. Therefore, our findings bear significant implications for immunotherapy of human cancers

  19. Effects of Curcuma longa Extract on Telomerase Activity in Lung and Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nosratollah Zarghami

    2014-10-01

    Full Text Available Background: The purpose of this study is to evaluate the effect of Curcuma longa extract on the telomerase gene expression in QU-DB lung cancer and T47D breast cancer cell lines. Materials and Methods: The present study is an experimental research. Using 3 different phases n-hexane, dichloromethane and methanol, total extract of Curcuma longa in a serial dilution was prepared and three phases was analyzed for determining which phase has more curcuminoids. Then the extract cytotoxicity effect was tested on breast cancer cell line (T47D, and lung cancer cell line (QU-DB by 24, 48 and 72 h MTT (Dimethyl thiazolyl diphenyl tetrazolium assay. Then, the cells were treated with serial concentrations of the extract. Finally, total protein was extracted from the control and test groups, its quantity was determined and telomeric repeat amplification protocol (TRAP assay was performed for measurement of possible inhibition of the telomerase activity. Results: Cell viability and MTT-based cytotoxicity assay show that the total extract of Curcuma longa has cytotoxic effect with different IC50s in breast and lung cancer cell lines. Analysis of TRAP assay also shows a significant reduction in telomerase activity on both cancer cells with different levels. Conclusion: Curcuma longa extract has anti-proliferation and telomerase inhibitory effects on QU-DB lung cancer and T47D breast cancer cells with differences in levels of telomerase inhibition.

  20. Telomerer og telomerase

    DEFF Research Database (Denmark)

    Bendix, Laila; Kølvraa, Steen

    2010-01-01

    In 2009 the Nobel Prize in Medicine was awarded to EH Blackburn, CW Greider and JW Szostak for their work on "How chromosomes are protected by telomeres and the enzyme telomerase". Telomeres are specialized DNA structures localized at the end of linear chromosomes. Telomeres are known as the biol......In 2009 the Nobel Prize in Medicine was awarded to EH Blackburn, CW Greider and JW Szostak for their work on "How chromosomes are protected by telomeres and the enzyme telomerase". Telomeres are specialized DNA structures localized at the end of linear chromosomes. Telomeres are known...

  1. Prevalence of Telomerase Activity in Human Cancer

    Directory of Open Access Journals (Sweden)

    Chi-Hau Chen

    2011-05-01

    Full Text Available Telomerase activity has been measured in a wide variety of cancerous and non-cancerous tissue types, and the vast majority of clinical studies have shown a direct correlation between it and the presence of cancerous cells. Telomerase plays a key role in cellular immortality and tumorigenesis. Telomerase is activated in 80–90% of human carcinomas, but not in normal somatic cells, therefore, its detection holds promise as a diagnostic marker for cancer. Measurable levels of telomerase have been detected in malignant cells from various samples: tissue from gestational trophoblastic neoplasms; squamous carcinoma cells from oral rinses; lung carcinoma cells from bronchial washings; colorectal carcinoma cells from colonic luminal washings; bladder carcinoma cells from urine or bladder washings; and breast carcinoma or thyroid cancer cells from fine needle aspirations. Such clinical tests for telomerase can be useful as non-invasive and cost-effective methods for early detection and monitoring of cancer. In addition, telomerase activity has been shown to correlate with poor clinical outcome in late-stage diseases such as non-small cell lung cancer, colorectal cancer, and soft tissue sarcomas. In such cases, testing for telomerase activity can be used to identify patients with a poor prognosis and to select those who might benefit from adjuvant treatment. Our review of the latest medical advances in this field reveals that telomerase holds great promise as a biomarker for early cancer detection and monitoring, and has considerable potential as the basis for developing new anticancer therapies.

  2. NAC selectively inhibit cancer telomerase activity: A higher redox homeostasis threshold exists in cancer cells

    Directory of Open Access Journals (Sweden)

    Pengying Li

    2016-08-01

    Full Text Available Telomerase activity controls telomere length, and this plays an important role in stem cells, aging and tumors. Antioxidant was shown to protect telomerase activity in normal cells but inhibit that in cancer cells, but the underlying mechanism is elusive. Here we found that 7721 hepatoma cells held a higher redox homeostasis threshold than L02 normal liver cells which caused 7721 cells to have a higher demand for ROS; MnSOD over-expression in 7721 decreased endogenous reactive oxygen species (ROS and inhibited telomerase activity; Akt phosphorylation inhibitor and NAC both inhibited 7721 telomerase activity. The over-elimination of ROS by NAC resulted in the inhibition of Akt pathway. Our results suggest that ROS is involved in the regulation of cancer telomerase activity through Akt pathway. The different intracellular redox homeostasis and antioxidant system in normal cells and tumor cells may be the cause of the opposite effect on telomerase activity in response to NAC treatment. Our results provide a theoretical base of using antioxidants selectively inhibit cancer telomerase activity. Findings of the present study may provide insights into novel approaches for cancer treatment.

  3. Human telomerase activity regulation

    OpenAIRE

    Wojtyla, Aneta; Gladych, Marta; Rubis, Blazej

    2010-01-01

    Telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells. Thus, it has become a very promising target for anticancer therapy. The cell proliferative potential can be limited by replication end problem, due to telomeres shortening, which is overcome in cancer cells by telomerase activity or by alternative telomeres lengthening (ALT) mechanism. However, this multisubunit enzymatic complex can be regulated at various levels, including expression control b...

  4. Telomerase Activity Detected by Quantitative Assay in Bladder Carcinoma and Exfoliated Cells in Urine

    Directory of Open Access Journals (Sweden)

    Roberta Fedriga

    2001-01-01

    Full Text Available Early diagnosis is one of the most determining factors for patient survival. The detection of telomerase activity is a potentially promising tool in the diagnosis of bladder and other types of cancer due to the high expression of this enzyme in tumor cells. We carried out a quantitative evaluation of telomerase activity in urine samples in an attempt to determine a cut-off capable of identifying cancer patients. Telomerase activity was quantified by fluorescence TRAP assay in urine from 50 healthy volunteers and in urine and bioptic tumor samples from 56 previously untreated bladder cancer patients and expressed in arbitrary enzymatic units (AEU. Telomerase activity in urine ranged from 0 to 106 AEU (median 0 in healthy donors and from 0 to 282 AEU (median 87 in patients with cancer. A telomerase expression higher than the cut off value determined by receiver operating characteristic (ROC analysis was observed in 78% of cases, regardless of tumor grade and in 71% (15/21 of cases of nonassessable or negative cytology. The quantitative analysis of telomerase activity in urine enabled us to define cut-off values characterized by different sensitivity and specificity. Cytologic and telomerase determination, used sequentially, enabled us to detect about 90% of tumors.

  5. Telomerase activity promotes osteoblast differentiation by modulating IGF-signaling pathway

    DEFF Research Database (Denmark)

    Saeed, Hamid; Qiu, Weimin; Li, Chen

    2015-01-01

    -regulation of several components of insulin-like growth factor (IGF) signaling. Specifically, a significant increase in IGF-induced AKT phosphorylation and alkaline phosphatase (ALP) activity were observed in hMSC-TERT. Enhanced ALP activity was reduced in presence of IGF1 receptor inhibitor: picropodophyllin....... In addition, telomerase deficiency caused significant reduction in IGF signaling proteins in osteoblastic cells cultured from telomerase deficient mice (Terc (-/-)). The low bone mass exhibited by Terc (-/-) mice was associated with significant reduction in serum levels of IGF1 and IGFBP3 as well as reduced...... skeletal mRNA expression of Igf1, Igf2, Igf2r, Igfbp5 and Igfbp6. IGF1-induced osteoblast differentiation was also impaired in Terc (-/-) MSC. In conclusion, our data demonstrate that impaired IGF/AKT signaling contributes to the observed decreased bone mass and bone formation exhibited by telomerase...

  6. Dose-Dependent Cytotoxic Effects of Boldine in HepG-2 Cells—Telomerase Inhibition and Apoptosis Induction

    Directory of Open Access Journals (Sweden)

    Sakineh Kazemi Noureini

    2015-02-01

    Full Text Available Plant metabolites are valuable sources of novel therapeutic compounds. In an anti-telomerase screening study of plant secondary metabolites, the aporphine alkaloid boldine (1,10-dimethoxy-2,9-dihydroxyaporphine exhibited a dose and time dependent cytotoxicity against hepatocarcinoma HepG-2 cells. Here we focus on the modes and mechanisms of the growth-limiting effects of this compound. Telomerase activity and expression level of some related genes were estimated by real-time PCR. Modes of cell death also were examined by microscopic inspection, staining methods and by evaluating the expression level of some critically relevant genes. The growth inhibition was correlated with down-regulation of the catalytic subunit of telomerase (hTERT gene (p < 0.01 and the corresponding reduction of telomerase activity in sub-cytotoxic concentrations of boldine (p < 0.002. However, various modes of cell death were stimulated, depending on the concentration of boldine. Very low concentrations of boldine over a few passages resulted in an accumulation of senescent cells so that HepG-2 cells lost their immortality. Moreover, boldine induced apoptosis concomitantly with increasing the expression of bax/bcl2 (p < 0.02 and p21 (p < 0.01 genes. Boldine might thus be an interesting candidate as a potential natural compound that suppresses telomerase activity in non-toxic concentrations.

  7. Shwachman-Diamond Syndrome Protein SBDS Maintains Human Telomeres by Regulating Telomerase Recruitment

    Directory of Open Access Journals (Sweden)

    Yi Liu

    2018-02-01

    Full Text Available Shwachman-Diamond syndrome (SDS is a rare pediatric disease characterized by various systemic disorders, including hematopoietic dysfunction. The mutation of Shwachman-Bodian-Diamond syndrome (SBDS gene has been proposed to be a major causative reason for SDS. Although SBDS patients were reported to have shorter telomere length in granulocytes, the underlying mechanism is still unclear. Here we provide data to elucidate the role of SBDS in telomere protection. We demonstrate that SBDS deficiency leads to telomere shortening. We found that overexpression of disease-associated SBDS mutants or knockdown of SBDS hampered the recruitment of telomerase onto telomeres, while the overall reverse transcriptase activity of telomerase remained unaffected. Moreover, we show that SBDS could specifically bind to TPP1 during the S phase of cell cycle, likely functioning as a stabilizer for TPP1-telomerase interaction. Our findings suggest that SBDS is a telomere-protecting protein that participates in regulating telomerase recruitment.

  8. In vitro reconstitution of the active T. castaneum telomerase.

    Science.gov (United States)

    Schuller, Anthony P; Harkisheimer, Michael J; Skordalakes, Emmanuel

    2011-07-14

    Efforts to isolate the catalytic subunit of telomerase, TERT, in sufficient quantities for structural studies, have been met with limited success for more than a decade. Here, we present methods for the isolation of the recombinant Tribolium castaneum TERT (TcTERT) and the reconstitution of the active T. castaneum telomerase ribonucleoprotein (RNP) complex in vitro. Telomerase is a specialized reverse transcriptase that adds short DNA repeats, called telomeres, to the 3' end of linear chromosomes that serve to protect them from end-to-end fusion and degradation. Following DNA replication, a short segment is lost at the end of the chromosome and without telomerase, cells continue dividing until eventually reaching their Hayflick Limit. Additionally, telomerase is dormant in most somatic cells in adults, but is active in cancer cells where it promotes cell immortality. The minimal telomerase enzyme consists of two core components: the protein subunit (TERT), which comprises the catalytic subunit of the enzyme and an integral RNA component (TER), which contains the template TERT uses to synthesize telomeres. Prior to 2008, only structures for individual telomerase domains had been solved. A major breakthrough in this field came from the determination of the crystal structure of the active, catalytic subunit of T. castaneum telomerase, TcTERT. Here, we present methods for producing large quantities of the active, soluble TcTERT for structural and biochemical studies, and the reconstitution of the telomerase RNP complex in vitro for telomerase activity assays. An overview of the experimental methods used is shown in Figure 1.

  9. ORIGINAL ARTICLE Detection of human telomerase reverse ...

    African Journals Online (AJOL)

    salah

    currently remains the gold standard procedure for diagnosis, yet, it is invasive and costly. Urinary cytopathology remains to be the only non-invasive alter- native method for diagnosis. Although it is tumour specific, yet it has a poor sensitivity, especially for low grade tumours. Detection of Telomerase enzyme in exfoliated ...

  10. A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis.

    Science.gov (United States)

    Le Saux, Claude Jourdan; Davy, Philip; Brampton, Christopher; Ahuja, Seema S; Fauce, Steven; Shivshankar, Pooja; Nguyen, Hieu; Ramaseshan, Mahesh; Tressler, Robert; Pirot, Zhu; Harley, Calvin B; Allsopp, Richard

    2013-01-01

    The emergence of diseases associated with telomere dysfunction, including AIDS, aplastic anemia and pulmonary fibrosis, has bolstered interest in telomerase activators. We report identification of a new small molecule activator, GRN510, with activity ex vivo and in vivo. Using a novel mouse model, we tested the potential of GRN510 to limit fibrosis induced by bleomycin in mTERT heterozygous mice. Treatment with GRN510 at 10 mg/kg/day activated telomerase 2-4 fold both in hematopoietic progenitors ex vivo and in bone marrow and lung tissue in vivo, respectively. Telomerase activation was countered by co-treatment with Imetelstat (GRN163L), a potent telomerase inhibitor. In this model of bleomycin-induced fibrosis, treatment with GRN510 suppressed the development of fibrosis and accumulation of senescent cells in the lung via a mechanism dependent upon telomerase activation. Treatment of small airway epithelial cells (SAEC) or lung fibroblasts ex vivo with GRN510 revealed telomerase activating and replicative lifespan promoting effects only in the SAEC, suggesting that the mechanism accounting for the protective effects of GRN510 against induced lung fibrosis involves specific types of lung cells. Together, these results support the use of small molecule activators of telomerase in therapies to treat idiopathic pulmonary fibrosis.

  11. Differences in telomerase activity between colon and rectal cancer.

    Science.gov (United States)

    Ayiomamitis, Georgios D; Notas, George; Zaravinos, Apostolos; Zizi-Sermpetzoglou, Adamantia; Georgiadou, Maria; Sfakianaki, Ourania; Kouroumallis, Elias

    2014-06-01

    Colorectal cancer is one of the most common cancers and the third leading cause of cancer death in both sexes. The disease progresses as a multistep process and is associated with genetic alterations. One of the characteristic features of cancer is telomerase activation. We sought to evaluate the differences in telomerase activity between colon cancer and adjacent normal tissue and to correlate the differences in telomerase activity between different locations with clinicopathological factors and survival. Matched colon tumour samples and adjacent normal mucosa samples 10 cm away from the tumour were collected during colectomy. We assessed telomerase activity using real time polymerase chain reaction. Several pathological characteristics of tumours, including p53, Ki-67, p21, bcl2 and MLH1 expression were also studied. We collected samples from 49 patients. There was a significantly higher telomerase activity in colon cancer tissue than normal tissue. Adenocarcinomas of the right colon express significantly higher telomerase than left-side cancers. Colon cancers and their adjacent normal tissue had significantly more telomerase and were more positive to MLH1 than rectal cancers. The expression of p53 negatively correlated to telomerase activity and was linked to better patient survival. Colon and rectal cancers seem to have different telomerase and MLH1 profiles, and this could be another factor for their different biologic and clinical behaviour and progression. These results support the idea that the large bowel cannot be considered a uniform organ, at least in the biology of cancer.

  12. The differentiation status of primary gonadal germ cell tumors correlates inversely with telomerase activity and the expression level of the gene encoding the catalytic subunit of telomerase

    International Nuclear Information System (INIS)

    Schrader, Mark; Burger, Angelika M; Müller, Markus; Krause, Hans; Straub, Bernd; Schostak, Martin; Schulze, Wolfgang; Lauke, Heidrun; Miller, Kurt

    2002-01-01

    The activity of the ribonucleoprotein enzyme telomerase is detectable in germ, stem and tumor cells. One major component of telomerase is human telomerase reverse transcriptase (hTERT), which encodes the catalytic subunit of telomerase. Here we investigate the correlation of telomerase activity and hTERT gene expression and the differentiation status of primary testicular germ cell tumors (TGCT). Telomerase activity (TA) was detected by a quantitative telomerase PCR ELISA, and hTERT mRNA expression was quantified by online RT-PCR in 42 primary testicular germ cell tumors. The control group consisted of benign testicular biopsies from infertile patients. High levels of telomerase activity and hTERT expression were detected in all examined undifferentiated TGCTs and in the benign testicular tissue specimens with germ cell content. In contrast, differentiated teratomas and testicular control tissue without germ cells (Sertoli-cell-only syndrome) showed no telomerase activity and only minimal hTERT expression. These findings demonstrate an inverse relationship between the level of telomerase activity and hTERT mRNA expression and the differentiation state of germ cell tumors. Quantification of telomerase activity and hTERT mRNA expression enables a new molecular-diagnostic subclassification of germ cell tumors that describes their proliferation potential and differentiation status

  13. The differentiation status of primary gonadal germ cell tumors correlates inversely with telomerase activity and the expression level of the gene encoding the catalytic subunit of telomerase

    Directory of Open Access Journals (Sweden)

    Schulze Wolfgang

    2002-11-01

    Full Text Available Abstract Background The activity of the ribonucleoprotein enzyme telomerase is detectable in germ, stem and tumor cells. One major component of telomerase is human telomerase reverse transcriptase (hTERT, which encodes the catalytic subunit of telomerase. Here we investigate the correlation of telomerase activity and hTERT gene expression and the differentiation status of primary testicular germ cell tumors (TGCT. Methods Telomerase activity (TA was detected by a quantitative telomerase PCR ELISA, and hTERT mRNA expression was quantified by online RT-PCR in 42 primary testicular germ cell tumors. The control group consisted of benign testicular biopsies from infertile patients. Results High levels of telomerase activity and hTERT expression were detected in all examined undifferentiated TGCTs and in the benign testicular tissue specimens with germ cell content. In contrast, differentiated teratomas and testicular control tissue without germ cells (Sertoli-cell-only syndrome showed no telomerase activity and only minimal hTERT expression. Conclusions These findings demonstrate an inverse relationship between the level of telomerase activity and hTERT mRNA expression and the differentiation state of germ cell tumors. Quantification of telomerase activity and hTERT mRNA expression enables a new molecular-diagnostic subclassification of germ cell tumors that describes their proliferation potential and differentiation status.

  14. A telomerase em células-tronco hematopoéticas Telomerase in hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Silvana Perini

    2008-02-01

    Full Text Available A proliferação das células-tronco hematopoéticas sofre a perda dos telômeros a cada divisão celular. Alguns autores discordam quanto à perda ou não do potencial proliferativo e capacidade de auto-renovação das células mais diferenciadas. Revisaremos aqui o papel da telomerase na biologia do sistema hematopoético, na diferenciação normal ou maligna, assim como no envelhecimento das células-tronco hematopoéticas. A constante renovação celular requerida pela hematopoese confere às células-tronco embrionárias, assim como à maioria das células tumorais, um aumento da capacidade proliferativa marcada pela detecção da enzima telomerase e possível manutenção dos telômeros. Estudos clínicos se farão necessários para esclarecer melhor a atividade da telomerase em células-tronco hematopoéticas, seu possível uso como marcador de diagnóstico e seu uso a fim de propósitos prognósticos.Hematopoietic stem cell proliferation leads to telomere length decreases at each cellular division. Some authors disagree about the telomere influence on the reduction of the proliferative potential and capacity of self renewal. Here we review telomerase function in the biology of the hematopoietic system, in normal or differentiation and its influence on the ageing of hematopoietic stem cells. The constant cellular renewal required to maintain the hematopoietic system, provides embryonic stem cells, as well as malignant cells, an increased proliferative capacity. This is marked by the detection of telomerase enzyme activity and possible telomere maintenance. Clinical trials will be required to clarify telomerase activity in hematopoietic stem cells, its possible use as a diagnostic marker and its use for prognostic purposes.

  15. Modulation of Telomerase Activity in Cancer Cells by Dietary Compounds: A Review

    Directory of Open Access Journals (Sweden)

    Takahiro Eitsuka

    2018-02-01

    Full Text Available Telomerase is expressed in ~90% of human cancer cell lines and tumor specimens, whereas its enzymatic activity is not detectable in most human somatic cells, suggesting that telomerase represents a highly attractive target for selective cancer treatment. Accordingly, various classes of telomerase inhibitors have been screened and developed in recent years. We and other researchers have successfully found that some dietary compounds can modulate telomerase activity in cancer cells. Telomerase inhibitors derived from food are subdivided into two groups: one group directly blocks the enzymatic activity of telomerase (e.g., catechin and sulfoquinovosyldiacylglycerol, and the other downregulates the expression of human telomerase reverse transcriptase (hTERT, the catalytic subunit of human telomerase, via signal transduction pathways (e.g., retinoic acid and tocotrienol. In contrast, a few dietary components, including genistein and glycated lipid, induce cellular telomerase activity in several types of cancer cells, suggesting that they may be involved in tumor progression. This review summarizes the current knowledge about the effects of dietary factors on telomerase regulation in cancer cells and discusses their molecular mechanisms of action.

  16. Leptin upregulates telomerase activity and transcription of human telomerase reverse transcriptase in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ren, He, E-mail: herenrh@yahoo.com.cn [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Zhao, Tiansuo; Wang, Xiuchao; Gao, Chuntao; Wang, Jian; Yu, Ming [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China); Hao, Jihui, E-mail: jihuihao@yahoo.com [Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin Medical University Cancer Hospital, Tianjin (China)

    2010-03-26

    The aim was to analyze the mechanism of leptin-induced activity of telomerase in MCF-7 breast cancer cells. We found that leptin activated telomerase in a dose-dependent manner; leptin upregulated the expression of Human Telomerase Reverse Transcriptase (hTERT) at mRNA and protein levels; blockade of signal transducer and activator of transcription 3 (STAT3) phosphorylation significantly counteracted leptin-induced hTERT transcription and protein expression; chromatin immunoprecipitation analysis showed that leptin enhanced the binding of STAT3 to the hTERT promoter. This study uncovers a new mechanism of the proliferative effect of leptin on breast cancer cells and provides a new explanation of obesity-related breast cancer.

  17. Telomerase inhibition effectively targets mouse and human AML stem cells and delays relapse following chemotherapy

    DEFF Research Database (Denmark)

    Bruedigam, Claudia; Bagger, Frederik Otzen; Heidel, Florian H.

    2014-01-01

    (-/-) LSCs express a specific gene expression signature that can be identified in human AML patient cohorts and is positively correlated with patient survival following chemotherapy. In xenografts of primary human AML, genetic or pharmacological inhibition of telomerase targets LSCs, impairs leukemia...... progression, and delays relapse following chemotherapy. Altogether, these results establish telomerase inhibition as an effective strategy for eliminating AML LSCs....

  18. The Emerging Roles for Telomerase in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Meng-Ying Liu

    2018-05-01

    Full Text Available Telomerase, a specialized ribonucleoprotein enzyme complex, maintains telomere length at the 3′ end of chromosomes, and functions importantly in stem cells, cancer and aging. Telomerase exists in neural stem cells (NSCs and neural progenitor cells (NPCs, at a high level in the developing and adult brains of humans and rodents. Increasing studies have demonstrated that telomerase in NSCs/NPCs plays important roles in cell proliferation, neuronal differentiation, neuronal survival and neuritogenesis. In addition, recent works have shown that telomerase reverse transcriptase (TERT can protect newborn neurons from apoptosis and excitotoxicity. However, to date, the link between telomerase and diseases in the central nervous system (CNS is not well reviewed. Here, we analyze the evidence and summarize the important roles of telomerase in the CNS. Understanding the roles of telomerase in the nervous system is not only important to gain further insight into the process of the neural cell life cycle but would also provide novel therapeutic applications in CNS diseases such as neurodegenerative condition, mood disorders, aging and other ailments.

  19. Correlation between telomerase and mTOR pathway in cancer stem cells.

    Science.gov (United States)

    Dogan, Fatma; Biray Avci, Cigir

    2018-01-30

    Cancer stem cells (CSCs), which are defined as a subset of tumor cells, are able to self-renew, proliferate, differentiate similar to normal stem cells. Therefore, targeting CSCs has been considered as a new approach in cancer therapy. The mammalian target of rapamycin (mTOR) is a receptor tyrosine kinase which plays an important role in regulating cell proliferation, differentiation, cell growth, self-renewal in CSCs. On the other hand, hTERT overactivation provides replicative feature and immortality to CSCs, so the stemness and replicative properties of CSCs depend on telomerase activity. Therefore hTERT/telomerase activity may become a universal biomarker for anticancer therapy and it is an attractive therapeutic target for CSCs. It is known that mTOR regulates telomerase activity at the translational and post-translational level. Researchers show that mTOR inhibitor rapamycin reduces telomerase activity without changing hTERT mRNA activity. Correlation between mTOR and hTERT is important for survival and immortality of cancer cells. In addition, the PI3K/AKT/mTOR signaling pathway and hTERT up-regulation are related with cancer stemness features and drug resistance. mTOR inhibitor and TERT inhibitor combination may construct a novel strategy in cancer stem cells and it can make a double effect on telomerase enzyme. Consequently, inhibition of PI3K/AKT/mTOR signaling pathway components and hTERT activation may prohibit CSC self-renewal and surpass CSC-mediated resistance in order to develop new cancer therapeutics. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Colorimetry and SERS dual-mode detection of telomerase activity: combining rapid screening with high sensitivity.

    Science.gov (United States)

    Zong, Shenfei; Wang, Zhuyuan; Chen, Hui; Hu, Guohua; Liu, Min; Chen, Peng; Cui, Yiping

    2014-01-01

    As an important biomarker and therapeutic target, telomerase has attracted considerable attention concerning its detection and monitoring. Here, we present a colorimetry and surface enhanced Raman scattering (SERS) dual-mode telomerase activity detection method, which has several distinctive advantages. First, colorimetric functionality allows rapid preliminary discrimination of telomerase activity by the naked eye. Second, the employment of SERS technique results in greatly improved detection sensitivity. Third, the combination of colorimetry and SERS into one detection system can ensure highly efficacious and sensitive screening of numerous samples. Besides, the avoidance of polymerase chain reaction (PCR) procedures further guarantees fine reliability and simplicity. Generally, the presented method is realized by an "elongate and capture" procedure. To be specific, gold nanoparticles modified with Raman molecules and telomeric repeat complementary oligonucleotide are employed as the colorimetric-SERS bifunctional reporting nanotag, while magnetic nanoparticles functionalized with telomerase substrate oligonucleotide are used as the capturing substrate. Telomerase can synthesize and elongate telomeric repeats onto the capturing substrate. The elongated telomeric repeats subsequently facilitate capturing of the reporting nanotag via hybridization between telomeric repeat and its complementary strand. The captured nanotags can cause a significant difference in the color and SERS intensity of the magnetically separated sediments. Thus both the color and SERS can be used as indicators of the telomerase activity. With fast screening ability and outstanding sensitivity, we anticipate that this method would greatly promote practical application of telomerase-based early-stage cancer diagnosis.

  1. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process.

    Science.gov (United States)

    Ducray, C; Pommier, J P; Martins, L; Boussin, F D; Sabatier, L

    1999-07-22

    Loss of telomeric repeats during cell proliferation could play a role in senescence. It has been generally assumed that activation of telomerase prevents further telomere shortening and is essential for cell immortalization. In this study, we performed a detailed cytogenetic and molecular characterization of four SV40 transformed human fibroblastic cell lines by regularly monitoring the size distribution of terminal restriction fragments, telomerase activity and the associated chromosomal instability throughout immortalization. The mean TRF lengths progressively decreased in pre-crisis cells during the lifespan of the cultures. At crisis, telomeres reached a critical size, different among the cell lines, contributing to the peak of dicentric chromosomes, which resulted mostly from telomeric associations. We observed a direct correlation between short telomere length at crisis and chromosomal instability. In two immortal cell lines, although telomerase was detected, mean telomere length still continued to decrease whereas the number of dicentric chromosomes associated was stabilized. Thus telomerase could protect specifically telomeres which have reached a critical size against end-to-end dicentrics, while long telomeres continue to decrease, although at a slower rate as before crisis. This suggests a balance between elongation by telomerase and telomere shortening, towards a stabilized 'optimal' length.

  2. Acute myocardial infarction: 'telomerasing' for cardioprotection

    OpenAIRE

    Sanchís-Gomar, Fabián; Lucía Mulas, Alejandro

    2015-01-01

    Reactivating the telomerase gene through gene therapy after acute myocardial infarction (AMI) has been recently reported to improve survival in mice. Given that regular physical exercise also activates this gene, therapeutic and lifestyle interventions targeting telomerase need to be explored as possible additions to the current armamentarium for myocardial regeneration. 9.292 JCR (2015) Q1, 17/289 Biochemistry & mollecular biology, 17/187 Cell biology, 8/124 Medicine, research & experimen...

  3. Telomerase and drug resistance in cancer

    OpenAIRE

    Lipinska, Natalia; Romaniuk, Aleksandra; Paszel-Jaworska, Anna; Toton, Ewa; Kopczynski, Przemyslaw; Rubis, Blazej

    2017-01-01

    It is well known that a decreased expression or inhibited activity of telomerase in cancer cells is accompanied by an increased sensitivity to some drugs (e.g., doxorubicin, cisplatin, or 5-fluorouracil). However, the mechanism of the resistance resulting from telomerase alteration remains elusive. There are theories claiming that it might be associated with telomere shortening, genome instability, hTERT translocation, mitochondria functioning modulation, or even alterations in ABC family gen...

  4. Walloons as General or Specific Others? A Comparison of anti-Walloon and anti-immigrant Attitudes in Flanders

    Directory of Open Access Journals (Sweden)

    Bart Meuleman

    2017-11-01

    Full Text Available This study attempts to shed light on the structure, the prevalence and the determinants of anti-Walloon attitudes in Flanders. For this purpose, we contrast anti-Walloon prejudice with prejudice against a relatively well-understood and archetypical out-group, namely immigrants. Our theoretical approach draws on insights from two paradigms of intergroup relations: the Group-Focused Enmity approach stressing that specific prejudices have a strong common denominator, and the Differentiated Threat model arguing that specific prejudices are contingent on the context of intergroup relations as well as the involved types of threat. To assess the (dissimilarities in anti-Walloon and anti-immigrant prejudice, we use the Flemish dataset of the Belgian National Election Study (BNES 2010. Comparable measurement instruments for both forms of prejudice are analyzed by means of structural equation modeling. Our results reveal a nuanced picture regarding the similarities and differences between anti-Walloon and anti-immigrant attitudes in Flanders. One the one hand, anti-Walloon and anti-immigration attitudes are strongly correlated and rooted in economic threat perceptions. On the other hand, anti-Walloon attitudes are less outspoken in the Flemish population than anti-immigrant attitudes, are less founded on cultural threat perceptions and are more closely linked to feelings of identification with the Flemish in-group.

  5. TERRA mimicking ssRNAs prevail over the DNA substrate for telomerase in vitro due to interactions with the alternative binding site.

    Science.gov (United States)

    Azhibek, Dulat; Skvortsov, Dmitry; Andreeva, Anna; Zatsepin, Timofei; Arutyunyan, Alexandr; Zvereva, Maria; Dontsova, Olga

    2016-06-01

    Telomerase is a key component of the telomere length maintenance system in the majority of eukaryotes. Telomerase displays maximal activity in stem and cancer cells with high proliferative potential. In humans, telomerase activity is regulated by various mechanisms, including the interaction with telomere ssDNA overhangs that contain a repetitive G-rich sequence, and with noncoding RNA, Telomeric repeat-containing RNA (TERRA), that contains the same sequence. So these nucleic acids can compete for telomerase RNA templates in the cell. In this study, we have investigated the ability of different model substrates mimicking telomere DNA overhangs and TERRA RNA to compete for telomerase in vitro through a previously developed telomerase inhibitor assay. We have shown in this study that RNA oligonucleotides are better competitors for telomerase that DNA ones as RNA also use an alternative binding site on telomerase, and the presence of 2'-OH groups is significant in these interactions. In contrast to DNA, the possibility of forming intramolecular G-quadruplex structures has a minor effect for RNA binding to telomerase. Taking together our data, we propose that TERRA RNA binds better to telomerase compared with its native substrate - the 3'-end of telomere DNA overhang. As a result, some specific factor may exist that participates in switching telomerase from TERRA to the 3'-end of DNA for telomere elongation at the distinct period of a cell cycle in vivo. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Nutrition and lifestyle in healthy aging: the telomerase challenge.

    Science.gov (United States)

    Boccardi, Virginia; Paolisso, Giuseppe; Mecocci, Patrizia

    2016-01-01

    Nutrition and lifestyle, known to modulate aging process and age-related diseases, might also affect telomerase activity. Short and dysfunctional telomeres rather than average telomere length are associated with longevity in animal models, and their rescue by telomerase maybe sufficient to restore cell and organismal viability. Improving telomerase activation in stem cells and potentially in other cells by diet and lifestyle interventions may represent an intriguing way to promote health-span in humans.

  7. Clinical Outcomes of Lung Transplantation in Patients with Telomerase Mutations

    Science.gov (United States)

    Tokman, Sofya; Singer, Jonathan P.; Devine, Megan S.; Westall, Glen P.; Aubert, John-David; Tamm, Michael; Snell, Gregory I.; Lee, Joyce S.; Goldberg, Hilary J.; Kukreja, Jasleen; Golden, Jeffrey A.; Leard, Lorriana E.; Garcia, Christine K.; Hays, Steven R.

    2017-01-01

    Background Successful lung transplantation (LT) for patients with pulmonary fibrosis from telomerase mutations is limited by systemic complications of telomerase dysfunction including myelosuppression, cirrhosis, and malignancy. We describe clinical outcomes among 14 LT recipients with telomerase mutations. Methods Subjects underwent LT between February 2005 and April 2014 at 5 LT centers. We abstracted data from medical records, focusing on outcomes reflecting post-LT treatment effects likely to be complicated by telomerase mutations. Results The median age of subjects was 60.5 years (IQR 52.0–62.0), 64.3% were male, and the mean post-LT observation time was 3.2 years (SD ±2.9). Eleven subjects had a mutation in telomerase reverse transcriptase, 2 in telomerase RNA component, and 1 had an uncharacterized mutation. Ten subjects were leukopenic post-LT; leukopenia prompted cessation of mycophenolate mofetil in 5 and treatment with filgrastim in 4. Six subjects had recurrent lower respiratory tract infections (LRTI), 7 had acute cellular rejection (ACR) (A1), and 4 developed chronic lung allograft dysfunction (CLAD). Ten LT recipients developed chronic renal insufficiency and 8 experienced acute, reversible renal failure. Three developed cancer, none had cirrhosis. Thirteen subjects were alive at data censorship. Conclusions The clinical course for LT recipients with telomerase mutations is complicated by renal disease, leukopenia prompting a change in the immunosuppressive regimen, and recurrent LTRI. In contrast, cirrhosis was absent, ACR was mild, and development of CLAD was comparable to other LT populations. While posing challenges, lung transplantation may be feasible for patients with pulmonary fibrosis due to telomerase mutations. PMID:26169663

  8. Trend of telomerase activity change during human iPSC self-renewal and differentiation revealed by a quartz crystal microbalance based assay

    Science.gov (United States)

    Zhou, Yitian; Zhou, Ping; Xin, Yinqiang; Wang, Jie; Zhu, Zhiqiang; Hu, Ji; Wei, Shicheng; Ma, Hongwei

    2014-11-01

    Telomerase plays an important role in governing the life span of cells for its capacity to extend telomeres. As high activity of telomerase has been found in stem cells and cancer cells specifically, various methods have been developed for the evaluation of telomerase activity. To overcome the time-consuming procedures and complicated manipulations of existing methods, we developed a novel method named Telomeric Repeat Elongation Assay based on Quartz crystal microbalance (TREAQ) to monitor telomerase activity during the self-renewal and differentiation of human induced pluripotent stem cells (hiPSCs). TREAQ results indicated hiPSCs possess invariable telomerase activity for 11 passages on Matrigel and a steady decline of telomerase activity when differentiated for different periods, which is confirmed with existing golden standard method. The pluripotency of hiPSCs during differentiation could be estimated through monitoring telomerase activity and compared with the expression levels of markers of pluripotency gene via quantitative real time PCR. Regular assessment for factors associated with pluripotency or stemness was expensive and requires excessive sample consuming, thus TREAQ could be a promising alternative technology for routine monitoring of telomerase activity and estimate the pluripotency of stem cells.

  9. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin [Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Hospital, Second Military Medical Universisty, 225 Changhai Road, Shanghai 200438 (China)

    2007-11-12

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  10. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    International Nuclear Information System (INIS)

    Bu, Xinxin; Jia, Fengqi; Wang, Weifeng; Guo, Xianling; Wu, Mengchao; Wei, Lixin

    2007-01-01

    Hepatocellular carcinoma (HCC) is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu). We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase) mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis

  11. Downregulation of telomerase activity in human promyelocytic cell line using RNA interference.

    Science.gov (United States)

    Miri-Moghaddam, E; Deezagi, A; Soheili, Z S

    2009-12-01

    Telomerase is a ribonucleoprotein complex. It consists of two main components, human telomerase reverse transcriptase (hTERT) and human telomerase RNA. High telomerase activity is present in most malignant cells, but it is barely detectable in majority of somatic cells. The direct correlation between telomerase reactivation and carcinogens has made hTERT a key target for anticancer therapeutic studies. In this study, for the first time, we evaluated the ability of the new generation of short interfering RNA (siRNA) to regulate telomerase activity in the human promyelocytic leukemia cell line (HL-60). Transient transfection cell line by hTERT siRNAs resulted in statistically significant suppression of hTERT messenger RNAs which were detected by quantitative real-time polymerase chain reaction, while the expressed hTERT protein levels were measured by flow cytometry. The results of telomeric repeat amplification protocol showed that telomerase activity was significantly reduced upon transfection of the HL-60 cell line with hTERT siRNAs. The results of this study showed that telomerase activity and cell proliferation were efficiently inhibited in the hTERT siRNA-treated leukemic cell line.

  12. The PPARα/p16INK4a Pathway inhibits Vascular Smooth Muscle Cell Proliferation by repressing Cell Cycle-dependent Telomerase Activation

    Science.gov (United States)

    Gizard, Florence; Nomiyama, Takashi; Zhao, Yue; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Staels, Bart; Bruemmer, Dennis

    2009-01-01

    Peroxisome Proliferator-Activated Receptor (PPAR) α, the molecular target for fibrates used to treat dyslipidemia, exerts pleiotropic effects on vascular cells. In vascular smooth muscle cells (VSMCs), we have previously demonstrated that PPARα activation suppresses G1→S cell cycle progression by targeting the cyclin-dependent kinase inhibitor p16INK4a (p16). In the present study, we demonstrate that this inhibition of VSMC proliferation by PPARα is mediated through a p16-dependent suppression of telomerase activity, which has been implicated in key cellular functions including proliferation. PPARα activation inhibited mitogen-induced telomerase activity by repressing the catalytic subunit telomerase reverse transcriptase (TERT) through negative cross-talk with an E2F-1-dependent trans-activation of the TERT promoter. This trans-repression involved the recruitment of the retinoblastoma (RB) family proteins p107 and p130 to the TERT promoter resulting in impaired E2F-1 binding, an effect which was dependent on p16. The inhibition of cell proliferation by PPARα activation was lost in VSMC following TERT overexpression or knock-down, pointing to a key role of telomerase as a target for the antiproliferative effects of PPARα. Finally, we demonstrate that PPARα agonists suppress telomerase activation during the proliferative response following vascular injury indicating that these findings are applicable in vivo. In concert, these results demonstrate that the anti-proliferative effects of PPARα in VSMCs depend on the suppression of telomerase activity by targeting the p16/RB/E2F transcriptional cascade. PMID:18818403

  13. Telomerase activity-independent function of telomerase reverse transcriptase is involved in acrylamide-induced neuron damage.

    Science.gov (United States)

    Zhang, P; Pan, H; Wang, J; Liu, X; Hu, X

    2014-07-01

    Polyacrylamide is used widely in industry, and its decomposition product, acrylamide (ACR), readily finds its way into commonly consumed cosmetics and baked and fried foods. ACR exerts potent neurotoxic effects in human and animal models. Telomerase reverse transcriptase (TERT), the catalytic subunit of telomerase, traditionally has been considered to play an important role in maintaining telomere length. Emerging evidence has shown, however, that TERT plays an important role in neuroprotection by inhibiting apoptosis and excitotoxicity, and by promoting angiogenesis, neuronal survival and neurogenesis, which are closely related to the telomere-independent functions of TERT. We investigated whether and how the TERT pathway is involved in ACR induced neurotoxicity in rat cortical neurons. We found that ACR 1) significantly reduced the viability of cortical neurons as measured by MTT assay, 2) induced neuron apoptosis as revealed by FITC-conjugated Annexin V/PI double staining and flow cytometry (FACS) analysis, 3) elevated expression of cleaved caspase-3, and 4) decreased bcl-2 expression of cortical neurons. ACR also increased intracellular ROS levels in cortical neurons, increased MDA levels and reduced GSH, SOD and GSH-Px levels in mitochondria in a dose-dependent manner. We found that TERT expression in mitochondria was increased by ACR at concentrations of 2.5 and 5.0 mM, but TERT expression was decreased by 10 mM ACR. Telomerase activity, however, was undetectable in rat cortical neurons. Our results suggest that the TERT pathway is involved in ACR induced apoptosis of cortical neurons. TERT also may exert its neuroprotective role in a telomerase activity-independent way, especially in mitochondria.

  14. Low-Dose Fluvastatin and Valsartan Rejuvenate the Arterial Wall Through Telomerase Activity Increase in Middle-Aged Men.

    Science.gov (United States)

    Janić, Miodrag; Lunder, Mojca; Cerkovnik, Petra; Prosenc Zmrzljak, Uršula; Novaković, Srdjan; Šabovič, Mišo

    2016-04-01

    Previously, we have shown that slightly to moderately aged arteries in middle-aged males can be rejuvenated functionally by sub-therapeutic, low-dose fluvastatin and valsartan treatment. Here, we explore whether this treatment could also increase telomerase activity. We hypothesized that telomerase activity might be associated with (1) an improvement of arterial wall properties and (2) a reduction of inflammatory/oxidative stress parameters (both observed in our previous studies). The stored blood samples from 130 apparently healthy middle-aged males treated with fluvastatin (10 mg daily), valsartan (20 mg daily), fluvastatin and valsartan combination (10 and 20 mg), respectively, and placebo (control), were analyzed. The samples were taken before and after treatment lasting 30 days, and 5 months after treatment discontinuation. Telomerase activity was measured in blood leukocytes by a TaqMan Gene Expression Assay. Low-dose fluvastatin or valsartan increased telomerase activity (106.9% and 59.5% respectively; both p valsartan substantially increased telomerase activity, which significantly correlated with an improvement of endothelial function and a decrease of inflammation/oxidative stress. These findings could lead to a new innovative approach to arterial rejuvenation.

  15. Global gene expression response to telomerase in bovine adrenocortical cells

    International Nuclear Information System (INIS)

    Perrault, Steven D.; Hornsby, Peter J.; Betts, Dean H.

    2005-01-01

    The infinite proliferative capability of most immortalized cells is dependent upon the presence of the enzyme telomerase and its ability to maintain telomere length and structure. However, telomerase may be involved in a greater system than telomere length regulation, as recent evidence has shown it capable of increasing wound healing in vivo, and improving cellular proliferation rate and survival from apoptosis in vitro. Here, we describe the global gene expression response to ectopic telomerase expression in an in vitro bovine adrenocortical cell model. Telomerase-immortalized cells showed an increased ability for proliferation and survival in minimal essential medium above cells transgenic for GFP. cDNA microarray analyses revealed an altered cell state indicative of increased adrenocortical cell proliferation regulated by the IGF2 pathway and alterations in members of the TGF-B family. As well, we identified alterations in genes associated with development and wound healing that support a model that high telomerase expression induces a highly adaptable, progenitor-like state

  16. Stabilization of Reversed Replication Forks by Telomerase Drives Telomere Catastrophe.

    Science.gov (United States)

    Margalef, Pol; Kotsantis, Panagiotis; Borel, Valerie; Bellelli, Roberto; Panier, Stephanie; Boulton, Simon J

    2018-01-25

    Telomere maintenance critically depends on the distinct activities of telomerase, which adds telomeric repeats to solve the end replication problem, and RTEL1, which dismantles DNA secondary structures at telomeres to facilitate replisome progression. Here, we establish that reversed replication forks are a pathological substrate for telomerase and the source of telomere catastrophe in Rtel1 -/- cells. Inhibiting telomerase recruitment to telomeres, but not its activity, or blocking replication fork reversal through PARP1 inhibition or depleting UBC13 or ZRANB3 prevents the rapid accumulation of dysfunctional telomeres in RTEL1-deficient cells. In this context, we establish that telomerase binding to reversed replication forks inhibits telomere replication, which can be mimicked by preventing replication fork restart through depletion of RECQ1 or PARG. Our results lead us to propose that telomerase inappropriately binds to and inhibits restart of reversed replication forks within telomeres, which compromises replication and leads to critically short telomeres. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Progressive Increase in Telomerase Activity From Benign Melanocytic Conditions to Malignant Melanoma

    Directory of Open Access Journals (Sweden)

    Ruben D. Ramirez

    1999-04-01

    Full Text Available The expression of telomerase activity and the in situ localization of the human telomerase RNA component (hTR in melanocytic skin lesions was evaluated in specimens from sixty-three patients. Specimens of melanocytic nevi, primary melanomas and subcutaneous metastases of melanoma were obtained from fifty-eight patients, whereas metastasized lymph nodes were obtained from five patients. Telomerase activity was determined in these specimens by using a Polymerase Chain Reaction—based assay (TRAP. High relative mean telomerase activity levels were detected in metastatic melanoma (subcutaneous metastasess = 54.5, lymph node metastasess = 56.5. Much lower levels were detected in primary melanomas, which increased with advancing levels of tumor cell penetration (Clark II = 0.02, Clark III = 1.1, and Clark IV = 1.9. Twenty-six formalin-fixed, paraffin-embedded melanocytic lesions were sectioned and analyzed for telomerase RNA with a radioactive in situ hybridization assay. In situ hybridization studies with a probe to the template RNA component of telomerase confirmed that expression was almost exclusively confined to tumor cells and not infiltrating lymphocytes. These results indicate that levels of telomerase activity and telomerase RNA in melanocytic lesions correlate well with clinical stage and could potentially assist in the diagnosis of borderline lesions.

  18. Integration of intracellular telomerase monitoring by electrochemiluminescence technology and targeted cancer therapy by reactive oxygen species.

    Science.gov (United States)

    Zhang, Huairong; Li, Binxiao; Sun, Zhaomei; Zhou, Hong; Zhang, Shusheng

    2017-12-01

    Cancer therapies based on reactive oxygen species (ROS) have emerged as promising clinical treatments. Electrochemiluminescence (ECL) technology has also attracted considerable attention in the field of clinical diagnosis. However, studies about the integration of ECL diagnosis and ROS cancer therapy are very rare. Here we introduce a novel strategy that employs ECL technology and ROS to fill the above vacancy. Briefly, an ITO electrode was electrodeposited with polyluminol-Pt NPs composite films and modified with aptamer DNA to capture HL-60 cancer cells with high specificity. After that, mesoporous silica nanoparticles (MSNs) filled with phorbol 12-myristate 13-acetate (PMA) were closed by the telomerase primer DNA (T-primer DNA) and aptamer. After aptamer on MSN@PMA recognized and combined with the HL-60 cancer cells with high specificity, T-primer DNA on MSN@PMA could be moved away from the MSN@PMA surface after extension by telomerase in the HL-60 cancer cells and PMA was released to induce the production of ROS by the HL-60 cancer cells. After that, the polyluminol-Pt NPs composite films could react with hydrogen peroxide (a major ROS) and generate an ECL signal. Thus the intracellular telomerase activity of the HL-60 cancer cells could be detected in situ . Besides, ROS could induce apoptosis in the HL-60 cancer cells with high efficacy by causing oxidative damage to the lipids, protein, and DNA. Above all, the designed platform could not only detect intracellular telomerase activity instead of that of extracted telomerase, but could also kill targeted tumors by ECL technology and ROS.

  19. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    International Nuclear Information System (INIS)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal; Sharma, Siddharth; Bishnoi, Ajay Kumar; Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila; Kumar, Atul; Gupta, Gopal

    2014-01-01

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP

  20. Designed modulation of sex steroid signaling inhibits telomerase activity and proliferation of human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vikas; Sharma, Vikas; Singh, Vishal [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Sharma, Siddharth; Bishnoi, Ajay Kumar [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Chandra, Vishal; Maikhuri, J.P.; Dwivedi, Anila [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Kumar, Atul [Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226 031 (India); Gupta, Gopal, E-mail: g_gupta@cdri.res.in [Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow 226 031 (India)

    2014-10-15

    The predominant estrogen-receptor (ER)-β signaling in normal prostate is countered by increased ER-α signaling in prostate cancer (CaP), which in association with androgen-receptor (AR) signaling results in pathogenesis of the disease. However CaP treatments mostly target AR signaling which is initially effective but eventually leads to androgen resistance, hence simultaneous targeting of ERs has been proposed. A novel series of molecules were designed with multiple sex-steroid receptor modulating capabilities by coalescing the pharmacophores of known anti-CaP molecules that act via modulation of ER(α/β) and/or AR, viz. 3,3′diindolylmethane (DIM), mifepristone, toremifene, tamoxifen and raloxifene. N,N-diethyl-4-((2-(4-methoxyphenyl)-1H-indol-3-yl)methyl) aniline (DIMA) was identified as the most promising structure of this new series. DIMA increased annexin-V labelling, cell-cycle arrest and caspase-3 activity, and decreased expression of AR and prostate specific antigen in LNCaP cells, in vitro. Concurrently, DIMA increased ER-β, p21 and p27 protein levels in LNCaP cells and exhibited ∼ 5 times more selective binding for ER-β than ER-α, in comparison to raloxifene. DIMA exhibited a dose-dependent ER-β agonism and ER-α antagonism in classical gene reporter assay and decreased hTERT (catalytic subunit of telomerase) transcript levels in LNCaP at 3.0 μM (P < 0.05). DIMA also dose-dependently decreased telomerase enzyme activity in prostate cancer cells. It is thus concluded that DIMA acts as a multi-steroid receptor modulator and effectively inhibits proliferation of prostate cancer cells through ER-β mediated telomerase inhibition, by countering actions of ER-α and AR. Its unique molecular design can serve as a lead structure for generation of potent agents against endocrine malignancies like the CaP.

  1. Evidence for ovarian granulosa stem cells: telomerase activity and localization of the telomerase ribonucleic acid component in bovine ovarian follicles.

    Science.gov (United States)

    Lavranos, T C; Mathis, J M; Latham, S E; Kalionis, B; Shay, J W; Rodgers, R J

    1999-08-01

    We have previously postulated that granulosa cells of developing follicles arise from a population of stem cells. Stem cells and cancer cells can divide indefinitely partly because they express telomerase. Telomerase is a ribonucleoprotein enzyme that repairs the ends of telomeres that otherwise shorten progressively upon each successive cell division. In this study we carried out cell cycle analyses and examined telomerase expression to examine our hypothesis. Preantral (60-100 microm) and small (1 mm) follicles, as well as granulosa cells from medium-sized (3 mm) and large (6-8 mm) follicles, were isolated. Cell cycle analyses and expression of Ki-67, a cell cycle-related protein, were undertaken on follicles of each size (n = 3) by flow cytometry; 12% to 16% of granulosa cells in all follicles were in the S phase, and less than 2% were in the G(2)/M phase. Telomerase activity (n = 3) was highest in the small preantral follicles, declining at the 1-mm stage and even further at the 3-mm stage. In situ hybridization histochemistry was carried out on bovine ovaries, and telomerase RNA was detected in the granulosa cells of growing follicles but not primordial follicles. Two major patterns of staining were observed in the membrana granulosa of antral follicles: staining in the middle and antral layers, and staining in the middle and basal layers. No staining was detected in oocytes. Our results strongly support our hypothesis that granulosa cells arise from a population of stem cells.

  2. Coupled down-regulation of mTOR and telomerase activity during fluorouracil-induced apoptosis of hepatocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Wu Mengchao

    2007-11-01

    Full Text Available Abstract Background Hepatocellular carcinoma (HCC is the most invasive and frequently diagnosed malignancy and the second leading cause of cancer death in many regions of Asia. The PI3K/Akt/mTOR signal pathway is involved in multiple cellular functions including proliferation, differentiation, tumorigenesis, and apoptosis. Up-regulation of telomerase activity is thought to be a critical step leading to cell transformation. Methods This study investigated changes in mTOR pathway and telomerase activity in hepatocarcinoma cell line SMMC-7721 treated with chemotherapeutic agent 5-fluorouracil (5-Fu. We detected apoptosis of hepatocarcinoma cells by TUNEL assay. Telomerase activity, hTERT transcription level and p- p70 S6k was demonstrated by the telomeric repeat amplification protocol and silver staining assay, Dual-Luciferase Reporter Assay and Western blot analysis respectively. Results Treating SMMC-7721 cells with 5-Fu leads to apoptosis of the cells, and reduction in telomerase activity, as well as a dramatic reduction in the activated form of p70 S6 kinase, a mTOR substrate. The 5-Fu treatment nearly abolishes transcription of hTERT (the major component of telomerase mRNA. Treating SMMC-7721 cells with Rapamycin, a specific mTOR inhibitor, significantly reduce hTERT protein level but did not affect hTERT transcription. 5-Fu and rapamycin were synergistic in regards to down-regulation of telomerase activity in hepatocarcinoma cells. Conclusion These results suggest that chemotherapeutic agent 5-Fu may down-regulate telomerase activity at both transcriptional level and PI3K/Akt/mTOR pathway-dependent post-transcriptional level to facilitate hepatocellular carcinoma cell apoptosis.

  3. Estrogen induction of telomerase activity through regulation of the mitogen-activated protein kinase (MAPK dependent pathway in human endometrial cancer cells.

    Directory of Open Access Journals (Sweden)

    Chunxiao Zhou

    Full Text Available Given that prolonged exposure to estrogen and increased telomerase activity are associated with endometrial carcinogenesis, our objective was to evaluate the interaction between the MAPK pathway and estrogen induction of telomerase activity in endometrial cancer cells. Estradiol (E2 induced telomerase activity and hTERT mRNA expression in the estrogen receptor (ER-α positive, Ishikawa endometrial cancer cell line. UO126, a highly selective inhibitor of MEK1/MEK2, inhibited telomerase activity and hTERT mRNA expression induced by E2. Similar results were also found after transfection with ERK 1/2-specific siRNA. Treatment with E2 resulted in rapid phosphorylation of p44/42 MAPK and increased MAPK activity which was abolished by UO126. The hTERT promoter contains two estrogen response elements (EREs, and luciferase assays demonstrate that these EREs are activated by E2. Exposure to UO126 or ERK 1/2-specific siRNA in combination with E2 counteracted the stimulatory effect of E2 on luciferase activity from these EREs. These findings suggest that E2-induction of telomerase activity is mediated via the MAPK pathway in human endometrial cancer cells.

  4. Behaviour of telomere and telomerase during aging and regeneration in zebrafish.

    Science.gov (United States)

    Anchelin, Monique; Murcia, Laura; Alcaraz-Pérez, Francisca; García-Navarro, Esther M; Cayuela, María L

    2011-02-09

    Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio) offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.

  5. Telomeres, telomerase and premature ovarian failure

    Directory of Open Access Journals (Sweden)

    Renata Košir Pogačnik

    2011-11-01

    Full Text Available Telomeres are specialized structures at the ends of chromosomes, consisting of six repeated nucleotides in TTAGGG sequence. Genome stability is partly maintained by the architecture of telomeres and is gradually lost as telomeres progressively shorten with each cell replication. Critically shortened telomeres are recognized by DNA repair mechanisms as DNA damage and the cell replication cycle stops. The cell eventually dies or undergoes cell apoptosis. Telomere represents a cellular marker of biological age and are therefore also called cell mitotic clock. The enzyme that counteracts telomere shortening by adding nucleotides to the 3’ end of DNA strand is called telomerase. It is composed of the RNA subunit (TR, which is special type of messenger RNA (mRNA, the catalytic protein subunit (TERT, which works as a reverse transcriptase and numerous additional proteins. Telomerase is active in some germline, epithelial and haemopoietic cells, but in most somatic cells the activity is undetectable. In literature, the length of telomeres is closely connected with premature ovarian failure (POF. POF is generally defined as the onset of menopause before the age of 40. The causes of disease are genetical, autoimmune, iatrogenic or if we cannot establish the cause – idiopathic. A lot of studies examined correlation between idiopathic POF, length of telomeres and telomerase activity. The studies mostly show that women with POF have shortened telomeres and decreased activity of telomerase as compared to healthy women.

  6. Telomeres, telomerase and oral cancer (Review).

    Science.gov (United States)

    Sebastian, Sinto; Grammatica, Luciano; Paradiso, Angelo

    2005-12-01

    Oral squamous cell carcinoma (oral cancer) and many squamous cell carcinomas of the head and neck arise as a consequence of multiple molecular events induced by the effects of various carcinogens related to tobacco use, environmental factors, and viruses in some instances (e.g., mucosal oncogenic human papillomaviruses), against a background of inheritable resistance or susceptibility. Consequent genetic damage affects many chromosomes and genes, and it is the accumulation of these changes that appears to lead to carcinoma. Telomere maintenance by telomerase or, in its absence, alternative lengthening of telomeres protect this acquired altered genetic information ensuring immortality without losing eukaryotic linear DNA; when this does not occur DNA is lost and end-replication problems arise. Telomerase is reactivated in 80-90% of cancers thus attracting the attention of pathologists and clinicians who have explored its use as a target for anticancer therapy and to develop better diagnostic and prognostic markers. In the last few years, valuable research from various laboratories has provided major insights into telomerase and telomeres leading to their use as diagnostic and prognostic markers in several types of cancer. Moreover, many strategies have emerged which inhibit this complex enzyme for anticancer therapy and are one step ahead of clinical trials. This review explains the basic biology and the clinical implications of telomerase-based diagnosis and prognosis, the prospects for its use in anticancer therapy, and the limitations it presents in the context of oral cancer.

  7. Serum telomerase levels in smokers and smokeless tobacco users as Maras powder.

    Science.gov (United States)

    Bozkuş, Fulsen; Atilla, Nurhan; Şimşek, Seçil; Kurutaş, Ergül; Samur, Anıl; Arpağ, Hüseyin; Kahraman, Hasan

    2017-09-01

    To the best of our knowledge, no previous study regarding the serum telomerase levels in Maras powder users (MPUs) has been founded. The aim of the current study was to investigate serum telomerase levels in smokers and MPUs. The study was carried out with 98 patients (36 MPUs, 32 smokers and 30 non-smokers). Blood samples were collected, and after having measured the serum telomerase and malondialdehyde (MDA) levels of the patients, comparison were made between the groups. It has been observed that the serum telomerase and MDA levels of smokers (pnon-smoker control subjects. In addition, the levels of serum telomerase and MDA were observed to be higher in the MPU group compared to those of the smoker group (psmokers. In this context, it may be useful to further measure and assess telomerase activity in such patients in order to better determine the harmful effects associated with these habits.

  8. Antisense oligonucleotides and all-trans retinoic acid have a synergistic anti-tumor effect on oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Xu, Qin; Zhang, Zhiyuan; Zhang, Ping; Chen, Wantao

    2008-01-01

    Antisense oligonucleotides against hTR (As-ODN-hTR) have shown promising results as treatment strategies for various human malignancies. All-trans retinoic acid (ATRA) is a signalling molecule with important roles in differentiation and apoptosis. Biological responses to ATRA are currently used therapeutically in various human cancers. The aim of this study was to evaluate the anti-tumor effects of As-ODN-hTR combined with ATRA in vivo. In situ human oral squamous cell carcinoma (OSCC) models were established by subcutaneous injection of Tca8113 cells. Mice were treated with sense oligonucleotides against hTR(S-ODN-hTR) alone, As-ODN-hTR alone, ATRA alone, As-ODN-hTR plus ATRA, or S-ODN-hTR plus ATRA. Tumor size and weight were assessed in the mice. Telomerase activity was detected by a TRAP assay, apoptotic cells were evaluated with a Tunel assay, the expression of apoptosis-related proteins (Bcl-2 and Bax) was evaluated by immunohistochemistry and ultrastructural morphological changes in the tumor specimen were examined. Both As-ODN-hTR and ATRA can significantly inhibit tumor growth in this OSCC xenograft solid-tumor model, and the combination of the two agents had a synergistic anti-tumorogenic effect. We also demonstrated that this anti-tumor effect correlated with inhibition of telomerase activity. Furthermore, significant increases in the number of apoptotic cells, typical apoptotic morphology and a downregulation of the anti-apoptotic protein, bcl-2 were observed in the treated tissues. The combination of As-ODN-hTR and ATRA has a synergistic anti-tumor effect. This anti-tumor effect can be mainly attributed to apoptosis induced by a decrease in telomerase activity. Bcl-2 plays an important role in this process. Therefore, combining As-ODN-hTR and ATRA may be an approach for the treatment of human oral squamous cell carcinoma

  9. Telomerase Activity in Chicken EmbryoFibroblast Cell Cultures Infected withMarek's Disease Virus

    Directory of Open Access Journals (Sweden)

    Gregory A. Tannock

    2010-07-01

    Full Text Available Background:Telomerase is a ribonucleoprotein, which adds telomeric repeats onto the 3’end of existing telomers at the end of chromosomes ineukaryotes. One hypothesis states that telomere length may function as a mitoticclock, therefore expression of telomerase activity in cancer cells may be a necessary and essential step for tumor development and progression.Methods:The detectability of telomerase activity in chicken embryofibroblast (CEF cells infected with different passages of Marek's disease virus(MDV was tested with the TRAPEZE® telomerase detection kit at passages14 (P14, P80/1 and P120 for the Woodland strain, and passage 9 (P9 for theMPF57 strain. Results:The results showed increased telomerase activity in MDV Woodlands strain at P14 and MPF57 strain at P9. Conclusion:Our results suggest that MDV-transformed cells at low passage are a suitable system for the study of telomerases in tumor developmentand for testing telomerase-inhibiting drugs.

  10. Behaviour of telomere and telomerase during aging and regeneration in zebrafish.

    Directory of Open Access Journals (Sweden)

    Monique Anchelin

    Full Text Available Telomere length and telomerase activity are important factors in the pathobiology of human diseases. Age-related diseases and premature aging syndromes are characterized by short telomeres, which can compromise cell viability, whereas tumour cells can prevent telomere loss by aberrantly upregulating telomerase. The zebrafish (Danio rerio offers multiple experimental manipulation advantages over other vertebrate models and, therefore, it has been recently considered as a potential model for aging, cancer, and regeneration studies. However, it has only partially been exploited to shed light on these fundamental biological processes. The aim of this study was, therefore, to investigate telomere length and telomerase expression and activity in different strains of zebrafish obtained from different stock centres to determine whether they undergo any changes during aging and regeneration. We found that although both telomerase expression and telomere length increased from embryo to adulthood stages, they drastically declined in aged fish despite telomerase activity was detected in different tissues of old fish. In addition, we observed a weaker upregulation of telomerase expression in regenerating fins of old fish, which well correlates with their impaired regeneration capacity. Strikingly, telomeres were elongated or maintained during the fin regeneration process at all ages and after repeated amputations, likely to support high cell proliferation rates. We conclude that the expression of telomerase and telomere length are closely related during the entire life cycle of the fish and that these two parameters can be used as biomarkers of aging in zebrafish. Our results also reveal a direct relationship between the expression of telomerase, telomere length and the efficiency of tissue regeneration.

  11. Telomerase variant A279T induces telomere dysfunction and inhibits non-canonical telomerase activity in esophageal carcinomas.

    Directory of Open Access Journals (Sweden)

    Yuwei Zhang

    Full Text Available Although implicated in the pathogenesis of several chronic inflammatory disorders and hematologic malignancies, telomerase mutations have not been thoroughly characterized in human cancers. The present study was performed to examine the frequency and potential clinical relevance of telomerase mutations in esophageal carcinomas.Sequencing techniques were used to evaluate mutational status of telomerase reverse transcriptase (TERT and telomerase RNA component (TERC in neoplastic and adjacent normal mucosa from 143 esophageal cancer (EsC patients. MTS, flow cytometry, time lapse microscopy, and murine xenograft techniques were used to assess proliferation, apoptosis, chemotaxis, and tumorigenicity of EsC cells expressing either wtTERT or TERT variants. Immunoprecipitation, immunoblot, immunofluorescence, promoter-reporter and qRT-PCR techniques were used to evaluate interactions of TERT and several TERT variants with BRG-1 and β-catenin, and to assess expression of cytoskeletal proteins, and cell signaling. Fluorescence in-situ hybridization and spectral karyotyping techniques were used to examine telomere length and chromosomal stability.Sequencing analysis revealed one deletion involving TERC (TERC del 341-360, and two non-synonymous TERT variants [A279T (2 homozygous, 9 heterozygous; A1062T (4 heterozygous]. The minor allele frequency of the A279T variant was five-fold higher in EsC patients compared to healthy blood donors (p<0.01. Relative to wtTERT, A279T decreased telomere length, destabilized TERT-BRG-1-β-catenin complex, markedly depleted β-catenin, and down-regulated canonical Wnt signaling in cancer cells; these phenomena coincided with decreased proliferation, depletion of additional cytoskeletal proteins, impaired chemotaxis, increased chemosensitivity, and significantly decreased tumorigenicity of EsC cells. A279T expression significantly increased chromosomal aberrations in mouse embryonic fibroblasts (MEFs following Zeocin

  12. Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice.

    Science.gov (United States)

    Makino, Naoki; Maeda, Toyoki; Oyama, Jun-ichi; Sasaki, Makoto; Higuchi, Yoshihiro; Mimori, Koji; Shimizu, Takahiko

    2011-04-01

    Oxidative stress plays a pathological role in the development of heart failure. This study examined telomere biology in heart/muscle-specific manganese superoxide dismutase-deficient mice (H/M-SOD2(-/-)), which develop progressive congestive heart failure and exhibit pathology typical of dilated cardiomyopathy. EUK-8 (25mg/kg/day), a superoxide dismutase and catalase mimetic, was administered to H/M-SOD2(-/-) mice for four weeks beginning at 8 weeks of age. Telomere length, telomerase activity, telomere-associated proteins, and cell death signals were assessed in hearts from control wild-type mice (H/M-Sod2 (lox/ lox)) and H/M-SOD2(-/-) mice either treated or untreated with EUK-8. While cardiac function was unchanged in these experimental mice, the end-diastolic dimension in H/M-SOD2(-/-) mice was notably dilated and could be significantly reduced by EUK-8 treatment. At the end of the study, no shortening of telomere length was observed in heart tissues from all mice tested, but telomerase activity was decreased in heart tissue from H/M-SOD2(-/-) mice compared to control mice. Protein expression for telomerase reverse transcriptase and telomere repeat binding factor 2 was also downregulated in H/M-SOD2(-/-) heart tissue as was expression of phospho-Akt, insulin-like growth factor, and endothelial nitric oxide synthase. Expression levels of Sirt1, a lifespan modulator, were enhanced while FoxO3a was depressed in H/M-SOD2(-/-) hearts. All of the changes seen in H/M-SOD2(-/-) heart tissue could be inhibited by EUK-8 treatment. Taken together, the results suggest that oxidant stress might affect myocardial telomerase activity and telomere-associated proteins. Telomerase may therefore play a pivotal role in antioxidant defense mechanisms, and may be useful as a novel therapeutic tool for treating human heart failure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Peroxiredoxin 1 Protects Telomeres from Oxidative Damage and Preserves Telomeric DNA for Extension by Telomerase

    Directory of Open Access Journals (Sweden)

    Eric Aeby

    2016-12-01

    Full Text Available Oxidative damage of telomeres can promote cancer, cardiac failure, and muscular dystrophy. Specific mechanisms protecting telomeres from oxidative damage have not been described. We analyzed telomeric chromatin composition during the cell cycle and show that the antioxidant enzyme peroxiredoxin 1 (PRDX1 is enriched at telomeres during S phase. Deletion of the PRDX1 gene leads to damage of telomeric DNA upon oxidative stress, revealing a protective function of PRDX1 against oxidative damage at telomeres. We also show that the oxidized nucleotide 8-oxo-2′deoxyguanosine-5′-triphosphate (8oxodGTP causes premature chain termination when incorporated by telomerase and that some DNA substrates terminating in 8oxoG prevent extension by telomerase. Thus, PRDX1 safeguards telomeres from oxygen radicals to counteract telomere damage and preserve telomeric DNA for elongation by telomerase.

  14. Detection of telomerase activity in Plasmodium falciparum using a nonradioactive method

    Directory of Open Access Journals (Sweden)

    Rubiano Claudia C

    2003-01-01

    Full Text Available A simple, quick and sensitive method was used to detect telomerase activity in Plasmodium falciparum. The telomeric repeat amplification protocol (TRAP assay was modified using electrophoresis and staining with SYBR-green I to detect telomerase activity in a range of 10² to 10(7 parasites. This might be a useful way to ascertain telomerase activity in different types of nontumor cells.

  15. Ciliate telomerase RNA loop IV nucleotides promote hierarchical RNP assembly and holoenzyme stability.

    Science.gov (United States)

    Robart, Aaron R; O'Connor, Catherine M; Collins, Kathleen

    2010-03-01

    Telomerase adds simple-sequence repeats to chromosome 3' ends to compensate for the loss of repeats with each round of genome replication. To accomplish this de novo DNA synthesis, telomerase uses a template within its integral RNA component. In addition to providing the template, the telomerase RNA subunit (TER) also harbors nontemplate motifs that contribute to the specialized telomerase catalytic cycle of reiterative repeat synthesis. Most nontemplate TER motifs function through linkage with the template, but in ciliate and vertebrate telomerases, a stem-loop motif binds telomerase reverse transcriptase (TERT) and reconstitutes full activity of the minimal recombinant TERT+TER RNP, even when physically separated from the template. Here, we resolve the functional requirements for this motif of ciliate TER in physiological RNP context using the Tetrahymena thermophila p65-TER-TERT core RNP reconstituted in vitro and the holoenzyme reconstituted in vivo. Contrary to expectation based on assays of the minimal recombinant RNP, we find that none of a panel of individual loop IV nucleotide substitutions impacts the profile of telomerase product synthesis when reconstituted as physiological core RNP or holoenzyme RNP. However, loop IV nucleotide substitutions do variably reduce assembly of TERT with the p65-TER complex in vitro and reduce the accumulation and stability of telomerase RNP in endogenous holoenzyme context. Our results point to a unifying model of a conformational activation role for this TER motif in the telomerase RNP enzyme.

  16. Telomere Elongation and Naive Pluripotent Stem Cells Achieved from Telomerase Haplo-Insufficient Cells by Somatic Cell Nuclear Transfer

    Directory of Open Access Journals (Sweden)

    Li-Ying Sung

    2014-12-01

    Full Text Available Summary: Haplo-insufficiency of telomerase genes in humans leads to telomere syndromes such as dyskeratosis congenital and idiopathic pulmonary fibrosis. Generation of pluripotent stem cells from telomerase haplo-insufficient donor cells would provide unique opportunities toward the realization of patient-specific stem cell therapies. Recently, pluripotent human embryonic stem cells (ntESCs have been efficiently achieved by somatic cell nuclear transfer (SCNT. We tested the hypothesis that SCNT could effectively elongate shortening telomeres of telomerase haplo-insufficient cells in the ntESCs with relevant mouse models. Indeed, telomeres of telomerase haplo-insufficient (Terc+/− mouse cells are elongated in ntESCs. Moreover, ntESCs derived from Terc+/− cells exhibit naive pluripotency as evidenced by generation of Terc+/− ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency. These data suggest that SCNT could offer a powerful tool to reprogram telomeres and to discover the factors for robust restoration of telomeres and pluripotency of telomerase haplo-insufficient somatic cells. : Sung et al. demonstrate in a mouse model that telomeres of telomerase haplo-insufficient cells can be elongated by somatic cell nuclear transfer. Moreover, ntESCs derived from Terc+/− cells exhibit pluripotency evidenced by generation of Terc+/−ntESC clone pups by tetraploid embryo complementation, the most stringent test of naive pluripotency.

  17. The influence of the telomere-telomerase system on diabetes mellitus and its vascular complications.

    Science.gov (United States)

    Qi Nan, Wu; Ling, Zhang; Bing, Chen

    2015-06-01

    The telomere-telomerase system plays an important role in the pathogenesis and disease progression of diabetes mellitus as well as in its vascular complications. Recent studies suggest that telomere shortening and abnormal telomerase activity occur in patients with diabetes mellitus, and targeting the telomere-telomerase system has become a prospective treatment for diabetes mellitus and its vascular complications. This review highlights the significance of the telomere-telomerase system and supports its role as a possible therapeutic target for patients with diabetes mellitus and its vascular complications Areas covered: This review covers the advances in understanding the telomere-telomerase system over the last 30 years and its significance in diabetes mellitus. In addition, it provides knowledge regarding the significance of the telomere-telomerase system in diabetes mellitus and its vascular complications as well as its role and mechanisms in oxidative stress, cell therapy and antioxidant activity Expert opinion: The telomere-telomerase system may be a potential therapeutic target that can protect against DNA damage and apoptosis in patients with diabetes mellitus and its vascular complications. DNA damage and apoptosis are associated with oxidative stress and are involved in the dysfunction of pancreatic β cells, insulin resistance, and its vascular complications. Abnormalities in the telomere-telomerase system may be associated with diabetes mellitus and its vascular complications. Therapies targeting telomere-telomerase system, telomerase reverse transcriptase transfection and alterative telomere lengthening must be identified before gene therapy can commence.

  18. Inhibition of telomerase by linear-chain fatty acids: a structural analysis.

    Science.gov (United States)

    Oda, Masako; Ueno, Takamasa; Kasai, Nobuyuki; Takahashi, Hirotada; Yoshida, Hiromi; Sugawara, Fumio; Sakaguchi, Kengo; Hayashi, Hideya; Mizushina, Yoshiyuki

    2002-01-01

    In the present study, we have found that mono-unsaturated linear-chain fatty acids in the cis configuration with C(18) hydrocarbon chains (i.e. oleic acid) strongly inhibited the activity of human telomerase in a cell-free enzymic assay, with an IC(50) value of 8.6 microM. Interestingly, fatty acids with hydrocarbon chain lengths below 16 or above 20 carbons substantially decreased the potency of inhibition of telomerase. Moreover, the cis-mono-unsaturated C(18) linear-chain fatty acid oleic acid was the strongest inhibitor of all the fatty acids tested. A kinetic study revealed that oleic acid competitively inhibited the activity of telomerase ( K (i)=3.06 microM) with respect to the telomerase substrate primer. The energy-minimized three-dimensional structure of the linear-chain fatty acid was calculated and modelled. A molecule width of 11.53-14.26 A (where 1 A=0.1 nm) in the C(16) to C(20) fatty acid structure was suggested to be important for telomerase inhibition. The three-dimensional structure of the telomerase active site (i.e. the substrate primer-binding site) appears to have a pocket that could bind oleic acid, with the pocket being 8.50 A long and 12.80 A wide. PMID:12121150

  19. Correlation between telomerase activity and matrix metalloproteinases 2 expression in gastric cancer.

    Science.gov (United States)

    Wang, Gang; Wang, Wenling; Zhou, Jianjiang; Yang, Xiaofeng

    2013-01-01

    To investigate the relationship between telomerase activity (TA) and matrix metallo proteinases 2 (MMP-2) on malignant behavior and prognosis predictable value in gastric cancer. Telomerase activity and MMP-2 protein expressions were tested in 40 gastric surgical resected cancer samples and the clinicopathological data of enrolled patients were obtained to get correlation analysis results. The expression of telomerase was up-regulated with infiltrating depth, lymph node metastasis and stage (P correlated with infiltrating depth (P < 0.05). Combined detections of telomerase activity and MMP2 protein could identify patients at high risk in disease recurrence and prognosis more efficiently.

  20. Quantitative and qualitative analysis of telomerase activity in benign and malignant thyroid tissues

    International Nuclear Information System (INIS)

    Zheng Rongxiu; Fang Peihua; Tan Jian; Lu Mei; Li Yigong

    2002-01-01

    Objective: To study the status of telomerase activity during the development of thyroid tumors, and to determine whether telomerase activity can be used clinically as a molecular marker in the differential diagnosis of thyroid cancer. Methods: Telomerase activity was measured in 37 thyroid carcinomas, 33 benign thyroid lesions and 30 normal thyroid tissue samples by means of a modified TRAP-PCR. The assay was also applied to 15 fine needle aspirates (FNAs) of thyroid carcinomas to test its sensitivity. Results: Thirty-one of 37 thyroid carcinomas (83.8%), 7 of 33 benign thyroid lesions (21.2%), and 4 of 30 adjacent normal thyroid tissue samples expressed telomerase activity, 15 FNAs also had positive telomerase activity, just as their corresponding tissue specimens. The quantitative analysis showed that the telomerase activity was significantly higher in thyroid carcinomas than that in benign thyroid tissue samples. And medullary carcinomas and anaplastic carcinomas had higher levels of telomerase activity than papillary carcinomas. Conclusions: Telomerase activity is a good marker for thyroid carcinomas. The quantitative TRAP-PCR might have more potential application in the differential diagnosis of tumors and the estimation of tumor progression and prognosis. And this sensitive assay could become a useful new modality for supplementing microscopic cytopathology in the detection of cancer cells in small tissue samples and FNAs

  1. RAD51 and RTEL1 compensate telomere loss in the absence of telomerase.

    Science.gov (United States)

    Olivier, Margaux; Charbonnel, Cyril; Amiard, Simon; White, Charles I; Gallego, Maria E

    2018-03-16

    Replicative erosion of telomeres is naturally compensated by telomerase and studies in yeast and vertebrates show that homologous recombination can compensate for the absence of telomerase. We show that RAD51 protein, which catalyzes the key strand-invasion step of homologous recombination, is localized at Arabidopsis telomeres in absence of telomerase. Blocking the strand-transfer activity of the RAD51 in telomerase mutant plants results in a strikingly earlier onset of developmental defects, accompanied by increased numbers of end-to-end chromosome fusions. Imposing replication stress through knockout of RNaseH2 increases numbers of chromosome fusions and reduces the survival of these plants deficient for telomerase and homologous recombination. This finding suggests that RAD51-dependent homologous recombination acts as an essential backup to the telomerase for compensation of replicative telomere loss to ensure genome stability. Furthermore, we show that this positive role of RAD51 in telomere stability is dependent on the RTEL1 helicase. We propose that a RAD51 dependent break-induced replication process is activated in cells lacking telomerase activity, with RTEL1 responsible for D-loop dissolution after telomere replication.

  2. Elevation of telomerase activity in chronic radiation ulcer of human skin

    International Nuclear Information System (INIS)

    Li Xiaoying; Zhao Po; Wang Dewen; Yang Zhixiang

    1997-01-01

    Objective: To investigate the levels of telomerase activity in chronic radiation ulcers of human skin and the possible relationship between the enzyme and cancer transformation. Method: Using nonisotopic telomere repeat amplification protocol (TRAP), detections were performed in 20 cases of chronic radiation ulcers of human skin, 5 cases of normal skin tissues and 5 cases of carcinoma. Results: The positive rates for telomerase activity were 30.0%(6/20), 0(0/5) and 100%(5/5) in chronic radiation ulcers of human skin, normal skin and carcinoma, respectively. The telomerase activity in radiation ulcer was weaker than in carcinoma. Conclusion: The telomerase activity assay might be used as a marker for predicting the prognosis and the effect of treatment in chronic radiation ulcer of human skin

  3. Protein composition of catalytically active human telomerase from immortal cells

    DEFF Research Database (Denmark)

    Cohen, Scott B; Graham, Mark E; Lovrecz, George O

    2007-01-01

    Telomerase is a ribonucleoprotein enzyme complex that adds 5'-TTAGGG-3' repeats onto the ends of human chromosomes, providing a telomere maintenance mechanism for approximately 90% of human cancers. We have purified human telomerase approximately 10(8)-fold, with the final elution dependent on th...

  4. Telomerase lost?

    Czech Academy of Sciences Publication Activity Database

    Mason, J. M.; Randall, T. A.; Čapková Frydrychová, Radmila

    2016-01-01

    Roč. 125, č. 1 (2016), s. 65-73 ISSN 0009-5915 R&D Projects: GA ČR GA14-07172S Grant - others:GA JU(CZ) 052/2013/P; GA JU(CZ) 038/2014/P; European Union Seventh Framework Programme(CZ) 316304 Program:FP7 Institutional support: RVO:60077344 Keywords : telomerase * DNA sequences * Bombyx mori Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.414, year: 2016 http://link.springer.com/article/10.1007%2Fs00412-015-0528-7

  5. Highly sensitive electrochemical detection of human telomerase activity based on bio-barcode method.

    Science.gov (United States)

    Li, Ying; Liu, Bangwei; Li, Xia; Wei, Qingli

    2010-07-15

    In the present study, an electrochemical method for highly sensitive detection of human telomerase activity was developed based on bio-barcode amplification assay. Telomerase was extracted from HeLa cells, then the extract was mixed with telomerase substrate (TS) primer to perform extension reaction. The extension product was hybridized with the capture DNA immobilized on the Au electrode and then reacted with the signal DNA on Au nanoparticles to form a sandwich hybridization mode. Electrochemical signals were generated by chronocoulometric interrogation of [Ru(NH(3))(6)](3+) that quantitatively binds to the DNA on Au nanoparticles via electrostatic interaction. This method can detect the telomerase activity from as little as 10 cultured cancer cells without the polymerase chain reaction (PCR) amplification of telomerase extension product. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  6. Telomerase activation by the E6 gene product of human papillomavirus type 16.

    Science.gov (United States)

    Klingelhutz, A J; Foster, S A; McDougall, J K

    1996-03-07

    Activation of telomerase, a ribonucleoprotein complex that synthesizes telomere repeat sequences, is linked to cell immortalization and is characteristic of most cell lines and tumours. Here we show that expression of the human papillomavirus type 16 (HPV-16) E6 protein activates telomerase in early-passage human keratinocytes and mammary epithelial cells. This activation was observed in cells pre-crisis, that is, before they became immortal, and occurred within one passage of retroviral infection with vectors expressing HPV-16 E6. Studies using HPV-16 E6 mutants showed that there was no correlation between the ability of the mutants to activate telomerase and their ability to target p53 for degradation, suggesting that telomerase activation by HPV-16 E6 is p53 independent. Keratinocytes expressing wild-type HPV-16 E6 have an extended lifespan, but do not become immortal, indicating that telomerase activation and E6-mediate degradation of p53 are insufficient for their immortalization. These results show that telomerase activation is an intrinsic, but insufficient, component of transformation by HPV.

  7. Telomere stability and telomerase in mesenchymal stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Graakjaer, Jesper; Kølvrå, Steen

    2008-01-01

    Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing...... embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important....... In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall...

  8. Inhibition of cell proliferation and induction of apoptosis by oleanane triterpenoid (CDDO-Me) in pancreatic cancer cells is associated with the suppression of hTERT gene expression and its telomerase activity

    International Nuclear Information System (INIS)

    Deeb, Dorrah; Gao, Xiaohua; Liu, Yongbo; Kim, Sahn-Ho; Pindolia, Kirit R.; Arbab, Ali S.; Gautam, Subhash C.

    2012-01-01

    Highlights: ► CDDO-Me inhibits hTERT gene expression. ► CDDO-Me inhibits hTERT protein expression. ► CDDO-Me inhibits hTERT telomerase activity. ► CDDO-Me inhibits hTERT regulatory proteins. -- Abstract: Methyl-2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oate (CDDO-Me) is a multifunctional oleanane synthetic triterpenoid with potent anti-inflammatory and antitumorigenic properties. The mechanisms of the antisurvival and apoptosis-inducing activities of CDDO-Me and related derivatives of oleanolic acid have been defined; however, to date, no study has been carried out on the effect of CDDOs on human telomerase reverse transcriptase (hTERT) gene or telomerase activity. Here we report for the first time that inhibition of cell proliferation and induction of apoptosis by CDDO-Me in pancreatic cancer cell lines is associated with the inhibition of hTERT gene expression, hTERT telomerase activity and a number of proteins that regulate hTERT expression and activity. Furthermore, abrogation or overexpression of hTERT protein altered the susceptibility of tumor cells to CDDO-Me. These findings suggest that telomerase (hTERT) is a relevant target of CDDO-Me in pancreatic cancer cells.

  9. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    International Nuclear Information System (INIS)

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun; Juhn, Kyoung-Mi; Woo, Seon Rang; Kim, Hee-Young; Han, Young-Hoon; Hwang, Sang-Gu; Hong, Sung-Hee; Kang, Chang-Mo; Yoo, Young-Do; Park, Won-Bong; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2010-01-01

    Research highlights: → In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. → The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. → The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. → P53 status is not associated with the occurrence of unsensitized clone. → Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC -/- cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC -/- clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.

  10. Zinc sulfate contributes to promote telomere length extension via increasing telomerase gene expression, telomerase activity and change in the TERT gene promoter CpG island methylation status of human adipose-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Raheleh Farahzadi

    Full Text Available The use of mesenchymal stem cells (MSCs for cell therapy and regenerative medicine has received widespread attention over the past few years, but their application can be complicated by factors such as reduction in proliferation potential, the senescent tendency of the MSCs upon expansion and their age-dependent decline in number and function. It was shown that all the mentioned features were accompanied by a reduction in telomerase activity and telomere shortening. Furthermore, the role of epigenetic changes in aging, especially changes in promoter methylation, was reported. In this study, MSCs were isolated from the adipose tissue with enzymatic digestion. In addition, immunocytochemistry staining and flow cytometric analysis were performed to investigate the cell-surface markers. In addition, alizarin red-S, sudan III, toluidine blue, and cresyl violet staining were performed to evaluate the multi-lineage differentiation of hADSCs. In order to improve the effective application of MSCs, these cells were treated with 1.5 × 10-8 and 2.99 × 10-10 M of ZnSO4 for 48 hours. The length of the absolute telomere, human telomerase reverse transcriptase (hTERT gene expression, telomerase activity, the investigation of methylation status of the hTERT gene promoter and the percentage of senescent cells were analyzed with quantitative real-time PCR, PCR-ELISA TRAP assay, methylation specific PCR (MSP, and beta-galactosidase (SA-β-gal staining, respectively. The results showed that the telomere length, the hTERT gene expression, and the telomerase activity had significantly increased. In addition, the percentage of senescent cells had significantly decreased and changes in the methylation status of the CpG islands in the hTERT promoter region under treatment with ZnSO4 were seen. In conclusion, it seems that ZnSO4 as a proper antioxidant could improve the aging-related features due to lengthening of the telomeres, increasing the telomerase gene expression

  11. The inhibitory effect of Curcuma longa extract on telomerase activity ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... curcumin, could have important effect on treatment of lung cancer. Curcumin ... study inhibitory effect of C. longa total extract on telomerase in A549 lung cancer cell line as in vitro model of ..... If A > 2× (OD of negative control), then, telomerase activity ... radiation, chemotherapy, laser therapy, photodynamic.

  12. Demonstration of constant upregulation of the telomerase RNA component in human gastric carcinomas using in situ hybridization.

    Science.gov (United States)

    Heine, B; Hummel, M; Demel, G; Stein, H

    1998-06-01

    Upregulation of the ribonucleoprotein telomerase seems to be a prerequisite for immortality, a feature of malignant cells. Using a polymerase chain reaction (PCR)-based assay, it is possible to demonstrate telomerase activity (TA) in specimens of most human malignancies, whereas it is absent from most normal tissues. It remains unclear, however, why between 5 and 50 per cent of various malignant tumour samples give negative results when TA is measured by the telomeric repeat amplification protocol (TRAP). The expectation that reverse transcription (RT)-PCR for detection of the telomerase RNA component (hTR) would be able to complement or to replace the TRAP assay failed, since malignant as well as non-malignant tissue samples gave positive results in most instances. In the present study, in situ hybridization (ISH) was developed to demonstrate the RNA component of human telomerase at the single cell level. With this method, 13 specimens of fresh frozen gastric carcinoma and four of normal, dysplastic, or inflamed gastric mucosa were investigated and the results were compared with those obtained by RT-PCR and the TRAP assay. In addition, ISH was performed on formalin-fixed sections of the same cases. The TRAP assay revealed positive results in 8 out of 13 gastric carcinomas and was negative in all non-malignant tissues. RT-PCR led to amplification of the telomerase RNA component in all specimens tested, irrespective of the presence or absence of malignant cells. By ISH, all gastric carcinomas showed strong telomerase RNA component-specific signals over malignant cells, whereas only a few grains were detectable over some types of normal somatic cells, including activated lymphocytes. In conclusion, high expression of the telomerase RNA component was restricted to the malignant cells of all the gastric carcinomas investigated, as shown by ISH. This indicates that the absence of TA in a proportion of carcinomas is due to methodological problems of the TRAP assay and is

  13. Telomere-independent functions of telomerase in nuclei, cytoplasm, and mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Chiodi, Ilaria; Mondello, Chiara, E-mail: mondello@igm.cnr.it [Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia (Italy)

    2012-09-28

    Telomerase canonical activity at telomeres prevents telomere shortening, allowing chromosome stability and cellular proliferation. To perform this task, the catalytic subunit (telomerase reverse transcriptase, TERT) of the enzyme works as a reverse transcriptase together with the telomerase RNA component (TERC), adding telomeric repeats to DNA molecule ends. Growing evidence indicates that, besides the telomeric-DNA synthesis activity, TERT has additional functions in tumor development and is involved in many different biological processes, among which cellular proliferation, gene expression regulation, and mitochondrial functionality. TERT has been shown to act independently of TERC in the Wnt-β-catenin signaling pathway, regulating the expression of Wnt target genes, which play a role in development and tumorigenesis. Moreover, TERT RNA-dependent RNA polymerase activity has been found, leading to the genesis of double-stranded RNAs that act as precursor of silencing RNAs. In mitochondria, a TERT TERC-independent reverse transcriptase activity has been described that could play a role in the protection of mitochondrial integrity. In this review, we will discuss some of the extra-telomeric functions of telomerase.

  14. Telomerase Activity Impacts on Epstein-Barr Virus Infection of AGS Cells

    Science.gov (United States)

    Rac, Jürgen; Haas, Florian; Schumacher, Andrina; Middeldorp, Jaap M.; Delecluse, Henri-Jacques; Speck, Roberto F.

    2015-01-01

    The Epstein-Barr virus (EBV) is transmitted from host-to-host via saliva and is associated with epithelial malignancies including nasopharyngeal carcinoma (NPC) and some forms of gastric carcinoma (GC). Nevertheless, EBV does not transform epithelial cells in vitro where it is rapidly lost from infected primary epithelial cells or epithelial tumor cells. Long-term infection by EBV, however, can be established in hTERT-immortalized nasopharyngeal epithelial cells. Here, we hypothesized that increased telomerase activity in epithelial cells enhances their susceptibility to infection by EBV. Using HONE-1, AGS and HEK293 cells we generated epithelial model cell lines with increased or suppressed telomerase activity by stable ectopic expression of hTERT or of a catalytically inactive, dominant negative hTERT mutant. Infection experiments with recombinant prototypic EBV (rB95.8), recombinant NPC EBV (rM81) with increased epithelial cell tropism compared to B95.8, or recombinant B95.8 EBV with BZLF1-knockout that is not able to undergo lytic replication, revealed that infection frequencies positively correlate with telomerase activity in AGS cells but also partly depend on the cellular background. AGS cells with increased telomerase activity showed increased expression mainly of latent EBV genes, suggesting that increased telomerase activity directly acts on the EBV infection of epithelial cells by facilitating latent EBV gene expression early upon virus inoculation. Thus, our results indicate that infection of epithelial cells by EBV is a very selective process involving, among others, telomerase activity and cellular background to allow for optimized host-to-host transmission via saliva. PMID:25856387

  15. In Situ Synthesized Silver Nanoclusters for Tracking the Role of Telomerase Activity in the Differentiation of Mesenchymal Stem Cells to Neural Stem Cells.

    Science.gov (United States)

    Dong, Fangyuan; Feng, Enduo; Zheng, Tingting; Tian, Yang

    2018-01-17

    Human mesenchymal stem cells (hMSCs) have potential use in cell replacement therapy for central nervous system disorders. However, the factors that impacted the differentiation process are unclear at the present stage because the powerful analytical method is the bottleneck. Herein, a novel strategy was developed for self-imaging and biosensing of telomerase activity in stem cells, using in situ biosynthesized silver nanoclusters (AgNCs) full of C bases. The present AgNCs possess synthetic convenience, long-time stability, and cytocompatibility. The weak fluorescence of these AgNCs is quickly turned on when approaching telomerase because of the strong interaction between C bases on AgNCs and G bases in telomerase, resulting in telomerase-dependent fluorescent signals. The developed method demonstrated high sensitivity and selectivity and broad dynamic linear range with a low detection limit. Using this powerful tool, it was first discovered that telomerase activity plays important roles in the proliferation of hMSCs and neural stem cells (NSCs) as well as during the differentiation processes from hMSCs to NSCs.

  16. Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer

    Directory of Open Access Journals (Sweden)

    Iniesta Pilar

    2011-08-01

    Full Text Available Abstract Background Mortality rates for advanced lung cancer have not declined for decades, even with the implementation of novel chemotherapeutic regimens or the use of tyrosine kinase inhibitors. Cancer Stem Cells (CSCs are thought to be responsible for resistance to chemo/radiotherapy. Therefore, targeting CSCs with novel compounds may be an effective approach to reduce lung tumor growth and metastasis. We have isolated and characterized CSCs from non-small cell lung cancer (NSCLC cell lines and measured their telomerase activity, telomere length, and sensitivity to the novel telomerase inhibitor MST312. Results The aldehyde dehydrogenase (ALDH positive lung cancer cell fraction is enriched in markers of stemness and endowed with stem cell properties. ALDH+ CSCs display longer telomeres than the non-CSC population. Interestingly, MST312 has a strong antiproliferative effect on lung CSCs and induces p21, p27 and apoptosis in the whole tumor population. MST312 acts through activation of the ATM/pH2AX DNA damage pathway (short-term effect and through decrease in telomere length (long-term effect. Administration of this telomerase inhibitor (40 mg/kg in the H460 xenograft model results in significant tumor shrinkage (70% reduction, compared to controls. Combination therapy consisting of irradiation (10Gy plus administration of MST312 did not improve the therapeutic efficacy of the telomerase inhibitor alone. Treatment with MST312 reduces significantly the number of ALDH+ CSCs and their telomeric length in vivo. Conclusions We conclude that antitelomeric therapy using MST312 mainly targets lung CSCs and may represent a novel approach for effective treatment of lung cancer.

  17. Urine Telomerase for Diagnosis and Surveillance of Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Angela Lamarca

    2012-01-01

    Full Text Available Bladder cancer has increased incidence during last decades. For those patients with nonmuscle involved tumors, noninvasive diagnosis test and surveillance methods must be designed to avoid current cystoscopies that nowadays are done regularly in a lot of patients. Novel urine biomarkers have been developed during last years. Telomerase is important in cancer biology, improving the division capacity of cancer cells. Even urinary telomerase could be a potentially useful urinary tumor marker; its use for diagnosis of asymptomatic and symptomatic patients or its impact during surveillance is still unknown. Moreover, there will need to be uniformity and standardization in the assays before it can become useful in clinical practice. It does not seem to exist a real difference between the most classical assays for the detection of urine telomerase (TRAP and hTERT. However, the new detection methods with modified TeloTAGGG telomerase or with gold nanoparticles must also be taken into consideration for the correct development of this diagnosis method. Maybe the target population would be the high-risk groups within screening programs. To date there is no enough evidence to use it alone and to eliminate cystoscopies from the diagnosis and surveillance of these patients. The combination with cytology or FISH is still preferred.

  18. Targeted Regression of Hepatocellular Carcinoma by Cancer-Specific RNA Replacement through MicroRNA Regulation.

    Science.gov (United States)

    Kim, Juhyun; Won, Ranhui; Ban, Guyee; Ju, Mi Ha; Cho, Kyung Sook; Young Han, Sang; Jeong, Jin-Sook; Lee, Seong-Wook

    2015-07-20

    Hepatocellular carcinoma (HCC) has a high fatality rate and limited therapeutic options with side effects and low efficacy. Here, we proposed a new anti-HCC approach based on cancer-specific post-transcriptional targeting. To this end, trans-splicing ribozymes from Tetrahymena group I intron were developed, which can specifically induce therapeutic gene activity through HCC-specific replacement of telomerase reverse transcriptase (TERT) RNA. To circumvent side effects due to TERT expression in regenerating liver tissue, liver-specific microRNA-regulated ribozymes were constructed by incorporating complementary binding sites for the hepatocyte-selective microRNA-122a (miR-122a), which is down-regulated in HCC. The ribozyme activity in vivo was assessed in mouse models orthotopically implanted with HCC. Systemic administration of adenovirus encoding the developed ribozymes caused efficient anti-cancer effect and the least hepatotoxicity with regulation of ribozyme expression by miR-122a in both xenografted and syngeneic orthotopic murine model of multifocal HCC. Of note, the ribozyme induced local and systemic antitumor immunity, thereby completely suppressing secondary tumor challenge in the syngeneic mouse. The cancer specific trans-splicing ribozyme system, which mediates tissue-specific microRNA-regulated RNA replacement, provides a clinically relevant, safe, and efficient strategy for HCC treatment.

  19. Detection of telomerase on upconversion nanoparticle modified cellulose paper.

    Science.gov (United States)

    Wang, Faming; Li, Wen; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2015-07-25

    Herein we report a convenient and sensitive method for the detection of telomerase activity based on upconversion nanoparticle (UCNP) modified cellulose paper. Compared with many solution-phase systems, this paper chip is more stable and easily stores the test results. What's more, the low background fluorescence of the UCNPs increases the sensitivity of this method, and the low telomerase levels in different cell lines can clearly be discriminated by the naked eye.

  20. Human RTEL1 stabilizes long G-overhangs allowing telomerase-dependent over-extension.

    Science.gov (United States)

    Porreca, Rosa M; Glousker, Galina; Awad, Aya; Matilla Fernandez, Maria I; Gibaud, Anne; Naucke, Christian; Cohen, Scott B; Bryan, Tracy M; Tzfati, Yehuda; Draskovic, Irena; Londoño-Vallejo, Arturo

    2018-05-18

    Telomere maintenance protects the cell against genome instability and senescence. Accelerated telomere attrition is a characteristic of premature aging syndromes including Dyskeratosis congenita (DC). Mutations in hRTEL1 are associated with a severe form of DC called Hoyeraal-Hreidarsson syndrome (HHS). HHS patients carry short telomeres and HHS cells display telomere damage. Here we investigated how hRTEL1 contributes to telomere maintenance in human primary as well as tumor cells. Transient depletion of hRTEL1 resulted in rapid telomere shortening only in the context of telomerase-positive cells with very long telomeres and high levels of telomerase. The effect of hRTEL1 on telomere length is telomerase dependent without impacting telomerase biogenesis or targeting of the enzyme to telomeres. Instead, RTEL1 depletion led to a decrease in both G-overhang content and POT1 association with telomeres with limited telomere uncapping. Strikingly, overexpression of POT1 restored telomere length but not the overhang, demonstrating that G-overhang loss is the primary defect caused by RTEL1 depletion. We propose that hRTEL1 contributes to the maintenance of long telomeres by preserving long G-overhangs, thereby facilitating POT1 binding and elongation by telomerase.

  1. Irradiation-induced telomerase activity and gastric cancer risk: a case-control analysis in a Chinese Han population

    International Nuclear Information System (INIS)

    He, Xianli; Qiao, Qing; Ge, Naijian; Nan, Jing; Shen, Shuqun; Wang, Zizhong; Yang, Yefa; Bao, Guoqiang

    2010-01-01

    Telomerase expression is one of the characteristics of gastric cancer (GC) cells and telomerase activity is frequently up-regulated by a variety of mechanisms during GC development. Therefore, we hypothesized that elevated levels of activated telomerase might enhance GC risk due to increased propagation of cells with DNA damage, such as induced by γ-radiation. To explore this hypothesis, 246 GC cases and 246 matched controls were recruited in our case-control study. TRAP-ELISA was used to assess the levels of telomerase activity at baseline and after γ-radiation and the γ-radiation-induced telomerase activity (defined as after γ-irradiation/baseline) in cultured peripheral blood lymphocytes (PBLs). Our data showed that there was no significant difference for the baseline telomerase activity between GC cases and controls (10.17 ± 7.21 vs. 11.02 ± 8.03, p = 0.168). However, after γ-radiation treatment, γ-radiation-induced telomerase activity was significantly higher in the cases than in the controls (1.51 ± 0.93 vs. 1.22 ± 0.66, p < 0.001). Using the median value of γ-radiation-induced telomerase activity in the controls as a cutoff point, we observed that high γ-radiation-induced telomerase activity was associated with a significantly increased GC risk (adjusted odds ratio, 2.45; 95% confidence interval, 1.83-3.18). Moreover, a dose response association was noted between γ-radiation-induced telomerase activity and GC risk. Age, but not sex, smoking and drinking status seem to have a modulating effect on the γ-radiation-induced telomerase activities in both cases and controls. Overall, our findings for the first time suggest that the increased γ-radiation-induced telomerase activity in PBLs might be associated with elevated GC risk. Further confirmation of this association using a prospective study design is warranted

  2. Telomerase and Tel1p Preferentially Associate with Short Telomeres in S. cerevisiae

    Science.gov (United States)

    Sabourin, Michelle; Tuzon, Creighton T.; Zakian, Virginia A.

    2009-01-01

    SUMMARY In diverse organisms, telomerase preferentially elongates short telomeres. We generated a single short telomere in otherwise wild-type (WT) S. cerevisiae cells. The binding of the positive regulators Ku and Cdc13p was similar at short and WT-length telomeres. The negative regulators Rif1p and Rif2p were present at the short telomere, although Rif2p levels were reduced. Two telomerase holoenzyme components, Est1p and Est2p, were preferentially enriched at short telomeres in late S/G2 phase, the time of telomerase action. Tel1p, the yeast ATM-like checkpoint kinase, was highly enriched at short telomeres from early S through G2 phase and even into the next cell cycle. Nonetheless, induction of a single short telomere did not elicit a cell-cycle arrest. Tel1p binding was dependent on Xrs2p and required for preferential binding of telomerase to short telomeres. These data suggest that Tel1p targets telomerase to the DNA ends most in need of extension. PMID:17656141

  3. Telomerase Activity, Cytokeratin 20 and Cytokeratin 19 in Urine Cells of Bladder Cancer Patients

    International Nuclear Information System (INIS)

    Morsi, M.I.; Youssef, A.I.; El-Sedafi, A.S.; Ghazal, A.A.; Zaher, E.R.; Hassouna, M.E.

    2006-01-01

    Aim of the Study: This work aims to search for markers suitable for the screening of bladder cancer, which should be specific, sensitive, reproducible, non-invasive and at acceptable cost. Patients and Methods: The study included 50 patients diagnosed as bladder cancer (35 TCC, 15 SCC) of different stages and grades, 30 patients with various urothelial diseases, besides 20 apparently healthy subjects of matched age and sex to the malignant group. A random midstream urine sample was collected in a sterile container for the determination of telomerase by RT-PCR, keratin 19 by ELSA CYFRA 21-1 IRMA kit, keratin 20 by RT-PCR and immunohistochemical staining, and urine cytology. Results: For all parameters (telomerase, K19, K20 and cytology) the malignant group was significantly different from both the benign and the control groups. None of the four studied parameters was correlated to the stage of the disease, and when it comes to grade, only KI9 showed a significant positive correlation with grade both in TCC and SCe. When ROC curves for all parameters were compared, K 19 had the largest area under the curve, and then comes K20 . o Conclusion: K 19 may be used as a biological marker for the diagnosis of bladder cancer. K 19 could not be used for differential diagnosis of different types of bladder cancer, meanwhile it could be a marker for differentiation that decreases in less differentiated tumors. As a tumor marker, K20 reflects inability to differentiate tumor type or grade in TCC, while in SCC of the bladder it is correlated with the grade. As a method, RT-PCR is superior to immunostaining for the detection of bladder cancer, meanwhile K20 immunohistochemistry ([HC) results were much better than urine cytology as a bladder cancer screening test. haematuria and inflammation reduced the specificity of telomerase assay, which reduced its validity as a tumor marker of bladder cancer. K 19 and K20 are the best candidates as screening tests for the diagnosis of bladder

  4. Telomere biology and telomerase mutations in cirrhotic patients with hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Flávia S Donaires

    Full Text Available Telomeres are repetitive DNA sequences at linear chromosome termini, protecting chromosomes against end-to-end fusion and damage, providing chromosomal stability. Telomeres shorten with mitotic cellular division, but are maintained in cells with high proliferative capacity by telomerase. Loss-of-function mutations in telomere-maintenance genes are genetic risk factors for cirrhosis development in humans and murine models. Telomerase deficiency provokes accelerated telomere shortening and dysfunction, facilitating genomic instability and oncogenesis. Here we examined whether telomerase mutations and telomere shortening were associated with hepatocellular carcinoma (HCC secondary to cirrhosis. Telomere length of peripheral blood leukocytes was measured by Southern blot and qPCR in 120 patients with HCC associated with cirrhosis and 261 healthy subjects. HCC patients were screened for telomerase gene variants (in TERT and TERC by Sanger sequencing. Age-adjusted telomere length was comparable between HCC patients and healthy subjects by both Southern blot and qPCR. Four non-synonymous TERT heterozygous variants were identified in four unrelated patients, resulting in a significantly higher mutation carrier frequency (3.3% in patients as compared to controls (p = 0.02. Three of the four variants (T726M, A1062T, and V1090M were previously observed in patients with other telomere diseases (severe aplastic anemia, acute myeloid leukemia, and cirrhosis. A novel TERT variant, A243V, was identified in a 65-year-old male with advanced HCC and cirrhosis secondary to chronic hepatitis C virus (HCV and alcohol ingestion, but direct assay measurements in vitro did not detect modulation of telomerase enzymatic activity or processivity. In summary, constitutional variants resulting in amino acid changes in the telomerase reverse transcriptase were found in a small proportion of patients with cirrhosis-associated HCC.

  5. Telomerase Inhibition by Everolimus Suppresses Smooth Muscle Cell Proliferation and Neointima Formation Through Epigenetic Gene Silencing.

    Science.gov (United States)

    Aono, Jun; Ruiz-Rodriguez, Ernesto; Qing, Hua; Findeisen, Hannes M; Jones, Karrie L; Heywood, Elizabeth B; Bruemmer, Dennis

    2016-01-01

    The present study sought to investigate the mechanisms underlying the mitogenic function of telomerase and to test the hypothesis that everolimus, commonly used on drug-eluting stents, suppresses smooth muscle cells (SMC) proliferation by targeting telomerase. Proliferation of SMC during neointima formation is prevented by drug-eluting stents. Although the replicative capacity of mammalian cells is enhanced by telomerase expression, the contribution of telomerase to the proliferative response underlying neointima formation and its potential role as a pharmacological target remain to be investigated. We first employed constitutive expression of telomerase reverse transcriptase (TERT) in cell systems to study transcriptional mechanisms by which telomerase activates a mitogenic program. Second, overexpression of telomerase in mice provided a model to study the role of telomerase as a drug target for the antiproliferative efficacy of everolimus. Inhibition of neointima formation by everolimus is lost in mice overexpressing TERT, indicating that repression of telomerase confers the antiproliferative efficacy of everolimus. Everolimus reduces TERT expression in SMC through an Ets-1-dependent inhibition of promoter activation. The inhibition of TERT-dependent SMC proliferation by everolimus occurred in the absence of telomere shortening but rather as a result of a G1→S phase arrest. Although everolimus failed to inhibit phosphorylation of the retinoblastoma protein as the gatekeeper of S-phase entry, it potently repressed downstream target genes. Using chromatin immunoprecipitation assays, we finally demonstrate that TERT induces E2F binding to S-phase gene promoters and supports histone acetylation, effects that are inhibited by everolimus and mediate its antiproliferative activity. These results characterize telomerase as a previously unrecognized target for the antiproliferative activity of everolimus. Our studies further identify a novel mitogenic pathway in SMC

  6. Telomeres and Telomerase in the Radiation Response: implications for instability, reprogramming, and carcinogenesis

    Directory of Open Access Journals (Sweden)

    Brock James Sishc

    2015-11-01

    Full Text Available Telomeres are nucleoprotein complexes comprised of tandem arrays of repetitive DNA sequence that serve to protect chromosomal termini from inappropriate degradation, as well as to prevent these natural DNA ends from being recognized as broken DNA (double-strand breaks; DSBs and triggering of inappropriate DNA damage responses. Preservation of telomere length requires telomerase, the specialized reverse transcriptase capable of maintaining telomere length via template-mediated addition of telomeric repeats onto the ends of newly synthesized chromosomes. Loss of either end-capping function or telomere length maintenance has been associated with genomic instability or senescence in a variety of settings; therefore telomeres and telomerase have well-established connections to cancer and aging. It has long been recognized that oxidative stress promotes shortening of telomeres, and that telomerase activity is a radiation-inducible function. However, the effects of ionizing radiation (IR exposure on telomeres per se are much less well understood and appreciated. To gain a deeper understanding of the roles telomeres and telomerase play in the response of human cells to ionizing radiations of different qualities, we tracked changes in telomeric end-capping function, telomere length, and telomerase activity in panels of mammary epithelial and hematopoietic cell lines exposed to low linear energy transfer (LET gamma(γ-rays or high LET high charge, high energy (HZE particles, delivered either acutely or at low dose rates (LDR. In addition to demonstrating that dysfunctional telomeres contribute to IR-induced mutation frequencies and genome instability, we reveal non-canonical roles for telomerase, in that telomerase activity was required for IR-induced enrichment of mammary epithelial putative stem/progenitor cell populations, a finding also suggestive of cellular reprogramming. Taken together, the results reported here establish the critical importance of

  7. Does telomerase activity have an effect on infertility in patients with endometriosis?

    Science.gov (United States)

    Sofiyeva, Nigar; Ekizoglu, Seda; Gezer, Altay; Yilmaz, Handan; Kolomuc Gayretli, Tugba; Buyru, Nur; Oral, Engin

    2017-06-01

    This study aimed to investigate the role of telomerase activity in the development of endometriosis-related infertility by evaluation of the serum telomerase in eutopic and ectopic endometrial tissue. Eutopic endometrium, cystic wall/ovarian cortex, and venous blood were assessed in forty-seven patients. The following groups of patients were identified: females with endometriosis requiring surgical intervention and healthy control females. Patients with histopathologically confirmed endometriosis were further subdivided in the infertile (n=14) and fertile (n=17) groups. Patients who underwent hysterectomy and oophorectomy for benign gynecological conditions were enrolled in the healthy control group (n=16). Telomerase activity was evaluated with three-group, endometriosis-based and fertility-based designs. Analyses were performed regardless the menstrual cycle phase (Phase G), in proliferative (Phase P) (n=22) and secretory phases (Phase S) (n=25). Telomeric Repeat Amplification Protocol PCR was applied for telomerase activity assessment. All statistical analyses were performed with STATA 14.2, GraphPad Prisma 7.01. In analyses of the eutopic endometrium, with three-group design, a significant difference was not found in Phase G and P (p=0.58 and p=0.33, respectively). However, a statistical difference was shown in Phase S (p=0.008). A significant difference was not established in Phase G, P and S of endometriosis-based design (p=0.35, p=1.0, p=0.13, respectively). No difference was detected in Phase G and P of fertility-based design (p=0.66 and p=0.14, respectively), whereas in secretory phase difference was approved (p=0,049). Telomerase activity was not established in ectopic endometrium and in serum assessment. Telomerase activity is useless as a biomarker in peripheric blood analysis. The absence of activity in cystic wall approves the high differentiation of endometriosis tissue, what is the possible reason of low malignancy risk. The high rate of telomerase

  8. The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells

    International Nuclear Information System (INIS)

    Uziel, Orit; Kanfer, Gil; Beery, Einat; Yelin, Dana; Shepshelovich, Daniel; Bakhanashvili, Mary; Nordenberg, Jardena; Lahav, Meir

    2014-01-01

    Highlights: • We assumed that some of erythropoietin adverse effects may be mediated by telomerase activity. • EPO administration increased telomerase activity, cells proliferation and migration. • The inhibition of telomerase modestly repressed the proliferative effect of erythropoietin. • Telomere shortening caused by long term inhibition of the enzyme totally abolished that effect. • This effect was mediated via the Lyn–AKT axis and not by the canonical JAK2–STAT pathway. - Abstract: Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway

  9. The effects of erythropoietin signaling on telomerase regulation in non-erythroid malignant and non-malignant cells

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, Orit, E-mail: Oritu@clalit.org.il [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Kanfer, Gil [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Dep. of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Beery, Einat [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Yelin, Dana; Shepshelovich, Daniel [Medicine A, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Bakhanashvili, Mary [Unit of Infectious Diseases, Sheba Medical Center, Tel-Hashomer (Israel); Nordenberg, Jardena [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Dep. of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Endocrinology Laboratory, Beilinson Medical Center, Petah-Tikva (Israel); Lahav, Meir [Felsenstein Medical Research Center, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel); Medicine A, Sackler School of Medicine, Tel-Aviv University, Ramat-Aviv (Israel)

    2014-07-18

    Highlights: • We assumed that some of erythropoietin adverse effects may be mediated by telomerase activity. • EPO administration increased telomerase activity, cells proliferation and migration. • The inhibition of telomerase modestly repressed the proliferative effect of erythropoietin. • Telomere shortening caused by long term inhibition of the enzyme totally abolished that effect. • This effect was mediated via the Lyn–AKT axis and not by the canonical JAK2–STAT pathway. - Abstract: Treatment with erythropoietin (EPO) in several cancers is associated with decreased survival due to cancer progression. Due to the major importance of telomerase in cancer biology we hypothesized that some of these effects may be mediated through EPO effect on telomerase. For this aim we explored the possible effects of EPO on telomerase regulation, cell migration and chemosensitivity in non-erythroid malignant and non-malignant cells. Cell proliferation, telomerase activity (TA) and cell migration increased in response to EPO. EPO had no effect on cancer cells sensitivity to cisplatinum and on the cell cycle status. The inhibition of telomerase modestly repressed the proliferative effect of EPO. Telomere shortening caused by long term inhibition of the enzyme abolished the effect of EPO, suggesting that EPO effects on cancer cells are related to telomere dynamics. TA was correlated with the levels of Epo-R. The increase in TA was mediated post-translationally through the Lyn-Src and not the canonical JAK2 pathway.

  10. Radiation-induced progressive decreasing in the expression of reverse transcriptase gene of hEST2 and telomerase activity

    International Nuclear Information System (INIS)

    Zhu Hanneng; Chen Wenying; Xiong Sidong

    2000-01-01

    Telomerase is a ribonucleoprotein complex that adds heximeric repeats called telomeres to the growing ends of chromosomal DNA. Telomerase activity is present in a vast majority of tumors but is repressed in most normal tissues. Human telomerase catalytic subunit gene (hEST2) reverse transcriptase (RT) segment was cloned by PCR according to the sequence published in GeneBank. PCR was used to investigate the expression of the hEST2 RT segment in diverse tumors as well as in various normal tissues. Results indicated that hEST2 RT segment was detectable in tumor cells lines but not in normal cells and tissues. In order to identify the relationship between telomerase and the biological effect of radiation injury, HeLa cells, KB cells and A431 cells were employed to measure the change in telomerase activity after 60 Co-ray irradiation at RNA level and protein level. Quantitative PCR determined that expression of hEST2 RT segment that encodes seven motifs of the human telomeras decreased with increasing dosage of radiation. In addition, a PCR-based telomeric repeat amplification protocol was used to assay telomerase activity after exposure to radiation. The results strongly support the experiments we had made: Telomerase activity decreases with increasing dosage of radiation. We conclude that detection of the hEST2 RT segment by Northern blotting is a new method for detecting telomerase activity. Furthermore, radiation can cause a dose-dependent decrease in telomerase activity. The effect of radiation on telomerase is one possible reason for the death of cancer cells after irradiation. (author)

  11. P. berghei telomerase subunit TERT is essential for parasite survival.

    Directory of Open Access Journals (Sweden)

    Agnieszka A Religa

    Full Text Available Telomeres define the ends of chromosomes protecting eukaryotic cells from chromosome instability and eventual cell death. The complex regulation of telomeres involves various proteins including telomerase, which is a specialized ribonucleoprotein responsible for telomere maintenance. Telomeres of chromosomes of malaria parasites are kept at a constant length during blood stage proliferation. The 7-bp telomere repeat sequence is universal across different Plasmodium species (GGGTTT/CA, though the average telomere length varies. The catalytic subunit of telomerase, telomerase reverse transcriptase (TERT, is present in all sequenced Plasmodium species and is approximately three times larger than other eukaryotic TERTs. The Plasmodium RNA component of TERT has recently been identified in silico. A strategy to delete the gene encoding TERT via double cross-over (DXO homologous recombination was undertaken to study the telomerase function in P. berghei. Expression of both TERT and the RNA component (TR in P. berghei blood stages was analysed by Western blotting and Northern analysis. Average telomere length was measured in several Plasmodium species using Telomere Restriction Fragment (TRF analysis. TERT and TR were detected in blood stages and an average telomere length of ∼ 950 bp established. Deletion of the tert gene was performed using standard transfection methodologies and we show the presence of tert- mutants in the transfected parasite populations. Cloning of tert- mutants has been attempted multiple times without success. Thorough analysis of the transfected parasite populations and the parasite obtained from extensive parasite cloning from these populations provide evidence for a so called delayed death phenotype as observed in different organisms lacking TERT. The findings indicate that TERT is essential for P. berghei cell survival. The study extends our current knowledge on telomere biology in malaria parasites and validates further

  12. [Methods of measuring telomere length and telomerase activity--practice and problems].

    Science.gov (United States)

    Saito, Y; Suda, T; Hatakeyama, K

    1998-05-01

    The development of a highly sensitive method for detection of telomerase activity, telomeric repeat amplification protocol (TRAP), has provided knowledge on telomerase activity in normal and cancer tissues. Subsequent several modifications have been achieved, including an introduction of the internal standard and hybridization protection technique that leads to simplicity and improvement of reproducibility and linearity of this method, and application of TRAP to in situ analysis to identify the cells responsible for telomerase activity. As for measurement of telomere length, fluorescence in situ hybridization technique appeared to give an information of telomere length on an individual chromosome in contrast to analysis of terminal restriction fragment, a conventional method which can express mean telomere length of all chromosomes. Further methodological improvement in this field is ongoing and showing a new sight on cell mortality and immortality.

  13. Effect of Mifepristone on the Telomerase Activity in Chorion and Decidua during Early Pregnancy

    Institute of Scientific and Technical Information of China (English)

    Ge-qing XIA; Ya-li XIONG; Yong-hong SUN

    2004-01-01

    Objective To investigate telomerase activity in chorion and decidua from abortion induced by mifepristone incorporated with misoprostol at early pregnancy Methods TRAP-SYBR Green assay was used to detect the expression of telomerase. Forty specimen were obtained from medicinal abortion (experiment group) and forty were from normal induced abortion (control group).Results Positive expression, of chorion telomerase was significantly different between the experimental group (28%, 11/40) and the control group (73%, 29/40) (P<0. 05).While in decidua, the positive rate was 28% (11/40) in the experimental group and 20% (9/40) in the control group, there was no significant difference (P>0. 05).Conclusion It is suggested that miferistone may significantly decrease the telomerase activity in chorion but not in decidua.

  14. Chemotherapeutic-Induced Cardiovascular Dysfunction: Physiological Effects, Early Detection—The Role of Telomerase to Counteract Mitochondrial Defects and Oxidative Stress

    Science.gov (United States)

    Quryshi, Nabeel; Norwood Toro, Laura E.; Ait-Aissa, Karima; Kong, Amanda; Beyer, Andreas M.

    2018-01-01

    Although chemotherapeutics can be highly effective at targeting malignancies, their ability to trigger cardiovascular morbidity is clinically significant. Chemotherapy can adversely affect cardiovascular physiology, resulting in the development of cardiomyopathy, heart failure and microvascular defects. Specifically, anthracyclines are known to cause an excessive buildup of free radical species and mitochondrial DNA damage (mtDNA) that can lead to oxidative stress-induced cardiovascular apoptosis. Therefore, oncologists and cardiologists maintain a network of communication when dealing with patients during treatment in order to treat and prevent chemotherapy-induced cardiovascular damage; however, there is a need to discover more accurate biomarkers and therapeutics to combat and predict the onset of cardiovascular side effects. Telomerase, originally discovered to promote cellular proliferation, has recently emerged as a potential mechanism to counteract mitochondrial defects and restore healthy mitochondrial vascular phenotypes. This review details mechanisms currently used to assess cardiovascular damage, such as C-reactive protein (CRP) and troponin levels, while also unearthing recently researched biomarkers, including circulating mtDNA, telomere length and telomerase activity. Further, we explore a potential role of telomerase in the mitigation of mitochondrial reactive oxygen species and maintenance of mtDNA integrity. Telomerase activity presents a promising indicator for the early detection and treatment of chemotherapy-derived cardiac damage. PMID:29534446

  15. Alterations of telomerase activity and terminal restriction fragment in gastric cancer and its premalignant lesions.

    Science.gov (United States)

    Yang, S M; Fang, D C; Luo, Y H; Lu, R; Battle, P D; Liu, W W

    2001-08-01

    In order to explore the role of alterations of telomerase activity and terminal restriction fragment (TRF) length in the development and progression of gastric cancer. Telomerase activity was detected in 176 specimens of gastric mucosa obtained through an operation or endoscopical biopsy by using the telomeric repeat amplification protocol (TRAP) assay. Meanwhile, the mean length of TRF was measured with the use of a Southern blot in part of those samples. Telomerase activity was detected in 14 of 57 (24.6%) chronic atrophy gastritis patients, six of 18 (33.3%) intestinal metaplasia patients, three of eight (37.5%) dysplasia patients and 60 of 65 (92.3%) gastric cancer patients, respectively. Normal gastric mucosa revealed no telomerase activity. No association was found between telomerase activity and any clinicopathological parameters. The mean TRF length was decreased gradually with age in normal mucosa and in gastric cancer tissue. Regression analysis demonstrated that the reduction rate in these tissues was 41 +/- 12 base pairs/year. Among 35 gastric cancers, TRF length was shown to be shorter in 20 cases (57.1%), similar in 12 cases (34.3%) and elongated in three cases (7.6%), compared to the corresponding adjacent tissues. The mean TRF length tended to decrease as the mucosa underwent chronic atrophy gastritis, intestinal metaplasia, dysplasia and into gastric cancer. The mean TRF length in gastric cancer was not statistically correlated with clinicopathological parameters and telomerase activity. Our results suggest that telomerase is expressed during the early stage of gastric carcinogenesis, and that the clinical significance of TRF length appears to be limited in gastric cancer.

  16. The roles of telomeres and telomerase in cellular immortalization and the development of cancer.

    Science.gov (United States)

    Klingelhutz, A J

    1999-01-01

    Normal human cells have a limited lifespan in culture called the Hayflick limit. Recent studies have indicated that telomere shortening is one of the important meters utilized by cells to determine the Hayflick limit, and that activation of a mechanism to maintain telomere length is essential for cells to become immortal. It is generally believed that cells must have a means to maintain telomeres in order to progress to malignancy. Most cancers do this by activating an enzyme called telomerase which adds telomeric repeats to the telomere ends. Recently, expression of this enzyme has been shown to extend the lifespan of cells. This review discusses the research that led to the discovery of telomerase, the characteristics of telomerase complex, and how recent and future advances in the telomerase field may lead to better diagnostic and treatment protocols for many different cancer types.

  17. Improved Inhibition of Telomerase by Short Twisted Intercalating Nucleic Acids under Molecular Crowding Conditions

    DEFF Research Database (Denmark)

    Agarwal, Tani; Pradhan, Devranjan; Géci, Imrich

    2012-01-01

    Human telomeric DNA has the ability to fold into a 4-stranded G-quadruplex structure. Several G-quadruplex ligands are known to stabilize the structure and thereby inhibit telomerase activity. Such ligands have demonstrated efficient telomerase inhibition in dilute conditions, but under molecular...

  18. Low LET radiation-induced telomerase catalytic subunit promoter activation is mediated by nuclear factor Kappa B

    International Nuclear Information System (INIS)

    Natarajan, M.; Hong, F.A.; Mohan, S.; Herman, T.S.

    2003-01-01

    Full text: The objective of this study is to understand whether low doses of low LET radiation induces survival advantage in normal cells. As an increase in telomerase activity is associated with longevity and cell proliferation, we examined the telomerase response following gamma-irradiation in normal aortic endothelial cells. Telomeric Repeat Amplification Protocol assay following low LET radiation showed an increase in telomerase enzyme activity as early as 8 h post irradiation and reaches its maximum at 24 h. Subsequent analysis revealed that the increased telomerse enzyme activity is due to increased synthesis resulting from an increased transcription. Examination of transcriptional activation of telomerase reverse transcriptase (TERT) promoter regulation showed an enhanced transcription of the telomerse gene following gamma-irradiation. In our previous reports we documented an increase in NF-kB DNA-binding property following low LET radiation (3). Therefore, to determine whether the activation of NF-kB-signaling is responsible for induced TERT promoter activation, cells transiently transfected with minimal promoter region of TERT containing wild type or mutant NF-kB binding site were examined following low LET radiation. TERT promoter activation was induced in wild type transfected cells whereas, in mutant kB binding site, the activation remained at the basal level similar to that of un-irradiated cells. More significantly, the gamma-ray mediated promoter activation of telomerase gene as well as induce telomerase enzyme activity was abrogated by ectopically expressing the IkBa mutant (IkBa (S32A/S36A)), which blocks NF-kB activation. The results thus suggest that exposure to low LET radiation could induce telomerase activity and the activation is at least, in part, mediated by the transcription factor NF-kB. Sustained activation of telomerase in these cells after low LET radiation may impart extended life span

  19. Cell cycle-dependent transcription factors control the expression of yeast telomerase RNA.

    Science.gov (United States)

    Dionne, Isabelle; Larose, Stéphanie; Dandjinou, Alain T; Abou Elela, Sherif; Wellinger, Raymund J

    2013-07-01

    Telomerase is a specialized ribonucleoprotein that adds repeated DNA sequences to the ends of eukaryotic chromosomes to preserve genome integrity. Some secondary structure features of the telomerase RNA are very well conserved, and it serves as a central scaffold for the binding of associated proteins. The Saccharomyces cerevisiae telomerase RNA, TLC1, is found in very low copy number in the cell and is the limiting component of the known telomerase holoenzyme constituents. The reasons for this low abundance are unclear, but given that the RNA is very stable, transcriptional control mechanisms must be extremely important. Here we define the sequences forming the TLC1 promoter and identify the elements required for its low expression level, including enhancer and repressor elements. Within an enhancer element, we found consensus sites for Mbp1/Swi4 association, and chromatin immunoprecipitation (ChIP) assays confirmed the binding of Mbp1 and Swi4 to these sites of the TLC1 promoter. Furthermore, the enhancer element conferred cell cycle-dependent regulation to a reporter gene, and mutations in the Mbp1/Swi4 binding sites affected the levels of telomerase RNA and telomere length. Finally, ChIP experiments using a TLC1 RNA-binding protein as target showed cell cycle-dependent transcription of the TLC1 gene. These results indicate that the budding yeast TLC1 RNA is transcribed in a cell cycle-dependent fashion late in G1 and may be part of the S phase-regulated group of genes involved in DNA replication.

  20. The telomerase reverse transcriptase subunit from the dimorphic fungus Ustilago maydis.

    Directory of Open Access Journals (Sweden)

    Dolores Bautista-España

    Full Text Available In this study, we investigated the reverse transcriptase subunit of telomerase in the dimorphic fungus Ustilago maydis. This protein (Trt1 contains 1371 amino acids and all of the characteristic TERT motifs. Mutants created by disrupting trt1 had senescent traits, such as delayed growth, low replicative potential, and reduced survival, that were reminiscent of the traits observed in est2 budding yeast mutants. Telomerase activity was observed in wild-type fungus sporidia but not those of the disruption mutant. The introduction of a self-replicating plasmid expressing Trt1 into the mutant strain restored growth proficiency and replicative potential. Analyses of trt1 crosses in planta suggested that Trt1 is necessary for teliospore formation in homozygous disrupted diploids and that telomerase is haploinsufficient in heterozygous diploids. Additionally, terminal restriction fragment analysis in the progeny hinted at alternative survival mechanisms similar to those of budding yeast.

  1. The Meaning of Anti-Americanism: A Performative Approach to Anti-American Prejudice

    Directory of Open Access Journals (Sweden)

    Felix Knappertsbusch

    2013-06-01

    Full Text Available A contribution to the ongoing debate on how anti-Americanism can be adequately conceptualized and how such prejudice can be distinguished from legitimate criticism, arguing that part of these conceptual problems arise from a too narrow focus on defining anti-Americanism and the use of standardized empirical operationalizations. Such approaches exhibit severe limitations in grasping the flexibility of the phenomenon in everyday discourse and often underestimate or ignore the interpretive aspect involved in identifying utterances as anti-American prejudice. Alternatively, a performative approach is proposed, understanding anti-Americanism as a network of speech acts bound by family resemblance rather than identical features. In combination with qualitative empirical research methods such a conceptualization is especially suited to account for the flexible, situated use of anti-American utterances. At the same time it grants reflexivity to the research concept, in the sense of a close description of the scientific application of the notion of anti-Americanism. Two empirical examples from an interview study on anti-American speech in Germany illustrate the potential of such an approach, providing an insight into how anti-Americanism is incorporated into the construction and expression of racist and revisionist national identifications in everyday discourse.

  2. Comparison of telomerase activity in prostate cancer, prostatic intraepithelial neoplasia and benign prostatic hyperplasia

    Directory of Open Access Journals (Sweden)

    Soleiman Mahjoub

    2006-11-01

    Full Text Available BACKGROUND: Telomerase is a reverse transcriptase enzyme that synthesizes telomeric DNA on chromosome ends. The enzyme is important for the immortalization of cancer cells because it maintains the telomeres. METHODS: Telomerase activity (TA was measured by fluorescence-based telomeric repeat amplification protocol (FTRAP assay in prostate carcinoma and benign prostatic hyperplasia (BPH. RESULTS: TA was present in 91.4% of 70 prostate cancers, 68.8% of 16 prostatic intraepithelial neoplasia (PIN, 43.3% of 30 BPH*, 21.4% of 14 atrophy and 20% of 15 normal samples adjacent to tumor. There was not any significant correlation between TA, histopathological tumor stage or gleason score. In contrast to high TA in the BPH* tissue from the cancer-bearing gland, only 6.3% of 32 BPH specimens from patients only diagnosed with BPH were telomerase activity-positive. CONCLUSIONS: These results indicate that TA is present in most prostate cancers. The high rate of TA in tissue adjacent to tumor may be attributed either to early molecular alteration of cancer that was histologically unapparent, or to the presence of occult cancer cells. Our findings suggest that the re-expression of telomerase activity could be one step in the transformation of BPH to PIN. KEY WORDS: Telomerase activity, prostate cancer, prostatic intraepithelial neoplasia, benign prostatic hyperplasia.

  3. MicroRNA Regulation of Telomerase Reverse Transcriptase (TERT: Micro Machines Pull Strings of Papier-Mâché Puppets

    Directory of Open Access Journals (Sweden)

    Ammad Ahmad Farooqi

    2018-04-01

    Full Text Available Substantial fraction of high-quality information is continuously being added into the existing pool of knowledge related to the biology of telomeres. Based on the insights gleaned from decades of research, it is clear that chromosomal stability needs a highly controlled and dynamic balance of DNA gain and loss in each terminal tract of telomeric repeats. Telomeres are formed by tandem repeats of TTAGGG sequences, which are gradually lost with each round of division of the cells. Targeted inhibition of telomerase to effectively induce apoptosis in cancer cells has attracted tremendous attention and overwhelmingly increasingly list of telomerase inhibitors truthfully advocates pharmacological significance of telomerase. Telomerase reverse transcriptase (TERT is a multi-talented and catalytically active component of the telomerase-associated protein machinery. Different proteins of telomerase-associated machinery work in a synchronized and orchestrated manner to ensure proper maintenance of telomeric length of chromosomes. Rapidly emerging scientific findings about regulation of TERT by microRNAs has revolutionized our understanding related to the biology of telomeres and telomerase. In this review, we have comprehensively discussed how different miRNAs regulate TERT in different cancers. Use of miRNA-based therapeutics against TERT in different cancers needs detailed research in preclinical models for effective translation of laboratory findings to clinically effective therapeutics.

  4. Nanocurcumin-Mediated Down-Regulation of Telomerase Via Stimulating TGFβ1 Signaling Pathway in Hepatocellular Carcinoma Cells

    Science.gov (United States)

    Shariati, Molood; Hajigholami, Samira; Veisi Malekshahi, Ziba; Entezari, Maliheh; Bodaghabadi, Narges; Sadeghizadeh, Majid

    2017-10-10

    Curcumin, extracted from turmeric, represents enormous potential to serve as an anticancer agent. Telomerase is viewed as a prominent molecular target of curcumin, and Transforming growth factor-β1 (TGFβ1) has proven to be a major inhibitory signaling pathway for telomerase activity. In the current study, we aimed to explore suppressive effects of nanocurcumin on telomerase expression through TGFβ1 pathway in a hepatocellular carcinoma cell line (Huh7). MTT assay was used to determine the effect of nonocurcumin on viability of Huh7 cells. RT-PCR was used to analyze the gene expression patterns. MTT assay revealed that nanocurcumin acts in a dose- and time-dependent manner to diminish the cell viability. RT-PCR analysis indicated that nanocurcumin results in augmentation of TGFβ1 72 hours post treatment and leads to the reduction of telomerase expression 48 and 72 hours post exposure. Also, up-regulation of Smad3 and E2F1 and down-regulation of Smad7 confirmed the effect of nanocurcumin on intermediate components of TGFβ1 pathway. Furthermore, transfection of the proximal promoter of telomerase triggered a significant reduction in luciferase activity. The data from the present study lead us to develop a deeper understanding of the mechanisms underlying nanocurcumin-mediated regulation of telomerase expression, thereby presenting a new perspective to the landscape of using nanocurcumin as a cancer-oriented therapeutic agent.

  5. The Roles of Telomerase in the Generation of Polyploidy during Neoplastic Cell Growth

    Directory of Open Access Journals (Sweden)

    Agni Christodoulidou

    2013-02-01

    Full Text Available Polyploidy contributes to extensive intratumor genomic heterogeneity that characterizes advanced malignancies and is thought to limit the efficiency of current cancer therapies. It has been shown that telomere deprotection in p53-deficient mouse embryonic fibroblasts leads to high rates of polyploidization. We now show that tumor genome evolution through whole-genome duplication occurs in ∼15% of the karyotyped human neoplasms and correlates with disease progression. In a panel of human cancer and transformed cell lines representing the two known types of genomic instability (chromosomal and microsatellite, as well as the two known pathways of telomere maintenance in cancer (telomerase activity and alternative lengthening of telomeres, telomere dysfunction-driven polyploidization occurred independently of the mutational status of p53. Depending on the preexisting context of telomere maintenance, telomerase activity and its major components, human telomerase reverse transcriptase (hTERT and human telomerase RNA component (hTERC, exert both reverse transcriptase-related (canonical and noncanonical functions to affect tumor genome evolution through suppression or induction of polyploidization. These new findings provide a more complete mechanistic understanding of cancer progression that may, in the future, lead to novel therapeutic interventions.

  6. β-Cyclodextrin-curcumin complex inhibit telomerase gene ...

    African Journals Online (AJOL)

    Yomi

    2011-12-21

    Dec 21, 2011 ... have various applications in cancer therapy. But, its low water solubility and bioavailability is possible for poor drug delivery of curcumin. In this study, we prepared β-cyclodextrin-curcumin complex to determine the inhibitory effect of this drug on telomerase gene expression. Curcumin was encapsulated.

  7. The putative Leishmania telomerase RNA (LeishTER undergoes trans-splicing and contains a conserved template sequence.

    Directory of Open Access Journals (Sweden)

    Elton J R Vasconcelos

    Full Text Available Telomerase RNAs (TERs are highly divergent between species, varying in size and sequence composition. Here, we identify a candidate for the telomerase RNA component of Leishmania genus, which includes species that cause leishmaniasis, a neglected tropical disease. Merging a thorough computational screening combined with RNA-seq evidence, we mapped a non-coding RNA gene localized in a syntenic locus on chromosome 25 of five Leishmania species that shares partial synteny with both Trypanosoma brucei TER locus and a putative TER candidate-containing locus of Crithidia fasciculata. Using target-driven molecular biology approaches, we detected a ∼2,100 nt transcript (LeishTER that contains a 5' spliced leader (SL cap, a putative 3' polyA tail and a predicted C/D box snoRNA domain. LeishTER is expressed at similar levels in the logarithmic and stationary growth phases of promastigote forms. A 5'SL capped LeishTER co-immunoprecipitated and co-localized with the telomerase protein component (TERT in a cell cycle-dependent manner. Prediction of its secondary structure strongly suggests the existence of a bona fide single-stranded template sequence and a conserved C[U/C]GUCA motif-containing helix II, representing the template boundary element. This study paves the way for further investigations on the biogenesis of parasite TERT ribonucleoproteins (RNPs and its role in parasite telomere biology.

  8. The Telomerase Inhibitor MST-312 Interferes with Multiple Steps in the Herpes Simplex Virus Life Cycle.

    Science.gov (United States)

    Haberichter, Jarod; Roberts, Scott; Abbasi, Imran; Dedthanou, Phonphanh; Pradhan, Prajakta; Nguyen, Marie L

    2015-10-01

    The life cycle of herpes simplex virus (HSV) has the potential to be further manipulated to yield novel, more effective therapeutic treatments. Recent research has demonstrated that HSV-1 can increase telomerase activity and that expression of the catalytic component of telomerase, telomerase reverse transcriptase (TERT), alters sensitivity to HSV-dependent apoptosis. Telomerase is a cellular enzyme that synthesizes nucleotide repeats at the ends of chromosomes (telomeres), which prevents shortening of the 3' ends of DNA with each cell division. Once telomeres reach a critical length, cells undergo senescence and apoptosis. Here, we used a cell-permeable, reversible inhibitor of the telomerase enzyme, MST-312, to investigate telomerase activity during HSV infection. Human mammary epithelial cells immortalized through TERT expression and human carcinoma HEp-2 cells were infected with the KOS1.1 strain of HSV-1 in the presence of MST-312. MST-312 treatment reduced the number of cells displaying a cytopathic effect and the accumulation of immediate early and late viral proteins. Moreover, the presence of 20 μM to 100 μM MST-312 during infection led to a 2.5- to 5.5-log10 decrease in viral titers. MST-312 also inhibited the replication of HSV-2 and a recent clinical isolate of HSV-1. Additionally, we determined that MST-312 has the largest impact on viral events that take place prior to 5 h postinfection (hpi). Furthermore, MST-312 treatment inhibited virus replication, as measured by adsorption assays and quantification of genome replication. Together, these findings demonstrate that MST-312 interferes with the HSV life cycle. Further investigation into the mechanism for MST-312 is warranted and may provide novel targets for HSV therapies. Herpes simplex virus (HSV) infections can lead to cold sores, blindness, and brain damage. Identification of host factors that are important for the virus life cycle may provide novel targets for HSV antivirals. One such factor

  9. Tumor-specific expression of shVEGF and suicide gene as a novel strategy for esophageal cancer therapy.

    Science.gov (United States)

    Liu, Ting; Wu, Hai-Jun; Liang, Yu; Liang, Xu-Jun; Huang, Hui-Chao; Zhao, Yan-Zhong; Liao, Qing-Chuan; Chen, Ya-Qi; Leng, Ai-Min; Yuan, Wei-Jian; Zhang, Gui-Ying; Peng, Jie; Chen, Yong-Heng

    2016-06-21

    To develop a potent and safe gene therapy for esophageal cancer. An expression vector carrying fusion suicide gene (yCDglyTK) and shRNA against vascular endothelial growth factor (VEGF) was constructed and delivered into EC9706 esophageal cancer cells by calcium phosphate nanoparticles (CPNP). To achieve tumor selectivity, expression of the fusion suicide gene was driven by a tumor-specific human telomerase reverse transcriptase (hTERT) promoter. The biologic properties and therapeutic efficiency of the vector, in the presence of prodrug 5-fluorocytosine (5-FC), were evaluated in vitro and in vivo. Both in vitro and in vivo testing showed that the expression vector was efficiently introduced by CPNP into tumor cells, leading to cellular expression of yCDglyTK and decreased VEGF level. With exposure to 5-FC, it exhibited strong anti-tumor effects against esophageal cancer. Combination of VEGF shRNA with the fusion suicide gene demonstrated strong anti-tumor activity. The shVEGF-hTERT-yCDglyTK/5-FC system provided a novel approach for esophageal cancer-targeted gene therapy.

  10. Changes in stress, eating, and metabolic factors are related to changes in telomerase activity in a randomized mindfulness intervention pilot study.

    Science.gov (United States)

    Daubenmier, Jennifer; Lin, Jue; Blackburn, Elizabeth; Hecht, Frederick M; Kristeller, Jean; Maninger, Nicole; Kuwata, Margaret; Bacchetti, Peter; Havel, Peter J; Epel, Elissa

    2012-07-01

    Psychological distress and metabolic dysregulation are associated with markers of accelerated cellular aging, including reduced telomerase activity and shortened telomere length. We examined whether participation in a mindfulness-based intervention, and, secondarily, improvements in psychological distress, eating behavior, and metabolic factors are associated with increases in telomerase activity in peripheral blood mononuclear cells (PBMCs). We enrolled 47 overweight/obese women in a randomized waitlist-controlled pilot trial (n=47) of a mindfulness-based intervention for stress eating and examined changes in telomerase activity from pre- to post-intervention. In secondary analyses, changes in telomerase activity across the sample were examined in relation to pre- to post-intervention changes in psychological distress, eating behavior, and metabolic factors (weight, serum cortisol, fasting glucose and insulin, and insulin resistance). Both groups increased in mean telomerase activity over 4 months in intent-to-treat and treatment efficacy analyses (peating behavior, and metabolic health and increases in telomerase activity. These findings suggest that telomerase activity may be in part regulated by levels of both psychological and metabolic stress. Published by Elsevier Ltd.

  11. Specificity of anti-phospholipid antibodies in infectious mononucleosis: a role for anti-cofactor protein antibodies

    Science.gov (United States)

    Sorice, M; Pittoni, V; Griggi, T; Losardo, A; Leri, O; Magno, M S; Misasi, R; Valesini, G

    2000-01-01

    The antigen specificity of anti-phospholipid antibodies in infectious mononucleosis (IM) was studied using ELISA for the detection of anti-β2-glycoprotein I (β2-GPI), anti-annexin V, anti-protein S and anti-prothrombin antibodies and TLC immunostaining for the detection of anti-phospholipid antibodies. This technique enabled us to look at antibodies reacting to ‘pure’ phospholipid antigens in the absence of protein contamination. Sera from 46 patients with IM, 18 with systemic lupus erythematosus (SLE), 21 with primary anti-phospholipid antibody syndrome (PAPS), 50 with Helicobacter pylori infection and 30 healthy blood donors were tested. This study highlights anti-phospholipid antibodies in patients with IM as specific ‘pure’ anti-cardiolipin antibodies, while in PAPS and SLE patients anti-phosphatidylserine and anti-phosphatidylethanolamine antibodies were also found. This investigation also shows that the anti-cardiolipin antibodies found in IM can be present with anti-cofactor protein antibodies. The higher prevalence of anti-cofactor antibodies found in IM sera than in Helicobacter pylori sera may be due to the immunostimulatory effect and/or the polyclonal activation often observed in course of Epstein–Barr virus infection. However, anti-β2-GPI and, to a lesser extent, anti-prothrombin antibodies occur with a significantly lower prevalence in IM than in PAPS patients. This finding suggests that these antibodies should be regarded as the expression of the broad autoimmune syndrome involving the phospholipid-binding plasma proteins. PMID:10792380

  12. Novel strategies for anti-aging drug discovery.

    Science.gov (United States)

    Saraswat, Komal; Rizvi, Syed Ibrahim

    2017-09-01

    Scientific achievements in the last few decades, leading to effective therapeutic interventions, have dramatically improved human life expectancy. Consequently, aging has become a significant problem and represents the major risk factor for most human pathologies including diabetes, cardiovascular diseases, neurological disorders, and cancer. Scientific discoveries over the past two decades have been instrumental in dissecting molecular mechanism(s) which play important roles in determining longevity. The same understanding has also led to the acknowledgement of the plurality of 'causes' which act either alone or in combination to create the condition which can be defined as 'aging'. Areas covered: Over the years, several concepts have been put forward for the development of a viable anti-aging regimen. In this review, the authors extensively review anti aging interventions based on caloric restriction, activation of telomerase, autophagy inducers, senolytic therapeutics, plasma membrane redox system (PMRS) activators, epigenetic modulators, and stem cell therapies. Expert opinion: Based upon our current understanding, one of the most promising approaches for a successful anti-aging strategy includes the activation of adenosine monophosphate dependent protein kinase (AMPK). Another strategy may involve activation of PMRS. Future research efforts are likely to focus on nutrient and energy sensing molecular pathways which include mTOR, IGF-1, AMPK and the sirtuins.

  13. TRAPping telomerase within the intestinal stem cell niche

    OpenAIRE

    Pech, Matthew F; Artandi, Steven E

    2011-01-01

    Recent work from Hans Clevers' lab reveals high telomerase activity and telomere length in dividing LGR5-positive intestinal stem cells. They further report random chromosome segregation and thus challenge the ‘immortal strand' hypothesis at least for this stem cell population.

  14. Nonradioactive telomerase activity assay by microchip electrophoresis: privileges to the classical gel electrophoresis assay.

    Science.gov (United States)

    Zhelev, Zhivko; Bakalova, Rumiana; Ewis, Ashraf; Ohba, Hideki; Ishikawa, Mitsuru; Baba, Yoshinobu

    2005-08-01

    The present study accents on the privileges of microchip-based electrophoresis to the conventional gel electrophoresis in separation of telomerase repeat amplification protocol/polymerase chain reaction (PCR) ladder products obtained in telomerase-catalyzed reaction in cancer cells. We try to clarify the interpretation of the results obtained by both electrophoretic procedures and to avoid misinterpretation as a result of PCR-dependent artefacts.

  15. Evidence for a relief of repression mechanism for activation of the human telomerase reverse transcriptase promoter.

    Science.gov (United States)

    Wang, Shuwen; Zhu, Jiyue

    2003-05-23

    The transcriptional activation of human telomerase reverse transcriptase (hTERT) is an important step during cellular immortalization and tumorigenesis. To study how this activation occurs during immortalization, we have established a set of genetically related pre-crisis cells and their immortal progeny. As expected, hTERT mRNA was detected in our telomerase-positive immortal cells but not in pre-crisis cells or telomerase-negative immortal cells. However, transiently transfected luciferase reporters controlled by hTERT promoter sequences exhibited similar levels of luciferase activity in both telomerase-positive and -negative cells, suggesting that the endogenous chromatin context is likely required for hTERT regulation. Analysis of chromatin susceptibility to DNase I digestion consistently identified a DNase I hypersensitivity site (DHS) near the hTERT transcription initiation site in telomerase-positive cells. In addition, the histone deacetylase inhibitor trichostatin A (TSA) induced hTERT transcription and also a general increase in chromatin sensitivity to DNase treatment in telomerase-negative cells. The TSA-induced hTERT transcription in pre-crisis cells was accompanied by the formation of a DHS at the hTERT promoter. Furthermore, the TSA-induced hTERT transcription and chromatin alterations were not blocked by cycloheximide, suggesting that this induction does not require de novo protein synthesis and that TSA induces hTERT expression through the inhibition of histone deacetylation at the hTERT promoter. Taken together, our results suggest that the endogenous chromatin environment plays a critical role in the regulation of hTERT expression during cellular immortalization.

  16. Telomerase activity and apoptosis genes as parameters of ...

    African Journals Online (AJOL)

    Ekram Abdel-Salam

    2013-01-23

    Jan 23, 2013 ... ORIGINAL ARTICLE. Telomerase ... The Egyptian Journal of Medical Human Genetics www.ejmhg.eg.net ... membrane protein that belongs to the tumor necrosis factor superfamily and ... revision of the 1975 Helsinki Declaration. Methods ... Determination of Soluble Fas was in duplicate plasma sam- ples.

  17. Reptin is required for the transcription of telomerase reverse transcriptase and over-expressed in gastric cancer

    Directory of Open Access Journals (Sweden)

    Liu Tiantian

    2010-05-01

    Full Text Available Abstract Background Telomerase is activated in oncogenesis, which confers an immortal phenotype to cancer cells. The AAA + ATPase Reptin is required for telomerase biogenesis by maintaining telomerase RNA (hTER stability and is aberrantly expressed in certain cancers. Given its role in chromatin remodeling and transcription regulation, we determined the effect of Reptin on the transcription of the telomerase reverse transcriptase (hTERT gene, a key component of the telomerase complex and its expression in gastric cancer. Results Knocking down Reptin or its partner Pontin using small interfering RNA in gastric and cervical cancer cells led to significant decreases in hTERT mRNA, but hTERT promoter activity was inhibited in only Reptin-depleted cells. Reptin interacted with the c-MYC oncoprotein and its stimulatory effect on the hTERTpromoter was significantly dependent on functional E-boxes in the promoter. Moreover, Reptin bound to the hTERT proximal promoter and the loss of the Reptin occupancy led to dissociation of c-MYC from the hTERT promoter in Reptin-depleted cells. Reptin inhibition dramatically impaired clonogenic potential of gastric cancer cells by inducing cell growtharrest and over-expression of Reptin was observed in primary gastric cancer specimens. Conclusions The hTERT gene is a direct target of Reptin, and hTERT transcription requires constitutive expression of Reptin and its cooperation with c-MYC. Thus, Reptin regulates telomerase at two different levels. This finding, together with the requirementof Reptin for the clonogenic potential of cancer cells and its over-expression in gastriccancer and other solid tumors, suggests that Reptin may be a putative therapeutic target.

  18. Isolation of a candidate human telomerase catalytic subunit gene, which reveals complex splicing patterns in different cell types.

    Science.gov (United States)

    Kilian, A; Bowtell, D D; Abud, H E; Hime, G R; Venter, D J; Keese, P K; Duncan, E L; Reddel, R R; Jefferson, R A

    1997-11-01

    Telomerase is a multicomponent reverse transcriptase enzyme that adds DNA repeats to the ends of chromosomes using its RNA component as a template for synthesis. Telomerase activity is detected in the germline as well as the majority of tumors and immortal cell lines, and at low levels in several types of normal cells. We have cloned a human gene homologous to a protein from Saccharomyces cerevisiae and Euplotes aediculatus that has reverse transcriptase motifs and is thought to be the catalytic subunit of telomerase in those species. This gene is present in the human genome as a single copy sequence with a dominant transcript of approximately 4 kb in a human colon cancer cell line, LIM1215. The cDNA sequence was determined using clones from a LIM1215 cDNA library and by RT-PCR, cRACE and 3'RACE on mRNA from the same source. We show that the gene is expressed in several normal tissues, telomerase-positive post-crisis (immortal) cell lines and various tumors but is not expressed in the majority of normal tissues analyzed, pre-crisis (non-immortal) cells and telomerase-negative immortal (ALT) cell lines. Multiple products were identified by RT-PCR using primers within the reverse transcriptase domain. Sequencing of these products suggests that they arise by alternative splicing. Strikingly, various tumors, cell lines and even normal tissues (colonic crypt and testis) showed considerable differences in the splicing patterns. Alternative splicing of the telomerase catalytic subunit transcript may be important for the regulation of telomerase activity and may give rise to proteins with different biochemical functions.

  19. Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe.

    Science.gov (United States)

    Xu, Yujuan; Zhang, Peng; Wang, Zhen; Lv, Shaoping; Ding, Caifeng

    2018-02-27

    Gold nanoclusters (AuNCs) protected with a bovine serum albumin (BSA) coating are known to emit red fluorescence (peaking at 650 nm) on photoexcitation with ultraviolet light (365 nm). On addition of Cu(II) ions, fluorescence is quenched because Cu(II) complexes certain amino acid units in the BSA chain. Fluorescence is, however, restored if pyrophosphate (PPi) is added because it will chelate Cu(II) and remove it from the BSA coating on the AuNCs. Because PPi is involved in the function of telomerase, the BSA@AuNCs loaded with Cu(II) can act as a fluorescent probe for determination of the activity of telomerase. A fluorescent assay was worked out for telomerase that is highly sensitive and has a wide linear range (10 nU to 10 fM per mL). The fluorescent probe was applied to the determination of telomerase activity in cervix carcinoma cells via imaging. It is shown that tumor cells can be well distinguished from normal cells by monitoring the differences in intracellular telomerase activity. Graphical abstract Gold nanoclusters (AuNCs) protected by bovine serum albumin (BSA) and displaying red photoluminescence were prepared as fluorescent probe for the determination of telomerase activity and used for imaging of cervix carcinoma (HeLa) cells.

  20. DNA damaging bystander signalling from stem cells, cancer cells and fibroblasts after Cr(VI) exposure and its dependence on telomerase

    International Nuclear Information System (INIS)

    Cogan, Nicola; Baird, Duncan M.; Phillips, Ryan; Crompton, Lucy A.; Caldwell, Maeve A.; Rubio, Miguel A.; Newson, Roger; Lyng, Fiona; Case, C. Patrick

    2010-01-01

    The bystander effect is a feature of low dose radiation exposure and is characterized by a signaling process from irradiated cells to non irradiated cells, which causes DNA and chromosome damage in these 'nearest neighbour' cells. Here we show that a low and short dose of Cr(VI) can induce stem cells, cancer cells and fibroblasts to chronically secrete bystander signals, which cause DNA damage in neighboring cells. The Cr(VI) induced bystander signaling depended on the telomerase status of either cell. Telomerase negative fibroblasts were able to receive DNA damaging signals from telomerase positive or negative fibroblasts or telomerase positive cancer cells. However telomerase positive fibroblasts were resistant to signals from Cr(VI) exposed telomerase positive fibroblasts or cancer cells. Human embryonic stem cells, with positive Oct4 staining as a marker of pluripotency, showed no significant increase of DNA damage from adjacent Cr and mitomycin C exposed fibroblasts whilst those cells that were negatively stained did. This selectivity of DNA damaging bystander signaling could be an important consideration in developing therapies against cancer and in the safety and effectiveness of tissue engineering and transplantation using stem cells.

  1. DNA damaging bystander signalling from stem cells, cancer cells and fibroblasts after Cr(VI) exposure and its dependence on telomerase

    Energy Technology Data Exchange (ETDEWEB)

    Cogan, Nicola [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom); Baird, Duncan M. [Department of Pathology School of Medicine, Cardiff University, Henry Wellcome Building for Biomedical Research in Wales, Heath Park, Cardiff, CF14 4XN (United Kingdom); Phillips, Ryan [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom); Crompton, Lucy A.; Caldwell, Maeve A. [Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, University of Bristol, Bristol, BS1 3NY (United Kingdom); Rubio, Miguel A. [Center of Regenerative Medicine in Barcelona, CMRB Dr. Aiguader, 88, 7th Floor, 08003 Barcelona (Spain); Newson, Roger [Radiation and Environmental Science Centre, Focas Institute, Dublin Institute of Technology, Dublin 2 (Ireland); Lyng, Fiona [National Heart and Lung Institute, Imperial College London, London, SW7 2AZ (United Kingdom); Case, C. Patrick, E-mail: c.p.case@bristol.ac.uk [Bristol Implant Research Centre, University of Bristol, Bristol, BS10 5NB (United Kingdom)

    2010-01-05

    The bystander effect is a feature of low dose radiation exposure and is characterized by a signaling process from irradiated cells to non irradiated cells, which causes DNA and chromosome damage in these 'nearest neighbour' cells. Here we show that a low and short dose of Cr(VI) can induce stem cells, cancer cells and fibroblasts to chronically secrete bystander signals, which cause DNA damage in neighboring cells. The Cr(VI) induced bystander signaling depended on the telomerase status of either cell. Telomerase negative fibroblasts were able to receive DNA damaging signals from telomerase positive or negative fibroblasts or telomerase positive cancer cells. However telomerase positive fibroblasts were resistant to signals from Cr(VI) exposed telomerase positive fibroblasts or cancer cells. Human embryonic stem cells, with positive Oct4 staining as a marker of pluripotency, showed no significant increase of DNA damage from adjacent Cr and mitomycin C exposed fibroblasts whilst those cells that were negatively stained did. This selectivity of DNA damaging bystander signaling could be an important consideration in developing therapies against cancer and in the safety and effectiveness of tissue engineering and transplantation using stem cells.

  2. The risk-based approach to anti-money laundering: problems and solutions

    DEFF Research Database (Denmark)

    Simonova, Anna

    2011-01-01

    Purpose – The purpose of this paper, which is a part of a PhD thesis, is to detect problems associated with the risk-based approach to anti-money laundering (AML), as well as present ways to improve the risk-based approach. Design/methodology/approach – The method is law and economics. The Ph......D thesis itself is also based on a comparative analysis of the Danish and British AML regimes. Findings – The main findings are: failure to develop adequate risk-based AML systems, taking into account varying levels of money laundering risk, is not only to be considered in the context of legal risk...... but also and more importantly in the context of integrity risk; anti-money laundering (AML) has to be made part of financial and non-financial institutions' corporate social responsibility policies; the Risk Analysis Manual provided by the Central Bank of The Netherlands lists very specific...

  3. PCB153 reduces telomerase activity and telomere length in immortalized human skin keratinocytes (HaCaT) but not in human foreskin keratinocytes (NFK)

    International Nuclear Information System (INIS)

    Senthilkumar, P.K.; Robertson, L.W.; Ludewig, G.

    2012-01-01

    Polychlorinated biphenyls (PCBs), ubiquitous environmental pollutants, are characterized by long term-persistence in the environment, bioaccumulation, and biomagnification in the food chain. Exposure to PCBs may cause various diseases, affecting many cellular processes. Deregulation of the telomerase and the telomere complex leads to several biological disorders. We investigated the hypothesis that PCB153 modulates telomerase activity, telomeres and reactive oxygen species resulting in the deregulation of cell growth. Exponentially growing immortal human skin keratinocytes (HaCaT) and normal human foreskin keratinocytes (NFK) were incubated with PCB153 for 48 and 24 days, respectively, and telomerase activity, telomere length, superoxide level, cell growth, and cell cycle distribution were determined. In HaCaT cells exposure to PCB153 significantly reduced telomerase activity, telomere length, cell growth and increased intracellular superoxide levels from day 6 to day 48, suggesting that superoxide may be one of the factors regulating telomerase activity, telomere length and cell growth compared to untreated control cells. Results with NFK cells showed no shortening of telomere length but reduced cell growth and increased superoxide levels in PCB153-treated cells compared to untreated controls. As expected, basal levels of telomerase activity were almost undetectable, which made a quantitative comparison of treated and control groups impossible. The significant down regulation of telomerase activity and reduction of telomere length by PCB153 in HaCaT cells suggest that any cell type with significant telomerase activity, like stem cells, may be at risk of premature telomere shortening with potential adverse health effects for the affected organism. -- Highlights: ► Human immortal (HaCaT) and primary (NFK) keratinocytes were exposed to PCB153. ► PCB153 significantly reduced telomerase activity and telomere length in HaCaT. ► No effect on telomere length and

  4. Telomerase levels control the lifespan of human T lymphocytes

    NARCIS (Netherlands)

    Roth, Alexander; Yssel, Hans; Pene, Jerome; Chavez, Elizabeth A.; Schertzer, Mike; Lansdorp, Peter M.; Spits, Hergen; Luiten, Rosalie M.

    2003-01-01

    The loss of telomeric DNA with each cell division contributes to the limited replicative lifespan of human T lymphocytes. Although telomerase is transiently expressed in T lymphocytes upon activation, it is insufficient to confer immortality. We have previously shown that immortalization of human

  5. Identification of Protein Components of Yeast Telomerase

    Science.gov (United States)

    2000-09-01

    cells past this limit senesce, or stop growing (reviewed in Hayflick 1997). This limit is imposed by the inactivity of telomerase, which results in...CLASSIFICATION OF THIS PAGE Unclassified 19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified 15. NUMBER OF PAGES 55 16. PRICE CODE 20. LIMITATION ...one of which is the acquired capability of limitless replicative potential. Normal mammalian cells have an intrinsic limit to cellular division, and

  6. Antimetastatic Effects of a Novel Telomerase Inhibitor, GRN163L, on Human Prostate Cancer

    Science.gov (United States)

    2010-05-01

    Human Papilloma Virus Type 18 (HPV-18) DNA. PZ-HPV-7 cells are generally considered as non-tumorigenic in subcutaneous xenograft animal models...6481. [39] H.J. Sommerfeld, A.K. Meeker, M.A. Piatyszek, G.S. Bova, J.W. Shay, D.S. Coffey, Telomerase activity: a prevalent marker of malignant human ...6:192–8. 31. Sommerfeld HJ, Meeker AK, Piatyszek MA, Bova GS, Shay JW, Coffey DS. Telomerase activity: a prevalent marker of malignant human prostate

  7. Developing a Materialist Anti-Racist Approach to Language Activism

    Science.gov (United States)

    Flores, Nelson

    2017-01-01

    The aim of this paper is to propose a materialist anti-racist approach to language activism. This approach combines Joshua Fishman's pioneering work on language activism with critical race theory and the recent materialist turn in applied linguistics. A materialist anti-racist approach to language activism, positions language policy within broader…

  8. Antiaging Effects of an Intensive Mind and Body Therapeutic Program through Enhancement of Telomerase Activity and Adult Stem Cell Counts.

    Science.gov (United States)

    Rao, Krishna S; Chakraharti, Swarup K; Dongare, Vaishali S; Chetana, K; Ramirez, Christina M; Koka, Prasad S; Deb, Kaushik D

    2015-01-01

    Key modalities of integrative medicine known to rejuvenate the mind and body are meditation, yoga, and controlled diet. It has been shown previously that intensive or prolonged mind and body therapies (MBT) may have beneficial effects on the well-being of healthy people and in patients. Telomerase activity and levels of peripheral blood adult pluripotent stem cells (PB-APSC) are reliable markers of long-term well-being that are known to decrease with age. The objective of this study is to understand the effect of our MBT program on telomerase activity and stem cells in blood collected from the participants. Here, we have investigated the effects of an intensive three weeks MBT retreat on telomerase activity and the peripheral blood stem cells in participants before and after the MBT. A total of 108 people were enrolled in the study; 38 men and 70 women (aged 18-90) randomly assigned for the study. Telomerase activity was greater in retreat participants at the end of the MBT retreat. About 45% of people showed more than one-fold increase of telomerase activity after our MBT program. Furthermore, about 27% of people showed more pronounced fold increase (2-fold) in telomerase activity after the MBT. In addition, a substantial percentage of people (about 90%) exhibited increased stem cell counts after the MBT. The data suggest increased telomerase activity and stem cells count in peripheral blood from MBT retreat participants that may lead to increased longevity and better quality of life at latter age.

  9. Potential Anti-Cancer Activities and Mechanisms of Costunolide and Dehydrocostuslactone

    Directory of Open Access Journals (Sweden)

    Xuejing Lin

    2015-05-01

    Full Text Available Costunolide (CE and dehydrocostuslactone (DE are derived from many species of medicinal plants, such as Saussurea lappa Decne and Laurus nobilis L. They have been reported for their wide spectrum of biological effects, including anti-inflammatory, anticancer, antiviral, antimicrobial, antifungal, antioxidant, antidiabetic, antiulcer, and anthelmintic activities. In recent years, they have caused extensive interest in researchers due to their potential anti-cancer activities for various types of cancer, and their anti-cancer mechanisms, including causing cell cycle arrest, inducing apoptosis and differentiation, promoting the aggregation of microtubule protein, inhibiting the activity of telomerase, inhibiting metastasis and invasion, reversing multidrug resistance, restraining angiogenesis has been studied. This review will summarize anti-cancer activities and associated molecular mechanisms of these two compounds for the purpose of promoting their research and application.

  10. Reconstitution of active telomerase in primary human foreskin fibroblasts : effects on proliferative characteristics and response to ionizing radiation

    NARCIS (Netherlands)

    Kampinga, H.H.; Waarde-Verhagen, M.A.W.H. van; Assen-Bolt, A.J. van; Rodemann, H.P.; Prowse, K.R.; Linskens, M.H.K.

    2004-01-01

    Purpose: Telomere shortening has been proposed to trigger senescence, and since most primary cells do not express active telomerase, reactivation of telomerase activity was proposed as a safe and non-transforming way of immortalizing cells. However, to study radiation responses, it is as yet unclear

  11. Telomere 1 (POT1) gene expression and its association with telomerase activity in colorectal tumor samples with different pathological features.

    Science.gov (United States)

    Izgi, Ahu; Gunal, Armagan; Yalcin, Serap; Gunduz, Ufuk

    2014-09-01

    The ends of chromosoms, telomeres are bound with a number of proteins which protect and stabilize telomeres against degredation, end to end fusion and aberrant recombinations. Telomeric DNA is bound of two groups of proteins, which are double-stranded telomeric DNA bindings proteins, and single stranded telomeric binding proteins. Among telomere binding proteins, protections of telomere 1 protein is a single stranded telomere binding proteins and suggested to be a significant player for telomere elongation and has an association with an enzyme called as telomerase which is an intrinsic reverse transcriptase. Telomerase synthesizes hexameric telomeric repeats onto the chromosomes thereby compansating telomere loss in immortal cells, such as tumor cells, whereas telomeres are shorthened with each division in normal cells. PCR-based TRAP (telomeric repeat amplification protocol) assay is a very sensitive assay for the detection of enzymatic activity of telomerase even if a few numbers of cancerous cells are available. The association between telomerase activity and hPOT1 expression in colorectal cancer is still unclear. Protein extraction was performed from specimens of matched normal and colorectal cancer specimens. Protein concentrations were determined by Bradford assay. Optimized protein concentrations were used for TRAP Assay. TRAP products were seperated by vertical gel electrophoresis on 12.5% polyacrylamide gels and visualized by silver staining. Gene expression of hPOT1 was determined by qPCR analysis. The results demonstrated that all tumor tissues were telomerase positive whereas all corresponding normal tissue was telomerase negative. Among clinicopathological findings, telomerase activity was found to be associated with stage, histology, localization, distant metastasis and lymph node metastasis of tumor in the current study. Although all of the clinicopathological findings differed in the expression of hPOT1 compared to normal tissues, they did not

  12. Approach to a Pregnant Woman with Anti D + Anti C Reactivity Pattern: A Diagnostic Conundrum.

    Science.gov (United States)

    Rai, Preeti; Sharma, Geetika; Singh, Deeksha; Garg, Jyoti

    2017-09-01

    The Rhesus G antigen is present on all RBCs that are C+ and also on most D+ RBCs. Due to this co-distribution of G with either C or D antigen, it mimics a reactivity pattern of anti C + anti D on Indirect Antiglobulin Test (IAT), though the role of Anti G in causing Hemolytic Disease of Newborn (HDN) is controversial. The differentiation of anti D, anti C, and anti G is essential particularly in pregnant females. We hereby report a rare case of anti G with anti D and anti C in a pregnant woman with emphasis on approach to identify anti D+C+G and its implications.

  13. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    International Nuclear Information System (INIS)

    Parra, E.R.; Pincelli, M.S.; Teodoro, W.R.; Velosa, A.P.P.; Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L.

    2014-01-01

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis

  14. Modeling pulmonary fibrosis by abnormal expression of telomerase/apoptosis/collagen V in experimental usual interstitial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Parra, E.R.; Pincelli, M.S. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Teodoro, W.R.; Velosa, A.P.P. [Disciplina de Reumatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil); Martins, V.; Rangel, M.P.; Barbas-Filho, J.V.; Capelozzi, V.L. [Departamento de Patologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-06-04

    Limitations on tissue proliferation capacity determined by telomerase/apoptosis balance have been implicated in pathogenesis of idiopathic pulmonary fibrosis. In addition, collagen V shows promise as an inductor of apoptosis. We evaluated the quantitative relationship between the telomerase/apoptosis index, collagen V synthesis, and epithelial/fibroblast replication in mice exposed to butylated hydroxytoluene (BHT) at high oxygen concentration. Two groups of mice were analyzed: 20 mice received BHT, and 10 control mice received corn oil. Telomerase expression, apoptosis, collagen I, III, and V fibers, and hydroxyproline were evaluated by immunohistochemistry, in situ detection of apoptosis, electron microscopy, immunofluorescence, and histomorphometry. Electron microscopy confirmed the presence of increased alveolar epithelial cells type 1 (AEC1) in apoptosis. Immunostaining showed increased nuclear expression of telomerase in AEC type 2 (AEC2) between normal and chronic scarring areas of usual interstitial pneumonia (UIP). Control lungs and normal areas from UIP lungs showed weak green birefringence of type I and III collagens in the alveolar wall and type V collagen in the basement membrane of alveolar capillaries. The increase in collagen V was greater than collagens I and III in scarring areas of UIP. A significant direct association was found between collagen V and AEC2 apoptosis. We concluded that telomerase, collagen V fiber density, and apoptosis evaluation in experimental UIP offers the potential to control reepithelization of alveolar septa and fibroblast proliferation. Strategies aimed at preventing high rates of collagen V synthesis, or local responses to high rates of cell apoptosis, may have a significant impact in pulmonary fibrosis.

  15. Long telomeres produced by telomerase-resistant recombination are established from a single source and are subject to extreme sequence scrambling.

    Directory of Open Access Journals (Sweden)

    Jianing Xu

    Full Text Available Considerable evidence now supports the idea that the moderate telomere lengthening produced by recombinational telomere elongation (RTE in a Kluyveromyces lactis telomerase deletion mutant occurs through a roll-and-spread mechanism. However, it is unclear whether this mechanism can account for other forms of RTE that produce much longer telomeres such as are seen in human alternative lengthening of telomere (ALT cells or in the telomerase-resistant type IIR "runaway" RTE such as occurs in the K. lactis stn1-M1 mutant. In this study we have used mutationally tagged telomeres to examine the mechanism of RTE in an stn1-M1 mutant both with and without telomerase. Our results suggest that the establishment stage of the mutant state in newly generated stn1-M1 ter1-Δ mutants surprisingly involves a first stage of sudden telomere shortening. Our data also show that, as predicted by the roll-and-spread mechanism, all lengthened telomeres in a newly established mutant cell commonly emerge from a single telomere source. However, in sharp contrast to the RTE of telomerase deletion survivors, we show that the RTE of stn1-M1 ter1-Δ cells produces telomeres whose sequences undergo continuous intense scrambling via recombination. While telomerase was not necessary for the long telomeres in stn1-M1 cells, its presence during their establishment was seen to interfere with the amplification of repeats via recombination, a result consistent with telomerase retaining its ability to add repeats during active RTE. Finally, we observed that the presence of active mismatch repair or telomerase had important influences on telomeric amplification and/or instability.

  16. Herpesvirus telomerase RNA (vTR with a mutated template sequence abrogates herpesvirus-induced lymphomagenesis.

    Directory of Open Access Journals (Sweden)

    Benedikt B Kaufer

    2011-10-01

    Full Text Available Telomerase reverse transcriptase (TERT and telomerase RNA (TR represent the enzymatically active components of telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus encoded TR (vTR on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus Marek's disease virus (MDV as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5 by two-step Red-mediated mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1 that mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of cancer cell proliferation, and 2 that this strategy could be used to generate novel vaccine candidates

  17. Telomerase activation by genomic rearrangements in high-risk neuroblastoma

    Science.gov (United States)

    Peifer, Martin; Hertwig, Falk; Roels, Frederik; Dreidax, Daniel; Gartlgruber, Moritz; Menon, Roopika; Krämer, Andrea; Roncaioli, Justin L.; Sand, Frederik; Heuckmann, Johannes M.; Ikram, Fakhera; Schmidt, Rene; Ackermann, Sandra; Engesser, Anne; Kahlert, Yvonne; Vogel, Wenzel; Altmüller, Janine; Nürnberg, Peter; Thierry-Mieg, Jean; Thierry-Mieg, Danielle; Mariappan, Aruljothi; Heynck, Stefanie; Mariotti, Erika; Henrich, Kai-Oliver; Glöckner, Christian; Bosco, Graziella; Leuschner, Ivo; Schweiger, Michal R.; Savelyeva, Larissa; Watkins, Simon C.; Shao, Chunxuan; Bell, Emma; Höfer, Thomas; Achter, Viktor; Lang, Ulrich; Theissen, Jessica; Volland, Ruth; Saadati, Maral; Eggert, Angelika; de Wilde, Bram; Berthold, Frank; Peng, Zhiyu; Zhao, Chen; Shi, Leming; Ortmann, Monika; Büttner, Reinhard; Perner, Sven; Hero, Barbara; Schramm, Alexander; Schulte, Johannes H.; Herrmann, Carl; O’Sullivan, Roderick J.; Westermann, Frank; Thomas, Roman K.; Fischer, Matthias

    2016-01-01

    Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system1. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive2–4. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type1,2,5. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours. PMID:26466568

  18. Analysis of telomerase target gene expression effects from murine models in patient cohorts by homology translation and random survival forest modeling

    Directory of Open Access Journals (Sweden)

    Frederik Otzen Bagger

    2016-03-01

    Full Text Available Acute myeloid leukemia (AML is an aggressive and rapidly fatal blood cancer that affects patients of any age group. Despite an initial response to standard chemotherapy, most patients relapse and this relapse is mediated by leukemia stem cell (LSC populations. We identified a functional requirement for telomerase in sustaining LSC populations in murine models of AML and validated this requirement using an inhibitor of telomerase in human AML. Here, we describe in detail the contents, quality control and methods of the gene expression analysis used in the published study (Gene Expression Omnibus GSE63242. Additionally, we provide annotated gene lists of telomerase regulated genes in AML and R code snippets to access and analyze the data used in the original manuscript. Keywords: AML, Leukemia, Stem cells, Telomere, Telomerase

  19. A novel approach to describing and detecting performance anti-patterns

    Science.gov (United States)

    Sheng, Jinfang; Wang, Yihan; Hu, Peipei; Wang, Bin

    2017-08-01

    Anti-pattern, as an extension to pattern, describes a widely used poor solution which can bring negative influence to application systems. Aiming at the shortcomings of the existing anti-pattern descriptions, an anti-pattern description method based on first order predicate is proposed. This method synthesizes anti-pattern forms and symptoms, which makes the description more accurate and has good scalability and versatility as well. In order to improve the accuracy of anti-pattern detection, a Bayesian classification method is applied in validation for detection results, which can reduce false negatives and false positives of anti-pattern detection. Finally, the proposed approach in this paper is applied to a small e-commerce system, the feasibility and effectiveness of the approach is demonstrated further through experiments.

  20. The inhibitory effect of Curcuma longa extract on telomerase activity ...

    African Journals Online (AJOL)

    Telomerase is reactivated in lung cancer cells, the most prevalent cancer worldwide, but not normal cells. Therefore, targeting it, preferably with natural compounds derive from medicinal plant such as curcumin, could have important effect on treatment of lung cancer. Curcumin, derived from Curcuma longa rhizome, has ...

  1. A Highly Sensitive Telomerase Activity Assay that Eliminates False-Negative Results Caused by PCR Inhibitors

    Directory of Open Access Journals (Sweden)

    Hidenobu Yaku

    2013-09-01

    Full Text Available An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR on magnetic beads (MBs and subsequent application of cycling probe technology (CPT is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGGn-3' of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity.

  2. Evaluation of Energy Balance on Human Telomerase Reverse Transcriptase (hTERT) Alternative Splicing by Semi-quantitative RT-PCR in Human Umbilical Vein Endothelial Cells.

    Science.gov (United States)

    Behjati, Mohaddeseh; Hashemi, Mohammad; Kazemi, Mohammad; Salehi, Mansoor; Javanmard, Shaghayegh Haghjooy

    2017-01-01

    Decreased high-energy phosphate level is involved in endothelial cell injury and dysfunction. Reduced telomerase activity in endothelial cells in parallel with reduced energy levels might be due to altered direction of alternative splicing machine as a complication of depleted energy during the process of atherosclerosis. Isolated human umbilical vein endothelial cells (HUVECs) were treated for 24 hours by oligomycine (OM) and 2-deoxy glucose (2-DG). After 24 hours, the effect of energy depletion on telomerase splicing pattern was evaluated using RT-PCR. Indeed, in both treated and untargeted cells, nitric oxide (NO) and von Willebrand factor (vWF) were measured. ATP was depleted in treated cells by 43.9% compared with control group. We observed a slight decrease in NO levels ( P = 0.09) and vWF ( P = 0.395) in the setting of 49.36% ATP depletion. In both groups, no telomerase gene expression was seen. Telomerase and housekeeping gene expression were found in positive control group (colon cancer tissue) and sample tissue. The absence of telomerase gene expression in HUVECs might be due to the mortality of these cells or the low level of telomerase gene expression in these cells under normal circumstances.

  3. Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia.

    Science.gov (United States)

    Bär, Christian; Povedano, Juan Manuel; Serrano, Rosa; Benitez-Buelga, Carlos; Popkes, Miriam; Formentini, Ivan; Bobadilla, Maria; Bosch, Fatima; Blasco, Maria A

    2016-04-07

    Aplastic anemia is a fatal bone marrow disorder characterized by peripheral pancytopenia and marrow hypoplasia. The disease can be hereditary or acquired and develops at any stage of life. A subgroup of the inherited form is caused by replicative impairment of hematopoietic stem and progenitor cells due to very short telomeres as a result of mutations in telomerase and other telomere components. Abnormal telomere shortening is also described in cases of acquired aplastic anemia, most likely secondary to increased turnover of bone marrow stem and progenitor cells. Here, we test the therapeutic efficacy of telomerase activation by using adeno-associated virus (AAV)9 gene therapy vectors carrying the telomerase Tert gene in 2 independent mouse models of aplastic anemia due to short telomeres (Trf1- and Tert-deficient mice). We find that a high dose of AAV9-Tert targets the bone marrow compartment, including hematopoietic stem cells. AAV9-Tert treatment after telomere attrition in bone marrow cells rescues aplastic anemia and mouse survival compared with mice treated with the empty vector. Improved survival is associated with a significant increase in telomere length in peripheral blood and bone marrow cells, as well as improved blood counts. These findings indicate that telomerase gene therapy represents a novel therapeutic strategy to treat aplastic anemia provoked or associated with short telomeres. © 2016 by The American Society of Hematology.

  4. Comparison of Inhibitory Effect of Curcumin Nanoparticles and Free Curcumin in Human Telomerase Reverse Transcriptase Gene Expression in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Nosratollah Zarghami

    2013-02-01

    Full Text Available Purpose: Telomerase is expressed in most cancers, including breast cancer. Curcumin, a polyphenolic compound that obtained from the herb of Curcuma longa, has many anticancer effects. But, its effect is low due to poor water solubility. In order to improve its solubility and drug delivery, we have utilized a β-cyclodextrin-curcumin inclusion complex. Methods: To evaluate cytotoxic effects of cyclodextrin-curcumin and free curcumin, MTT assay was done. Cells were treated with equal concentration of cyclodextrin-curcumin and free curcumin. Telomerase gene expression level in two groups was compared by Real-time PCR. Results: MTT assay demonstrated that β-cyclodextrin-curcumin enhanced curcumin delivery in T47D breast cancer cells. The level of telomerase gene expression in cells treated with cyclodextrin-curcumin was lower than that of cells treated with free curcumin (P=0.001. Conclusion: Results are suggesting that cyclodextrin-curcumin complex can be more effective than free curcumin in inhibition of telomerase expression.

  5. Activity of telomerase and telomeric length in Aphis mellifera

    Czech Academy of Sciences Publication Activity Database

    Korandová, Michala; Čapková Frydrychová, Radmila

    2016-01-01

    Roč. 125, č. 3 (2016), s. 405-411 ISSN 0009-5915 R&D Projects: GA ČR GA14-07172S Grant - others:GA JU(CZ) 052/2013/P; European Union Seventh Framework(CZ) 316304 Program:FP7 Institutional support: RVO:60077344 Keywords : telomere * telomerase * Apis mellifera Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.414, year: 2016

  6. Insights into the evolution of mammalian telomerase: Platypus TERT shares similarities with genes of birds and other reptiles and localizes on sex chromosomes

    Directory of Open Access Journals (Sweden)

    Hrdličková Radmila

    2012-06-01

    Full Text Available Abstract Background The TERT gene encodes the catalytic subunit of the telomerase complex and is responsible for maintaining telomere length. Vertebrate telomerase has been studied in eutherian mammals, fish, and the chicken, but less attention has been paid to other vertebrates. The platypus occupies an important evolutionary position, providing unique insight into the evolution of mammalian genes. We report the cloning of a platypus TERT (OanTERT ortholog, and provide a comparison with genes of other vertebrates. Results The OanTERT encodes a protein with a high sequence similarity to marsupial TERT and avian TERT. Like the TERT of sauropsids and marsupials, as well as that of sharks and echinoderms, OanTERT contains extended variable linkers in the N-terminal region suggesting that they were present already in basal vertebrates and lost independently in ray-finned fish and eutherian mammals. Several alternatively spliced OanTERT variants structurally similar to avian TERT variants were identified. Telomerase activity is expressed in all platypus tissues like that of cold-blooded animals and murine rodents. OanTERT was localized on pseudoautosomal regions of sex chromosomes X3/Y2, expanding the homology between human chromosome 5 and platypus sex chromosomes. Synteny analysis suggests that TERT co-localized with sex-linked genes in the last common mammalian ancestor. Interestingly, female platypuses express higher levels of telomerase in heart and liver tissues than do males. Conclusions OanTERT shares many features with TERT of the reptilian outgroup, suggesting that OanTERT represents the ancestral mammalian TERT. Features specific to TERT of eutherian mammals have, therefore, evolved more recently after the divergence of monotremes.

  7. Telomerase-mediated life-span extension of human primary fibroblasts by human artificial chromosome (HAC) vector

    International Nuclear Information System (INIS)

    Shitara, Shingo; Kakeda, Minoru; Nagata, Keiko; Hiratsuka, Masaharu; Sano, Akiko; Osawa, Kanako; Okazaki, Akiyo; Katoh, Motonobu; Kazuki, Yasuhiro; Oshimura, Mitsuo; Tomizuka, Kazuma

    2008-01-01

    Telomerase-mediated life-span extension enables the expansion of normal cells without malignant transformation, and thus has been thought to be useful in cell therapies. Currently, integrating vectors including the retrovirus are used for human telomerase reverse transcriptase (hTERT)-mediated expansion of normal cells; however, the use of these vectors potentially causes unexpected insertional mutagenesis and/or activation of oncogenes. Here, we established normal human fibroblast (hPF) clones retaining non-integrating human artificial chromosome (HAC) vectors harboring the hTERT expression cassette. In hTERT-HAC/hPF clones, we observed the telomerase activity and the suppression of senescent-associated SA-β-galactosidase activity. Furthermore, the hTERT-HAC/hPF clones continued growing beyond 120 days after cloning, whereas the hPF clones retaining the silent hTERT-HAC senesced within 70 days. Thus, hTERT-HAC-mediated episomal expression of hTERT allows the extension of the life-span of human primary cells, implying that gene delivery by non-integrating HAC vectors can be used to control cellular proliferative capacity of primary cultured cells

  8. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells

    DEFF Research Database (Denmark)

    Simonsen, Janne Lytoft; Rosada, Cecilia; Serakinci, Nedime

    2002-01-01

    Human bone marrow stromal cells (hMSCs) were stably transduced by a retroviral vector containing the gene for the catalytic subunit of human telomerase (hTERT). Transduced cells (hMSC-TERTs) had telomerase activity, and the mean telomere length was increased as compared with that of control cells....... The transduced cells have now undergone more than 260 population doublings (PD) and continue to proliferate, whereas control cells underwent senescence-associated proliferation arrest after 26 PD. The cells maintained production of osteoblastic markers and differentiation potential during continuous subculturing......, did not form tumors, and had a normal karyotype. When implanted subcutaneously in immunodeficient mice, the transduced cells formed more bone than did normal cells. These results suggest that ectopic expression of telomerase in hMSCs prevents senescence-associated impairment of osteoblast functions....

  9. Formation of radiation induced chromosome aberrations: involvement of telomeric sequences and telomerase

    International Nuclear Information System (INIS)

    Pirzio, L.

    2004-07-01

    As telomeres are crucial for chromosome integrity; we investigated the role played by telomeric sequences in the formation and in the transmission of radio-induced chromosome rearrangements in human cells. Starting from interstitial telomeric sequences (ITS) as putative region of breakage, we showed that the radiation sensitivity is not equally distributed along chromosomes and. is not affected by ITS. On the contrary, plasmid integration sites are prone to radio-induced breaks, suggesting a possible integration at sites already characterized by fragility. However plasmids do not preferentially insert at radio-induced breaks in human cells immortalized by telomerase. These cells showed remarkable karyotype stability even after irradiation, suggesting a role of telomerase in the genome maintenance despite functional telomeres. Finally, we showed that the presence of more breaks in a cell favors the repair, leading to an increase of transmissible rearrangements. (author)

  10. Telomerase: a target for therapeutic effects of curcumin and a curcumin derivative in Aβ1-42 insult in vitro.

    Directory of Open Access Journals (Sweden)

    Zijian Xiao

    Full Text Available This study was designed to investigate whether telomerase was involved in the neuroprotective effect of curcumin and Cur1. Alzheimer's disease is a consequence of an imbalance between the generation and clearance of amyloid-beta peptide in the brain. In this study, we used Aβ1-42 (10 µg/ml to establish a damaged cell model, and curcumin and Cur1 were used in treatment groups. We measured cell survival and cell growth, intracellular oxidative stress and hTERT expression. After RNA interference, the effects of curcumin and Cur1 on cells were verified. Exposure to Aβ1-42 resulted in significant oxidative stress and cell toxicity, and the expression of hTERT was significantly decreased. Curcumin and Cur1 both protected SK-N-SH cells from Aβ1-42 and up-regulated the expression of hTERT. Furthermore, Cur1 demonstrated stronger protective effects than curcumin. However, when telomerase was inhibited by TERT siRNA, the neuroprotection by curcumin and Cur1 were ceased. Our study indicated that the neuroprotective effects of curcumin and Cur1 depend on telomerase, and thus telomerase may be a target for therapeutic effects of curcumin and Cur1.

  11. Telomerase: A Target for Therapeutic Effects of Curcumin and a Curcumin Derivative in Aβ1-42 Insult In Vitro

    Science.gov (United States)

    Lin, Jianwen; Zheng, Zhenyang; Shi, Xiaolei; Di, Wei; Qi, Weiwei; Zhu, Yingting; Zhou, Guijuan; Fang, Yannan

    2014-01-01

    This study was designed to investigate whether telomerase was involved in the neuroprotective effect of curcumin and Cur1. Alzheimer's disease is a consequence of an imbalance between the generation and clearance of amyloid-beta peptide in the brain. In this study, we used Aβ1-42 (10 µg/ml) to establish a damaged cell model, and curcumin and Cur1 were used in treatment groups. We measured cell survival and cell growth, intracellular oxidative stress and hTERT expression. After RNA interference, the effects of curcumin and Cur1 on cells were verified. Exposure to Aβ1–42 resulted in significant oxidative stress and cell toxicity, and the expression of hTERT was significantly decreased. Curcumin and Cur1 both protected SK-N-SH cells from Aβ1–42 and up-regulated the expression of hTERT. Furthermore, Cur1 demonstrated stronger protective effects than curcumin. However, when telomerase was inhibited by TERT siRNA, the neuroprotection by curcumin and Cur1 were ceased. Our study indicated that the neuroprotective effects of curcumin and Cur1 depend on telomerase, and thus telomerase may be a target for therapeutic effects of curcumin and Cur1. PMID:24983737

  12. Robust prediction of anti-cancer drug sensitivity and sensitivity-specific biomarker.

    Directory of Open Access Journals (Sweden)

    Heewon Park

    Full Text Available The personal genomics era has attracted a large amount of attention for anti-cancer therapy by patient-specific analysis. Patient-specific analysis enables discovery of individual genomic characteristics for each patient, and thus we can effectively predict individual genetic risk of disease and perform personalized anti-cancer therapy. Although the existing methods for patient-specific analysis have successfully uncovered crucial biomarkers, their performance takes a sudden turn for the worst in the presence of outliers, since the methods are based on non-robust manners. In practice, clinical and genomic alterations datasets usually contain outliers from various sources (e.g., experiment error, coding error, etc. and the outliers may significantly affect the result of patient-specific analysis. We propose a robust methodology for patient-specific analysis in line with the NetwrokProfiler. In the proposed method, outliers in high dimensional gene expression levels and drug response datasets are simultaneously controlled by robust Mahalanobis distance in robust principal component space. Thus, we can effectively perform for predicting anti-cancer drug sensitivity and identifying sensitivity-specific biomarkers for individual patients. We observe through Monte Carlo simulations that the proposed robust method produces outstanding performances for predicting response variable in the presence of outliers. We also apply the proposed methodology to the Sanger dataset in order to uncover cancer biomarkers and predict anti-cancer drug sensitivity, and show the effectiveness of our method.

  13. Induced apoptosis by mild hyperthermia occurs via telomerase inhibition on the three human myeloid leukemia cell lines: TF-1, K562, and HL-60.

    Science.gov (United States)

    Deezagi, Abdolkhaleg; Manteghi, Sanaz; Khosravani, Pardis; Vaseli-Hagh, Neda; Soheili, Zahra-Soheila

    2009-09-01

    The purpose of this research was to understand the effect of hyperthermia on the telomerase activity in human leukemic cell lines (HL-60, K562, and TF-1). The cells were treated by hyperthermia at the range of 41-44 degrees C for 120 min and incubated for 96 h. Then telomerase activity, cell proliferation, and apoptosis were assessed. The results indicated that hyperthermia significantly induced apoptosis on the cells. The cells exhibited pre-apoptotic pattern at 41 and 42 degrees C at 60-120 min and apoptotic pattern at 43 and 44 degrees C over 30 min after hyperthermia. Telomerase activity (that was assayed immediately after hyperthermia) was stable at 41-42 degrees C for 60 min but decreased to 35-40% at 120 min. However, at severe hyperthermia (43-44 degrees C) telomerase activity was decreased in a time- and dose-dependent manner. Following hyperthermia (41-44 degrees C up to 120 min), the cells were incubated for 96 h. In these conditions, the telomerase activity was decreased by about 60-80% in comparison with that untreated control cells.

  14. [Telomerase in lung cancer. Testing the activity of the "immortaligy enzyme" bronchial biopsies increases the diagnostic yield in cases of suspected peripheral bronchogenic carcinomas].

    Science.gov (United States)

    Freitag, L; Litterst, P; Obertrifter, B; Velehorschi, V; Kemmer, H P; Linder, A; Brightman, I

    2000-11-01

    The proliferative capability is time-limited in normal somatic cells by the shortening of their chromosomal ends, the telomeres (Hayflick limit). An important feature of malignant cells is their immortality. The probably most common mechanism of tumour cells to achieve unlimited replicability is the activation of the enzyme telomerase. The reverse transcriptase can compensate the loss of telomeres. Using a PCR-based TRAP assay we found telomerase activity in tumour biopsies, exsudates and bronchial washings in various thoracic malignancies. In 38 of 47 patients with suspected peripheral lung cancer eventually surgery or invasive procedures proved a malignancy. In fluoroscopically guided bronchial brushings from 25 of these 38 patients (66%) the TRAP assay revealed telomerase activity. There was a single false positive case (tuberculosis) and with a single exception, the simultaneously taken brushes of the contralateral lobes were all telomerase negative. In 23 patients (61%) tumour cells were found in the cytological examination. In 33 patients at least one marker was positive. Thus the combination of cytology and telomerase test in bronchial brush biopsies attained a diagnostic yield of 87%.

  15. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell

    Czech Academy of Sciences Publication Activity Database

    Schrumpfová, P.; Schorová, Š.; Fajkus, Jiří

    2016-01-01

    Roč. 7, č. 851 (2016) ISSN 1664-462X R&D Projects: GA ČR(CZ) GA13-06943S Institutional support: RVO:68081707 Keywords : telomere * telomerase * telomeric proteins Subject RIV: BO - Biophysics Impact factor: 4.298, year: 2016

  16. General approach to standardization of the solid-phase radioimmunoassay for quantitation of class-specific antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Zollinger, W D; Boslego, J W [Walter Reed Army Inst. of Research, Washington, DC (USA)

    1981-10-30

    The feasibility of using an anti-human immunoglobulin/human immunoglobulin/(/sup 125/I)anti-human immunoglobulin 'sandwich' in a solid-phase radioimmunoassay to produce a standard curve which could be used to quantitate antigen-specific antibody of a particular immunoglobulin class was investigated. The amount of secondary antibody (SAb) bound was determined as a function of whether the primary antibody (PAb) was bound to its specific solid-phase antigen or by a solid-phase anti-human immunoglobulin. No significant difference between the two values was observed. Quantitation of anti-tetanus toxoid antibody by this method was in a good agreement with quantitative precipitin tests. Comparison of SAb binding as a function of the way the PAb is bound was extended to class-specific PAb by use of murine monoclonal antibodies to meningococcal antigens. In most cases somewhat greater binding of SAb occurred when PAb was bound to antigen, but in several cases where low avidity antibody and/or poor quality antigens were used, greater SAb binding occurred when PAb was bound by anti-mouse immunoglobulin. The results indicate that this approach may be useful as a general method for standardizing the SPRIA and other solid-phase immunoassays such as the ELISA to measure class-specific antibody.

  17. Triptolide inhibits transcription of hTERT through down-regulation of transcription factor specificity protein 1 in primary effusion lymphoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Long, Cong; Wang, Jingchao [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Guo, Wei [Department of Pathology and Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Wang, Huan; Wang, Chao; Liu, Yu [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); Sun, Xiaoping, E-mail: xsun6@whu.edu.cn [Department of Pathogen Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071 (China); State Key Laboratory of Virology, Wuhan University, Wuhan, 430072 (China)

    2016-01-01

    Primary effusion lymphoma (PEL) is a rare and aggressive non-Hodgkin's lymphoma. Human telomerase reverse transcriptase (hTERT), a key component responsible for the regulation of telomerase activity, plays important roles in cellular immortalization and cancer development. Triptolide purified from Tripterygium extracts displays a broad-spectrum bioactivity profile, including immunosuppressive, anti-inflammatory, and anti-tumor. In this study, it is investigated whether triptolide reduces hTERT expression and suppresses its activity in PEL cells. The mRNA and protein levels of hTERT were examined by real time-PCR and Western blotting, respectively. The activity of hTERT promoter was determined by Dual luciferase reporter assay. Our results demonstrated that triptolide decreased expression of hTERT at both mRNA and protein levels. Further gene sequence analysis indicated that the activity of hTERT promoter was suppressed by triptolide. Triptolide also reduced the half-time of hTERT. Additionally, triptolide inhibited the expression of transcription factor specificity protein 1(Sp1) in PEL cells. Furthermore, knock-down of Sp1 by using specific shRNAs resulted in down-regulation of hTERT transcription and protein expression levels. Inhibition of Sp1 by specific shRNAs enhanced triptolide-induced cell growth inhibition and apoptosis. Collectively, our results demonstrate that the inhibitory effect of triptolide on hTERT transcription is possibly mediated by inhibition of transcription factor Sp1 in PEL cells. - Highlights: • Triptolide reduces expression of hTERT by decreasing its transcription level. • Triptolide reduces promoter activity and stability of hTERT. • Triptolide down-regulates expression of Sp1. • Special Sp1 shRNAs inhibit transcription and protein expression of hTERT. • Triptolide and Sp1 shRNA2 induce cell proliferation inhibition and apoptosis.

  18. Enhanced detection sensitivity of prostate-specific antigen via PSA-conjugated gold nanoparticles based on localized surface plasmon resonance: GNP-coated anti-PSA/LSPR as a novel approach for the identification of prostate anomalies.

    Science.gov (United States)

    Jazayeri, M H; Amani, H; Pourfatollah, A A; Avan, A; Ferns, G A; Pazoki-Toroudi, H

    2016-10-01

    Prostate-specific antigen (PSA) is used to screen for prostate disease, although it has several limitations in its application as an organ-specific or cancer-specific marker. Furthermore, a highly specific/sensitive and/or label-free identification of PSA still remains a challenge in the diagnosis of prostate anomalies. We aimed to develop a gold nanoparticle (GNP)-conjugated anti-PSA antibody-based localized surface plasmon resonance (LSPR) as a novel approach to detect prostatic disease. A total of 25 nm colloidal gold particles were prepared followed by conjugation with anti-PSA pAb (GNPs-PSA pAb). LSPR was used to monitor the absorption changes of the aggregation of the particles. The size, shape and stability of the GNP-anti-PSA were evaluated by dynamic light scattering transmission electron microscopy (TEM) and zetasizer. The GNPs-conjugated PSA-pAb was successfully synthesized and subsequently characterized using ultraviolet absorption spectroscopy and TEM to determine the size distribution, crystallinity and stability of the particles (for example, stability of GNP: 443 mV). To increase the stability of the particles, we pegylated GNPs using an N-(3-dimethylaminopropyl)-N*-ethylcarbodiimide hydrochloride (EDC)/N-hydroxylsuccinimide (NHS) linker (for example, stability of GNP after pegylation: 272 mV). We found a significant increase in the absorbance and intensity of the particles with extinction peak at 545/2 nm, which was shifted by ~1 nm after conjugation. To illustrate the potential of the GNPs-PSA pAb to bind specifically to PSA, LSPR was used. We found that the extinction peak shifted 3 nm for a solution of 100 nM unlabeled antigen. In summary, we have established a novel approach for improving the efficacy/sensitivity of PSA in the assessment of prostate disease, supporting further investigation on the diagnostic value of GNP-conjugated anti-PSA/LSPR for the detection of prostate cancer.

  19. Telomerase activity in patients with stage 2–5D chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Veysel Kidir

    2017-11-01

    Full Text Available Background: Molecular mechanisms of increased cardiovascular mortality in chronic kidney disease (CKD associated with biological age are not well understood. Recent studies support the hypothesis that common factors responsible for this phenomenon are cellular aging and telomere dysfunction. Objectives: The purpose of this study was to investigate the relation between telomerase activity and CKD stages. Methods: The study included 120 patients who were followed-up for CKD stage 2–5D, composed of 30 patients of each stage and 30 healthy volunteers without any known disease who were admitted to our hospital for routine check-ups. Telomerase activity in peripheral blood mononuclear cells (PBMC was measured using the TRAP assay. Results: A significant difference was observed for telomerase activity in PBMC between groups. The detected levels were lowest in the healthy control group (0.15 ± 0.02, and highest in CKD stage 5D patients (0.23 ± 0.04. In CKD patients, telomerase activity in PBMC was positively correlated with the CKD stage, serum creatinine, potassium and parathormone levels, and negatively correlated with estimated glomerular filtration rate (eGFR, body mass index (BMI, platelet count and serum calcium levels. According to the linear regression analysis, independent predictors for high telomerase activity in CKD patients were eGFR and BMI. Conclusion: Telomerase activity in PBMC increases with advancing CKD stage in CKD patients. Increased telomerase activity in PBMC is associated with eGFR and BMI. Resumen: Antecedentes: Los mecanismos moleculares responsables del aumento de la mortalidad cardiovascular en la enfermedad renal crónica (ERC asociada a la edad biológica no se conocen bien. Los estudios recientes apoyan la hipótesis de que los factores comunes responsables de este fenómeno son el envejecimiento celular y la disfunción telomérica. Objetivos: El objetivo de este estudio fue investigar

  20. Rapid blockade of telomerase activity and tumor cell growth by the DPL lipofection of ribbon antisense to hTR.

    Science.gov (United States)

    Bajpai, Arun K; Park, Jeong-Hoh; Moon, Ik-Jae; Kang, Hyungu; Lee, Yun-Han; Doh, Kyung-Oh; Suh, Seong-Il; Chang, Byeong-Churl; Park, Jong-Gu

    2005-09-29

    Ribbon antisense (RiAS) to the hTR RNA, a component of the telomerase complex, was employed to inhibit telomerase activity and cancer cell growth. The antisense molecule, hTR-RiAS, combined with enhanced cellular uptake was shown to effectively inhibit telomerase activity and cause rapid cell death in various cancer cell lines. When cancer cells were treated with hTR-RiAS, the level of hTR RNA was reduced by more than 90% accompanied with reduction in telomerase activity. When checked for cancer cell viability, cancer cell lines treated with hTR-RiAS using DNA+Peptide+Lipid complex showed 70-80% growth inhibition in 3 days. The reduced cell viability was due to apoptosis as the percentage of cells exhibiting the sub-G0 arrest and DNA fragmentation increased after antisense treatment. Further, when subcutaneous tumors of a colon cancer cell line (SW480) were treated intratumorally with hTR-RiAS, tumor growth was markedly suppressed with almost total ablation of hTR RNA in the tumor tissue. Cells in the tumor tissue were also found to undergo apoptosis after hTR-RiAS treatment. These results suggest that hTR-RiAS is an effective anticancer reagent, with a potential for broad efficacy to diverse malignant tumors.

  1. Telomerase level increase is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: Secondary outcome analysis of the OFFER randomized clinical trial.

    Science.gov (United States)

    Pawełczyk, Tomasz; Grancow-Grabka, Marta; Trafalska, Elżbieta; Szemraj, Janusz; Żurner, Natalia; Pawełczyk, Agnieszka

    2018-04-20

    Schizophrenia is associated with shortening of the lifespan mainly due to cardiovascular events, cancer and chronic obstructive pulmonary disease. Both telomere attrition and decrease of telomerase levels were observed in schizophrenia. Polyunsaturated fatty acids (PUFA) influence multiple biochemical mechanisms which are postulated to accelerate telomere shortening and limit the longevity of patients with schizophrenia. Intervention studies based on add-on therapy with n-3 polyunsaturated fatty acids (n-3 PUFA) in patients with schizophrenia did not assess the changes in telomerase levels. A randomized placebo-controlled trial named OFFER was designed to compare the efficacy of a 26-week intervention composed of either 2.2g/day of n-3 PUFA or olive oil placebo with regard to symptom severity in first-episode schizophrenia patients. The secondary outcome measure of the study was to describe the association between the clinical effect of n-3 PUFA and changes in telomerase levels. Seventy-one patients aged 16-35 were enrolled in the study and randomly assigned to the study arms. The Positive and Negative Syndrome Scale (PANSS) was used to assess the change in symptom severity. Telomerase levels of peripheral blood mononuclear cells (PBMC) were assessed at three points: at baseline and at weeks 8 and 26 of the intervention. A significantly greater increase in PBMC telomerase levels in the intervention group compared to placebo was observed (p<0.001). Changes in telomerase levels significantly and inversely correlated with improvement in depressive symptoms and severity of the illness. The efficacy of a six-month intervention with n-3 PUFA observed in first-episode schizophrenia may be related to an increase in telomerase levels. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines.

    Science.gov (United States)

    Abbas, Ata; Hall, J Adam; Patterson, William L; Ho, Emily; Hsu, Anna; Al-Mulla, Fahd; Georgel, Philippe T

    2016-02-01

    Epidemiologic studies have revealed that diets rich in sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables, are associated with a marked decrease in prostate cancer incidence. The chemo-preventive role of SFN is associated with its histone de-acetylase inhibitor activity. However, the effect of SFN on chromatin composition and dynamic folding, especially in relation to HDAC inhibitor activity, remains poorly understood. In this study, we found that SFN can inhibit the expression and activity of human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, in 2 prostate cancer cell lines. This decrease in gene expression is correlated with SFN-induced changes in chromatin structure and composition. The SFN-mediated changes in levels of histone post-translational modifications, more specifically acetylation of histone H3 lysine 18 and di-methylation of histone H3 lysine 4, 2 modifications linked with high risk of prostate cancer recurrence, were associated with regulatory elements within the hTERT promoter region. Chromatin condensation may also play a role in SFN-mediated hTERT repression, since expression and recruitment of MeCP2, a known chromatin compactor, were altered in SFN treated prostate cancer cells. Chromatin immuno-precipitation (ChIP) of MeCP2 showed enrichment over regions of the hTERT promoter with increased nucleosome density. These combined results strongly support a role for SFN in the mediation of epigenetic events leading to the repression of hTERT in prostate cancer cells. This ability of SFN to modify chromatin composition and structure associated with target gene expression provides a new model by which dietary phytochemicals may exert their chemoprevention activity.

  3. A second chance for telomerase reverse transcriptase in anticancer immunotherapy.

    Science.gov (United States)

    Zanetti, Maurizio

    2017-02-01

    Telomerase reverse transcriptase (TERT) is a self-antigen that is expressed constitutively in many tumours, and is, therefore, an important target for anticancer immunotherapy. In the past 10 years, trials of immunotherapy with TERT-based vaccines have demonstrated only modest benefits. In this Perspectives, I discuss the possible immunological reasons for this limited antitumour efficacy, and propose that advances in our understanding of the genetics and biology of the involvement of TERT in cancer provides the basis for renewed interest in TERT- based immunotherapy. Telomerase and TERT are expressed in cancer cells at every stage of tumour evolution, from the cancer stem cell to circulating tumour cells and tumour metastases. Many cancer types also harbour cells with mutations in the TERT promoter region, which increase transcriptional activation of this gene. These new findings should spur new interest in the development of TERT-based immunotherapies that are redesigned in line with established immunological considerations and working principles, and are tailored to patients stratified on the basis of TERT-promoter mutations and other underlying tumour characteristics. Thus, despite the disappointment of previous clinical trials, TERT offers the potential for personalized immunotherapy, perhaps in combination with immune-checkpoint inhibition.

  4. Activation of Telomerase by Ionizing Radiation: Differential Response to the Inhibition of DNA Double-Strand Break Repair by Abrogation of Poly(ADP-ribosyl)ation, by LY294002, or by Wortmannin

    International Nuclear Information System (INIS)

    Neuhof, Dirk; Zwicker, Felix; Kuepper, Jan-Heiner; Debus, Juergen; Weber, Klaus-Josef

    2007-01-01

    Purpose: Telomerase activity represents a radiation-inducible function, which may be targeted by a double-strand break (DSB)-activated signal transduction pathway. Therefore, the effects of DNA-PK inhibitors (Wortmannin and LY294002) on telomerase upregulation after irradiation were studied. In addition, the role of trans-dominant inhibition of poly(ADP-ribosyl)ation, which strongly reduces DSB rejoining, was assessed in comparison with 3-aminobenzamide. Methods and Materials: COM3 rodent cells carry a construct for the dexamethasone-inducible overexpression of the DNA-binding domain of PARP1 and exhibit greatly impaired DSB rejoining after irradiation. Telomerase activity was measured using polymerase chain reaction ELISA 1 h after irradiation with doses up to 10 Gy. Phosphorylation status of PKB/Akt and of PKCα/β II was assessed by western blotting. Results: No telomerase upregulation was detectable for irradiated cells with undisturbed DSB rejoining. In contrast, incubation with LY294002 or dexamethasone yielded pronounced radiation induction of telomerase activity that could be suppressed by Wortmannin. 3-Aminobenzamide not only was unable to induce telomerase activity but also suppressed telomerase upregulation upon incubation with LY294002 or dexamethasone. Phospho-PKB was detectable independent of irradiation or dexamethasone pretreatment, but was undetectable upon incubations with LY294002 or Wortmannin, whereas phospho-PKC rested detectable. Conclusions: Telomerase activation postirradiation was triggered by different treatments that interfere with DNA DSB processing. This telomerase upregulation, however, was not reflected by the phosporylation status of the putative mediators of TERT activation, PKB and PKC. Although an involvement of PKB in TERT activation is not supported by the present findings, a respective role of PKC isoforms other than α/β II cannot be ruled out

  5. [Research of anti-aging mechanism of ginsenoside Rg1 on brain].

    Science.gov (United States)

    Li, Cheng-peng; Zhang, Meng-si; Liu, Jun; Geng, Shan; Li, Jing; Zhu, Jia-hong; Zhang, Yan-yan; Jia, Yan-yan; Wang, Lu; Wang, Shun-he; Wang, Ya-ping

    2014-11-01

    Neurodegenerative disease is common and frequently occurs in elderly patients. Previous studies have shown that ginsenoside Rg1 was able to inhibit senescent of brain, but the mechanism on the brain during the treatment remains elucidated. To study the mechanism of ginsenoside Rg1 in the process of anti-aging of brain, forty male SD rats were randomly divided into normal group, Rg1 normal group, brain aging model group and Rg1 brain aging model group, each group with 10 rats (brain aging model group: subcutaneous injection of D-galactose (120 mg kg(-1)), qd for 42 consecutive days; Rg1 brain aging model group: while copying the same test as that of brain aging model group, begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Rg1 normal group: subcutaneous injection of the same amount of saline; begin intraperitoneal injection of ginsenosides Rg1 (20 mg x kg(-1)) qd for 27 d from 16 d. Normal: injected with an equal volume of saline within the same time. Perform the related experiment on the second day after finishing copying the model or the completion of the first two days of drug injections). Learning and memory abilities were measured by Morris water maze. The number of senescent cells was detected by SA-beta-Gal staining while the level of IL-1 and IL-6 proinflammatory cytokines in hippocampus were detected by ELISA. The activities of SOD, contents of GSH in hippo- campus were quantified by chromatometry. The change of telomerase activities and telomerase length were performed by TRAP-PCR and southern blotting assay, respectively. It is pointed that, in brain aging model group, the spatial learning and memory capacities were weaken, SA-beta-Gal positive granules increased in section of brain tissue, the activity of antioxidant enzyme SOD and the contents of GSH decreased in hippocampus, the level of IL-1 and IL-6 increased in hippocampus, while the length of telomere and the activity of telomerase decreased in hippocampus

  6. Quantitative Determination of Telomerase Activity in Breast Cancer and Benign Breast Diseases

    Czech Academy of Sciences Publication Activity Database

    Šimíčková, M.; Nekulová, M.; Pecen, Ladislav; Černoch, M.; Vagundová, M.; Pačovský, Z.

    2001-01-01

    Roč. 48, č. 4 (2001), s. 267-273 ISSN 0028-2685 R&D Projects: GA MZd NM17 Institutional research plan: AV0Z1030915 Keywords : telomerase activity * quantitative analysis * breast cancer * benign breast diseases * prognisis Subject RIV: BA - General Mathematics Impact factor: 0.637, year: 2001

  7. Telomerase reverse transcriptase promoter mutations in glandular lesions of the urinary bladder.

    Science.gov (United States)

    Vail, Eric; Zheng, Xiaoyong; Zhou, Ming; Yang, Ximing; Fallon, John T; Epstein, Jonathan I; Zhong, Minghao

    2015-10-01

    Glandular lesions of the urinary bladder include a broad spectrum of entities ranging from completely benign to primary and secondary malignancies. The accurate diagnosis of these lesions is both important and challenging. Recently, studies suggest that telomerase reverse transcriptase (TERT) promoter mutations could be a biomarker for urothelial carcinoma (UC). We hypothesized that these mutations can distinguish UC with glandular differentiation from nephrogenic adenoma, primary adenocarcinoma of the urinary bladder (PAUB), or secondary malignancies. Twenty-five cases of benign glandular lesions (including nephrogenic adenoma); 29 cases of UC with glandular differentiation; 10 cases of PAUB; and 10 cases each of metastatic colon cancer, prostatic carcinoma, and carcinoma from Mullerian origin were collected. Slides were reviewed and selected to make sure the lesion was at least 10% to 20% of all tissue. Macrodissection was performed in some of cases, and genomic DNA was extracted from the tissue. Telomerase reverse transcriptase promoter mutations were determined by standard polymerase chain reaction sequencing. Twenty-one cases (72%) of UC with glandular differentiation were positive for TERT promoter mutations. However, none of the remaining cases (total 65 cases of benign lesions, PAUB, and metastatic carcinomas) was positive for TERT promoter mutation. Telomerase reverse transcriptase promoter mutations were highly associated with UC including UC with glandular differentiation but not other glandular lesions of bladder. Therefore, in conjunction with morphologic features, Immunohistochemistry stain profile, and clinical information, TERT promoter mutations could distinguish UC with glandular differentiation from other bladder glandular lesions. In addition, lack of TERT promoter mutations in primary adenocarcinoma of bladder suggests that this entity may have different origin or carcinogenesis from those of UC. Published by Elsevier Inc.

  8. Interaction studies reveal specific recognition of an anti-inflammatory polyphosphorhydrazone dendrimer by human monocytes.

    Science.gov (United States)

    Ledall, Jérémy; Fruchon, Séverine; Garzoni, Matteo; Pavan, Giovanni M; Caminade, Anne-Marie; Turrin, Cédric-Olivier; Blanzat, Muriel; Poupot, Rémy

    2015-11-14

    Dendrimers are nano-materials with perfectly defined structure and size, and multivalency properties that confer substantial advantages for biomedical applications. Previous work has shown that phosphorus-based polyphosphorhydrazone (PPH) dendrimers capped with azabisphosphonate (ABP) end groups have immuno-modulatory and anti-inflammatory properties leading to efficient therapeutic control of inflammatory diseases in animal models. These properties are mainly prompted through activation of monocytes. Here, we disclose new insights into the molecular mechanisms underlying the anti-inflammatory activation of human monocytes by ABP-capped PPH dendrimers. Following an interdisciplinary approach, we have characterized the physicochemical and biological behavior of the lead ABP dendrimer with model and cell membranes, and compared this experimental set of data to predictive computational modelling studies. The behavior of the ABP dendrimer was compared to the one of an isosteric analog dendrimer capped with twelve azabiscarboxylate (ABC) end groups instead of twelve ABP end groups. The ABC dendrimer displayed no biological activity on human monocytes, therefore it was considered as a negative control. In detail, we show that the ABP dendrimer can bind both non-specifically and specifically to the membrane of human monocytes. The specific binding leads to the internalization of the ABP dendrimer by human monocytes. On the contrary, the ABC dendrimer only interacts non-specifically with human monocytes and is not internalized. These data indicate that the bioactive ABP dendrimer is recognized by specific receptor(s) at the surface of human monocytes.

  9. Food supplement 20070721-GX may increase CD34+ stem cells and telomerase activity.

    Science.gov (United States)

    Lin, Po-Cheng; Chiou, Tzyy-Wen; Liu, Po-Yen; Chen, Shee-Ping; Wang, Hsin-I; Huang, Pi-Chun; Lin, Shinn-Zong; Harn, Horng-Jyh

    2012-01-01

    Few rejuvenation and antiaging markers are used to evaluate food supplements. We measured three markers in peripheral blood to evaluate the antiaging effects of a food supplement containing placental extract. Samples were evaluated for CD34(+) cells, insulin-like growth factor 1 (IGF1), and telomerase activity, which are all markers related to aging. To control the quality of this food supplement, five active components were monitored. In total, we examined 44 individuals who took the food supplement from 1.2 months to 23 months; the average number of CD34(+) cells was almost 6-fold higher in the experimental group compared with the control group. Food supplement intake did not change serum IGF1 levels significantly. Finally, the average telomerase activity was 30% higher in the subjects taking this food supplement. In summary, our results suggest that the placental extract in the food supplement might contribute to rejuvenation and antiaging.

  10. Curcumin Regulates Low-Linear Energy Transfer γ-Radiation-Induced NFκB-Dependent Telomerase Activity in Human Neuroblastoma Cells

    International Nuclear Information System (INIS)

    Aravindan, Natarajan; Veeraraghavan, Jamunarani; Madhusoodhanan, Rakhesh; Herman, Terence S.; Natarajan, Mohan

    2011-01-01

    Purpose: We recently reported that curcumin attenuates ionizing radiation (IR)-induced survival signaling and proliferation in human neuroblastoma cells. Also, in the endothelial system, we have demonstrated that NFκB regulates IR-induced telomerase activity (TA). Accordingly, we investigated the effect of curcumin in inhibiting IR-induced NFκB-dependent hTERT transcription, TA, and cell survival in neuroblastoma cells. Methods and Materials: SK-N-MC or SH-SY5Y cells exposed to IR and treated with curcumin (10-100 nM) with or without IR were harvested after 1 h through 24 h. NFκB-dependent regulation was investigated either by luciferase reporter assays using pNFκB-, pGL3-354-, pGL3-347-, or pUSE-IκBα-Luc, p50/p65, or RelA siRNA-transfected cells. NFκB activity was analyzed using an electrophoretic mobility shift assay and hTERT expression using the quantitative polymerase chain reaction. TA was determined using the telomerase repeat amplification protocol assay and cell survival using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltertrazolium bromide and clonogenic assay. Results: Curcumin profoundly inhibited IR-induced NFκB. Consequently, curcumin significantly inhibited IR-induced TA and hTERT mRNA at all points investigated. Furthermore, IR-induced TA is regulated at the transcriptional level by triggering telomerase reverse transcriptase (TERT) promoter activation. Moreover, NFκB becomes functionally activated after IR and mediates TA upregulation by binding to the κB-binding region in the promoter region of the TERT gene. Consistently, elimination of the NFκB-recognition site on the telomerase promoter or inhibition of NFκB by the IκBα mutant compromises IR-induced telomerase promoter activation. Significantly, curcumin inhibited IR-induced TERT transcription. Consequently, curcumin inhibited hTERT mRNA and TA in NFκB overexpressed cells. Furthermore, curcumin enhanced the IR-induced inhibition of cell survival. Conclusions: These results

  11. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-telomeric Roles of Arabidopsis Telomerase

    Directory of Open Access Journals (Sweden)

    Ladislav eDokládal

    2015-11-01

    Full Text Available Telomerase-reverse transcriptase (TERT plays an essential catalytic role in maintaining telomeres. However, in animal systems telomerase plays additional non-telomeric functional roles. We previously screened an Arabidopsis cDNA library for proteins that interact with the C-terminal extension (CTE TERT domain and identified a nuclear-localized protein that contains a RNA recognition motif (RRM. This RRM-protein forms homodimers in both plants and yeast. Mutation of the gene encoding the RRM-protein had no detectable effect on plant growth and development, nor did it affect telomerase activity or telomere length in vivo, suggesting a non-telomeric role for TERT/RRM-protein complexes. The gene encoding the RRM-protein is highly expressed in leaf and reproductive tissues. We further screened an Arabidopsis cDNA library for proteins that interact with the RRM-protein and identified five interactors. These proteins are involved in numerous non-telomere-associated cellular activities. In plants, the RRM-protein, both alone and in a complex with its interactors, localizes to nuclear speckles. Transcriptional analyses in wild-type and rrm mutant plants, as well as transcriptional co-analyses, suggest that TERT, the RRM-protein, and the RRM-protein interactors may play important roles in non-telomeric cellular functions.

  12. Food Supplement 20070721-GX May Increase CD34+ Stem Cells and Telomerase Activity

    Directory of Open Access Journals (Sweden)

    Po-Cheng Lin

    2012-01-01

    Full Text Available Few rejuvenation and antiaging markers are used to evaluate food supplements. We measured three markers in peripheral blood to evaluate the antiaging effects of a food supplement containing placental extract. Samples were evaluated for CD34+ cells, insulin-like growth factor 1 (IGF1, and telomerase activity, which are all markers related to aging. To control the quality of this food supplement, five active components were monitored. In total, we examined 44 individuals who took the food supplement from 1.2 months to 23 months; the average number of CD34+ cells was almost 6-fold higher in the experimental group compared with the control group. Food supplement intake did not change serum IGF1 levels significantly. Finally, the average telomerase activity was 30% higher in the subjects taking this food supplement. In summary, our results suggest that the placental extract in the food supplement might contribute to rejuvenation and antiaging.

  13. The TROVE module: a common element in Telomerase, Ro and Vault ribonucleoproteins.

    Science.gov (United States)

    Bateman, Alex; Kickhoefer, Valerie

    2003-10-16

    Ribonucleoproteins carry out a variety of important tasks in the cell. In this study we show that a number of these contain a novel module, that we speculate mediates RNA-binding. The TROVE module--Telomerase, Ro and Vault module--is found in TEP1 and Ro60 the protein components of three ribonucleoprotein particles. This novel module, consisting of one or more domains, may be involved in binding the RNA components of the three RNPs, which are telomerase RNA, Y RNA and vault RNA. A second conserved region in these proteins is shown to be a member of the vWA domain family. The vWA domain in TEP1 is closely related to the previously recognised vWA domain in VPARP a second component of the vault particle. This vWA domain may mediate interactions between these vault components or bind as yet unidentified components of the RNPs. This work suggests that a number of ribonucleoprotein components use a common RNA-binding module. The TROVE module is also found in bacterial ribonucleoproteins suggesting an ancient origin for these ribonucleoproteins.

  14. Identification of the Types Properties and Functional Characteristics of Telomerase Expressing Cells in Breast Cancer

    National Research Council Canada - National Science Library

    Hines, William

    2003-01-01

    ... biochemical and functional properties may be characterized. Through examining the role of telomerase in cancer, this project also fosters the education of the candidate through the interaction with several experts in breast cancer pathology, epidemiology, bio...

  15. Impact of child malnutrition on the specific anti-Plasmodium falciparum antibody response

    Directory of Open Access Journals (Sweden)

    Fillol Florie

    2009-06-01

    Full Text Available Abstract Background In sub-Saharan Africa, preschool children represent the population most vulnerable to malaria and malnutrition. It is widely recognized that malnutrition compromises the immune function, resulting in higher risk of infection. However, very few studies have investigated the relationship between malaria, malnutrition and specific immunity. In the present study, the anti-Plasmodium falciparum IgG antibody (Ab response was evaluated in children according to the type of malnutrition. Methods Anthropometric assessment and blood sample collection were carried out during a cross-sectional survey including rural Senegalese preschool children. This cross-sectional survey was conducted in July 2003 at the onset of the rainy season. Malnutrition was defined as stunting (height-for-age P. falciparum whole extracts (schizont antigens was assessed by ELISA in sera of the included children. Results Both the prevalence of anti-malarial immune responders and specific IgG Ab levels were significantly lower in malnourished children than in controls. Depending on the type of malnutrition, wasted children and stunted children presented a lower specific IgG Ab response than their respective controls, but this difference was significant only in stunted children (P = 0.026. This down-regulation of the specific Ab response seemed to be explained by severely stunted children (HAZ ≤ -2.5 compared to their controls (P = 0.03, while no significant difference was observed in mildly stunted children (-2.5 P. falciparum Ab response appeared to be independent of the intensity of infection. Conclusion Child malnutrition, and particularly stunting, may down-regulate the anti-P. falciparum Ab response, both in terms of prevalence of immune responders and specific IgG Ab levels. This study provides further evidence for the influence of malnutrition on the specific anti-malarial immune response and points to the importance of taking into account child

  16. HOT1 is a mammalian direct telomere repeat-binding protein contributing to telomerase recruitment

    NARCIS (Netherlands)

    Kappei, D.; Butter, F.; Benda, C.; Scheibe, M.; Draskovic, Irena; Stevense, M.; Novo, C.L.; Basquin, C.; Araki, M.; Araki, K.; Krastev, D.B.; Kittler, R.; Jessberger, R.; Londono-Vallejo, J.A.; Mann, M.; Buchholz, F.

    2013-01-01

    Telomeres are repetitive DNA structures that, together with the shelterin and the CST complex, protect the ends of chromosomes. Telomere shortening is mitigated in stem and cancer cells through the de novo addition of telomeric repeats by telomerase. Telomere elongation requires the delivery of the

  17. Novel anti-Sialyl-Tn monoclonal antibodies and antibody-drug conjugates demonstrate tumor specificity and anti-tumor activity.

    Science.gov (United States)

    Prendergast, Jillian M; Galvao da Silva, Ana Paula; Eavarone, David A; Ghaderi, Darius; Zhang, Mai; Brady, Dane; Wicks, Joan; DeSander, Julie; Behrens, Jeff; Rueda, Bo R

    Targeted therapeutics that can differentiate between normal and malignant tumor cells represent the ideal standard for the development of a successful anti-cancer strategy. The Sialyl-Thomsen-nouveau antigen (STn or Sialyl-Tn, also known as CD175s) is rarely seen in normal adult tissues, but it is abundantly expressed in many types of human epithelial cancers. We have identified novel antibodies that specifically target with high affinity the STn glycan independent of its carrier protein, affording the potential to recognize a wider array of cancer-specific sialylated proteins. A panel of murine monoclonal anti-STn therapeutic antibodies were generated and their binding specificity and efficacy were characterized in vitro and in in vivo murine cancer models. A subset of these antibodies were conjugated to monomethyl auristatin E (MMAE) to generate antibody-drug conjugates (ADCs). These ADCs demonstrated in vitro efficacy in STn-expressing cell lines and significant tumor growth inhibition in STn-expressing tumor xenograft cancer models with no evidence of overt toxicity.

  18. Mechanism of Surface-Enhanced Raman Scattering Based on 3D Graphene-TiO2 Nanocomposites and Application to Real-Time Monitoring of Telomerase Activity in Differentiation of Stem Cells.

    Science.gov (United States)

    Zheng, Tingting; Feng, Enduo; Wang, Zhiqiang; Gong, Xueqing; Tian, Yang

    2017-10-25

    With a burst development of new nanomaterials for plasmon-free surface-enhanced Raman scattering (SERS), the understanding of chemical mechanism (CM) and further applications have become more and more attractive. Herein, a novel SERS platform was specially designed through electrochemical deposition of graphene onto TiO 2 nanoarrays (EG-TiO 2 ). The developed EG-TiO 2 nanocomposite SERS platform possessed remarkable Raman activity using copper phthalocyanine (CuPc) as a probe molecule. X-ray photoelectron spectroscopy measurement revealed that the chemical bond Ti-O-C was formed at the interface between graphene and TiO 2 in EG-TiO 2 nanocomposites. Both experimental and theoretical results demonstrated that the obvious Raman enhancement was attributed to TiO 2 -induced Fermi level shift of graphene, resulting in effective charge transfer between EG-TiO 2 nanocomposites and molecules. Taking advantage of a marked Raman response of the CuPc molecule on the EG-TiO 2 nanocomposite surface as well as specific recognition of CuPc toward multiple telomeric G-quadruplex, EG-TiO 2 nanocomposites were tactfully employed as the SERS substrate for selective and ultrasensitive determination of telomerase activity, with a low detection limit down to 2.07 × 10 -16 IU. Interestingly, the self-cleaning characteristic of EG-TiO 2 nanocomposites under visible light irradiation successfully provided a recycling ability for this plasmon-free EG-TiO 2 substrate. The present SERS biosensor with high analytical performance, such as high selectivity and sensitivity, has been further explored to determine telomerase activity in stem cells as well as to count the cell numbers. More importantly, using this useful tool, it was discovered that telomerase activity plays an important role in the proliferation and differentiation from human mesenchymal stem cells to neural stem cells. This work has not only established an approach for gaining fundamental insights into the chemical mechanism (CM

  19. NBS1 plays a synergistic role with telomerase in the maintenance of telomeres in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Najdekrova Lucie

    2012-09-01

    Full Text Available Abstract Background Telomeres, as elaborate nucleo-protein complexes, ensure chromosomal stability. When impaired, the ends of linear chromosomes can be recognised by cellular repair mechanisms as double-strand DNA breaks and can be healed by non-homologous-end-joining activities to produce dicentric chromosomes. During cell divisions, particularly during anaphase, dicentrics can break, thus producing naked chromosome tips susceptible to additional unwanted chromosome fusion. Many telomere-building protein complexes are associated with telomeres to ensure their proper capping function. It has been found however, that a number of repair complexes also contribute to telomere stability. Results We used Arabidopsis thaliana to study the possible functions of the DNA repair subunit, NBS1, in telomere homeostasis using knockout nbs1 mutants. The results showed that although NBS1-deficient plants were viable, lacked any sign of developmental aberration and produced fertile seeds through many generations upon self-fertilisation, plants also missing the functional telomerase (double mutants, rapidly, within three generations, displayed severe developmental defects. Cytogenetic inspection of cycling somatic cells revealed a very early onset of massive genome instability. Molecular methods used for examining the length of telomeres in double homozygous mutants detected much faster telomere shortening than in plants deficient in telomerase gene alone. Conclusions Our findings suggest that NBS1 acts in concert with telomerase and plays a profound role in plant telomere renewal.

  20. NBS1 plays a synergistic role with telomerase in the maintenance of telomeres in Arabidopsis thaliana.

    Science.gov (United States)

    Najdekrova, Lucie; Siroky, Jiri

    2012-09-17

    Telomeres, as elaborate nucleo-protein complexes, ensure chromosomal stability. When impaired, the ends of linear chromosomes can be recognised by cellular repair mechanisms as double-strand DNA breaks and can be healed by non-homologous-end-joining activities to produce dicentric chromosomes. During cell divisions, particularly during anaphase, dicentrics can break, thus producing naked chromosome tips susceptible to additional unwanted chromosome fusion. Many telomere-building protein complexes are associated with telomeres to ensure their proper capping function. It has been found however, that a number of repair complexes also contribute to telomere stability. We used Arabidopsis thaliana to study the possible functions of the DNA repair subunit, NBS1, in telomere homeostasis using knockout nbs1 mutants. The results showed that although NBS1-deficient plants were viable, lacked any sign of developmental aberration and produced fertile seeds through many generations upon self-fertilisation, plants also missing the functional telomerase (double mutants), rapidly, within three generations, displayed severe developmental defects. Cytogenetic inspection of cycling somatic cells revealed a very early onset of massive genome instability. Molecular methods used for examining the length of telomeres in double homozygous mutants detected much faster telomere shortening than in plants deficient in telomerase gene alone. Our findings suggest that NBS1 acts in concert with telomerase and plays a profound role in plant telomere renewal.

  1. Tumorigenic Heterogeneity in Cancer Stem Cells Evolved from Long-term Cultures of Telomerase-Immortalized

    DEFF Research Database (Denmark)

    Burns, Jorge S; Abdallah, Basem M; Guldberg, Per

    2005-01-01

    Long-term cultures of telomerase-transduced adult human mesenchymal stem cells (hMSC) may evolve spontaneous genetic changes leading to tumorigenicity in immunodeficient mice (e.g., hMSC-TERT20). We wished to clarify whether this unusual phenotype reflected a rare but dominant subpopulation or if...

  2. The TROVE module: A common element in Telomerase, Ro and Vault ribonucleoproteins

    Directory of Open Access Journals (Sweden)

    Bateman Alex

    2003-10-01

    Full Text Available Abstract Background Ribonucleoproteins carry out a variety of important tasks in the cell. In this study we show that a number of these contain a novel module, that we speculate mediates RNA-binding. Results The TROVE module – Telomerase, Ro and Vault module – is found in TEP1 and Ro60 the protein components of three ribonucleoprotein particles. This novel module, consisting of one or more domains, may be involved in binding the RNA components of the three RNPs, which are telomerase RNA, Y RNA and vault RNA. A second conserved region in these proteins is shown to be a member of the vWA domain family. The vWA domain in TEP1 is closely related to the previously recognised vWA domain in VPARP a second component of the vault particle. This vWA domain may mediate interactions between these vault components or bind as yet unidentified components of the RNPs. Conclusions This work suggests that a number of ribonucleoprotein components use a common RNA-binding module. The TROVE module is also found in bacterial ribonucleoproteins suggesting an ancient origin for these ribonucleoproteins.

  3. Integrative approach to analyze biodiversity and anti-inflammatory bioactivity of Wedelia medicinal plants.

    Directory of Open Access Journals (Sweden)

    Wen-Ching Lin

    Full Text Available For the development of "medical foods" and/or botanical drugs as defined USA FDA, clear and systemic characterizations of the taxonomy, index phytochemical components, and the functional or medicinal bioactivities of the reputed or candidate medicinal plant are needed. In this study, we used an integrative approach, including macroscopic and microscopic examination, marker gene analysis, and chemical fingerprinting, to authenticate and validate various species/varieties of Wedelia, a reputed medicinal plant that grows naturally and commonly used in Asian countries. The anti-inflammatory bioactivities of Wedelia extracts were then evaluated in a DSS-induced murine colitis model. Different species/varieties of Wedelia exhibited distinguishable morphology and histological structures. Analysis of the ribosomal DNA internal transcribed spacer (ITS region revealed significant differences among these plants. Chemical profiling of test Wedelia species demonstrated candidate index compounds and distinguishable secondary metabolites, such as caffeic acid derivatives, which may serve as phytochemical markers or index for quality control and identification of specific Wedelia species. In assessing their effect on treating DSS induced-murine colitis, we observed that only the phytoextract from W. chinensis species exhibited significant anti-inflammatory bioactivity on DSS-induced murine colitis among the various Wedelia species commonly found in Taiwan. Our results provide a translational research approach that may serve as a useful reference platform for biotechnological applications of traditional phytomedicines. Our findings indicate that specific Wedelia species warrant further investigation for potential treatment of human inflammatory bowel disease.

  4. Anti-Neospora caninum and anti-Sarcocystis spp. specific antibodies cross-react with Besnoitia besnoiti and influence the serological diagnosis of bovine besnoitiosis.

    Science.gov (United States)

    García-Lunar, P; Moré, G; Campero, L; Ortega-Mora, L M; Álvarez-García, G

    2015-11-30

    Bovine besnoitiosis control remains a challenge because the disease continues to spread and control relies solely on accurate diagnosis coupled to management measures. However, recent studies have reported that routinely used ELISAs may raise a high number of false-positive results. Herein, cross-reactions between Besnoitia besnoiti antigens and anti-Neospora caninum and/or anti-Sarcocystis spp.-specific antibodies were studied in an in house ELISA since N. caninum and Sarcocystis spp. are closely related parasites, and both infections are highly prevalent in cattle worldwide. The serum panel was composed of the following categories: sera from B. besnoiti-seronegative (n=75) and -seropositive cattle (n=66), B. besnoiti-based-ELISA false-positive reactors (n=96) together with N. caninum (n=36) and Sarcocystis spp. (n=42) -seropositive reference cattle sera. B. besnoiti tachyzoite based western blot (WB) results classified animals as seropositive or seronegative. Sera were analyzed for the detection of anti-N. caninum by WB and ELISA and anti-Sarcocystis spp.-specific antibodies by WB and IFAT. Those samples recognizing a Sarcocystis spp. 18-20 kDa antigenic region and N. caninum 17-18 kDa immunodominant antigen were considered to be Sarcocystis spp. and N. caninum seropositive, respectively. The category of B. besnoiti based-ELISA false-positive reactors showed the highest number of sera with specific anti-Sarcocystis spp. and anti-N. caninum antibodies (74%; 71/96), followed by the N. caninum-seropositive cattle category (52.8%; 19/36). In contrast, few B. besnoiti-seronegative and -seropositive cattle showed antibodies against Sarcocystis spp. and N. caninum (10.7%; 8/75 and 1.5%; 1/66), respectively). This study revealed that B. besnoiti false-positive ELISA results were associated not only with the presence of anti-N. caninum and anti-Sarcocystis spp. antibodies (χ(2): 78.36; pbovine besnoitiosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. TERT promoter mutation as an early genetic event activating telomerase in follicular thyroid adenoma (FTA) and atypical FTA.

    Science.gov (United States)

    Wang, Na; Liu, Tiantian; Sofiadis, Anastasios; Juhlin, C Christofer; Zedenius, Jan; Höög, Anders; Larsson, Catharina; Xu, Dawei

    2014-10-01

    The telomerase reverse transcriptase (TERT) promoter mutations C228T and C250T have been found in many malignancies, including in thyroid carcinomas. However, it is unclear how early these mutations occur in thyroid tumorigenesis. The study included primary tumors from 58 patients initially diagnosed with follicular thyroid adenoma (FTA), a benign entity, 18 with atypical FTA (AFTA) having an uncertain malignant potential, and 52 with follicular thyroid carcinoma (FTC). Sanger sequencing was used to investigate the mutational status of the TERT promoter. Telomere length and TERT messenger RNA (mRNA) expression were determined using quantitative polymerase chain reaction (PCR). Telomerase activity was assessed using a Telomerase PCR enzyme-linked immunosorbent assay kit. The C228T mutation was identified in 1 of 58 FTA (2%) and 3 of 18 AFTA (17%) samples. These 4 tumors all expressed TERT mRNA and telomerase activity, whereas the majority of C228T-negative adenomas lacked TERT expression (C228T versus wild-type, P = .008). The C228T mutation was associated with NRAS gene mutations (P = .016). The patient with C228T-mutated FTA later developed a scar recurrence and died of FTC, whereas none of the remaining 57 patients with FTA had recurrence. No recurrence occurred in 3 patients with AFTA who carried C228T during the follow-up period (36-285 months). Nine of the 52 FTCs (17%) exhibited the TERT mutation (8 of 9 C228T and 1 of 9 C250T), and the presence of the mutation was associated with shorter patient survival. TERT promoter mutations may occur as an early genetic event in thyroid follicular tumors that have not developed malignant features on routine histopathological workup. © 2014 American Cancer Society.

  6. Effects of Lifestyle Modification on Telomerase Gene Expression in Hypertensive Patients: A Pilot Trial of Stress Reduction and Health Education Programs in African Americans.

    Directory of Open Access Journals (Sweden)

    Shanthi Duraimani

    Full Text Available African Americans suffer from disproportionately high rates of hypertension and cardiovascular disease. Psychosocial stress, lifestyle and telomere dysfunction contribute to the pathogenesis of hypertension and cardiovascular disease. This study evaluated effects of stress reduction and lifestyle modification on blood pressure, telomerase gene expression and lifestyle factors in African Americans.Forty-eight African American men and women with stage I hypertension who participated in a larger randomized controlled trial volunteered for this substudy. These subjects participated in either stress reduction with the Transcendental Meditation technique and a basic health education course (SR or an extensive health education program (EHE for 16 weeks. Primary outcomes were telomerase gene expression (hTERT and hTR and clinic blood pressure. Secondary outcomes included lifestyle-related factors. Data were analyzed for within-group and between-group changes.Both groups showed increases in the two measures of telomerase gene expression, hTR mRNA levels (SR: p< 0.001; EHE: p< 0.001 and hTERT mRNA levels (SR: p = 0.055; EHE: p< 0.002. However, no statistically significant between-group changes were observed. Both groups showed reductions in systolic BP. Adjusted changes were SR = -5.7 mm Hg, p< 0.01; EHE = -9.0 mm Hg, p < 0.001 with no statistically significant difference between group difference. There was a significant reduction in diastolic BP in the EHE group (-5.3 mm Hg, p< 0.001 but not in SR (-1.2 mm Hg, p = 0.42; the between-group difference was significant (p = 0.04. The EHE group showed a greater number of changes in lifestyle behaviors.In this pilot trial, both stress reduction (Transcendental Meditation technique plus health education and extensive health education groups demonstrated increased telomerase gene expression and reduced BP. The association between increased telomerase gene expression and reduced BP observed in this high

  7. Inflammation-Specific T1 Imaging Using Anti-Intercellular Adhesion Molecule 1 Antibody-Conjugated Gadolinium Diethylenetriaminepentaacetic Acid

    Directory of Open Access Journals (Sweden)

    Kyu-Sil Choi

    2007-03-01

    Full Text Available To examine inflammatory tissue, an initial and common symptom of various types of pathogenesis, we designed inflammation-targeted T1 contrast agents prepared by bioconjugation of gadolinium diethylenetriaminepentaacetic acid (Gd-DTPA with anti-intercellular adhesion molecule 1 (ICAM-1 antibody. The anti-ICAM-1 antibody was coupled with DTPA and was then conjugated with Gd. The specific binding of the Gd-DTPA-anti-ICAM-1 antibody complex to the ICAM-1-expressing cells was examined in the cultured endothelial cells where ICAM-1 expression was stimulated. Inflammation-specific T1 imaging was then assessed using a mouse abscess model with the 1.5-Tesla module. The Gd-DTPA-anti-ICAM-1 antibody displayed increased r1, which was two times higher than that of Gd-DTPA and showed predominant binding to cultured endothelial cells, which expressed a high level of ICAM-1. Moreover, the inflammation-specific T1 enhancement was imaged with the Gd-DTPA-anti-ICAM-1 antibody in the mouse acute inflammation model. The Gd-DTPA-anti-ICAM-1 antibody showed significantly increased vascular circulation time, which thereby offered a greater chance for its binding to the target cells. The Gd-DTPA-anti-ICAM-1 antibody displays a potential targeted T1 contrast agent specific to the inflammatory tissue that expresses ICAM-1.

  8. Splenic B cells and antigen-specific B cells process anti-Ig in a similar manner

    International Nuclear Information System (INIS)

    Myers, C.D.; Vitetta, E.S.

    1989-01-01

    B lymphocytes can process and present antigen to T cells. However, the fate of native antigen after its binding to specific B cells, i.e., the intracellular events involved in the processing and recycling of the antigenic fragments to the cell surface for antigen presentation, are not well understood. In the present study, we demonstrate that murine B cells degrade anti-Ig molecules bound to their surface and release acid soluble fragments into the supernatant. We also demonstrate that the kinetics of this process are identical for anti-mu, anti-delta, and anti-light chain antibodies, indicating that both surface IgM and surface IgD are equally effective in binding antigen and directing its processing. We also describe the effects of azide, chloroquine, and irradiation on this process. To extend these studies to the processing of specifically bound antigen, we demonstrate that highly purified trinitrophenyl antigen-binding cells degrade anti-Ig molecules with the same kinetics as unpurified splenic B cells. Thus, this purified population provides a suitable model system for the analysis of antigen degradation by antigen-specific cells

  9. Telomeres and telomerase as therapeutic targets to prevent and treat age-related diseases [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Christian Bär

    2016-01-01

    Full Text Available Telomeres, the protective ends of linear chromosomes, shorten throughout an individual’s lifetime. Telomere shortening is a hallmark of molecular aging and is associated with premature appearance of diseases associated with aging. Here, we discuss the role of telomere shortening as a direct cause for aging and age-related diseases. In particular, we draw attention to the fact that telomere length influences longevity. Furthermore, we discuss intrinsic and environmental factors that can impact on human telomere erosion. Finally, we highlight recent advances in telomerase-based therapeutic strategies for the treatment of diseases associated with extremely short telomeres owing to mutations in telomerase, as well as age-related diseases, and ultimately aging itself.

  10. Telomerase-Deficient Mice Exhibit Bone Loss Owing to Defects in Osteoblasts and Increased Osteoclastogenesis by Inflammatory Microenvironment

    DEFF Research Database (Denmark)

    Saeed, H.; Abdallah, B. M.; Ditzel, N.

    2011-01-01

    Telomere shortening owing to telomerase deficiency leads to accelerated senescence of human skeletal (mesenchymal) stem cells (MSCs) in vitro, whereas overexpression leads to telomere elongation, extended life span, and enhanced bone formation. To study the role of telomere shortening in vivo, we...... studied the phenotype of telomerase-deficient mice (Terc(-/-)).Terc(-/-) mice exhibited accelerated age-related bone loss starting at 3 months of age and during 12 months of follow-up revealed by dual-energy X-ray absorptiometric (DXA) scanning and by micro-computed tomography (mu CT). Bone...... histomorphometry revealed decreased mineralized surface and bone-formation rate as well as increased osteoclast number and size in Terc(-/-) mice. Also, serum total deoxypyridinoline (tDPD) was increased in Terc(-/-) mice. MSCs and osteoprogenitors isolated from Terc(-l-) mice exhibited intrinsic defects...

  11. Proinflammatory Cytokines IL-6 and TNF-α Increased Telomerase Activity through NF-κB/STAT1/STAT3 Activation, and Withaferin A Inhibited the Signaling in Colorectal Cancer Cells

    Directory of Open Access Journals (Sweden)

    Seyung S. Chung

    2017-01-01

    Full Text Available There are increasing evidences of proinflammatory cytokine involvement in cancer development. Here, we found that two cytokines, IL-6 and TNF-α, activated colorectal cancer cells to be more invasive and stem-like. Combined treatment of IL-6 and TNF-α phosphorylated transcription factors STAT3 in a synergistic manner. STAT3, STAT1, and NF-κB physically interacted upon the cytokine stimulation. STAT3 was bound to the promoter region of human telomerase reverse transcriptase (hTERT. IL-6 and TNF-α stimulation further enhanced STAT3 binding affinity. Stem cell marker Oct-4 was upregulated in colorectal cancer cells upon IL-6 and TNF-α stimulation. Withaferin A, an anti-inflammatory steroidal lactone, inhibited the IL-6- and TNF-α-induced cancer cell invasion and decreased colonosphere formation. Notably, withaferin A inhibited STAT3 phosphorylation and abolished the STAT3, STAT1, and NF-κB interactions. Oct-4 expression was also downregulated by withaferin A inhibition. The binding of STAT3 to the hTERT promoter region and telomerase activity showed reduction with withaferin A treatments. Proinflammatory cytokine-induced cancer cell invasiveness is mediated by a STAT3-regulated mechanism in colorectal cancer cells. Our data suggest that withaferin A could be a promising anticancer agent that effectively inhibits the progression of colorectal cancer.

  12. Antiproliferative Effect of the Isoquinoline Alkaloid Papaverine in Hepatocarcinoma HepG-2 Cells — Inhibition of Telomerase and Induction of Senescence

    Directory of Open Access Journals (Sweden)

    Sakineh Kazemi Noureini

    2014-08-01

    Full Text Available Cancer cells are often immortal through up-regulation of the hTERT gene, which encodes the catalytic subunit of a special reverse transcriptase to overcome end-replication problem of chromosomes. This study demonstrates that papaverine, an isoquinoline alkaloid from the Papaveraceae, can overcome telomerase dependent immortality of HepG-2 cells that was used as a model of hepatocarcinoma. Although this alkaloid does not directly interact with telomeric sequences, papaverine inhibits telomerase through down-regulation of hTERT, which was analysed using thermal FRET and qRT-PCR, respectively. The IC50 values for the reduction of both telomerase activity and hTERT expression was 60 µM, while IC50 for cytotoxicity was 120 µM. Repeated treatments of the cells with very low non-toxic concentrations of papaverine resulted in growth arrest and strong reduction of population doublings after 40 days. This treatment induced senescent morphology in HepG-2 cells, which was evaluated by beta-galactosidase staining. Altogether, papaverine can be regarded as a promising model compound for drug design targeting cancer development.

  13. Activity, specificity, and titer of naturally occurring canine anti-DEA 7 antibodies.

    Science.gov (United States)

    Spada, Eva; Proverbio, Daniela; Baggiani, Luciana; Canzi, Ilaria; Perego, Roberta

    2016-11-01

    The reported prevalence of naturally occurring anti-dog erythrocyte antigen (DEA) 7 antibodies in DEA 7-negative dogs is as high as 50%. Characterization of these antibodies may better define their importance in canine transfusion medicine. We determined in vitro activity, specificity, and titer of anti-DEA 7 antibodies in DEA 7-negative dogs. Plasma samples from 317 DEA 7-negative dogs were cross-matched with DEA 7-positive red blood cells (RBCs) using gel column technology. Agglutination occurred with DEA 7-positive RBCs but not with DEA 7-negative RBCs in 73 samples (23%), which were hence classified as containing anti-DEA 7 antibodies. These samples were evaluated for hemolytic and agglutinating activity, strength of agglutination, and antibody specificity and titers. All samples showed agglutination but none showed hemolysis. Gel agglutination was graded as 1+ for 20 samples (27%), 2+ for 49 samples (67%), 3+ for 4 samples (6%); no samples were graded 4+. The agglutination titer was DEA 7 antibodies were found in 23% of DEA 7-negative dogs. The presence of naturally occurring anti-DEA 7 antibodies suggests that cross-matching of canine blood recipients is advisable, even at first transfusion, to minimize delayed transfusion reactions. © 2016 The Author(s).

  14. miR-380-5p-mediated repression of TEP1 and TSPYL5 interferes with telomerase activity and favours the emergence of an “ALT-like” phenotype in diffuse malignant peritoneal mesothelioma cells

    Directory of Open Access Journals (Sweden)

    Graziella Cimino-Reale

    2017-07-01

    Full Text Available Abstract Background Understanding the molecular/cellular underpinnings of diffuse malignant peritoneal mesothelioma (DMPM, a fatal malignancy with limited therapeutic options, is of utmost importance for the fruitful management of the disease. In this context, we previously found that telomerase activity (TA, which accounts for the limitless proliferative potential of cancer cells, is prognostic for disease relapse and cancer-related death in DMPM patients. Consequently, the identification of factors involved in telomerase activation/regulation may pave the way towards the development of novel therapeutic interventions for the disease. Here, the capability of miR-380-5p, a microRNA negligibly expressed in telomerase-positive DMPM clinical specimens, to interfere with telomerase-mediated telomere maintenance and, hence, with cancer cell growth was assessed on preclinical models of DMPM. Methods DMPM cells were transfected with a miR-380-5p synthetic precursor, and the effects of miRNA replacement were evaluated in terms of growing capability, induction of apoptosis and interference with TA. Reiterated weekly transfections were also performed in order to analyse the phenotype arising upon prolonged miR-380-5p reconstitution in DMPM cells. Results The ectopic expression of miR-380-5p elicited a remarkable inhibition of TA and resulted in DMPM cell growth impairment and apoptosis induction. In particular, we demonstrated for the first time that these effects were the result of a molecular circuitry converging on telomerase associated protein 1 (TEP1, where the miRNA was able to target the gene both directly in unconventional targeting modality and indirectly via p53 accumulation consequent to miRNA-mediated downregulation of testis-specific protein, Y-encoded-like 5 gene. Moreover, miR-380-5p did not cause telomere attrition and cell growth arrest in long-term DMPM transfectants, which in turn showed slightly elongated telomeres and molecular

  15. Triterpenoids from Ganoderma lucidum inhibit the activation of EBV antigens as telomerase inhibitors.

    Science.gov (United States)

    Zheng, Dong-Shu; Chen, Liang-Shu

    2017-10-01

    Nasopharyngeal carcinoma (NPC) is a malignant disease that threatens the health of humans. To find effective agents for the inhibition of Epstein-Barr virus (EBV) infection, which is associated with NPC, a phytochemical investigation of Ganoderma lucidum was carried out in the present study. Five triterpenoids were identified, including ganoderic acid A (compound 1), ganoderic acid B (compound 2), ganoderol B (compound 3), ganodermanontriol (compound 4), and ganodermanondiol (compound 5), on the basis of spectroscopic analysis. An inhibition of EBV antigens activation assay was implemented to elucidate the triterpenoids from G. lucidum and potentially prevent NPC. All the triterpenoids showed significant inhibitory effects on both EBV EA and CA activation at 16 nmol. At 3.2 nmol, all the compounds moderately inhibited the activation of the two antigens. The activity of telomerase was inhibited by these triterpenoids at 10 µM. Molecular docking demonstrated that compound 1 was able to inhibit telomerase as a ligand. In addition, the physicochemical properties of these compounds were calculated to elucidate their drug-like properties. These results provided evidence for the application of these triterpenoids and whole G. lucidum in the treatment of NPC.

  16. Telomerase promoter reprogramming and interaction with general transcription factors in the human mesenchymal stem cell

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Hoare, Stacey F.; Kassem, Moustapha

    2006-01-01

    The human adult mesenchymal stem cell (hMSC) does not express telomerase and has been shown to be the target for neoplastic transformation after transduction with hTERT. These findings lend support to the stem cell hypothesis of cancer development but by supplying hTERT, the molecular events requ...

  17. Binding of the sphingolipid S1P to hTERT stabilizes telomerase at the nuclear periphery by allosterically mimicking protein phosphorylation†

    Science.gov (United States)

    Selvam, Shanmugam P.; De Palma, Ryan M.; Oaks, Joshua J.; Oleinik, Natalia; Peterson, Yuri K.; Stahelin, Robert V.; Skordalakes, Emmanuel; Ponnusamy, Suriyan; Garrett-Mayer, Elizabeth; Smith, Charles D.; Ogretmen, Besim

    2015-01-01

    During DNA replication, the enzyme telomerase maintains the ends of chromosomes, called telomeres. Shortened telomeres trigger cell senescence, and cancer cells often have increased telomerase activity to promote their ability to proliferate indefinitely. The catalytic subunit, human telomerase reverse transcriptase (hTERT), is stabilized by phosphorylation. Here, we found that the lysophospholipid sphingosine 1-phosphate (S1P), generated by sphingosine kinase 2 (SK2), bound hTERT at the nuclear periphery in human and mouse fibroblasts. Docking predictions and mutational analyses revealed that binding occurred between a hydroxyl group (C′3-OH) in S1P and Asp684 in hTERT. Inhibiting or depleting SK2 or mutating the S1P binding site decreased the stability of hTERT in cultured cells and promoted senescence and loss of telomere integrity. S1P binding inhibited the interaction of hTERT with MKRN1, an E3 ubiquitin ligase that tags hTERT for degradation. Murine Lewis lung carcinoma (LLC) cells formed smaller tumors in mice lacking SK2 than in wild-type mice, and knocking down SK2 in LLC cells before implantation into mice suppressed their growth. Pharmacologically inhibiting SK2 decreased the growth of subcutaneous A549 lung cancer cell-derived xenografts in mice, and expression of wild-type hTERT, but not an S1P-binding mutant, restored tumor growth. Thus, our data suggest that S1P binding to hTERT allosterically mimicks phosphorylation, promoting telomerase stability and hence telomere maintenance, cell proliferation, and tumor growth PMID:26082434

  18. Novel approaches in anti-arenaviral drug development

    International Nuclear Information System (INIS)

    Lee, Andrew M.; Pasquato, Antonella; Kunz, Stefan

    2011-01-01

    Hemorrhagic fevers caused by arenaviruses are among the most devastating emerging human diseases. Considering the number of individuals affected, the current lack of a licensed vaccine, and the limited therapeutic options, arenaviruses are arguably among the most neglected tropical pathogens and the development of efficacious anti-arenaviral drugs is of high priority. Over the past years significant efforts have been undertaken to identify novel potent inhibitors of arenavirus infection. High throughput screening of small molecule libraries employing pseudotype platforms led to the discovery of several potent and broadly active inhibitors of arenavirus cell entry that are effective against the major hemorrhagic arenaviruses. Mechanistic studies revealed that these novel entry inhibitors block arenavirus membrane fusion and provided novel insights into the unusual mechanism of this process. The success of these approaches highlights the power of small molecule screens in antiviral drug discovery and establishes arenavirus membrane fusion as a robust drug target. These broad screenings have been complemented by strategies targeting cellular factors involved in productive arenavirus infection. Approaches targeting the cellular protease implicated in maturation of the fusion-active viral envelope glycoprotein identified the proteolytic processing of the arenavirus glycoprotein precursor as a novel and promising target for anti-arenaviral strategies.

  19. Telomerase Reverse Transcriptase Deficiency Prevents Neointima Formation Through Chromatin Silencing of E2F1 Target Genes.

    Science.gov (United States)

    Endorf, Elizabeth B; Qing, Hua; Aono, Jun; Terami, Naoto; Doyon, Geneviève; Hyzny, Eric; Jones, Karrie L; Findeisen, Hannes M; Bruemmer, Dennis

    2017-02-01

    Aberrant proliferation of smooth muscle cells (SMC) in response to injury induces pathological vascular remodeling during atherosclerosis and neointima formation. Telomerase is rate limiting for tissue renewal and cell replication; however, the physiological role of telomerase in vascular diseases remains to be determined. The goal of the present study was to determine whether telomerase reverse transcriptase (TERT) affects proliferative vascular remodeling and to define the molecular mechanism by which TERT supports SMC proliferation. We first demonstrate high levels of TERT expression in replicating SMC of atherosclerotic and neointimal lesions. Using a model of guidewire-induced arterial injury, we demonstrate decreased neointima formation in TERT-deficient mice. Studies in SMC isolated from TERT-deficient and TERT overexpressing mice with normal telomere length established that TERT is necessary and sufficient for cell proliferation. TERT deficiency did not induce a senescent phenotype but resulted in G1 arrest albeit hyperphosphorylation of the retinoblastoma protein. This proliferative arrest was associated with stable silencing of the E2F1-dependent S-phase gene expression program and not reversed by ectopic overexpression of E2F1. Finally, chromatin immunoprecipitation and accessibility assays revealed that TERT is recruited to E2F1 target sites and promotes chromatin accessibility for E2F1 by facilitating the acquisition of permissive histone modifications. These data indicate a previously unrecognized role for TERT in neointima formation through epigenetic regulation of proliferative gene expression in SMC. © 2016 American Heart Association, Inc.

  20. Anti-idiotypic antibody specific to GAD65 autoantibody prevents type 1 diabetes in the NOD mouse.

    Directory of Open Access Journals (Sweden)

    Xin Wang

    Full Text Available Overt autoantibodies to the smaller isoform of glutamate decarboxylase (GAD65Ab are a characteristic in patients with Type 1 diabetes (T1D. Anti-idiotypic antibodies (anti-Id directed to GAD65Ab effectively prevent the binding of GAD65 to GAD65Ab in healthy individuals. Levels of GAD65Ab-specific anti-Id are significantly lower in patients with T1D, leading to overt GAD65Ab in these patients. To determine the possible protective role of GAD65Ab-specific anti-Id in T1D pathogenesis, we developed the monoclonal anti-Id MAb 8E6G4 specifically targeting human monoclonal GAD65Ab b96.11. MAb 8E6G4 was demonstrated as a specific anti-Id directed to the antigen binding site of b96.11. MAb 8E6G4 recognized human antibodies in sera from healthy individuals, T2D patients, and T1D patients as established by ELISA. We confirmed these MAb 8E6G4-bound human antibodies to contain GAD65Ab by testing the eluted antibodies for binding to GAD65 in radioligand binding assays. These findings confirm that GAD65Ab are present in sera of individuals, who test GAD65Ab-negative in conventional detection assays. To test our hypothesis that GAD65Ab-specific anti-Id have an immune modulatory role in T1D, we injected young Non Obese Diabetic (NOD mice with MAb 8E6G4. The animals were carefully monitored for development of T1D for 40 weeks. Infiltration of pancreatic islets by mononuclear cells (insulitis was determined to establish the extent of an autoimmune attack on the pancreatic islets. Administration of MAb 8E6G4 significantly reduced the cumulative incidence rate of T1D and delayed the time of onset. Insulitis was significantly less severe in animals that received MAb 8E6G4 as compared to control animals. These results support our hypothesis that anti-Id specific to GAD65Ab have a protective role in T1D.

  1. Biomarkers of oxidative stress and cataract. Novel drug delivery therapeutic strategies targeting telomere reduction and the expression of telomerase activity in the lens epithelial cells with N-acetylcarnosine lubricant eye drops: anti-cataract which helps to prevent and treat cataracts in the eyes of dogs and other animals.

    Science.gov (United States)

    Babizhayev, Mark A; Yegorov, Yegor E

    2014-01-01

    Cataracts in small animals are shown to be at least partially caused by oxidative damage to lens epithelial cells (LECs) and the internal lens; biomarkers of oxidative stress in the lens are considered as general biomarkers for life expectancy in the canine and other animals. Telomeres lengths and expressed telomerase activity in canine LECs may serve as important monitors of oxidative damage in normal LECs with documented higher levels of telomerase activity in cataractous LECs during cells' lifespan. Loss of functional telomere length below a critical threshold in LECs of canines during the effect of UV and chronic oxidative stress or metabolic failure, can activate programs leading to LEC senescence or death. Telomerase is induced in LECs of canines at critical stages of cataractogenesis initiation and exposure to oxidative stress through the involvement of catalytically active prooxidant transition metal (iron) ions. This work documents that transition metal ions (such as, ferrous ions- catalytic oxidants) might induce premature senescence in LECs of canines, telomere shortening with increased telomerase activity as adaptive response to UV light, oxidative and metabolic stresses. The therapeutic treatment with 1% N-acetylcarnosine (NAC) prodrug delivery is beneficial for prevention and dissolution of ripe cataracts in canines. This biological activity is based on the findings of ferroxidase activity pertinent to the dipeptide carnosine released ophthalmically from NAC prodrug of L-carnosine, stabilizing properties of carnosine on biological membranes based on the ability of the imidazole-containing dipeptides to interact with lipid peroxidation products and reactive oxygen species (ROS), to prevent membrane damage and delute the associated with membrane fragements protein aggregates. The advent of therapeutic treatment of cataracts in canines with N-acetylcarnosine lubricant eye drops through targeting the prevention of loss of functional telomere length below

  2. ELISA with double antigen sandwich for screening specific serum anti-TP antibody in blood donors

    International Nuclear Information System (INIS)

    Wang Yiqing; Shi Zhixu

    2002-01-01

    Objective: To select a sensitive and specific laboratory examination suitable for screening serum anti-TP antibody in blood donors. Methods: The serum anti-TP antibody in 11271 blood donors were detected using ELISA with double antigen sandwich and the outcomes were compared with those using RPR assay. The conflicting specimen were confirmed by repeating the test with TPHA assay. Results: The positive rates of serum anti-TP antibody by ELISA with double antigen sandwich and RPR was 0.36% (41/11271) and 0.26% (29/11271), respectively. The coincidence of the detecting outcomes by ELISA with double antigen sandwich and RPR with TPHA was 97.5% (40/41) and 63.41%(26/41) respectively. Conclusion: Compared with RPR assay, ELISA with double antigen sandwich has higher sensibility and specificity for screening serum anti-TP antibody in blood donors

  3. Amarogentin Induces Apoptosis of Liver Cancer Cells via Upregulation of p53 and Downregulation of Human Telomerase Reverse Transcriptase in Mice

    Science.gov (United States)

    Li, Runqin; Zhang, Yinglin

    2016-01-01

    Background and Objective: Amarogentin has been reported to have a preventive effect on liver cancer via inducing cancer cell apoptosis. We attempted to elucidate the roles of p53-associated apoptosis pathways in the chemopreventive mechanism of amarogentin. The findings of this study will facilitate the development of a novel supplementary strategy for the treatment of liver cancer. Materials and Methods: The purity of amarogentin was assessed by high-performance liquid chromatography. The inhibitory ratios of the liver cell lines were determined using a Cell Counting Kit-8 following treatment with a gradient concentration of amarogentin. Cell apoptosis was detected by flow cytometry using annexin V-fluorescein isothiocyanate/propidium iodide kits. The gene and protein expression of p53-associated molecules, such as Akt, human telomerase reverse transcriptase, RelA, and p38, was detected by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemical staining in liver cancer cells and mouse tumor tissues after treatment with amarogentin. Results: The inhibitory effect of amarogentin on cell proliferation was more obvious in liver cancer cells, and amarogentin was more likely to induce the apoptosis of liver cancer cells than that of normal liver cells. The gene and protein expression levels of Akt, RelA, and human telomerase reverse transcriptase were markedly higher in the control group than in the preventive group and treatment groups. Only the expression of human telomerase reverse transcriptase was downregulated, accompanied by the upregulation of p53. Conclusion: The results of our study suggest that amarogentin promotes apoptosis of liver cancer cells by the upregulation of p53 and downregulation of human telomerase reverse transcriptase and prevents the malignant transformation of these cells. PMID:27402632

  4. Advanced generation anti-prostate specific membrane antigen designer T cells for prostate cancer immunotherapy.

    Science.gov (United States)

    Ma, Qiangzhong; Gomes, Erica M; Lo, Agnes Shuk-Yee; Junghans, Richard P

    2014-02-01

    Adoptive immunotherapy by infusion of designer T cells (dTc) engineered with chimeric antigen receptors (CARs) for tumoricidal activity represents a potentially highly specific modality for the treatment of cancer. In this study, 2nd generation (gen) anti-prostate specific membrane antigen (PSMA) dTc were developed for improving the efficacy of previously developed 1st gen dTc for prostate cancer immunotherapy. The 1st gen dTc are modified with chimeric immunoglobulin-T cell receptor (IgTCR) while the 2nd gen dTc are engineered with an immunoglobulin-CD28-T cell receptor (IgCD28TCR), which incorporates a CD28 costimulatory signal for optimal T cell activation. A 2nd gen anti-PSMA IgCD28TCR CAR was constructed by inserting the CD28 signal domain into the 1st gen CAR. 1st and 2nd gen anti-PSMA dTc were created by transducing human T cells with anti-PSMA CARs and their antitumor efficacy was compared for specific activation on PSMA-expressing tumor contact, cytotoxicity against PSMA-expressing tumor cells in vitro, and suppression of tumor growth in an animal model. The 2nd gen dTc can be optimally activated to secrete larger amounts of cytokines such as IL2 and IFNγ than 1st gen and to proliferate more vigorously on PSMA-expressing tumor contact. More importantly, the 2nd gen dTc preserve the PSMA-specific cytotoxicity in vitro and suppress tumor growth in animal models with significant higher potency. Our results demonstrate that 2nd gen anti-PSMA designer T cells exhibit superior antitumor functions versus 1st gen, providing a rationale for advancing this improved agent toward clinical application in prostate cancer immunotherapy. © 2013 Wiley Periodicals, Inc.

  5. Resilience to Bullying: Towards an Alternative to the Anti-Bullying Approach

    Science.gov (United States)

    Moore, Brian; Woodcock, Stuart

    2017-01-01

    Anti-bullying strategies are significant approaches addressing bullying in schools, however their capacity to produce a reduction in bullying behaviour is open to question. This article examined a resilience-based approach to bullying. One hundred and five primary and high school students were surveyed using several standardised instruments. The…

  6. Evaluation of an oral telomerase activator for early age-related macular degeneration - a pilot study

    Directory of Open Access Journals (Sweden)

    Dow CT

    2016-01-01

    Full Text Available Coad Thomas Dow,1,2 Calvin B Harley3 1McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA; 2Chippewa Valley Eye Clinic, Eau Claire, Wisconsin, WI, USA; 3Independent Telomere Biology Consultant, Murphys, CA, USA Purpose: Telomere attrition and corresponding cellular senescence of the retinal pigment epithelium contribute to the changes of age-related macular degeneration. Activation of the enzyme telomerase can add telomeric DNA to retinal pigment epithelium chromosomal ends and has been proposed as a treatment for age-related macular degeneration. We report the use of a small molecule, oral telomerase activator (TA-65 in early macular degeneration. This study, focusing on early macular degeneration, provides a model for the use of TAs in age-related disease.Method: Thirty-eight (38 patients were randomly assigned to a 1-year, double-blinded, placebo-controlled interventional study with arms for oral TA-65 or placebo. Macular functions via micro-perimetry were the primary measured outcomes.Results: The macular function in the arm receiving the TA-65 showed significant improvement relative to the placebo control. The improvement was manifest at 6 months and was maintained at 1 year: macular threshold sensitivity (measured as average dB [logarithmic decibel scale of light attenuation] improved 0.97 dB compared to placebo (P-value 0.02 and percent reduced thresholds lessened 8.2% compared to the placebo arm (P-value 0.04. Conclusion: The oral TA significantly improved the macular function of treatment subjects compared to controls. Although this study was a pilot and a larger study is being planned, it is noteworthy in that it is, to our knowledge, the first randomized placebo-controlled study of a TA supplement. Keywords: drusen, macular degeneration, micro-perimetry, senescence, telomerase activation, telomere

  7. Expression of telomerase reverse transcriptase in radiation-induced chronic human skin ulcer

    International Nuclear Information System (INIS)

    Zhao Po; Li Zhijun; Lu Yali; Zhong Mei; Gu Qingyang; Wang Dewen

    2001-01-01

    Objective: To investigate the expression of the catalytic subunit of telomerase, telomerase reverse transcriptase (TRT) and the possible relationship between the TRT and cancer transformation or poor healing in radiation-induced chronic ulcer of human skin. Methods: Rabbit antibody against human TRT and SP immunohistochemical method were used to detect TRT expression in 24 cases of formalin-fixed, paraffin-embed human skin chronic ulcer tissues induced by radiation, 5 cases of normal skin, 2 of burned skin, and 8 of carcinoma. Results: The positive rate for TRT was 58.3%(14/24) in chronic radiation ulcers, of which the strongly positive rate was 41.7%(10/24) and the weakly positive 16.7%(4/24), 0% in normal (0/5) and burned skin (0/2), and 100% in carcinoma (8/8). The strongly positive expression of TRT was observed almost always in the cytoplasm and nucleus of squamous epithelial cells of proliferative epidermis but the negative and partly weakly positive expression in the smooth muscles, endothelia of small blood vessels and capillaries, and fibroblasts. Chronic inflammtory cells, plasmacytes and lymphocytes also showed weakly positive for TRT. Conclusion: TRT expression could be involved in the malignant transformation of chronic radiation ulcer into squamous carcinoma, and in the poor healing caused by sclerosis of small blood vessels and lack of granulation tissue consisting of capillaries and fibroblasts

  8. Human MLH1 suppresses the insertion of telomeric sequences at intra-chromosomal sites in telomerase-expressing cells

    Science.gov (United States)

    Jia, Pingping; Chastain, Megan; Zou, Ying; Her, Chengtao

    2017-01-01

    Abstract Aberrant formation of interstitial telomeric sequences (ITSs) promotes genome instabilities. However, it is unclear how aberrant ITS formation is suppressed in human cells. Here, we report that MLH1, a key protein involved in mismatch repair (MMR), suppresses telomeric sequence insertion (TSI) at intra-chromosomal regions. The frequency of TSI can be elevated by double-strand break (DSB) inducer and abolished by ATM/ATR inhibition. Suppression of TSI requires MLH1 recruitment to DSBs, indicating that MLH1's role in DSB response/repair is important for suppressing TSI. Moreover, TSI requires telomerase activity but is independent of the functional status of p53 and Rb. Lastly, we show that TSI is associated with chromosome instabilities including chromosome loss, micronuclei formation and chromosome breakage that are further elevated by replication stress. Our studies uncover a novel link between MLH1, telomerase, telomere and genome stability. PMID:28180301

  9. MNS16A tandem repeats minisatellite of human telomerase gene: a risk factor for colorectal cancer.

    Science.gov (United States)

    Hofer, Philipp; Baierl, Andreas; Feik, Elisabeth; Führlinger, Gerhard; Leeb, Gernot; Mach, Karl; Holzmann, Klaus; Micksche, Michael; Gsur, Andrea

    2011-06-01

    Telomerase reactivation and expression of human telomerase gene [human telomerase reverse transcriptase (hTERT)] are hallmarks of unlimited proliferation potential of cancer cells. A polymorphic tandem repeats minisatellite of hTERT gene, termed MNS16A was reported to influence hTERT expression. To assess the role of MNS16A as potential biomarker for colorectal cancer (CRC), we investigated for the first time the association of MNS16A genotypes with risk of colorectal polyps and CRC. In the ongoing colorectal cancer study of Austria (CORSA), 3842 Caucasian participants were recruited within a large screening project in the province Burgenland including 90 CRC cases, 308 high-risk polyps, 1022 low-risk polyps and 1822 polyp free controls verified by colonoscopy. MNS16A genotypes were determined by polymerase chain reaction from genomic DNA. Associations of MNS16A genotypes with CRC risk were estimated by logistic regression analysis computing odds ratios (ORs) and 95% confidence intervals (CIs). We identified five different variable number of tandem repeats (VNTRs) of MNS16A including VNTR-364, a newly discovered rare variant. VNTR-274 allele was associated with a 2.7-fold significantly increased risk of CRC compared with the VNTR-302 wild-type (OR = 2.69; 95% CI = 1.11-6.50; P = 0.028). In our CORSA study, the medium length VNTR-274 was identified as risk factor for CRC. Although, this population-based study herewith reports the largest cohort size concerning MNS16A thus far, further large-scale studies in diverse populations are warranted to confirm hTERT MNS16A genotype as potential biomarker for assessment of CRC risk.

  10. Anti-bribery control and incentives as agency theory approaches

    OpenAIRE

    Fabian Teichmann

    2017-01-01

    This article takes an agency theory approach towards bribery in multinational corporations. In particular, it is advocated that incentives could help to align the interests of principals and agents and reduce information asymmetries. This could help to increase anti-bribery compliance and hence support the fight against corruption in Eastern Europe.

  11. A novel approach for the detection and genetic analysis of live melanoma circulating tumor cells.

    Directory of Open Access Journals (Sweden)

    Melody J Xu

    Full Text Available Circulating tumor cell (CTC detection and genetic analysis may complement currently available disease assessments in patients with melanoma to improve risk stratification and monitoring. We therefore sought to establish the feasibility of a telomerase-based assay for detecting and isolating live melanoma CTCs.The telomerase-based CTC assay utilizes an adenoviral vector that, in the presence of elevated human telomerase activity, drives the amplification of green fluorescent protein. Tumor cells are then identified via an image processing system. The protocol was tested on melanoma cells in culture or spiked into control blood, and on samples from patients with metastatic melanoma. Genetic analysis of the isolated melanoma CTCs was then performed for BRAF mutation status.The adenoviral vector was effective for all melanoma cell lines tested with sensitivity of 88.7% (95%CI 85.6-90.4% and specificity of 99.9% (95%CI 99.8-99.9%. In a pilot trial of patients with metastatic disease, CTCs were identified in 9 of 10 patients, with a mean of 6.0 CTCs/mL. At a cutoff of 1.1 CTCs/mL, the telomerase-based assay exhibits test performance of 90.0% sensitivity and 91.7% specificity. BRAF mutation analysis of melanoma cells isolated from culture or spiked control blood, or from pilot patient samples was found to match the known BRAF mutation status of the cell lines and primary tumors.To our knowledge, this is the first report of a telomerase-based assay effective for detecting and isolating live melanoma CTCs. These promising findings support further studies, including towards integrating into the management of patients with melanoma receiving multimodality therapy.

  12. Donor-specific Anti-HLA antibodies in allogeneic hematopoietic stem cell transplantation

    Directory of Open Access Journals (Sweden)

    Sarah Morin-Zorman

    2016-08-01

    Full Text Available Allogeneic Hematopoietic Stem Cell Transplantation (AHSCT is a curative treatment for a wide variety of hematological diseases. In 30% of the cases, a geno-identical donor is available. Any other situation displays some level of Human Leukocyte Antigen (HLA incompatibility between donor and recipient. Deleterious effects of anti-HLA immunization have long been recognized in solid organ transplant recipients. More recently, anti-HLA immunization was shown to increase the risk of Primary Graft Failure (PGF, a severe complication of AHSCT that occurs in 3 to 4% of matched unrelated donor transplantation and up to 15% in cord blood transplantation and T-cell depleted haplo-identical stem cell transplantation. Rates of PGF in patients with DSA were reported to be between 24 to 83% with the highest rates in haplo-identical and cord blood transplantation recipients. This led to the recommendation of anti-HLA antibody screening to detect Donor Specific Antibodies (DSA in recipients prior to AHSCT. In this review, we highlight the role of anti-HLA antibodies in AHSCT and the mechanisms that may lead to PGF in patients with DSA, and discuss current issues in the field.

  13. Myasthenic Crisis Complicated with Myxedema, Positive for Both Anti-acetylcholine Receptor and Anti-muscle-specific Tyrosine Kinase Antibodies.

    Science.gov (United States)

    Horiuchi, Kazuhiro; Nagai, Azusa; Wakita, Masahiro; Ito, Shotaro; Takamura, Kei; Houzen, Hideki

    2018-01-15

    We herein report the case of myasthenic crisis occurring in a 51-year-old man. He had experienced ptosis, increased body weight with edema, and fatigue with dyspnea. He presented at our emergency department with disturbed consciousness. He was originally diagnosed with myxedema coma, and he required artificial respiration. Because his weakness persisted and he was positive for anti-acetylcholine receptor antibodies and anti-muscle-specific tyrosine kinase antibodies, we diagnosed myasthenic crisis after various examinations. His clinical response to treatment was good and he was discharged in an ambulatory status 3 months after admission. This case demonstrates that myasthenic crisis may occur in association with myxedema.

  14. Telomerase Activity in Breast Tumor Tissues and its Possible use for Detection of Circulating Carcinoma Cells

    Czech Academy of Sciences Publication Activity Database

    Šimíčková, M.; Nekulová, M.; Pecen, Ladislav; Vagundová, M.; Maláska, J.; Obermannová, R.; Lauerová, L.

    2002-01-01

    Roč. 5, - (2002), s. 98 ISSN 1211-8869. [Central European Conference on Human Tumor Markers /4./. 13.02.2003-16.02.2003, Karlovy Vary] Institutional research plan: CEZ:AV0Z1030915 Keywords : telomerase activity * early detection of distant metastases * cancer reccurence Subject RIV: BB - Applied Statistics, Operational Research

  15. New approaches of PARP-1 inhibitors in human lung cancer cells and cancer stem-like cells by some selected anthraquinone-derived small molecules.

    Directory of Open Access Journals (Sweden)

    Yu-Ru Lee

    Full Text Available Poly (ADP-ribose polymerase-1 (PARP-1 and telomerase, as well as DNA damage response pathways are targets for anticancer drug development, and specific inhibitors are currently under clinical investigation. The purpose of this work is to evaluate anticancer activities of anthraquinone-derived tricyclic and tetracyclic small molecules and their structure-activity relationships with PARP-1 inhibition in non-small cell lung cancer (NSCLC and NSCLC-overexpressing Oct4 and Nanog clone, which show high-expression of PARP-1 and more resistance to anticancer drug. We applied our library selected compounds to NCI's 60 human cancer cell-lines (NCI-60 in order to generate systematic profiling data. Based on our analysis, it is hypothesized that these drugs might be, directly and indirectly, target components to induce mitochondrial permeability transition and the release of pro-apoptotic factors as potential anti-NSCLC or PARP inhibitor candidates. Altogether, the most active NSC747854 showed its cytotoxicity and dose-dependent PARP inhibitory manner, thus it emerges as a promising structure for anti-cancer therapy with no significant negative influence on normal cells. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics. These findings will be of great value to facilitate structure-based design of selective PARP inhibitors, in general, and telomerase inhibitors, in particular. Together, the data presented here expand our insight into the PARP inhibitors and support the resource-demanding lead optimization of structurally related small molecules for human cancer therapy.

  16. New Approaches of PARP-1 Inhibitors in Human Lung Cancer Cells and Cancer Stem-Like Cells by Some Selected Anthraquinone-Derived Small Molecules

    Science.gov (United States)

    Yu, Dah-Shyong; Huang, Kuo-Feng; Chou, Shih-Jie; Chen, Tsung-Chih; Lee, Chia-Chung; Chen, Chun-Liang; Chiou, Shih-Hwa; Huang, Hsu-Shan

    2013-01-01

    Poly (ADP-ribose) polymerase-1 (PARP-1) and telomerase, as well as DNA damage response pathways are targets for anticancer drug development, and specific inhibitors are currently under clinical investigation. The purpose of this work is to evaluate anticancer activities of anthraquinone-derived tricyclic and tetracyclic small molecules and their structure-activity relationships with PARP-1 inhibition in non-small cell lung cancer (NSCLC) and NSCLC-overexpressing Oct4 and Nanog clone, which show high-expression of PARP-1 and more resistance to anticancer drug. We applied our library selected compounds to NCI's 60 human cancer cell-lines (NCI-60) in order to generate systematic profiling data. Based on our analysis, it is hypothesized that these drugs might be, directly and indirectly, target components to induce mitochondrial permeability transition and the release of pro-apoptotic factors as potential anti-NSCLC or PARP inhibitor candidates. Altogether, the most active NSC747854 showed its cytotoxicity and dose-dependent PARP inhibitory manner, thus it emerges as a promising structure for anti-cancer therapy with no significant negative influence on normal cells. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics. These findings will be of great value to facilitate structure-based design of selective PARP inhibitors, in general, and telomerase inhibitors, in particular. Together, the data presented here expand our insight into the PARP inhibitors and support the resource-demanding lead optimization of structurally related small molecules for human cancer therapy. PMID:23451039

  17. Superfield approach to anti de Sitter supersymmetry

    International Nuclear Information System (INIS)

    Ivanov, E.A.

    1979-01-01

    A self-contained superfield approach to global supersymmetry in anti de Sitter space (OSp(1.4)) is developed. General transformation laws for OSp(1.4)-superfields are established, and all basic elements of the OSp(1.4)-covariant formalism in the real basis, such as covariant superfield derivatives, invariant integration measure over the superspace OSp(1.4)/O(1.3), etc., are explicitly given. The reducibility questions are analyzed and realizations of OSp(1.4) in the left- and right-handed chiral superspaces are found

  18. Telomerase activity, telomere length and hTERT DNA methylation in peripheral blood mononuclear cells from monozygotic twins with discordant smoking habits.

    Science.gov (United States)

    Marcon, Francesca; Siniscalchi, Ester; Andreoli, Cristina; Allione, Alessandra; Fiorito, Giovanni; Medda, Emanuela; Guarrera, Simonetta; Matullo, Giuseppe; Crebelli, Riccardo

    2017-10-01

    Increased telomerase expression has been implicated in the pathogenesis of lung cancer and, since the primary cause of lung cancer is smoking, an association between telomerase reactivation and tobacco smoke has been proposed. In this work an investigation has been performed to assess the relationship between tobacco smoke exposure and telomerase activity (TA) in peripheral blood mononuclear cells of healthy smokers. The methylation status of the catalytic subunit of telomerase hTERT was concurrently investigated to assess the possible association between epigenetic modifications of hTERT and TA. Besides, the association between smoke and telomere length (TL) has been evaluated. Healthy monozygotic twins with discordant smoking habits were selected as study population to minimize inter-individual differences because of demographic characteristics and genetic heterogeneity. Statistically significant higher values of TA and TL were observed in smokers compared to nonsmoker co-twins. The multivariate analysis of data showed, besides smoking habits (P = 0.02), an influence of gender (P = 0.006) and BMI (P = 0.001) on TA and a borderline effect of gender (P = 0.05) on TL. DNA methylation analysis, focused on 100 CpG sites mapping in hTERT, highlighted nine CpG sites differentially methylated in smokers. When co-twins were contrasted, selecting as variables the intra-twin difference in TA and hTERT DNA methylation, a statistically significant inverse correlation (P = 0.003) was observed between TA and DNA methylation at the cg05521538 site. In conclusion, these results indicate an association of tobacco smoke with TA and TL and suggest a possible association between smoke-induced epigenetic effects and TA in healthy smokers. Environ. Mol. Mutagen. 58:551-559, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Anti-bribery control and incentives as agency theory approaches

    Directory of Open Access Journals (Sweden)

    Fabian Teichmann

    2017-11-01

    Full Text Available This article takes an agency theory approach towards bribery in multinational corporations. In particular, it is advocated that incentives could help to align the interests of principals and agents and reduce information asymmetries. This could help to increase anti-bribery compliance and hence support the fight against corruption in Eastern Europe.

  20. [The role of telomerase activity in non-invasive diagnostics of bladder cancer].

    Science.gov (United States)

    Glybochko, P V; Alyaev, J G; Potoldykova, N V; Polyakovsky, K A; Vinarov, A Z; Glukhov, A I; Gordeev, S A

    2016-08-01

    To evaluate the potentials of determining the telomerase activity (TA) in the cellular material of the urine for noninvasive diagnosis of bladder cancer (BC). Evaluation of TA was performed in the urine of 48 patients with bladder cancer (study group) before and after transurethral resection of the bladder wall (n=38), an open resection of the bladder (n=4), and cystectomy (n=6). TA was also evaluated in 48 tumor tissue samples obtained from these patients during removal of the bladder tumor. Each sample of the tumor tissue was separated into two parts, one of which was subjected to histological examination, and the latter was used to determine the telomerase activity. In all cases, the diagnosis of bladder cancer was confirmed morphologically. Determination of TA in the samples was performed by the modified TRAP-method (telomerase repeat amplification protocol), RT-PCR, PCR, and electrophoresis. As a control, cell material of the urine and tissue in 12 patients with chronic cystitis was investigated. TA before surgery was found in 45 (93.75%) of 48 samples of cellular material of the urine from patients with suspected bladder cancer. BC was histologically verified in all patients in this group. In the postoperative period, TA was not observed in the 48 samples of cellular material of the urine from patients with BC. In the control group of patients with histologically verified cystitis, weak TA was determined only in one sample of cellular material of the urine. The analysis indicates statistically significant predominance of patients with bladder cancer in case of TA in the urine (P=0.001). TA was detected in all samples of tumor tissue. We also analyzed the dependence of TA levels in urine and tissue on the degree of BC differentiation. In patients with highly differentiated BC, mean AT in the cellular materials of the urine was 0,61% (n=15), in patients with moderately differentiated BC - 0.95% (n=23), in patients with low-grade bladder cancer - 1.33% (n=10

  1. Modulation of telomere binding proteins: a future area of research for skin protection and anti-aging target.

    Science.gov (United States)

    Imbert, Isabelle; Botto, Jean-Marie; Farra, Claude D; Domloge, Nouha

    2012-06-01

    Telomere shortening is considered as one of the main characteristics of cellular aging by limiting cellular division. Besides the fundamental advances through the discoveries of telomere and telomerase, which were recognized by a Nobel Prize, telomere protection remains an essential area of research. Recently, it was evidenced that studying the cross-talks between the proteins associated with telomere should provide a better understanding of the mechanistic basis for telomere-associated aging phenotypes. In this review, we discuss the current knowledge on telomere shortening, telomerase activity, and the essential role of telomere binding proteins in telomere stabilization and telomere-end protection. This review highlights the capacity of telomere binding proteins to limit cellular senescence and to maintain skin tissue homeostasis, which is of key importance to reduce accelerated tissue aging. Future studies addressing telomere protection and limitation of DNA damage response in human skin should include investigations on telomere binding proteins. As little is known about the expression of telomere binding proteins in human skin and modulation of their expression with aging, it remains an interesting field of skin research and a key area for future skin protection and anti-aging developments. © 2012 Wiley Periodicals, Inc.

  2. Glucose metabolite glyoxal induces senescence in telomerase-immortalized human mesenchymal stem cells

    DEFF Research Database (Denmark)

    Larsen, Simon Asbjørn; Kassem, Moustapha; Rattan, Suresh

    2012-01-01

    ). Furthermore, the in vitro differentiation potential of hMSC-TERT to become functional osteoblasts was highly reduced in GO-treated stem cells, as determined by alkaline phosphatase (ALP) activity and mineralized matrix (MM) formation. Conclusions The results of our study imply that an imbalanced glucose...... physiological metabolite produced by the auto-oxidation of glucose, and can form covalent adducts known as advanced glycation endproducts (AGE). We have previously reported that GO accelerates ageing and causes premature senescence in normal human skin fibroblasts. Results Using a bone marrow-derived telomerase...

  3. EFEK EKSTRAK SAMBILOTO (ANDROGRAPHIS PANICULATA NEES PADA EKSPRESI TELOMERASE DARI KANKER PAYUDARA TIKUS YANG DIINDUKSI DENGAN DMBA

    Directory of Open Access Journals (Sweden)

    Yurika Sastyarina

    2010-12-01

    Full Text Available ABSTRACT   It has been well documented that chemical carcinogen, 7.12 dimethylbenz(aanthracene (DMBA,  plays a role in the incidence and growth of mammary cancer. Present study was designed to investigate the influence of Andrographis paniculata extract on telomerase activities on DMBA induced breast cancer in the female rat Sprague Dawley strain. DMBA-induced mammary cancer is a useful model to investigate the changes of epithelial cells that occur during mammary cancer progression. Mammary cancer model was induced 10 times twice a week by oral DMBA 20 mg/kg body weight. Mammary cancer occurred in 75 % animals nine weeks after oral administration of DMBA, it was represented with nodule on the mammary gland and the increasing of mammary gland volume compare with normal control F(1.8 = 731.711; p < 0.001. This study was also designed to investigate the effect of Andrographis paniculata extract mammary carcinoma induced by DMBA. Administration of three different dose of Andrographis paniculata (100 mg/kg, 300 mg/kg and 1000 mg/kg had statistically different with mammary gland volume of DMBA treated rat F (4.17 = 92.777; p<0.05. So, Andrographis paniculata has significant effect on the treatment of DMBA-induced mammary carcinoma. The Epithelial cells were harvested on day 90 and stained with routine histology staining, hematoxylineosin, for morphological qualitative analysis, immunohistochemical examination. The lesions observed from the removed samples ranged widely from benign to malignant. The results showed that DMBA induce cell proliferation, nuclear irregularities, and numerous mitoses and induced cell necrosis. The effect of Andrographis paniculata inhibits cell proliferation and induces apoptosis in cancer cells. On immunohistochemical examination, it shows that Andrographis paniculata can stimulate of telomerase enzyme.   Key word: Andrographis paniculata, DMBA, mammary cancer, cell proliferation     ABSTRAK   Telah dilakukan

  4. High sensitivity and specificity in proposed clinical diagnostic criteria for anti-N-methyl-D-aspartate receptor encephalitis.

    Science.gov (United States)

    Ho, Alvin C C; Mohammad, Shekeeb S; Pillai, Sekhar C; Tantsis, Esther; Jones, Hannah; Ho, Reena; Lim, Ming; Hacohen, Yael; Vincent, Angela; Dale, Russell C

    2017-12-01

    To determine the validity of the proposed clinical diagnostic criteria for anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis in paediatric patients. The diagnostic criteria for anti-NMDAR encephalitis proposed by Graus et al. (2016) use clinical features and conventional investigations to facilitate early immunotherapy before antibody status is available. The criteria are satisfied if patients develop four out of six symptom groups within 3 months, together with at least one abnormal investigation (electroencephalography/cerebrospinal fluid) and reasonable exclusion of other disorders. We evaluated the validity of the criteria using a retrospective cohort of paediatric patients with encephalitis. Twenty-nine patients with anti-NMDAR encephalitis and 74 comparison children with encephalitis were included. As expected, the percentage of patients with anti-NMDAR encephalitis who fulfilled the clinical criteria increased over time. During the hospital inpatient admission, most patients (26/29, 90%) with anti-NMDAR encephalitis fulfilled the criteria, significantly more than the comparison group (3/74, 4%) (panti-NMDAR encephalitis was 2 weeks from first symptom onset (range 1-6). The sensitivity of the criteria was 90% (95% confidence interval 73-98) and the specificity was 96% (95% confidence interval 89-99). The proposed diagnostic criteria for anti-NMDAR encephalitis have good sensitivity and specificity. Incomplete criteria do not exclude the diagnosis. The proposed clinical diagnostic criteria for anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis by Graus et al. (2016) have high sensitivity and specificity in paediatric patients. The median time of fulfilling the criteria in patients with anti-NMDAR was 2 weeks from first symptom onset. © 2017 Mac Keith Press.

  5. New Approaches to Anti-Stress Practices in Poultry

    Directory of Open Access Journals (Sweden)

    Atilla Taşkın

    2015-07-01

    Full Text Available Parameters of health, productivity, behaviour and physiology which are used in order to determine the stress shaped by the effects of various factors in poultries can only be detected when the effects of stress emerge; in other words, when the changes are shaped. Therefore; it is important to interfere before the emergence of these indications in order to develop animal welfare by preventing stress. Information programmes, as traditional methods, and vitamin applications as well as anti-stress effects of herbal extracts have recently been studied in order to reduce the effects of stress. Moreover; such applications as crossbreeding native race, which are highly tolerated against temperature stress, with the commercial ones, usage of blue LED light, capturing exercises, enriched environment, adding roosters into the flocks of hen and finally temperature exercises in chick period are also tried as anti-stress preventions. In this paper, new approaches to the reduction of stress or stress sensitivity in poultries have been studied.

  6. Antitrust v. Anti-Corruption Policy Approaches to Compliance: Why Such A Gap?

    OpenAIRE

    Florence Thepot

    2015-01-01

    Different liability regimes may explain why, in some jurisdictions, competition law and anti-corruption agencies have very contrasted approaches to compliance programs. Florence Thépot (University College London)

  7. A pilot study of yogic meditation for family dementia caregivers with depressive symptoms: effects on mental health, cognition, and telomerase activity.

    Science.gov (United States)

    Lavretsky, H; Epel, E S; Siddarth, P; Nazarian, N; Cyr, N St; Khalsa, D S; Lin, J; Blackburn, E; Irwin, M R

    2013-01-01

    This study examined the effects of brief daily yogic meditation on mental health, cognitive functioning, and immune cell telomerase activity in family dementia caregivers with mild depressive symptoms. Thirty-nine family dementia caregivers (mean age 60.3 years old (SD = 10.2)) were randomized to practicing Kirtan Kriya or listening to relaxation music for 12 min per day for 8 weeks. The severity of depressive symptoms, mental and cognitive functioning were assessed at baseline and follow-up. Telomerase activity in peripheral blood mononuclear cells (PMBC) was examined in peripheral PBMC pre-intervention and post-intervention. The meditation group showed significantly lower levels of depressive symptoms and greater improvement in mental health and cognitive functioning compared with the relaxation group. In the meditation group, 65.2% showed 50% improvement on the Hamilton Depression Rating scale and 52% of the participants showed 50% improvement on the Mental Health Composite Summary score of the Short Form-36 scale compared with 31.2% and 19%, respectively, in the relaxation group (p dementia caregivers can lead to improved mental and cognitive functioning and lower levels of depressive symptoms. This improvement is accompanied by an increase in telomerase activity suggesting improvement in stress-induced cellular aging. These results need to be confirmed in a larger sample. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Genetic variants in telomerase-related genes are associated with an older age at diagnosis in glioma patients: evidence for distinct pathways of gliomagenesis.

    Science.gov (United States)

    Walsh, Kyle M; Rice, Terri; Decker, Paul A; Kosel, Matthew L; Kollmeyer, Thomas; Hansen, Helen M; Zheng, Shichun; McCoy, Lucie S; Bracci, Paige M; Anderson, Erik; Hsuang, George; Wiemels, Joe L; Pico, Alexander R; Smirnov, Ivan; Molinaro, Annette M; Tihan, Tarik; Berger, Mitchell S; Chang, Susan M; Prados, Michael D; Lachance, Daniel H; Sicotte, Hugues; Eckel-Passow, Jeanette E; Wiencke, John K; Jenkins, Robert B; Wrensch, Margaret R

    2013-08-01

    Genome-wide association studies have implicated single nucleotide polymorphisms (SNPs) in 7 genes as glioma risk factors, including 2 (TERT, RTEL1) involved in telomerase structure/function. We examined associations of these 7 established glioma risk loci with age at diagnosis among patients with glioma. SNP genotype data were available for 2286 Caucasian glioma patients from the University of California, San Francisco (n = 1434) and the Mayo Clinic (n = 852). Regression analyses were performed to test for associations between "number of risk alleles" and "age at diagnosis," adjusted for sex and study site and stratified by tumor grade/histology where appropriate. Four SNPs were significantly associated with age at diagnosis. Carrying a greater number of risk alleles at rs55705857 (CCDC26) and at rs498872 (PHLDB1) was associated with younger age at diagnosis (P = 1.4 × 10(-22) and P = 9.5 × 10(-7), respectively). These SNPs are stronger risk factors for oligodendroglial tumors, which tend to occur in younger patients, and their association with age at diagnosis varied across tumor subtypes. In contrast, carrying more risk alleles at rs2736100 (TERT) and at rs6010620 (RTEL1) was associated with older age at diagnosis (P = 6.2 × 10(-4) and P = 2.5 × 10(-4), respectively). These SNPs are risk factors for all glioma grades/histologies, and their association with age at diagnosis was consistent across tumor subgroups. Carrying a greater number of risk alleles might be expected to decrease age at diagnosis. However, glioma susceptibility conferred by variation in telomerase-related genes did not follow this pattern. This supports the hypothesis that telomerase-related mechanisms of telomere maintenance are more associated with gliomas that develop later in life than those utilizing telomerase-independent mechanisms (ie, alternative lengthening of telomeres).

  9. Specificity of anti-tau antibodies when analyzing mice models of Alzheimer's disease: problems and solutions.

    Directory of Open Access Journals (Sweden)

    Franck R Petry

    Full Text Available Aggregates of hyperphosphorylated tau protein are found in a group of diseases called tauopathies, which includes Alzheimer's disease. The causes and consequences of tau hyperphosphorylation are routinely investigated in laboratory animals. Mice are the models of choice as they are easily amenable to transgenic technology; consequently, their tau phosphorylation levels are frequently monitored by Western blotting using a panel of monoclonal/polyclonal anti-tau antibodies. Given that mouse secondary antibodies can recognize endogenous mouse immunoglobulins (Igs and the possible lack of specificity with some polyclonal antibodies, non-specific signals are commonly observed. Here, we characterized the profiles of commonly used anti-tau antibodies in four different mouse models: non-transgenic mice, tau knock-out (TKO mice, 3xTg-AD mice, and hypothermic mice, the latter a positive control for tau hyperphosphorylation. We identified 3 tau monoclonal antibody categories: type 1, characterized by high non-specificity (AT8, AT180, MC1, MC6, TG-3, type 2, demonstrating low non-specificity (AT270, CP13, CP27, Tau12, TG5, and type 3, with no non-specific signal (DA9, PHF-1, Tau1, Tau46. For polyclonal anti-tau antibodies, some displayed non-specificity (pS262, pS409 while others did not (pS199, pT205, pS396, pS404, pS422, A0024. With monoclonal antibodies, most of the interfering signal was due to endogenous Igs and could be eliminated by different techniques: i using secondary antibodies designed to bind only non-denatured Igs, ii preparation of a heat-stable fraction, iii clearing Igs from the homogenates, and iv using secondary antibodies that only bind the light chain of Igs. All of these techniques removed the non-specific signal; however, the first and the last methods were easier and more reliable. Overall, our study demonstrates a high risk of artefactual signal when performing Western blotting with routinely used anti-tau antibodies, and proposes

  10. A randomized controlled trial of qigong exercise on fatigue symptoms, functioning, and telomerase activity in persons with chronic fatigue or chronic fatigue syndrome.

    Science.gov (United States)

    Ho, Rainbow T H; Chan, Jessie S M; Wang, Chong-Wen; Lau, Benson W M; So, Kwok Fai; Yuen, Li Ping; Sham, Jonathan S T; Chan, Cecilia L W

    2012-10-01

    Chronic fatigue is common in the general population. Complementary therapies are often used by patients with chronic fatigue or chronic fatigue syndrome to manage their symptoms. This study aimed to assess the effect of a 4-month qigong intervention program among patients with chronic fatigue or chronic fatigue syndrome. Sixty-four participants were randomly assigned to either an intervention group or a wait list control group. Outcome measures included fatigue symptoms, physical functioning, mental functioning, and telomerase activity. Fatigue symptoms and mental functioning were significantly improved in the qigong group compared to controls. Telomerase activity increased in the qigong group from 0.102 to 0.178 arbitrary units (p chronic fatigue and chronic fatigue syndrome.

  11. Donor-Specific Anti-HLA Antibodies in Huntington's Disease Recipients of Human Fetal Striatal Grafts.

    Science.gov (United States)

    Porfirio, Berardino; Paganini, Marco; Mazzanti, Benedetta; Bagnoli, Silvia; Bucciantini, Sandra; Ghelli, Elena; Nacmias, Benedetta; Putignano, Anna Laura; Rombolà, Giovanni; Saccardi, Riccardo; Lombardini, Letizia; Di Lorenzo, Nicola; Vannelli, Gabriella B; Gallina, Pasquale

    2015-01-01

    Fetal grafting in a human diseased brain was thought to be less immunogenic than other solid organ transplants, hence the minor impact on the efficacy of the transplant. How much prophylactic immune protection is required for neural allotransplantation is also debated. High-sensitive anti-HLA antibody screening in this field has never been reported. Sixteen patients with Huntington's disease underwent human fetal striatal transplantation in the frame of an open-label observational trial, which is being carried out at Florence University. All patients had both brain hemispheres grafted in two separate robotic-stereotactic procedures. The trial started in February 2006 with the first graft to the first patient (R1). R16 was given his second graft on March 2011. All patients received triple immunosuppressive treatment. Pre- and posttransplant sera were analyzed for the presence of anti-HLA antibodies using the multiplexed microsphere-based suspension array Luminex xMAP technology. Median follow-up was 38.5 months (range 13-85). Six patients developed anti-HLA antibodies, which turned out to be donor specific. Alloimmunization occurred in a time window of 0-49 months after the first neurosurgical procedure. The immunogenic determinants were non-self-epitopes from mismatched HLA antigens. These determinants were both public epitopes shared by two or more HLA molecules and private epitopes unique to individual HLA molecules. One patient had non-donor-specific anti-HLA antibodies in her pretransplant serum sample, possibly due to previous sensitization events. Although the clinical significance of donor-specific antibodies is far from being established, particularly in the setting of neuronal transplantation, these findings underline the need of careful pre- and posttransplant immunogenetic evaluation of patients with intracerebral grafts.

  12. EFFICACY OF COMBINATION TREATMENT WITH ANTI_IGE PLUS SPECIFIC IMMUNOTHERAPY IN PATIENTS WITH ATOPIC DISEASES

    Directory of Open Access Journals (Sweden)

    N.I. Il'ina

    2008-01-01

    Full Text Available Allergen specific immunotherapy (ASIT is a very effective technique in treatment of many allergic diseases. It greatly improves the quality of life. There's a risk of adverse system reactions at the time of ASIT. Treatment with anti Ige antibodies (omalizumab, xolair allows decreasing the circulating Ige level and lessening an expression of high affinity fc_r1 receptors on the surface of basophiles and mast cells, inhibition of early and late phase of allergic inflammatory response. Combination of antibige therapy and ASIT can lead to decrease of risk of adverse system reactions.Key words: omalizumab, anti Ige antibodies, allergen specific immunotherapy.

  13. Telomerase activity and telomere length in the colorectal polyp-carcinoma sequence Actividad de la telomerasa y longitud del telómero en la secuencia pólipo-carcinoma colorrectal

    OpenAIRE

    C. Valls Bautista; C. Piñol Felis; J. M. Reñe Espinet; J. Buenestado García; J. Viñas Salas

    2009-01-01

    Objective: the role of telomerase activity and telomere length in the adenoma-carcinoma sequence of colon carcinogenesis has not been well established. The objective of this study was to determine telomerase activity and telomere length patterns in patients with adenomatous polyps either associated or not with colorectal cancer, as well as the role of telomeric instability in the adenoma-carcinoma sequence. Patients and methods: we included in the study 14 patients who underwent surgery for c...

  14. A solid phase micro-radioimmunoassay to detect minute amounts of Ig class specific anti-viral antibody in a mouse model system

    International Nuclear Information System (INIS)

    Charlton, D.; Blandford, G.; Toronto Univ., Ontario

    1975-01-01

    A simple and rapid micro-radioimmunoassay was developed to detect and quantitate class specific mouse anti-sendai virus antibodies. Two different 125 I-labelled indicator systems were studied. After incubation of test serum with antigen one system used 125 I-rabbit anti-mouse IgG (RIA 1) and the second employed rabbit anti-mouse IgG, IgA or IgM followed by 125 I-sheep anti-rabbit immunoglobulin reagent (RIA 2). The RIA 2 method was adopted for routine use as it was more sensitive, gave better discrimination between sample and back-ground counts and eliminated the need for several labelled rabbit anti-mouse Ig class specific antisera. The technique was found to be about 100 times more sensitive than conventional HI tests, specific, reliable and economical of reagents and time

  15. cDNA Library Screening Identifies Protein Interactors Potentially Involved in Non-Telomeric Roles of Arabidopsis Telomerase

    Czech Academy of Sciences Publication Activity Database

    Dokládal, Ladislav; Honys, David; Rana, Rajiv; Lee, L.-Y.; Gelvin, S.B.; Sýkorová, Eva

    2015-01-01

    Roč. 6, NOV2015 (2015) ISSN 1664-462X R&D Projects: GA ČR GA13-06943S; GA MŠk(CZ) ED1.1.00/02.0068 Grant - others:GA MŠk(CZ) LH10352 Institutional support: RVO:68081707 ; RVO:61389030 Keywords : telomerase * nuclear poly(A)-binding protein * telobox Subject RIV: BO - Biophysics; EF - Botanics (UEB-Q) Impact factor: 4.495, year: 2015

  16. Generation of anti-idiotype scFv for pharmacokinetic measurement in lymphoma patients treated with chimera anti-CD22 antibody SM03.

    Directory of Open Access Journals (Sweden)

    Qi Zhao

    Full Text Available Pre-clinical and clinical studies of therapeutic antibodies require highly specific reagents to examine their immune responses, bio-distributions, immunogenicity, and pharmacodynamics in patients. Selective antigen-mimicking anti-idiotype antibody facilitates the assessment of therapeutic antibody in the detection, quantitation and characterization of antibody immune responses. Using mouse specific degenerate primer pairs and splenocytic RNA, we generated an idiotype antibody-immunized phage-displayed scFv library in which an anti-idiotype antibody against the therapeutic chimera anti-CD22 antibody SM03 was isolated. The anti-idiotype scFv recognized the idiotype of anti-CD22 antibody and inhibited binding of SM03 to CD22 on Raji cell surface. The anti-idiotype scFv was subsequently classified as Ab2γ type. Moreover, our results also demonstrated firstly that the anti-idiotype scFv could be used for pharmacokinetic measurement of circulating residual antibody in lymphoma patients treated with chimera anti-CD22 monoclonal antibody SM03. Of important, the present approach could be easily adopted to generate anti-idiotype antibodies for therapeutic antibodies targeting membrane proteins, saving the cost and time for producing a soluble antigen.

  17. Fluorescence detection of DNA, adenosine-5'-triphosphate (ATP), and telomerase activity by zinc(II)-protoporphyrin IX/G-quadruplex labels.

    Science.gov (United States)

    Zhang, Zhanxia; Sharon, Etery; Freeman, Ronit; Liu, Xiaoqing; Willner, Itamar

    2012-06-05

    The zinc(II)-protoporphyrin IX (ZnPPIX) fluorophore binds to G-quadruplexes, and this results in the enhanced fluorescence of the fluorophore. This property enabled the development of DNA sensors, aptasensors, and a sensor following telomerase activity. The DNA sensor is based on the design of a hairpin structure that includes a "caged" inactive G-quadruplex sequence. Upon opening the hairpin by the analyte DNA, the resulting fluorescence of the ZnPPIX/G-quadruplex provides the readout signal for the sensing event (detection limit 5 nM). Addition of Exonuclease III to the system allows the recycling of the analyte and its amplified analysis (detection limit, 200 pM). The association of the ZnPPIX to G-quadruplex aptamer-substrate complexes allowed the detection of adenosine-5'-triphosphate (ATP, detection limit 10 μM). Finally, the association of ZnPPIX to the G-quadruplex repeat units of telomers allowed the detection of telomerase activity originating from 380 ± 20 cancer 293T cell extract.

  18. Expression of human telomerase reverse transcriptase protein in oral epithelial dysplasia and oral squamous cell carcinoma: An immunohistochemical study

    Science.gov (United States)

    Raghunandan, Bangalore Nagarajachar; Sanjai, Karpagaselvi; Kumaraswamy, Jayalakshmi; Papaiah, Lokesh; Pandey, Bhavna; Jyothi, Bellur MadhavaRao

    2016-01-01

    Background: Telomerase is an RNA-dependent DNA polymerase that synthesizes TTAGGG telomeric DNA sequences and almost universally provides the molecular basis for unlimited proliferative potential. The telomeres become shorter with each cycle of replication and reach a critical limit; most cells die or enter stage of replicative senescence. Telomere length maintenance by telomerase is required for all the cells that exhibit limitless replicative potential. It has been postulated that reactivation of telomerase expression is necessary for the continuous proliferation of neoplastic cells to attain immortality. Use of immunohistochemistry (IHC) is a useful, reliable method of localizing the human telomerase reverse transcriptase (hTERT) protein in tissue sections which permits cellular localization. Although there exists a lot of information on telomerase in oral cancer, little is known about their expression in oral epithelial dysplasia and their progression to oral squamous cell carcinoma (OSCC) compared to normal oral mucosa. This study addresses this lacuna. Aims: To compare the expression of hTERT protein in oral epithelial dysplasia and OSCC with normal oral mucosa by Immunohistochemical method. Subjects and Methods: In this preliminary study, IHC was used to detect the expression of hTERT protein in OSCC (n = 20), oral epithelial dysplasia (n = 21) and normal oral mucosa (n = 10). The tissue localization of immunostain, cellular localization of immunostain, nature of stain, intensity of stain, percentage of cells stained with hTERT protein were studied. A total number of 100 cells were counted in each slide. Statistical Analysis: All the data were analyzed using SPSS software version 16.0. The tissue localization, cellular localization of cytoplasmic/nuclear/both of hTERT stain, staining intensity was compared across the groups using Pearson's Chi-square test. The mean percentage of cells stained for oral epithelial dysplasia, OSCC and normal oral mucosa were

  19. In-situ hybridization based quantification of hTR: a possible biomarker in malignant melanoma

    DEFF Research Database (Denmark)

    Vagner, Josephine; Steiniche, Torben; Stougaard, Magnus

    2015-01-01

    thickness suggesting that hTR might be a valuable biomarker in MM. Furthermore, as ISH-based detection requires presence of both hTR and the reverse transcriptase (hTERT) it might be an indicator of active telomerase and thus have future relevance as a predictive biomarker for anti-telomerase treatment....

  20. Anal lymphogranuloma venereum infection screening with IgA anti-Chlamydia trachomatis-specific major outer membrane protein serology.

    Science.gov (United States)

    de Vries, Henry J C; Smelov, Vitaly; Ouburg, Sander; Pleijster, Jolein; Geskus, Ronald B; Speksnijder, Arjen G C L; Fennema, Johannes S A; Morré, Servaas A

    2010-12-01

    Anal lymphogranuloma venereum (LGV) infections, caused by Chlamydia trachomatis biovar L (Ct+/LGV+), are endemic among men who have sex with men (MSM). Anal non-LGV biovar Ct infections (Ct+/LGV-) can be eradicated with 1 week doxycycline, whereas Ct+/LGV+ infections require 3-week doxycycline. To differentiate Ct+/LGV+ from Ct+/LGV- infections, biovar-specific Nucleic Acid Amplification Test (NAAT) are standard, but also expensive and laborious. A chlamydia-specific serological assay could serve as an alternative test. MSM were screened for anal Ct+/LGV+ and Ct+/LGV- infections with a commercial nonspecific NAAT and an in house biovar L-specific NAAT. Serum samples were evaluated with chlamydia-specific anti-Major Outer Membrane Protein (MOMP) and antilipopolysaccharide assays of IgA and IgG classes. Asymptomatic patients were identified as: (1) no anal complaints or (2) no microscopic inflammation (i.e., <10 leucocytes per high power field in anal smears). The best differentiating assay was subsequently evaluated in 100 Ct+/LGV+ and 100 Ct+/LGV- MSM using different cut-off points. The anti-MOMP IgA assay was the most accurate to differentiate Ct+/LGV+ (n = 42) from Ct+/LGV- (n = 19) with 85.7% sensitivity (95% confidence interval [CI], 72.2-93.3) and 84.2% specificity (95% CI, 62.4-94.5), even among asymptomatic patients. In a population comprising 98 Ct+/LGV+ and 105 Ct+/LGV- patients, the anti-MOMP IgA assay scored most accurate when the cut-off point was set to 2.0 with 75.5% (95% CI, 65.8-83.6) sensitivity and 74.3% (95% CI, 64.8-82.3) specificity. The IgA anti-MOMP assay can identify a considerable proportion of the (asymptomatic) anal LGV infections correctly. Yet, biovar L-specific NAAT are still the preferred diagnostic tests in clinical settings.

  1. Transcriptional activity of telomerase complex in CD34- stem cells of cord blood in dependence of preparation time.

    Directory of Open Access Journals (Sweden)

    M Bojdys-Szyndlar

    2009-12-01

    Full Text Available The aim of the study was to determine whether the expression of telomerase subunits encoding genes changes during the process of cord blood preparation. It should establish if the commonly accepted 24 hours time interval in stem cells kriopreservation procedure significantly influences their immortalization and so decreases the "quality" of cord blood stem cells. Investigation includes 69 women. Spontaneous labour was the inclusion condition. The material was collected at birth after clamping of umbilical cord by direct vasopuncture. CD34- cells were extracted from cord blood (MACS, Miltenyi Biotec; Bisley, Surrey, UK. The expression profile of telomerase activators and inhibitors encoding genes was determined using HG_U133A oligonucleotide microarray (Affymetrix. We used a real-time quantitative RT-PCR assay to quantify the telomerase TERT, hTR and TP1 subunits mRNA copy numbers in CD34- cells in 0, 6, 12 and 24 hours after cord blood collection. We observed significant decrease of numbers of copies of TERTA+B mRNA within the successive hours of observation. Significant decrease of numbers of TERTA mRNA copies was confirmed after 24 hours. However, we observed significant increase of numbers of copies of TERTB mRNA after 6 hours of observation. Similar level was maintained during another 6h. The significantly lower number of copies of TERTB mRNA was observed after 24h. We also observed significant increase of number of copies of TERT mRNA after 6 hours. Number of copies of TERT mRNA significantly decreased after another 6h, remaining, however, on a higher then initial one. The significant lower number of copies of TERT mRNA was observed 24h after delivery. The possible explanation of those results is discussed in the paper.

  2. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Kim, Yoon Young; Ku, Seung-Yup; Huh, Yul; Liu, Hung-Ching; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong

    2013-10-01

    Human pluripotent stem cells (hPSCs) have arisen as a source of cells for biomedical research due to their developmental potential. Stem cells possess the promise of providing clinicians with novel treatments for disease as well as allowing researchers to generate human-specific cellular metabolism models. Aging is a natural process of living organisms, yet aging in human heart cells is difficult to study due to the ethical considerations regarding human experimentation as well as a current lack of alternative experimental models. hPSC-derived cardiomyocytes (CMs) bear a resemblance to human cardiac cells and thus hPSC-derived CMs are considered to be a viable alternative model to study human heart cell aging. In this study, we used hPSC-derived CMs as an in vitro aging model. We generated cardiomyocytes from hPSCs and demonstrated the process of aging in both human embryonic stem cell (hESC)- and induced pluripotent stem cell (hiPSC)-derived CMs. Aging in hESC-derived CMs correlated with reduced membrane potential in mitochondria, the accumulation of lipofuscin, a slower beating pattern, and the downregulation of human telomerase RNA (hTR) and cell cycle regulating genes. Interestingly, the expression of hTR in hiPSC-derived CMs was not significantly downregulated, unlike in hESC-derived CMs. In order to delay aging, vitamin C was added to the cultured CMs. When cells were treated with 100 μM of vitamin C for 48 h, anti-aging effects, specifically on the expression of telomere-related genes and their functionality in aging cells, were observed. Taken together, these results suggest that hPSC-derived CMs can be used as a unique human cardiomyocyte aging model in vitro and that vitamin C shows anti-aging effects in this model.

  3. Epidemiology of myasthenia gravis with anti-muscle specific kinase antibodies in the Netherlands

    NARCIS (Netherlands)

    Niks, Erik H.; Kuks, Jan B. M.; Verschuuren, Jan J. G. M.

    The epidemiology of myasthenia gravis subtypes and the frequency of antibodies to muscle-specific kinase (MuSK) was studied in patients with generalised myasthenia gravis without anti-acetylcholine receptor antibodies who had an onset of symptoms between 1990 and 2004 in a well-defined region in the

  4. Identification of New Natural DNA G-Quadruplex Binders Selected by a Structure-Based Virtual Screening Approach

    Directory of Open Access Journals (Sweden)

    Stefano Alcaro

    2013-09-01

    Full Text Available The G-quadruplex DNA structures are mainly present at the terminal portion of telomeres and can be stabilized by ligands able to recognize them in a specific manner. The recognition process is usually related to the inhibition of the enzyme telomerase indirectly involved and over-expressed in a high percentage of human tumors. There are several ligands, characterized by different chemical structures, already reported in the literature for their ability to bind and stabilize the G-quadruplex structures. Using the structural and biological information available on these structures; we performed a high throughput in silico screening of commercially natural compounds databases by means of a structure-based approach followed by docking experiments against the human telomeric sequence d[AG3(T2AG33]. We identified 12 best hits characterized by different chemical scaffolds and conformational and physicochemical properties. All of them were associated to an improved theoretical binding affinity with respect to that of known selective G-binders. Among these hits there is a chalcone derivative; structurally very similar to the polyphenol butein; known to remarkably inhibit the telomerase activity.

  5. Anti-virulence approaches and novel peptidomimetics for combating resistant and biofilm associated bacteria

    DEFF Research Database (Denmark)

    Liu, Yang

    Anti-virulence approaches and novel peptidomimetics for combating resistant and biofilm associated bacteria The misuse and overuse of antibiotics has a broad impact on the environment. Antibiotic resistance has become a major threat for modern medical treatment of infectious diseases. There are m......Anti-virulence approaches and novel peptidomimetics for combating resistant and biofilm associated bacteria The misuse and overuse of antibiotics has a broad impact on the environment. Antibiotic resistance has become a major threat for modern medical treatment of infectious diseases...... consisting of microcolonies embedded in self-produced extracellular polymer substances (EPS). EPS can contribute to cell-cell adhesion and restrict antibiotic penetration. Biofilm cells show much greater resistance to stressful conditions than their free-living counterparts. Conventional treatment strategies...

  6. Apoptosis and reduced cell proliferation of HL-60 cell line caused by human telomerase reverse transcriptase inhibition by siRNA.

    Science.gov (United States)

    Miri-Moghaddam, Ebrahim; Deezagi, Abdolkhaleg; Soheili, Zahra Sohaila; Shariati, Parvin

    2010-01-01

    The close correlation between telomerase activity and human telomerase reverse transcriptase (hTERT) expression has made hTERT to be considered as a selective molecular target for human cancer therapy. In this study, the ability of short-interfering RNA (siRNA) to downregulate hTERT expression and its correlation with cell growth and apoptosis in the promyelocytic cell line HL-60 was evaluated. hTERT siRNA was designed and transfected to HL-60. hTERT mRNA expression, cell proliferation and apoptotic cells were measured. The results indicated that hTERT siRNA resulted in 97.2 ± 0.6% downregulation of the hTERT mRNA content; inhibition of the cell proliferation rate was about 52.8 ± 2.3% and the apoptotic index of cells was 30.5 ± 1.5%. hTERT plays an essential role in cell proliferation and control of the viability of leukemic cells, thus promising the development of drugs for leukemia. Copyright © 2010 S. Karger AG, Basel.

  7. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    International Nuclear Information System (INIS)

    Liu Hua; Luan Fang; Ju Ying; Shen Hongyu; Gao Lifen; Wang Xiaoyan; Liu Suxia; Zhang Lining; Sun Wensheng; Ma Chunhong

    2007-01-01

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation

  8. In vitro transfection of the hepatitis B virus PreS2 gene into the human hepatocarcinoma cell line HepG2 induces upregulation of human telomerase reverse transcriptase

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Fang, Luan [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Ying, Ju [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Hongyu, Shen [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lifen, Gao [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Xiaoyan, Wang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Suxia, Liu [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Lining, Zhang [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Wensheng, Sun [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Chunhong, Ma [Institute of Immunology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan 250012 (China); Key Laboratory for Experimental Teratology, Ministry of Education (China)]. E-mail: machunhong@sdu.edu.cn

    2007-04-06

    The preS2 domain is the minimal functional unit of transcription activators that is encoded by the Hepatitis B virus (HBV) surface (S) gene. It is present in more than one-third of the HBV-integrates in HBV induced hepatocarcinoma (HCC). To further understand the functional role of PreS2 in hepatocytes, a PreS2 expression plasmid, pcS2, was constructed and stably transfected into HepG2 cells. We conducted growth curve and colony-forming assays to study the impact of PreS2 expression on cell proliferation. Cells transfected with PreS2 proliferated more rapidly and formed colonies in soft agar. PreS2 expressing cells also induced upregulation of human telomerase reverse transcriptase (hTERT) and telomerase activation by RT-PCR and the modified TRAP assay. Blocking expression of hTERT with antisense oligonuleotide reversed the growth rate in cells stably transfected with PreS2. Our data suggest that PreS2 may increase the malignant transformation of human HCC cell line HepG2 by upregulating hTERT and inducing telomerase activation.

  9. Telomerase deficiency in bone marrow-derived cells attenuates angiotensin II-induced abdominal aortic aneurysm formation.

    Science.gov (United States)

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Cohn, Dianne; Heywood, Elizabeth B; Jones, Karrie L; Lovett, David H; Howatt, Deborah A; Daugherty, Alan; Bruemmer, Dennis

    2011-02-01

    Abdominal aortic aneurysms (AAA) are an age-related vascular disease and an important cause of morbidity and mortality. In this study, we sought to determine whether the catalytic component of telomerase, telomerase reverse transcriptase (TERT), modulates angiotensin (Ang) II-induced AAA formation. Low-density lipoprotein receptor-deficient (LDLr-/-) mice were lethally irradiated and reconstituted with bone marrow-derived cells from TERT-deficient (TERT-/-) mice or littermate wild-type mice. Mice were placed on a diet enriched in cholesterol, and AAA formation was quantified after 4 weeks of Ang II infusion. Repopulation of LDLr-/- mice with TERT-/- bone marrow-derived cells attenuated Ang II-induced AAA formation. TERT-deficient recipient mice revealed modest telomere attrition in circulating leukocytes at the study end point without any overt effect of the donor genotype on white blood cell counts. In mice repopulated with TERT-/- bone marrow, aortic matrix metalloproteinase-2 (MMP-2) activity was reduced, and TERT-/- macrophages exhibited decreased expression and activity of MMP-2 in response to stimulation with Ang II. Finally, we demonstrated in transient transfection studies that TERT overexpression activates the MMP-2 promoter in macrophages. TERT deficiency in bone marrow-derived macrophages attenuates Ang II-induced AAA formation in LDLr-/- mice and decreases MMP-2 expression. These results point to a previously unrecognized role of TERT in the pathogenesis of AAA.

  10. Approach to a Pregnant Woman with Anti D + Anti C Reactivity Pattern: A Diagnostic Conundrum

    OpenAIRE

    Rai, Preeti; Sharma, Geetika; Singh, Deeksha; Garg, Jyoti

    2017-01-01

    The Rhesus G antigen is present on all RBCs that are C+ and also on most D+ RBCs. Due to this co-distribution of G with either C or D antigen, it mimics a reactivity pattern of anti C + anti D on Indirect Antiglobulin Test (IAT), though the role of Anti G in causing Hemolytic Disease of Newborn (HDN) is controversial. The differentiation of anti D, anti C, and anti G is essential particularly in pregnant females. We hereby report a rare case of anti G with anti D and anti C in a pregnant woma...

  11. Effect of anti-IgE therapy on food allergen specific T cell responses in eosinophil associated gastrointestinal disorders

    Directory of Open Access Journals (Sweden)

    Prussin Calman

    2011-04-01

    Full Text Available Abstract Background Anti-IgE therapy inhibits mast cell and basophil activation, blocks IgE binding to both FcεRI and CD23 and down regulates FcεRI expression by antigen (Ag presenting cells (APCs. In addition to its classical role in immediate hypersensitivity, IgE has been shown in vitro to facilitate Ag presentation of allergens, whereby APC bound IgE preferentially takes up allergens for subsequent processing and presentation. The purpose of this study was to determine whether anti-IgE therapy, by blocking facilitated Ag presentation in vivo, attenuates allergen specific Th2 cell responses. Methods To test this hypothesis, food allergen specific T cell responses were examined during a 16-week clinical trial of omalizumab in nine subjects with eosinophilic gastroenteritis and food sensitization. Allergen specific T cell responses were measured using carboxyfluorescein succinimidyl ester dye dilution coupled with intracellular cytokine staining and polychromatic flow cytometry. Four independent indices of allergen specific T cell response (proliferation, Ag dose response, precursor frequency, and the ratio of Th2:Th1 cytokine expression were determined. Results Eight of the 9 subjects had measurable food allergen specific responses, with a median proliferation index of 112-fold. Allergen specific T cell proliferation was limited to CD4 T cells, whereas CD8 T cell did not proliferate. Food allergen specific responses were Th2 skewed relative to tetanus specific responses in the same subjects. In contradistinction to the original hypothesis, anti-IgE treatment did not diminish any of the four measured indices of allergen specific T cell response. Conclusions In sum, using multiple indices of T cell function, this study failed to demonstrate that anti-IgE therapy broadly or potently inhibits allergen specific T cell responses. As such, these data do not support a major role for IgE facilitated Ag presentation augmenting allergen specific T cell

  12. Mechanism of Telomerase Inhibition Using a Small Inhibitory RNAs and Induction of Breast Tumor Cell Sensitization

    Science.gov (United States)

    2007-04-01

    immunoprecipitation; TnT- transcription and translation. References Cited Barik , S. 2004. Control of nonsegmented negative-strand RNA virus replication by siRNA...Virus Res. 102: 27-35. Barquinero, J . et al. 2004. Retroviral vectors: new applications for an old tool. Gene Ther. 11(suppl 1): S3-S9...proteins and heterochromatin. Oncogene. 21: 553-563. Chen, J -L., Blasco, M.A., and Greider, C.W. 2000. Secondary structure of vertebrate telomerase RNA

  13. Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans.

    Directory of Open Access Journals (Sweden)

    Elena Sandalova

    Full Text Available Herpesviruses infect most humans. Their infections can be associated with pathological conditions and significant changes in T cell repertoire but evidences of symbiotic effects of herpesvirus latency have never been demonstrated. We tested the hypothesis that HCMV and EBV-specific CD8 T cells contribute to the heterologous anti-viral immune response. Volume of activated/proliferating virus-specific and total CD8 T cells was evaluated in 50 patients with acute viral infections: 20 with HBV, 12 with Dengue, 12 with Influenza, 3 with Adenovirus infection and 3 with fevers of unknown etiology. Virus-specific (EBV, HCMV, Influenza pentamer+ and total CD8 T cells were analyzed for activation (CD38/HLA-DR, proliferation (Ki-67/Bcl-2(low and cytokine production. We observed that all acute viral infections trigger an expansion of activated/proliferating CD8 T cells, which differs in size depending on the infection but is invariably inflated by CD8 T cells specific for persistent herpesviruses (HCMV/EBV. CD8 T cells specific for other non-related non persistent viral infection (i.e. Influenza were not activated. IL-15, which is produced during acute viral infections, is the likely contributing mechanism driving the selective activation of herpesvirus specific CD8 T cells. In addition we were able to show that herpesvirus specific CD8 T cells displayed an increased ability to produce the anti-viral cytokine interferon-gamma during the acute phase of heterologous viral infection. Taken together, these data demonstrated that activated herpesvirus specific CD8 T cells inflate the activated/proliferating CD8 T cells population present during acute viral infections in human and can contribute to the heterologous anti-viral T cell response.

  14. Functional and gene expression analysis of hTERT overexpressed endothelial cells

    Directory of Open Access Journals (Sweden)

    Haruna Takano

    2008-09-01

    Full Text Available Haruna Takano1, Satoshi Murasawa1,2, Takayuki Asahara1,2,31Institute of Biomedical Research and Innovation, Kobe, Japan; 2RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; 3Tokai University of School of Medicine, Tokai, JapanAbstract: Telomerase dysfunction contributes to cellular senescence. Recent advances indicate the importance of senescence in maintaining vascular cell function in vitro. Human telomerase reverse transcriptase (hTERT overexpression is thought to lead to resistance to apoptosis and oxidative stress. However, the mechanism in endothelial lineage cells is unclear. We tried to generate an immortal endothelial cell line from human umbilical vein endothelial cells using a no-virus system and examine the functional mechanisms of hTERT overexpressed endothelial cell senescence in vitro. High levels of hTERT genes and endothelial cell-specific markers were expressed during long-term culture. Also, angiogenic responses were observed in hTERT overexpressed endothelial cell. These cells showed a delay in senescence and appeared more resistant to stressed conditions. PI3K/Akt-related gene levels were enhanced in hTERT overexpressed endothelial cells. An up-regulated PI3K/Akt pathway caused by hTERT overexpression might contribute to anti-apoptosis and survival effects in endothelial lineage cells.Keywords: endothelial, telomerase, senescence, oxidative stress, anti-apoptosis, PI3K/Akt pathway

  15. Telomerase activity and telomere length in the colorectal polyp-carcinoma sequence Actividad de la telomerasa y longitud del telómero en la secuencia pólipo-carcinoma colorrectal

    Directory of Open Access Journals (Sweden)

    C. Valls Bautista

    2009-03-01

    Full Text Available Objective: the role of telomerase activity and telomere length in the adenoma-carcinoma sequence of colon carcinogenesis has not been well established. The objective of this study was to determine telomerase activity and telomere length patterns in patients with adenomatous polyps either associated or not with colorectal cancer, as well as the role of telomeric instability in the adenoma-carcinoma sequence. Patients and methods: we included in the study 14 patients who underwent surgery for colorectal cancer and/or polyps. In 6 of these patients fresh samples of tumor tissue, polyps, and normal mucosa were obtained; in the 8 remaining cases, we collected only polyps and normal mucosa. We used the fluorescent-telomeric repeat amplification protocol assay (TRAP-F to determine telomerase activity and telomere length using Southern-blot testing. Results: telomerase activity was detected in 86% of polyps and 50% of associated normal mucosa. Mean telomerase activity in polyp tissue was 5.85; in the normal mucosa it was 0.58 TPG. Mean telomere length was 6.78 Kbp and 7.78, respectively. Polyps in patients without synchronous cancer had a telomerase activity that was significantly higher (9.4 than in those with cancer (1.1. Conclusions: telomerase activity increases in the colorectal adenoma-carcinoma sequence, concurrently with a decrease in telomere length. The presence of synchronous cancer modifies telomerase activity in polyps.Objetivo: el papel de la actividad de la telomerasa y la longitud del telómero en la secuencia adenoma-carcinoma de la carcinogénesis colónica no ha sido bien establecido. El objetivo fue determinar el comportamiento de la actividad de la telomerasa y la longitud del telómero en pacientes con pólipos adenomatosos asociados o no a cáncer colorrectal y conocer el papel de la inestabilidad telomérica en la secuencia adenoma-carcinoma. Pacientes y métodos: se estudiaron 14 pacientes intervenidos de cáncer colorrectal y

  16. (Anti-)chiral superfield approach to interacting Abelian 1-form gauge theories: Nilpotent and absolutely anticommuting charges

    Science.gov (United States)

    Chauhan, B.; Kumar, S.; Malik, R. P.

    2018-02-01

    We derive the off-shell nilpotent (fermionic) (anti-)BRST symmetry transformations by exploiting the (anti-)chiral superfield approach (ACSA) to Becchi-Rouet-Stora-Tyutin (BRST) formalism for the interacting Abelian 1-form gauge theories where there is a coupling between the U(1) Abelian 1-form gauge field and Dirac as well as complex scalar fields. We exploit the (anti-)BRST invariant restrictions on the (anti-)chiral superfields to derive the fermionic symmetries of our present D-dimensional Abelian 1-form gauge theories. The novel observation of our present investigation is the derivation of the absolute anticommutativity of the nilpotent (anti-)BRST charges despite the fact that our ordinary D-dimensional theories are generalized onto the (D,1)-dimensional (anti-) chiral super-submanifolds (of the general (D,2)-dimensional supermanifold) where only the (anti-)chiral super expansions of the (anti-)chiral superfields have been taken into account. We also discuss the nilpotency of the (anti-)BRST charges and (anti-)BRST invariance of the Lagrangian densities of our present theories within the framework of ACSA to BRST formalism.

  17. Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As+3- and MMA+3-induced apoptosis through inhibition of telomerase activity via JNK activation

    International Nuclear Information System (INIS)

    Shen, S.-C.; Yang, L.-Y.; Lin, H.-Y.; Wu, C.-Y.; Su, T.-H.; Chen, Y.-C.

    2008-01-01

    The effects of six arsenic compounds including As +3 , MMA +3 , DMA +3 , As +5 , MMA +5 , and DMA +5 on the viability of NIH3T3 cells were examined. As +3 and MMA +3 , but not the others, exhibited significant cytotoxic effects in NIH3T3 cells through apoptosis induction. The apoptotic events such as DNA fragmentation and chromosome condensation induced by As +3 and MMA +3 were prevented by the addition of NAC and CAT, and induction of HO-1 gene expression in accordance with cleavage of the HSP90 protein, and suppression of telomerase activity were observed in NIH3T3 cells under As +3 and MMA +3 treatments. An increase in the intracellular peroxide level was examined in As +3 - and MMA +3 -treated NIH3T3 cells, and As +3 - and MMA +3 -induced apoptotic events were blocked by NAC, CAT, and DPI addition. HSP90 inhibitors, GA and RD, significantly attenuated the telomerase activity in NIH3T3 cells with an enhancement of As +3 - and MMA +3 -induced cytotoxicity. Suppression of JNKs significantly inhibited As +3 - and MMA +3 -induced apoptosis by blocking HSP90 protein cleavage and telomerase reduction in NIH3T3 cells. Furthermore, Hb, SnPP, and dexferosamine showed no effect against As +3 - and MMA +3 -induced apoptosis, and overexpression of HO-1 protein or inhibition of HO-1 protein expression did not affect the apoptosis induced by As +3 or MMA +3 . These data provide the first evidence to indicate that apoptosis induced by As +3 and MMA +3 is mediated by an ROS-dependent degradation of HSP90 protein and reduction of telomerase via JNK activation, and HO-1 induction might not be involved

  18. In vitro assessment of recombinant, mutant immunoglobulin G anti-D devoid of hemolytic activity for treatment of ongoing hemolytic disease of the fetus and newborn

    DEFF Research Database (Denmark)

    Nielsen, Leif K; Green, Trine H; Sandlie, Inger

    2008-01-01

    A specific treatment for ongoing hemolytic disease of the fetus and newborn (HDFN) due to anti-D would be very attractive. One approach could be administration to the mother of nonhemolytic anti-D, which by crossing the placenta can block the binding of hemolytic maternal anti-D.......A specific treatment for ongoing hemolytic disease of the fetus and newborn (HDFN) due to anti-D would be very attractive. One approach could be administration to the mother of nonhemolytic anti-D, which by crossing the placenta can block the binding of hemolytic maternal anti-D....

  19. Telomerase RNA Component (TERC) genetic variants interact with the mediterranean diet modifying the inflammatory status and its relationship with aging: CORDIOPREV study

    Science.gov (United States)

    Background: Leukocyte telomere length (LTL) attrition has been associated with age-related diseases. Telomerase RNA Component (TERC) genetic variants have been associated with LTL; whereas fatty acids (FAs) can interact with genetic factors and influence in aging. We explore whether variability at t...

  20. A telomerase immortalized human proximal tubule cell line with a truncation mutation (Q4004X in polycystin-1.

    Directory of Open Access Journals (Sweden)

    Brittney-Shea Herbert

    Full Text Available Autosomal dominant polycystic kidney disease (ADPKD is associated with a variety of cellular phenotypes in renal epithelial cells. Cystic epithelia are secretory as opposed to absorptive, have higher proliferation rates in cell culture and have some characteristics of epithelial to mesenchymal transitions. In this communication we describe a telomerase immortalized cell line that expresses proximal tubule markers and is derived from renal cysts of an ADPKD kidney. These cells have a single detectable truncating mutation (Q4004X in polycystin-1. These cells make normal appearing but shorter cilia and fail to assemble polycystin-1 in the cilia, and less uncleaved polycystin-1 in membrane fractions. This cell line has been maintained in continuous passage for over 35 passages without going into senescence. Nephron segment specific markers suggest a proximal tubule origin for these cells and the cell line will be useful to study mechanistic details of cyst formation in proximal tubule cells.

  1. SPECIFIC FEATURES OF ANTI-TUBERCULOSIS CHEMOTHERAPY TOLERANCE IN THE LIGHT OF PSYCHOLOGICAL STATUS OF PATIENTS

    Directory of Open Access Journals (Sweden)

    N. V. Zolotova

    2017-01-01

    Full Text Available Specific features of psychological state were studied in 295 pulmonary tuberculosis patients with satisfactory tolerance to anti-tuberculosis medications and 75 patients poorly tolerating the treatment.Before the treatment start the patients who later demonstrated adverse reactions to treatment were diagnosed with more intense neurotic and hypochondriac personal features, destructive reactions and higher level of emotional tension and frustration – all the above promote dysregulation of the host adaptation. The research demonstrated the need to consider psychological aspects when studying the tolerance to anti-tuberculosis chemotherapy. 

  2. Non-oncogenic Acute Viral Infections Disrupt Anti-cancer Responses and Lead to Accelerated Cancer-Specific Host Death

    Directory of Open Access Journals (Sweden)

    Frederick J. Kohlhapp

    2016-10-01

    Full Text Available In light of increased cancer prevalence and cancer-specific deaths in patients with infections, we investigated whether infections alter anti-tumor immune responses. We report that acute influenza infection of the lung promotes distal melanoma growth in the dermis and leads to accelerated cancer-specific host death. Furthermore, we show that during influenza infection, anti-melanoma CD8+ T cells are shunted from the tumor to the infection site, where they express high levels of the inhibitory receptor programmed cell death protein 1 (PD-1. Immunotherapy to block PD-1 reverses this loss of anti-tumor CD8+ T cells from the tumor and decreases infection-induced tumor growth. Our findings show that acute non-oncogenic infection can promote cancer growth, raising concerns regarding acute viral illness sequelae. They also suggest an unexpected role for PD-1 blockade in cancer immunotherapy and provide insight into the immune response when faced with concomitant challenges.

  3. Biocatalytically Oligomerized Epicatechin with Potent and Specific Anti-proliferative Activity for Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Ramaswamy Nagarajan

    2008-11-01

    Full Text Available Catechins, naturally occurring flavonoids derived from wine and green tea, are known to exhibit multiple health benefits. Epigallocatechin gallate (EGCG is one of the most widely investigated catechins, but its efficacy in cancer therapy is still inconsistent and limited. The poor stability of EGCG has contributed to the disparity in the reported anti-cancer activity and other beneficial properties. Here we report an innovative enzymatic strategy for the oligomerization of catechins (specifically epicatechin that yields stable, water-soluble oligomerized epicatechins with enhanced and highly specific anti-proliferative activity for human breast cancer cells. This one-pot oxidative oligomerization is carried out in ambient conditions using Horseradish Peroxidase (HRP as a catalyst yielding water-soluble oligo(epicatechins. The oligomerized epicatechins obtained exhibit excellent growth inhibitory effects against human breast cancer cells with greater specificity towards growth-inhibiting cancer cells as opposed to normal cells, achieving a high therapeutic differential. Our studies indicate that water-soluble oligomeric epicatechins surpass EGCG in stability, selectivity and efficacy at lower doses.

  4. Protective and therapeutic effects of cannabis plant extract on liver cancer induced by dimethylnitrosamine in mice

    Directory of Open Access Journals (Sweden)

    Neveen Abd El Moneim Hussein

    2014-09-01

    Conclusion: The protective effect of cannabis extract is more pronounced in group taking cannabis before DMNA. Cannabinoids might exert their anti-tumor effects by the direct induction of apoptosis and can decrease telomerase activity by inhibiting the expression of the TERT gene. Coordination between inhibition of telomerase activity and induction of apoptosis might be a potential therapeutic agent for cancer treatment.

  5. Anti-idiotypic antibodies as cancer vaccines: achievements and future improvements

    International Nuclear Information System (INIS)

    Ladjemi, Maha Z.

    2012-01-01

    Since the discovery of tumor-associated antigens (TAAs), researchers have tried to develop immune-based anti-cancer therapies. Thanks to their specificity, monoclonal antibodies (mAbs) offer the major advantage to induce fewer side effects than those caused by non-specific conventional treatments (e.g., chemotherapy, radiotherapy). Passive immunotherapy by means of mAbs or cytokines has proved efficacy in oncology and validated the use of immune-based agents as part of anti-cancer treatment options. The next step was to try to induce an active immune protection aiming to boost own’s host immune defense against TAAs. Cancer vaccines are thus developed to specifically induce active immune protection targeting only tumor cells while preserving normal tissues from a non-specific toxicity. But, as most of TAAs are self antigens, an immune tolerance against them exists representing a barrier to effective vaccination against these oncoproteins. One promising approach to break this immune tolerance consists in the use of anti-idiotypic (anti-Id) mAbs, so called Ab2, as antigen surrogates. This vaccination strategy allows also immunization against non-proteic antigens (such as carbohydrates). In some clinical studies, anti-Id cancer vaccines indeed induced efficient humoral and/or cellular immune responses associated with clinical benefit. This review article will focus on recent achievements of anti-Id mAbs use as cancer vaccines in solid tumors.

  6. Development of Individualized Anti-Metastasis Strategies by Engineering Nanomedicines

    Science.gov (United States)

    He, Qianjun; Guo, Shengrong; Qian, Zhiyong; Chen, Xiaoyuan

    2015-01-01

    Metastasis is deadly and also tough to treat as it is much more complicated than the primary tumour. Anti-metastasis approaches available so far are far from being optimal. A variety of nanomedicine formulas provide a plethora of opportunities for developing new strategies and means for tackling metastasis. It should be noted that individualized anti-metastatic nanomedicines are different from common anti-cancer nanomedicines as they specifically target different populations of malignant cells. This review briefly introduces the features of the metastatic cascade, and proposes a series of nanomedicine-based anti-metastasis strategies aiming to block each metastatic step. Moreover, we also concisely introduce the advantages of several promising nanoparticle platforms and their potential for constructing state-of-the-art individualized anti-metastatic nanomedicines. PMID:26056688

  7. Elucidation of the TMab-6 Monoclonal Antibody Epitope Against Telomerase Reverse Transcriptase.

    Science.gov (United States)

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Harada, Hiroyuki; Suzuki, Hiroyoshi; Kato, Yukinari

    2018-05-03

    Telomerase reverse transcriptase (TERT) and mutations of the TERT promoter are significant in the pathogenesis of 1p/19q-codeleted oligodendrogliomas and isocitrate dehydrogenase gene wild-type glioblastomas, as well as melanomas and squamous cell carcinomas. We previously developed an antihuman TERT monoclonal antibody (mAb), TMab-6, which is applicable in immunohistochemistry for human tissues. However, the binding epitope of TMab-6 against TERT is yet to be elucidated. In this study, enzyme-linked immunosorbent assay and immunohistochemistry were utilized for investigating the epitope of TMab-6. The findings revealed that the critical epitope of TMab-6 is the TERT sequence PSTSRPPRPWD; Thr310 and Ser311 of TERT are especially significant amino acids for TMab-6 recognition.

  8. A multi-criteria inference approach for anti-desertification management.

    Science.gov (United States)

    Tervonen, Tommi; Sepehr, Adel; Kadziński, Miłosz

    2015-10-01

    We propose an approach for classifying land zones into categories indicating their resilience against desertification. Environmental management support is provided by a multi-criteria inference method that derives a set of value functions compatible with the given classification examples, and applies them to define, for the rest of the zones, their possible classes. In addition, a representative value function is inferred to explain the relative importance of the criteria to the stakeholders. We use the approach for classifying 28 administrative regions of the Khorasan Razavi province in Iran into three equilibrium classes: collapsed, transition, and sustainable zones. The model is parameterized with enhanced vegetation index measurements from 2005 to 2012, and 7 other natural and anthropogenic indicators for the status of the region in 2012. Results indicate that grazing density and land use changes are the main anthropogenic factors affecting desertification in Khorasan Razavi. The inference procedure suggests that the classification model is underdetermined in terms of attributes, but the approach itself is promising for supporting the management of anti-desertification efforts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Spin-labelling study of interactions of ovalbumin with multilamellar liposomes and specific anti-ovalbumin antibodies.

    Science.gov (United States)

    Brgles, Marija; Mirosavljević, Krunoslav; Noethig-Laslo, Vesna; Frkanec, Ruza; Tomasić, Jelka

    2007-03-10

    Ovalbumin (OVA) has been used continuously as the model antigen in numerous studies of immune reactions and antigen processing, very often encapsulated into liposomes. The purpose of this work was to study the possible interactions of spin-labelled OVA and lipids in liposomal membranes using electron spin resonance (ESR) spectroscopy. OVA was covalently spin-labelled with 4-maleimido-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO-maleimide), characterized and encapsulated into multilamellar, negatively charged liposomes. ESR spectra of this liposomal preparation gave evidence for the interaction of OVA with the lipid bilayers. Such an interaction was also evidenced by the ESR spectra of liposomal preparation containing OVA, where liposomes were spin-labelled with n-doxyl stearic acids. The spin-labelled OVA retains its property to bind specific anti-OVA antibodies, as shown by ESR spectroscopy, but also in ELISA for specific anti-OVA IgG.

  10. Suppression of Oncolytic Adenovirus-Mediated Hepatotoxicity by Liver-Specific Inhibition of NF-κB

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Machitani

    2017-12-01

    Full Text Available Telomerase-specific replication-competent adenoviruses (Ads, i.e., TRADs, which possess an E1 gene expression cassette driven by the human telomerase reverse transcriptase promoter, are promising agents for cancer treatment. However, even though oncolytic Ads, including TRAD, are intratumorally administered, they are disseminated from the tumor to systemic circulation, causing concern about oncolytic Ad-mediated hepatotoxicity (due mainly to leaky expression of Ad genes in liver. We reported that inhibition of nuclear factor-κB (NF-κB leads to the suppression of replication-incompetent Ad vector-mediated hepatotoxicity via reduction of the leaky expression of Ad genes in liver. Here, to develop a TRAD with an improved safety profile, we designed a TRAD that carries a liver-specific promoter-driven dominant-negative IκBα (DNIκBα expression cassette (TRAD-DNIκBα. Compared with a conventional TRAD, TRAD-DNIκBα showed hepatocyte-specific inhibition of NF-κB signaling and significantly reduced Ad gene expression and replication in the normal human hepatocyte cell line. TRAD-induced hepatotoxicity was largely suppressed in mice following intravenous administration of TRAD-DNIκBα. However, the replication profiles and oncolytic activities of TRAD-DNIκBα were comparable with those of the conventional TRAD in human non-hepatic tumor cells. These results indicate that oncolytic Ads containing the liver-specific DNIκBα expression cassette have improved safety profiles without inhibiting oncolytic activities.

  11. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management.

    Directory of Open Access Journals (Sweden)

    Gergana Galabova

    Full Text Available Low Density Lipoprotein (LDL hypercholesterolemia, and its associated cardiovascular diseases, are some of the leading causes of death worldwide. The ability of proprotein convertase subtilisin/kexin 9 (PCSK9 to modulate circulating LDL cholesterol (LDLc concentrations made it a very attractive target for LDLc management. To date, the most advanced approaches for PCSK9 inhibition are monoclonal antibody (mAb therapies. Although shown to lower LDLc significantly, mAbs face functional limitations because of their relatively short in vivo half-lives necessitating frequent administration. Here, we evaluated the long-term efficacy and safety of PCSK9-specific active vaccines in different preclinical models.PCSK9 peptide-based vaccines were successfully selected by our proprietary technology. To test their efficacy, wild-type (wt mice, Ldlr+/- mice, and rats were immunized with highly immunogenic vaccine candidates. Vaccines induced generation of high-affine PCSK9-specific antibodies in all species. Group mean total cholesterol (TC concentration was reduced by up to 30%, and LDLc up to 50% in treated animals. Moreover, the PCSK9 vaccine-induced humoral immune response persisted for up to one year in mice, and reduced cholesterol levels significantly throughout the study. Finally, the vaccines were well tolerated in all species tested.Peptide-based anti-PCSK9 vaccines induce the generation of antibodies that are persistent, high-affine, and functional for up to one year. They are powerful and safe tools for long-term LDLc management, and thus may represent a novel therapeutic approach for the prevention and/or treatment of LDL hypercholesterolemia-related cardiovascular diseases in humans.

  12. Kaempferol increases apoptosis in human cervical cancer HeLa cells via PI3K/AKT and telomerase pathways.

    Science.gov (United States)

    Kashafi, Elham; Moradzadeh, Maliheh; Mohamadkhani, Ashraf; Erfanian, Saiedeh

    2017-05-01

    Cervical cancer is one of the most frequent cancers in women worldwide. Defects in the apoptotic pathways are responsible for both the disease pathogenesis and its therapy resistance. It is thus a good candidate for treatment by pro-apoptotic agents. Kaempferol as a flavonoid has antioxidant and anti-tumor properties. Kaempferol has been shown to induce apoptosis and cell death in cancer cells. However, due to the problems in the treatment of cervical cancer, this study is designed to investigate the molecular mechanism by which kaempferol suppresses the growth of cervical cancer HeLa cell as compared with HFF cells (normal cells). Cells treated with kaempferol (12-100μM) and 5-FU (1-10μM), as the positive control, up to 72h. Cell viability was determined by MTT assay and real time PCR was used to investigate apoptosis and telomerase genes expression. The results showed that kaempferol decreased cell viability as concentration- and time-dependently. IC 50 values were 10.48μM for HeLa and 707.00μM for HFF cells, as compared with 1.40μM and 16.38μM for 5-FU after 72h treatment, respectively. Also, kaempferol induced cellular apoptosis and aging through down-regulating the PI3K/AKT and hTERT pathways. This study suggests that kaempferol may be a useful adjuvant therapeutic agent in the treatment of cervical cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. ANTI-CORRUPTION AND ANTI-MONEY LAUNDERING MECHANISMS IN THE EUROPEAN UNION

    Directory of Open Access Journals (Sweden)

    Sergey A. Puzyrev

    2013-01-01

    Full Text Available The article based on an integrated approach to developed within the European Union mechanisms of preventing crimes, which affect the financial interests of the EU. In terms of specific examples the legal basis of anti-corruption interaction, especially the structural building of the basic institutions of the European Union, are analyzed. The article discusses the information potential to facilitate the implementation of effective cooperation among the competent authorities in the sphere of combating corruption, fraud, money laundering and other economic crimes.

  14. Expression profile of senescence-associated beta-galactosidase and activation of telomerase in human ovarian surface epithelial cells undergoing immortalization.

    Science.gov (United States)

    Litaker, J R; Pan, J; Cheung, Y; Zhang, D K; Liu, Y; Wong, S C; Wan, T S; Tsao, S W

    1998-11-01

    Senescence is a specific physiological stage of cells characterized by long population doubling time. It accounts for the inability of normal somatic cells to undergo indefinite cell division. As the number of population doublings increase, cell cycle regulatory mechanisms come into play and signal cells to exit the cell cycle and become senescent. Senescence has been implicated in the aging process and may function as a tumor suppressor mechanism in human cells. The ability to measure the degree of cellular senescence is important in understanding the biological processes regulating cell aging and immortalization. Senescent cells exhibit an enzyme termed senescence-associated histochemical staining. Cells immortalized by viral oncogenes often enter a stage of crisis at the early phase of immortalization. The cells at crisis have a long population doubling time. Cells at the crisis stage resemble senescent cells and the expression of SA- beta-Gal may be used to monitor the process of immortalization. In this study the expression profile of SA-beta-Gal was examined in human ovarian surface epithelial cells (HOSE 6-3) undergoing immortalization by the human papilloma viral oncogene E6 and E7 (HPV E6 and E7). Our results showed a low percentage (12.0%) of HOSE 6-3 cells expressing SA-beta-Gal activity at the pre-crisis stage. The percentage of HOSE 6-3 cells expressing SA-beta-Gal activity was highest (39.2%) at the crisis stage. When HOSE 6-3 cells achieved immortalized status there was a sharp decrease in cells (1. 3%) expressing SA-beta-Gal activity. In addition, an inverse relationship between the expression of SA-beta-Gal activity and telomerase activity was noted in cells undergoing immortalization. The results confirm that the SA-beta-Gal enzyme is a good marker for monitoring the population of cells undergoing senescence at different stages of immortalization and that telomerase activation is a characteristic feature of post-crisis cells.

  15. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Bryan C. Au

    2016-02-01

    Full Text Available Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag-specific responses through direct injections of recombinant lentivectors (LVs that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months—the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an “off-the-shelf” anti-cancer vaccine that could be made at large scale and injected into patients—even on an out-patient basis.

  16. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques.

    Science.gov (United States)

    Au, Bryan C; Lee, Chyan-Jang; Lopez-Perez, Orlay; Foltz, Warren; Felizardo, Tania C; Wang, James C M; Huang, Ju; Fan, Xin; Madden, Melissa; Goldstein, Alyssa; Jaffray, David A; Moloo, Badru; McCart, J Andrea; Medin, Jeffrey A

    2016-02-19

    Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag)-specific responses through direct injections of recombinant lentivectors (LVs) that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA)-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months-the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an "off-the-shelf" anti-cancer vaccine that could be made at large scale and injected into patients-even on an out-patient basis.

  17. Esculetin exerts anti-proliferative effects against non-small-cell lung carcinoma by suppressing specificity protein 1 in vitro.

    Science.gov (United States)

    Lee, Ra H; Jeon, Young-Joo; Cho, Jin H; Jang, Jeong-Yun; Kong, Il-Keun; Kim, Seok-Ho; Kim, MinSeok S; Chung, Hak-Jae; Oh, Keon B; Park, Seon-Min; Shin, Jae-Cheon; Seo, Jae-Min; Ko, Sungho; Shim, Jung-Hyun; Chae, Jung-Il

    2017-01-01

    Esculetin, a coumarin derivative, is a phenolic compound isolated from Artemisia capillaris, Citrus limonia, and Euphorbia lathyris. Although it has been reported to have anti-inflammatory, anti-oxidant, and anti-proliferative activities in several human cancers, its anti-proliferative activity against non-small-cell lung carcinoma (NSCLC) and the molecular mechanisms involved have not been adequately elucidated. In this study, we used two NSCLC cell lines (NCI-H358 and NCI-H1299) to investigate the anti-proliferative activity and apoptotic effect of esculetin. Our data showed that esculetin-treated cells exhibited reduced proliferation and apoptotic cell morphologies. Intriguingly, the transcription factor specificity protein 1 (Sp1) was significantly suppressed by esculetin in a dose- and time-dependent manner. Furthermore, the levels of p27 and p21, two key regulators of the cell cycle, were up-regulated by the esculetin-mediated down-regulation of Sp1; the level of a third cell-cycle regulator, survivin, was decreased, resulting in caspase-dependent apoptosis. Therefore, we conclude that esculetin could be a potent anti-proliferative agent in patients with NSCLC.

  18. C4d-negative antibody-mediated rejection with high anti-angiotensin II type I receptor antibodies in absence of donor-specific antibodies.

    Science.gov (United States)

    Fuss, Alexander; Hope, Christopher M; Deayton, Susan; Bennett, Greg Donald; Holdsworth, Rhonda; Carroll, Robert P; Coates, P Toby H

    2015-07-01

    Acute antibody-mediated rejection can occur in absence of circulating donor-specific antibodies. Agonistic antibodies targeting the anti-angiotensin II type 1 receptor (anti-AT1 R) are emerging as important non-human leucocyte antigen (HLA) antibodies. Elevated levels of anti-angiotensin II receptor antibodies were first observed in kidney transplant recipients with malignant hypertension and allograft rejection. They have now been studied in three separate kidney transplant populations and associate to frequency of rejection, severity of rejection and graft failure. We report 11 cases of biopsy-proven, Complement 4 fragment d (C4d)-negative, acute rejection occurring without circulating donor-specific anti-HLA antibodies. In eight cases, anti-angiotensin receptor antibodies were retrospectively examined. The remaining three subjects were identified from our centre's newly instituted routine anti-angiotensin receptor antibody screening. All subjects fulfilled Banff 2013 criteria for antibody-mediated rejection and all responded to anti-rejection therapy, which included plasma exchange and angiotensin receptor blocker therapy. These cases support the routine assessment of anti-AT1 R antibodies in kidney transplant recipients to identify subjects at risk. Further studies will need to determine optimal assessment protocol and the effectiveness of pre-emptive treatment with angiotensin receptor blockers. © 2015 Asian Pacific Society of Nephrology.

  19. Are anti-fouling effects in coralline algae species specific?

    Directory of Open Access Journals (Sweden)

    Alexandre Bigio Villas Bôas

    2004-03-01

    Full Text Available The crustose coralline algae are susceptible to be covered by other algae, which in turn can be affected by anti-fouling effects. In this study the hypothesis tested was that these algae can inhibit the growth of epiphytes in a species specific way. In the laboratory, propagules of Sargassum furcatum and Ulva fasciata were liberated and cultivated on pieces of coralline algae and slide covers (controls and their survival and growth were compared. Spongites and Hydrolithon significantly inhibited the growth of U. fasciata but not Sargassum. In the field, pieces of three species of live and dead coralline algae and their copies in epoxy putty discs were fixed on the rock. After one month epiphytic algae were identified and their dry mass quantified. Lithophyllum did not affect the epiphyte growth. In contrast Spongites and an unidentified coralline significantly inhibited the growth of Enteromorpha spp., Ulva fasciata and Hincksia mitchelliae. Colpomenia sinuosa was absent on all living crusts, but present on controls. Results show that the epiphyte-host relation depends on the species that are interacting. The sloughing of superficial cells of coralline crusts points to the possible action of physical anti-fouling effect, though a chemical one is not rejected.As algas calcárias crostosas são susceptíveis ao recobrimento por outras algas, entretanto, estas podem ser afetadas por efeitos anti-incrustantes. Neste estudo foi testada a hipótese de que estas algas possam inibir o crescimento somente de algumas espécies de epífitas. No laboratório, propágulos de Sargassum furcatum e Ulva fasciata foram liberados e cultivados sobre pedaços de algas calcárias e lamínulas de microscopia (controle e as suas sobrevivência e crescimento comparadas. Spongites e Hydrolithon inibiram significativamente o crescimento de U. fasciata, mas não de Sargassum. No campo, pedaços de três espécies de algas calcárias vivas, mortas e cópias destas em

  20. Feasibility assessment of a risk-based approach to technical specifications

    International Nuclear Information System (INIS)

    Atefi, B.; Gallagher, D.W.

    1991-05-01

    To assess the potential use of risk and reliability techniques for improving the effectiveness of the technical specifications to control plant operational risk, the Technical Specifications Branch of the Nuclear Regulatory Commission initiated an effort to identify and evaluate alternative risk-based approaches that could bring greater risk perspective to these requirements. In the first phase four alternative approaches were identified and their characteristics were analyzed. Among these, the risk-based approach to technical specifications is the most promising approach for controlling plant operational risk using technical specifications. The second phase of the study concentrated on detailed characteristics of the real time risk-based approach. It is concluded that a real time risk-based approach to technical specifications has the potential to improve both plant safety and availability. 33 figs., 5 figs., 6 tabs

  1. An integrated in silico approach to design specific inhibitors targeting human poly(a-specific ribonuclease.

    Directory of Open Access Journals (Sweden)

    Dimitrios Vlachakis

    Full Text Available Poly(A-specific ribonuclease (PARN is an exoribonuclease/deadenylase that degrades 3'-end poly(A tails in almost all eukaryotic organisms. Much of the biochemical and structural information on PARN comes from the human enzyme. However, the existence of PARN all along the eukaryotic evolutionary ladder requires further and thorough investigation. Although the complete structure of the full-length human PARN, as well as several aspects of the catalytic mechanism still remain elusive, many previous studies indicate that PARN can be used as potent and promising anti-cancer target. In the present study, we attempt to complement the existing structural information on PARN with in-depth bioinformatics analyses, in order to get a hologram of the molecular evolution of PARNs active site. In an effort to draw an outline, which allows specific drug design targeting PARN, an unequivocally specific platform was designed for the development of selective modulators focusing on the unique structural and catalytic features of the enzyme. Extensive phylogenetic analysis based on all the publicly available genomes indicated a broad distribution for PARN across eukaryotic species and revealed structurally important amino acids which could be assigned as potentially strong contributors to the regulation of the catalytic mechanism of PARN. Based on the above, we propose a comprehensive in silico model for the PARN's catalytic mechanism and moreover, we developed a 3D pharmacophore model, which was subsequently used for the introduction of DNP-poly(A amphipathic substrate analog as a potential inhibitor of PARN. Indeed, biochemical analysis revealed that DNP-poly(A inhibits PARN competitively. Our approach provides an efficient integrated platform for the rational design of pharmacophore models as well as novel modulators of PARN with therapeutic potential.

  2. [Detection of fps tumor antigen with mono-specific anti-fps serum in tumors induced by acute transforming ALV].

    Science.gov (United States)

    Wang, Yixin; Chen, Hao; Zhao, Peng; Li, Jianliang; Cui, Zhizhong

    2013-03-04

    To prepare anti-fps mono-specific serum, and detect the fps antigen in tumors induced by acute transforming avian leukosis/sarcoma virus containing v-fps oncogene. Two part of v-fps gene was amplified by RT-PCR using the Fu-J viral RNA as the template. Mono-specific serum was prepared by immuning Kunming white mouse with both two recombinant infusion proteins expressed by the prokaryotic expression system. Indirect immunofluorescent assay was used to detect fps antigen in tumor tissue suspension cells and CEF infected by sarcoma supernatant. Immunohistochemical method was used to detect fps antigen in tumor tissue. The mouse mono-specific serum was specific as it had no cross reaction with classical ALV-J strains. The result reveals that the tumor tissue suspension cells, the CEF infected by sarcoma supernatant, and the slice immunohistochemistry of the sarcoma showed positive results. The anti-fps mono-specific serum was prepared, and the detection method was established, which laid the foundation for the study of viral biological characteristics and mechanism of tumourgenesis of acute transforming avian leukosis/sarcoma virus containing v-fps oncogene.

  3. Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes and antibacterial activities

    Directory of Open Access Journals (Sweden)

    Chiara eLauritano

    2016-05-01

    Full Text Available Marine microalgae are considered a potentially new and valuable source of biologically active molecules for applications in the food industry as well as in the pharmaceutical, nutraceutical and cosmetic sectors. They can be easily cultured, have short generation times and enable an environmentally-friendly approach to drug discovery by overcoming problems associated with the over-utilization of marine resources and the use of destructive collection practices. In this study, 21 diatoms, 7 dinoflagellates and 4 flagellate species were grown in three different culturing conditions and the corresponding extracts were tested for possible antioxidant, anti-inflammatory, anticancer, anti-diabetes, antibacterial and anti-biofilm activities. In addition, for two diatoms we also tested two different clones to disclose diversity in clone bioactivity. Six diatom species displayed specific anti-inflammatory, anticancer (blocking human melanoma cell proliferation and anti-biofilm (against the bacteria Staphylococcus epidermidis activities whereas, none of the other microalgae were bioactive against the conditions tested for. Furthermore, none of the 6 diatom species tested were toxic on normal human cells. Culturing conditions (i.e. nutrient starvation conditions greatly influenced bioactivity of the majority of the clones/species tested. This study denotes the potential of diatoms as sources of promising bioactives for the treatment of human pathologies.

  4. The hybrid EIA test: a specific and sensitive assay for the detection of woodchuck antibody to hepatitis surface antigen (anti-WHs).

    Science.gov (United States)

    Millman, I; Glass, R G

    1988-05-01

    'Ausria II' polystyrene beads (Abbott Labs, N. Chicago) are reacted with woodchuck serum positive for WHsAg in a dilution predetermined by titration. This modified bead is used in a blocking assay to detect the presence of antibody to the surface antigen of woodchuck hepatitis virus (anti-WHs). Serum containing woodchuck anti-WHs and commercial horseradish peroxidase (HRP) labeled anti-HBs are sequentially added. A drop in optical density at 492 nm of 50% or more due to the blocking of HRP conjugated anti-HBs by anti-WHs compared with a control (negative woodchuck serum) is a measure of anti-WHs. The ease and simplicity of converting readily available 'Ausria II' beads to specific reagents for detecting anti-WHs should be welcomed by investigators studying WHV. The method described is both sensitive and reproducible.

  5. Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules

    Directory of Open Access Journals (Sweden)

    Das Undurti N

    2008-10-01

    Full Text Available Abstract Lowering plasma low density lipoprotein-cholesterol (LDL-C, blood pressure, homocysteine, and preventing platelet aggregation using a combination of a statin, three blood pressure lowering drugs such as a thiazide, a β blocker, and an angiotensin converting enzyme (ACE inhibitor each at half standard dose; folic acid; and aspirin-called as polypill- was estimated to reduce cardiovascular events by ~80%. Essential fatty acids (EFAs and their long-chain metabolites: γ-linolenic acid (GLA, dihomo-GLA (DGLA, arachidonic acid, eicosapentaenoic acid (EPA, and docosahexaenoic acid (DHA and other products such as prostaglandins E1 (PGE1, prostacyclin (PGI2, PGI3, lipoxins (LXs, resolvins, protectins including neuroprotectin D1 (NPD1 prevent platelet aggregation, lower blood pressure, have anti-arrhythmic action, reduce LDL-C, ameliorate the adverse actions of homocysteine, show anti-inflammatory actions, activate telomerase, and have cytoprotective properties. Thus, EFAs and their metabolites show all the classic actions expected of the "polypill". Unlike the proposed "polypill", EFAs are endogenous molecules present in almost all tissues, have no significant or few side effects, can be taken orally for long periods of time even by pregnant women, lactating mothers, and infants, children, and adults; and have been known to reduce the incidence cardiovascular diseases including stroke. In addition, various EFAs and their long-chain metabolites not only enhance nitric oxide generation but also react with nitric oxide to yield their respective nitroalkene derivatives that produce vascular relaxation, inhibit neutrophil degranulation and superoxide formation, inhibit platelet activation, and possess PPAR-γ ligand activity and release NO, thus prevent platelet aggregation, thrombus formation, atherosclerosis, and cardiovascular diseases. Based on these evidences, I propose that a rational combination of ω-3 and ω-6 fatty acids and the co

  6. Simple and efficient generation of virus-specific T cells for adoptive therapy using anti-4-1BB antibody.

    Science.gov (United States)

    Imahashi, Nobuhiko; Nishida, Tetsuya; Goto, Tatsunori; Terakura, Seitaro; Watanabe, Keisuke; Hanajiri, Ryo; Sakemura, Reona; Imai, Misa; Kiyoi, Hitoshi; Naoe, Tomoki; Murata, Makoto

    2015-01-01

    Although recent studies of virus-specific T-cell (VST) therapy for viral infections after allogeneic hematopoietic stem cell transplantation have shown promising results, simple and less time-intensive and labor-intensive methods are required to generate VSTs for the wider application of VST therapy. We investigated the efficacy of anti-CD28 and anti-4-1BB antibodies, which can provide T cells with costimulatory signals similar in strength to those of antigen-presenting cells, in generating VSTs. When peripheral blood mononuclear cells were stimulated with viral peptides together with isotype control, anti-CD28, or anti-4-1BB antibodies, anti-4-1BB antibodies yielded the highest numbers of VSTs, which were on an average 7.9 times higher than those generated with isotype control antibody. The combination of anti-CD28 and anti-4-1BB antibodies did not result in increased numbers of VSTs compared with anti-4-1BB antibody alone. Importantly, the positive effect of anti-4-1BB antibody was observed regardless of the epitopes of the VSTs. In contrast, the capacity of dendritic cells (DCs) to generate VSTs differed considerably depending on the epitopes of the VSTs. Furthermore, the numbers of VSTs generated with DCs were at most similar to those generated with the anti-4-1BB antibody. Generation of VSTs with anti-4-1BB antibody did not result in excessive differentiation or deteriorated function of the generated VSTs compared with those generated with control antibody or DCs. In conclusion, VSTs can be generated rapidly and efficiently by simply stimulating peripheral blood mononuclear cells with viral peptide and anti-4-1BB antibody without using antigen-presenting cells. We propose using anti-4-1BB antibody as a novel strategy to generate VSTs for adoptive therapy.

  7. Effects of water extract of Curcuma longa (L.) roots on immunity and telomerase function.

    Science.gov (United States)

    Pan, Min-Hsiung; Wu, Jia-Ching; Ho, Chi-Tang; Badmaev, Vladimir

    2017-05-12

    Background Immunity and Longevity Methods A water extract of Curcuma longa (L.) [vern. Turmeric] roots (TurmericImmune™) standardized for a minimum 20 % of turmeric polysaccharides ukonan A, B, C and D was evaluated for its biological properties in in vitro tissue culture studies. Results The water extract of turmeric (TurP) exhibited induced-nitric oxide (NO) production in RAW264.7 macrophages. These results suggested the immunomodulatory effects of TurP. In addition, the polysaccharides up-regulated function of telomerase reverse transcriptase (TERT) equally to the phenolic compound from turmeric, curcumin. Conclusions The ukonan family of polysaccharides may assist in promoting cellular immune responses, tissue repair and lifespan by enhancing immune response and telomere function.

  8. Anti-citrullinated heat shock protein 90 antibodies identified in bronchoalveolar lavage fluid are a marker of lung-specific immune responses.

    Science.gov (United States)

    Harlow, Lisa; Gochuico, Bernadette R; Rosas, Ivan O; Doyle, Tracy J; Osorio, Juan C; Travers, Timothy S; Camacho, Carlos C; Oddis, Chester V; Ascherman, Dana P

    2014-11-01

    Previous work has demonstrated a correlation between serum anti-citrullinated HSP90 antibodies and rheumatoid arthritis-associated interstitial lung disease (RA-ILD). To further investigate this potential pathogenic relationship, we used ELISA-based techniques to assess anti-citrullinated HSP90 antibody profiles in bronchoalveolar lavage fluid (BALF) of patients with different stages of RA-ILD. 9/21 RA-derived BALF specimens demonstrated IgG and/or IgA antibodies targeting citrullinated HSP90 proteins/peptides, highlighting disease specific responses (with a predilection for RA-ILD) that did not occur in IPF patients (0/5) or healthy control subjects (0/5). Comparison of antibody profiles between BALF and matching serum specimens revealed various recognition patterns favoring predominant production of anti-citrullinated HSP90 antibodies within the lung microenvironment-further supporting the connection between this antibody specificity and parenchymal lung disease. Equally important, qualitative as well as quantitative differences in anti-citrullinated HSP90 profiles between BALF and serum indicate that the lung plays a direct role in shaping the immune repertoire of RA/RA-ILD. Published by Elsevier Inc.

  9. Immortalization of Human Fetal Hepatocyte by Ectopic Expression of Human Telomerase Reverse Transcriptase, Human Papilloma Virus (E7) and Simian Virus 40 Large T (SV40 T) Antigen Towards Bioartificial Liver Support.

    Science.gov (United States)

    Giri, Shibashish; Bader, Augustinus

    2014-09-01

    Generation of genetically stable and non-tumoric immortalization cell line from primary cells would be enormously useful for research and therapeutic purposes, but progress towards this goal has so far been limited. It is now universal acceptance that immortalization of human fetal hepatocytes based on recent advances of telomerase biology and oncogene, lead to unlimited population doubling could be the possible source for bioartificial liver device. Immortalization of human fetal hepatocytes cell line by ectopic expression of human telomerase reverse transcriptase (hTERT), human papilloma virus gene (E7) and simian virus 40 large T (SV40 T) antigens is main goal of present study. We used an inducible system containing human telomerase and E7, both of which are cloned into responder constructs controlled by doxycycline transactivator. We characterized the immortalized human fetal hepatocyte cells by analysis of green fluorescent cells (GFP) positive cells using flow cytometry (FACs) cell sorting and morphology, proliferative rate and antigen expression by immunohistochemical analysis. In addition to we analysized lactate formation, glucose consumption, albumin secretion and urea production of immortalized human fetal hepatocyte cells. After 25 attempts for transfection of adult primary hepatocytes by human telomerase and E7 to immortalize them, none of the transfection systems resulted in the production of a stable, proliferating cell line. Although the transfection efficiency was more than 70% on the first day, the vast majority of the transfected hepatocytes lost their signal within the first 5-7 days. The remaining transfected hepatocytes persisted for 2-4 weeks and divided one or two times without forming a clone. After 10 attempts of transfection human fetal hepatocytes using the same transfection system, we obtained one stable human fetal hepatocytes cell line which was able albumin secretion urea production and glucose consumption. We established a

  10. Innovative Approaches to Improve Anti-Infective Vaccine Efficacy.

    Science.gov (United States)

    Yeaman, Michael R; Hennessey, John P

    2017-01-06

    Safe and efficacious vaccines are arguably the most successful medical interventions of all time. Yet the ongoing discovery of new pathogens, along with emergence of antibiotic-resistant pathogens and a burgeoning population at risk of such infections, imposes unprecedented public health challenges. To meet these challenges, innovative strategies to discover and develop new or improved anti-infective vaccines are necessary. These approaches must intersect the most meaningful insights into protective immunity and advanced technologies with capabilities to deliver immunogens for optimal immune protection. This goal is considered through several recent advances in host-pathogen relationships, conceptual strides in vaccinology, and emerging technologies. Given a clear and growing risk of pandemic disease should the threat of infection go unmet, developing vaccines that optimize protective immunity against high-priority and antibiotic-resistant pathogens represents an urgent and unifying imperative.

  11. Simultaneous virtual prediction of anti-Escherichia coli activities and ADMET profiles: A chemoinformatic complementary approach for high-throughput screening.

    Science.gov (United States)

    Speck-Planche, Alejandro; Cordeiro, M N D S

    2014-02-10

    Escherichia coli remains one of the principal pathogens that cause nosocomial infections, medical conditions that are increasingly common in healthcare facilities. E. coli is intrinsically resistant to many antibiotics, and multidrug-resistant strains have emerged recently. Chemoinformatics has been a great ally of experimental methodologies such as high-throughput screening, playing an important role in the discovery of effective antibacterial agents. However, there is no approach that can design safer anti-E. coli agents, because of the multifactorial nature and complexity of bacterial diseases and the lack of desirable ADMET (absorption, distribution, metabolism, elimination, and toxicity) profiles as a major cause of disapproval of drugs. In this work, we introduce the first multitasking model based on quantitative-structure biological effect relationships (mtk-QSBER) for simultaneous virtual prediction of anti-E. coli activities and ADMET properties of drugs and/or chemicals under many experimental conditions. The mtk-QSBER model was developed from a large and heterogeneous data set of more than 37800 cases, exhibiting overall accuracies of >95% in both training and prediction (validation) sets. The utility of our mtk-QSBER model was demonstrated by performing virtual prediction of properties for the investigational drug avarofloxacin (AVX) under 260 different experimental conditions. Results converged with the experimental evidence, confirming the remarkable anti-E. coli activities and safety of AVX. Predictions also showed that our mtk-QSBER model can be a promising computational tool for virtual screening of desirable anti-E. coli agents, and this chemoinformatic approach could be extended to the search for safer drugs with defined pharmacological activities.

  12. The investigation of anti-inflammatory activity of Yi Guanjian decoction by serum metabonomics approach.

    Science.gov (United States)

    Shui, Sufang; Cai, Xiaorong; Huang, Rongqing; Xiao, Bingkun; Yang, Jianyun

    2017-01-30

    Yi Guanjian (YGJ), one of the Chinese herbal medicines most commonly used in western countries, reported to possess significant anti-inflammatary effects that inhibit the process of inflammation. However, the mechanisms underlying its anti-inflammation effects remain largely unresolved. This study was aimed to investigate the anti-inflammatory activity of YGJ and to explore its potential anti-inflammatory mechanisms by serum metabonomics approach. An xylene-induced mouse right-ear-edema model was used as an inflammatory response in vivo model. Ear edema, prostaglandin E2 (PGE 2 ) and Tumor-Necrosis-Factor-alpha (TNF-α) were detected. Then, serum metabolic profiling was analyzed and pathway analysis performed on the biomarkers reversed after YGJ administration and further integration of metabolic networks. The results showed that YGJ alleviated ear edema and decreased serum PGE 2 and TNF-α levels. Fourteen biomarkers were screened, and the levels were all reversed to different degrees after YGJ administration. These biomarkers were mainly related to linoleic acid metabolism, taurine and hypotaurine metabolism, glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism and citrate cycle (TCA cycle). In metabolic networks, glycine and pyruvate were node molecules. This indicated that YGJ could significantly inhibit inflammatory response triggered by acute local stimulation and exerted anti-inflammatory activity mainly by regulating node molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Feasibility assessment of a risk-based approach to technical specifications

    International Nuclear Information System (INIS)

    Atefi, B.; Gallagher, D.W.

    1991-05-01

    The first phase of the assessment concentrates on (1) identification of selected risk-based approaches for improving current technical specifications, (2) appraisal of characteristics of each approach, including advantages and disadvantages, and (3) recommendation of one or more approaches that might result in improving current technical specification requirements. The second phase of the work concentrates on assessment of the feasibility of implementation of a pilot program to study detailed characteristics of the preferred approach. The real time risk-based approach was identified as the preferred approach to technical specifications for controlling plant operational risk. There do not appear to be any technical or institutional obstacles to prevent initiation of a pilot program to assess the characteristics and effectiveness of such an approach. 2 tabs

  14. Synthesized zinc peroxide nanoparticles (ZnO2-NPs): a novel antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory approach toward polymicrobial burn wounds.

    Science.gov (United States)

    Ali, Sameh Samir; Morsy, Reda; El-Zawawy, Nessma Ahmed; Fareed, Mervat F; Bedaiwy, Mohamed Yaser

    2017-01-01

    Increasing of multidrug resistance (MDR) remains an intractable challenge for burn patients. Innovative nanomaterials are also in high demand for the development of new antimicrobial biomaterials that inevitably have opened new therapeutic horizons in medical approaches and lead to many efforts for synthesizing new metal oxide nanoparticles (NPs) for better control of the MDR associated with the polymicrobial burn wounds. Recently, it seems that metal oxides can truly be considered as highly efficient inorganic agents with antimicrobial properties. In this study, zinc peroxide NPs (ZnO 2 -NPs) were synthesized using the co-precipitation method. Synthesized ZnO 2 -NPs were characterized by X-ray diffraction, Fourier transformed infrared, transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry, and ultraviolet-visible spectroscopy. The characterization techniques revealed synthesis of the pure phase of non-agglomerated ZnO 2 -NPs having sizes in the range of 15-25 nm with a transition temperature of 211°C. Antimicrobial activity of ZnO 2 -NPs was determined against MDR Pseudomonas aeruginosa (PA) and Aspergillus niger (AN) strains isolated from burn wound infections. Both strains, PA6 and AN4, were found to be more susceptible strains to ZnO 2 -NPs. In addition, a significant decrease in elastase and keratinase activities was recorded with increased concentrations of ZnO 2 -NPs until 200 µg/mL. ZnO 2 -NPs revealed a significant anti-inflammatory activity against PA6 and AN4 strains as demonstrated by membrane stabilization, albumin denaturation, and proteinase inhibition. Moreover, the results of in vivo histopathology assessment confirmed the potential role of ZnO 2 -NPs in the improvement of skin wound healing in the experimental animal models. Clearly, the synthesized ZnO 2 -NPs have demonstrated a competitive capability as antimicrobial, anti-elastase, anti-keratinase, and anti-inflammatory candidates, suggesting that the

  15. Comparison of Inhibitory Effect of Curcumin Nanoparticles and Free Curcumin in Human Telomerase Reverse Transcriptase Gene Expression in Breast Cancer

    OpenAIRE

    Nosratollah Zarghami; Abbas Rami; Fatemeh Kazemi-Lomedasht

    2013-01-01

    Purpose: Telomerase is expressed in most cancers, including breast cancer. Curcumin, a polyphenolic compound that obtained from the herb of Curcuma longa, has many anticancer effects. But, its effect is low due to poor water solubility. In order to improve its solubility and drug delivery, we have utilized a β-cyclodextrin-curcumin inclusion complex. Methods: To evaluate cytotoxic effects of cyclodextrin-curcumin and free curcumin, MTT assay was done. Cells were treated with equal concentrati...

  16. Telomerase activity and cellular aging might be positively modified by a yoga-based lifestyle intervention.

    Science.gov (United States)

    Kumar, Shiv Basant; Yadav, Rashmi; Yadav, Raj Kumar; Tolahunase, Madhuri; Dada, Rima

    2015-06-01

    Recent studies showed that a brief yoga-based lifestyle intervention was efficacious in reducing levels of oxidative stress and cellular aging in obese men. The objective of this case report was to assess the efficacy of this intervention in reducing the levels of biochemical markers of cellular ageing, oxidative stress, and inflammation at baseline (day 0), at the end of active intervention (day 10), and follow-up at day 90. Single case report from a prospective ongoing study with pre-post design assessing the level of various markers of cellular aging. Integral Health Clinic, an outpatient facility conducting meditation and yoga-based lifestyle intervention programs for management of chronic diseases. A 31-year-old man with class I obesity (body-mass index, 29.5 kg/m(2)) who presented to the medicine outpatient department at All India Institute of Medical Sciences, New Delhi, India, with a history of fatigue, difficulty losing weight, and lack of motivation. He noted a marked decrease in his energy level, particularly in the afternoon. A pretested intervention program included asanas (postures), pranayama (breathing exercises), stress management, group discussions, lectures, and individualized advice. From baseline (day 0) to day 90, the activity of telomerase and levels of β-endorphins, plasma cortisol, and interleukin-6 increased, and a sustained reduction in oxidative stress markers, such as reactive oxygen species and 8-hydroxy-2-deoxy-guanosine levels. Adopting yoga/meditation-based lifestyle modification causes reversal of markers of aging, mainly oxidative stress, telomerase activity, and oxidative DNA damage. This may not only delay aging and prolong a youthful healthy life but also delay or prevent onset of several lifestyle-related diseases, of which oxidative stress and inflammation are the chief cause. This report suggests this simple lifestyle intervention may be therapeutic for oxidative DNA damage and oxidative stress.

  17. Anti-synthetase syndrome associated with anti PL-12 and anti-Signal recognition particle antibodies and a necrotizing auto-immune myositis.

    Science.gov (United States)

    Malkan, Ashish; Cappelen-Smith, Cecilia; Beran, Roy; Griffith, Neil; Toong, Catherine; Wang, Min-Xia; Cordato, Dennis

    2015-02-01

    We report a 37-year-old woman with a 2 month history of proximal muscle weakness and extremely high creatine kinase (21,808 U/L) due to necrotizing auto-immune myositis (NAM) in association with anti-synthetase syndrome. Myositis-specific auto-immune antibody panel was positive for anti-Signal recognition particle and anti-PL-12. CT scan of the chest confirmed interstitial lung disease. Prednisolone, intravenous immunoglobulin and cyclophosphamide therapy was given with gradual improvement. This patient is notable for the unusual combination of NAM and anti-synthetase syndrome with the rare finding of two myositis-specific autoantibodies, which directed testing for associated extramuscular features and management with more aggressive immunotherapy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Intersectionality and risk for ischemic heart disease in Sweden: Categorical and anti-categorical approaches.

    Science.gov (United States)

    Wemrell, Maria; Mulinari, Shai; Merlo, Juan

    2017-03-01

    Intersectionality theory can contribute to epidemiology and public health by furthering understanding of power dynamics driving production of health disparities, and increasing knowledge about heterogeneities within, and overlap between, social categories. Drawing on McCall, we relate the first of these potential contributions to categorical intersectionality and the second to anti-categorical intersectionality. Both approaches are used in study of risk of ischemic heart disease (IHD), based on register data on 3.6 million adults residing in Sweden by 2010, followed for three years. Categorical intersectionality is here coupled with between-group differences in average risk calculation, as we use intersectional categorizations while estimating odds ratios through logistic regressions. The anti-categorical approach is operationalized through measurement of discriminatory accuracy (DA), i.e., capacity to accurately categorize individuals with or without a certain outcome, through computation of the area under the curve (AUC). Our results show substantial differences in average risk between intersectional groupings. The DA of social categorizations is found to be low, however, due to outcome variability within and overlap between categories. We argue that measures of DA should be used for proper interpretation of differences in average risk between social (or any other) categories. Tension between average between-group risk and the DA of categorizations, which can be related to categorical and anti-categorical intersectional analyses, should be made explicit and discussed to a larger degree in epidemiology and public health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Risk-informed approach in US-APWR technical specifications

    International Nuclear Information System (INIS)

    Saji, Etsuro; Tanaka, Futoshi; Kuroiwa, Katsuya; Kawai, Katsunori

    2009-01-01

    The Risk-Managed Technical Specifications and the Surveillance Frequency Control Program have been adopted in the US-APWR Technical Specifications. These risk-informed approaches are unique among the technical specifications for the advanced light water reactor designs adopted by planned nuclear power stations in the United States. (author)

  20. Performative Pedagogy in Teaching Anti-Racism

    Directory of Open Access Journals (Sweden)

    Nena Močnik

    2015-06-01

    Full Text Available The paper deals with the issue of effective anti-racism teaching in everyday contexts, where the traditional forms of racism are replaced by more sophisticated, subtle practices of exlusion, hatred and violence. Historical connotations of terms such as racism, xenophobia, homophobia, etc. specifically characterize certain groups of people and somehow further deepen divisions between the hegemonic majority and the oppressed minority; therefore, several indicators of inefficience in teaching anti-racism have appeared, particularly in applying theories into practices. Teaching anti-racism is presented through new attitudes towards performative pedagogy, for a long time understood in the context of the teacher as the actor who engage his/her students as spectators through variety of acting techniques and performative practies. Along with the theoretical and applied development of the field, more and more the performative pedagogy is recognized as a critical teaching approach, based on artistic expression, improvisation, continuous dialogue, and the body as an ideologically inscribed product.

  1. Dentists' approach to patients on anti-platelet agents and warfarin: a survey of practice.

    LENUS (Irish Health Repository)

    Murphy, James

    2010-04-23

    In everyday practice, dentists are confronted with the dilemma of patients on anti-platelet agents and warfarin who require invasive dental procedures and, more pertinently, dental extractions. There may be a divergence of opinion among dentists regarding how they manage these patients. AIMS: To assess general dental practitioners\\' approach to the management of patients taking anti-platelet agents and\\/or warfarin who are undergoing invasive dental procedures. METHODS AND DATA: A semi-structured questionnaire was designed to survey general dental practitioners in a large Irish urban area. RESULTS: A response rate of 89% was achieved in a study population of 54 general dental practitioners. A total of 25% of respondents who carry out extractions on warfarinised patients do not check the INR prior to invasive dental procedures. Some 90% of respondents stop anti-platelet agents prior to extractions. CONCLUSIONS: A significant proportion of respondents fail to check warfarinised patients\\' INR prior to invasive dental procedures. Furthermore, a trend of stopping anti-platelet agents was noted, which is in contrast with current recommendations in the dental literature. Certain practices in this small study population proved alarming and highlight the need for improved awareness of current guidelines. A further large-scale study may be justified, as variation in practice may have clinical and medico-legal repercussions.

  2. Pectenotoxin-2 from Marine Sponges: A Potential Anti-Cancer Agent—A Review

    Directory of Open Access Journals (Sweden)

    Wun-Jae Kim

    2011-11-01

    Full Text Available Pectenotoxin-2 (PTX-2, which was first identified as a cytotoxic entity in marine sponges, has been reported to display significant cytotoxicity to human cancer cells where it inhibits mitotic separation and cytokinesis through the depolymerization of actin filaments. In the late stage of endoreduplication, the effects of PTX-2 on different cancer cells involves: (i down-regulation of anti-apoptotic Bcl-2 members and IAP family proteins; (ii up-regulation of pro-apoptotic Bax protein and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL-receptor 1/receptor 2 (DR4/DR5; and (iii mitochondrial dysfunction. In addition, PTX-2 induces apoptotic effects through suppression of the nuclear factor κB (NF-κB signaling pathway in several cancer cells. Analysis of cell cycle regulatory proteins showed that PTX-2 increases phosphorylation of Cdc25c and decreases protein levels of Cdc2 and cyclin B1. Cyclin-dependent kinase (Cdk inhibitor p21 and Cdk2, which are associated with the induction of endoreduplication, were upregulated. Furthermore, it was found that PTX-2 suppressed telomerase activity through the transcriptional and post-translational suppression of hTERT. The purpose of this review was to provide an update regarding the anti-cancer mechanism of PTX-2, with a special focus on its effects on different cellular signaling cascades.

  3. Anti-Cyclic Citrullinated Peptide (Anti-CCP and Anti-Mutated Citrullinated Vimentin (Anti-MCV Relation with Extra-Articular Manifestations in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Laura Gonzalez-Lopez

    2014-01-01

    Full Text Available We evaluated the association between anti-cyclic citrullinated peptide antibodies (anti-CCP and anti-mutated citrullinated vimentin antibodies (anti-MCV with the presence of extra-articular (ExRA manifestations in 225 patients with rheumatoid arthritis (RA. Ninety-five patients had ExRA and 130 had no ExRA. There was no association of anti-CCP and anti-MCV levels with the presence of ExRA as total group (P=0.40 and P=0.91, resp.. Making an analysis of individual manifestations, rheumatoid nodules were associated with positivity for rheumatoid factor (RF; (P=0.01, anti-CCP (P=0.048, and anti-MCV (P=0.02. Instead, RF, anti-CCP, or anti-MCV were not associated with SS, chronic anemia, or peripheral neuropathy. Levels of anti-CCP correlated with the score of the Health Assessment Questionnaire-Disability Index (HAQ-Di (r=0.154, P=0.03, erythrocyte sedimentation rate (ESR; (r=0.155, P=0.03, and RF (P=0.254, P<0.001, whereas anti-MCV titres only correlated with RF (r=0.169, P=0.02. On adjusted analysis, ExRA was associated with longer age (P=0.015, longer disease duration (P=0.007, higher DAS-28 score (P=0.002, and higher HAQ-DI score (P=0.007, but serum levels of anti-CCP and anti-MCV were not associated. These findings show the need to strengthen the evaluation of the pathogenic mechanisms implied in each specific ExRA manifestation.

  4. A desirability-based multi objective approach for the virtual screening discovery of broad-spectrum anti-gastric cancer agents.

    Directory of Open Access Journals (Sweden)

    Yunierkis Perez-Castillo

    Full Text Available Gastric cancer is the third leading cause of cancer-related mortality worldwide and despite advances in prevention, diagnosis and therapy, it is still regarded as a global health concern. The efficacy of the therapies for gastric cancer is limited by a poor response to currently available therapeutic regimens. One of the reasons that may explain these poor clinical outcomes is the highly heterogeneous nature of this disease. In this sense, it is essential to discover new molecular agents capable of targeting various gastric cancer subtypes simultaneously. Here, we present a multi-objective approach for the ligand-based virtual screening discovery of chemical compounds simultaneously active against the gastric cancer cell lines AGS, NCI-N87 and SNU-1. The proposed approach relays in a novel methodology based on the development of ensemble models for the bioactivity prediction against each individual gastric cancer cell line. The methodology includes the aggregation of one ensemble per cell line using a desirability-based algorithm into virtual screening protocols. Our research leads to the proposal of a multi-targeted virtual screening protocol able to achieve high enrichment of known chemicals with anti-gastric cancer activity. Specifically, our results indicate that, using the proposed protocol, it is possible to retrieve almost 20 more times multi-targeted compounds in the first 1% of the ranked list than what is expected from a uniform distribution of the active ones in the virtual screening database. More importantly, the proposed protocol attains an outstanding initial enrichment of known multi-targeted anti-gastric cancer agents.

  5. Pathogenic and Epiphenomenal Anti-DNA Antibodies in SLE

    Directory of Open Access Journals (Sweden)

    Mirjana Pavlovic

    2010-01-01

    Full Text Available The discoveries of natural and the development of manufactured highly efficient catalytic antibodies (abzymes opens the door to many practical applications. One of the most fascinating is the use of such antibodies in human therapy and prevention (vaccination, of cancer, AIDS, autoimmune diseases. A special entity of naturally occurring DNA hydrolytic anti-DNA antibodies is emerging within past decades linked to autoimmune and lymphoproliferative disorders, such as systemic lupus erythematosus (SLE, multiple sclerosis (MS, Sjogren Syndrome (SS, B - Chronic lymphocytic leucosis (B-CLL, and Multiple Myeloma (MM. The origin of the antibodies is unknown. The underlying mechanisms of these activities are suggested to be penetration into the living cells and translocation in the nucleus, with recognition of the specific binding sites at particular (ss or ds DNA. There are controversies in the literature whether hydrolysis is a sequence-specific event. The interplay between anti-DNA antibodies and DNA is not yet elucidated. This molecular “twist” also suggests that anti-DNA antibodies with DNA hydrolytic capacity could be the organism's immune response to a microbial attack, with microbial DNA, or specific genes within microbial DNA sequence, as a target for neutralization. The catalytic antibody-based approach can become a key tool in selective chemotherapeutic strategies.

  6. A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells.

    Science.gov (United States)

    Gulce Iz, Sultan; Inevi, Muge Anil; Metiner, Pelin Saglam; Tamis, Duygu Ayyildiz; Kisbet, Nazli

    2018-01-01

    Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNF-α production. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid

  7. Anti-tumor effects of dehydroaltenusin, a specific inhibitor of mammalian DNA polymerase α

    International Nuclear Information System (INIS)

    Maeda, Naoki; Kokai, Yasuo; Ohtani, Seiji; Sahara, Hiroeki; Kuriyama, Isoko; Kamisuki, Shinji; Takahashi, Shunya; Sakaguchi, Kengo; Sugawara, Fumio; Yoshida, Hiromi; Sato, Noriyuki; Mizushina, Yoshiyuki

    2007-01-01

    In the screening of selective inhibitors of eukaryotic DNA polymerases (pols), dehydroaltenusin was found to be an inhibitor of pol α from a fungus (Alternaria tennuis). We succeeded in chemically synthesizing dehydroaltenusin, and the compound inhibited only mammalian pol α with IC 50 value of 0.5 μM, and did not influence the activities of other replicative pols such as pols δ and ε, but also showed no effect on pol α activity from another vertebrate, fish, or from a plant species. Dehydroaltenusin also had no influence on the other pols and DNA metabolic enzymes tested. The compound also inhibited the proliferation of human cancer cells with LD 50 values of 38.0-44.4 μM. In an in vivo anti-tumor assay on nude mice bearing solid tumors of HeLa cells, dehydroaltenusin was shown to be a promising suppressor of solid tumors. Histopathological examination revealed that increased tumor necrosis and decreased mitotic index were apparently detected by the compound in vivo. Therefore, dehydroaltenusin could be of interest as not only a mammalian pol α-specific inhibitor, but also as a candidate drug for anti-cancer treatment

  8. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Greten, Tim F; Bruix, Jordi; Forner, Alejandro; Korangy, Firouzeh; N'Kontchou, Gisele; Barget, Nathalie; Ayuso, Carmen; Ormandy, Lars A; Manns, Michael P; Beaugrand, Michel

    2010-01-01

    The sole effective option for patients with advanced HCC is sorafenib and there is an urgent need to develop new therapeutic approaches. Immunotherapy is a promising option that deserves major investigation. In this open label, single arm clinical trial, we analyzed the effect of a low dose cyclophosphamide treatment in combination with a telomerase peptide (GV1001) vaccination in patients with advanced HCC. 40 patients with advanced HCC were treated with 300 mg/m 2 cyclophosphamide on day -3 followed by GM-CSF + GV1001 vaccinations on days 1, 3, 5, 8, 15, 22, 36 followed by 4-weekly injections. Primary endpoint of this phase II trial was tumor response; secondary endpoints evaluated were TTP, TTSP, PFS, OS, safety and immune responses. None of the patients had a complete or partial response to treatment, 17 patients (45.9%) demonstrated a stable disease six months after initiation of treatment. The median TTP was 57.0 days; the median TTSP was estimated to be 358.0 days. Cyclophosphamide, GV1001 and GM-CSF treatment were well tolerated and most adverse events, which were of grade 1 or 2, were generally related to the injection procedure and injection site reactions. GV1001 treatment resulted in a decrease in CD4 + CD25 + Foxp3 + regulatory T cells; however, no GV1001 specific immune responses were detected after vaccination. Low dose cyclophosphamide treatment followed by GV1001 vaccinations did not show antitumor efficacy as per tumor response and time to progression. Further studies are needed to analyze the effect of a combined chemo-immunotherapy to treat patients with HCC. NCT00444782

  9. A phase II open label trial evaluating safety and efficacy of a telomerase peptide vaccination in patients with advanced hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Ayuso Carmen

    2010-05-01

    Full Text Available Abstract Background The sole effective option for patients with advanced HCC is sorafenib and there is an urgent need to develop new therapeutic approaches. Immunotherapy is a promising option that deserves major investigation. In this open label, single arm clinical trial, we analyzed the effect of a low dose cyclophosphamide treatment in combination with a telomerase peptide (GV1001 vaccination in patients with advanced HCC. Methods 40 patients with advanced HCC were treated with 300 mg/m2 cyclophosphamide on day -3 followed by GM-CSF + GV1001 vaccinations on days 1, 3, 5, 8, 15, 22, 36 followed by 4-weekly injections. Primary endpoint of this phase II trial was tumor response; secondary endpoints evaluated were TTP, TTSP, PFS, OS, safety and immune responses. Results None of the patients had a complete or partial response to treatment, 17 patients (45.9% demonstrated a stable disease six months after initiation of treatment. The median TTP was 57.0 days; the median TTSP was estimated to be 358.0 days. Cyclophosphamide, GV1001 and GM-CSF treatment were well tolerated and most adverse events, which were of grade 1 or 2, were generally related to the injection procedure and injection site reactions. GV1001 treatment resulted in a decrease in CD4+CD25+Foxp3+ regulatory T cells; however, no GV1001 specific immune responses were detected after vaccination. Conclusions Low dose cyclophosphamide treatment followed by GV1001 vaccinations did not show antitumor efficacy as per tumor response and time to progression. Further studies are needed to analyze the effect of a combined chemo-immunotherapy to treat patients with HCC. Trial registration NCT00444782

  10. Antisense gene therapy using anti-k-ras and antitelomerase oligonucleotides in colorectal cancer Eficacia de la terapia génica antisentido utilizando oligonucleótidos anti K-ras y antitelomerasa en cáncer colorrectal

    Directory of Open Access Journals (Sweden)

    S. Lledó

    2005-07-01

    Full Text Available Aim: to test the efficacy of anti-k-ras and antitelomerase oligonucleotides for disabling colorectal cancer cell growth. Material and methods: an established human colorectal cancer cell line (SW 480, ATTC® was used. Oligodeoxiribonucleotides (ODNs have a phosphorotioate modification to ensure intracellular intake. We used an antitelomerase ODN (Telp5 and two anti-k-ras ODNs (AS-KRAS and ISIS. AS-KRAS is designed to join the k-ras oncogene's exon 1. ISIS links to the terminal transcription unit 5' of k-ras. Telp5 joins the template region of the hTR telomerase subunit. ODNs have been tested in different concentrations (1, 5, 10, 20 micromolar. Cell viability has been tested at 48 and 72 hours. Statistical analysis and graphic design were made with the statistical package "Analyzing Data with GraphPad Prism-1999", GraphPad Sofware Inc., San Diego CA©. We used the Student's t test for statistical analysis. Results: the lowest dose (1 µM was not effective. Using the highest dose (20 mM for 48 hours of combined AS-KRAS and Telp5 cell viability decreased to 99.67%. The rest of results varied depending on ODN type, dose, and exposure time. Conclusions: tested antisense ODNs stop colorectal cancer cell growth, and a combination of anti-telomerase and anti-k-ras is the most useful treatment. Efficacy is best with a higher dose and longer treatment period.Objetivo: evaluar la eficacia de oligonucleótidos anti k-ras y antitelomerasa para detener el crecimiento tumoral en el cáncer colorrectal. Material y métodos: se ha empleado una línea celular establecida de cáncer colorrectal humano (SW 480, ATTC®. Los oligodesoxirribonucleótidos (ODN utilizados en el presente trabajo presentan modificación fosforotioato con el fin de mejorar su estabilidad en presencia de fluidos biológicos. Hemos utilizado un ODN antitelomerasa (Telp5, y dos ODN anti k-ras (AS-KRAS e ISIS. AS-KRAS actúa en el exón 1 e ISIS actúa a nivel de la unidad terminal de

  11. What is it really? Anti-G or Anti-D plus Anti-C: Clinical Significance in Antenatal Mothers.

    Science.gov (United States)

    Das, Soumya; Shastry, Shamee; Murugesan, M; B, Poornima Baliga; Shastry, Shamee

    2017-06-01

    G antigen of Rh blood group system is present either along with D and/or C positive red cells. Hence, [serologically anti-G presents with the similar picture as that of multiple antibodies (anti-D + anti-C). Differentiating them is important as anti-D + anti-C causes severe hemolytic disease of the fetus and newborn than anti-G. In pregnancies with anti-G alone, alloimmunization due to D antigen could be prevented by prophylactic administration of RhIg. Differentiating between anti-D + C from anti-G in alloimmunized pregnant mothers becomes essential. Sera from antenatal mothers, whose antibody identification by 11-cell panel gave a pattern for anti-D and anti-C were selected. Extended phenotyping for Rh system was performed for these antenatal cases. Differential adsorption and elution testing using R 2 R 2 cells initially and r'r cells subsequently were performed to distinguish anit-G from anti-D + anti-C. Antibody titers of these antibodies were determined and their clinical outcome in the newborn was followed. A pattern suggestive of anti D and anti C on antibody identification were observed in six antenatal cases. On further workup 50 % of them confirmed to have anti G. Antibody titers of anti-G and anti-C were lower than that of Anti-D. All newborns were sensitized in vivo and the antibody specificity in them were confirmed with elution studies. The mothers who had only anti-G were subsequently administered with an appropriate dose of RhIg.Differential adsorption and elution studies help in identifying anti-G and distinguishing it from anti-D plus anti-C, thus helping in better patient management.

  12. A Generalised Approach to Petri Nets and Algebraic Specifications

    International Nuclear Information System (INIS)

    Sivertsen, Terje

    1998-02-01

    The present report represents a continuation of the work on Petri nets and algebraic specifications. The reported research has focused on generalising the approach introduced in HWR-454, with the aim of facilitating the translation of a wider class of Petri nets into algebraic specification. This includes autonomous Petri nets with increased descriptive power, as well as non-autonomous Petri nets allowing the modelling of systems (1) involving extensive data processing; (2) with transitions synchronized on external events; (3) whose evolutions are time dependent. The generalised approach has the important property of being modular in the sense that the translated specifications can be gradually extended to include data processing, synchronization, and timing. The report also discusses the relative merits of state-based and transition-based specifications, and includes a non-trivial case study involving automated proofs of a large number of interrelated theorems. The examples in the report illustrate the use of the new HRP Prover. Of particular importance in this context is the automatic transformation between state-based and transitionbased specifications. It is expected that the approach introduced in HWR-454 and generalised in the present report will prove useful in future work on combination of wide variety of specification techniques

  13. Antiviral effects of herpes simplex virus specific anti-sense nucleic acids.

    Science.gov (United States)

    Cantin, E M; Podsakoff, G; Willey, D E; Openshaw, H

    1992-01-01

    We have targeted mRNA sequences encompassing the translation initiation codon of the essential herpes simplex virus type 1 (HSV-1) IE3 gene with three kinds of anti-sense molecule. Addition of a 15mer oligodeoxyribonucleoside methylphosphonate to tissue culture cells resulted in suppression of viral replication. HSV-1 replication was also inhibited in cultured cells containing anti-sense vectors expressing transcripts complementary to the IE3 mRNA. We have also constructed a ribozyme which upon base pairing with the target IE3 mRNA induces cleavage at the predicted GUC site. A major obstacle to anti-sense studies in animals is drug delivery of preformed antisense molecules to ganglionic neurons, the site of HSV latency and reactivation. We speculate as to how this may be accomplished through carrier compounds which are taken up by nerve terminals and transported by retrograde axoplasmic flow. By the same route, HSV itself may be used as an anti-sense vector.

  14. Direct anti-atherosclerotic therapy; development of natural anti-atherosclerotic drugs preventing cellular cholesterol retention.

    Science.gov (United States)

    Orekhov, Alexander N

    2013-01-01

    The results of numerous clinical trials with statins and other drugs have demonstrated the principal possibility of the prevention and regression of atherosclerosis by pharmacotherapy. This review describes the use of cultured human arterial cells for the mass screening of anti-atherosclerotic substances, the investigation of the mechanisms responsible for their atherosclerosis-related effects, and the optimization of anti-atherosclerotic and anti-atherogenic drug and dietary therapies. Natural products can be considered promising drugs for anti-atherosclerotic therapy. Our basic studies have shown that cellular lipidosis is the principal event in the genesis of atherosclerotic lesions. Using cellular models and natural products, we have developed an approach to prevent lipid accumulation in arterial cells. Based on our knowledge of atherosclerosis, we developed drugs that possess direct anti-atherosclerotic activity. Two-year treatment with allicor (garlic powder) has a direct anti-atherosclerotic effect on carotid atherosclerosis in asymptomatic men. Inflaminat (calendula, elder, and violet), which possesses anti-cytokine activity, has been shown to cause the regression of carotid atherosclerosis following the treatment of asymptomatic men for one year. The phytoestrogen-rich drug karinat (garlic powder, extract of grape seeds, green tea leaves, hop cones, β-carotene, α-tocopherol, and ascorbic acid) prevents the development of carotid atherosclerosis in postmenopausal women. Thus, our basic findings were successfully translated into clinical practice. Because of this translation, a novel approach to antiatherosclerotic therapy was developed. Our clinical trial confirmed the efficacy of both the novel approach and the novel drugs.

  15. Alternative approaches to risk-based technical specifications

    International Nuclear Information System (INIS)

    Atefi, B.; Gallagher, D.W.; Liner, R.T.; Lofgren, E.V.

    1987-01-01

    Four alternative risk-based approaches to Technical Specifications are identified. These are: a Probabilistic Risk Assessment (PRA) oriented approach; a reliability goal-oriented approach; an approach based on configuration control; a data-oriented approach. Based on preliminary results, the PRA-oriented approach, which has been developed further than the other approaches, seems to offer a logical, quantitative basis for setting Allowed Outage Times (AOTs) and Surveillance Test Intervals (STIs) for some plant components and systems. The most attractive feature of this approach is that it directly links the AOTs and STIs with the risk associated with the operation of the plant. This would focus the plant operator's and the regulatory agency's attention on the most risk-significant components of the plant. A series of practical issues related to the level of detail and content of the plant PRAs, requirements for the review of these PRAs, and monitoring cf the plant's performance by the regulatory agency must be resolved before the approach could be implemented. Future efforts will examine the other three approaches and their practicality before firm conclusions are drawn regarding the viability of any of these approaches

  16. A new approach on anti-vortex devices at water intakes including a submerged water jet

    Science.gov (United States)

    Tahershamsi, Ahmad; Rahimzadeh, Hassan; Monshizadeh, Morteza; Sarkardeh, Hamed

    2018-04-01

    A new approach on anti-vortex methods as hydraulic-based anti-vortex was investigated experimentally in the present study. In the investigated method, a submerged water jet is used as the anti-vortex mechanism. The added jet acts as a source of external momentum. This leads to change the intake-induced hydrodynamic pattern in the near-field of the intake structure, which can prevent formation of undesirable intake vortices. The experiments were carried out on a horizontal pipe intake. By performing 570 test cases in two different categories, including the inclined jet with respect to the axis of the intake, and the inclined jet with respect to the water surface, the effects of the jet inclination angle on the anti-vortex performance were investigated. It was found that the inclined jet with respect to the water surface is the best alternative to consider as the water jet injection pattern. Results showed that using the inclined jet with respect to the water surface can simply reduce the amounts of the expected water jet momentum more than 50% compared to that of the similar condition of the horizontal injection pattern. Moreover, it was concluded that the intake critical submergence can easily be minimized using the inclined jet with respect to the water surface.

  17. Anti-idiotypic antibodies directed against anti-HBs among the patients with chronic hepatitis B.

    Science.gov (United States)

    Kobayashi, K; Suzuki, H; Ueno, Y; Nagatomi, R; Kanno, A; Otsuki, M; Toyota, T

    1990-08-01

    Anti-idiotypic antibodies (anti-Id) against anti-HBs were found in the sera of patients with chronic hepatitis type B. Anti-idiotypic antibodies were detected by an enzyme-linked immunosorbent assay using horseradish peroxidase conjugated mouse monoclonal anti-HBs. Ten of 72 HBsAg positive sera contained anti-Id (13.9%). The prevalence of anti-Id did not appear to correlate with HBeAg/anti-HBe system. However, HB virus specific DNA polymerase activity was significantly higher in anti-Id positive sera. In the sera obtained from the patients treated with predonisolone before, anti-Id positive rate was higher than that in the patients without a history of predonisolone therapy. These results suggest that anti-Id may be related to the immunoregulatory mechanism of HB virus replication.

  18. The anti-CMS technique for genome-wide mapping of 5-hydroxymethylcytosine.

    Science.gov (United States)

    Huang, Yun; Pastor, William A; Zepeda-Martínez, Jorge A; Rao, Anjana

    2012-10-01

    5-Hydroxymethylcytosine (5hmC) is a recently discovered base in the mammalian genome, produced upon oxidation of 5-methylcytosine (5mC) in a process catalyzed by TET proteins. The biological functions of 5hmC and further oxidation products of 5mC are under intense investigation, as they are likely intermediates in DNA demethylation pathways. Here we describe a novel protocol to profile 5hmC at a genome-wide scale. This approach is based on sodium bisulfite-mediated conversion of 5hmC to cytosine-5-methylenesulfonate (CMS); CMS-containing DNA fragments are then immunoprecipitated using a CMS-specific antiserum. The anti-CMS technique is highly specific with a low background, and is much less dependent on 5hmC density than anti-5hmC immunoprecipitation (IP). Moreover, it does not enrich for CA and CT repeats, as noted for 5hmC DNA IP using antibodies to 5hmC. The anti-CMS protocol takes 3 d to complete.

  19. Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks.

    Science.gov (United States)

    Carbonell, Felix; Bellec, Pierre; Shmuel, Amir

    2011-01-01

    The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti

  20. Systemic treatment with n-6 polyunsaturated fatty acids attenuates EL4 thymoma growth and metastasis through enhancing specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines.

    Science.gov (United States)

    Salem, Mohamed Labib

    2005-06-01

    Recently, there has been a great interest in the effects of different types of n-6 polyunsaturated acids (n-6 PUFAs) upon the immune system and cancer development. However, the effects of n-6 PUFAs are still controversial and as yet undefined. The present study aimed to investigate the anti-tumor effects of n-6 PUFAs against EL4 thymoma and the associated immune mechanisms. To this, sesame oil, a vegetable oil enriched with n-6 PUFAs, or free linoleic acid (LA) were administered intraperitoneally into C57BL/6 mice before and after challenge with EL4 lymphoma cells. Treatment with either sesame oil or LA attenuated the growth and metastasis of EL4 lymphoma. The anti-tumor effect of LA was superior to that of sesame oil, and associated with an increase in the survival rate of the tumor-bearing mice. In addition, both sesame oil and LA showed dose-dependent anti-lymphoma growth in vitro. Treatment with LA generated significant increases in the anti-lymphoma cytolytic and cytostatic activities of T cells and macrophages, respectively, and enhanced production of IL-2 and IFN-gamma while decreased production of IL-4, IL-6 and IL-10. In summation, the results suggest that n-6 PUFAs, represented by LA, can attenuate EL4 lymphoma growth and metastasis through enhancing the specific and non-specific anti-tumor cytolytic activities and production of TH1 cytokines. These findings might be of great importance for a proper design of systemic nourishment with PUFAs emulsions for cancer patients.

  1. Proteolysis breaks tolerance toward intact α345(IV) collagen, eliciting novel anti-GBM autoantibodies specific for α345NC1 hexamers

    Science.gov (United States)

    Olaru, Florina; Wang, Xu-Ping; Luo, Wentian; Ge, Linna; Miner, Jeffrey H; Kleinau, Sandra; Geiger, Xochiquetzal J.; Wasiluk, Andrew; Heidet, Laurence; Kitching, A. Richard; Borza, Dorin-Bogdan

    2012-01-01

    Goodpasture disease is an autoimmune kidney disease mediated by autoAbs against NC1 monomers of α3(IV) collagen that bind to the glomerular basement membrane (GBM), usually causing rapidly progressive glomerulonephritis. We identified a novel type of human IgG4-restricted anti-GBM autoAbs associated with mild non-progressive glomerulonephritis, which specifically targeted α345NC1 hexamers but not α3NC1 monomers. The mechanisms eliciting these anti-GBM autoAbs were investigated in mouse models recapitulating this phenotype. Wild type and FcγRIIB−/− mice immunized with autologous murine GBM NC1 hexamers produced mouse IgG1-restricted autoAbs specific for α345NC1 hexamers, which bound to the GBM in vivo but did not cause glomerulonephritis. In these mice, intact collagen IV from murine GBM was not immunogenic. However, in Col4a3−/− Alport mice, both intact collagen IV and NC1 hexamers from murine GBM elicited IgG antibodies specific for α3α4α5NC1 hexamers, which were not subclass restricted. As heterologous antigen in COL4A3-humanized mice, murine GBM NC1 hexamers elicited mouse IgG1, IgG2a and IgG2b autoAbs specific for α345NC1 hexamers and induced anti-GBM Ab glomerulonephritis. These findings indicate that tolerance toward autologous intact α3α4α5(IV) collagen is established in hosts expressing this antigen, even though autoreactive B cells specific for α345NC1 hexamers are not purged from their repertoire. Proteolysis selectively breaches this tolerance by generating autoimmunogenic α3α4α5NC1 hexamers. This provides a mechanism eliciting autoAbs specific for α345NC1 hexamers, which are restricted to non-inflammatory IgG subclasses and non-nephritogenic. In Alport syndrome, lack of tolerance toward α3α4α5(IV) collagen promotes production of alloantibodies to α345NC1 hexamers, including pro-inflammatory IgG subclasses which mediate post-transplant anti-GBM nephritis. PMID:23303673

  2. Telomerase reverse transcriptase mediated immortalization of human bone marrow stromal cells

    Directory of Open Access Journals (Sweden)

    Yong Teng

    2014-02-01

    Full Text Available Primary human bone marrow stromal cells (hMSCs were transfected with human telomerase reverse transcriptase (hTERT gene with lipofection method. The hTERT transfected hMSCs of passage 100 underwent chondrogenesis induction with dexamethasone, transforming the growth factor β and vitamin C, osteogenesis induction with dexamethasone, β glycerophosphoric acid and vitamin C, and cardiomyocyte induction with 5-azacytidine. After 7, 14, 21 and 28 days of induction, immunocytochemistry was performed to detect the expressions of type I and II collagen and osteocalcin, and alizarin red staining was performed to detect the bone nodule formation in osteogenesis induction. Immunocytochemistry was carried out to detect the striated muscle actin expression in cardiomyocytes. The hMSCs undergoing successful transfection were positive for the hTERT. The hTERT transfected cells were grown in vitro successfully and passaged for 136 generations. Results showed that these cells could be induced to differentiate into chondrocytes, bone and myocardial cells. Introduction of exogenous hTERT into hMSCs could achieve immortalized hMSCs with the potential of multi-directional differentiation. Thus, these cells could be applied as seed cells in tissue engineering.

  3. Anti-ageing active ingredients from herbs and nutraceuticals used in traditional Chinese medicine: pharmacological mechanisms and implications for drug discovery.

    Science.gov (United States)

    Shen, Chun-Yan; Jiang, Jian-Guo; Yang, Li; Wang, Da-Wei; Zhu, Wei

    2017-06-01

    Ageing, an unanswered question in the medical field, is a multifactorial process that results in a progressive functional decline in cells, tissues and organisms. Although it is impossible to prevent ageing, slowing down the rate of ageing is entirely possible to achieve. Traditional Chinese medicine (TCM) is characterized by the nourishing of life and its role in anti-ageing is getting more and more attention. This article summarizes the work done on the natural products from TCM that are reported to have anti-ageing effects, in the past two decades. The effective anti-ageing ingredients identified can be generally divided into flavonoids, saponins, polysaccharides, alkaloids and others. Astragaloside, Cistanche tubulosa acteoside, icariin, tetrahydrocurcumin, quercetin, butein, berberine, catechin, curcumin, epigallocatechin gallate, gastrodin, 6-Gingerol, glaucarubinone, ginsenoside Rg1, luteolin, icarisid II, naringenin, resveratrol, theaflavin, carnosic acid, catalpol, chrysophanol, cycloastragenol, emodin, galangin, echinacoside, ferulic acid, huperzine, honokiol, isoliensinine, phycocyanin, proanthocyanidins, rosmarinic acid, oxymatrine, piceid, puerarin and salvianolic acid B are specified in this review. Simultaneously, chemical structures of the monomers with anti-ageing activities are listed, and their source, model, efficacy and mechanism are also described. The TCMs with anti-ageing function are classified according to their action pathways, including the telomere and telomerase, the sirtuins, the mammalian target of rapamycin, AMP-activated kinase and insulin/insulin-like growth factor-1 signalling pathway, free radicals scavenging and the resistance to DNA damage. Finally, Chinese compound prescription and extracts related to anti-ageing are introduced, which provides the basis and the direction for the further development of novel and potential drugs. This article is part of a themed section on Principles of Pharmacological Research of

  4. Influence of exposure to pesticides on telomere length in tobacco farmers: A biology system approach.

    Science.gov (United States)

    Kahl, Vivian Francília Silva; da Silva, Juliana; da Silva, Fernanda Rabaioli

    Various pesticides in the form of mixtures must be used to keep tobacco crops pest-free. Recent studies have shown a link between occupational exposure to pesticides in tobacco crops and increased damage to the DNA, mononuclei, nuclear buds and binucleated cells in buccal cells as well as micronuclei in lymphocytes. Furthermore, pesticides used specifically for tobacco crops shorten telomere length (TL) significantly. However, the molecular mechanism of pesticide action on telomere length is not fully understood. Our study evaluated the interaction between a complex mixture of chemical compounds (tobacco cultivation pesticides plus nicotine) and proteins associated with maintaining TL, as well as the biological processes involved in this exposure by System Biology tools to provide insight regarding the influence of pesticide exposure on TL maintenance in tobacco farmers. Our analysis showed that one cluster was associated with TL proteins that act in bioprocesses such as (i) telomere maintenance via telomere lengthening; (ii) senescence; (iii) age-dependent telomere shortening; (iv) DNA repair (v) cellular response to stress and (vi) regulation of proteasome ubiquitin-dependent protein catabolic process. We also describe how pesticides and nicotine regulate telomere length. In addition, pesticides inhibit the ubiquitin proteasome system (UPS) and consequently increase proteins of the shelterin complex, avoiding the access of telomerase in telomere and, nicotine activates UPS mechanisms and promotes the degradation of human telomerase reverse transcriptase (hTERT), decreasing telomerase activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Anti-mutated citrullinated vimentin (anti-MCV) and anti-65 kDa heat shock protein (anti-hsp65): new biomarkers in ankylosing spondylitis.

    Science.gov (United States)

    Bodnár, Nóra; Szekanecz, Zoltán; Prohászka, Zoltán; Kemény-Beke, Adám; Némethné-Gyurcsik, Zsuzsanna; Gulyás, Katalin; Lakos, Gabriella; Sipka, Sándor; Szántó, Sándor

    2012-01-01

    Citrullination as well as anti-citrullinated protein/peptide antibodies (ACPA) have been implicated in the pathogenesis of rheumatoid arthritis (RA). While ACPAs are specific and sensitive markers for RA, there have been hardly any reports regarding ACPAs in ankylosing spondylitis (AS). The possible role of antibodies to Mycobacterial 65 kDa heat shock protein (hsp65) has not been characterized in AS. As new laboratory biomarkers of AS are needed, we investigated the prevalence of anti-mutated citrullinated vimentin (MCV) and anti-hsp65 antibodies in AS. Altogether 43 AS and 44 healthy controls were included in the study. Anti-MCV and anti-hsp65 were determined in sera by commercial and in-house ELISA, respectively. Serum autoantibody levels were correlated with ESR, CRP, HLA-B27 status, smoking habits, pain intensity, BASDAI, BASFI and BASMI indices. Patients with AS had significantly higher serum anti-MCV levels (17.3 U/mL, range: 8.3-31.5 U/mL) in comparison to healthy subjects (8.9 U/mL, range: 5.4-13.3 U/mL) (p20 U/mL). The mean anti-hsp65 concentration in AS sera was 124.8 AU/mL (range: 27.2-1000 AU/mL), while controls exerted significantly lower anti-hsp65 levels (mean: 51.8 AU/mL; range: 22.5-88.5 AU/mL) (p<0.001). Correlation analysis revealed that both anti-MCV positivity (r=0.613; p=0.012) and absolute serum anti-MCV levels (r=0.553; p=0.021) correlated with anti-hsp65 levels. Anti-MCV positivity also correlated with ESR (r=0.437; p=0.03). Anti-MCV and anti-hsp65 may be novel biomarkers in AS. Copyright © 2011. Published by Elsevier SAS.

  6. Anti-Idiotypic Antibodies Specific to prM Monoantibody Prevent Antibody Dependent Enhancement of Dengue Virus Infection

    Directory of Open Access Journals (Sweden)

    Miao Wang

    2017-05-01

    Full Text Available Dengue virus (DENV co-circulates as four serotypes (DENV1-4. Primary infection only leads to self-limited dengue fever. But secondary infection with another serotype carries a higher risk of increased disease severity, causing life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS. Serotype cross-reactive antibodies facilitate DENV infection in Fc-receptor-bearing cells by promoting virus entry via Fcγ receptors (FcγR, a process known as antibody dependent enhancement (ADE. Most studies suggested that enhancing antibodies were mainly specific to the structural premembrane protein (prM of DENV. However, there is still no effective drugs or vaccines to prevent ADE. In this study, we firstly confirmed that both DENV-2 infected human sera (anti-DENV-2 and DENV-2 prM monoclonal antibody (prM mAb could significantly enhance DENV-1 infection in K562 cells. Then we developed anti-idiotypic antibodies (prM-AIDs specific to prM mAb by immunizing of Balb/c mice. Results showed that these polyclonal antibodies can dramatically reduce ADE phenomenon of DENV-1 infection in K562 cells. To further confirm the anti-ADE effect of prM-AIDs in vivo, interferon-α and γ receptor-deficient mice (AG6 were used as the mouse model for DENV infection. We found that administration of DENV-2 prM mAb indeed caused a higher DENV-1 titer as well as interleukin-10 (IL-10 and alaninea minotransferase (ALT in mice infected with DENV-1, similar to clinical ADE symptoms. But when we supplemented prM-AIDs to DENV-1 challenged AG6 mice, the viral titer, IL-10 and ALT were obviously decreased to the negative control level. Of note, the number of platelets in peripheral blood of prM-AIDs group were significantly increased at day 3 post infection with DENV-1 compared that of prM-mAb group. These results confirmed that our prM-AIDs could prevent ADE not only in vitro but also in vivo, suggested that anti-idiotypic antibodies might be a new choice to be considered to

  7. Anti-Idiotypic Antibodies Specific to prM Monoantibody Prevent Antibody Dependent Enhancement of Dengue Virus Infection.

    Science.gov (United States)

    Wang, Miao; Yang, Fan; Huang, Dana; Huang, Yalan; Zhang, Xiaomin; Wang, Chao; Zhang, Shaohua; Zhang, Renli

    2017-01-01

    Dengue virus (DENV) co-circulates as four serotypes (DENV1-4). Primary infection only leads to self-limited dengue fever. But secondary infection with another serotype carries a higher risk of increased disease severity, causing life-threatening dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). Serotype cross-reactive antibodies facilitate DENV infection in Fc-receptor-bearing cells by promoting virus entry via Fcγ receptors (FcγR), a process known as antibody dependent enhancement (ADE). Most studies suggested that enhancing antibodies were mainly specific to the structural premembrane protein (prM) of DENV. However, there is still no effective drugs or vaccines to prevent ADE. In this study, we firstly confirmed that both DENV-2 infected human sera (anti-DENV-2) and DENV-2 prM monoclonal antibody (prM mAb) could significantly enhance DENV-1 infection in K562 cells. Then we developed anti-idiotypic antibodies (prM-AIDs) specific to prM mAb by immunizing of Balb/c mice. Results showed that these polyclonal antibodies can dramatically reduce ADE phenomenon of DENV-1 infection in K562 cells. To further confirm the anti-ADE effect of prM-AIDs in vivo , interferon-α and γ receptor-deficient mice (AG6) were used as the mouse model for DENV infection. We found that administration of DENV-2 prM mAb indeed caused a higher DENV-1 titer as well as interleukin-10 (IL-10) and alaninea minotransferase (ALT) in mice infected with DENV-1, similar to clinical ADE symptoms. But when we supplemented prM-AIDs to DENV-1 challenged AG6 mice, the viral titer, IL-10 and ALT were obviously decreased to the negative control level. Of note, the number of platelets in peripheral blood of prM-AIDs group were significantly increased at day 3 post infection with DENV-1 compared that of prM-mAb group. These results confirmed that our prM-AIDs could prevent ADE not only in vitro but also in vivo , suggested that anti-idiotypic antibodies might be a new choice to be considered to treat

  8. Design And Implementation Of Tool For Detecting Anti-Patterns In Relational Database

    Directory of Open Access Journals (Sweden)

    Gaurav Kumar

    2017-07-01

    Full Text Available Anti-patterns are poor solution to design and im-plementation problems. Developers may introduce anti-patterns in their software systems because of time pressure lack of understanding communication and or-skills. Anti-patterns create problems in software maintenance and development. Database anti-patterns lead to complex and time consuming query process-ing and loss of integrity constraints. Detecting anti-patterns could reduce costs efforts and resources. Researchers have proposed approaches to detect anti-patterns in software development. But not much research has been done about database anti-patterns. This report presents two approaches to detect schema design anti-patterns in relational database. Our first approach is based on pattern matchingwe look into potential candidates based on schema patterns. Second approach is a machine learning based approach we generate features of possible anti-patterns and build SVMbased classifier to detect them. Here we look into these four anti-patterns a Multi-valued attribute b Nave tree based c Entity Attribute Value and dPolymorphic Association . We measure precision and recall of each approach and compare the results. SVM-based approach provides more precision and recall with more training dataset.

  9. Immuno-therapy with anti-CTLA4 antibodies in tolerized and non-tolerized mouse tumor models.

    Directory of Open Access Journals (Sweden)

    Jonas Persson

    Full Text Available Monoclonal antibodies specific for cytotoxic T lymphocyte-associated antigen 4 (anti-CTLA4 are a novel form of cancer immunotherapy. While preclinical studies in mouse tumor models have shown anti-tumor efficacy of anti-CTLA4 injection or expression, anti-CTLA4 treatment in patients with advanced cancers had disappointing therapeutic benefit. These discrepancies have to be addressed in more adequate pre-clinical models. We employed two tumor models. The first model is based on C57Bl/6 mice and syngeneic TC-1 tumors expressing HPV16 E6/E7. In this model, the HPV antigens are neo-antigens, against which no central tolerance exists. The second model involves mice transgenic for the proto-oncogen neu and syngeneic mouse mammary carcinoma (MMC cells. In this model tolerance to Neu involves both central and peripheral mechanisms. Anti-CTLA4 delivery as a protein or expression from gene-modified tumor cells were therapeutically efficacious in the non-tolerized TC-1 tumor model, but had no effect in the MMC-model. We also used the two tumor models to test an immuno-gene therapy approach for anti-CTLA4. Recently, we used an approach based on hematopoietic stem cells (HSC to deliver the relaxin gene to tumors and showed that this approach facilitates pre-existing anti-tumor T-cells to control tumor growth in the MMC tumor model. However, unexpectedly, when used for anti-CTLA4 gene delivery in this study, the HSC-based approach was therapeutically detrimental in both the TC-1 and MMC models. Anti-CTLA4 expression in these models resulted in an increase in the number of intratumoral CD1d+ NKT cells and in the expression of TGF-β1. At the same time, levels of pro-inflammatory cytokines and chemokines, which potentially can support anti-tumor T-cell responses, were lower in tumors of mice that received anti-CTLA4-HSC therapy. The differences in outcomes between the tolerized and non-tolerized models also provide a potential explanation for the low efficacy

  10. New Antimicrobial Approaches: Reuse of Old Drugs.

    Science.gov (United States)

    Savoia, Dianella

    2016-01-01

    The global situation of antibiotic resistance and the reduction of investments in antibiotics research by the pharmaceutical industry suggest the need for specific cost-effective approaches in order to identify drugs for the therapy of many microbial infections. Among the viable alternative anti-infective compounds, drug repurposing, i.e. to find new uses for previously approved medicines, revealed some encouraging in vitro and in vivo results. In this article the reader has a panoramic view of the updated references on the strategies encountered during the repositioning process. New findings are reported about the anti-microbial efficacy of antipsychotic, cardiovascular, anti-inflammatory and anti-neoplastic drugs. This approach may enhance the portfolio of pharmaceutical companies reducing the need for pharmacokinetic and toxicity studies; the development of new uses of old drugs for different infectious diseases, leading to better health for patients, also in poor, tropical countries, appears to be having better results.

  11. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite of extensive proliferation

    International Nuclear Information System (INIS)

    Abdallah, Basem M.; Haack-Sorensen, Mandana; Burns, Jorge S.; Elsnab, Birgitte; Jakob, Franz; Hokland, Peter; Kassem, Moustapha

    2005-01-01

    Human bone marrow mesenchymal stem cells (hMSC) represent a population of stem cells that are capable of differentiation into multiple lineages. However, these cells exhibit senescence-associated growth arrest and phenotypic changes during long-term in vitro culture. We have recently demonstrated that overexpression of human telomerase reverse transcriptase (hTERT) in hMSC reconstitutes telomerase activity and extends life span of the cells [Nat. Biotechnol. 20 (2002) 592]. In the present study, we have performed extensive characterization of three independent cell lines derived from the parental hMSC-TERT cell line based on different plating densities during expansion in culture: 1:2 (hMSC-TERT2), 1:4 (hMSC-TERT4), and 1:20 (hMSC-TERT20). The 3 cell lines exhibited differences in morphology and growth rates but they all maintained the characteristics of self-renewing stem cells and the ability to differentiate into multiple mesoderm-type cell lineages: osteoblasts, adipocytes, chondrocytes, and endothelial-like cells over a 3-year period in culture. Also, surface marker studies using flow cytometry showed a pattern similar to that known from normal hMSC. Thus, telomerization of hMSC by hTERT overexpression maintains the stem cell phenotype of hMSC and it may be a useful tool for obtaining enough number of cells with a stable phenotype for mechanistic studies of cell differentiation and for tissue engineering protocols

  12. Cell type-specific anti-cancer properties of valproic acid: independent effects on HDAC activity and Erk1/2 phosphorylation

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Skladchikova, Galina; Lepekhin, Eugene E

    2010-01-01

    lines (BT4C, BT4Cn, U87MG, N2a, PC12-E2, CSML0, CSML100, HeLa, L929, Swiss 3T3). Results: VPA induced significant histone deacetylase (HDAC) inhibition in most of the cell lines, but the degree of inhibition was highly cell type-specific. Moreover, cell growth, motility and the degree of Erk1......ABSTRACT: BACKGROUND: The anti-epileptic drug valproic acid (VPA) has attracted attention as an anti-cancer agent. Methods: The present study investigated effects of VPA exposure on histone deacetylase (HDAC) inhibition, cell growth, cell speed, and the degree of Erk1/2 phosphorylation in 10 cell....../2 phosphorylation were inhibited, activated, or unaffected by VPA in a cell type-specific manner. Importantly, no relationship was found between the effects of VPA on HDAC inhibition and changes in the degree of Erk1/2 phosphorylation, cell growth, or motility. In contrast, VPA-induced modulation of the MAPK...

  13. An Anti-proteome Nanobody Library Approach Yields a Specific Immunoassay for Trypanosoma congolense Diagnosis Targeting Glycosomal Aldolase.

    Directory of Open Access Journals (Sweden)

    Steven Odongo

    2016-02-01

    Full Text Available Infectious diseases pose a severe worldwide threat to human and livestock health. While early diagnosis could enable prompt preventive interventions, the majority of diseases are found in rural settings where basic laboratory facilities are scarce. Under such field conditions, point-of-care immunoassays provide an appropriate solution for rapid and reliable diagnosis. The limiting steps in the development of the assay are the identification of a suitable target antigen and the selection of appropriate high affinity capture and detection antibodies. To meet these challenges, we describe the development of a Nanobody (Nb-based antigen detection assay generated from a Nb library directed against the soluble proteome of an infectious agent. In this study, Trypanosoma congolense was chosen as a model system.An alpaca was vaccinated with whole-parasite soluble proteome to generate a Nb library from which the most potent T. congolense specific Nb sandwich immunoassay (Nb474H-Nb474B was selected. First, the Nb474-homologous sandwich ELISA (Nb474-ELISA was shown to detect experimental infections with high Positive Predictive Value (98%, Sensitivity (87% and Specificity (94%. Second, it was demonstrated under experimental conditions that the assay serves as test-of-cure after Berenil treatment. Finally, this assay allowed target antigen identification. The latter was independently purified through immuno-capturing from (i T. congolense soluble proteome, (ii T. congolense secretome preparation and (iii sera of T. congolense infected mice. Subsequent mass spectrometry analysis identified the target as T. congolense glycosomal aldolase.The results show that glycosomal aldolase is a candidate biomarker for active T. congolense infections. In addition, and by proof-of-principle, the data demonstrate that the Nb strategy devised here offers a unique approach to both diagnostic development and target discovery that could be widely applied to other infectious

  14. Fuselage mounted anti-collision lights utilizing high power LEDs

    Science.gov (United States)

    Lundberg, John; Machi, Nicolo; Mangum, Scott; Singer, Jeffrey

    2005-09-01

    As LEDs continue to improve in efficacy and total light output, they are increasingly finding their way in to new applications in the aviation industry as well as adjacent markets. One function that is particularly challenging and may reap substantial benefits from this new technology is the fuselage mounted anti-collision light. Anti-collision lights provide conspicuity for the aircraft by periodically emitting bright flashes of light. The color, light distribution and intensity levels for these lights are all closely regulated through Federal Aviation Regulation (FAR) documents. These lighting requirements, along with thermal, environmental and aerodynamic requirements, drive the overall design. In this paper, we will discuss the existing technologies used in anti-collision lights and the advantages and challenges associated with an LED solution. Particular attention will be given to the optical, thermal, electrical and aerodynamic aspects associated with an LED approach. A specific case study will be presented along with some of the challenges that have arisen during the design process. These challenges include the addition of an integrated covert anti-collision lighting.

  15. Effects of exogenous ATM gene on mRNA expression of human telomerase reverse transcriptase in AT cells induced by irradiation

    International Nuclear Information System (INIS)

    Sheng Fangjun; Cao Jianping; Luo Jialin; Zhu Wei; Liu Fenju; Feng Shuang; Song Jianyuan; Li Chong

    2005-01-01

    The study is to observe effects of exogenous ATM gene on mRNA expression of hTERT (human telomerase reverse transcriptase) in fibroblast cells (AT5BIVA cells) from skin of Ataxia-telangiectasia (AT) patients and to study the regulation of ATM to hTERT. Using reverse transcription polymerase chain reaction (RT-PCR), mRNA expression of hTERT in AT, PEBS7-AT, ATM + -AT and GM cells irradiated with 0 and 3 Gy of 60 Co γ-rays were examined respectively. The difference of the mRNA expression of hTERT among AT, PEBS7-AT, ATM + -AT and GM cells were analyzed. Difference of the mRNA expression of hTERT between 0 Gy and 3 Gy groups was analyzed, too. The results showed that the mRNA expression of hTERT in GM cells was negative, but positive mRNA expression of hTERT in AT cells. The mRNA expression of hTERT in ATM + -AT cells decreased significantly (p 60 Co γ-rays, the mRNA expression of hTERT in GM cells was positive, and that in AT, PEBS7-AT, ATM + -AT cells was increased (p + -AT cells was lower than that in AT and PEBS7-AT cells respectively (p<0.05). It is postulated that exogenous ATM is able to downregulate the mRNA expression of hTERT in AT cells, ionizing radiation can induce the mRNA expression of hTERT in cells and telomerase anticipates the repair of damaged DNA. (authors)

  16. Use of radiolabeled monoclonal anti-B1 antibody for B lymphocyte imaging in Rhesus monkeys

    International Nuclear Information System (INIS)

    Letvin, N.L.; Zalutsky, M.R.; Chalifoux, L.V.; Atkins, H.L.

    1987-01-01

    Imaging tissues rich in B lymphocytes in man using a radiolabeled monoclonal anti-B cell antibody would be extremely useful in the clinical staging of non-Hodgkins lymphomas. Studies were done in rhesus monkeys using radiolabeled monoclonal anti-B1 antibody to determine the feasibility of such an approach. Immunohistologic studies demonstrated that infused monoclonal anti-B1 binds in vivo with specificity to B cells in lymph nodes and spleen. The kinetics of clearance of 131 I-labeled anti-B1 were determined. The B lymphocyte-rich spleen could be readily visualized by gamma camera scanning without significant background and without the need for image intensification or blood background subtraction techniques. These data support the feasibility of using anti-B1 for staging B cell lymphomas in man. (author)

  17. Approaches to the diagnosis and management of patients with a history of nonsteroidal anti-inflammatory drug-related urticaria and angioedema.

    Science.gov (United States)

    Kowalski, Marek L; Woessner, Katharine; Sanak, Marek

    2015-08-01

    Nonsteroidal anti-inflammatory drug (NSAID)-induced urticarial and angioedema reactions are among the most commonly encountered drug hypersensitivity reactions in clinical practice. Three major clinical phenotypes of NSAID-induced acute skin reactions manifesting with angioedema, urticaria, or both have been distinguished: NSAID-exacerbated cutaneous disease, nonsteroidal anti-inflammatory drug-induced urticaria/angioedema (NIUA), and single NSAID-induced urticaria and angioedema. In some patients clinical history alone might be sufficient to establish the diagnosis of a specific type of NSAID hypersensitivity, whereas in other cases oral provocation challenges are necessary to confirm the diagnosis. Moreover, classification of the type of cutaneous reaction is critical for proper management. For example, in patients with single NSAID-induced reactions, chemically nonrelated COX-1 inhibitors can be safely used. However, there is cross-reactivity between the NSAIDs in patients with NSAID-exacerbated cutaneous disease and NIUA, and thus only use of selective COX-2 inhibitors can replace the culprit drug if the chronic treatment is necessary, although aspirin desensitization will allow for chronic treatment with NSAIDs in some patients with NIUA. In this review we present a practical clinical approach to the patient with NSAID-induced urticaria and angioedema. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  18. A gene expression signature classifying telomerase and ALT immortalization reveals an hTERT regulatory network and suggests a mesenchymal stem cell origin for ALT

    DEFF Research Database (Denmark)

    Lafferty-Whyte, K; Cairney, C J; Will, M B

    2009-01-01

    Telomere length is maintained by two known mechanisms, the activation of telomerase or alternative lengthening of telomeres (ALT). The molecular mechanisms regulating the ALT phenotype are poorly understood and it is unknown how the decision of which pathway to activate is made at the cellular le......TERT in different tumour types and normal tissues. We also show evidence to suggest a novel mesenchymal stem cell origin for ALT immortalization in cell lines and mesenchymal tissues....

  19. Detecting Anti Ad-blockers in the Wild

    Directory of Open Access Journals (Sweden)

    Mughees Muhammad Haris

    2017-07-01

    Full Text Available The rise of ad-blockers is viewed as an economic threat by online publishers who primarily rely on online advertising to monetize their services. To address this threat, publishers have started to retaliate by employing anti ad-blockers, which scout for ad-block users and react to them by pushing users to whitelist the website or disable ad-blockers altogether. The clash between ad-blockers and anti ad-blockers has resulted in a new arms race on the Web. In this paper, we present an automated machine learning based approach to identify anti ad-blockers that detect and react to ad-block users. The approach is promising with precision of 94.8% and recall of 93.1%. Our automated approach allows us to conduct a large-scale measurement study of anti ad-blockers on Alexa top-100K websites. We identify 686 websites that make visible changes to their page content in response to ad-block detection. We characterize the spectrum of different strategies used by anti ad-blockers. We find that a majority of publishers use fairly simple first-party anti ad-block scripts. However, we also note the use of third-party anti ad-block services that use more sophisticated tactics to detect and respond to ad-blockers.

  20. Eradication of melanoma in vitro and in vivo via targeting with a Killer-Red-containing telomerase-dependent adenovirus.

    Science.gov (United States)

    Takehara, Kiyoto; Yano, Shuya; Tazawa, Hiroshi; Kishimoto, Hiroyuki; Narii, Nobuhiro; Mizuguchi, Hiroyuki; Urata, Yasuo; Kagawa, Shunsuke; Fujiwara, Toshiyoshi; Hoffman, Robert M

    2017-08-18

    Melanoma is a highly recalcitrant cancer and transformative therapy is necessary for the cure of this disease. We recently developed a telomerase-dependent adenovirus containing the fluorescent protein Killer-Red. In the present report, we first determined the efficacy of Killer-Red adenovirus combined with laser irradiation on human melanoma cell lines in vitro. Cell viability of human melanoma cells was reduced in a dose-dependent and irradiation-time-dependent manner. We used an intradermal xenografted melanoma model in nude mice to determine efficacy of the Killer-Red adenovirus. Intratumoral injection of Killer-Red adenovirus, combined with laser irradiation, eradicated the melanoma indicating the potential of a new paradigm of cancer therapy.

  1. Anti-cyclic Citrullinated Peptide Antibody (Anti-CCP and Diagnostic Value for Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Mehmet Agilli

    2014-02-01

    Full Text Available Rheumatoid arthritis (RA is an inflammatory multisystem disease of unknown etiology characterized by chronic destructive synovitis. It and #8217;s prevalence is about 1% all over the world. Serologic markers are also important beside some clinical situations upon RA diagnosis. Today, the most commonly used laboratory test is rheumatoid factor (RF in patients with suspected RA. RF is sensitive but not a specific biomarker for diagnosing RA. Early diagnosis of RA is essential to prevent of progressive joint damage. In recent years, anticyclic citrullinated peptide/protein antibody (anti-CCP attracts the attention as a remarkable biomarker for early diagnosis. Anti-CCP which is a family of anti-citrullinated protein antibodies (ACPA family, showed quite satisfactory specificity in the diagnosis of RA. Due to the prescence of ACPA was included to 2010 RA diagnostic criteria, in a manner of speaking, importance of anti-CCP was registered. [TAF Prev Med Bull 2014; 13(1.000: 83-88

  2. Non-financial reports, anti-corruption performance and corporate reputation

    Directory of Open Access Journals (Sweden)

    Maider Aldaz

    2015-12-01

    Full Text Available Objective – This paper analyzes whether the anti-corruption reporting practices of the companies are a reflection of adequate anti-corruption systems put in place by companies, or whether the disclosure is merely a tool for companies to improve their reputation and thus maintain their legitimacy. Design/methodology/approach – We apply the PLS method to the collected data in a content analysis of the sustainability reports of 31 companies within the Ibex 35 in December 2008. Theoretical foundation – In the analysis, we use both the legitimacy theory and the stakeholder theory, because we consider them as complementary theories and consistent with our approach. Findings – The results show that regarding the corruption issue there is a negative relationship between disclosure and performance, that is, companies with poor performance disclose more. On the other hand, the results reflect the existence of a positive relationship between disclosure and reputation, i.e. report information to interested parties enhances the perception of stakeholders about the company. This finding could be justified by the above two theories. However, we can’t conclude that companies with good performance disclose information to key stakeholders in order to strengthen relations, as stated by the stakeholder theory. Practical implications – this study provides evidence of how companies use non-financial reporting-specifically anti-corruption data- to improve corporate reputation. It is also noted that reporting practices not necessarily have to be in accordance with the actual anti-corruption practices of firms.

  3. Specific interaction of radioactive anti-androgen TSAA-291 with androgen receptor in rat prostates

    International Nuclear Information System (INIS)

    Sudo, K.; Yoshida, K.; Nakayama, R.

    1982-01-01

    A steroidal anti-androgen TSSA-291 (16β-ethyl-17β-hydroxy-4-oestren-3-one) bound to a macromolecular component in the cytosol of rat ventral prostates with high affinity (Kdsub(d) = 5.0 x 10 -9 M) and in a saturable manner. The number of binding sites was comparable to that for 5α-dihydrotestosterone (5α-DHT). [ 3 H]TSAA-291 binding was effectively displaced by unlabelled 5α-DHT, 19-nortestosterone and cyproterone acetate but to a lesser degree by corticosterone. Glycerol density-gradient centrifugation analysis revealed that the sedimentation coefficient of the [ 3 H]-TSAA-291-macromolecule complex was 3-4.5 S. However, when the unlabelled cytosol was fractionated by glycerol density-gradient centrifugation before the binding of [ 3 H]TSAA-291 was examined, specific binding of [ 3 H]TSAA-291 was observed in fractions corresponding to 8-10 S. Binding of the [ 3 H]TSAA-291-macromolecules comples to prostatic nuclei and DNA-cellulose was considerably less than binding by the [ 3 H]5α-DHT-macromolecule complex. Instability of the TSAA-291 binding coponent on heat treatment before and after complex formation was also revealed and the results are discussed in terms of the anti-androgenic activity of TSAA-291. (author)

  4. Similarities between long interspersed element-1 (LINE-1) reverse transcriptase and telomerase.

    Science.gov (United States)

    Kopera, Huira C; Moldovan, John B; Morrish, Tammy A; Garcia-Perez, Jose Luis; Moran, John V

    2011-12-20

    Long interspersed element-1 (LINE-1 or L1) retrotransposons encode two proteins (ORF1p and ORF2p) that contain activities required for conventional retrotransposition by a mechanism termed target-site primed reverse transcription. Previous experiments in XRCC4 or DNA protein kinase catalytic subunit-deficient CHO cell lines, which are defective for the nonhomologous end-joining DNA repair pathway, revealed an alternative endonuclease-independent (ENi) pathway for L1 retrotransposition. Interestingly, some ENi retrotransposition events in DNA protein kinase catalytic subunit-deficient cells are targeted to dysfunctional telomeres. Here we used an in vitro assay to detect L1 reverse transcriptase activity to demonstrate that wild-type or endonuclease-defective L1 ribonucleoprotein particles can use oligonucleotide adapters that mimic telomeric ends as primers to initiate the reverse transcription of L1 mRNA. Importantly, these ribonucleoprotein particles also contain a nuclease activity that can process the oligonucleotide adapters before the initiation of reverse transcription. Finally, we demonstrate that ORF1p is not strictly required for ENi retrotransposition at dysfunctional telomeres. Thus, these data further highlight similarities between the mechanism of ENi L1 retrotransposition and telomerase.

  5. Institutional Approach to Anti-corruption Efforts in Taiwan, Hong Kong and Mainland China: Improving the Norms, Strengthening the Ethics

    Directory of Open Access Journals (Sweden)

    Olga Yurievna Adams

    2017-04-01

    Full Text Available This paper explores institutional and normative developments in the area of anti-corruption efforts in three Chinese-speaking countries/territories with the latest emphasis on fostering all-encompassing corruption-intolerable environment. Hong Kong’s experience is often regarded as the high standard in establishing efficient anti-corruption institutions in inhospitable conditions. Over relatively short period of time – Hong Kong’s Independent Commission Against Corruption (ICAC was established in 1974 – the city made great strides against official corruption and has upheld its clean reputation ever since. ICAC’s former Deputy Commissioner and Head of Operations cites the 2000 public opinion poll in which Hong Kong residents named ICAC’s establishment the 6th most important event in the city’s 1 50-year history. ICAC is an example of a successful reactive approach to anti-corruption. Taiwan has its own success story. The Control Yuan – part of a unique five-branch government structure – combines watchdog and ombudsman functions which nowadays are considered prerequisite for successful fight against corruption and even more important for preventive efforts. This institution – supported by legitimacy of tradition – has a potential to become a coordinating center for comprehensive anti-corruption policy with more specialized agencies handling various aspects of corruption and economic crimes. Lately the Control Yuan’s role in Taiwan’s political structure has been debated, but it remains an example of effective proactive approach to fighting malfeasance. China’s anti-corruption strategy for 2013-17 aims to put forth a “dense net” of regulations, institutions and ethic norms towards country-wide corruption-intolerable environment. Preventive measures that include citizens’ awareness-raising and increasing ethical requirements of government workers warrant additional attention.

  6. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Blin, Kai; Kim, Hyun Uk; Medema, Marnix H.

    2017-01-01

    Many drugs are derived from small molecules produced by microorganisms and plants, so-called natural products. Natural products have diverse chemical structures, but the biosynthetic pathways producing those compounds are often organized as biosynthetic gene clusters (BGCs) and follow a highly...... conserved biosynthetic logic. This allows for the identification of core biosynthetic enzymes using genome mining strategies that are based on the sequence similarity of the involved enzymes/genes. However, mining for a variety of BGCs quickly approaches a complexity level where manual analyses...... are no longer possible and require the use of automated genome mining pipelines, such as the antiSMASH software. In this review, we discuss the principles underlying the predictions of antiSMASH and other tools and provide practical advice for their application. Furthermore, we discuss important caveats...

  7. Fragment-based approaches to anti-HIV drug discovery: state of the art and future opportunities.

    Science.gov (United States)

    Huang, Boshi; Kang, Dongwei; Zhan, Peng; Liu, Xinyong

    2015-12-01

    The search for additional drugs to treat HIV infection is a continuing effort due to the emergence and spread of HIV strains resistant to nearly all current drugs. The recent literature reveals that fragment-based drug design/discovery (FBDD) has become an effective alternative to conventional high-throughput screening strategies for drug discovery. In this critical review, the authors describe the state of the art in FBDD strategies for the discovery of anti-HIV drug-like compounds. The article focuses on fragment screening techniques, direct fragment-based design and early hit-to-lead progress. Rapid progress in biophysical detection and in silico techniques has greatly aided the application of FBDD to discover candidate agents directed at a variety of anti-HIV targets. Growing evidence suggests that structural insights on key proteins in the HIV life cycle can be applied in the early phase of drug discovery campaigns, providing valuable information on the binding modes and efficiently prompting fragment hit-to-lead progression. The combination of structural insights with improved methodologies for FBDD, including the privileged fragment-based reconstruction approach, fragment hybridization based on crystallographic overlays, fragment growth exploiting dynamic combinatorial chemistry, and high-speed fragment assembly via diversity-oriented synthesis followed by in situ screening, offers the possibility of more efficient and rapid discovery of novel drugs for HIV-1 prevention or treatment. Though the use of FBDD in anti-HIV drug discovery is still in its infancy, it is anticipated that anti-HIV agents developed via fragment-based strategies will be introduced into the clinic in the future.

  8. Fluorescent humanized anti-CEA antibody specifically labels metastatic pancreatic cancer in a patient-derived orthotopic xenograft (PDOX) mouse model

    Science.gov (United States)

    Lwin, Thinzar M.; Miyake, Kentaro; Murakami, Takashi; DeLong, Jonathan C.; Yazaki, Paul J.; Shivley, John E.; Clary, Bryan; Hoffman, Robert M.; Bouvet, Michael

    2018-03-01

    Specific tumor targeting can result in selective labeling of cancer in vivo for surgical navigation. In the present study, we show that the use of an anti-CEA antibody conjugated to the near-infrared (NIR) fluorescent dye, IRDye800CW, can selectively target and label pancreatic cancer and its metastases in a clinically relevant patient derived xenograft mouse model.

  9. Unique case of oligoastrocytoma with recurrence and grade progression: Exhibiting differential expression of high mobility group-A1 and human telomerase reverse transcriptase

    Science.gov (United States)

    Gandhi, Puneet; Khare, Richa; Niraj, Kavita; Garg, Nitin; Sorte, Sandeep K; Gulwani, Hanni

    2016-01-01

    Mixed gliomas, primarily oligoastrocytomas, account for about 5%-10% of all gliomas. Distinguishing oligoastrocytoma based on histological features alone has limitations in predicting the exact biological behavior, necessitating ancillary markers for greater specificity. In this case report, human telomerase reverse transcriptase (hTERT) and high mobility group-A1 (HMGA1); markers of proliferation and stemness, have been quantitatively analyzed in formalin-fixed paraffin-embedded tissue samples of a 34 years old patient with oligoastrocytoma. Customized florescence-based immunohistochemistry protocol with enhanced sensitivity and specificity is used in the study. The patient presented with a history of generalized seizures and his magnetic resonance imaging scans revealed infiltrative ill-defined mass lesion with calcified foci within the left frontal white matter, suggestive of glioma. He was surgically treated at our center for four consecutive clinical events. Histopathologically, the tumor was identified as oligoastrocytoma-grade II followed by two recurrence events and final progression to grade III. Overall survival of the patient without adjuvant therapy was more than 9 years. Glial fibrillary acidic protein, p53, Ki-67, nuclear atypia index, pre-operative neutrophil-lymphocyte ratio, are the other parameters assessed. Findings suggest that hTERT and HMGA1 are linked to tumor recurrence and progression. Established markers can assist in defining precise histopathological grade in conjuction with conventional markers in clinical setup. PMID:27672647

  10. Analysis of "anti-crisis strategy" definition essence and its role in enterprise anti-crisis management

    Directory of Open Access Journals (Sweden)

    Тетяна Олександрівна Ставерська

    2016-12-01

    Full Text Available The analysis of existing research of the category essence of "anti-crisis strategy" is given, the main essential features are revealed. These features are best matching its content. Existing approaches to determine the definition of "anti-crisis strategy" are systematized and summarized. Based on the allocation of essential features of anti-crisis strategy, the author’s generalized definition of this category is formulated considering the trajectory of the turbulent processes in environment

  11. Anti-Ma and anti-Ma2-associated paraneoplastic neurological syndromes.

    Science.gov (United States)

    Ortega Suero, G; Sola-Valls, N; Escudero, D; Saiz, A; Graus, F

    Analyse the clinical profile, associated tumour types, and response to treatment of paraneoplastic neurological syndromes associated with antibodies against Ma proteins. A retrospective study of patients with antibodies against Ma proteins identified in a neuroimmunology laboratory of reference. Of the 32 patients identified, 20 showed reactivity against Ma2 only (anti-Ma2 antibodies), 11 against Ma1 and Ma2 (anti-Ma antibodies), and 1 with reactivity against Ma1 only (anti-Ma1 antibodies). The most common clinical presentations were limbic encephalopathy, diencephalic dysfunction, or brainstem encephalopathy, frequently appearing as a combination of these features. Three patients had isolated cerebellar dysfunction with anti-Ma antibodies, and 2 exhibited peripheral nervous system syndrome with anti-Ma2 antibodies. Testicular tumours were the most common neoplasms (40%) in the anti-Ma2 cases. In the group associated with anti-Ma1 antibodies, the most common were lung tumours (36%), followed by testicular tumours. All idiopathic cases were reactive to Ma2. The clinical outcome was significantly better in the anti-Ma2 group. The patient with anti-Ma1 presented with limbic encephalitis and brainstem dysfunction associated with lymphoepithelioma of the bladder. Specifically determining the different reactivities of anti-Ma protein antibodies in order to differentiate between Ma1 and Ma2 antibodies is important because anti-Ma2-associated paraneoplastic syndromes have a better outcome. Lastly, this study is the first to confirm that there may be cases that react exclusively to antibodies against Ma1. Copyright © 2016 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Rituximab for the treatment of refractory simultaneous anti-glomerular basement membrane (anti-GBM) and membranous nephropathy.

    Science.gov (United States)

    Bandak, Ghassan; Jones, Bruce A; Li, Jian; Yee, Jerry; Umanath, Kausik

    2014-02-01

    Antibody-mediated anti-glomerular basement membrane (anti-GBM) disease occurs rarely in the presence of another B-cell disorder, membranous nephropathy. The coexistence of these two autoimmune disorders would be anticipated to require differing, specific therapies targeted to each disease process. We describe a case of concomitant membranous nephropathy and anti-GBM disease in which conventional therapy, including steroids, plasmapheresis and cyclophosphamide, failed to attenuate the anti-GBM disease, yet responded to an alternative treatment of rituximab. This B-cell directed, monoclonal, chimeric antibody treatment substantially reduced anti-GBM antibody titers and led to discontinuation of plasmapheresis, while maintaining the remission of membranous nephropathy and anti-GBM disease.

  13. Targeting NK cells for anti-cancer immunotherapy: clinical and pre-clinical approaches

    Directory of Open Access Journals (Sweden)

    Sebastian eCarotta

    2016-04-01

    Full Text Available The recent success of checkpoint blockade has highlighted the potential of immunotherapy approaches for cancer treatment. While the majority of approved immunotherapy drugs target T cell subsets, it is appreciated that other components of the immune system have important roles in tumor immune-surveillance as well and thus represent promising additional targets for immunotherapy. Natural killer cells are the body’s first line of defense against infected or transformed cells as they kill target cells in an antigen-independent manner. Although several studies have clearly demonstrated the active role of NK cells in cancer-immune surveillance, only few clinically approved therapies currently exist that harness their potential. Our increased understanding of NK cell biology over the past few years has renewed the interest in NK cell based anti-cancer therapies, which has lead to a steady increase of NK cell based clinical and pre-clinical trials. Here, the role of NK cells in cancer immunesurveillance is summarized and several novel approaches to enhance NK cell cytotoxicity against cancer are discussed.

  14. Antigen-specific immature dendritic cell vaccine ameliorates anti-dsDNA antibody-induced renal damage in a mouse model.

    Science.gov (United States)

    Xia, Yumin; Jiang, Shan; Weng, Shenhong; Lv, Xiaochun; Cheng, Hong; Fang, Chunhong

    2011-12-01

    Dendritic cells (DCs) can inhibit immune response by clonal anergy when immature. Recent studies have shown that immature DCs (iDCs) may serve as a live cell vaccine after specific antigen pulse based on its potential of blocking antibody production. In this study, we aimed to investigate the effects of nuclear antigen-pulsed iDCs in the treatment of lupus-like renal damages induced by anti-dsDNA antibodies. iDCs were generated from haemopoietic stem cells in bone marrow and then pulsed in vitro with nuclear antigen. The iDC vaccine and corresponding controls were injected into mice with lupus-like renal damages. The evaluation of disease was monitored by biochemical parameters and histological scores. Anti-dsDNA antibody isotypes and T-lymphocyte-produced cytokines were analysed for elucidating therapeutic mechanisms. RESULTS; The mice treated with antigen-pulsed iDCs had a sustained remission of renal damage compared with those injected with non-pulsed iDCs or other controls, including decreased anti-dsDNA antibody level, less proteinuria, lower blood urea nitrogen and serum creatinine values, and improved histological evaluation. Analysis on isotypes of anti-dsDNA antibody showed that iDC vaccine preferentially inhibited the production of IgG3, IgG2b and IgG2a. Furthermore, administration of antigen-treated iDCs to mice resulted in significantly reduced IL-2, IL-4 and IL-12 and IFN-γ produced by T-memory cells. Conversely, the vaccination of antigen-pulsed mature DCs led to increased anti-dsDNA antibody production and an aggravation of lupus-like disease in the model. CONCLUSIONS; These results suggested the high potency of iDC vaccine in preventing lupus-like renal injuries induced by pathogenic autoantibodies.

  15. Recall of "The Real Cost" Anti-Smoking Campaign Is Specifically Associated With Endorsement of Campaign-Targeted Beliefs.

    Science.gov (United States)

    Kranzler, Elissa C; Gibson, Laura A; Hornik, Robert C

    2017-10-01

    Though previous research suggests the FDA's "The Real Cost" anti-smoking campaign has reduced smoking initiation, the theorized pathway of effects (through targeted beliefs) has not been evaluated. This study assesses the relationship between recall of campaign television advertisements and ad-specific anti-smoking beliefs. Respondents in a nationally representative survey of nonsmoking youths age 13-17 (n = 4,831) reported exposure to four The Real Cost advertisements and a fake ad, smoking-relevant beliefs, and nonsmoking intentions. Analyses separately predicted each targeted belief from specific ad recall, adjusting for potential confounders and survey weights. Parallel analyses with non-targeted beliefs showed smaller effects, strengthening claims of campaign effects. Recall of four campaign ads (but not the fake ad) significantly predicted endorsement of the ad-targeted belief (Mean β = .13). Two-sided sign tests indicated stronger ad recall associations with the targeted belief relative to the non-targeted belief (p < .05). Logistic regression analyses indicated that respondents who endorsed campaign-targeted beliefs were more likely to have no intention to smoke (p < .01). This study is the first to demonstrate a relationship between recall of ads from The Real Cost campaign and the theorized pathway of effects (through targeted beliefs). These analyses also provide a methodological template for showing campaign effects despite limitations of available data.

  16. Role of hTERT in apoptosis of cervical cancer induced by histone deacetylase inhibitor

    International Nuclear Information System (INIS)

    Wu, Peng; Meng, Li; Wang, Hui; Zhou, Jianfeng; Xu, Gang; Wang, Shixuan; Xi, Ling; Chen, Gang; Wang, Beibei; Zhu, Tao; Lu, Yunping; Ma, Ding

    2005-01-01

    Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase holoenzyme as well as the rate-limiting component of the telomerase enzyme complex. However, the role of the hTERT in apoptosis induced by histone deacetylase inhibitor has only been marginally addressed. For the first time, our study demonstrated that trichostatin A (TSA) briefly activated the proliferation of cervical cancer cell lines, HeLa and SiHa, within 12 h, but then inhibited cell growth after that time point. In response to TSA, hTERT expression, telomerase activity, and telomere length also underwent similar changes during the same time frame. Furthermore, the data in our study showed that cells transfected with dominant negative hTERT were more likely to undergo apoptosis induced by TSA than cells transfected with wild-type hTERT. The cyclin/cdk inhibitor p21 waf1 was down-regulated by hTERT without changing the expression of p53. Results from this study suggest that the hTERT might be a primary target of TSA and the anti-apoptosis effect of hTERT might be carried out through a p21 waf1 -dependent and p53-independent pathway

  17. Systemic approaches identify a garlic-derived chemical, Z-ajoene, as a glioblastoma multiforme cancer stem cell-specific targeting agent.

    Science.gov (United States)

    Jung, Yuchae; Park, Heejoo; Zhao, Hui-Yuan; Jeon, Raok; Ryu, Jae-Ha; Kim, Woo-Young

    2014-07-01

    Glioblastoma multiforme (GBM) is one of the most common brain malignancies and has a very poor prognosis. Recent evidence suggests that the presence of cancer stem cells (CSC) in GBM and the rare CSC subpopulation that is resistant to chemotherapy may be responsible for the treatment failure and unfavorable prognosis of GBM. A garlic-derived compound, Z-ajoene, has shown a range of biological activities, including anti-proliferative effects on several cancers. Here, we demonstrated for the first time that Z-ajoene specifically inhibits the growth of the GBM CSC population. CSC sphere-forming inhibition was achieved at a concentration that did not exhibit a cytotoxic effect in regular cell culture conditions. The specificity of this inhibitory effect on the CSC population was confirmed by detecting CSC cell surface marker CD133 expression and biochemical marker ALDH activity. In addition, stem cell-related mRNA profiling and real-time PCR revealed the differential expression of CSC-specific genes, including Notch, Wnt, and Hedgehog, upon treatment with Z-ajoene. A proteomic approach, i.e., reverse-phase protein array (RPPA) and Western blot analysis, showed decreased SMAD4, p-AKT, 14.3.3 and FOXO3A expression. The protein interaction map (http://string-db.org/) of the identified molecules suggested that the AKT, ERK/p38 and TGFβ signaling pathways are key mediators of Z-ajoene's action, which affects the transcriptional network that includes FOXO3A. These biological and bioinformatic analyses collectively demonstrate that Z-ajoene is a potential candidate for the treatment of GBM by specifically targeting GBM CSCs. We also show how this systemic approach strengthens the identification of new therapeutic agents that target CSCs.

  18. Efficacy of combination treatment with anti-IgE plus specific immunotherapy in polysensitized children and adolescents with seasonal allergic rhinitis.

    Science.gov (United States)

    Kuehr, Joachim; Brauburger, Jens; Zielen, Stefan; Schauer, Uwe; Kamin, Wolfgang; Von Berg, Andrea; Leupold, Wolfgang; Bergmann, Karl-Christian; Rolinck-Werninghaus, Claudia; Gräve, Michael; Hultsch, Thomas; Wahn, Ulrich

    2002-02-01

    Specific immunotherapy (SIT) and treatment with monoclonal anti-IgE antibody have complementary modes of action. The purpose of this study was to determine whether combined therapy could provide better efficacy than either treatment alone. We conducted a randomized, double-blinded trial to assess the efficacy and safety of subcutaneously administered anti-IgE (omalizumab) or placebo in children and adolescents with seasonal allergic rhinitis in both a birch pollen season and a grass pollen season (sequential seasons together lasting an average of 84 days). There were 4 treatment arms. Each subject was started on SIT-birch or SIT-grass, and anti-IgE or placebo was started before and maintained during the anticipated pollen seasons (a total of 24 weeks). The primary efficacy variable was symptom load, the sum of daily symptom severity score plus rescue medication use. A total of 221 subjects (intent-to-treat population) aged 6 to 17 years were analyzed for efficacy. Combination therapy reduced symptom load over the 2 pollen seasons by 48% (P <.001) over SIT alone. When analyzed separately by season, the 2 groups receiving unrelated SIT were considered placebo controls. In the grass season, symptom loads were as follows: unrelated (birch) SIT + placebo, 0.89 (reference value); unrelated (birch) SIT + anti-IgE, 0.49 (-45%); SIT-grass + placebo, 0.61 (-32%); SIT-grass + anti-IgE, 0.26 (-71%). Anti-IgE therapy conferred a protective effect independent of the type of allergen. Additional clinical benefit was demonstrated in both pollen seasons, whether there was coverage by SIT or not. This combination might prove useful for the treatment of allergic rhinitis, particularly for polysensitized patients.

  19. Computational approaches to screen candidate ligands with anti- Parkinson's activity using R programming.

    Science.gov (United States)

    Jayadeepa, R M; Niveditha, M S

    2012-01-01

    It is estimated that by 2050 over 100 million people will be affected by the Parkinson's disease (PD). We propose various computational approaches to screen suitable candidate ligand with anti-Parkinson's activity from phytochemicals. Five different types of dopamine receptors have been identified in the brain, D1-D5. Dopamine receptor D3 was selected as the target receptor. The D3 receptor exists in areas of the brain outside the basal ganglia, such as the limbic system, and thus may play a role in the cognitive and emotional changes noted in Parkinson's disease. A ligand library of 100 molecules with anti-Parkinson's activity was collected from literature survey. Nature is the best combinatorial chemist and possibly has answers to all diseases of mankind. Failure of some synthetic drugs and its side effects have prompted many researches to go back to ancient healing methods which use herbal medicines to give relief. Hence, the candidate ligands with anti-Parkinson's were selected from herbal sources through literature survey. Lipinski rules were applied to screen the suitable molecules for the study, the resulting 88 molecules were energy minimized, and subjected to docking using Autodock Vina. The top eleven molecules were screened according to the docking score generated by Autodock Vina Commercial drug Ropinirole was computed similarly and was compared with the 11 phytochemicals score, the screened molecules were subjected to toxicity analysis and to verify toxic property of phytochemicals. R Programming was applied to remove the bias from the top eleven molecules. Using cluster analysis and Confusion Matrix two phytochemicals were computationally selected namely Rosmarinic acid and Gingkolide A for further studies on the disease Parkinson's.

  20. Scalar trace anomaly and anti-gravitational interaction in a perturbative approach to self-consistent cosmologies

    International Nuclear Information System (INIS)

    Gunzig, E.; Nardone, P.

    1984-01-01

    We present a perturbative approach to the equations controlling the behavior of the recently proposed self-consistent, causal, singularity-free cosmologies. This approach sheds a new light on the threshold mass which governs both the (in)stability of empty Minkowski space and the existence of these cosmologies. An unexpected fact arises at the lower order of this perturbative scheme: the mass of the massive (scalar) field coupled non-minimally to gravitation is completely absorbed in a rescaling of the gravitational constant. The latter becomes negative, thereby causing an effective anti-gravitational interaction when the corresponding mass exceeds the minkowskian instability threshold. Moreover, the source of this effective antigravitational interaction is the usual scalar trace anomaly associated with the residual massless part of the matter field. (orig.)

  1. Anti-Aging Drugs - Prospect of Longer Life?

    Science.gov (United States)

    Klimova, Blanka; Novotny, Michal; Kuca, Kamil

    2017-11-29

    Aging is a natural part of human life. However, recent discoveries indicate that pharmacological approaches used for the improvement and possibly, for the delay of the aging process, might shed a new light on this topic. This might obviously contribute to the extension of the active life of older people and maintenance of their quality of life, which could consequently reduce both social and economic burden of each country, especially the developed ones. The purpose of this study is to explore pharmacological discoveries which may help to the delay or improvement of the aging process. More specifically, the authors focus on three anti-aging drugs candidates: metformin, rapamycin and resveratrol and one anti-aging component NAD+ precursors whose randomized control trials on animals have appeared to provide some efficacy in this respect and they seem to be promising in the aging process of human beings. This was done by conducting a literature review of available sources describing the issue of aging process with special focus on those anti-aging drug candidates. The results of this study indicate that promising anti-aging candidates seem to be metformin, especially as far as cardiovascular or cancer mortality is concerned, and NAD+ precursors since they appear to promote better organ function, increased physical resistance, disease resistance and prolonged life expectancy. There is a call for more longitudinal clinical trials, which would prove the efficacy of the promising anti-aging drugs candidates in humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Performance characteristics of the ARCHITECT anti-HCV assay.

    Science.gov (United States)

    Jonas, Gesa; Pelzer, Claudia; Beckert, Christian; Hausmann, Michael; Kapprell, Hans-Peter

    2005-10-01

    The ARCHITECT Anti-HCV assay is a fully automated high throughput chemiluminescent microparticle immunoassay (CMIA) for the detection of antibodies to structural and nonstructural proteins of the hepatitis C virus (HCV). To further enhance the performance of this test, the assay was modified to improve the specificity for blood donor specimens. The specificity of the enhanced ARCHITECT Anti-HCV assay was evaluated by screening blood donor samples randomly collected from various German blood banks, as well as hospitalized patient samples derived from Germany and the US. Additionally, antibody sensitivity was determined on commercially available anti-HCV seroconversion panels and on a commercially available worldwide anti-HCV genotype performance panel. Apparent specificity of the modified ARCHITECT Anti-HCV assay in a blood donor population consisting of 3811 specimens was 99.92%, compared to 99.76% for the current on-market assay. Additionally, antibody sensitivity was determined on commercially available anti-HCV seroconversion panels. Seroconversion sensitivity equivalent to or better than the current on-market product was observed by testing 33 seroconversion panels. This study demonstrates that the modified version of the ARCHITECT Anti-HCV assay shows improved specificity for blood donor specimens compared to the current assay on market without compromising sensitivity. With the availability of the improved ARCHITECT Anti-HCV assay and the recent launch of the ARCHITECT HIV Ag/Ab Combo assay, the ARCHITECT system now offers a full hepatitis/retrovirus menu with excellent performance on a high throughput, random access, automated analyzer, ideally suited for blood screening and diagnostic applications.

  3. (Post-Yugoslav anti-war engagement: A research topic awaiting attention

    Directory of Open Access Journals (Sweden)

    Bilić Bojan

    2011-01-01

    Full Text Available (Post-Yugoslav anti-war contention has remained an under-theorised topic almost twenty years after the end of the wars of Yugoslav succession. Rather than focusing on the “ontogenesis” of individual pacifist enterprises, this paper examines the reasons for which (post-Yugoslav anti-war activisms have been marginalised in recent East European sociological scholarship. I argue that a thorough appreciation of these phenomena requires a Yugoslav/regional approach which has not been favoured by post-Yugoslav social science scholars. This article also offers a critical reading of the existing attempts to theorise (post- Yugoslav anti-war activisms. It criticises their failure to draw upon the rich conceptual ap­paratus of social movement theories developed within Western political sociology over the last couple of decades. In spite of the fact that the concept of “social movement” may be contested in the context of post-Yugoslav anti-war engagement on the basis of its quantitative marginality, this should not deter (post-Yugoslav social scientists from applying and refining Anglo-Saxon social movement theories in a culturally sensitive manner. Specific dynamics of anti-war activism occurring within an armed conflict has not been sufficiently studied. This is an important knowledge lacuna where regional sociologists could offer a substantive contribution.

  4. Influence of exposure to pesticides on telomere length in tobacco farmers: A biology system approach

    Energy Technology Data Exchange (ETDEWEB)

    Kahl, Vivian Francília Silva [Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS (Brazil); Silva, Juliana da, E-mail: juliana.silva@ulbra.br [Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Canoas, RS (Brazil); Rabaioli da Silva, Fernanda, E-mail: fernanda.silva@unilasalle.edu.br [Master’s Degree in Environmental Impact Evaluation, Centro Universitário La Salle, Canoas, RS (Brazil)

    2016-09-15

    Highlights: • Exposure to pesticides in tobacco fields is related to shorten telomere length. • The molecular mechanism of pesticide on telomere length is not fully understood. • Pesticides inhibit ubiquitin proteasome system. • Nicotine activates ubiquitin proteasome system. • Pesticides and nicotine regulate telomere length. - Abstract: Various pesticides in the form of mixtures must be used to keep tobacco crops pest-free. Recent studies have shown a link between occupational exposure to pesticides in tobacco crops and increased damage to the DNA, mononuclei, nuclear buds and binucleated cells in buccal cells as well as micronuclei in lymphocytes. Furthermore, pesticides used specifically for tobacco crops shorten telomere length (TL) significantly. However, the molecular mechanism of pesticide action on telomere length is not fully understood. Our study evaluated the interaction between a complex mixture of chemical compounds (tobacco cultivation pesticides plus nicotine) and proteins associated with maintaining TL, as well as the biological processes involved in this exposure by System Biology tools to provide insight regarding the influence of pesticide exposure on TL maintenance in tobacco farmers. Our analysis showed that one cluster was associated with TL proteins that act in bioprocesses such as (i) telomere maintenance via telomere lengthening; (ii) senescence; (iii) age-dependent telomere shortening; (iv) DNA repair (v) cellular response to stress and (vi) regulation of proteasome ubiquitin-dependent protein catabolic process. We also describe how pesticides and nicotine regulate telomere length. In addition, pesticides inhibit the ubiquitin proteasome system (UPS) and consequently increase proteins of the shelterin complex, avoiding the access of telomerase in telomere and, nicotine activates UPS mechanisms and promotes the degradation of human telomerase reverse transcriptase (hTERT), decreasing telomerase activity.

  5. Influence of exposure to pesticides on telomere length in tobacco farmers: A biology system approach

    International Nuclear Information System (INIS)

    Kahl, Vivian Francília Silva; Silva, Juliana da; Rabaioli da Silva, Fernanda

    2016-01-01

    Highlights: • Exposure to pesticides in tobacco fields is related to shorten telomere length. • The molecular mechanism of pesticide on telomere length is not fully understood. • Pesticides inhibit ubiquitin proteasome system. • Nicotine activates ubiquitin proteasome system. • Pesticides and nicotine regulate telomere length. - Abstract: Various pesticides in the form of mixtures must be used to keep tobacco crops pest-free. Recent studies have shown a link between occupational exposure to pesticides in tobacco crops and increased damage to the DNA, mononuclei, nuclear buds and binucleated cells in buccal cells as well as micronuclei in lymphocytes. Furthermore, pesticides used specifically for tobacco crops shorten telomere length (TL) significantly. However, the molecular mechanism of pesticide action on telomere length is not fully understood. Our study evaluated the interaction between a complex mixture of chemical compounds (tobacco cultivation pesticides plus nicotine) and proteins associated with maintaining TL, as well as the biological processes involved in this exposure by System Biology tools to provide insight regarding the influence of pesticide exposure on TL maintenance in tobacco farmers. Our analysis showed that one cluster was associated with TL proteins that act in bioprocesses such as (i) telomere maintenance via telomere lengthening; (ii) senescence; (iii) age-dependent telomere shortening; (iv) DNA repair (v) cellular response to stress and (vi) regulation of proteasome ubiquitin-dependent protein catabolic process. We also describe how pesticides and nicotine regulate telomere length. In addition, pesticides inhibit the ubiquitin proteasome system (UPS) and consequently increase proteins of the shelterin complex, avoiding the access of telomerase in telomere and, nicotine activates UPS mechanisms and promotes the degradation of human telomerase reverse transcriptase (hTERT), decreasing telomerase activity.

  6. Feasible introgression of an anti-pathogen transgene into an urban mosquito population without using gene-drive.

    Directory of Open Access Journals (Sweden)

    Kenichi W Okamoto

    2014-07-01

    Full Text Available Introgressing anti-pathogen constructs into wild vector populations could reduce disease transmission. It is generally assumed that such introgression would require linking an anti-pathogen gene with a selfish genetic element or similar technologies. Yet none of the proposed transgenic anti-pathogen gene-drive mechanisms are likely to be implemented as public health measures in the near future. Thus, much attention now focuses instead on transgenic strategies aimed at mosquito population suppression, an approach generally perceived to be practical. By contrast, aiming to replace vector competent mosquito populations with vector incompetent populations by releasing mosquitoes carrying a single anti-pathogen gene without a gene-drive mechanism is widely considered impractical.Here we use Skeeter Buster, a previously published stochastic, spatially explicit model of Aedes aegypti to investigate whether a number of approaches for releasing mosquitoes with only an anti-pathogen construct would be efficient and effective in the tropical city of Iquitos, Peru. To assess the performance of such releases using realistic release numbers, we compare the transient and long-term effects of this strategy with two other genetic control strategies that have been developed in Ae. aegypti: release of a strain with female-specific lethality, and a strain with both female-specific lethality and an anti-pathogen gene. We find that releasing mosquitoes carrying only an anti-pathogen construct can substantially decrease vector competence of a natural population, even at release ratios well below that required for the two currently feasible alternatives that rely on population reduction. Finally, although current genetic control strategies based on population reduction are compromised by immigration of wild-type mosquitoes, releasing mosquitoes carrying only an anti-pathogen gene is considerably more robust to such immigration.Contrary to the widely held view that

  7. New approaches to reduce ulcerogenity of nonsteroidal anti-inflammatory drugs: achievements, unsolved issues and ways to optimize

    Directory of Open Access Journals (Sweden)

    F. V. Hladkykh

    2014-04-01

    Full Text Available Analysis of the domestic and foreign literature sources devoted to the study of pathogenetic mechanisms of gastropathy caused by non-steroidal anti-inflammatory drugs was done. Current approaches of prevention and treatment of NSAID-induced gastropathy were lined. The appropriateness of drugs with polytropic pharmacological properties (Quercetin, Vinboron and Tiotriazolin to eliminate the side effects of NSAIDs, including ultserogenesis was discusses.

  8. Immunotherapy with GD2 specific monoclonal antibodies

    International Nuclear Information System (INIS)

    Cheung, N.K.V.; Medof, E.M.; Munn, D.

    1988-01-01

    Targeted immunotherapy focuses anti-tumor activity of antibodies and effector cells, which are actively developed by the host or adoptively transferred, onto tumor cells and into tumor sites. Such tumor selective therapy can be more specific and efficient. The value of such an approach is evident in the classical interaction of antibodies. This paper reports that the ganglioside G D2 is an ideal antigen for specific tumor targeting because of its relative lack of heterogeneity among human neuroblastoma, its high density on tumor cells, its lack of antigen modulation upon binding to antibody, and its restricted distribution in normal tissues

  9. Anti-angiogenesis and anti-tumor activity of recombinant anginex

    International Nuclear Information System (INIS)

    Brandwijk, Ricardo J.M.G.E.; Dings, Ruud P.M.; Linden, Edith van der; Mayo, Kevin H.; Thijssen, Victor L.J.L.; Griffioen, Arjan W.

    2006-01-01

    Anginex, a synthetic 33-mer angiostatic peptide, specifically inhibits vascular endothelial cell proliferation and migration along with induction of apoptosis in endothelial cells. Here we report on the in vivo characterization of recombinant anginex and use of the artificial anginex gene for gene therapy approaches. Tumor growth of human MA148 ovarian carcinoma in athymic mice was inhibited by 80% when treated with recombinant anginex. Histological analysis of the tumors showed an approximate 2.5-fold reduction of microvessel density, suggesting that angiogenesis inhibition is the cause of the anti-tumor effect. Furthermore, there was a significant correlation between the gene expression patterns of 16 angiogenesis-related factors after treatment with both recombinant and synthetic anginex. To validate the applicability of the anginex gene for gene therapy, stable transfectants of murine B16F10 melanoma cells expressing recombinant anginex were made. Supernatants of these cells inhibited endothelial cell proliferation in vitro. Furthermore, after subcutaneous injection of these cells in C57BL/6 mice, an extensive delay in tumor growth was observed. These data show that the artificial anginex gene can be used to produce a recombinant protein with similar activity as its synthetic counterpart and that the gene can be applied in gene therapy approaches for cancer treatment

  10. B0 → D0 anti D0K0, B+ → D0 anti D0K+, and the scalar D anti D bound state

    International Nuclear Information System (INIS)

    Dai, L.R.; Xie, Ju-Jun; Oset, E.

    2016-01-01

    We study the B 0 decay to D 0 anti D 0 K 0 based on the chiral unitary approach, which generates the X(3720) resonance, and we make predictions for the D 0 anti D 0 invariant mass distribution. From the shape of the distribution, the existence of the resonance below threshold could be induced. We also predict the rate of production of the X(3720) resonance to the D 0 anti D 0 mass distribution with no free parameters. (orig.)

  11. Detection of anti-lactoferrin antibodies and anti-myeloperoxidase antibodies in autoimmune hepatitis: a retrospective study.

    Science.gov (United States)

    Tan, Liming; Zhang, Yuhong; Peng, Weihua; Chen, Juanjuan; Li, Hua; Ming, Feng

    2014-01-01

    Anti-lactoferrin antibodies (ALA) and anti-myeloperoxidase antibodies (AMPA) are specific serological markers for autoimmune hepatitis (AIH). The project aimed to detect ALA and AMPA and explore their clinical significances in AIH patients. 59 AIH patients, 217 non AIH patients, and 50 healthy controls were enrolled in this study. ALA and AMPA were detected by ELISA. Antineutropil cytoplasmic antibodies (ANCA) and anti-smooth muscle antibodies (ASMA) were examined by indirect immunofluorescence. Antimitochondrial antibody M2 subtype (AMA-M2), anti-liver kidney microsomal antibody Type 1 (LKM1), anti-liver cytosol antibody Type 1 (LC1), and anti-soluble liver antigen/liver-pancreas antibodies (SLA/LP) were tested by immunoblot. The positivity for ALA was 18.6% in AIH group, only one patient in non-AIH group was positive for ALA; the positivity for AMPA was 59.3% in AIH group, with significant differences (P < 0.01) compared with other groups. The specificities for ALA and AMPA were 99.63% and 97.75%; the sensitivities were 18.64% and 59.32%; and the accuracy rates were 84.97% and 90.80%, respectively. A certain correlation was observed between ALA and SLA/LP, AMPA and ANCA, ASMA in AIH group. ALA and AMPA were associated with AIH, and had high clinical diagnostic value. Co-detection with other relative autoantibodies could play an important role in differential diagnosis of AIH.

  12. Independence requirements for anti-corruption institutions

    African Journals Online (AJOL)

    The Court's approach and these apparent requirements are compared with current provisions for political 'independence' of anti-corruption agencies in Australia and Indonesia, raising, in particular, an assessment of the arguments for and against (a) the need for an anti-corruption investigative agency to be separate from ...

  13. Do Evidence-Based Approaches Alienate Canadian Anti-Trafficking Funders?

    Directory of Open Access Journals (Sweden)

    Alison Clancey

    2014-09-01

    Full Text Available As a sex worker support organisation, SWAN (Supporting Women’s Alternatives Network Vancouver’s relationship to anti-trafficking funding remains ambivalent, particularly given the history of anti-trafficking measures that have jeopardised the rights of sex workers. In this article, we share how we, as a small grassroots group, attempt to work through these ambivalences in dialogue with donors. Although SWAN Vancouver works with women who are often perceived to be trafficked (i.e. Asian women in sex work, it is rare for members of SWAN Vancouver to come across any case in the sex-work sector that has the hallmarks of trafficking, such as coerced work. Instead, our anti-trafficking work has mainly involved identifying the harms and human rights violations caused by repressive or misguided anti-trafficking measures. We reflect on our dialogue with two Canadian funders (a federal government agency and a national public foundation that have considerable resources and immense power to influence what anti-trafficking practices are implemented in Canada. We analyse how these two funders and their adoption of an anti-prostitution analysis of trafficking will likely result in punitive consequences for immigrant sex workers, and therefore increase the need to assist women who have been anti-trafficked rather than trafficked. ¿Están los financiadores canadienses contra la trata alejados del enfoque basado en la evidencia? Resumen Como una organización que apoya a los trabajadores sexuales, la relación entre SWAN (Red Alternativa de Apoyo a las Mujeres y los financiadores contra la trata en Vancouver es contradictoria, sobre todo teniendo en cuenta la historia de las medidas contra la trata que han puesto en peligro los derechos de los trabajadores sexuales. En este artículo discutimos cómo nosotros, como un pequeño pero clave grupo especializado, nos esforzamos en trabajar contra estas contradicciones en un diálogo continuo con los donantes

  14. Characterization of Anti-Citrinin Specific ScFvs Selected from Non-Immunized Mouse Splenocytes by Eukaryotic Ribosome Display.

    Directory of Open Access Journals (Sweden)

    Haiwei Cheng

    Full Text Available Single chain variable fragments (scFvs against citrinin (CIT were selected from a scFv library constructed from the splenocytes of non-immunized mice by an improved eukaryotic ribosome display technology in this study. Bovine serum albumin (BSA/ CIT-BSA and ovalbumin (OVA/ CIT-OVA were used as the antigens to select specific anti-CIT scFvs. Eukaryotic in situ RT-PCR method was used to recover the selected mRNA after every affinity selection. After six rounds of ribosome display, expression vector pTIG-TRX carrying specific scFv DNAs were constructed and transformed into Escherichia coli BL21 (DE3 for protein expression. Thirteen positive clones were selected out of which three (designated 23, 68 and 109 showed high binding activity and specificity to CIT by indirect ELISA, while no clone showed binding activity with carrier proteins. The three scFvs showed high specificity to CIT and the cross reactivity with other mycotoxins was below 0.01% as determined by indirect competitive ELISA. These specific scFvs offer a potential novel immunoassay method for CIT residues. This study confirmed the effectiveness of the improved eukaryotic ribosome display system and could be used as a reference for the selection of scFvs specific to other small molecules using ribosome display.

  15. Use of nonsteroidal anti-inflammatory drugs among healthy people and specific cerebrovascular safety

    DEFF Research Database (Denmark)

    Fosbøl, Emil L; Olsen, Anne-Marie Schjerning; Olesen, Jonas Bjerring

    2014-01-01

    BACKGROUND: Nonsteroidal anti-inflammatory drugs can increase bleeding and thrombosis, but little is known about the cerebrovascular safety of these drugs, especially among healthy people. AIMS: The aim of this study was to examine the risk of ischemic and hemorrhagic stroke associated with the use...... stroke). RESULTS: We selected 1,028,437 healthy individuals (median age 39 years). At least one nonsteroidal anti-inflammatory drug was claimed by 44·7% of the study population, and the drugs were generally used for a short period of time and in low doses. High-dose ibuprofen and diclofenac were......·35-3·42)]. CONCLUSIONS: In healthy individuals, use of commonly available nonsteroidal anti-inflammatory drugs such as ibuprofen, diclofenac, and naproxen was associated with increased risk of stroke....

  16. An approach for activity-based DEVS model specification

    DEFF Research Database (Denmark)

    Alshareef, Abdurrahman; Sarjoughian, Hessam S.; Zarrin, Bahram

    2016-01-01

    Creation of DEVS models has been advanced through Model Driven Architecture and its frameworks. The overarching role of the frameworks has been to help develop model specifications in a disciplined fashion. Frameworks can provide intermediary layers between the higher level mathematical models...... and their corresponding software specifications from both structural and behavioral aspects. Unlike structural modeling, developing models to specify behavior of systems is known to be harder and more complex, particularly when operations with non-trivial control schemes are required. In this paper, we propose specifying...... activity-based behavior modeling of parallel DEVS atomic models. We consider UML activities and actions as fundamental units of behavior modeling, especially in the presence of recent advances in the UML 2.5 specifications. We describe in detail how to approach activity modeling with a set of elemental...

  17. Optimization and anti-optimization of structures under uncertainty

    National Research Council Canada - National Science Library

    Elishakoff, Isaac; Ohsaki, Makoto

    2010-01-01

    .... The necessity of anti-optimization approach is first demonstrated, then the anti-optimization techniques are applied to static, dynamic and buckling problems, thus covering the broadest possible set of applications...

  18. Molecular mechanisms of anti-aging hormetic effects of mild heat stress on human cells

    DEFF Research Database (Denmark)

    Rattan, Suresh I S; Eskildsen-Helmond, Yvonne E G; Beedholm, Rasmus

    2004-01-01

    of cellular responsiveness to mild and severe heat stress. Furthermore, we are also undertaking comparative studies using non-aging immortal cell lines, such as SV40-transformed human fibroblasts, spontaneous osteosarcoma cells, and telomerase-immortalized human bone marrow cells for establishing differences...

  19. Lowering the Age of Consent: Pushing Back against the Anti-Vaccine Movement.

    Science.gov (United States)

    Whelan, Allison M

    2016-09-01

    This article examines the rise of the anti-vaccination movement, the proliferation of laws allowing parental exemptions to mandatory school vaccines, and the impact of the movement on immunization rates for all vaccines. It uses the ongoing debate about the Human Papillomavirus (HPV) vaccine as an example to highlight the ripple effect and consequences of the anti-vaccine movement despite robust evidence of the vaccine's safety and efficacy. The article scrutinizes how state legislatures ironically promote vaccination while simultaneously deferring to the opposition by promulgating broad opt-outs from mandatory vaccine laws. This article concludes by offering an alternative legislative approach to specifically combat the anti-vaccine movement's impact on HPV vaccination rates. Lowering the age of consent has not been widely attempted or proposed and provides an alternative statutory mechanism to push back against vaccine resistance. © 2016 American Society of Law, Medicine & Ethics.

  20. Modeling protective anti-tumor immunity via preventative cancer vaccines using a hybrid agent-based and delay differential equation approach.

    Science.gov (United States)

    Kim, Peter S; Lee, Peter P

    2012-01-01

    A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry.

  1. Rise and Fall of an Anti-MUC1 Specific Antibody

    Science.gov (United States)

    Li, Jiandong; von Wasielewski, Reinhard; Bastert, Gunther; Schirrmann, Thomas; Esteves, Isabel Tourais; Behrens, Christian K.; Fournes, Bénédict; Fournier, Nathalie; de Romeuf, Christophe; Hust, Michael; Dübel, Stefan

    2011-01-01

    Background So far, human antibodies with good affinity and specificity for MUC1, a transmembrane protein overexpressed on breast cancers and ovarian carcinomas, and thus a promising target for therapy, were very difficult to generate. Results A human scFv antibody was isolated from an immune library derived from breast cancer patients immunised with MUC1. The anti-MUC1 scFv reacted with tumour cells in more than 80% of 228 tissue sections of mamma carcinoma samples, while showing very low reactivity with a large panel of non-tumour tissues. By mutagenesis and phage display, affinity of scFvs was increased up to 500fold to 5,7×10−10 M. Half-life in serum was improved from below 1 day to more than 4 weeks and was correlated with the dimerisation tendency of the individual scFvs. The scFv bound to T47D and MCF-7 mammalian cancer cell lines were recloned into the scFv-Fc and IgG format resulting in decrease of affinity of one binder. The IgG variants with the highest affinity were tested in mouse xenograft models using MCF-7 and OVCAR tumour cells. However, the experiments showed no significant decrease in tumour growth or increase in the survival rates. To study the reasons for the failure of the xenograft experiments, ADCC was analysed in vitro using MCF-7 and OVCAR3 target cells, revealing a low ADCC, possibly due to internalisation, as detected for MCF-7 cells. Conclusions Antibody phage display starting with immune libraries and followed by affinity maturation is a powerful strategy to generate high affinity human antibodies to difficult targets, in this case shown by the creation of a highly specific antibody with subnanomolar affinity to a very small epitope consisting of four amino acids. Despite these “best in class” binding parameters, the therapeutic success of this antibody was prevented by the target biology. PMID:21264246

  2. Rise and fall of an anti-MUC1 specific antibody.

    Directory of Open Access Journals (Sweden)

    Holger Thie

    2011-01-01

    Full Text Available So far, human antibodies with good affinity and specificity for MUC1, a transmembrane protein overexpressed on breast cancers and ovarian carcinomas, and thus a promising target for therapy, were very difficult to generate.A human scFv antibody was isolated from an immune library derived from breast cancer patients immunised with MUC1. The anti-MUC1 scFv reacted with tumour cells in more than 80% of 228 tissue sections of mamma carcinoma samples, while showing very low reactivity with a large panel of non-tumour tissues. By mutagenesis and phage display, affinity of scFvs was increased up to 500fold to 5,7×10(-10 M. Half-life in serum was improved from below 1 day to more than 4 weeks and was correlated with the dimerisation tendency of the individual scFvs. The scFv bound to T47D and MCF-7 mammalian cancer cell lines were recloned into the scFv-Fc and IgG format resulting in decrease of affinity of one binder. The IgG variants with the highest affinity were tested in mouse xenograft models using MCF-7 and OVCAR tumour cells. However, the experiments showed no significant decrease in tumour growth or increase in the survival rates. To study the reasons for the failure of the xenograft experiments, ADCC was analysed in vitro using MCF-7 and OVCAR3 target cells, revealing a low ADCC, possibly due to internalisation, as detected for MCF-7 cells.Antibody phage display starting with immune libraries and followed by affinity maturation is a powerful strategy to generate high affinity human antibodies to difficult targets, in this case shown by the creation of a highly specific antibody with subnanomolar affinity to a very small epitope consisting of four amino acids. Despite these "best in class" binding parameters, the therapeutic success of this antibody was prevented by the target biology.

  3. Anti-HmuY antibodies specifically recognize Porphyromonas gingivalis HmuY protein but not homologous proteins in other periodontopathogens.

    Directory of Open Access Journals (Sweden)

    Michał Śmiga

    Full Text Available Given the emerging evidence of an association between periodontal infections and systemic conditions, the search for specific methods to detect the presence of P. gingivalis, a principal etiologic agent in chronic periodontitis, is of high importance. The aim of this study was to characterize antibodies raised against purified P. gingivalis HmuY protein and selected epitopes of the HmuY molecule. Since other periodontopathogens produce homologs of HmuY, we also aimed to characterize responses of antibodies raised against the HmuY protein or its epitopes to the closest homologous proteins from Prevotella intermedia and Tannerella forsythia. Rabbits were immunized with purified HmuY protein or three synthetic, KLH-conjugated peptides, derived from the P. gingivalis HmuY protein. The reactivity of anti-HmuY antibodies with purified proteins or bacteria was determined using Western blotting and ELISA assay. First, we found homologs of P. gingivalis HmuY in P. intermedia (PinO and PinA proteins and T. forsythia (Tfo protein and identified corrected nucleotide and amino acid sequences of Tfo. All proteins were overexpressed in E. coli and purified using ion-exchange chromatography, hydrophobic chromatography and gel filtration. We demonstrated that antibodies raised against P. gingivalis HmuY are highly specific to purified HmuY protein and HmuY attached to P. gingivalis cells. No reactivity between P. intermedia and T. forsythia or between purified HmuY homologs from these bacteria and anti-HmuY antibodies was detected. The results obtained in this study demonstrate that P. gingivalis HmuY protein may serve as an antigen for specific determination of serum antibodies raised against this bacterium.

  4. Establishment of CMab-43, a Sensitive and Specific Anti-CD133 Monoclonal Antibody, for Immunohistochemistry.

    Science.gov (United States)

    Itai, Shunsuke; Fujii, Yuki; Nakamura, Takuro; Chang, Yao-Wen; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Suzuki, Hiroyoshi; Harada, Hiroyuki; Yamada, Shinji; Kaneko, Mika K; Kato, Yukinari

    2017-10-01

    CD133, also known as prominin-1, was first described as a cell surface marker on early progenitor and hematopoietic stem cells. It is a five-domain transmembrane protein composed of an N-terminal extracellular tail, two small cytoplasmic loops, two large extracellular loops containing seven potential glycosylation sites, and a short C-terminal intracellular tail. CD133 has been used as a marker to identify cancer stem cells derived from primary solid tumors and as a prognostic marker of gliomas. Herein, we developed novel anti-CD133 monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. We expressed the full length of CD133 in LN229 glioblastoma cells, immunized mice with LN229/CD133 cells, and performed the first screening using flow cytometry. After limiting dilution, we established 100 anti-CD133 mAbs, reacting with LN229/CD133 cells but not with LN229 cells. Subsequently, we performed the second and third screening with Western blot and immunohistochemical analyses, respectively. Among 100 mAbs, 11 strongly reacted with CD133 in Western blot analysis. One of 11 clones, CMab-43 (IgG 2a , kappa), showed a sensitive and specific reaction against colon cancer cells, warranting the use of CMab-43 in detecting CD133 in pathological analyses of CD133-expressing cancers.

  5. Theoretical Grounds of Enterprise Anti-crisis Financial Management

    Directory of Open Access Journals (Sweden)

    Berest Maryna M.

    2014-03-01

    Full Text Available The goal of the article lies in specification and deepening of the essence and theoretical grounds of the enterprise anti-crisis financial management (EAFM. The article analyses and generalises literature, devoted to anti-crisis management problems, marks out and characterises main structural elements of the enterprise anti-crisis financial management: goal, task, object and subject. It shows that tasks of the enterprise anti-crisis financial management should show its essence in the context of preventive, stabilising and anti-crisis components. The article groups and clarifies the concept of functions and principles of the enterprise anti-crisis financial management. It marks basic, specific and integration functions and provides their description. It also marks out and characterises individual principles, which identify the EAFM process, justify development and realisation of anti-crisis solutions and measures and also characterise EAFM organisation at an enterprise. Prospects of further developments in this direction are overview, analysis and improvement of methodical instruments of realisation of the specified EAFM tasks on the basis of the considered theoretical aspects.

  6. Therapeutic effects of date fruits (Phoenix dactylifera) in the prevention of diseases via modulation of anti-inflammatory, anti-oxidant and anti-tumour activity.

    Science.gov (United States)

    Rahmani, Arshad H; Aly, Salah M; Ali, Habeeb; Babiker, Ali Y; Srikar, Sauda; Khan, Amjad A

    2014-01-01

    The current mode of treatment of various diseases based on synthetic drugs is expensive, alters genetic and metabolic pathways and also shows adverse side effects. Thus, safe and effective approach is needed to prevent the diseases development and progression. In this vista, Natural products are good remedy in the treatment/management of diseases and they are affordable and effective without any adverse effects. Dates are main fruit in the Arabian Peninsula and are considered to be one of the most significant commercial crops and also have been documented in Holy Quran and modern scientific literatures. Earlier studies have shown that constituents of dates act as potent antioxidant, anti-tumour as well as anti-inflammatory, provide a suitable alternative therapy in various diseases cure. In this review, dates fruits has medicinal value are summarized in terms of therapeutic implications in the diseases control through anti-oxidant, anti-inflammatory, anti-tumour and ant-diabetic effect.

  7. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  8. Assessing the Learning Path Specification: a Pragmatic Quality Approach

    NARCIS (Netherlands)

    Janssen, José; Berlanga, Adriana; Heyenrath, Stef; Martens, Harrie; Vogten, Hubert; Finders, Anton; Herder, Eelco; Hermans, Henry; Melero, Javier; Schaeps, Leon; Koper, Rob

    2010-01-01

    Janssen, J., Berlanga, A. J., Heyenrath, S., Martens, H., Vogten, H., Finders, A., Herder, E., Hermans, H., Melero Gallardo, J., Schaeps, L., & Koper, R. (2010). Assessing the Learning Path Specification: a Pragmatic Quality Approach. Journal of Universal Computer Science, 16(21), 3191-3209.

  9. Risk of progression of early cervical lesions is associated with integration and persistence of HPV-16 and expression of E6, Ki-67, and telomerase

    Directory of Open Access Journals (Sweden)

    Arianna Vega-Peña

    2013-01-01

    Full Text Available Background: Low-grade squamous intraepithelial lesions (LSIL are the earliest lesions of the uterine cervix, the persistence and integration of high-risk human papillomavirus (HR-HPV as type 16, which promotes the development of more aggressive lesions. Aim: To select more aggressive lesions with tendency to progress to invasive cervical cancer. Materials and Methods: A total of 75 cytological specimens in liquid base (Liqui-PREP were analyzed: 25 specimens were with no signs of SIL (NSIL and without HPV; 25 NSIL with HPV-16, and 25 with both LSIL and HPV-16. The expression of Ki-67, telomerase, and viral E6 was evaluated by immunocytochemistry; and the detection of viral DNA was done by polymerase chain reaction (PCR and restriction fragment length polymorphism (RFLPs for genotyping or sequencing of HPV-16. The physical state of HPV-16 was evaluated by in situ hybridization with amplification with tyramide. Results: Of the total group, 58.6% had LSIL associated with persistence and of these 59.3% was associated with integrated state of HPV as intense expression of E6, Ki-67 (P = 0.013, P = 0.055 has except for the expression of telomerase present a non-significant association (P<0.341. Conclusions: Overexpression of E6 and Ki-67 is associated with the integration of HPV-16, favoring viral persistence, and increasing the risk of progression in women with NSIL and LSIL.

  10. Serum Reactivity Against Bacterial Pyruvate Dehydrogenase: Increasing the Specificity of Anti-Mitochondrial Antibodies for the Diagnosis of Primary Biliary Cirrhosis

    Directory of Open Access Journals (Sweden)

    Hiroshi Miyakawa

    2006-01-01

    Full Text Available Antimitochondrial antibodies (AMA are the serum hallmark of primary biliary cirrhosis (PBC. However, AMA-positivity can be found in non-PBC sera when lower dilutions are used, thus raising issues about the specificity and sensitivity of the test. AMA reacts primarily with the lipoylated domains of pyruvate dehydrogenase-E2 (PDC-E2 which is highly conserved across species, including bacteria. We studied 77 serum samples, including 24 from patients with anti-PDC-E2-positive PBC and 53 controls (16 with autoimmune hepatitis (AIH, 10 with primary sclerosing cholangitis (PSC, and 27 healthy individuals for their reactivities at serial dilutions (1:10, 1:20 and 1:40 against Escherichia coli DH5 alpha lysate overexpressing human PDC-E2 using immunoblotting (IB. A murine anti-human PDC-E2 monoclonal antibody (mAB was used as control. We further studied positive sera using adsorption with a synthetic E. coli peptide sharing similarity with human PDC-E2. Finally, we verified whether a unique buffer for E. coli preparation could reduce non-specific serum reactivity. Results demonstrated that 100% of anti-PDC-E2-positive PBC and up to 38% of control sera at 1:10 dilution recognized E. coli PDC-E2 at IB while dilution tests indicated that the overall potency of PBC reactivity was 100-fold higher compared to controls. In fact, a subgroup (20-38% of non-PBC sera were positive at low titers but lost the reactivity when absorbed with the synthetic E. coli peptide. Finally, our unique buffer reduced the reactivity of non-PBC sera as measured by ELISA. In conclusion, we demonstrated that weak cross-reactivity with E. coli PDC-E2 occurs in non-PBC sera at lower dilutions and that such reactivity is not due to AMA-positivity. The use of a specific buffer might avoid the risk of false positive AMA determinations when E. coli-expressed recombinant antigens are used.

  11. Cutaneous porphyrins exhibit anti-stokes fluorescence that is detectable in sebum (Conference Presentation)

    Science.gov (United States)

    Tian, Giselle; Zeng, Haishan; Zhao, Jianhua; Wu, Zhenguo; Al Jasser, Mohammed; Lui, Harvey; Mclean, David I.

    2016-02-01

    Porphyrins produced by Propionibacterium acnes represent the principal fluorophore associated with acne, and appear as orange-red luminescence under the Wood's lamp. Assessment of acne based on Wood's lamp (UV) or visible light illumination is limited by photon penetration depth and has limited sensitivity for earlier stage lesions. Inducing fluorescence with near infrared (NIR) excitation may provide an alternative way to assess porphyrin-related skin disorders. We discovered that under 785 nm CW laser excitation PpIX powder exhibits fluorescence emission in the shorter wavelength range of 600-715 nm with an intensity that is linearly dependent on the excitation power. We attribute this shorter wavelength emission to anti-Stokes fluorescence. Similar anti-Stokes fluorescence was also detected focally in all skin-derived samples containing porphyrins. Regular (Stokes) fluorescence was present under UV and visible light excitation on ex vivo nasal skin and sebum from uninflamed acne, but not on nose surface smears or sebum from inflamed acne. Co-registered CW laser-excited anti-Stokes fluorescence and fs laser-excited multi-photon fluorescence images of PpIX powder showed similar features. In the skin samples because of the anti-Stokes effect, the NIR-induced fluorescence was presumably specific for porphyrins since there appeared to be no anti-Stokes emission signals from other typical skin fluorophores such as lipids, keratins and collagen. Anti-Stokes fluorescence under NIR CW excitation is more sensitive and specific for porphyrin detection than UV- or visible light-excited regular fluorescence and fs laser-excited multi-photon fluorescence. This approach also has higher image contrast compared to NIR fs laser-based multi-photon fluorescence imaging. The anti-Stokes fluorescence of porphyrins within sebum could potentially be applied to detecting and targeting acne lesions for treatment via fluorescence image guidance.

  12. Rare myositis-specific autoantibody associations among Hungarian patients with idiopathic inflammatory myopathy.

    Science.gov (United States)

    Bodoki, L; Nagy-Vincze, M; Griger, Z; Betteridge, Z; Szöllősi, L; Jobanputra, R; Dankó, K

    2015-01-01

    Idiopathic inflammatory myopathies are systemic, chronic autoimmune diseases characterized by symmetrical, proximal muscle weakness. Homogeneous groups present with similar symptoms. The response to therapy and prognosis could be facilitated by myositis-specific autoantibodies, and in this way, give rise to immunoserological classification. The myositis-specific autoantibodies are directed against specific proteins found in the cytoplasm or in the nucleus of the cells. To date, literature suggests the rarity of the co-existence of two myositis-specific autoantibodies. In this study the authors highlight rare associations of myositis-specific autoantibodies. Three hundred and thirty-seven Hungarian patients with polymyositis or dermatomyositis were studied. Their clinical findings were noted retrospectively. Specific blood tests identified six patients with the rare co-existence of myositis-specific autoantibodies, anti-Jo-1 and anti-SRP, anti-Jo-1 and anti-Mi-2, anti-Mi-2 and anti-PL-12, anti-Mi-2 and anti-SRP, and anti-SRP and anti-PL-7, respectively. This case review aims to identify the clinical importance of these rare associations and their place within the immunoserological classification.

  13. Proteome alteration induced by hTERT transfection of human fibroblast cells.

    Science.gov (United States)

    Mazzucchelli, Gabriel D; Gabelica, Valérie; Smargiasso, Nicolas; Fléron, Maximilien; Ashimwe, Wilson; Rosu, Frédéric; De Pauw-Gillet, Marie-Claire; Riou, Jean-François; De Pauw, Edwin

    2008-04-17

    Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT) gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38). Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV) and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis) analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest that telomerase expression enhances natural cell repair

  14. Proteome alteration induced by hTERT transfection of human fibroblast cells

    Directory of Open Access Journals (Sweden)

    Riou Jean-François

    2008-04-01

    Full Text Available Abstract Background Telomerase confers cellular immortality by elongating telomeres, thereby circumventing the Hayflick limit. Extended-life-span cells have been generated by transfection with the human telomerase reverse transcriptase (hTERT gene. hTERT transfected cell lines may be of outstanding interest to monitor the effect of drugs targeting the telomerase activity. The incidence of hTERT gene transfection at the proteome level is a prerequisite to that purpose. The effect of the transfection has been studied on the proteome of human fibroblast (WI38. Cytosolic and nuclear fractions of WI38 cells, empty vector transfected WI38 (WI38-HPV and hTERT WI38 cells were submitted to a 2D-DIGE (Two-Dimensional Differential In-Gel Electrophoresis analysis. Only spots that had a similar abundance in WI38 and WI38-HPV, but were differentially expressed in WI38 hTERT were selected for MS identification. This method directly points to the proteins linked with the hTERT expression. Number of false positive differentially expressed proteins has been excluded by using control WI38-HPV cells. The proteome alteration induced by hTERT WI38 transfection should be taken into account in subsequent use of the cell line for anti-telomerase drugs evaluation. Results 2D-DIGE experiment shows that 57 spots out of 2246 are significantly differentially expressed in the cytosolic fraction due to hTERT transfection, and 38 were confidently identified. In the nuclear fraction, 44 spots out of 2172 were selected in the differential proteome analysis, and 14 were identified. The results show that, in addition to elongating telomeres, hTERT gene transfection has other physiological roles, among which an enhanced ER capacity and a potent cell protection against apoptosis. Conclusion We show that the methodology reduces the complexity of the proteome analysis and highlights proteins implicated in other processes than telomere elongation. hTERT induced proteome changes suggest

  15. Induction of anti-tumor immunity by trifunctional antibodies in patients with peritoneal carcinomatosis

    Directory of Open Access Journals (Sweden)

    Lindhofer Horst

    2009-02-01

    Full Text Available Abstract Peritoneal carcinomatosis (PC from epithelial tumors is a fatal diagnosis without efficient treatment. Trifunctional antibodies (trAb are novel therapeutic approaches leading to a concerted anti-tumor activity resulting in tumor cell destruction. In addition, preclinical data in mouse tumor models demonstrated the induction of long lasting tumor immunity after treatment with trAb. We describe the induction of anti-tumor specific T-lymphocytes after intraperitoneal administration of trAb in patients with PC. 9 patients with progressive PC from gastric (n = 6 and ovarian cancer (n = 2, and cancer of unknown primary (n = 1 received 3 escalating doses of trAb after surgery and/or ineffective chemotherapy. The trAb EpCAM × CD3 (10, 20, 40 μg or HER2/neu × CD3 (10, 40, 80 μg were applicated by intraperitoneal infusion. Four weeks after the last trAb application, all patients were restimulated by subdermal injection of trAb + autologous PBMC + irradiated autologous tumor cells. Immunological reactivity was tested by analyzing PBMC for specific tumor reactive CD4+/CD8+ T lymphocytes using an IFN-γ secretion assay. In 5 of 9 patients, tumor reactive CD4+/CD8+ T-lymphocytes increased significantly, indicating specific anti-tumor immunity. A clinical response (stable disease, partial regression has been observed in 5 of 9 patients, with a mean time to progression of 3.6 months. Follow-up showed a mean survival of 11.8 months (median 8.0 months after trAb therapy. TrAb are able to induce anti-tumor immunity after intraperitoneal application and restimulation. The induction of long-lasting anti-tumor immunity may provide an additional benefit of the intraperitoneal therapy with trAb and should be further elevated in larger clinical trials.

  16. Computer-aided discovery of biological activity spectra for anti-aging and anti-cancer olive oil oleuropeins.

    Science.gov (United States)

    Corominas-Faja, Bruna; Santangelo, Elvira; Cuyàs, Elisabet; Micol, Vicente; Joven, Jorge; Ariza, Xavier; Segura-Carretero, Antonio; García, Jordi; Menendez, Javier A

    2014-09-01

    Aging is associated with common conditions, including cancer, diabetes, cardiovascular disease, and Alzheimer's disease. The type of multi-targeted pharmacological approach necessary to address a complex multifaceted disease such as aging might take advantage of pleiotropic natural polyphenols affecting a wide variety of biological processes. We have recently postulated that the secoiridoids oleuropein aglycone (OA) and decarboxymethyl oleuropein aglycone (DOA), two complex polyphenols present in health-promoting extra virgin olive oil (EVOO), might constitute a new family of plant-produced gerosuppressant agents. This paper describes an analysis of the biological activity spectra (BAS) of OA and DOA using PASS (Prediction of Activity Spectra for Substances) software. PASS can predict thousands of biological activities, as the BAS of a compound is an intrinsic property that is largely dependent on the compound's structure and reflects pharmacological effects, physiological and biochemical mechanisms of action, and specific toxicities. Using Pharmaexpert, a tool that analyzes the PASS-predicted BAS of substances based on thousands of "mechanism-effect" and "effect-mechanism" relationships, we illuminate hypothesis-generating pharmacological effects, mechanisms of action, and targets that might underlie the anti-aging/anti-cancer activities of the gerosuppressant EVOO oleuropeins.

  17. Production of human anti-HLA monoclonal antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.C.; Mercier, F.; Roger, J.; Varin, M.

    1986-03-01

    Only 40% of the several hundred anti-HLA murine monoclonal antibodies (MAbs) that have been made detect HLA-A,B,C or DR specificities previously defined by human alloantisera, the range of recognized specificities is very narrow, and few of the MAbs have proven useful as tissue typing reagents. In hopes of obtaining HLA typing reagents, the authors are developing a protocol for the production of human anti-HLA MAbs from HLA-antigen (Ag) immunized peripheral blood B cells of volunteering renal patients, immunized to one or more HLA Ags through therapeutic blood transfusions. A simple enrichment of the donor B cells has not been sufficient for anti-HLA MAb production, the authors are currently delineating the conditions necessary for increasing the number of HLA-specific donor B cells by in vitro stimulation with cells expressing the HLA Ag to which the B cell donor is immunized. For the production of MAbs, the stimulated B cells are transformed with Epstein-Barr virus and subsequently fused with KR-4 lymphoblastoid cells. Hybridomas are selected by HAT and Ouabain. Supernatants are screened for anti-HLA activity against lymphocyte targets expressing the original immunizing HLA Ag by complement mediated /sup 51/Cr release assay. Antibody specificity is determined by the complement-dependent microcytotoxicity test used for HLA typing.

  18. Rational design and validation of an anti-protein kinase C active-state specific antibody based on conformational changes.

    Science.gov (United States)

    Pena, Darlene Aparecida; Andrade, Victor Piana de; Silva, Gabriela Ávila Fernandes; Neves, José Ivanildo; Oliveira, Paulo Sergio Lopes de; Alves, Maria Julia Manso; Devi, Lakshmi A; Schechtman, Deborah

    2016-02-25

    Protein kinase C (PKC) plays a regulatory role in key pathways in cancer. However, since phosphorylation is a step for classical PKC (cPKC) maturation and does not correlate with activation, there is a lack of tools to detect active PKC in tissue samples. Here, a structure-based rational approach was used to select a peptide to generate an antibody that distinguishes active from inactive cPKC. A peptide conserved in all cPKCs, C2Cat, was chosen since modeling studies based on a crystal structure of PKCβ showed that it is localized at the interface between the C2 and catalytic domains of cPKCs in an inactive kinase. Anti-C2Cat recognizes active cPKCs at least two-fold better than inactive kinase in ELISA and immunoprecipitation assays, and detects the temporal dynamics of cPKC activation upon receptor or phorbol stimulation. Furthermore, the antibody is able to detect active PKC in human tissue. Higher levels of active cPKC were observed in the more aggressive triple negative breast cancer tumors as compared to the less aggressive estrogen receptor positive tumors. Thus, this antibody represents a reliable, hitherto unavailable and a valuable tool to study PKC activation in cells and tissues. Similar structure-based rational design strategies can be broadly applied to obtain active-state specific antibodies for other signal transduction molecules.

  19. Anti-angiogenic treatment of gastrointestinal malignancies.

    Science.gov (United States)

    Salmon, J Stuart; Lockhart, A Craig; Berlin, Jordan

    2005-01-01

    The scientific rationale to block angiogenesis as a treatment strategy for human cancer has been developed over the last 30 years, but is only now entering the clinical arena. Preclinical studies have demonstrated the importance of the vascular endothelial growth factor (VEGF) pathways in both physiologic and pathologic angiogenesis, and have led to the development of approaches to block its role in tumor angiogenesis. Bevacizumab is an antibody to VEGF and has been shown to prolong survival when given with chemotherapy in the treatment of metastatic colorectal cancer (CRC). Although this is the first anti-angiogenic treatment to be approved for the treatment of human epithelial malignancy, a number of other approaches currently are in development. Soluble chimeric receptors to sequester serum VEGF and monoclonal antibodies against VEGF receptors have both shown considerable promise in the laboratory and are being brought into clinical investigation. A number of small-molecule tyrosine kinase inhibitors that have activity against VEGF receptors also are in clinical trials. Although these novel treatments are being pioneered in CRC, anti-angiogenic approaches also are being tested in the treatment of other gastrointestinal malignancies. Anti-VEGF therapy has shown promise in such traditionally resistant tumors as pancreatic cancer and hepatocellular carcinoma. This review will examine the preclinical foundation and then focus on the clinical studies of anti-VEGF therapy in gastrointestinal cancers.

  20. Therapeutic potential of combined anti-IL-1β IgY and anti-TNF-α IgY in guinea pigs with allergic rhinitis induced by ovalbumin.

    Science.gov (United States)

    Guo-Zhu, Hu; Xi-Ling, Zhu; Zhu, Wen; Li-Hua, Wu; Dan, He; Xiao-Mu, Wu; Wen-Yun, Zhou; Wei-Xu, Hu

    2015-03-01

    We have previously demonstrated that anti-IL-1β immunoglobulin yolk(IgY) inhibits pathological responses in allergic asthma guinea pigs induced by ovalbumin(OVA). This study aims to determine whether the combined blockade of IL-1β and TNF-α can more effectively inhibit allergic inflammation in allergic rhinitis(AR) guinea pigs induced by OVA. Healthy guinea pigs treated with saline were used as the healthy control. The AR guinea pigs induced by OVA were randomly divided into (1) the AR model group containing negative control animals treated with intranasal saline; (2) the 0.1% non-specific IgY treatment group treated with non-specific IgY; (3) the 0.1% anti-TNF-α IgY treatment group treated with 0.1% anti-TNF-α IgY; (4) the 0.1% anti-IL-1β IgY treatment group treated with 0.1% anti-IL-1β IgY; (5) the 0.1% combined anti-IL-1β IgY and anti-TNF-α IgY treatment group treated with 0.1% combined anti-IL-1β IgY and anti-TNF-α IgY; and (6) the fluticasone propionate treatment group treated with fluticasone propionate. Cytokines were measured using an enzyme-linked immunosorbent assay. The results showed that IL-1β, IL-5, IL-9, IL-13, IL-18, IL-22, IL-33, TNF-α, TGF-β1 and OVA-specific IgE levels in the peripheral blood (PB) and nasal lavage fluid (NLF) significantly decreased at 2h, 4h or 8h in the 0.1% combined anti-IL-1β IgY and anti-TNF-α IgY treatment group compared to the AR model group and the 0.1% non-specific IgY treatment group (P<0.05). The data suggest that blockade of IL-1β and TNF-α by intranasal instillation of combined anti-IL-1β IgY and anti-TNF-α IgY could be a potential alternative strategy for preventing and treating allergic rhinitis. Copyright © 2014. Published by Elsevier B.V.

  1. Outcomes of a statewide anti-tobacco industry youth organizing movement.

    Science.gov (United States)

    Dunn, Caroline L; Pirie, Phyllis L; Oakes, J Michael

    2004-01-01

    To outline the design and present select findings from an evaluation of a statewide anti-tobacco industry youth organizing movement. A telephone survey was administered to teenagers to assess associations between exposure to anti-industry youth organizing activities and tobacco-related attitudes and behaviors. A group-level comparison between areas high and low in youth organizing activities was planned. Methodological obstacles necessitated a subject-level analytic approach, with comparisons being made between youth at higher and lower levels of exposure. Six rural areas (comprising 13 counties) and two urban regions of Minnesota were selected for survey. The study comprised 852 youth, aged 15 to 17 years old, randomly selected from county-specific sampling frames constructed from a marketing research database. Exposure index scores were developed for two types of activities designed to involve youth in the anti-industry program: branding (creating awareness of the movement in general) and messaging (informing about the movement's main messages). Attitudinal outcomes measured attitudes about the tobacco industry and the effectiveness of youth action. Behavioral outcomes included taking action to get involved in the organization, spreading an anti-industry message, and smoking susceptibility. Branding index scores were significantly correlated with taking action to get involved (p strategy for involving youth in tobacco prevention and generating negative attitudes about the industry.

  2. MNS16A tandem repeat minisatellite of human telomerase gene: functional studies in colorectal, lung and prostate cancer.

    Science.gov (United States)

    Hofer, Philipp; Zöchmeister, Cornelia; Behm, Christian; Brezina, Stefanie; Baierl, Andreas; Doriguzzi, Angelina; Vanas, Vanita; Holzmann, Klaus; Sutterlüty-Fall, Hedwig; Gsur, Andrea

    2017-04-25

    MNS16A, a functional polymorphic tandem repeat minisatellite, is located in the promoter region of an antisense transcript of the human telomerase reverse transcriptase gene. MNS16A promoter activity depends on the variable number of tandem repeats (VNTR) presenting varying numbers of transcription factor binding sites for GATA binding protein 1. Although MNS16A has been investigated in multiple cancer epidemiology studies with incongruent findings, functional data of only two VNTRs (VNTR-243 and VNTR-302) were available thus far, linking the shorter VNTR to higher promoter activity.For the first time, we investigated promoter activity of all six VNTRs of MNS16A in cell lines of colorectal, lung and prostate cancer using Luciferase reporter assay. In all investigated cell lines shorter VNTRs showed higher promoter activity. While this anticipated indirect linear relationship was affirmed for colorectal cancer SW480 (P = 0.006), a piecewise linear regression model provided significantly better model fit in lung cancer A-427 (P = 6.9 × 10-9) and prostate cancer LNCaP (P = 0.039). In silico search for transcription factor binding sites in MNS16A core repeat element suggested a higher degree of complexity involving X-box binding protein 1, general transcription factor II-I, and glucocorticoid receptor alpha in addition to GATA binding protein 1.Further functional studies in additional cancers are requested to extend our knowledge of MNS16A functionality uncovering potential cancer type-specific differences. Risk alleles may vary in different malignancies and their determination in vitro could be relevant for interpretation of genotype data.

  3. The inhibition of anti-DNA binding to DNA by nucleic acid binding polymers.

    Directory of Open Access Journals (Sweden)

    Nancy A Stearns

    Full Text Available Antibodies to DNA (anti-DNA are the serological hallmark of systemic lupus erythematosus (SLE and can mediate disease pathogenesis by the formation of immune complexes. Since blocking immune complex formation can attenuate disease manifestations, the effects of nucleic acid binding polymers (NABPs on anti-DNA binding in vitro were investigated. The compounds tested included polyamidoamine dendrimer, 1,4-diaminobutane core, generation 3.0 (PAMAM-G3, hexadimethrine bromide, and a β-cylodextrin-containing polycation. As shown with plasma from patients with SLE, NABPs can inhibit anti-DNA antibody binding in ELISA assays. The inhibition was specific since the NABPs did not affect binding to tetanus toxoid or the Sm protein, another lupus autoantigen. Furthermore, the polymers could displace antibody from preformed complexes. Together, these results indicate that NABPs can inhibit the formation of immune complexes and may represent a new approach to treatment.

  4. Presence of Cx43 in extracellular vesicles reduces the cardiotoxicity of the anti-tumour therapeutic approach with doxorubicin

    Directory of Open Access Journals (Sweden)

    Tania Martins-Marques

    2016-09-01

    Full Text Available Extracellular vesicles (EVs are major conveyors of biological information, mediating local and systemic cell-to-cell communication under physiological and pathological conditions. These endogenous vesicles have been recognized as prominent drug delivery vehicles of several therapeutic cargoes, including doxorubicin (dox, presenting major advantages over the classical approaches. Although dox is one of the most effective anti-tumour agents in the clinical practice, its use is very often hindered by its consequent dramatic cardiotoxicity. Despite significant advances witnessed in the past few years, more comprehensive studies, supporting the therapeutic efficacy of EVs, with decreased side effects, are still scarce. The main objective of this study was to evaluate the role of the gap junction protein connexin43 (Cx43 in mediating the release of EV content into tumour cells. Moreover, we investigated whether Cx43 improves the efficiency of dox-based anti-tumour treatment, with a concomitant decrease of cardiotoxicity. In the present report, we demonstrate that the presence of Cx43 in EVs increases the release of luciferin from EVs into tumour cells in vitro and in vivo. In addition, using cell-based approaches and a subcutaneous mouse tumour model, we show that the anti-tumour effect of dox incorporated into EVs is similar to the administration of the free drug, regardless the presence of Cx43. Strikingly, we demonstrate that the presence of Cx43 in dox-loaded EVs reduces the cardiotoxicity of the drug. Altogether, these results bring new insights into the concrete potential of EVs as therapeutic vehicles and open new avenues toward the development of strategies that help to reduce unwanted side effects.

  5. On Mathematical Anti-Evolutionism

    Science.gov (United States)

    Rosenhouse, Jason

    2016-03-01

    The teaching of evolution in American high schools has long been a source of controversy. The past decade has seen an important shift in the rhetoric of anti-evolutionists, toward arguments of a strongly mathematical character. These mathematical arguments, while different in their specifics, follow the same general program and rely on the same underlying model of evolution. We shall discuss the nature and history of this program and model and describe general reasons for skepticism with regard to any anti-evolutionary arguments based upon them. We shall then survey the major arguments used by anti-evolutionists, to show how our general considerations make it possible to quickly identify their weakest points.

  6. Fusarium diversity in soil using a specific molecular approach and a cultural approach.

    Science.gov (United States)

    Edel-Hermann, Véronique; Gautheron, Nadine; Mounier, Arnaud; Steinberg, Christian

    2015-04-01

    Fusarium species are ubiquitous in soil. They cause plant and human diseases and can produce mycotoxins. Surveys of Fusarium species diversity in environmental samples usually rely on laborious culture-based methods. In the present study, we have developed a molecular method to analyze Fusarium diversity directly from soil DNA. We designed primers targeting the translation elongation factor 1-alpha (EF-1α) gene and demonstrated their specificity toward Fusarium using a large collection of fungi. We used the specific primers to construct a clone library from three contrasting soils. Sequence analysis confirmed the specificity of the assay, with 750 clones identified as Fusarium and distributed among eight species or species complexes. The Fusarium oxysporum species complex (FOSC) was the most abundant one in the three soils, followed by the Fusarium solani species complex (FSSC). We then compared our molecular approach results with those obtained by isolating Fusarium colonies on two culture media and identifying species by sequencing part of the EF-1α gene. The 750 isolates were distributed into eight species or species complexes, with the same dominant species as with the cloning method. Sequence diversity was much higher in the clone library than in the isolate collection. The molecular approach proved to be a valuable tool to assess Fusarium diversity in environmental samples. Combined with high throughput sequencing, it will allow for in-depth analysis of large numbers of samples. Published by Elsevier B.V.

  7. Re-conceptualising prenatal life stressors in predicting post-partum depression: cumulative-, specific-, and domain-specific approaches to calculating risk.

    Science.gov (United States)

    Liu, Cindy H; Tronick, Ed

    2013-09-01

    Prenatal life stress predicts post-partum depression (PPD); however, studies generally examine individual stressors (a specific approach) or the summation of such exposure (a cumulative approach) and their associations with PPD. Such approaches may oversimplify prenatal life stress as a risk factor for PPD. We evaluated approaches in assessing prenatal life stress as a predictor of PPD diagnosis, including a domain-specific approach that captures cumulative life stress while accounting for stress across different life stress domains: financial, relational, and physical health. The Pregnancy Risk Assessment Monitoring System, a population-based survey, was used to analyse the association of prenatal life stressors with PPD diagnoses among 3566 New York City post-partum women. Specific stressors were not associated with PPD diagnosis after controlling for sociodemographic variables. Exposure to a greater number of stressors was associated with PPD diagnosis, even after adjusting for both sociodemographic variables and specific stressors [odds ratio (OR) = 3.1, 95% confidence interval (CI) = 1.5, 6.7]. Individuals reporting a moderate-to-high number of financial problems along with a moderate-to-high number of physical problems were at greater odds of PPD (OR = 4.2, 95% CI = 1.2, 15.3); those with a moderate-to-high number of problems in all three domains were at over fivefold increased odds of PPD (OR = 5.5, CI = 1.1, 28.5). In assessing prenatal stress, clinicians should consider the extent to which stressors occur across different life domains; this association appears stronger with PPD diagnosis than simple assessments of individual stressors, which typically overestimate risk or cumulative exposures. © 2013 John Wiley & Sons Ltd.

  8. Time for change: a roadmap to guide the implementation of the World Anti-Doping Code 2015.

    Science.gov (United States)

    Dvorak, Jiri; Baume, Norbert; Botré, Francesco; Broséus, Julian; Budgett, Richard; Frey, Walter O; Geyer, Hans; Harcourt, Peter Rex; Ho, Dave; Howman, David; Isola, Victor; Lundby, Carsten; Marclay, François; Peytavin, Annie; Pipe, Andrew; Pitsiladis, Yannis P; Reichel, Christian; Robinson, Neil; Rodchenkov, Grigory; Saugy, Martial; Sayegh, Souheil; Segura, Jordi; Thevis, Mario; Vernec, Alan; Viret, Marjolaine; Vouillamoz, Marc; Zorzoli, Mario

    2014-05-01

    A medical and scientific multidisciplinary consensus meeting was held from 29 to 30 November 2013 on Anti-Doping in Sport at the Home of FIFA in Zurich, Switzerland, to create a roadmap for the implementation of the 2015 World Anti-Doping Code. The consensus statement and accompanying papers set out the priorities for the antidoping community in research, science and medicine. The participants achieved consensus on a strategy for the implementation of the 2015 World Anti-Doping Code. Key components of this strategy include: (1) sport-specific risk assessment, (2) prevalence measurement, (3) sport-specific test distribution plans, (4) storage and reanalysis, (5) analytical challenges, (6) forensic intelligence, (7) psychological approach to optimise the most deterrent effect, (8) the Athlete Biological Passport (ABP) and confounding factors, (9) data management system (Anti-Doping Administration & Management System (ADAMS), (10) education, (11) research needs and necessary advances, (12) inadvertent doping and (13) management and ethics: biological data. True implementation of the 2015 World Anti-Doping Code will depend largely on the ability to align thinking around these core concepts and strategies. FIFA, jointly with all other engaged International Federations of sports (Ifs), the International Olympic Committee (IOC) and World Anti-Doping Agency (WADA), are ideally placed to lead transformational change with the unwavering support of the wider antidoping community. The outcome of the consensus meeting was the creation of the ad hoc Working Group charged with the responsibility of moving this agenda forward.

  9. Recurrent TERT promoter mutations identified in a large-scale study of multiple tumor types are associated with increased TERT expression and telomerase activation

    Science.gov (United States)

    Huang, Dong-Sheng; Wang, Zhaohui; He, Xu-Jun; Diplas, Bill H.; Yang, Rui; Killela, Patrick J.; Liang, Junbo; Meng, Qun; Ye, Zai-Yuan; Wang, Wei; Jiang, Xiao-Ting; Xu, Li; He, Xiang-Lei; Zhao, Zhong-Sheng; Xu, Wen-Juan; Wang, Hui-Ju; Ma, Ying-Yu; Xia, Ying-Jie; Li, Li; Zhang, Ru-Xuan; Jin, Tao; Zhao, Zhong-Kuo; Xu, Ji; Yu, Sheng; Wu, Fang; Wang, Si-Zhen; Jiao, Yu-Chen; Yan, Hai; Tao, Hou-Quan

    2015-01-01

    Background Several somatic mutation hotspots were recently identified in the TERT promoter region in human cancers. Large scale studies of these mutations in multiple tumor types are limited, in particular in Asian populations. This study aimed to: analyze TERT promoter mutations in multiple tumor types in a large Chinese patient cohort, investigate novel tumor types and assess the functional significance of the mutations. Methods TERT promoter mutation status was assessed by Sanger sequencing for 13 different tumor types and 799 tumor tissues from Chinese cancer patients. Thymic epithelial tumors, gastrointestinal leiomyoma, and gastric schwannoma were included, for which the TERT promoter has not been previously sequenced. Functional studies included TERT expression by RT-qPCR, telomerase activity by the TRAP assay, and promoter activity by the luciferase reporter assay. Results TERT promoter mutations were highly frequent in glioblastoma (83.9%), urothelial carcinoma (64.5%), oligodendroglioma (70.0%), medulloblastoma (33.3%), and hepatocellular carcinoma (31.4%). C228T and C250T were the most common mutations. In urothelial carcinoma, several novel rare mutations were identified. TERT promoter mutations were absent in GIST, thymic epithelial tumors, gastrointestinal leiomyoma, gastric schwannoma, cholangiocarcinoma, gastric and pancreatic cancer. TERT promoter mutations highly correlated with upregulated TERT mRNA expression and telomerase activity in adult gliomas. These mutations differentially enhanced the transcriptional activity of the TERT core promoter. Conclusions TERT promoter mutations are frequent in multiple tumor types and have similar distributions in Chinese cancer patients. The functional significance of these mutations reflect the importance to telomere maintenance and hence tumorigenesis, making them potential therapeutic targets. PMID:25843513

  10. Cancer Chemotherapy Specific to Acidic Nests.

    Science.gov (United States)

    Kobayashi, Hiroshi

    2017-04-20

    The realization of cancer therapeutics specific to cancer cells with less of an effect on normal tissues is our goal. Many trials have been carried out for this purpose, but this goal is still far from being realized. It was found more than 80 years ago that solid cancer nests are acidified, but in vitro studies under acidic conditions have not been extensively studied. Recently, in vitro experiments under acidic conditions were started and anti-cancer drugs specific to acidic areas have been identified. Many genes have been reported to be expressed at a high level under acidic conditions, and such genes may be potent targets for anti-cancer drugs specific to acidic nests. In this review article, recent in vitro, in vivo, and clinical achievements in anti-cancer drugs with marked efficacy under acidic conditions are summarized, and the clinical use of anti-cancer drugs specific to acidic nests is discussed.

  11. Tumor-associated antigens identified by mRNA expression profiling induce protective anti-tumor immunity

    DEFF Research Database (Denmark)

    Mathiassen, S; Lauemøller, S L; Ruhwald, M

    2001-01-01

    Defined tumor-associated antigens (TAA) are attractive targets for anti-tumor immunotherapy. Here, we describe a novel genome-wide approach to identify multiple TAA from any given tumor. A panel of transplantable thymomas was established from an inbred p53-/- mouse strain. The resulting tumors were...... of autoimmune reactions were observed. Thus, it appears possible to evaluate the entire metabolism of any given tumor and use this information rationally to identify multiple epitopes of value in the generation of tumor-specific immunotherapy. We expect that human tumors express similar tumor-specific metabolic...

  12. Three-Dimensional Crane Modelling and Control Using Euler-Lagrange State-Space Approach and Anti-Swing Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Aksjonov Andrei

    2015-12-01

    Full Text Available The mathematical model of the three-dimensional crane using the Euler-Lagrange approach is derived. A state-space representation of the derived model is proposed and explored in the Simulink® environment and on the laboratory stand. The obtained control design was simulated, analyzed and compared with existing encoder-based system provided by the three-dimensional (3D Crane manufacturer Inteco®. As well, an anti-swing fuzzy logic control has been developed, simulated, and analyzed. Obtained control algorithm is compared with the existing anti-swing proportional-integral controller designed by the 3D crane manufacturer Inteco®. 5-degree of freedom (5DOF control schemes are designed, examined and compared with the various load masses. The topicality of the problem is due to the wide usage of gantry cranes in industry. The solution is proposed for the future research in sensorless and intelligent control of complex motor driven application.

  13. Anti-influenza M2e antibody

    Science.gov (United States)

    Bradbury, Andrew M [Santa Fe, NM

    2011-12-20

    Humanized recombinant and monoclonal antibodies specific for the ectodomain of the influenza virus M2 ion channel protein are disclosed. The antibodies of the invention have anti-viral activity and may be useful as anti-viral therapeutics and/or prophylactic/vaccine agents for inhibiting influenza virus replication and for treating individuals infected with influenza.

  14. Characterization and enzyme-conjugation of a specific anti-L1 nanobody.

    Science.gov (United States)

    Minaeian, Sara; Rahbarizadeh, Fatemeh; Zarkesh Esfahani, Sayyed Hamid; Ahmadvand, Davoud

    2012-01-01

    Persistent infection of the human papillomaviruses (HPV) has been shown to result in cervical cancer and intraepithelial neoplasia. Early detection and screening programs are essential strategies against cervical cancer. A nanobody is the smallest antigen-binding fragment known and is derived from a camelid heavy-chain antibody. This tiny protein shows high solubility and stability. It can be produced cost-effectively with high yield production. In this study, we enriched a nanobody library against the L1 protein of HPV. Several colons were selected from this enriched library using monoclonal phage-enzyme linked immunosorbent assay (phage-ELISA) and analyzed for identification of nanobody genes. The expression of nanobody fragments was performed in Rosetta gami2. The C74 nanobody that showed strong binding to the L1 protein of HPV16 was selected, purified, and characterized by Western blotting and ELISA. The selected nanobody was tested for sensitivity, specificity, and affinity. A nanobody conjugated to horseradish peroxidase (HRP) was selected and used for detection of L1 protein of HPV16. This study demonstrates that the C74-HRP, due to its specificity and good binding affinity for a specific viral antigen, is a potential diagnostic tool that can be used as a promising reagent for the new generation of HPV diagnosis approaches.

  15. Anti-ganglioside anti-idiotypic vaccination: more than molecular mimicry.

    Directory of Open Access Journals (Sweden)

    Ana María eHernández

    2012-11-01

    Full Text Available Surgery, chemotherapy, and radiation therapy are standard modalities for cancer treatment, but the effectiveness of these treatments has reached a plateau. Thus, other strategies are being explored to combine with the current treatment paradigms in order to reach better clinical results. One of these approaches is the active immunotherapy based on the induction of anti-tumor responses by anti-idiotypic vaccination. This approach arose from Jerne’s idiotypic network theory, which postulates that B lymphocytes forms a functional network, with a role in the establishment of the immune repertoires, in the regulation of natural antibody production and even in the establishment of natural tolerance. Due to the large potential diversity of the immunoglobulin variable regions, the idiotypes repertoire can mimic the universe of self and foreign epitopes, even those of non-protein nature, like gangliosides. Gangliosides are sialic acid-containing glycolipids that have been considered attractive targets for cancer immunotherapy, based on the qualitative and quantitative changes they suffer during malignant transformation and due to their importance for tumor biology. Although any idiotype could be able to mimic any antigen, only those related to antigens involved in functions relevant for organism homeostasis, and that in consequence has been fixed by evolution, would be able not only to mimic, but also to activate the idiotypic cascades related with the nominal antigen. The present review updates the results, failures and hopes, obtained with ganglioside mimicking anti-idiotypic antibodies and presents evidences of the existence of a natural response against gangliosides, suggesting that these glycolipids could be idiotypically relevant antigens.

  16. Anti-ganglioside anti-idiotypic vaccination: more than molecular mimicry

    International Nuclear Information System (INIS)

    Vázquez, Ana M. H.; Rodrèguez-Zhurbenko, Nely; López, Ana M. V.

    2012-01-01

    Surgery, chemotherapy, and radiation therapy are standard modalities for cancer treatment, but the effectiveness of these treatments has reached a plateau. Thus, other strategies are being explored to combine with the current treatment paradigms in order to reach better clinical results. One of these approaches is the active immunotherapy based on the induction of anti-tumor responses by anti-idiotypic vaccination. This approach arose from Jerne’s idiotypic network theory, which postulates that B lymphocytes forms a functional network, with a role in the establishment of the immune repertoires, in the regulation of natural antibody production and even in the establishment of natural tolerance. Due to the large potential diversity of the immunoglobulin variable regions, the idiotypes repertoire can mimic the universe of self and foreign epitopes, even those of non-protein nature, like gangliosides. Gangliosides are sialic acid-containing glycolipids that have been considered attractive targets for cancer immunotherapy, based on the qualitative and quantitative changes they suffer during malignant transformation and due to their importance for tumor biology. Although any idiotype could be able to mimic any antigen, only those related to antigens involved in functions relevant for organism homeostasis, and that in consequence has been fixed by evolution, would be able not only to mimic, but also to activate the idiotypic cascades related with the nominal antigen. The present review updates the results, failures and hopes, obtained with ganglioside mimicking anti-idiotypic antibodies and presents evidences of the existence of a natural response against gangliosides, suggesting that these glycolipids could be idiotypically relevant antigens.

  17. Anti-ganglioside anti-idiotypic vaccination: more than molecular mimicry

    Energy Technology Data Exchange (ETDEWEB)

    Vázquez, Ana M. H.; Rodrèguez-Zhurbenko, Nely; López, Ana M. V., E-mail: anita@cim.sld.cu [Tumor Immunology Direction, Center of Molecular Immunology, Habana (Cuba)

    2012-11-20

    Surgery, chemotherapy, and radiation therapy are standard modalities for cancer treatment, but the effectiveness of these treatments has reached a plateau. Thus, other strategies are being explored to combine with the current treatment paradigms in order to reach better clinical results. One of these approaches is the active immunotherapy based on the induction of anti-tumor responses by anti-idiotypic vaccination. This approach arose from Jerne’s idiotypic network theory, which postulates that B lymphocytes forms a functional network, with a role in the establishment of the immune repertoires, in the regulation of natural antibody production and even in the establishment of natural tolerance. Due to the large potential diversity of the immunoglobulin variable regions, the idiotypes repertoire can mimic the universe of self and foreign epitopes, even those of non-protein nature, like gangliosides. Gangliosides are sialic acid-containing glycolipids that have been considered attractive targets for cancer immunotherapy, based on the qualitative and quantitative changes they suffer during malignant transformation and due to their importance for tumor biology. Although any idiotype could be able to mimic any antigen, only those related to antigens involved in functions relevant for organism homeostasis, and that in consequence has been fixed by evolution, would be able not only to mimic, but also to activate the idiotypic cascades related with the nominal antigen. The present review updates the results, failures and hopes, obtained with ganglioside mimicking anti-idiotypic antibodies and presents evidences of the existence of a natural response against gangliosides, suggesting that these glycolipids could be idiotypically relevant antigens.

  18. Single-strand DNA-binding protein SSB1 facilitates TERT recruitment to telomeres and maintains telomere G-overhangs.

    Science.gov (United States)

    Pandita, Raj K; Chow, Tracy T; Udayakumar, Durga; Bain, Amanda L; Cubeddu, Liza; Hunt, Clayton R; Shi, Wei; Horikoshi, Nobuo; Zhao, Yong; Wright, Woodring E; Khanna, Kum Kum; Shay, Jerry W; Pandita, Tej K

    2015-03-01

    Proliferating mammalian stem and cancer cells express telomerase [telomerase reverse transcriptase (TERT)] in an effort to extend chromosomal G-overhangs and maintain telomere ends. Telomerase-expressing cells also have higher levels of the single-stranded DNA-binding protein SSB1, which has a critical role in DNA double-strand break (DSB) repair. Here, we report that SSB1 binds specifically to G-strand telomeric DNA in vitro and associates with telomeres in vivo. SSB1 interacts with the TERT catalytic subunit and regulates its interaction with telomeres. Deletion of SSB1 reduces TERT interaction with telomeres and leads to G-overhang loss. Although SSB1 is recruited to DSB sites, we found no corresponding change in TERT levels at these sites, implying that SSB1-TERT interaction relies upon a specific chromatin structure or context. Our findings offer an explanation for how telomerase is recruited to telomeres to facilitate G-strand DNA extension, a critical step in maintaining telomere ends and cell viability in all cancer cells. Cancer Res; 75(5); 858-69. ©2015 AACR. ©2015 American Association for Cancer Research.

  19. Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking

    Directory of Open Access Journals (Sweden)

    Qian Yang

    2017-10-01

    Full Text Available Background: Low-intensity ultrasound (LIUS was shown to be beneficial in mitigating inflammation and facilitating tissue repair in various pathologies. Determination of the molecular mechanisms underlying the anti-inflammatory effects of LIUS allows to optimize this technique as a therapy for the treatment of malignancies and aseptic inflammatory disorders.Methods: We conducted cutting-edge database mining approaches to determine the anti-inflammatory mechanisms exerted by LIUS.Results: Our data revealed following interesting findings: (1 LIUS anti-inflammatory effects are mediated by upregulating anti-inflammatory gene expression; (2 LIUS induces the upregulation of the markers and master regulators of immunosuppressor cells including MDSCs (myeloid-derived suppressor cells, MSCs (mesenchymal stem cells, B1-B cells and Treg (regulatory T cells; (3 LIUS not only can be used as a therapeutic approach to deliver drugs packed in various structures such as nanobeads, nanospheres, polymer microspheres, and lipidosomes, but also can make use of natural membrane vesicles as small as exosomes derived from immunosuppressor cells as a novel mechanism to fulfill its anti-inflammatory effects; (4 LIUS upregulates the expression of extracellular vesicle/exosome biogenesis mediators and docking mediators; (5 Exosome-carried anti-inflammatory cytokines and anti-inflammatory microRNAs inhibit inflammation of target cells via multiple shared and specific pathways, suggesting exosome-mediated anti-inflammatory effect of LIUS feasible; and (6 LIUS-mediated physical effects on tissues may activate specific cellular sensors that activate downstream transcription factors and signaling pathways.Conclusions: Our results have provided novel insights into the mechanisms underlying anti-inflammatory effects of LIUS, and have provided guidance for the development of future novel therapeutic LIUS for cancers, inflammatory disorders, tissue regeneration and tissue repair.

  20. Distinct Responses of Stem Cells to Telomere Uncapping-A Potential Strategy to Improve the Safety of Cell Therapy.

    Science.gov (United States)

    Liu, Chang Ching; Ma, Dong Liang; Yan, Ting-Dong; Fan, XiuBo; Poon, Zhiyong; Poon, Lai-Fong; Goh, Su-Ann; Rozen, Steve G; Hwang, William Ying Khee; Tergaonkar, Vinay; Tan, Patrick; Ghosh, Sujoy; Virshup, David M; Goh, Eyleen L K; Li, Shang

    2016-10-01

    In most human somatic cells, the lack of telomerase activity results in progressive telomere shortening during each cell division. Eventually, DNA damage responses triggered by critically short telomeres induce an irreversible cell cycle arrest termed replicative senescence. However, the cellular responses of human pluripotent stem cells to telomere uncapping remain unknown. We generated telomerase knockout human embryonic stem (ES) cells through gene targeting. Telomerase inactivation in ES cells results in progressive telomere shortening. Telomere DNA damage in ES cells and neural progenitor cells induces rapid apoptosis when telomeres are uncapped, in contrast to fibroblast cells that enter a state of replicative senescence. Significantly, telomerase inactivation limits the proliferation capacity of human ES cells without affecting their pluripotency. By targeting telomerase activity, we can functionally separate the two unique properties of human pluripotent stem cells, namely unlimited self-renewal and pluripotency. We show that the potential of ES cells to form teratomas in vivo is dictated by their telomere length. By controlling telomere length of ES cells through telomerase inactivation, we can inhibit teratoma formation and potentially improve the safety of cell therapies involving terminally differentiated cells as well as specific progenitor cells that do not require sustained cellular proliferation in vivo, and thus sustained telomerase activity. Stem Cells 2016;34:2471-2484. © 2016 AlphaMed Press.

  1. Complementary stable carbon isotope ratio and amount of substance measurements in sports anti-doping.

    Science.gov (United States)

    Cawley, Adam T; George, Adrian V

    2012-12-01

    The detection of steroids originating from synthetic precursors against a background of their chemically identical natural analogues has proven to be a significant challenge for doping control laboratories accredited by the World Anti-Doping Agency (WADA). The complementary application of gas chromatography-mass spectrometry (GC-MS) and gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS) has been demonstrated to provide specific detection of endogenous steroid misuse for improved anti-doping analysis. Markers of synthetically derived steroids are reviewed on the basis of abnormal urinary excretions and low (13)C content. A combinatorial approach is presented for the interpretation of GC-MS and GC-C-IRMS data in the anti-doping context. This methodology can allow all relevant information concerning an individual's metabolism to be assessed in order to make an informed decision with respect to a doping violation. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Droppin’ Knowledge on Race: Hip-Hop, White Adolescents, and Anti-Racism Education

    Directory of Open Access Journals (Sweden)

    Steven Netcoh

    2013-10-01

    Full Text Available In this essay, the author examines how Hip-Hop can be mobilized in anti-racism educational initatives.  The author claims that existing research on Hip-Hop and white adolescents suggests a negative corrleation between white youths' engagement with Hip-Hop and their understanding of how race and racism function in American society.  In response to this research, the author argues Hip-Hop's diverse racial discourses and ideologies must be made the subject of direct and critical inquiry in secondary and post-secondary classrooms to maximize its democratic potential.  The author outlines specific approaches for how teachers can employ Hip-Hop in anti-racism curricula in secondary and post-secondary classrooms.  Collectively, the essay serves as a preliminary investigation of Hip-Hop pedagogies of race and whiteness.

  3. Dual-specificity anti-sigma factor reinforces control of cell-type specific gene expression in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Mónica Serrano

    2015-04-01

    Full Text Available Gene expression during spore development in Bacillus subtilis is controlled by cell type-specific RNA polymerase sigma factors. σFand σE control early stages of development in the forespore and the mother cell, respectively. When, at an intermediate stage in development, the mother cell engulfs the forespore, σF is replaced by σG and σE is replaced by σK. The anti-sigma factor CsfB is produced under the control of σF and binds to and inhibits the auto-regulatory σG, but not σF. A position in region 2.1, occupied by an asparagine in σG and by a glutamate in οF, is sufficient for CsfB discrimination of the two sigmas, and allows it to delay the early to late switch in forespore gene expression. We now show that following engulfment completion, csfB is switched on in the mother cell under the control of σK and that CsfB binds to and inhibits σE but not σK, possibly to facilitate the switch from early to late gene expression. We show that a position in region 2.3 occupied by a conserved asparagine in σE and by a conserved glutamate in σK suffices for discrimination by CsfB. We also show that CsfB prevents activation of σG in the mother cell and the premature σG-dependent activation of σK. Thus, CsfB establishes negative feedback loops that curtail the activity of σE and prevent the ectopic activation of σG in the mother cell. The capacity of CsfB to directly block σE activity may also explain how CsfB plays a role as one of the several mechanisms that prevent σE activation in the forespore. Thus the capacity of CsfB to differentiate between the highly similar σF/σG and σE/σK pairs allows it to rinforce the cell-type specificity of these sigma factors and the transition from early to late development in B. subtilis, and possibly in all sporeformers that encode a CsfB orthologue.

  4. H2Mab-77 is a Sensitive and Specific Anti-HER2 Monoclonal Antibody Against Breast Cancer.

    Science.gov (United States)

    Itai, Shunsuke; Fujii, Yuki; Kaneko, Mika K; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Chang, Yao-Wen; Handa, Saori; Takahashi, Maki; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari

    2017-08-01

    Human epidermal growth factor receptor 2 (HER2) plays a critical role in the progression of breast cancers, and HER2 overexpression is associated with poor clinical outcomes. Trastuzumab is an anti-HER2 humanized antibody that leads to significant survival benefits in patients with HER2-positive metastatic breast cancers. In this study, we developed novel anti-HER2 monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. Initially, we expressed the full length or ectodomain of HER2 in LN229 glioblastoma cells and then immunized mice with ectodomain of HER2 or LN229/HER2, and performed the first screening by enzyme-linked immunosorbent assays using ectodomain of HER2. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical analyses (fourth screening). Among 100 mAb clones, only three mAbs reacted with HER2 in Western blot, and clone H 2 Mab-77 (IgG 1 , kappa) was selected. Finally, immunohistochemical analyses with H 2 Mab-77 showed sensitive and specific reactions against breast cancer cells, warranting the use of H 2 Mab-77 to detect HER2 in pathological analyses of breast cancers.

  5. Anti-Saccharomyces cerevisiae and perinuclear anti-neutrophil cytoplasmic antibodies in coeliac disease before and after gluten-free diet.

    Science.gov (United States)

    Granito, A; Zauli, D; Muratori, P; Muratori, L; Grassi, A; Bortolotti, R; Petrolini, N; Veronesi, L; Gionchetti, P; Bianchi, F B; Volta, U

    2005-04-01

    Anti-Saccharomyces cerevisiae and perinuclear anti-neutrophil cytoplasmic autoantibodies are markers of Crohn's disease and ulcerative colitis respectively. To determine the prevalence of anti-S. cerevisiae and perinuclear anti-neutrophil cytoplasmic autoantibodies in a large series of coeliac disease patients before and after gluten free diet, and to correlate anti-S. cerevisiae-positivity with intestinal mucosal damage. One hundred and five consecutive coeliac disease patients and 141 controls (22 ulcerative colitis, 24 Crohn's disease, 30 primary sclerosing cholangitis, 15 postenteritis syndrome, 50 blood donors) were tested for anti-S. cerevisiae by enzyme-linked immunosorbent assay and for perinuclear anti-neutrophil cytoplasmic autoantibodies by indirect immunofluorescence. In coeliac disease anti-S. cerevisiae (immunoglobulin G and/or immunoglobulin A) were slightly less frequent (59%) than in Crohn's disease (75%, P = 0.16) and significantly more frequent than in ulcerative colitis (27%), primary sclerosing cholangitis (30%), postenteritis syndrome (26%) and blood donors (4%) (P = 0.009, P = 0.0002, P = 0.025, P < 0.0001). No correlation was found between anti-S. cerevisiae and degree of mucosal damage. Perinuclear anti-neutrophil cytoplasmic autoantibodies were detected only in one coeliac. After gluten free diet the disappearance of anti-S. cerevisiae-immunoglobulin A (93%) was more frequent than that of immunoglobulin G (17%, P = 0.0001); perinuclear anti-neutrophil cytoplasmic autoantibodies disappeared in the only coeliac positive at diagnosis. More than half of untreated coeliacs are anti-S. cerevisiae-positive irrespective of the severity of mucosal damage. Differently from immunoglobulin A, anti-S. cerevisiae-immunoglobulin G persisted in more than 80% after gluten free diet. The high prevalence of anti-S. cerevisiae in coeliac disease suggests that they may be the effect of a non-specific immune response in course of chronic small bowel disease.

  6. Anti-carbamylated Protein Antibody Levels Correlate with Anti-Sa (Citrullinated Vimentin) Antibody Levels in Rheumatoid Arthritis.

    Science.gov (United States)

    Challener, Gregory J; Jones, Jonathan D; Pelzek, Adam J; Hamilton, B JoNell; Boire, Gilles; de Brum-Fernandes, Artur José; Masetto, Ariel; Carrier, Nathalie; Ménard, Henri A; Silverman, Gregg J; Rigby, William F C

    2016-02-01

    The presence of anticitrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) indicates a breach in immune tolerance. Recent studies indicate that this breach extends to homocitrullination of lysines with the formation of anti-carbamylated protein (anti-CarP) antibodies. We analyzed the clinical and serologic relationships of anti-CarP in 2 RA cohorts. Circulating levels of immunoglobulin G anti-CarP antibodies were determined by ELISA in established (Dartmouth-Hitchcock Medical Center) and early (Sherbrooke University Hospital Center) cohorts and evaluated for anticyclic citrullinated peptide antibodies (anti-CCP), specific ACPA, and rheumatoid factor (RF) levels using the Student t test and correlation analysis. We identified elevated anti-CarP antibodies titers in 47.0% of seropositive patients (Dartmouth, n = 164), with relationships to anti-CCP (p < 0.0001) and IgM-RF (p = 0.001). Similarly, 38.2% of seropositive patients from the Sherbrooke cohort (n = 171) had elevated anti-CarP antibodies; titers correlated to anti-CCP (p = 0.01) but not IgM-RF (p = 0.09). A strong correlation with anti-Sa was observed: 47.9% anti-Sa+ patients were anti-CarP antibodies+ versus only 25.4% anti-Sa- in the Sherbrooke cohort (p = 0.0002), and 62.6% anti-Sa+ patients versus 26.9% anti-Sa- were anti-CarP antibodies+ in Dartmouth (p < 0.0001). We found a more variable response for reactivity to citrullinated fibrinogen or to citrullinated peptides from fibrinogen and α enolase. In 2 North American RA cohorts, we observed a high prevalence of anti-CarP antibody positivity. We also describe a surprising and unexpected association of anti-CarP with anti-Sa antibodies that could not be explained by cross-reactivity. Further, considerable heterogeneity exists between anti-CarP reactivity and other citrullinated peptide reactivity, raising the question of how the pathogenesis of antibody responses for carbamylated proteins and citrullinated proteins may be linked in vivo.

  7. The site selection law and the anti-atom movement; Das Standortauswahlgesetz und die Anti-Atom-Bewegung

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, Daniel

    2015-07-01

    The anti atom movement has reached many of their political claims with the German nuclear power phaseout. At the same time the government has regained the interpretive dominance with the in radioactive waste management with the new search for possible final repository sites. He anti-atom movement refuses most parts of the actual law but cannot abdicate from the responsibility of the process of site selection. The contribution shows using three actual research approaches that such a convergence is probable to occur in the future. A cooperation of anti-atom movement and the government is of high probability in the long term, but is not necessarily identical to a political acceptance.

  8. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier.

    Science.gov (United States)

    Caraglia, M; De Rosa, G; Salzano, G; Santini, D; Lamberti, M; Sperlongano, P; Lombardi, A; Abbruzzese, A; Addeo, R

    2012-03-01

    Nanotechnology-based drug delivery was born as a chance for pharmaceutical weapons to be delivered in the body sites where drug action is required. Specifically, the incorporation of anti-cancer agents in nanodevices of 100-300 nm allows their delivery in tissues that have a fenestrated vasculature and a reduced lymphatic drainage. These two features are typical of neoplastic tissues and, therefore, allow the accumulation of nanostructured devices in tumours. An important issue of anti-cancer pharmacological strategies is the overcoming of anatomical barriers such as the bloodbrain- barrier (BBB) that protects brain from toxicological injuries but, at the same time, makes impossible for most of the pharmacological agents with anti-cancer activity to reach tumour cells placed in the brain and derived from either primary tumours or metastases. In fact, only highly lipophilic molecules can passively diffuse through BBB to reach central nervous system (CNS). Another possibility is to use nanotechnological approaches as powerful tools to across BBB, by both prolonging the plasma half-life of the drugs and crossing fenestrations of BBB damaged by brain metastases. Moreover, modifications of nanocarrier surface with specific endogenous or exogenous ligands can promote the crossing of intact BBB as in the case of primary brain tumours. This aim can be achieved through the binding of the nanodevices to carriers or receptors expressed by the endothelial cells of BBB and that can favour the internalization of the nanostructured devices delivering anti-cancer drugs. This review summarizes the most meaningful advances in the field of nanotechnologies for brain delivery of drugs.

  9. p53 and telomerase control rat myocardial tissue response to hypoxia and ageing

    Directory of Open Access Journals (Sweden)

    A. Cataldi

    2009-12-01

    Full Text Available Cellular senescence implies loss of proliferative and tissue regenerative capability. Also hypoxia, producing Reactive Oxygen Species (ROS, can damage cellular components through the oxidation of DNA, proteins and lipids, thus influencing the shortening of telomeres. Since ribonucleoprotein Telomerase (TERT, catalyzing the replication of the ends of eukaryotic chromosomes, promotes cardiac muscle cell proliferation, hypertrophy and survival, here we investigated its role in the events regulating apoptosis occurrence and life span in hearts deriving from young and old rats exposed to hypoxia. TUNEL (terminal-deoxinucleotidyl -transferase- mediated dUTP nick end-labeling analysis reveals an increased apoptotic cell number in both samples after hypoxia exposure, mainly in the young with respect to the old. TERT expression lowers either in the hypoxic young, either in the old in both experimental conditions, with respect to the normoxic young. These events are paralleled by p53 and HIF-1 ? expression dramatic increase and by p53/ HIF-1 ? co-immunoprecipitation in the hypoxic young, evidencing the young subject as the most stressed by such challenge. These effects could be explained by induction of damage to genomic DNA by ROS that accelerates cell senescence through p53 activation. Moreover, by preventing TERT enzyme down-regulation, cell cycle exit and apoptosis occurrence could be delayed and new possibilities for intervention against cell ageing and hypoxia could be opened.

  10. Chemoradiotherapy of esophagus cancers: prognostic value of anti-P53 and anti-ras circulating antibodies; Chimioradiotherapie des cancers de l'oesophage: valeur pronostique des anticorps circulants anti-P53 et anti-ras

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P.; Quero, L.; Pacaud, V.; Baruch-Hennequin, V.; Maylin, C.; Hennequin, C. [Hopital Saint-Louis, Service d' Oncologie-radiotherapie, 75 - Paris (France); Schlageter, M.H. [Hopital Saint-Louis, Service de Medecine Nucleaire, 75 - Paris (France)

    2007-11-15

    The presence of anti-p53 antibodies makes suspect a resistance to the chemoradiotherapy and has to make envisage other approaches that the chemo - radiotherapy by 5-fluoro-uracil-cisplatin (surgery, intensification, targeted therapeutic). (N.C.)

  11. Ultrasonic Nanobubbles Carrying Anti-PSMA Nanobody: Construction and Application in Prostate Cancer-Targeted Imaging.

    Directory of Open Access Journals (Sweden)

    Xiaozhou Fan

    Full Text Available To facilitate prostate cancer imaging using targeted molecules, we constructed ultrasonic nanobubbles coupled with specific anti-PSMA (prostate specific membrane antigen nanobodies, and evaluated their in vitro binding capacity and in vivo imaging efficacy. The "targeted" nanobubbles, which were constructed via a biotin-streptavidin system, had an average diameter of 487.60 ± 33.55 nm and carried the anti-PSMA nanobody as demonstrated by immunofluorescence. Microscopy revealed targeted binding of nanobubbles in vitro to PSMA-positive cells. Additionally, ultrasonography indicators of nanobubble imaging (including arrival time, peak time, peak intensity and enhanced duration were evaluated for the ultrasound imaging in three kinds of animal xenografts (LNCaP, C4-2 and MKN45, and showed that these four indicators of targeted nanobubbles exhibited significant differences from blank nanobubbles. Therefore, this study not only presents a novel approach to target prostate cancer ultrasonography, but also provides the basis and methods for constructing small-sized and high-efficient targeted ultrasound nanobubbles.

  12. Anti-regulatory T cells

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2017-01-01

    responses to tumours or inhibiting autoimmunity development. However, recent studies report the discovery of self-reactive pro-inflammatory T cells—termed anti-regulatory T cells (anti-Tregs)—that target immune-suppressive cells. Thus, regulatory cells can now be defined as both cells that suppress immune...... reactions as well as effector cells that counteract the effects of suppressor cells and support immune reactions. Self-reactive anti-Tregs have been described that specifically recognize human leukocyte antigen-restricted epitopes derived from proteins that are normally expressed by regulatory immune cells......Our initial understanding of immune-regulatory cells was based on the discovery of suppressor cells that assure peripheral T-cell tolerance and promote immune homeostasis. Research has particularly focused on the importance of regulatory T cells (Tregs) for immune modulation, e.g. directing host...

  13. A modeling approach to compare ΣPCB concentrations between congener-specific analyses

    Science.gov (United States)

    Gibson, Polly P.; Mills, Marc A.; Kraus, Johanna M.; Walters, David M.

    2017-01-01

    Changes in analytical methods over time pose problems for assessing long-term trends in environmental contamination by polychlorinated biphenyls (PCBs). Congener-specific analyses vary widely in the number and identity of the 209 distinct PCB chemical configurations (congeners) that are quantified, leading to inconsistencies among summed PCB concentrations (ΣPCB) reported by different studies. Here we present a modeling approach using linear regression to compare ΣPCB concentrations derived from different congener-specific analyses measuring different co-eluting groups. The approach can be used to develop a specific conversion model between any two sets of congener-specific analytical data from similar samples (similar matrix and geographic origin). We demonstrate the method by developing a conversion model for an example data set that includes data from two different analytical methods, a low resolution method quantifying 119 congeners and a high resolution method quantifying all 209 congeners. We used the model to show that the 119-congener set captured most (93%) of the total PCB concentration (i.e., Σ209PCB) in sediment and biological samples. ΣPCB concentrations estimated using the model closely matched measured values (mean relative percent difference = 9.6). General applications of the modeling approach include (a) generating comparable ΣPCB concentrations for samples that were analyzed for different congener sets; and (b) estimating the proportional contribution of different congener sets to ΣPCB. This approach may be especially valuable for enabling comparison of long-term remediation monitoring results even as analytical methods change over time. 

  14. Specific anti-EL4-lymphoma immunity in mice cured 2 years earlier with doxorubicin and interleukin-2.

    Science.gov (United States)

    Ehrke, M J; Verstovsek, S; Zaleskis, G; Ho, R L; Ujházy, P; Maccubbin, D L; Mihich, E

    1996-05-01

    This laboratory has reported the conditions for an effective, non-toxic, chemoimmunotherapy utilizing doxorubicin in combination with prolonged administration of interleukin-2 and the identification of the critical role of activated CD8+ T cells in the therapeutic effect. Mice (C57BL/6) cured in those studies have been followed for the remainder of their life spans. These mice, approximately 2 months of age when initially inoculated with syngeneic EL4 lymphoma, survived for more than 2 years, the normal life span of C57BL/6 mice. Mice 4 months old reinoculated with the EL4 cells all survived. At about 1 year of age mice were sacrificed and the ability of their thymocytes and splenocytes to develop specific CD8+ anti-EL4 activity was as high as it had been at the time of tumor rejection. At about 2 years of age EL4 was reimplanted into mice; all of them survived. These surviving mice, at 2 years 2 months of age, as well as a group of 2-year-old mice not rechallenged, were killed and functional antitumor activity and phenotype characteristics of various lymphocyte populations were determined in comparison to those of young and age-matched control mice. The phenotyping of the lymphocytes from the cured mice indicated very notable differences in subset distribution and increased CD44 expression. Functionally they developed high levels of anti-EL4 activity, which was ablated by combined treatment with monoclonal antibodies against CD8 and CD44, indicating the role of memory cells. Consistent with cells from aged mice, these same cell populations had a very reduced allogeneic responsiveness. It appears that cured mice have developed an immune memory specific for EL4.

  15. Beliefs Underlying Messages of Anti-Cancer-Screening

    Science.gov (United States)

    Okuhara, Tsuyoshi; Ishikawa, Hirono; Okada, Masahumi; Kato, Mio; Kiuchi, Takahiro

    2018-02-26

    Background: Cancer screening rates are lower in Japan than in Western countries. Meanwhile, anti-cancer-screening activists take to the internet to spread their messages that cancer screening has little or no efficacy, poses substantial health risks such as side effects from radiation exposure, and that people should forgo cancer screening. We applied a qualitative approach to explore the beliefs underlying the messages of anti-cancer-screening websites, by focusing on perceived value the beliefs provided to those who held them. Methods: We conducted online searches using Google Japan and Yahoo! Japan, targeting websites we classified as “pro,” “anti,” or “neutral” depending on their claims. We applied a dual analytic approach- inductive thematic analysis and deductive interpretative analysis- to the textual data of the anti websites. Results: Of the 88 websites analyzed, five themes that correspond to beliefs were identified: destruction of common knowledge, denial of standard cancer control, education about right cancer control, education about hidden truths, and sense of superiority that only I know the truth. Authors of anti websites ascribed two values (“safety of people” and “self-esteem”) to their beliefs. Conclusion: The beliefs of authors of anti-cancer-screening websites were supposed to be strong. It would be better to target in cancer screening promotion not outright screening refusers but screening hesitant people who are more amenable to changing their attitudes toward screening. The possible means to persuade them were discussed. Creative Commons Attribution License

  16. Specific repression of mutant K-RAS by 10-23 DNAzyme: Sensitizing cancer cell to anti-cancer therapies

    International Nuclear Information System (INIS)

    Yu, S.-H.; Wang, T.-H.; Au, L.-C.

    2009-01-01

    Point mutations of the Ras family are frequently found in human cancers at a prevalence rate of 30%. The most common mutation K-Ras(G12V), required for tumor proliferation, survival, and metastasis due to its constitutively active GTPase activity, has provided an ideal target for cancer therapy. 10-23 DNAzyme, an oligodeoxyribonucleotide-based ribonuclease consisting of a 15-nucleotide catalytical domain flanked by two target-specific complementary arms, has been shown to effectively cleave the target mRNA at purine-pyrimidine dinucleotide. Taking advantage of this specific property, 10-23 DNAzyme was designed to cleave mRNA of K-Ras(G12V)(GGU → GUU) at the GU dinucleotide while left the wild-type (WT) K-Ras mRNA intact. The K-Ras(G12V)-specific 10-23 DNAzyme was able to reduce K-Ras(G12V) at both mRNA and protein levels in SW480 cell carrying homozygous K-Ras(G12V). No effect was observed on the WT K-Ras in HEK cells. Although K-Ras(G12V)-specific DNAzymes alone did not inhibit proliferation of SW480 or HEK cells, pre-treatment of this DNAzyme sensitized the K-Ras(G12V) mutant cells to anti-cancer agents such as doxorubicin and radiation. These results offer a potential of using allele-specific 10-23 DNAzyme in combination with other cancer therapies to achieve better effectiveness on cancer treatment.

  17. Pendidikan Anti Korupsi Berbasis Agama

    Directory of Open Access Journals (Sweden)

    Kasinyo Harto

    2016-03-01

    Full Text Available Tulisan ini memfokuskan pada pendidikan anti korupsi melalui perspektif agama dengan model rekonstruksi sosial. Pendekatan teoritis pendidikan  antikorupsi berbasis agama berupaya melihat sejauhmana realitas masyarakat religius dapat diakomodasi dalam aspek-aspek Pendidikan Anti-Korupsi, baik pada aspek materi, metode pembelajaran, evaluasi, dan sebagainya. Dengan pendekatan seperti itu, tulisan ini diharapkan mampu melakukan analisis-sintesis yang menghasilkan konsep-konsep teoritis PAK berbasis agama yang visibel untuk diterapkan dalam proses pembelajaran di kelas dan berhasil dalam implementasinya pada kehidupan sehari-hari. Jika konsep ini mungkin diterapkan, maka diharapkan akan terjadi perubahan dalam cara pandang peserta didik terhadap nilai agama yang dapat diterapkan dalam kehidupan empiris. Dampak lebih jauh dan jangka panjang diharapkan bahwa proses menuju masyarakat Indonesia yang bersih semakin  akan dapat diwujudkan. This paper focused on the anti-corruption education through religion perspective with social reconstruction model. The theoretical approach of anti-corruption education based religion sought to see how far the reality of religious communities could be accommodated in the aspects of Anti-Corruption Education, both in material aspects, teaching methods, evaluation, and so on. With that approach, this paper was expected to do the analysis-synthesis that produced theoretical concepts PAK-based religion that was visible to be applied in the learning process in the classroom and succeed in its implementation in daily life. If this concept might be applied, it was expected that there would be changes in learners' perspective on religion values that could be applied in empirical life. Further impacts and long-term it was expected that the process towards the Indonesian societies who clean more would be created.

  18. New Approaches to Anti-Stress Practices in Poultry

    OpenAIRE

    Atilla Taşkın; Ahmet Şahin; Ömer Camcı; Güray Erener

    2015-01-01

    Parameters of health, productivity, behaviour and physiology which are used in order to determine the stress shaped by the effects of various factors in poultries can only be detected when the effects of stress emerge; in other words, when the changes are shaped. Therefore; it is important to interfere before the emergence of these indications in order to develop animal welfare by preventing stress. Information programmes, as traditional methods, and vitamin applications as well as anti-stres...

  19. Comparison of Two Assays to Determine Anti-Citrullinated Peptide Antibodies in Rheumatoid Arthritis in relation to Other Chronic Inflammatory Rheumatic Diseases: Assaying Anti-Modified Citrullinated Vimentin Antibodies Adds Value to Second-Generation Anti-Citrullinated Cyclic Peptides Testing

    Directory of Open Access Journals (Sweden)

    Miriam Lizette Díaz-Toscano

    2014-01-01

    Full Text Available Determination of anti-citrullinated peptide antibodies (ACPA plays a relevant role in the diagnosis of rheumatoid arthritis (RA. To date, it is still unclear if the use of several tests for these autoantibodies in the same patient offers additional value as compared to performing only one test. Therefore, we evaluated the performance of using two assays for ACPA: second-generation anti-citrullinated cyclic peptides antibodies (anti-CCP2 and anti-mutated citrullinated vimentin (anti-MCV antibodies for the diagnosis of RA. We compared three groups: RA (n=142, chronic inflammatory disease (CIRD, n=86, and clinically healthy subjects (CHS, n=56 to evaluate sensitivity, specificity, predictive values, and likelihood ratios (LR of these two assays for the presence of RA. A lower frequency of positivity for anti-CCP2 was found in RA (66.2% as compared with anti-MCV (81.0%. When comparing RA versus other CIRD, sensitivity increased when both assays were performed. This strategy of testing both assays had high specificity and LR+. We conclude that adding the assay of anti-MCV antibodies to the determination of anti-CCP2 increases the sensitivity for detecting seropositive RA. Therefore, we propose the use of both assays in the initial screening of RA in longitudinal studies, including early onset of undifferentiated arthritis.

  20. Site-specific effects of the nonsteroidal anti-inflammatory drug lysine clonixinate on rat brain opioid receptors.

    Science.gov (United States)

    Ortí, E; Coirini, H; Pico, J C

    1999-04-01

    In addition to effects in the periphery through inhibition of prostaglandin synthesis, several lines of evidence suggest that nonsteroidal anti-inflammatory drugs (NSAIDs) act in the central nervous system. The possibility that the central action of NSAIDs involves regulation of opioid receptors was investigated by quantitative autoradiography of mu, delta, and kappa sites in rat brain slices. Increased (p lysine clonixinate. Labeling of delta receptors was lower in the lateral septum, and kappa sites decreased in thalamic nuclei. These effects were not mediated through direct interaction with opioid-binding sites, since receptor-binding assays using rat brain membranes confirmed that clonixinate up to 1 x 10(-4) mol/l does not inhibit mu, delta, and kappa receptor specific binding. Central effects of NSAIDs might, therefore, involve interaction with the opioid receptor system through indirect mechanisms.