WorldWideScience

Sample records for species strong selection

  1. Hybridization in the Ensatina Ring Species, Strong selection against hybrids at a hybrid zone in the ensatina ring species complex and its evolutionary implications

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrino, Joao; Baird, Stuart J.E.; Lawson, Lucinda; Macey, J. Robert; Moritz, Craig; Wake, David B.

    2005-04-22

    The analysis of interactions between lineages at varying levels of genetic divergence can provide insights into the process of speciation through the accumulation of incompatible mutations. Ring species, and especially the Ensatina eschscholtzii system exemplify this approach. The plethodontid salamanders Ensatina eschscholtzii xanthoptica and Ensatina eschscholtzii platensis hybridize in the Central Sierran foothills of California. We compared the genetic structure across two transects (southern and northern Calaveras Co.), one of which was re-sampled over 20 years, and examined diagnostic molecular markers (eight allozyme loci and mitochondrial DNA) and a diagnostic quantitative trait (color pattern). Key results across all studies were: (i) cline centers for all markers were coincident and the zones were narrow, with width estimates of 730m to 2000m; (ii) cline centers at the northern Calaveras transect were coincident between 1981 and 2001, demonstrating repeatability over 5 generations; (iii) there are very few if any putative F1's, but a relatively high number of backcrossed individuals (57-86 percent) in the central portion of transects; (iv) we found substantial linkage disequilibrium in all three studies and strong heterozygote deficit both in northern Calaveras, in 2001, and southern Calaveras. Both linkage disequilibrium and heterozygote deficit show maximum values near the center of the zones (R and Fis, approx. equal to 0.5). Using estimates of cline width and dispersal, we infer strong selection against hybrids (s* approx. equal to 46-75 percent). This is sufficient to promote accumulation of differences at loci that are neutral or under divergent selection, but would still allow for introgression of adaptive alleles. The evidence for strong, but incomplete isolation across this centrally located contact is consistent with theory suggesting a gradual increase in postzygotic incompatibility between allopatric populations subject to divergent

  2. Strong selective sweeps associated with ampliconic regions in great ape X chromosomes

    DEFF Research Database (Denmark)

    Nam, Kiwoong; Munch, Kasper; Hobolth, Asger

    2014-01-01

    The unique inheritance pattern of X chromosomes makes them preferential targets of adaptive evolution. We here investigate natural selection on the X chromosome in all species of great apes. We find that diversity is more strongly reduced around genes on the X compared with autosomes...... with ampliconic sequences we propose that intra-genomic conflict between the X and the Y chromosomes is a major driver of X chromosome evolution....

  3. Strong Selective Adsorption of Polymers.

    Science.gov (United States)

    Ge, Ting; Rubinstein, Michael

    2015-06-09

    A scaling theory is developed for selective adsorption of polymers induced by the strong binding between specific monomers and complementary surface adsorption sites. By "selective" we mean specific attraction between a subset of all monomers, called "sticky", and a subset of surface sites, called "adsorption sites". We demonstrate that, in addition to the expected dependence on the polymer volume fraction ϕ bulk in the bulk solution, selective adsorption strongly depends on the ratio between two characteristic length scales, the root-mean-square distance l between neighboring sticky monomers along the polymer, and the average distance d between neighboring surface adsorption sites. The role of the ratio l / d arises from the fact that a polymer needs to deform to enable the spatial commensurability between its sticky monomers and the surface adsorption sites for selective adsorption. We study strong selective adsorption of both telechelic polymers with two end monomers being sticky and multisticker polymers with many sticky monomers between sticky ends. For telechelic polymers, we identify four adsorption regimes at l / d 1, we expect that the adsorption layer at exponentially low ϕ bulk consists of separated unstretched loops, while as ϕ bulk increases the layer crosses over to a brush of extended loops with a second layer of weakly overlapping tails. For multisticker chains, in the limit of exponentially low ϕ bulk , adsorbed polymers are well separated from each other. As l / d increases, the conformation of an individual polymer changes from a single-end-adsorbed "mushroom" to a random walk of loops. For high ϕ bulk , adsorbed polymers at small l / d are mushrooms that cover all the adsorption sites. At sufficiently large l / d , adsorbed multisticker polymers strongly overlap. We anticipate the formation of a self-similar carpet and with increasing l / d a two-layer structure with a brush of loops covered by a self-similar carpet. As l / d exceeds the

  4. Strong and consistent natural selection associated with armour reduction in sticklebacks.

    Science.gov (United States)

    LE Rouzic, Arnaud; Østbye, Kjartan; Klepaker, Tom O; Hansen, Thomas F; Bernatchez, Louis; Schluter, Dolph; Vøllestad, L Asbjørn

    2011-06-01

    Measuring the strength of natural selection is tremendously important in evolutionary biology, but remains a challenging task. In this work, we analyse the characteristics of selection for a morphological change (lateral-plate reduction) in the threespine stickleback Gasterosteus aculeatus. Adaptation to freshwater, leading with the reduction or loss of the bony lateral armour, has occurred in parallel on numerous occasions in this species. Completely-plated and low-plated sticklebacks were introduced into a pond, and the phenotypic changes were tracked for 20 years. Fish from the last generation were genotyped for the Ectodysplasin-A (Eda) locus, the major gene involved in armour development. We found a strong fitness advantage for the freshwater-type fish (on average, 20% fitness advantage for the freshwater morph, and 92% for the freshwater genotype). The trend is best explained by assuming that this fitness advantage is maximum at the beginning of the invasion and decreases with time. Such fitness differences provide a quantifiable example of rapid selection-driven phenotypic evolution associated with environmental change in a natural population. © 2011 Blackwell Publishing Ltd.

  5. Comparing Patterns of Natural Selection across Species Using Selective Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Jesse; Alm, Eric J.

    2007-12-01

    Comparing gene expression profiles over many different conditions has led to insights that were not obvious from single experiments. In the same way, comparing patterns of natural selection across a set of ecologically distinct species may extend what can be learned from individual genome-wide surveys. Toward this end, we show how variation in protein evolutionary rates, after correcting for genome-wide effects such as mutation rate and demographic factors, can be used to estimate the level and types of natural selection acting on genes across different species. We identify unusually rapidly and slowly evolving genes, relative to empirically derived genome-wide and gene family-specific background rates for 744 core protein families in 30 c-proteobacterial species. We describe the pattern of fast or slow evolution across species as the"selective signature" of a gene. Selective signatures represent aprofile of selection across species that is predictive of gene function: pairs of genes with correlated selective signatures are more likely to share the same cellular function, and genes in the same pathway can evolve in concert. For example,glycolysis and phenylalanine metabolism genes evolve rapidly in Idiomarina loihiensis, mirroring an ecological shift in carbon source from sugars to amino acids. In a broader context, our results suggest that the genomic landscape is organized into functional modules even at the level of natural selection, and thus it may be easier than expected to understand the complex evolutionary pressures on a cell.

  6. Comparing Patterns of Natural Selection Across Species Using Selective Signatures

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric J.; Shapiro, B. Jesse; Alm, Eric J.

    2007-12-18

    Comparing gene expression profiles over many different conditions has led to insights that were not obvious from single experiments. In the same way, comparing patterns of natural selection across a set of ecologically distinct species may extend what can be learned from individual genome-wide surveys. Toward this end, we show how variation in protein evolutionary rates, after correcting for genome-wide effects such as mutation rate and demographic factors, can be used to estimate the level and types of natural selection acting on genes across different species. We identify unusually rapidly and slowly evolving genes, relative to empirically derived genome-wide and gene family-specific background rates for 744 core protein families in 30 gamma-proteobacterial species. We describe the pattern of fast or slow evolution across species as the 'selective signature' of a gene. Selective signatures represent a profile of selection across species that is predictive of gene function: pairs of genes with correlated selective signatures are more likely to share the same cellular function, and genes in the same pathway can evolve in concert. For example, glycolysis and phenylalanine metabolism genes evolve rapidly in Idiomarina loihiensis, mirroring an ecological shift in carbon source from sugars to amino acids. In a broader context, our results suggest that the genomic landscape is organized into functional modules even at the level of natural selection, and thus it may be easier than expected to understand the complex evolutionary pressures on a cell.

  7. Species selection for smallholder aquaculture

    OpenAIRE

    Brummett, R.E.

    1996-01-01

    Systems for selection of species for smallholder aquaculture are presented. These are: food fits; management decisions; and economic criteria. Food fits suggests categorizing pond food resources into a few categories based loosely on the instrinsic traits of food which effect their selectivity by predators. Using management decision techniques, potential polycultures might also be compared with each other and with monoculture. Under economic criteria (and for species known in local markets), ...

  8. Strong signatures of selection in the domestic pig genome

    DEFF Research Database (Denmark)

    Rubin, Carl-Johan; Megens, Hendrik-Jan; Barrio, Alvaro Martinez

    2012-01-01

    Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci that un...... to strong directional selection.......Domestication of wild boar (Sus scrofa) and subsequent selection have resulted in dramatic phenotypic changes in domestic pigs for a number of traits, including behavior, body composition, reproduction, and coat color. Here we have used whole-genome resequencing to reveal some of the loci...... that underlie phenotypic evolution in European domestic pigs. Selective sweep analyses revealed strong signatures of selection at three loci harboring quantitative trait loci that explain a considerable part of one of the most characteristic morphological changes in the domestic pig—the elongation of the back...

  9. Dispersal and selection mediate hybridization between a native and invasive species

    Science.gov (United States)

    Kovach, Ryan P.; Muhlfeld, Clint C.; Boyer, Matthew C.; Lowe, Winsor H.; Allendorf, Fred W.; Luikart, Gordon

    2015-01-01

    Hybridization between native and non-native species has serious biological consequences, but our understanding of how dispersal and selection interact to influence invasive hybridization is limited. Here, we document the spread of genetic introgression between a native (Oncorhynchus clarkii) and invasive (Oncorhynchus mykiss) trout, and identify the mechanisms influencing genetic admixture. In two populations inhabiting contrasting environments, non-native admixture increased rapidly from 1984 to 2007 and was driven by surprisingly consistent processes. Individual admixture was related to two phenotypic traits associated with fitness: size at spawning and age of juvenile emigration. Fish with higher non-native admixture were larger and tended to emigrate at a younger age—relationships that are expected to confer fitness advantages to hybrid individuals. However, strong selection against non-native admixture was evident across streams and cohorts (mean selection coefficient against genotypes with non-native alleles (s) ¼ 0.60; s.e. ¼ 0.10). Nevertheless, hybridization was promoted in both streams by the continuous immigration of individuals with high levels of non-native admixture from other hybrid source populations. Thus, antagonistic relationships between dispersal and selection are mediating invasive hybridization between these fish, emphasizing that data on dispersal and natural selection are needed to fully understand the dynamics of introgression between native and non-native species. .

  10. Temporal genetic stability in natural populations of the waterflea Daphnia magna in response to strong selection pressure.

    Science.gov (United States)

    Orsini, Luisa; Marshall, Hollie; Cuenca Cambronero, Maria; Chaturvedi, Anurag; Thomas, Kelley W; Pfrender, Michael E; Spanier, Katina I; De Meester, Luc

    2016-12-01

    Studies monitoring changes in genetic diversity and composition through time allow a unique understanding of evolutionary dynamics and persistence of natural populations. However, such studies are often limited to species with short generation times that can be propagated in the laboratory or few exceptional cases in the wild. Species that produce dormant stages provide powerful models for the reconstruction of evolutionary dynamics in the natural environment. A remaining open question is to what extent dormant egg banks are an unbiased representation of populations and hence of the species' evolutionary potential, especially in the presence of strong environmental selection. We address this key question using the water flea Daphnia magna, which produces dormant stages that accumulate in biological archives over time. We assess temporal genetic stability in three biological archives, previously used in resurrection ecology studies showing adaptive evolutionary responses to rapid environmental change. We show that neutral genetic diversity does not decline with the age of the population and it is maintained in the presence of strong selection. In addition, by comparing temporal genetic stability in hatched and unhatched populations from the same biological archive, we show that dormant egg banks can be consulted to obtain a reliable measure of genetic diversity over time, at least in the multidecadal time frame studied here. The stability of neutral genetic diversity through time is likely mediated by the buffering effect of the resting egg bank. © 2016 John Wiley & Sons Ltd.

  11. The extended Price equation quantifies species selection on mammalian body size across the Palaeocene/Eocene Thermal Maximum.

    Science.gov (United States)

    Rankin, Brian D; Fox, Jeremy W; Barrón-Ortiz, Christian R; Chew, Amy E; Holroyd, Patricia A; Ludtke, Joshua A; Yang, Xingkai; Theodor, Jessica M

    2015-08-07

    Species selection, covariation of species' traits with their net diversification rates, is an important component of macroevolution. Most studies have relied on indirect evidence for its operation and have not quantified its strength relative to other macroevolutionary forces. We use an extension of the Price equation to quantify the mechanisms of body size macroevolution in mammals from the latest Palaeocene and earliest Eocene of the Bighorn and Clarks Fork Basins of Wyoming. Dwarfing of mammalian taxa across the Palaeocene/Eocene Thermal Maximum (PETM), an intense, brief warming event that occurred at approximately 56 Ma, has been suggested to reflect anagenetic change and the immigration of small bodied-mammals, but might also be attributable to species selection. Using previously reconstructed ancestor-descendant relationships, we partitioned change in mean mammalian body size into three distinct mechanisms: species selection operating on resident mammals, anagenetic change within resident mammalian lineages and change due to immigrants. The remarkable decrease in mean body size across the warming event occurred through anagenetic change and immigration. Species selection also was strong across the PETM but, intriguingly, favoured larger-bodied species, implying some unknown mechanism(s) by which warming events affect macroevolution. © 2015 The Author(s).

  12. Ecological neighborhoods as a framework for umbrella species selection

    Science.gov (United States)

    Stuber, Erica F.; Fontaine, Joseph J.

    2018-01-01

    Umbrella species are typically chosen because they are expected to confer protection for other species assumed to have similar ecological requirements. Despite its popularity and substantial history, the value of the umbrella species concept has come into question because umbrella species chosen using heuristic methods, such as body or home range size, are not acting as adequate proxies for the metrics of interest: species richness or population abundance in a multi-species community for which protection is sought. How species associate with habitat across ecological scales has important implications for understanding population size and species richness, and therefore may be a better proxy for choosing an umbrella species. We determined the spatial scales of ecological neighborhoods important for predicting abundance of 8 potential umbrella species breeding in Nebraska using Bayesian latent indicator scale selection in N-mixture models accounting for imperfect detection. We compare the conservation value measured as collective avian abundance under different umbrella species selected following commonly used criteria and selected based on identifying spatial land cover characteristics within ecological neighborhoods that maximize collective abundance. Using traditional criteria to select an umbrella species resulted in sub-maximal expected collective abundance in 86% of cases compared to selecting an umbrella species based on land cover characteristics that maximized collective abundance directly. We conclude that directly assessing the expected quantitative outcomes, rather than ecological proxies, is likely the most efficient method to maximize the potential for conservation success under the umbrella species concept.

  13. Population genetics inference for longitudinally-sampled mutants under strong selection.

    Science.gov (United States)

    Lacerda, Miguel; Seoighe, Cathal

    2014-11-01

    Longitudinal allele frequency data are becoming increasingly prevalent. Such samples permit statistical inference of the population genetics parameters that influence the fate of mutant variants. To infer these parameters by maximum likelihood, the mutant frequency is often assumed to evolve according to the Wright-Fisher model. For computational reasons, this discrete model is commonly approximated by a diffusion process that requires the assumption that the forces of natural selection and mutation are weak. This assumption is not always appropriate. For example, mutations that impart drug resistance in pathogens may evolve under strong selective pressure. Here, we present an alternative approximation to the mutant-frequency distribution that does not make any assumptions about the magnitude of selection or mutation and is much more computationally efficient than the standard diffusion approximation. Simulation studies are used to compare the performance of our method to that of the Wright-Fisher and Gaussian diffusion approximations. For large populations, our method is found to provide a much better approximation to the mutant-frequency distribution when selection is strong, while all three methods perform comparably when selection is weak. Importantly, maximum-likelihood estimates of the selection coefficient are severely attenuated when selection is strong under the two diffusion models, but not when our method is used. This is further demonstrated with an application to mutant-frequency data from an experimental study of bacteriophage evolution. We therefore recommend our method for estimating the selection coefficient when the effective population size is too large to utilize the discrete Wright-Fisher model. Copyright © 2014 by the Genetics Society of America.

  14. Sexual selection predicts species richness across the animal kingdom.

    Science.gov (United States)

    Janicke, Tim; Ritchie, Michael G; Morrow, Edward H; Marie-Orleach, Lucas

    2018-05-16

    Our improving knowledge of the animal tree of life consistently demonstrates that some taxa diversify more rapidly than others, but what contributes to this variation remains poorly understood. An influential hypothesis proposes that selection arising from competition for mating partners plays a key role in promoting speciation. However, empirical evidence showing a link between proxies of this sexual selection and species richness is equivocal. Here, we collected standardized metrics of sexual selection for a broad range of animal taxa, and found that taxonomic families characterized by stronger sexual selection on males show relatively higher species richness. Thus, our data support the hypothesis that sexual selection elevates species richness. This could occur either by promoting speciation and/or by protecting species against extinction. © 2018 The Author(s).

  15. Ion species stratification within strong shocks in two-ion plasmas

    Science.gov (United States)

    Keenan, Brett D.; Simakov, Andrei N.; Taitano, William T.; Chacón, Luis

    2018-03-01

    Strong collisional shocks in multi-ion plasmas are featured in many environments, with Inertial Confinement Fusion (ICF) experiments being one prominent example. Recent work [Keenan et al., Phys. Rev. E 96, 053203 (2017)] answered in detail a number of outstanding questions concerning the kinetic structure of steady-state, planar plasma shocks, e.g., the shock width scaling by the Mach number, M. However, it did not discuss shock-driven ion-species stratification (e.g., relative concentration modification and temperature separation). These are important effects since many recent ICF experiments have evaded explanation by standard, single-fluid, radiation-hydrodynamic (rad-hydro) numerical simulations, and shock-driven fuel stratification likely contributes to this discrepancy. Employing the state-of-the-art Vlasov-Fokker-Planck code, iFP, along with multi-ion hydro simulations and semi-analytics, we quantify the ion stratification by planar shocks with the arbitrary Mach number and the relative species concentration for two-ion plasmas in terms of ion mass and charge ratios. In particular, for strong shocks, we find that the structure of the ion temperature separation has a nearly universal character across ion mass and charge ratios. Additionally, we find that the shock fronts are enriched with the lighter ion species and the enrichment scales as M4 for M ≫ 1.

  16. Evolution of the complementary sex-determination gene of honey bees: balancing selection and trans-species polymorphisms.

    Science.gov (United States)

    Cho, Soochin; Huang, Zachary Y; Green, Daniel R; Smith, Deborah R; Zhang, Jianzhi

    2006-11-01

    The mechanism of sex determination varies substantively among evolutionary lineages. One important mode of genetic sex determination is haplodiploidy, which is used by approximately 20% of all animal species, including >200,000 species of the entire insect order Hymenoptera. In the honey bee Apis mellifera, a hymenopteran model organism, females are heterozygous at the csd (complementary sex determination) locus, whereas males are hemizygous (from unfertilized eggs). Fertilized homozygotes develop into sterile males that are eaten before maturity. Because homozygotes have zero fitness and because common alleles are more likely than rare ones to form homozygotes, csd should be subject to strong overdominant selection and negative frequency-dependent selection. Under these selective forces, together known as balancing selection, csd is expected to exhibit a high degree of intraspecific polymorphism, with long-lived alleles that may be even older than the species. Here we sequence the csd genes as well as randomly selected neutral genomic regions from individuals of three closely related species, A. mellifera, Apis cerana, and Apis dorsata. The polymorphic level is approximately seven times higher in csd than in the neutral regions. Gene genealogies reveal trans-species polymorphisms at csd but not at any neutral regions. Consistent with the prediction of rare-allele advantage, nonsynonymous mutations are found to be positively selected in csd only in early stages after their appearances. Surprisingly, three different hypervariable repetitive regions in csd are present in the three species, suggesting variable mechanisms underlying allelic specificities. Our results provide a definitive demonstration of balancing selection acting at the honey bee csd gene, offer insights into the molecular determinants of csd allelic specificities, and help avoid homozygosity in bee breeding.

  17. Identifying plant traits: a key aspect for suitable species selection in ecological restoration of semiarid slopes

    Science.gov (United States)

    Bochet, Esther; García-Fayos, Patricio

    2017-04-01

    In the context of ecological restoration, one of the greatest challenges for practitioners and scientists is to select suitable species for revegetation purposes. In semiarid environments where restoration projects often fail, little attention has been paid so far to the contribution of plant traits to species success. The objective of this study was to (1) identify plant traits associated with species success on four roadside situations along an erosion-productivity gradient, and (2) to provide an ecological framework for selecting suitable species on the basis of their morphological and functional traits, applied to semiarid environments. We analyzed the association of 10 different plant traits with species success of 296 species surveyed on the four roadside situations in a semiarid region (Valencia, Spain). Plant traits included general plant traits (longevity, woodiness) and more specific root-, seed- and leaf-related traits (root type, sprouting ability, seed mucilage, seed mass, seed susceptibility to removal, specific leaf area and leaf dry matter content). All of them were selected according to the prevailing limiting ecogeomorphological processes acting along the erosion-productivity gradient. We observed strong shifts along the erosion-productivity gradient in the traits associated to species success. At the harshest end of the gradient, the most intensely eroded and driest one, species success was mainly associated to seed resistance to removal by runoff and to resistance to drought. At the opposite end of the gradient, the most productive one, species success was associated to a competitive-ruderal plant strategy (herbaceous successful species with high specific leaf area and low leaf dry matter content). Our study provides an ecologically-based approach for selecting suitable native species on the basis or their morphological and functional traits and supports a differential trait-based selection of species as regards roadslope type and aspect. In

  18. Strong spatial genetic structure in five tropical Piper species: should the Baker–Fedorov hypothesis be revived for tropical shrubs?

    Science.gov (United States)

    Lasso, E; Dalling, J W; Bermingham, E

    2011-01-01

    Fifty years ago, Baker and Fedorov proposed that the high species diversity of tropical forests could arise from the combined effects of inbreeding and genetic drift leading to population differentiation and eventually to sympatric speciation. Decades of research, however have failed to support the Baker–Fedorov hypothesis (BFH), and it has now been discarded in favor of a paradigm where most trees are self-incompatible or strongly outcrossing, and where long-distance pollen dispersal prevents population drift. Here, we propose that several hyper-diverse genera of tropical herbs and shrubs, including Piper (>1,000 species), may provide an exception. Species in this genus often have aggregated, high-density populations with self-compatible breeding systems; characteristics which the BFH would predict lead to high local genetic differentiation. We test this prediction for five Piper species on Barro Colorado Island, Panama, using Amplified Fragment Length Polymorphism (AFLP) markers. All species showed strong genetic structure at both fine- and large-spatial scales. Over short distances (200–750 m) populations showed significant genetic differentiation (Fst 0.11–0.46, P < 0.05), with values of spatial genetic structure that exceed those reported for other tropical tree species (Sp = 0.03–0.136). This genetic structure probably results from the combined effects of limited seed and pollen dispersal, clonal spread, and selfing. These processes are likely to have facilitated the diversification of populations in response to local natural selection or genetic drift and may explain the remarkable diversity of this rich genus. PMID:22393518

  19. Grass species selection patterns on rotationally-grazed Dohne ...

    African Journals Online (AJOL)

    Herbaceous species preference was studied during autumn and winter periods of occupation, on rotationally-grazed Dohne Sourveld, at four different stocking rates. Reports on species selection by cattle and sheep grazing together. Illustrates with graphsLanguage: English. Keywords: Grass species; Herbage availibility; ...

  20. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    Directory of Open Access Journals (Sweden)

    Nicolas Casajus

    Full Text Available An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  1. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    Science.gov (United States)

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  2. Diversity of cuticular wax among Salix species and Populus species hybrids.

    Science.gov (United States)

    Cameron, Kimberly D; Teece, Mark A; Bevilacqua, Eddie; Smart, Lawrence B

    2002-08-01

    The leaf cuticular waxes of three Salix species and two Populus species hybrids, selected for their ability to produce high amounts of biomass, were characterized. Samples were extracted in CH(2)Cl(2) three times over the growing season. Low kV SEM was utilized to observe differences in the ultrastructure of leaf surfaces from each clone. Homologous series of wax components were classified into organic groups, and the variation in wax components due to clone, sample time, and their interaction was identified. All Salix species and Populus species hybrids showed differences in total wax load at each sampling period, whereas the pattern of wax deposition over time differed only between the Salix species. A strong positive relationship was identified between the entire homologous series of alcohols and total wax load in all clones. Similarly strong relationships were observed between fatty acids and total wax load as well as fatty acids and alcohols in two Salix species and one Populus species hybrid. One Salix species, S. dasyclados, also displayed a strong positive relationship between alcohols and alkanes. These data indicate that species grown under the same environmental conditions produce measurably different cuticular waxes and that regulation of wax production appears to be different in each species. The important roles cuticular waxes play in drought tolerance, pest, and pathogen resistance, as well as the ease of wax extraction and analysis, strongly suggest that the characteristics of the cuticular wax may prove to be useful selectable traits in a breeding program.

  3. Acidity of selected industrial wood species in Serbia

    Directory of Open Access Journals (Sweden)

    Popović Mlađan

    2016-01-01

    Full Text Available The acidity of wood has an important role in many areas of wood applications. Hence, this paper presents a study on the acidity of beech, fir and poplar, as the representatives of the most industrially utilized wood species in Serbia. The contents of both the soluble and insoluble acids were determined through the extraction methods with cold distilled water and sodium acetate solution, respectively, followed by the titration with sodium hydroxide solution. The acidity strongly differs among the three wood species used in this research. The amount of insoluble acids was the highest in fir, almost twice as much than in poplar, and about 68 % higher than in fir wood species. Such differences also showed a strong correlation with the gel times of UF adhesive mixes with hot water extracts. [Projekat Ministarstva nauke Republike Srbije, br. TP 31041: Establishment of Wood Plantations Intended for Afforestation of Serbia

  4. Physiological response of selected eragrostis species to water ...

    African Journals Online (AJOL)

    Physiological response of selected eragrostis species to water-deficit stress. ... performing crop variety of Eragrostis tef under this stress, the responses of two varieties, ... Comparative study of closely related plant species might be a better ...

  5. Males of a strongly polygynous species consume more poisonous food than females.

    Directory of Open Access Journals (Sweden)

    Carolina Bravo

    Full Text Available We present evidence of a possible case of self-medication in a lekking bird, the great bustard Otis tarda. Great bustards consumed blister beetles (Meloidae, in spite of the fact that they contain cantharidin, a highly toxic compound that is lethal in moderate doses. In addition to anthelminthic properties, cantharidin was effective against gastrointestinal bacteria that cause sexually-transmitted diseases. Although both sexes consumed blister beetles during the mating season, only males selected them among all available insects, and ingested more and larger beetles than females. The male-biased consumption suggests that males could use cantharidin to reduce their parasite load and increase their sexual attractiveness. This plausibly explains the intense cloaca display males perform to approaching females, and the meticulous inspection females conduct of the male's cloaca, a behaviour only observed in this and another similar species of the bustard family. A white, clean cloaca with no infection symptoms (e.g., diarrhoea is an honest signal of both, resistance to cantharidin and absence of parasites, and represents a reliable indicator of the male quality to the extremely choosy females. Our results do not definitely prove, but certainly strongly suggest that cantharidin, obtained by consumption of blister beetles, acts in great bustards as an oral anti-microbial and pathogen-limiting compound, and that males ingest these poisonous insects to increase their mating success, pointing out that self-medication might have been overlooked as a sexually-selected mechanism enhancing male fitness.

  6. Experimental reduction in interaction intensity strongly affects biotic selection.

    Science.gov (United States)

    Sletvold, Nina; Ågren, Jon

    2016-11-01

    The link between biotic interaction intensity and strength of selection is of fundamental interest for understanding biotically driven diversification and predicting the consequences of environmental change. The strength of selection resulting from biotic interactions is determined by the strength of the interaction and by the covariance between fitness and the trait under selection. When the relationship between trait and absolute fitness is constant, selection strength should be a direct function of mean population interaction intensity. To test this prediction, we excluded pollinators for intervals of different length to induce five levels of pollination intensity within a single plant population. Pollen limitation (PL) increased from 0 to 0.77 across treatments, accompanied by a fivefold increase in the opportunity for selection. Trait-fitness covariance declined with PL for number of flowers, but varied little for other traits. Pollinator-mediated selection on plant height, corolla size, and spur length increased by 91%, 34%, and 330%, respectively, in the most severely pollen-limited treatment compared to open-pollinated plants. The results indicate that realized biotic selection can be predicted from mean population interaction intensity when variation in trait-fitness covariance is limited, and that declines in pollination intensity will strongly increase selection on traits involved in the interaction. © 2016 by the Ecological Society of America.

  7. Reintroducing resurrected species: selecting DeExtinction candidates.

    Science.gov (United States)

    Seddon, Philip J; Moehrenschlager, Axel; Ewen, John

    2014-03-01

    Technological advances have raised the controversial prospect of resurrecting extinct species. Species DeExtinction should involve more than the production of biological orphans to be scrutinized in the laboratory or zoo. If DeExtinction is to realize its stated goals of deep ecological enrichment, then resurrected animals must be translocated (i.e., released within suitable habitat). Therefore, DeExtinction is a conservation translocation issue and the selection of potential DeExtinction candidates must consider the feasibility and risks associated with reintroduction. The International Union for the Conservation of Nature (IUCN) Guidelines on Reintroductions and Other Conservation Translocations provide a framework for DeExtinction candidate selection. We translate these Guidelines into ten questions to be addressed early on in the selection process to eliminate unsuitable reintroduction candidates. We apply these questions to the thylacine, Yangtze River Dolphin, and Xerces blue butterfly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Natural selection constrains neutral diversity across a wide range of species.

    Science.gov (United States)

    Corbett-Detig, Russell B; Hartl, Daniel L; Sackton, Timothy B

    2015-04-01

    The neutral theory of molecular evolution predicts that the amount of neutral polymorphisms within a species will increase proportionally with the census population size (Nc). However, this prediction has not been borne out in practice: while the range of Nc spans many orders of magnitude, levels of genetic diversity within species fall in a comparatively narrow range. Although theoretical arguments have invoked the increased efficacy of natural selection in larger populations to explain this discrepancy, few direct empirical tests of this hypothesis have been conducted. In this work, we provide a direct test of this hypothesis using population genomic data from a wide range of taxonomically diverse species. To do this, we relied on the fact that the impact of natural selection on linked neutral diversity depends on the local recombinational environment. In regions of relatively low recombination, selected variants affect more neutral sites through linkage, and the resulting correlation between recombination and polymorphism allows a quantitative assessment of the magnitude of the impact of selection on linked neutral diversity. By comparing whole genome polymorphism data and genetic maps using a coalescent modeling framework, we estimate the degree to which natural selection reduces linked neutral diversity for 40 species of obligately sexual eukaryotes. We then show that the magnitude of the impact of natural selection is positively correlated with Nc, based on body size and species range as proxies for census population size. These results demonstrate that natural selection removes more variation at linked neutral sites in species with large Nc than those with small Nc and provides direct empirical evidence that natural selection constrains levels of neutral genetic diversity across many species. This implies that natural selection may provide an explanation for this longstanding paradox of population genetics.

  9. Allelopathic assessment of selected invasive species of pakistan

    International Nuclear Information System (INIS)

    Akhtar, S.

    2014-01-01

    Invader species are a great threat to local flora. Eight invader species of Pakistan were screened for their allelopathic activity through sandwich method. Toxic (inhibitory) and non-toxic (stimulatory) effects were assessed by recording their effect on germination and growth of lettuce. Radicle and plumule growth of lettuce were recorded at 5, 10 and 50 mg leaves concentrations of each species. Among all species the growth activity was found to be concentration dependent. Except Eutcalyptus glabra all species resulted in inhibitory effects at 5, 10 and 50 mg leaves concentrations. Xanthium strumarium and Cannabis sativa showed strong inhibitory effects on radicle and plumule growth of lettuce. Maximum inhibition was recorded at highest concentration; even growth of lettuce was stopped with 50 mg leaves concentration of C. sativa. (author)

  10. Allelopathic assessment of selected invasive species of pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Akhtar, S. [International Islamic Univ., Islamabad (Pakistan). Dept. of Bioinformatics and Biotechnology; Bangash, N. [Pir Mehr Ali Shah Arid Agriculture Univ., Peshawar (Pakistan). Dept. of Environmental Sciences; Asghar, R. [Mirpur Univ. of Science and Technology, Azad Jammu and Kashmir (Pakistan)

    2014-10-15

    Invader species are a great threat to local flora. Eight invader species of Pakistan were screened for their allelopathic activity through sandwich method. Toxic (inhibitory) and non-toxic (stimulatory) effects were assessed by recording their effect on germination and growth of lettuce. Radicle and plumule growth of lettuce were recorded at 5, 10 and 50 mg leaves concentrations of each species. Among all species the growth activity was found to be concentration dependent. Except Eutcalyptus glabra all species resulted in inhibitory effects at 5, 10 and 50 mg leaves concentrations. Xanthium strumarium and Cannabis sativa showed strong inhibitory effects on radicle and plumule growth of lettuce. Maximum inhibition was recorded at highest concentration; even growth of lettuce was stopped with 50 mg leaves concentration of C. sativa. (author)

  11. Species-specific spatial characteristics in reserve site selection

    NARCIS (Netherlands)

    Groeneveld, R.A.

    2010-01-01

    This paper addresses the problem of selecting reserve sites cost-effectively, taking into account the mobility and habitat area requirements of each species. Many reserve site selection problems are analyzed in mixed-integer linear programming (MILP) models due to the mathematical solvers available

  12. Determining the Effect of Natural Selection on Linked Neutral Divergence across Species.

    Science.gov (United States)

    Phung, Tanya N; Huber, Christian D; Lohmueller, Kirk E

    2016-08-01

    A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only

  13. Signatures of selection in loci governing major colour patterns in Heliconius butterflies and related species

    Directory of Open Access Journals (Sweden)

    Joron Mathieu

    2010-11-01

    Full Text Available Abstract Background Protein-coding change is one possible genetic mechanism underlying the evolution of adaptive wing colour pattern variation in Heliconius butterflies. Here we determine whether 38 putative genes within two major Heliconius patterning loci, HmYb and HmB, show evidence of positive selection. Ratios of nonsynonymous to synonymous nucleotide changes (ω were used to test for selection, as a means of identifying candidate genes within each locus that control wing pattern. Results Preliminary analyses using 454 transcriptome and Bacterial Artificial Chromosome (BAC sequences from three Heliconius species highlighted a cluster of genes within each region showing relatively higher rates of sequence evolution. Other genes within the region appear to be highly constrained, and no ω estimates exceeded one. Three genes from each locus with the highest average pairwise ω values were amplified from additional Heliconius species and races. Two selected genes, fizzy-like (HmYb and DALR (HmB, were too divergent for amplification across species and were excluded from further analysis. Amongst the remaining genes, HM00021 and Kinesin possessed the highest background ω values within the HmYb and HmB loci, respectively. After accounting for recombination, these two genes both showed evidence of having codons with a signature of selection, although statistical support for this signal was not strong in any case. Conclusions Tests of selection reveal a cluster of candidate genes in each locus, suggesting that weak directional selection may be occurring within a small region of each locus, but coding changes alone are unlikely to explain the full range of wing pattern diversity. These analyses pinpoint many of the same genes believed to be involved in the control of colour patterning in Heliconius that have been identified through other studies implementing different research methods.

  14. Selection bias in species distribution models: An econometric approach on forest trees based on structural modeling

    Science.gov (United States)

    Martin-StPaul, N. K.; Ay, J. S.; Guillemot, J.; Doyen, L.; Leadley, P.

    2014-12-01

    Species distribution models (SDMs) are widely used to study and predict the outcome of global changes on species. In human dominated ecosystems the presence of a given species is the result of both its ecological suitability and human footprint on nature such as land use choices. Land use choices may thus be responsible for a selection bias in the presence/absence data used in SDM calibration. We present a structural modelling approach (i.e. based on structural equation modelling) that accounts for this selection bias. The new structural species distribution model (SSDM) estimates simultaneously land use choices and species responses to bioclimatic variables. A land use equation based on an econometric model of landowner choices was joined to an equation of species response to bioclimatic variables. SSDM allows the residuals of both equations to be dependent, taking into account the possibility of shared omitted variables and measurement errors. We provide a general description of the statistical theory and a set of applications on forest trees over France using databases of climate and forest inventory at different spatial resolution (from 2km to 8km). We also compared the outputs of the SSDM with outputs of a classical SDM (i.e. Biomod ensemble modelling) in terms of bioclimatic response curves and potential distributions under current climate and climate change scenarios. The shapes of the bioclimatic response curves and the modelled species distribution maps differed markedly between SSDM and classical SDMs, with contrasted patterns according to species and spatial resolutions. The magnitude and directions of these differences were dependent on the correlations between the errors from both equations and were highest for higher spatial resolutions. A first conclusion is that the use of classical SDMs can potentially lead to strong miss-estimation of the actual and future probability of presence modelled. Beyond this selection bias, the SSDM we propose represents

  15. Marker-assisted selection in forestry species

    International Nuclear Information System (INIS)

    Butcher, P.; Southerton, S.

    2007-01-01

    The primary goal of tree breeding is to increase the quantity and quality of wood products from plantations. Major gains have been achieved using recurrent selection in genetically diverse breeding populations to capture additive variation. However, the long generation times of trees, together with poor juvenile-mature trait correlations, have promoted interest in marker-assisted selection (MAS) to accelerate breeding through early selection. MAS relies on identifying DNA markers, which explain a high proportion of variation in phenotypic traits. Genetic linkage maps have been developed for most commercial tree species and these can be used to locate chromosomal regions where DNA markers co-segregate with quantitative traits (quantitative trait loci, QTL). MAS based on QTL is most likely to be used for within-family selection in a limited number of elite families that can be clonally propagated. Limitations of the approach include the low resolution of marker-trait associations, the small proportion of phenotypic variation explained by QTL and the low success rate in validating QTL in different genetic backgrounds and environments. This has led to a change in research focus towards association mapping to identify variation in the DNA sequence of genes directly controlling phenotypic variation (gene-assisted selection, GAS). The main advantages of GAS are the high resolution of marker-trait associations and the ability to transfer markers across families and even species. Association studies are being used to examine the adaptive significance of variation in genes controlling wood formation and quality, pathogen resistance, cold tolerance and drought tolerance. Single nucleotide polymorphisms (SNPs) in these gene sequences that are significantly associated with trait variation can then be used for early selection. Markers for SNPs can be transferred among individuals regardless of pedigree or family relationship, increasing opportunities for their application in

  16. Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors

    Directory of Open Access Journals (Sweden)

    Little Tom J

    2009-06-01

    Full Text Available Abstract Background Mosquitoes of the Anopheles gambiae species complex are the primary vectors of human malaria in sub-Saharan Africa. Many host genes have been shown to affect Plasmodium development in the mosquito, and so are expected to engage in an evolutionary arms race with the pathogen. However, there is little conclusive evidence that any of these mosquito genes evolve rapidly, or show other signatures of adaptive evolution. Methods Three serine protease inhibitors have previously been identified as candidate immune system genes mediating mosquito-Plasmodium interaction, and serine protease inhibitors have been identified as hot-spots of adaptive evolution in other taxa. Population-genetic tests for selection, including a recent multi-gene extension of the McDonald-Kreitman test, were applied to 16 serine protease inhibitors and 16 other genes sampled from the An. gambiae species complex in both East and West Africa. Results Serine protease inhibitors were found to show a marginally significant trend towards higher levels of amino acid diversity than other genes, and display extensive genetic structuring associated with the 2La chromosomal inversion. However, although serpins are candidate targets for strong parasite-mediated selection, no evidence was found for rapid adaptive evolution in these genes. Conclusion It is well known that phylogenetic and population history in the An. gambiae complex can present special problems for the application of standard population-genetic tests for selection, and this may explain the failure of this study to detect selection acting on serine protease inhibitors. The pitfalls of uncritically applying these tests in this species complex are highlighted, and the future prospects for detecting selection acting on the An. gambiae genome are discussed.

  17. Epidermal Expression and Regulation of Interleukin-33 during Homeostasis and Inflammation: Strong Species Differences.

    Science.gov (United States)

    Sundnes, Olav; Pietka, Wojciech; Loos, Tamara; Sponheim, Jon; Rankin, Andrew L; Pflanz, Stefan; Bertelsen, Vibeke; Sitek, Jan C; Hol, Johanna; Haraldsen, Guttorm; Khnykin, Denis

    2015-07-01

    IL-33 is a novel IL-1 family member with a putative role in inflammatory skin disorders and a complex biology. Therefore, recent conflicting data regarding its function in experimental models justify a close assessment of its tissue expression and regulation. Indeed, we report here that there are strong species differences in the expression and regulation of epidermal IL-33. In murine epidermis, IL-33 behaved similar to an alarmin, being constitutively expressed in keratinocyte nuclei and rapidly lost during acute inflammation. By contrast, human and porcine IL-33 were weakly expressed or absent in keratinocytes of noninflamed skin but induced during acute inflammation. To this end, we observed that expression of IL-33 in human keratinocytes but not murine keratinocytes was strongly induced by IFN-γ, and this upregulation completely depended on the presence of EGFR ligands. Accordingly, IFN-γ increased the expression of IL-33 in the basal layers of the epidermis in human ex vivo skin cultures only, despite good evidence of IFN-γ activity in cultures from both species. Together these findings demonstrate that a full understanding of IL-33 function in clinical settings must take species-specific differences into account.

  18. GEMINI/GMOS SPECTROSCOPY OF 26 STRONG-LENSING-SELECTED GALAXY CLUSTER CORES

    International Nuclear Information System (INIS)

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon; Oguri, Masamune

    2011-01-01

    We present results from a spectroscopic program targeting 26 strong-lensing cluster cores that were visually identified in the Sloan Digital Sky Survey (SDSS) and the Second Red-Sequence Cluster Survey (RCS-2). The 26 galaxy cluster lenses span a redshift range of 0.2 Vir = 7.84 x 10 14 M sun h -1 0.7 , which is somewhat higher than predictions for strong-lensing-selected clusters in simulations. The disagreement is not significant considering the large uncertainty in our dynamical data, systematic uncertainties in the velocity dispersion calibration, and limitations of the theoretical modeling. Nevertheless our study represents an important first step toward characterizing large samples of clusters that are identified in a systematic way as systems exhibiting dramatic strong-lensing features.

  19. The genealogy of sequences containing multiple sites subject to strong selection in a subdivided population.

    Science.gov (United States)

    Nordborg, Magnus; Innan, Hideki

    2003-03-01

    A stochastic model for the genealogy of a sample of recombining sequences containing one or more sites subject to selection in a subdivided population is described. Selection is incorporated by dividing the population into allelic classes and then conditioning on the past sizes of these classes. The past allele frequencies at the selected sites are thus treated as parameters rather than as random variables. The purpose of the model is not to investigate the dynamics of selection, but to investigate effects of linkage to the selected sites on the genealogy of the surrounding chromosomal region. This approach is useful for modeling strong selection, when it is natural to parameterize the past allele frequencies at the selected sites. Several models of strong balancing selection are used as examples, and the effects on the pattern of neutral polymorphism in the chromosomal region are discussed. We focus in particular on the statistical power to detect balancing selection when it is present.

  20. Positive and purifying selection influence the evolution of doublesex in the Anastrepha fraterculus species group.

    Directory of Open Access Journals (Sweden)

    Iderval S Sobrinho

    Full Text Available The gene doublesex (dsx is considered to be under strong selective constraint along its evolutionary history because of its central role in somatic sex differentiation in insects. However, previous studies of dsx used global estimates of evolutionary rates to investigate its molecular evolution, which potentially miss signals of adaptive changes in generally conserved genes. In this work, we investigated the molecular evolution of dsx in the Anastrepha fraterculus species group (Diptera, Tephritidae, and test the hypothesis that this gene evolved solely by purifying selection using divergence-based and population-based methods. In the first approach, we compared sequences from Anastrepha and other Tephritidae with other Muscomorpha species, analyzed variation in nonsynonymous to synonymous rate ratios (dN/dS in the Tephritidae, and investigated radical and conservative changes in amino acid physicochemical properties. We show a general selective constraint on dsx, but with signs of positive selection mainly in the common region. Such changes were localized in alpha-helices previously reported to be involved in dimer formation in the OD2 domain and near the C-terminal of the OD1 domain. In the population-based approach, we amplified a region of 540 bp that spanned almost all of the region common to both sexes from 32 different sites in Brazil. We investigated patterns of selection using neutrality tests based on the frequency spectrum and locations of synonymous and nonsynonymous mutations in a haplotype network. As in the divergence-based approach, these analyses showed that dsx has evolved under an overall selective constraint, but with some events of positive selection. In contrast to previous studies, our analyses indicate that even though dsx has indeed evolved as a conserved gene, the common region of dsx has also experienced bouts of positive selection, perhaps driven by sexual selection, during its evolution.

  1. Natural selection on protein-coding genes in the human genome

    DEFF Research Database (Denmark)

    Bustamente, Carlos D.; Fledel-Alon, Adi; Williamson, Scott

    2005-01-01

    , showing an excess of deleterious variation within local populations 9, 10 . Here we contrast patterns of coding sequence polymorphism identified by direct sequencing of 39 humans for over 11,000 genes to divergence between humans and chimpanzees, and find strong evidence that natural selection has shaped......Comparisons of DNA polymorphism within species to divergence between species enables the discovery of molecular adaptation in evolutionarily constrained genes as well as the differentiation of weak from strong purifying selection 1, 2, 3, 4 . The extent to which weak negative and positive darwinian...... selection have driven the molecular evolution of different species varies greatly 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 , with some species, such as Drosophila melanogaster, showing strong evidence of pervasive positive selection 6, 7, 8, 9 , and others, such as the selfing weed Arabidopsis thaliana...

  2. Lichen species preference by reindeer

    Energy Technology Data Exchange (ETDEWEB)

    Holleman, D F; Luick, J R

    1977-08-01

    The preference by reindeer for five species of lichens commonly found on Central Alaska rangelands was tested under controlled laboratory conditions. Results indicate that reindeer are strongly selective species in their lichen grazing habits. The five tested species ranged as follows in order of decreasing acceptibility: Caldonia alpestris, C. rangiferina, Stereocaulon paschale, Cetraria richardsonii, and Peltigera aphthosa.

  3. Molecular detection of salmonella species from selected vegetables ...

    African Journals Online (AJOL)

    Molecular detection of salmonella species from selected vegetables sold in a north-central ... African Journal of Clinical and Experimental Microbiology ... of the pure isolates testing positive as being pathogenic after biochemical analysis.

  4. The dynamics of diverse segmental amplifications in populations of Saccharomyces cerevisiae adapting to strong selection.

    Science.gov (United States)

    Payen, Celia; Di Rienzi, Sara C; Ong, Giang T; Pogachar, Jamie L; Sanchez, Joseph C; Sunshine, Anna B; Raghuraman, M K; Brewer, Bonita J; Dunham, Maitreya J

    2014-03-20

    Population adaptation to strong selection can occur through the sequential or parallel accumulation of competing beneficial mutations. The dynamics, diversity, and rate of fixation of beneficial mutations within and between populations are still poorly understood. To study how the mutational landscape varies across populations during adaptation, we performed experimental evolution on seven parallel populations of Saccharomyces cerevisiae continuously cultured in limiting sulfate medium. By combining quantitative polymerase chain reaction, array comparative genomic hybridization, restriction digestion and contour-clamped homogeneous electric field gel electrophoresis, and whole-genome sequencing, we followed the trajectory of evolution to determine the identity and fate of beneficial mutations. During a period of 200 generations, the yeast populations displayed parallel evolutionary dynamics that were driven by the coexistence of independent beneficial mutations. Selective amplifications rapidly evolved under this selection pressure, in particular common inverted amplifications containing the sulfate transporter gene SUL1. Compared with single clones, detailed analysis of the populations uncovers a greater complexity whereby multiple subpopulations arise and compete despite a strong selection. The most common evolutionary adaptation to strong selection in these populations grown in sulfate limitation is determined by clonal interference, with adaptive variants both persisting and replacing one another.

  5. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming

    Science.gov (United States)

    Freeman, Benjamin G.; Class Freeman, Alexandra M.

    2014-01-01

    Temperate-zone species have responded to warming temperatures by shifting their distributions poleward and upslope. Thermal tolerance data suggests that tropical species may respond to warming temperatures even more strongly than temperate-zone species, but this prediction has yet to be tested. We addressed this data gap by conducting resurveys to measure distributional responses to temperature increases in the elevational limits of the avifaunas of two geographically and faunally independent New Guinean mountains, Mt. Karimui and Karkar Island, 47 and 44 y after they were originally surveyed. Although species richness is roughly five times greater on mainland Mt. Karimui than oceanic Karkar Island, distributional shifts at both sites were similar: upslope shifts averaged 113 m (Mt. Karimui) and 152 m (Karkar Island) for upper limits and 95 m (Mt. Karimui) and 123 m (Karkar Island) for lower limits. We incorporated these results into a metaanalysis to compare distributional responses of tropical species with those of temperate-zone species, finding that average upslope shifts in tropical montane species match local temperature increases significantly more closely than in temperate-zone montane species. That tropical species appear to be strong responders has global conservation implications and provides empirical support to hitherto untested models that predict widespread extinctions in upper-elevation tropical endemics with small ranges. PMID:24550460

  6. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures

    Directory of Open Access Journals (Sweden)

    Hayes Michael L

    2012-05-01

    Full Text Available Abstract Background Pentatricopeptide repeat (PPR proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82 and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. Results All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3’ UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. Conclusion PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative

  7. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures.

    Science.gov (United States)

    Hayes, Michael L; Giang, Karolyn; Mulligan, R Michael

    2012-05-14

    Pentatricopeptide repeat (PPR) proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82) and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3' UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative selection even in the absence of an editing site target

  8. Habitat selection of black-and-white snub-nosed monkeys (Rhinopithecus bieti) in Tibet: implications for species conservation.

    Science.gov (United States)

    Xiang, Zuo-Fu; Huo, Sheng; Xiao, Wen

    2011-04-01

    As anthropogenic habitat changes are often considered a threat to natural ecosystems and wildlife, a sound understanding of the effects of habitat alteration on endangered species is crucial when designing management strategies or performing conservation activities. Black-and-white snub-nosed monkeys (Rhinopithecus bieti) are categorized as endangered on the IUCN Red List and are endemic to the trans-Himalayas in China. At present, there are only 15 groups and 2,500 individuals remaining in the wild, and they are facing intense habitat degradation with selective logging for house building and firewood. Habitat deterioration through wood extraction is occurring at Xiaochangdu, Tibet, where one stable group of R. bieti lives in a marginal habitat in the northernmost part of the species' distribution. To understand the species' response to selective logging in an extremely marginal habitat, data on habitat preference and diet composition of a group of R. bieti were collected at Xiaochangdu from 2003 to 2005. The monkeys used different habitats nonrandomly during the year. The selection index for secondary conifer forest (SC), where selective logging has occurred, was the highest of all habitat types (>1), suggesting that the groups strongly preferred SC. The monkeys fed more on buds/leaves, more on flowers/fruit/seeds, and less on lichen in SC than in primary conifer forest (PC). Dietary diversity was significantly higher in SC than in PC. These results indicate that over the short term, low-intensity disturbances may result in increased foliage diversity that enable groups of R. bieti to survive in this marginal habitat. © 2010 Wiley-Liss, Inc.

  9. Accounting for selection bias in species distribution models: An econometric approach on forested trees based on structural modeling

    Science.gov (United States)

    Ay, Jean-Sauveur; Guillemot, Joannès; Martin-StPaul, Nicolas K.; Doyen, Luc; Leadley, Paul

    2015-04-01

    Species distribution models (SDMs) are widely used to study and predict the outcome of global change on species. In human dominated ecosystems the presence of a given species is the result of both its ecological suitability and human footprint on nature such as land use choices. Land use choices may thus be responsible for a selection bias in the presence/absence data used in SDM calibration. We present a structural modelling approach (i.e. based on structural equation modelling) that accounts for this selection bias. The new structural species distribution model (SSDM) estimates simultaneously land use choices and species responses to bioclimatic variables. A land use equation based on an econometric model of landowner choices was joined to an equation of species response to bioclimatic variables. SSDM allows the residuals of both equations to be dependent, taking into account the possibility of shared omitted variables and measurement errors. We provide a general description of the statistical theory and a set of application on forested trees over France using databases of climate and forest inventory at different spatial resolution (from 2km to 8 km). We also compared the output of the SSDM with outputs of a classical SDM in term of bioclimatic response curves and potential distribution under current climate. According to the species and the spatial resolution of the calibration dataset, shapes of bioclimatic response curves the modelled species distribution maps differed markedly between the SSDM and classical SDMs. The magnitude and directions of these differences were dependent on the correlations between the errors from both equations and were highest for higher spatial resolutions. A first conclusion is that the use of classical SDMs can potentially lead to strong miss-estimation of the actual and future probability of presence modelled. Beyond this selection bias, the SSDM we propose represents a crucial step to account for economic constraints on tree

  10. Strong influence of regional species pools on continent-wide structuring of local communities

    DEFF Research Database (Denmark)

    Lessard, Jean-Philippe; Borregaard, Michael Krabbe; Fordyce, James A.

    2012-01-01

    pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use...... of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution...... of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong....

  11. Tracking movement and temperature selection of larvae of two forensically important blow fly species within a "maggot mass".

    Science.gov (United States)

    Johnson, Aidan P; Wighton, Samuel J; Wallman, James F

    2014-11-01

    The current study responds to the lack of understanding about the temperatures experienced by individual blow fly larvae within "maggot masses." The temperature selection of both aggregating (in a mass) and nonaggregating larvae was compared and their pattern of movement assessed. Infrared imaging determined the temperatures within a mass and in the vicinity of the constituent individual larvae, whose movements were tracked by dyeing their tissues red. Individual Chrysomya rufifacies larvae selected temperatures above 27°C, significantly higher than the temperature selected by Calliphora vicina larvae (24.5°C). However, this same difference was not seen within a mass, with both species selecting temperatures around 28°C. Larval movement in a mass was nonrandom, indicating that larvae actively select their position in a mass. Furthermore, larvae have a strong tendency to select the hottest part of a mass; therefore, maximum mass temperatures might provide a reliable proxy for the actual temperatures experienced by larvae. © 2014 American Academy of Forensic Sciences.

  12. Strong influence of regional species pools on continent-wide structuring of local communities.

    Science.gov (United States)

    Lessard, Jean-Philippe; Borregaard, Michael K; Fordyce, James A; Rahbek, Carsten; Weiser, Michael D; Dunn, Robert R; Sanders, Nathan J

    2012-01-22

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that the definition of the source pool influences interpretations of patterns of community structure. We use a continent-wide dataset of local ant communities and implement ecologically explicit source pool definitions to examine the relative importance of regional species pools and local interactions for shaping community structure. Then we assess which factors underlie systematic variation in the structure of communities along climatic gradients. We find that the average phylogenetic relatedness of species in ant communities decreases from tropical to temperate regions, but the strength of this relationship depends on the level of ecological realism in the definition of source pools. We conclude that the evolution of climatic niches influences the phylogenetic structure of regional source pools and that the influence of regional source pools on local community structure is strong.

  13. Reliable Refuge: Two Sky Island Scorpion Species Select Larger, Thermally Stable Retreat Sites.

    Science.gov (United States)

    Becker, Jamie E; Brown, Christopher A

    2016-01-01

    Sky island scorpions shelter under rocks and other surface debris, but, as with other scorpions, it is unclear whether these species select retreat sites randomly. Furthermore, little is known about the thermal preferences of scorpions, and no research has been done to identify whether reproductive condition might influence retreat site selection. The objectives were to (1) identify physical or thermal characteristics for retreat sites occupied by two sky island scorpions (Vaejovis cashi Graham 2007 and V. electrum Hughes 2011) and those not occupied; (2) determine whether retreat site selection differs between the two study species; and (3) identify whether thermal selection differs between species and between gravid and non-gravid females of the same species. Within each scorpion's habitat, maximum dimensions of rocks along a transect line were measured and compared to occupied rocks to determine whether retreat site selection occurred randomly. Temperature loggers were placed under a subset of occupied and unoccupied rocks for 48 hours to compare the thermal characteristics of these rocks. Thermal gradient trials were conducted before parturition and after dispersal of young in order to identify whether gravidity influences thermal preference. Vaejovis cashi and V. electrum both selected larger retreat sites that had more stable thermal profiles. Neither species appeared to have thermal preferences influenced by reproductive condition. However, while thermal selection did not differ among non-gravid individuals, gravid V. electrum selected warmer temperatures than its gravid congener. Sky island scorpions appear to select large retreat sites to maintain thermal stability, although biotic factors (e.g., competition) could also be involved in this choice. Future studies should focus on identifying the various biotic or abiotic factors that could influence retreat site selection in scorpions, as well as determining whether reproductive condition affects thermal

  14. Genetic signature of strong recent positive selection at interleukin-32 gene in goat

    Directory of Open Access Journals (Sweden)

    Akhtar Rasool Asif

    2017-07-01

    Full Text Available Objective Identification of the candidate genes that play key roles in phenotypic variations can provide new information about evolution and positive selection. Interleukin (IL-32 is involved in many biological processes, however, its role for the immune response against various diseases in mammals is poorly understood. Therefore, the current investigation was performed for the better understanding of the molecular evolution and the positive selection of single nucleotide polymorphisms in IL-32 gene. Methods By using fixation index (FST based method, IL-32 (9375 gene was found to be outlier and under significant positive selection with the provisional combined allocation of mean heterozygosity and FST. Using nucleotide sequences of 11 mammalian species from National Center for Biotechnology Information database, the evolutionary selection of IL-32 gene was determined using Maximum likelihood model method, through four models (M1a, M2a, M7, and M8 in Codeml program of phylogenetic analysis by maximum liklihood. Results IL-32 is detected under positive selection using the FST simulations method. The phylogenetic tree revealed that goat IL-32 was in close resemblance with sheep IL-32. The coding nucleotide sequences were compared among 11 species and it was found that the goat IL-32 gene shared identity with sheep (96.54%, bison (91.97%, camel (58.39%, cat (56.59%, buffalo (56.50%, human (56.13%, dog (50.97%, horse (54.04%, and rabbit (53.41% respectively. Conclusion This study provides evidence for IL-32 gene as under significant positive selection in goat.

  15. The contribution of an avian top predator to selection in prey species

    NARCIS (Netherlands)

    Vedder, Oscar; Bouwhuis, Sandra; Sheldon, Ben C.

    Natural selection can vary in magnitude, form and direction, yet the causes of selection, and of variation in selection, are poorly understood. We quantified the effect of a key predator (Eurasian sparrowhawks) on selection on fledging body mass in two bird species (blue tits and great tits). By

  16. Genome-wide analysis of positively selected genes in seasonal and non-seasonal breeding species.

    Directory of Open Access Journals (Sweden)

    Yuhuan Meng

    Full Text Available Some mammals breed throughout the year, while others breed only at certain times of year. These differences in reproductive behavior can be explained by evolution. We identified positively-selected genes in two sets of species with different degrees of relatedness including seasonal and non-seasonal breeding species, using branch-site models. After stringent filtering by sum of pairs scoring, we revealed that more genes underwent positive selection in seasonal compared with non-seasonal breeding species. Positively-selected genes were verified by cDNA mapping of the positive sites with the corresponding cDNA sequences. The design of the evolutionary analysis can effectively lower the false-positive rate and thus identify valid positive genes. Validated, positively-selected genes, including CGA, DNAH1, INVS, and CD151, were related to reproductive behaviors such as spermatogenesis and cell proliferation in non-seasonal breeding species. Genes in seasonal breeding species, including THRAP3, TH1L, and CMTM6, may be related to the evolution of sperm and the circadian rhythm system. Identification of these positively-selected genes might help to identify the molecular mechanisms underlying seasonal and non-seasonal reproductive behaviors.

  17. Invasive ecosystem engineer selects for different phenotypes of an associated native species.

    Science.gov (United States)

    Wright, Jeffrey T; Gribben, Paul E; Byers, James E; Monro, Keyne

    2012-06-01

    Invasive habitat-forming ecosystem engineers modify the abiotic environment and thus represent a major perturbation to many ecosystems. Because native species often persist in these invaded habitats but have no shared history with the ecosystem engineer, the engineer may impose novel selective pressure on native species. In this study, we used a phenotypic selection framework to determine whether an invasive habitat-forming ecosystem engineer (the seaweed Caulerpa taxifolia) selects for different phenotypes of a common co-occurring native species (the bivalve Anadara trapezia). Compared to unvegetated habitat, Caulerpa habitat has lower water flow, lower dissolved oxygen, and sediments are more silty and anoxic. We determined the performance consequences of variation in key functional traits that may be affected by these abiotic changes (shell morphology, gill mass, and palp mass) for Anadara transplanted into Caulerpa and unvegetated habitat. Both linear and nonlinear performance gradients in Anadara differed between habitats, and these gradients were stronger in Caulerpa compared to unvegetated sediment. Moreover, in Caulerpa alternate phenotypes performed well, and these phenotypes were different from the dominant phenotype in unvegetated sediment. By demonstrating that phenotype-performance gradients differ between habitats, we have highlighted a role for Caulerpa as an agent of selection on native species.

  18. The suitability of selected wood species in the production of turned ...

    African Journals Online (AJOL)

    The study investigated the suitability of selected wood species in the production of turned glue-laminated products. Five different wood species of high quality grades which were sourced from Bodija market Ibadan, south western Nigeria were thoroughly examined where the moisture content, density and shrinkage ...

  19. Light dependency of VOC emissions from selected Mediterranean plant species

    Science.gov (United States)

    Owen, S. M.; Harley, P.; Guenther, A.; Hewitt, C. N.

    The light, temperature and stomatal conductance dependencies of volatile organic compound (VOC) emissions from ten plant species commonly found in the Mediterranean region were studied using a fully controlled leaf cuvette in the laboratory. At standard conditions of temperature and light (30°C and 1000 μmol m -2 s -1 PAR), low emitting species ( Arbutus unedo, Pinus halepensis, Cistus incanus, Cistus salvifolius, Rosmarinus officinalis and Thymus vulgaris) emitted between 0.1 and 5.0 μg (C) (total VOCs) g -1 dw h -1, a medium emitter ( Pinus pinea) emitted between 5 and 10 μg (C) g -1 dw h -1 and high emitters ( Cistus monspeliensis, Lavendula stoechas and Quercus sp.) emitted more than 10 μg (C) g -1 dw h -1. VOC emissions from all of the plant species investigated showed some degree of light dependency, which was distinguishable from temperature dependency. Emissions of all compounds from Quercus sp. were light dependent. Ocimene was one of several monoterpene compounds emitted by P. pinea and was strongly correlated to light. Only a fraction of monoterpene emissions from C. incanus exhibited apparent weak light dependency but emissions from this plant species were strongly correlated to temperature. Data presented here are consistent with past studies, which show that emissions are independent of stomatal conductance. These results may allow more accurate predictions of monoterpene emission fluxes from the Mediterranean region to be made.

  20. Using a systematic approach to select flagship species for bird conservation.

    Science.gov (United States)

    Veríssimo, Diogo; Pongiluppi, Tatiana; Santos, Maria Cintia M; Develey, Pedro F; Fraser, Iain; Smith, Robert J; MacMilan, Douglas C

    2014-02-01

    Conservation marketing campaigns that focus on flagship species play a vital role in biological diversity conservation because they raise funds and change people's behavior. However, most flagship species are selected without considering the target audience of the campaign, which can hamper the campaign's effectiveness. To address this problem, we used a systematic and stakeholder-driven approach to select flagship species for a conservation campaign in the Serra do Urubu in northeastern Brazil. We based our techniques on environmental economic and marketing methods. We used choice experiments to examine the species attributes that drive preference and latent-class models to segment respondents into groups by preferences and socioeconomic characteristics. We used respondent preferences and information on bird species inhabiting the Serra do Urubu to calculate a flagship species suitability score. We also asked respondents to indicate their favorite species from a set list to enable comparison between methods. The species' traits that drove audience preference were geographic distribution, population size, visibility, attractiveness, and survival in captivity. However, the importance of these factors differed among groups and groups differed in their views on whether species with small populations and the ability to survive in captivity should be prioritized. The popularity rankings of species differed between approaches, a result that was probably related to the different ways in which the 2 methods measured preference. Our new approach is a transparent and evidence-based method that can be used to refine the way stakeholders are engaged in the design of conservation marketing campaigns. © 2013 Society for Conservation Biology.

  1. Selectivity, specificity, and sensitivity in the photoionization of sputtered species

    International Nuclear Information System (INIS)

    Gruen, D.M.; Calaway, W.F.; Pellin, M.J.; Young, C.E.; Spiegel, D.R.; Clayton, R.N.; Davis, A.M.; Blum, J.D.

    1990-01-01

    To deal with the problem of non- or near-resonant ionization, one needs to achieve the highest selectively for photoionization of the species of interest relative to isobarically overlapping species by choosing a specific photoionization scheme tailoring are that is could not have near-overlap with known atomic or molecular energy levels of isobaric species, and that it should lead to saturation of the resonance transitions at the lowest possible laser power levels so as to minimize two- and three-photon nonresonant photoionization processes. Experience has shown that, even when these two conditions are met as closely as possible, non- or near-resonant ionization can still occur, perhaps because of the existence of hitherto unobserved energy levels, photodissociation of sputtered molecules, or other effects. It is becoming clear that maximizing detection sensitivity for a particular species requires one to pay careful attention to the selection of an optimal photoionization scheme. It is the purpose of the present paper to illustrate this point with several examples and to help point the way to still further improvements in detection sensitivity by non- or near-resonant. ionization through detailed exploration of alternative photoionization schemes

  2. Fundamental aspects of plating technology. 5. The effect of strongly adsorbed species on the morphology of metal deposits

    Energy Technology Data Exchange (ETDEWEB)

    Popov, K I; Rodaljevic, Z P; Krstajic, N V; Novakovic, S D

    1985-07-01

    It is shown that the improvement in the quality of electrodeposits obtained from CdSO/sub 4/ solution in the presence of strongly adsorbed species compared with that of deposits obtained in the absence of such species is due to a decrease in the exchange current density and an increase in the Tafel slope for the deposition process in the former case.

  3. Species-specific variation in nesting and postfledging resource selection for two forest breeding migrant songbirds.

    Directory of Open Access Journals (Sweden)

    Julianna M A Jenkins

    Full Text Available Habitat selection is a fundamental component of community ecology, population ecology, and evolutionary biology and can be especially important to species with complex annual habitat requirements, such as migratory birds. Resource preferences on the breeding grounds may change during the postfledging period for migrant songbirds, however, the degree to which selection changes, timing of change, and whether all or only a few species alter their resource use is unclear. We compared resource selection for nest sites and resource selection by postfledging juvenile ovenbirds (Seiurus aurocapilla and Acadian flycatchers (Empidonax virescens followed with radio telemetry in Missouri mature forest fragments from 2012-2015. We used Bayesian discrete choice modeling to evaluate support for local vegetation characteristics on the probability of selection for nest sites and locations utilized by different ages of postfledging juveniles. Patterns of resource selection variation were species-specific. Resource selection models indicated that Acadian flycatcher habitat selection criteria were similar for nesting and dependent postfledging juveniles and selection criteria diverged when juveniles became independent from adults. After independence, flycatcher resource selection was more associated with understory foliage density. Ovenbirds differed in selection criteria between the nesting and postfledging periods. Fledgling ovenbirds selected areas with higher densities of understory structure compared to nest sites, and the effect of foliage density on selection increased as juveniles aged and gained independence. The differences observed between two sympatric forest nesting species, in both the timing and degree of change in resource selection criteria over the course of the breeding season, illustrates the importance of considering species-specific traits and postfledging requirements when developing conservation efforts, especially when foraging guilds or

  4. The role of positive selection in determining the molecular cause of species differences in disease

    Directory of Open Access Journals (Sweden)

    Foord Steven M

    2008-10-01

    Full Text Available Abstract Background Related species, such as humans and chimpanzees, often experience the same disease with varying degrees of pathology, as seen in the cases of Alzheimer's disease, or differing symptomatology as in AIDS. Furthermore, certain diseases such as schizophrenia, epithelial cancers and autoimmune disorders are far more frequent in humans than in other species for reasons not associated with lifestyle. Genes that have undergone positive selection during species evolution are indicative of functional adaptations that drive species differences. Thus we investigate whether biomedical disease differences between species can be attributed to positively selected genes. Results We identified genes that putatively underwent positive selection during the evolution of humans and four mammals which are often used to model human diseases (mouse, rat, chimpanzee and dog. We show that genes predicted to have been subject to positive selection pressure during human evolution are implicated in diseases such as epithelial cancers, schizophrenia, autoimmune diseases and Alzheimer's disease, all of which differ in prevalence and symptomatology between humans and their mammalian relatives. In agreement with previous studies, the chimpanzee lineage was found to have more genes under positive selection than any of the other lineages. In addition, we found new evidence to support the hypothesis that genes that have undergone positive selection tend to interact with each other. This is the first such evidence to be detected widely among mammalian genes and may be important in identifying molecular pathways causative of species differences. Conclusion Our dataset of genes predicted to have been subject to positive selection in five species serves as an informative resource that can be consulted prior to selecting appropriate animal models during drug target validation. We conclude that studying the evolution of functional and biomedical disease differences

  5. The ancestral selection graph under strong directional selection.

    Science.gov (United States)

    Pokalyuk, Cornelia; Pfaffelhuber, Peter

    2013-08-01

    The ancestral selection graph (ASG) was introduced by  Neuhauser and Krone (1997) in order to study populations of constant size which evolve under selection. Coalescence events, which occur at rate 1 for every pair of lines, lead to joint ancestry. In addition, splitting events in the ASG at rate α, the scaled selection coefficient, produce possible ancestors, such that the real ancestor depends on the ancestral alleles. Here, we use the ASG in the case without mutation in order to study fixation of a beneficial mutant. Using our main tool, a reversibility property of the ASG, we provide a new proof of the fact that a beneficial allele fixes roughly in time (2logα)/α if α is large. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Strong Selection Significantly Increases Epistatic Interactions in the Long-Term Evolution of a Protein.

    Directory of Open Access Journals (Sweden)

    Aditi Gupta

    2016-03-01

    Full Text Available Epistatic interactions between residues determine a protein's adaptability and shape its evolutionary trajectory. When a protein experiences a changed environment, it is under strong selection to find a peak in the new fitness landscape. It has been shown that strong selection increases epistatic interactions as well as the ruggedness of the fitness landscape, but little is known about how the epistatic interactions change under selection in the long-term evolution of a protein. Here we analyze the evolution of epistasis in the protease of the human immunodeficiency virus type 1 (HIV-1 using protease sequences collected for almost a decade from both treated and untreated patients, to understand how epistasis changes and how those changes impact the long-term evolvability of a protein. We use an information-theoretic proxy for epistasis that quantifies the co-variation between sites, and show that positive information is a necessary (but not sufficient condition that detects epistasis in most cases. We analyze the "fossils" of the evolutionary trajectories of the protein contained in the sequence data, and show that epistasis continues to enrich under strong selection, but not for proteins whose environment is unchanged. The increase in epistasis compensates for the information loss due to sequence variability brought about by treatment, and facilitates adaptation in the increasingly rugged fitness landscape of treatment. While epistasis is thought to enhance evolvability via valley-crossing early-on in adaptation, it can hinder adaptation later when the landscape has turned rugged. However, we find no evidence that the HIV-1 protease has reached its potential for evolution after 9 years of adapting to a drug environment that itself is constantly changing. We suggest that the mechanism of encoding new information into pairwise interactions is central to protein evolution not just in HIV-1 protease, but for any protein adapting to a changing

  7. Convergent evolution and divergent selection: lizards at the White Sands ecotone.

    Science.gov (United States)

    Rosenblum, Erica Bree

    2006-01-01

    Ecological transition zones, where organismal phenotypes result from a delicate balance between selection and migration, highlight the interplay of local adaptation and gene flow. Here, I study the response of an entire species assemblage to natural selection across a common ecotone. Three lizard species, distributed along a dramatic environmental gradient in substrate color, display convergent adaptation of blanched coloration on the gypsum dunes of White Sands National Monument. I investigate the role of gene flow in modulating phenotypic response to selection by quantifying color variation and genetic variation across the ecotone. I find species differences in degree of background matching and in genetic connectivity of populations across the ecotone. Differences among species in phenotypic response to selection scale precisely to levels of genetic isolation. Species with higher levels of gene flow across the ecotone exhibit less dramatic responses to selection. Results also reveal a strong signal of ecologically mediated divergence for White Sands lizards. For all species, phenotypic variation is better explained by habitat similarity than genetic similarity. Convergent evolution of blanched coloration at White Sands clearly reflects the action of strong divergent selection; however, adaptive response appears to be modulated by gene flow and demographic history and can be predicted by divergence-with-gene-flow models.

  8. Development of a seaweed species-selection index for successful culture in a seaweed-based integrated aquaculture system

    Science.gov (United States)

    Kang, Yun Hee; Hwang, Jae Ran; Chung, Ik Kyo; Park, Sang Rul

    2013-03-01

    Integrated multi-trophic aquaculture (IMTA) has been proposed as a concept that combines the cultivation of fed aquaculture species ( e.g., finfish/shrimp) with extractive aquaculture species ( e.g., shellfish/seaweed). In seaweed-based integrated aquaculture, seaweeds have the capacity to reduce the environmental impact of nitrogen-rich effluents on coastal ecosystems. Thus, selection of optimal species for such aquaculture is of great importance. The present study aimed to develop a seaweed species-selection index for selecting suitable species in seaweed-based integrated aquaculture system. The index was synthesized using available literature-based information, reference data, and physiological seaweed experiments to identify and prioritize the desired species. Undaria pinnatifida, Porphyra yezoensis and Ulva compressa scored the highest according to a seaweed-based integrated aquaculture suitability index (SASI). Seaweed species with the highest scores were adjudged to fit the integrated aquaculture systems. Despite the application of this model limited by local aquaculture environment, it is considered to be a useful tool for selecting seaweed species in IMTA.

  9. Selecting a Conservation Surrogate Species for Small Fragmented Habitats Using Ecological Niche Modelling

    Directory of Open Access Journals (Sweden)

    K. Anne-Isola Nekaris

    2015-01-01

    Full Text Available Flagship species are traditionally large, charismatic animals used to rally conservation efforts. Accepted flagship definitions suggest they need only fulfil a strategic role, unlike umbrella species that are used to shelter cohabitant taxa. The criteria used to select both flagship and umbrella species may not stand up in the face of dramatic forest loss, where remaining fragments may only contain species that do not suit either set of criteria. The Cinderella species concept covers aesthetically pleasing and overlooked species that fulfil the criteria of flagships or umbrellas. Such species are also more likely to occur in fragmented habitats. We tested Cinderella criteria on mammals in the fragmented forests of the Sri Lankan Wet Zone. We selected taxa that fulfilled both strategic and ecological roles. We created a shortlist of ten species, and from a survey of local perceptions highlighted two finalists. We tested these for umbrella characteristics against the original shortlist, utilizing Maximum Entropy (MaxEnt modelling, and analysed distribution overlap using ArcGIS. The criteria highlighted Loris tardigradus tardigradus and Prionailurus viverrinus as finalists, with the former having highest flagship potential. We suggest Cinderella species can be effective conservation surrogates especially in habitats where traditional flagship species have been extirpated.

  10. Population structure and strong divergent selection shape phenotypic diversification in maize landraces.

    Science.gov (United States)

    Pressoir, G; Berthaud, J

    2004-02-01

    To conserve the long-term selection potential of maize, it is necessary to investigate past and present evolutionary processes that have shaped quantitative trait variation. Understanding the dynamics of quantitative trait evolution is crucial to future crop breeding. We characterized population differentiation of maize landraces from the State of Oaxaca, Mexico for quantitative traits and molecular markers. Qst values were much higher than Fst values obtained for molecular markers. While low values of Fst (0.011 within-village and 0.003 among-villages) suggest that considerable gene flow occurred among the studied populations, high levels of population differentiation for quantitative traits were observed (ie an among-village Qst value of 0.535 for kernel weight). Our results suggest that although quantitative traits appear to be under strong divergent selection, a considerable amount of gene flow occurs among populations. Furthermore, we characterized nonproportional changes in the G matrix structure both within and among villages that are consequences of farmer selection. As a consequence of these differences in the G matrix structure, the response to multivariate selection will be different from one population to another. Large changes in the G matrix structure could indicate that farmers select for genes of major and pleiotropic effect. Farmers' decision and selection strategies have a great impact on phenotypic diversification in maize landraces.

  11. Participatory Selection of Tree Species for Agroforestry on Sloping Land in North Korea

    Directory of Open Access Journals (Sweden)

    Jun He

    2015-11-01

    Full Text Available The action research project reported in this article used a participatory approach to select trees for sloping-land agroforestry as a key strategy for forest ecosystem restoration and local livelihood development. It was the first such project in the Democratic People’s Republic of Korea (North Korea to use a participatory approach, empowering local user groups to develop their preferences for agroforestry species. Local knowledge of the multiple functions of agroforestry species ensured that the tree selection criteria included the value of timber, fruit, fodder, oil, medicines, fuelwood, and erosion control. Involving 67 farmers from 3 counties, this participatory selection process resulted in Prunus armeniaca, Castanea crenata, and Ziziphus jujuba being selected as the top 3 species for the development of sloping-land agroforestry in North Hwanghae Province. These trees embody what the region’s farmers value most: erosion control, production of fruit, and economic value. The participatory approach in agroforestry could help to meet both local needs for food security and the national objective of environmental conservation and has great potential for wide adaptation in North Korea and beyond.

  12. Tetrel Bonding as a Vehicle for Strong and Selective Anion Binding

    Directory of Open Access Journals (Sweden)

    Steve Scheiner

    2018-05-01

    Full Text Available Tetrel atoms T (T = Si, Ge, Sn, and Pb can engage in very strong noncovalent interactions with nucleophiles, which are commonly referred to as tetrel bonds. The ability of such bonds to bind various anions is assessed with a goal of designing an optimal receptor. The Sn atom seems to form the strongest bonds within the tetrel family. It is most effective in the context of a -SnF3 group and a further enhancement is observed when a positive charge is placed on the receptor. Connection of the -SnF3 group to either an imidazolium or triazolium provides a strong halide receptor, which can be improved if its point of attachment is changed from the C to an N atom of either ring. Aromaticity of the ring offers no advantage nor is a cyclic system superior to a simple alkyl amine of any chain length. Placing a pair of -SnF3 groups on a single molecule to form a bipodal dicationic receptor with two tetrel bonds enhances the binding, but falls short of a simple doubling. These two tetrel groups can be placed on opposite ends of an alkyl diamine chain of any length although SnF3+NH2(CH2nNH2SnF3+ with n between 2 and 4 seems to offer the strongest halide binding. Of the various anions tested, OH− binds most strongly: OH− > F− > Cl− > Br− > I−. The binding energy of the larger NO3− and HCO3− anions is more dependent upon the charge of the receptor. This pattern translates into very strong selectivity of binding one anion over another. The tetrel-bonding receptors bind far more strongly to each anion than an equivalent number of K+ counterions, which leads to equilibrium ratios in favor of the former of many orders of magnitude.

  13. Species selection methodology for an ecological assessment of the Columbia River at the Hanford Site

    International Nuclear Information System (INIS)

    Becker, J.M.; Brandt, C.A.; Dauble, D.D.; Maughan, A.D.; O'Neil, T.K.

    1995-01-01

    Pacific Northwest National Laboratory is conducting an ecological risk assessment of the Columbia River to evaluate the current hazards posed by residual contamination from past nuclear production operations at Hanford. Due to the complexity of the aquatic and riparian ecological communities, a three-step species selection process was developed. In step 1, a comprehensive species list was developed using natural resource agency databases that identified plant and animal species known to occur in the Columbia River study area. In step 2, a panel of regional biologists from federal and state resource additional criteria to derive a list of 181 species of concern. In step 3, the species of concern were qualitatively ranked based on a scoring of their potential exposure and sensitivity to contaminants using a conceptual exposure model for the study area. In this model, species were scored based on (1) potential dietary exposure to biomagnifying and non-biomagnifying contaminants, (2) potential dermal and inhalation exposure to contaminants, (3) exposure duration, and (4) sensitivity to contaminants. From this ranking the stakeholders selected 65 tentative species for further evaluation. By excluding species that seldom use the river and riparian areas, and selecting within the same foraging guild, this list was further reduced to 43 species for evaluation in the screening-level risk assessment

  14. On the origin of species by natural and sexual selection

    NARCIS (Netherlands)

    van Doorn, G. Sander; Edelaar, Pim; Weissing, Franz J.

    2009-01-01

    Ecological speciation is considered an adaptive response to selection for local adaptation. However, besides suitable ecological conditions, the process requires assortative mating to protect the nascent species from homogenization by gene flow. By means of a simple model, we demonstrate that

  15. Strong selection during the last millennium for African ancestry in the admixed population of Madagascar.

    Science.gov (United States)

    Pierron, Denis; Heiske, Margit; Razafindrazaka, Harilanto; Pereda-Loth, Veronica; Sanchez, Jazmin; Alva, Omar; Arachiche, Amal; Boland, Anne; Olaso, Robert; Deleuze, Jean-Francois; Ricaut, Francois-Xavier; Rakotoarisoa, Jean-Aimé; Radimilahy, Chantal; Stoneking, Mark; Letellier, Thierry

    2018-03-02

    While admixed populations offer a unique opportunity to detect selection, the admixture in most of the studied populations occurred too recently to produce conclusive signals. By contrast, Malagasy populations originate from admixture between Asian and African populations that occurred ~27 generations ago, providing power to detect selection. We analyze local ancestry across the genomes of 700 Malagasy and identify a strong signal of recent positive selection, with an estimated selection coefficient >0.2. The selection is for African ancestry and affects 25% of chromosome 1, including the Duffy blood group gene. The null allele at this gene provides resistance to Plasmodium vivax malaria, and previous studies have suggested positive selection for this allele in the Malagasy population. This selection event also influences numerous other genes implicated in immunity, cardiovascular diseases, and asthma and decreases the Asian ancestry genome-wide by 10%, illustrating the role played by selection in recent human history.

  16. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    Energy Technology Data Exchange (ETDEWEB)

    Venteris, Erik R.; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard

    2014-09-16

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. In this contribution we summarize our past results in a new analysis to explore the relative economic impact of these design choices. We present strain-specific growth model results from two saline strains (Nannocloropsis salina, Arthrospira sp.), a fresh to brackish strain (Chlorella sp., DOE strain 1412), and a freshwater strain of the order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE) and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO2 (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1, BGY). Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive species, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 2.0 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low rank sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on site rank, but the most costly resource component varies from site to site. The highest rank sites are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations. Keywords: algae

  17. Factors affecting unintentional harvesting selectivity in a monomorphic species.

    Science.gov (United States)

    Bunnefeld, Nils; Baines, David; Newborn, David; Milner-Gulland, E J

    2009-03-01

    1. Changes in the abundance of populations have always perplexed ecologists but long-term studies are revealing new insights into population dynamic processes. Long-term data are often derived from harvest records although many wild populations face high harvesting pressures leading to overharvesting and extinction. Additionally, harvest records used to describe population processes such as fluctuations in abundance and reproductive success often assume a random off-take. 2. Selective harvesting based on phenotypic characteristics occurs in many species (e.g. trophy hunting, fisheries) and has important implications for population dynamics, conservation and management. 3. In species with no marked morphological differences between the age and sex classes, such as the red grouse Lagopus lagopus scoticus during the shooting season, hunters cannot consciously select for a specific sex or age class during the shooting process but harvest records could still give a biased reflection of the population structure because of differences in behaviour between age and sex classes. 4. This study compared age and sex ratios in the bag with those in the population before shooting for red grouse at different points in the shooting season and different densities, which has rarely been tested before. 5. More young than old grouse were shot at large bag sizes and vice versa for small bag sizes than would be expected from the population composition before shooting. The susceptibility of old males to shooting compared to females increased with bag size and was high at the first time the area was shot but decreased with the number of times an area was harvested. 6. These findings stress that the assumption made in many studies that harvest records reflect the age and sex ratio of the population and therefore reflect productivity can be misleading. 7. In this paper, as in the literature, it is also shown that number of grouse shot reflects grouse density and therefore that hunting

  18. Looking for the ants: selection of oviposition sites by two myrmecophilous butterfly species

    NARCIS (Netherlands)

    Wynhoff, I.; Grutters, M.; Langevelde, van F.

    2008-01-01

    Obligate myrmecophilous butterfly species, such as Maculinea teleius and M. nausithous that hibernate as caterpillar in nests of the ant species Myrmica scabrinodis and M. rubra respectively, have narrowly defined habitat requirements. One would expect that these butterflies are able to select for

  19. Influence of Changing Rainfall Patterns on the Yield of Rambutan (Nephelium lappaceum L. and Selection of Genotypes in Known Drought-tolerant Fruit Species for Climate Change Adaptation

    Directory of Open Access Journals (Sweden)

    Pablito M. Magdalita

    2015-06-01

    Full Text Available In fruit crop production, rainfall, water stress, temperature, and wind are key variables for success, and the present changes in rainfall patterns could affect the flowering and yield of the rambutan (Nephelium lappaceum L. Other fruit species like macopa (Syzygium samarangense, siniguelas (Spondias purpurea, and native santol or cotton fruit (Sandoricum koetjape remain productive despite extreme climatic changes. This study assessed the influence of rainfall on rambutan yield and evaluated and selected tree genotypes of known drought-tolerant fruit species. Rambutan yield in a selected farm in Calauan, Laguna, Philippines, dropped remarkably from 152.2 kg/tree in 2008 to 8.6 kg/tree in 2009. This reduction could be attributed to the high rainfall in April 2009 at 334.4 mm, and possibly other environmental factors like temperature, relative humidity, solar radiation, and strong wind. Furthermore, wet months in 2009 also inhibited the flowering of rambutan. However, a low yield obtained in 2010 at 45.5 kg/tree could be partly attributed to the very low rainfall in May 2010 at only 9.1 mm. On the other hand, in relation to changing climate, selection of tree genotypes for use as varieties in known drought- and flood-tolerant fruit species based on important fruit qualities like sweetness, juiciness, and high edible portion was done. Among 103 macopa genotypes, Mc-13, 43, and 91 were selected and the best (i.e. , Mc-13 had sweet (7.15 °Brix and crispy fruits weighing 49.44 g, creamy white (RHCC 155 A, and had high edible portion (EP, 93.22%. Among 114 siniguelas genotypes, Sg-41, 42 and 105 were selected and the best selection (i.e., Sg-41, had sweet (12.50 °Brix and juicy fruit weighing 20.42 g, ruby red (RHCC 59 A, and had high EP (83.27%. Among 101 native santol genotypes, Sn-47, 59, and 74 were selected and the best selection (i.e. , Sn-59 had relatively sweet (5.56 °Brix and juicy fruits weighing 51.96 g, maize yellow (RHCC 21 B, and had

  20. A critical review of selective absorbers for radioactive and hazardous species

    Energy Technology Data Exchange (ETDEWEB)

    Elder, G R; Simpson, K [Bradtec Ltd., Bristol (United Kingdom)

    1997-02-01

    Selective removal of radioactive and hazardous species has been a fertile research area for several years. However, for commercial application sorbers need to possess satisfactory properties beyond selectivity and these are reviewed. The benefits of selectivity itself need to be set against the limits for liquid discharges and categorization of solid wastes. Two examples are given to illustrate the aspects described. Many current and potential applications of selective adsorbers are to process streams which were not designed for waste management, but consideration of this at the planning stage as now occurs in the nuclear industry can lead to economic benefit. (author). 10 refs, 1 fig., 2 tabs.

  1. A critical review of selective absorbers for radioactive and hazardous species

    International Nuclear Information System (INIS)

    Elder, G.R.; Simpson, K.

    1997-01-01

    Selective removal of radioactive and hazardous species has been a fertile research area for several years. However, for commercial application sorbers need to possess satisfactory properties beyond selectivity and these are reviewed. The benefits of selectivity itself need to be set against the limits for liquid discharges and categorization of solid wastes. Two examples are given to illustrate the aspects described. Many current and potential applications of selective adsorbers are to process streams which were not designed for waste management, but consideration of this at the planning stage as now occurs in the nuclear industry can lead to economic benefit. (author). 10 refs, 1 fig., 2 tabs

  2. Keystone Species, Forest and Landscape: A Model to Select Protected Areas

    Science.gov (United States)

    Lins, Daniela Barbosa da Silva; Gardon, Fernando Ravanini; Meyer, João Frederico da Costa Azevedo; Santos, Rozely Ferreira dos

    2017-06-01

    The selection of forest fragments for conservation is usually based on spatial parameters as forest size and canopy integrity. This strategy assumes that chosen fragments present high conservation status, ensuring biodiversity and ecological functions. We argue that a well-preserved forest fragment that remains connected by the landscape structure, does not necessarily hold attributes that ensure the presence of keystone species. We also discuss that the presence of keystone species does not always mean that it has the best conditions for its occurrence and maintenance. We developed a model to select areas in forest landscapes to be prioritized for protection based on suitability curves that unify and compare spatial indicators of three categories: forest fragment quality, landscape quality, and environmental conditions for the occurrence of a keystone species. We use a case study to compare different suitability degrees for Euterpe edulis presence, considered an important functional element in Atlantic Forest (São Paulo, Brazil) landscapes and a forest resource for local people. The results show that the identification of medium or advanced stage fragments as singular indicator of forest quality does not guarantee the existence or maintenance of this keystone species. Even in some well-preserved forest fragments, connected to others and with palm presence, the reverse J-shaped distribution of the population size structure is not sustained and these forests continue to be threatened due to human disturbances.

  3. Some aspects of design and analysis of selection programmes in aquaculture species.

    Science.gov (United States)

    Li, Y; Ponzoni, R W

    2015-04-01

    The aquaculture industry is one of the fastest growing animal food-producing sectors in the world, largely driven by an increasing demand for high-quality protein from developing countries. However, the majority of cultured production of aquatic species currently relies heavily on the collection of wild animals for use as broodstock. Aquatic animal domestication and genetic selection programmes in controlled environments are essential to enable the provision of a continued supply of high-quality food for an ever-expanding world population. Professor John James' significant contributions to the genetic improvement of conventional livestock species are well known. By contrast, his contributions to the aquaculture industry are less well known, especially in the areas of design and conduct of selective breeding programmes in aquatic animal species. In this study, we focus on a few aspects of aquaculture genetics to which Professor James made substantial contributions. His outstanding ability to comprehend, clarify and simplify complex problems with easy-to-understand mathematical derivations is clearly demonstrated in the areas of large-scale strain comparisons, genotype-by-environment interactions (GxE), transformations and interpretation of selection response, as well as in the treatment of economic aspects of designing breeding programmes. © 2015 Blackwell Verlag GmbH.

  4. The role of selected tree species in industrial sewage sludge/flotation tailing management.

    Science.gov (United States)

    Mleczek, Mirosław; Rutkowski, Paweł; Niedzielski, Przemysław; Goliński, Piotr; Gąsecka, Monika; Kozubik, Tomisław; Dąbrowski, Jędrzej; Budzyńska, Sylwia; Pakuła, Jarosław

    2016-11-01

    The aim of the study was to estimate the ability of ten tree and bush species to tolerate and accumulate Cd, Cu, Pb, Zn, and As species [As(III), As(V), and total organic arsenic] in industrial sewage sludge extremely contaminated with arsenic (almost 27.5 g kg(-1)) in a pot experiment. The premise being that it will then be possible to select the most promising tree/bush species, able to grow in the vicinity of dams where sewage sludge/flotation tailings are used as landfill. Six of the ten tested tree species were able to grow on the sludge. The highest content of total As was observed in Betula pendula roots (30.0 ± 1.3 mg kg(-1) DW), where the dominant As species was the toxic As(V). The highest biomass of Quercus Q1 robur (77.3 § 2.6 g) and Acer platanoides (76.0 § 4.9 g) was observed. A proper planting of selected tree species that are able to thrive on sewage sludge/flotation tailings could be an interesting and promising way to protect dams. By utilizing differences in their root systems and water needs, we will be able to reduce the risk of fatal environmental disasters.

  5. QStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species.

    Science.gov (United States)

    Kim, Byoung Sik; Jang, Song Yee; Bang, Ye-Ji; Hwang, Jungwon; Koo, Youngwon; Jang, Kyung Ku; Lim, Dongyeol; Kim, Myung Hee; Choi, Sang Ho

    2018-01-30

    Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS), QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl)-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus , and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp ( Artemia franciscana ). Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures. IMPORTANCE Yields of aquaculture, such as penaeid shrimp hatcheries, are greatly affected by vibriosis, a disease caused by pathogenic Vibrio infections. Since bacterial cell-to-cell communication, known as quorum sensing (QS), regulates pathogenesis of Vibrio species in marine environments, QS inhibitors have attracted attention as alternatives to conventional antibiotics in aquatic settings. Here, we used target-based high-throughput screening to identify

  6. Functional Imaging of Audio–Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    Science.gov (United States)

    Muers, Ross S.; Salo, Emma; Slater, Heather; Petkov, Christopher I.

    2017-01-01

    Abstract The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. PMID:28419201

  7. Subcellular binding of 239Pu in the liver of selected species of rodents

    International Nuclear Information System (INIS)

    Winter, R.

    1980-01-01

    The subcellular distribution of 239 Pu in the liver of selected rodent species was investigated as well as the relation between 239 Pu and the iron metabolism. The goal of the investigation was to find out why the liver discharge of 239 Pu from the liver varies so much between species. (orig.) [de

  8. Woody species diversity in forest plantations in a mountainous region of Beijing, China: effects of sampling scale and species selection.

    Directory of Open Access Journals (Sweden)

    Yuxin Zhang

    Full Text Available The role of forest plantations in biodiversity conservation has gained more attention in recent years. However, most work on evaluating the diversity of forest plantations focuses only on one spatial scale; thus, we examined the effects of sampling scale on diversity in forest plantations. We designed a hierarchical sampling strategy to collect data on woody species diversity in planted pine (Pinus tabuliformis Carr., planted larch (Larix principis-rupprechtii Mayr., and natural secondary deciduous broadleaf forests in a mountainous region of Beijing, China. Additive diversity partition analysis showed that, compared to natural forests, the planted pine forests had a different woody species diversity partitioning pattern at multi-scales (except the Simpson diversity in the regeneration layer, while the larch plantations did not show multi-scale diversity partitioning patterns that were obviously different from those in the natural secondary broadleaf forest. Compare to the natural secondary broadleaf forests, the effects of planted pine forests on woody species diversity are dependent on the sampling scale and layers selected for analysis. Diversity in the planted larch forest, however, was not significantly different from that in the natural forest for all diversity components at all sampling levels. Our work demonstrated that the species selected for afforestation and the sampling scales selected for data analysis alter the conclusions on the levels of diversity supported by plantations. We suggest that a wide range of scales should be considered in the evaluation of the role of forest plantations on biodiversity conservation.

  9. Antibiotic content of selective culture media for isolation of Capnocytophaga species from oral polymicrobial samples.

    Science.gov (United States)

    Ehrmann, E; Jolivet-Gougeon, A; Bonnaure-Mallet, M; Fosse, T

    2013-10-01

    In oral microbiome, because of the abundance of commensal competitive flora, selective media with antibiotics are necessary for the recovery of fastidious Capnocytophaga species. The performances of six culture media (blood agar, chocolate blood agar, VCAT medium, CAPE medium, bacitracin chocolate blood agar and VK medium) were compared with literature data concerning five other media (FAA, LB, TSBV, CapR and TBBP media). To understand variable growth on selective media, the MICs of each antimicrobial agent contained in this different media (colistin, kanamycin, trimethoprim, trimethoprim-sulfamethoxazole, vancomycin, aztreonam and bacitracin) were determined for all Capnocytophaga species. Overall, VCAT medium (Columbia, 10% cooked horse blood, polyvitaminic supplement, 3·75 mg l(-1) of colistin, 1·5 mg l(-1) of trimethoprim, 1 mg l(-1) of vancomycin and 0·5 mg l(-1) of amphotericin B, Oxoid, France) was the more efficient selective medium, with regard to the detection of Capnocytophaga species from oral samples (P culture, a simple blood agar allowed the growth of all Capnocytophaga species. Nonetheless, in oral samples, because of the abundance of commensal competitive flora, selective media with antibiotics are necessary for the recovery of Capnocytophaga species. The demonstrated superiority of VCAT medium made its use essential for the optimal detection of this bacterial genus. This work showed that extreme caution should be exercised when reporting the isolation of Capnocytophaga species from oral polymicrobial samples, because the culture medium is a determining factor. © 2013 The Society for Applied Microbiology.

  10. Macromorphological and micromorphological studies of four selected passiflora species in peninsular malaysia

    International Nuclear Information System (INIS)

    Veeramohan, R.; Haron, N.W.

    2015-01-01

    Taxonomic studies of four selected Passiflora species; Passiflora edulis Sims (Passion fruit), Passiflora coccinea Aubl. (Scarlet passion flower), Passiflora foetida L. (Stinking passion flower) and Passiflora incarnata L. (Fragrant passion flower) were carried out to distinguish their morphological characteristics. Macromorphological characters on the leaves, flowers and fruits of all four Passiflora species were observed under a binocular microscope and they varied characteristically in terms of colour, texture and shape of flowers, leaves and fruits. Jeol JSM-7500F Scanning Electron Microscope was used to observe the micromorphological characters such as stomata, trichomes, and leaf surface indumentum of each Passiflora species. Micromorphologically, each species varied in types and sizes of stomata, epidermal. (author)

  11. Strong copper(II) species in estuarine and sea waters investigated by a method with high detection window.

    Science.gov (United States)

    Alberti, Giancarla; Biesuz, Raffaela; D'Agostino, Girolamo; Scarponi, Giuseppe; Pesavento, Maria

    2007-02-15

    The distribution of copper(II) in species of different stability in some estuarine and sea water samples (Adriatic Sea) was investigated by a method based on the sorption of the metal ion on a strongly sorbing resin, Chelex 100, whose sorbing properties have been previously characterized. From them, it is possible to predict very high values of detection windows at the considered conditions, for example side reaction coefficient as high as 10(10) at pH 7.5. Strong copper(II) species in equilibrium with Chelex 100 were detected, at concentration 2-20nM, with a reaction coefficient approximately 10(10.6) at pH 7.45 in sea water, strictly depending on the acidity. They represent 50-70% of the total metal ion and are the strongest copper(II) complexes found in sea water. Weak complexes too were detected in all the samples, with reaction coefficient lower than ca. 10(9) at the same pH. The method applied, named resin titration (RT), was described in a previous investigation, and is here modified in order to be carried out on oceanographic boat during a cruise in the Adriatic Sea.

  12. Portfolio selection theory and wildlife management

    Directory of Open Access Journals (Sweden)

    JW Hearne

    2008-12-01

    Full Text Available With a strong commercial incentive driving the increase in game ranching in Southern Africa the need has come for more advanced management tools. In this paper the potential of Portfolio Selection Theory to determine the optimal mix of species on game ranches is explored. Land, or the food it produces, is a resource available to invest. We consider species as investment choices. Each species has its own return and risk profile. The question arises as to what proportion of the resource available should be invested in each species. We show that if the objective is to minimise risk for a given return, then the problem is analogous to the Portfolio Selection Problem. The method is then implemented for a typical game ranch. We show that besides risk and return objectives, it is necessary to include an additional objective so as to ensure sufficient species to maintain the character of a game ranch. Some other points of difference from the classical Portfolio Selection problem are also highlighted and discussed.

  13. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences?

    Science.gov (United States)

    Rinne, Teemu; Muers, Ross S; Salo, Emma; Slater, Heather; Petkov, Christopher I

    2017-06-01

    The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio-visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio-visual selective attention modulates the primate brain, identify sources for "lost" attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals. © The Author 2017. Published by Oxford University Press.

  14. Apparent competition and native consumers exacerbate the strong competitive effect of an exotic plant species.

    Science.gov (United States)

    Orrock, John L; Dutra, Humberto P; Marquis, Robert J; Barber, Nicholas

    2015-04-01

    Direct and indirect effects can play a key role in invasions, but experiments evaluating both are rare. We examined the roles of direct competition and apparent competition by exotic Amur honeysuckle (Lonicera maackii) by manipulating (1) L. maackii vegetation, (2) presence of L. maackii fruits, and (3) access to plants by small mammals and deer. Direct competition with L. maackii reduced the abundance and richness of native and exotic species, and native consumers significantly reduced the abundance and richness of native species. Although effects of direct competition and consumption were more pervasive, richness of native plants was also reduced through apparent competition, as small-mammal consumers reduced richness only when L. maackii fruits were present. Our experiment reveals the multiple, interactive pathways that affect the success and impact of an invasive exotic plant: exotic plants may directly benefit from reduced attack by native consumers, may directly exert strong competitive effects on native plants, and may also benefit from apparent competition.

  15. Species selectivity in different sized topless trawl designs: Does size matter?

    DEFF Research Database (Denmark)

    Krag, Ludvig Ahm; Herrmann, Bent; Karlsen, Junita Diana

    2015-01-01

    -specific quotas. The toplesstrawl design was developed to improve species-specific selectivity in such fisheries. In a topless trawl,the foot rope is located more forward than the headline to allow fish to escape upwards, whereas theheadline is located in front in traditional trawl designs. In this study we...... Atlantic, topless trawls have been introducedas legal cod-selective trawl designs. However, this study demonstrates that identical gear modificationsmade to similar trawls of different sizes and used in the same fishery can lead to different results....

  16. Selection against recombinant hybrids maintains reproductive isolation in hybridizing Populus species despite F1 fertility and recurrent gene flow.

    Science.gov (United States)

    Christe, Camille; Stölting, Kai N; Bresadola, Luisa; Fussi, Barbara; Heinze, Berthold; Wegmann, Daniel; Lexer, Christian

    2016-06-01

    Natural hybrid zones have proven to be precious tools for understanding the origin and maintenance of reproductive isolation (RI) and therefore species. Most available genomic studies of hybrid zones using whole- or partial-genome resequencing approaches have focused on comparisons of the parental source populations involved in genome admixture, rather than exploring fine-scale patterns of chromosomal ancestry across the full admixture gradient present between hybridizing species. We have studied three well-known European 'replicate' hybrid zones of Populus alba and P. tremula, two widespread, ecologically divergent forest trees, using up to 432 505 single-nucleotide polymorphisms (SNPs) from restriction site-associated DNA (RAD) sequencing. Estimates of fine-scale chromosomal ancestry, genomic divergence and differentiation across all 19 poplar chromosomes revealed strikingly contrasting results, including an unexpected preponderance of F1 hybrids in the centre of genomic clines on the one hand, and genomically localized, spatially variable shared variants consistent with ancient introgression between the parental species on the other. Genetic ancestry had a significant effect on survivorship of hybrid seedlings in a common garden trial, pointing to selection against early-generation recombinants. Our results indicate a role for selection against recombinant genotypes in maintaining RI in the face of apparent F1 fertility, consistent with the intragenomic 'coadaptation' model of barriers to introgression upon secondary contact. Whole-genome resequencing of hybridizing populations will clarify the roles of specific genetic pathways in RI between these model forest trees and may reveal which loci are affected most strongly by its cyclic breakdown. © 2016 John Wiley & Sons Ltd.

  17. Observed fitness may affect niche overlap in competing species via selective social information use.

    Science.gov (United States)

    Loukola, Olli J; Seppänen, Janne-Tuomas; Krams, Indrikis; Torvinen, Satu S; Forsman, Jukka T

    2013-10-01

    Social information transmission is important because it enables horizontal spread of behaviors, not only between conspecifics but also between individuals of different species. Because interspecific social information use is expected to take place among species with similar resource needs, it may have major consequences for the emergence of local adaptations, resource sharing, and community organization. Social information use is expected to be selective, but the conditions promoting it in an interspecific context are not well known. Here, we experimentally test whether pied flycatchers (Ficedula hypoleuca) use the clutch size of great tits (Parus major) in determining the quality of the observed individual and use it as a basis of decision making. We show that pied flycatchers copied or rejected a novel nest site feature preference of great tits experimentally manipulated to exhibit high or low fitness (clutch size), respectively. Our results demonstrate that the social transmission of behaviors across species can be highly selective in response to observed fitness, plausibly making the phenomenon adaptive. In contrast with the current theory of species coexistence, overlap between realized niches of species could dynamically increase or decrease depending on the observed success of surrounding individuals.

  18. Improving the size- and species selectivity of cod (Gadus morhua) in demersal mixed-species trawl fisheries

    DEFF Research Database (Denmark)

    Krag, Ludvig Ahm

    have been published in scientific journals and Paper 3 has been submitted to Fisheries Research. This review will take a broader perspective and will examine the capturing process, which is the basis for the selection process. Moreover, it discusses the existing methods and knowledge in the fields...... different species, including cod, are caught together. Demersal trawling is the predominant fishing method in Denmark, as measured by both catch value and volume. Demersal trawls also account for the highest discard rates of juvenile fish, including cod. The focus of this work was on improving......, and openings. The results show that the morphology-based simulations of size selectivity of cod can be used to explain a large part of both the within-haul and the between-haul variations previously reported from sea trials. The method can further predict the selection parameters (L50 and SR) for cod...

  19. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta.

    Science.gov (United States)

    McNeal, Joel R; Kuehl, Jennifer V; Boore, Jeffrey L; de Pamphilis, Claude W

    2007-10-24

    Plastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non-parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle. Aside from loss of all ndh genes, Cuscuta exaltata retains photosynthetic and photorespiratory genes that evolve under strong selective constraint. Cuscuta obtusiflora has incurred substantially more change to its plastid genome, including loss of all genes for the plastid-encoded RNA polymerase. Despite extensive change in gene content and greatly increased rate of overall nucleotide substitution, C. obtusiflora also retains all photosynthetic and photorespiratory genes with only one minor exception. Although Epifagus virginiana, the only other parasitic plant with its plastid genome sequenced to date, has lost a largely overlapping set of transfer-RNA and ribosomal genes as Cuscuta, it has lost all genes related to photosynthesis and maintains a set of genes which are among the most divergent in Cuscuta. Analyses demonstrate photosynthetic genes are under the highest constraint of any genes within the plastid genomes of Cuscuta, indicating a function involving RuBisCo and electron transport through photosystems is still the primary reason for retention of the plastid genome in these species.

  20. Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta

    Directory of Open Access Journals (Sweden)

    Kuehl Jennifer V

    2007-10-01

    Full Text Available Abstract Background Plastid genome content and protein sequence are highly conserved across land plants and their closest algal relatives. Parasitic plants, which obtain some or all of their nutrition through an attachment to a host plant, are often a striking exception. Heterotrophy can lead to relaxed constraint on some plastid genes or even total gene loss. We sequenced plastid genomes of two species in the parasitic genus Cuscuta along with a non-parasitic relative, Ipomoea purpurea, to investigate changes in the plastid genome that may result from transition to the parasitic lifestyle. Results Aside from loss of all ndh genes, Cuscuta exaltata retains photosynthetic and photorespiratory genes that evolve under strong selective constraint. Cuscuta obtusiflora has incurred substantially more change to its plastid genome, including loss of all genes for the plastid-encoded RNA polymerase. Despite extensive change in gene content and greatly increased rate of overall nucleotide substitution, C. obtusiflora also retains all photosynthetic and photorespiratory genes with only one minor exception. Conclusion Although Epifagus virginiana, the only other parasitic plant with its plastid genome sequenced to date, has lost a largely overlapping set of transfer-RNA and ribosomal genes as Cuscuta, it has lost all genes related to photosynthesis and maintains a set of genes which are among the most divergent in Cuscuta. Analyses demonstrate photosynthetic genes are under the highest constraint of any genes within the plastid genomes of Cuscuta, indicating a function involving RuBisCo and electron transport through photosystems is still the primary reason for retention of the plastid genome in these species.

  1. QStatin, a Selective Inhibitor of Quorum Sensing in Vibrio Species

    Directory of Open Access Journals (Sweden)

    Byoung Sik Kim

    2018-01-01

    Full Text Available Pathogenic Vibrio species cause diseases in diverse marine animals reared in aquaculture. Since their pathogenesis, persistence, and survival in marine environments are regulated by quorum sensing (QS, QS interference has attracted attention as a means to control these bacteria in aquatic settings. A few QS inhibitors of Vibrio species have been reported, but detailed molecular mechanisms are lacking. Here, we identified a novel, potent, and selective Vibrio QS inhibitor, named QStatin [1-(5-bromothiophene-2-sulfonyl-1H-pyrazole], which affects Vibrio harveyi LuxR homologues, the well-conserved master transcriptional regulators for QS in Vibrio species. Crystallographic and biochemical analyses showed that QStatin binds tightly to a putative ligand-binding pocket in SmcR, the LuxR homologue in V. vulnificus, and changes the flexibility of the protein, thereby altering its transcription regulatory activity. Transcriptome analysis revealed that QStatin results in SmcR dysfunction, affecting the expression of SmcR regulon required for virulence, motility/chemotaxis, and biofilm dynamics. Notably, QStatin attenuated representative QS-regulated phenotypes in various Vibrio species, including virulence against the brine shrimp (Artemia franciscana. Together, these results provide molecular insights into the mechanism of action of an effective, sustainable QS inhibitor that is less susceptible to resistance than other antimicrobial agents and useful in controlling the virulence of Vibrio species in aquacultures.

  2. Short Note Flood effects on trophic linkages of selected fish species ...

    African Journals Online (AJOL)

    The St Lucia Estuary, a UNESCO World Heritage Site, has experienced prolonged mouth closure since 2002. Until recently it was hypersaline, but heavy rainfall between October 2010 and January 2011 led to a large overall decrease in salinity. A stable isotope study was conducted in March 2011 on selected fish species ...

  3. Monitoring of Au(iii) species in plants using a selective fluorescent probe.

    Science.gov (United States)

    Li, Zhen; Xu, Yuqing; Fu, Jie; Zhu, Hailiang; Qian, Yong

    2018-01-23

    A colorimetric and ratiometric probe with a push-pull chromophore dicyanoisophorone system, AuP, has been developed for the detection of Au(iii) species with highly sensitive and selective response to real-water samples and living tissues of Arabidopsis thaliana.

  4. Characterization of midrib vascular bundles of selected medicinal species in Rubiaceae

    Science.gov (United States)

    Nurul-Syahirah, M.; Noraini, T.; Latiff, A.

    2016-11-01

    An anatomical study was carried out on mature leaves of five selected medicinal species of Rubiaceae from Peninsular Malaysia. The chosen medicinal species were Aidia densiflora, Aidia racemosa, Chasallia chartacea, Hedyotis auricularia and Ixora grandifolia. The objective of this study is to determine the taxonomic value of midrib anatomical characteristics. Leaves samples were collected from Taman Paku Pakis, Universiti Kebangsaan Malaysia, Bangi, Selangor and Kledang Saiong Forest Reserve, Perak, Malaysia. Leaves samples then were fixed in spirit and acetic acid (3:1), the midrib parts then were sectioned using sliding microtome, cleared using Clorox, stained in Safranin and Alcian blue, mounted in Euparal and were observed under light microscope. Findings in this study have shown all species have collateral bundles. The midrib vascular bundles characteristics that can be used as tool to differentiate between species or genus are vascular bundles system (opened or closed), shape and arrangement of main vascular bundles, presence of both additional and medullary vascular bundles, position of additional vascular bundles, shape of medullary vascular bundles, presence of sclerenchyma cells ensheathed the vascular bundles. As a conclusion, midrib anatomical characteristics can be used to identify and discriminate medicinal plants species studied in the Rubiaceae.

  5. Separation and determination of arsenic species in water by selective exchange and hybrid resins

    Energy Technology Data Exchange (ETDEWEB)

    Issa, Nureddin Ben [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade (Serbia); Rajakovic-Ognjanovic, Vladana N. [Faculty of Civil Engineering, University of Belgrade, Bulevar Kralja Aleksandra 73, Belgrade (Serbia); Marinkovic, Aleksandar D. [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade (Serbia); Rajakovic, Ljubinka V., E-mail: ljubinka@tmf.bg.ac.rs [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, Belgrade (Serbia)

    2011-11-07

    Highlights: {yields} A simple and efficient method for separation and determination of arsenic species. {yields} A new hybrid resin HY-AgCl is effective for iAs and oAs analytical separation. {yields} SBAE resin was convenient for the separation of As(III) from As(V) and oAs species. {yields} HY-Fe resin was convenient for the separation of DMAs(V). - Abstract: A simple and efficient method for separation and determination of inorganic arsenic (iAs) and organic arsenic (oAs) in drinking, natural and wastewater was developed. If arsenic is present in water prevailing forms are inorganic acids of As(III) and As(V). oAs can be found in traces as monomethylarsenic acid, MMA(V), and dimethylarsenic acid, DMAs(V). Three types of resins: a strong base anion exchange (SBAE) and two hybrid (HY) resins: HY-Fe and HY-AgCl, based on the activity of hydrated iron oxides and a silver chloride were investigated. It was found that the sorption processes (ion exchange, adsorption and chemisorptions) of arsenic species on SBAE (ion exchange) and HY resins depend on pH values of water. The quantitative separation of molecular and ionic forms of iAs and oAs was achieved by SBAE and pH adjustment, the molecular form of As(III) that exists in the water at pH <8.0 was not bonded with SBAE, which was convenient for direct determination of As(III) concentration in the effluent. HY-Fe resin retained all arsenic species except DMAs(V), which makes possible direct measurements of this specie in the effluent. HY-AgCl resin retained all iAs which was convenient for direct determination of oAs species concentration in the effluent. The selective bonding of arsenic species on three types of resins makes possible the development of the procedure for measuring and calculation of all arsenic species in water. In order to determine capacity of resins the preliminary investigations were performed in batch system and fixed bed flow system. Resin capacities were calculated according to breakthrough

  6. LEAF RESIDUE DECOMPOSITION OF SELECTED ATLANTIC FOREST TREE SPECIES

    Directory of Open Access Journals (Sweden)

    Helga Dias Arato

    2018-02-01

    Full Text Available ABSTRACT Biogeochemical cycling is essential to establish and maintain plant and animal communities. Litter is one of main compartments of this cycle, and the kinetics of leaf decomposition in forest litter depend on the chemical composition and environmental conditions. This study evaluated the effect of leaf composition and environmental conditions on leaf decomposition of native Atlantic Forest trees. The following species were analyzed: Mabea fistulifera Mart., Bauhinia forficata Link., Aegiphila sellowiana Cham., Zeyheria tuberculosa (Vell, Luehea grandiflora Mart. et. Zucc., Croton floribundus Spreng., Trema micrantha (L Blume, Cassia ferruginea (Schrad Schrad ex DC, Senna macranthera (DC ex Collad. H. S. Irwin and Barney and Schinus terebinthifolius Raddi (Anacardiaceae. For each species, litter bags were distributed on and fixed to the soil surface of soil-filled pots (in a greenhouse, or directly to the surface of the same soil type in a natural forest (field. Every 30 days, the dry weight and soil basal respiration in both environments were determined. The cumulative decomposition of leaves varied according to the species, leaf nutrient content and environment. In general, the decomposition rate was lowest for Aegiphila sellowiana and fastest for Bauhinia forficate and Schinus terebinthifolius. This trend was similar under the controlled conditions of a greenhouse and in the field. The selection of species with a differentiated decomposition pattern, suited for different stages of the recovery process, can help improve soil restoration.

  7. Selection of focal earthworm species as non-target soil organisms for environmental risk assessment of genetically modified plants.

    Science.gov (United States)

    van Capelle, Christine; Schrader, Stefan; Arpaia, Salvatore

    2016-04-01

    By means of a literature survey, earthworm species of significant relevance for soil functions in different biogeographical regions of Europe (Atlantic, Boreal, Mediterranean) were identified. These focal earthworm species, defined here according to the EFSA Guidance Document on the environmental risk assessment (ERA) of genetically modified plants, are typical for arable soils under crop rotations with maize and/or potatoes within the three regions represented by Ireland, Sweden and Spain, respectively. Focal earthworm species were selected following a matrix of four steps: Identification of functional groups, categorization of non-target species, ranking species on ecological criteria, and final selection of focal species. They are recommended as appropriate non-target organisms to assess environmental risks of genetically modified (GM) crops; in this case maize and potatoes. In total, 44 literature sources on earthworms in arable cropping systems including maize or potato from Ireland, Sweden and Spain were collected, which present information on species diversity, individual density and specific relevance for soil functions. By means of condensed literature data, those species were identified which (i) play an important functional role in respective soil systems, (ii) are well adapted to the biogeographical regions, (iii) are expected to occur in high abundances under cultivation of maize or potato and (iv) fulfill the requirements for an ERA test system based on life-history traits. First, primary and secondary decomposers were identified as functional groups being exposed to the GM crops. In a second step, anecic and endogeic species were categorized as potential species. In step three, eight anecic and endogeic earthworm species belonging to the family Lumbricidae were ranked as relevant species: Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea longa, Allolobophora chlorotica, Lumbricus terrestris, Lumbricus friendi, Octodrilus complanatus and

  8. Charles Darwin's Origin of Species, directional selection, and the evolutionary sciences today.

    Science.gov (United States)

    Kutschera, Ulrich

    2009-11-01

    The book On the Origin of Species, published in November 1859, is an "abstract" without references, compiled by Charles Darwin from a much longer manuscript entitled "Natural Selection." Here, I summarize the five theories that can be extracted from Darwin's monograph, explain the true meaning of the phrase "struggle for life" (i.e., competition and cooperation), and outline Darwin's original concept of natural selection in populations of animals and plants. Since neither Darwin nor Alfred R. Wallace distinguished between stabilizing and directional natural selection, the popular argument that "selection only eliminates but is not creative" is still alive today. However, I document that August Weismann (Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Gustav Fischer-Verlag, Jena, 1886) and Ivan Schmalhausen (Factors of evolution. The theory of stabilizing selection. The Blackiston Company, Philadelphia, 1949) provided precise definitions for directional (dynamic) selection in nature and illustrate this "Weismann-Schmalhausen principle" with respect to the evolutionary development of novel phenotypes. Then, the modern (synthetic) theory of biological evolution that is based on the work of Theodosius Dobzhansky (Genetics and the origin of species. Columbia University Press, New York, 1937) and others, and the expanded version of this system of theories, are outlined. Finally, I document that symbiogenesis (i.e., primary endosymbiosis, a process that gave rise to the first eukaryotic cells), ongoing directional natural selection, and the dynamic Earth (plate tectonics, i.e., geological events that both created and destroyed terrestrial and aquatic habitats) were the key processes responsible for the documented macroevolutionary patterns in all five kingdoms of life. Since the evolutionary development of the earliest archaic bacteria more than 3,500 mya, the biosphere of our dynamic planet has been dominated by prokaryotic microbes. Eubacteria

  9. Molecular organization and phylogenetic analysis of 5S rDNA in crustaceans of the genus Pollicipes reveal birth-and-death evolution and strong purifying selection.

    Science.gov (United States)

    Perina, Alejandra; Seoane, David; González-Tizón, Ana M; Rodríguez-Fariña, Fernanda; Martínez-Lage, Andrés

    2011-10-17

    The 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units that consist of a transcribing region (5S) and a variable nontranscribed spacer (NTS), in higher eukaryotes. Until recently the 5S rDNA was thought to be subject to concerted evolution, however, in several taxa, sequence divergence levels between the 5S and the NTS were found higher than expected under this model. So, many studies have shown that birth-and-death processes and selection can drive the evolution of 5S rDNA. In analyses of 5S rDNA evolution is found several 5S rDNA types in the genome, with low levels of nucleotide variation in the 5S and a spacer region highly divergent. Molecular organization and nucleotide sequence of the 5S ribosomal DNA multigene family (5S rDNA) were investigated in three Pollicipes species in an evolutionary context. The nucleotide sequence variation revealed that several 5S rDNA variants occur in Pollicipes genomes. They are clustered in up to seven different types based on differences in their nontranscribed spacers (NTS). Five different units of 5S rDNA were characterized in P. pollicipes and two different units in P. elegans and P. polymerus. Analysis of these sequences showed that identical types were shared among species and that two pseudogenes were present. We predicted the secondary structure and characterized the upstream and downstream conserved elements. Phylogenetic analysis showed an among-species clustering pattern of 5S rDNA types. These results suggest that the evolution of Pollicipes 5S rDNA is driven by birth-and-death processes with strong purifying selection.

  10. The influence of study species selection on estimates of pesticide exposure in free-ranging birds

    Science.gov (United States)

    Borges, Shannon L.; Vyas, Nimish B.; Christman, Mary C.

    2014-01-01

    Field studies of pesticide effects on birds often utilize indicator species with the purpose 16 of extrapolating to other avian taxa. Little guidance exists for choosing indicator species to 17 monitor the presence and/or effects of contaminants that are labile in the environment or body, 18 but are acutely toxic, such as anticholinesterase (anti-ChE) insecticides. Use of an indicator 19 species that does not represent maximum exposure and/or effects could lead to inaccurate risk 20 estimates. Our objective was to test the relevance of a priori selection of indicator species for a 21 study on pesticide exposure to birds inhabiting fruit orchards. We used total plasma 22 cholinesterase (ChE) activity and ChE reactivation to describe the variability in anti-ChE exposure among avian species in two conventionally managed fruit orchards. Of seven 24 species included in statistical analyses, the less common species, chipping sparrow (Spizella 25 passerina), showed the greatest percentage of exposed individuals and the greatest ChE 26 depression, whereas the two most common species, American robins (Turdus migratorius) and 27 grey catbirds (Dumatella carolinensis), did not show significant exposure. Due to their lower 28 abundance, chipping sparrows would have been an unlikely choice for study. Our results show 29 that selection of indicator species using traditionally accepted criteria such as abundance and 30 ease of collection may not identify species that are at greatest risk. Our efforts also demonstrate 31 the usefulness of conducting multiple-species pilot studies prior to initiating detailed studies on 32 pesticide effects. A study such as ours can help focus research and resources on study species 33 that are most appropriate.

  11. Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species.

    Science.gov (United States)

    Zhong, Zhenhui; Norvienyeku, Justice; Chen, Meilian; Bao, Jiandong; Lin, Lianyu; Chen, Liqiong; Lin, Yahong; Wu, Xiaoxian; Cai, Zena; Zhang, Qi; Lin, Xiaoye; Hong, Yonghe; Huang, Jun; Xu, Linghong; Zhang, Honghong; Chen, Long; Tang, Wei; Zheng, Huakun; Chen, Xiaofeng; Wang, Yanli; Lian, Bi; Zhang, Liangsheng; Tang, Haibao; Lu, Guodong; Ebbole, Daniel J; Wang, Baohua; Wang, Zonghua

    2016-05-06

    One major threat to global food security that requires immediate attention, is the increasing incidence of host shift and host expansion in growing number of pathogenic fungi and emergence of new pathogens. The threat is more alarming because, yield quality and quantity improvement efforts are encouraging the cultivation of uniform plants with low genetic diversity that are increasingly susceptible to emerging pathogens. However, the influence of host genome differentiation on pathogen genome differentiation and its contribution to emergence and adaptability is still obscure. Here, we compared genome sequence of 6 isolates of Magnaporthe species obtained from three different host plants. We demonstrated the evolutionary relationship between Magnaporthe species and the influence of host differentiation on pathogens. Phylogenetic analysis showed that evolution of pathogen directly corresponds with host divergence, suggesting that host-pathogen interaction has led to co-evolution. Furthermore, we identified an asymmetric selection pressure on Magnaporthe species. Oryza sativa-infecting isolates showed higher directional selection from host and subsequently tends to lower the genetic diversity in its genome. We concluded that, frequent gene loss or gain, new transposon acquisition and sequence divergence are host adaptability mechanisms for Magnaporthe species, and this coevolution processes is greatly driven by directional selection from host plants.

  12. On the Origin of Species by Means of Natural Selection, or the ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 2. On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Charles Darwin. Classics Volume 14 Issue 2 February 2009 pp 204-208 ...

  13. Selection of a method to produce activated charcoal using four forest species

    International Nuclear Information System (INIS)

    Herrera Builes, Jhon Fredy; Morales Yepes, Wilmar Alexander; Perez Schile, Juan David

    2004-01-01

    This investigation was conducted in the coal and of forest products laboratory of the Universidad Nacional de Colombia, sede Medellin. It was oriented towards the selection of a method to obtain activated carbon form the following forest species; pino patula (Pinus patula), chingale Jacaranda copaia) pino tecunumani (pinus tecunumani) and roble (Quercus humboldti). The wood of each was characterized determining their physical properties of density and contraction. Seven different methods were tested; chemical activation chemical-physical activation with CO 2 chemical-physical activation with CO 2 and water vapor; chemical-physical activation with water vapor; physical activation with CO 2 ; physical activation with water vapor and physical activation with CO 2 and water vapor. The variables studied were residence time and temperature. Taking as a parameter the Iodine index, the chemical-physical activation with water vapor was selected, obtaining an Iodine index of over 800 for all the species studied with the exception of roble that only attained 764 which is still acceptable for water treatment

  14. AOAC SMPR 2014.007: Authentication of selected Vaccinium species (Anthocyanins) in dietary ingredients and dietary supplements

    Science.gov (United States)

    This AOAC Standard Method Performance Requirements (SMPR) is for authentication of selected Vaccinium species in dietary ingredients and dietary supplements containing a single Vaccinium species using anthocyanin profiles. SMPRs describe the minimum recommended performance characteristics to be used...

  15. Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation

    DEFF Research Database (Denmark)

    Cicconardi, Francesco; Marcatili, Paolo; Arthofer, Wolfgang

    2017-01-01

    The growing genomic information on non-model organisms eases exploring the evolutionary history of biodiversity. This is particularly true for Drosophila flies, in which the number of sequenced species doubled recently. Because of its outstanding diversity of species, Drosophila has become one....... grimshawi, a strong putative signal of positive diversifying selection was found related to cell, morphological, neuronal, and sensorial development and function. A recurrent signal of positive diversifying selection was found on genes related to aging and lifespan, suggesting that selection had shaped...

  16. Strong selection on mandible and nest features in a carpenter bee that nests in two sympatric host plants.

    Science.gov (United States)

    Flores-Prado, Luis; Pinto, Carlos F; Rojas, Alejandra; Fontúrbel, Francisco E

    2014-05-01

    Host plants are used by herbivorous insects as feeding or nesting resources. In wood-boring insects, host plants features may impose selective forces leading to phenotypic differentiation on traits related to nest construction. Carpenter bees build their nests in dead stems or dry twigs of shrubs and trees; thus, mandibles are essential for the nesting process, and the nest is required for egg laying and offspring survival. We explored the shape and intensity of natural selection on phenotypic variation on three size measures of the bees (intertegular width, wing length, and mandible area) and two nest architecture measures (tunnel length and diameter) on bees using the native species Chusquea quila (Poaceae), and the alloctonous species Rubus ulmifolius (Rosaceae), in central Chile. Our results showed significant and positive linear selection gradients for tunnel length on both hosts, indicating that bees building long nests have more offspring. Bees with broader mandibles show greater fitness on C. quila but not on R. ulmifolius. Considering that C. quila represents a selective force on mandible area, we hypothesized a high adaptive value of this trait, resulting in higher fitness values when nesting on this host, despite its wood is denser and hence more difficult to be bored.

  17. Natural Selection and Recombination Rate Variation Shape Nucleotide Polymorphism Across the Genomes of Three Related Populus Species.

    Science.gov (United States)

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-03-01

    A central aim of evolutionary genomics is to identify the relative roles that various evolutionary forces have played in generating and shaping genetic variation within and among species. Here we use whole-genome resequencing data to characterize and compare genome-wide patterns of nucleotide polymorphism, site frequency spectrum, and population-scaled recombination rates in three species of Populus: Populus tremula, P. tremuloides, and P. trichocarpa. We find that P. tremuloides has the highest level of genome-wide variation, skewed allele frequencies, and population-scaled recombination rates, whereas P. trichocarpa harbors the lowest. Our findings highlight multiple lines of evidence suggesting that natural selection, due to both purifying and positive selection, has widely shaped patterns of nucleotide polymorphism at linked neutral sites in all three species. Differences in effective population sizes and rates of recombination largely explain the disparate magnitudes and signatures of linked selection that we observe among species. The present work provides the first phylogenetic comparative study on a genome-wide scale in forest trees. This information will also improve our ability to understand how various evolutionary forces have interacted to influence genome evolution among related species. Copyright © 2016 by the Genetics Society of America.

  18. An exposure-based, ecology-driven framework for selection of indicator species for insecticide risk assessment

    Science.gov (United States)

    In the current “tiered” paradigm for evaluating risks of insecticidal products, one of the first decisions that must be made is the selection of indicator species to be used in toxicity assays. However, as yet, no formal system has been developed to determine whether proposed indicator species are r...

  19. Research on killing Escherichia Coli by reactive oxygen species based on strong ionization discharging plasma

    International Nuclear Information System (INIS)

    Li, Y J; Tian, Y P; Zhang, Z T; Li, R H; Cai, L J; Gao, J Y

    2013-01-01

    Reactive oxygen species solution produced by strong ionization discharging plasma was used to kill Escherichia coli by spraying. Several effect factors such as pH value, solution temperature, spraying time and exposure time were observed in this study, and their effects on killing rate of Escherichia coli were discussed and analysed. Results show that the treating efficiency of ROS solution for Escherichia coli is higher in alkaline solution than that in acid solution. The killing rate of Escherichia coli increases while the spraying time and exposure time are longer and the temperature is lower. The effects of different factors on killing rate of Escherichia coli are as follows: spraying time > pH value > exposure time > solution temperature.

  20. Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development

    Energy Technology Data Exchange (ETDEWEB)

    Vamathevan, Jessica J., E-mail: jessica.j.vamathevan@gsk.com [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom); Hall, Matthew D.; Hasan, Samiul; Woollard, Peter M. [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom); Xu, Meng; Yang, Yulan; Li, Xin; Wang, Xiaoli [BGI-Shenzen, Shenzhen (China); Kenny, Steve [Safety Assessment, PTS, GlaxoSmithKline, Ware (United Kingdom); Brown, James R. [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Collegeville, PA (United States); Huxley-Jones, Julie [UK Platform Technology Sciences (PTS) Operations and Planning, PTS, GlaxoSmithKline, Stevenage (United Kingdom); Lyon, Jon; Haselden, John [Safety Assessment, PTS, GlaxoSmithKline, Ware (United Kingdom); Min, Jiumeng [BGI-Shenzen, Shenzhen (China); Sanseau, Philippe [Computational Biology, Quantitative Sciences, GlaxoSmithKline, Stevenage (United Kingdom)

    2013-07-15

    Improving drug attrition remains a challenge in pharmaceutical discovery and development. A major cause of early attrition is the demonstration of safety signals which can negate any therapeutic index previously established. Safety attrition needs to be put in context of clinical translation (i.e. human relevance) and is negatively impacted by differences between animal models and human. In order to minimize such an impact, an earlier assessment of pharmacological target homology across animal model species will enhance understanding of the context of animal safety signals and aid species selection during later regulatory toxicology studies. Here we sequenced the genomes of the Sus scrofa Göttingen minipig and the Canis familiaris beagle, two widely used animal species in regulatory safety studies. Comparative analyses of these new genomes with other key model organisms, namely mouse, rat, cynomolgus macaque, rhesus macaque, two related breeds (S. scrofa Duroc and C. familiaris boxer) and human reveal considerable variation in gene content. Key genes in toxicology and metabolism studies, such as the UGT2 family, CYP2D6, and SLCO1A2, displayed unique duplication patterns. Comparisons of 317 known human drug targets revealed surprising variation such as species-specific positive selection, duplication and higher occurrences of pseudogenized targets in beagle (41 genes) relative to minipig (19 genes). These data will facilitate the more effective use of animals in biomedical research. - Highlights: • Genomes of the minipig and beagle dog, two species used in pharmaceutical studies. • First systematic comparative genome analysis of human and six experimental animals. • Key drug toxicology genes display unique duplication patterns across species. • Comparison of 317 drug targets show species-specific evolutionary patterns.

  1. Minipig and beagle animal model genomes aid species selection in pharmaceutical discovery and development

    International Nuclear Information System (INIS)

    Vamathevan, Jessica J.; Hall, Matthew D.; Hasan, Samiul; Woollard, Peter M.; Xu, Meng; Yang, Yulan; Li, Xin; Wang, Xiaoli; Kenny, Steve; Brown, James R.; Huxley-Jones, Julie; Lyon, Jon; Haselden, John; Min, Jiumeng; Sanseau, Philippe

    2013-01-01

    Improving drug attrition remains a challenge in pharmaceutical discovery and development. A major cause of early attrition is the demonstration of safety signals which can negate any therapeutic index previously established. Safety attrition needs to be put in context of clinical translation (i.e. human relevance) and is negatively impacted by differences between animal models and human. In order to minimize such an impact, an earlier assessment of pharmacological target homology across animal model species will enhance understanding of the context of animal safety signals and aid species selection during later regulatory toxicology studies. Here we sequenced the genomes of the Sus scrofa Göttingen minipig and the Canis familiaris beagle, two widely used animal species in regulatory safety studies. Comparative analyses of these new genomes with other key model organisms, namely mouse, rat, cynomolgus macaque, rhesus macaque, two related breeds (S. scrofa Duroc and C. familiaris boxer) and human reveal considerable variation in gene content. Key genes in toxicology and metabolism studies, such as the UGT2 family, CYP2D6, and SLCO1A2, displayed unique duplication patterns. Comparisons of 317 known human drug targets revealed surprising variation such as species-specific positive selection, duplication and higher occurrences of pseudogenized targets in beagle (41 genes) relative to minipig (19 genes). These data will facilitate the more effective use of animals in biomedical research. - Highlights: • Genomes of the minipig and beagle dog, two species used in pharmaceutical studies. • First systematic comparative genome analysis of human and six experimental animals. • Key drug toxicology genes display unique duplication patterns across species. • Comparison of 317 drug targets show species-specific evolutionary patterns

  2. Charles Darwin's Origin of Species, directional selection, and the evolutionary sciences today

    Science.gov (United States)

    Kutschera, Ulrich

    2009-11-01

    The book On the Origin of Species, published in November 1859, is an “abstract” without references, compiled by Charles Darwin from a much longer manuscript entitled “Natural Selection.” Here, I summarize the five theories that can be extracted from Darwin’s monograph, explain the true meaning of the phrase “struggle for life” (i.e., competition and cooperation), and outline Darwin’s original concept of natural selection in populations of animals and plants. Since neither Darwin nor Alfred R. Wallace distinguished between stabilizing and directional natural selection, the popular argument that “selection only eliminates but is not creative” is still alive today. However, I document that August Weismann ( Die Bedeutung der sexuellen Fortpflanzung für die Selektions-Theorie. Gustav Fischer-Verlag, Jena, 1886) and Ivan Schmalhausen ( Factors of evolution. The theory of stabilizing selection. The Blackiston Company, Philadelphia, 1949) provided precise definitions for directional (dynamic) selection in nature and illustrate this “Weismann-Schmalhausen principle” with respect to the evolutionary development of novel phenotypes. Then, the modern (synthetic) theory of biological evolution that is based on the work of Theodosius Dobzhansky ( Genetics and the origin of species. Columbia University Press, New York, 1937) and others, and the expanded version of this system of theories, are outlined. Finally, I document that symbiogenesis (i.e., primary endosymbiosis, a process that gave rise to the first eukaryotic cells), ongoing directional natural selection, and the dynamic Earth (plate tectonics, i.e., geological events that both created and destroyed terrestrial and aquatic habitats) were the key processes responsible for the documented macroevolutionary patterns in all five kingdoms of life. Since the evolutionary development of the earliest archaic bacteria more than 3,500 mya, the biosphere of our dynamic planet has been dominated by

  3. Transcriptome-based phylogeny of endemic Lake Baikal amphipod species flock: fast speciation accompanied by frequent episodes of positive selection.

    Science.gov (United States)

    Naumenko, Sergey A; Logacheva, Maria D; Popova, Nina V; Klepikova, Anna V; Penin, Aleksey A; Bazykin, Georgii A; Etingova, Anna E; Mugue, Nikolai S; Kondrashov, Alexey S; Yampolsky, Lev Y

    2017-01-01

    Endemic species flocks inhabiting ancient lakes, oceanic islands and other long-lived isolated habitats are often interpreted as adaptive radiations. Yet molecular evidence for directional selection during species flocks radiation is scarce. Using partial transcriptomes of 64 species of Lake Baikal (Siberia, Russia) endemic amphipods and two nonendemic outgroups, we report a revised phylogeny of this species flock and analyse evidence for positive selection within the endemic lineages. We confirm two independent invasions of amphipods into Baikal and demonstrate that several morphological features of Baikal amphipods, such as body armour and reduction in appendages and sensory organs, evolved in several lineages in parallel. Radiation of Baikal amphipods has been characterized by short phylogenetic branches and frequent episodes of positive selection which tended to be more frequent in the early phase of the second invasion of amphipods into Baikal when the most intensive diversification occurred. Notably, signatures of positive selection are frequent in genes encoding mitochondrial membrane proteins with electron transfer chain and ATP synthesis functionality. In particular, subunits of both the membrane and substrate-level ATP synthases show evidence of positive selection in the plankton species Macrohectopus branickii, possibly indicating adaptation to active plankton lifestyle and to survival under conditions of low temperature and high hydrostatic pressures known to affect membranes functioning. Other functional categories represented among genes likely to be under positive selection include Ca-binding muscle-related proteins, possibly indicating adaptation to Ca-deficient low mineralization Baikal waters. © 2016 John Wiley & Sons Ltd.

  4. Species-specific variation in nesting and postfledging resource selection for two forest breeding migrant songbirds

    Science.gov (United States)

    Julianna M. A. Jenkins; Frank R. Thompson; John Faaborg; Andrew J. Kroll

    2017-01-01

    Habitat selection is a fundamental component of community ecology, population ecology, and evolutionary biology and can be especially important to species with complex annual habitat requirements, such as migratory birds. Resource preferences on the breeding grounds may change during the postfledging period for migrant songbirds, however, the degree to which selection...

  5. Forward selection for multiple resistance across the non-selective glyphosate, glufosinate and oxyfluorfen herbicides in Lolium weed species.

    Science.gov (United States)

    Fernández, Pablo; Alcántara, Ricardo; Osuna, María D; Vila-Aiub, Martin M; Prado, Rafael De

    2017-05-01

    In the Mediterranean area, Lolium species have evolved resistance to glyphosate after decades of continual use without other alternative chemicals in perennial crops (olive, citrus and vineyards). In recent years, oxyfluorfen alone or mixed with glyphosate and glufosinate has been introduced as a chemical option to control dicot and grass weeds. Dose-response studies confirmed that three glyphosate-resistant Lolium weed species (L. rigidum, L. perenne, L. multiflorum) collected from perennial crops in the Iberian Peninsula have also evolved resistance to glufosinate and oxyfluorfen herbicides, despite their recent introduction. Based on the LD 50 resistance parameter, the resistance factor was similar among Lolium species and ranged from 14- to 21-fold and from ten- to 12-fold for oxyfluorfen and glufosinate respectively. Similarly, about 14-fold resistance to both oxyfluorfen and glufosinate was estimated on average for the three Lolium species when growth reduction (GR 50 ) was assessed. This study identified oxyfluorfen resistance in a grass species for the first time. A major threat to sustainability of perennial crops in the Iberian Peninsula is evident, as multiple resistance to non-selective glyphosate, glufosinate and oxyfluorfen herbicides has evolved in L. rigidum, L. perenne and L. multiflorum weeds. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Contrasting Patterns of Genomic Diversity Reveal Accelerated Genetic Drift but Reduced Directional Selection on X-Chromosome in Wild and Domestic Sheep Species.

    Science.gov (United States)

    Chen, Ze-Hui; Zhang, Min; Lv, Feng-Hua; Ren, Xue; Li, Wen-Rong; Liu, Ming-Jun; Nam, Kiwoong; Bruford, Michael W; Li, Meng-Hua

    2018-04-01

    Analyses of genomic diversity along the X chromosome and of its correlation with autosomal diversity can facilitate understanding of evolutionary forces in shaping sex-linked genomic architecture. Strong selective sweeps and accelerated genetic drift on the X-chromosome have been inferred in primates and other model species, but no such insight has yet been gained in domestic animals compared with their wild relatives. Here, we analyzed X-chromosome variability in a large ovine data set, including a BeadChip array for 943 ewes from the world's sheep populations and 110 whole genomes of wild and domestic sheep. Analyzing whole-genome sequences, we observed a substantially reduced X-to-autosome diversity ratio (∼0.6) compared with the value expected under a neutral model (0.75). In particular, one large X-linked segment (43.05-79.25 Mb) was found to show extremely low diversity, most likely due to a high density of coding genes, featuring highly conserved regions. In general, we observed higher nucleotide diversity on the autosomes, but a flat diversity gradient in X-linked segments, as a function of increasing distance from the nearest genes, leading to a decreased X: autosome (X/A) diversity ratio and contrasting to the positive correlation detected in primates and other model animals. Our evidence suggests that accelerated genetic drift but reduced directional selection on X chromosome, as well as sex-biased demographic events, explain low X-chromosome diversity in sheep species. The distinct patterns of X-linked and X/A diversity we observed between Middle Eastern and non-Middle Eastern sheep populations can be explained by multiple migrations, selection, and admixture during the domestic sheep's recent postdomestication demographic expansion, coupled with natural selection for adaptation to new environments. In addition, we identify important novel genes involved in abnormal behavioral phenotypes, metabolism, and immunity, under selection on the sheep X-chromosome.

  7. The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat.

    Science.gov (United States)

    Hao, Chenyang; Wang, Yuquan; Chao, Shiaoman; Li, Tian; Liu, Hongxia; Wang, Lanfen; Zhang, Xueyong

    2017-01-30

    A Chinese wheat mini core collection was genotyped using the wheat 9 K iSelect SNP array. Total 2420 and 2396 polymorphic SNPs were detected on the A and the B genome chromosomes, which formed 878 haplotype blocks. There were more blocks in the B genome, but the average block size was significantly (P polyploidization of wheat (both tetraploidization and hexaploidization) induced revolutionary changes in both the A and the B genomes, with a greater increase of gene diversity compared to their diploid ancestors. Modern breeding has dramatically increased diversity in the gene coding regions, though obvious blocks were formed on most of the chromosomes in both tetraploid and hexaploid wheats. Tag-SNP markers identified in this study can be used for marker assisted selection using haplotype blocks as a wheat breeding strategy. This strategy can also be employed to facilitate genome selection in other self-pollinating crop species.

  8. Development of Solar Drying Model for Selected Cambodian Fish Species

    OpenAIRE

    Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h...

  9. Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography.

    Science.gov (United States)

    Wolrab, Denise; Kohout, Michal; Boras, Mario; Lindner, Wolfgang

    2013-05-10

    A new strong cation exchange type chiral stationary phase (SCX CSP) based on a syringic acid amide derivative of trans-(R, R)-2-aminocyclohexanesulfonic acid was applied to subcritical fluid chromatography (SFC) for separation of various chiral basic drugs and their analogues. Mobile phase systems consisting of aliphatic alcohols as polar modifiers and a broad range of amines with different substitution patterns and lipophilicity were employed to evaluate the impact on the SFC retention and selectivity characteristics. The observed results point to the existence of carbonic and carbamic acid salts formed as a consequence of reactions occurring between carbon dioxide, the alcoholic modifiers and the amine species present in the sub/supercritical fluid medium, respectively. Evidence is provided that these species are essential for affecting ion exchange between the strongly acidic chiral selector units and the basic analytes, following the well-established stoichiometric displacement mechanisms. Specific trends were observed when different types of amines were used as basic additives. While ammonia gave rise to the formation of the most strongly eluting carbonic and carbamic salt species, simple tertiary amines consistently provided superior levels of enantioselectivity. Furthermore, trends in the chiral SFC separation characteristics were investigated by the systematic variation of the modifier content and temperature. Different effects of additives are interpreted in terms of changes in the relative concentration of the transient ionic species contributing to analyte elution, with ammonia-derived carbamic salts being depleted at elevated temperatures by decomposition. Additionally, in an effort to optimize SFC enantiomer separation conditions for selected analytes, the impact of the type of the organic modifier, temperature, flow rate and active back pressure were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Do phytoseiid mites select the best prey species in terms of reproductive success?

    NARCIS (Netherlands)

    Dicke, M.; Sabelis, M.W.; Jong, de M.; Alers, M.P.T.

    1990-01-01

    Optimal foraging theory predicts that predators prefer those prey species that are most rewarding in terms of reproductive success, which is dependent on prey quality and prey availability. To investigate which selection pressures may have moulded prey preference in an acarine system consisting of

  11. Growth of 11 introduced tree species on selected forest sites in Hawaii

    Science.gov (United States)

    Michael G Buck; Roger H. Imoto

    1982-01-01

    Growth and volume data for trees on 25 plots reprsenting 11 introduced species in Hawaii were recorded during a 21-year period. Tree were measured at about 5-year intervals to determine overall growth and stand development. The sites selected were considered better-than-average in terms of elevation, amount of precipitation, and soil quality. Except for redwood, stands...

  12. Evaluating selected demographic factors related to consumer preferences for furniture from commercial and from underutilized species.

    Science.gov (United States)

    David Nicholls; Matthew Bumgardner

    2007-01-01

    This technical note describes consumer preferences within selected demographic categories in two major Pacific Northwest markets for six domestic wood species. These woods were considered for construction of four furniture pieces. Chi-square tests were performed to determine species preferences based on gender, age, and income. Age and income were statistically...

  13. Evaluating selected demographic factors related to consumer preferences for furniture from commercial and from underutilized species

    Science.gov (United States)

    David Nicholls; Matthew Bumgardner

    2007-01-01

    This technical note describes consumer preferences within selected demographic categories in two major Pacific Northwest markets for six domestic wood species. These woods were considered for construction of four furniture pieces. Chi-square tests were performed to determine species preferences based on gender, age, and income. Age and income were statistically...

  14. Allocating structure to function: the strong links between neuroplasticity and natural selection

    Directory of Open Access Journals (Sweden)

    Michael L Anderson

    2014-01-01

    Full Text Available A central question in brain evolution is how species-typical behaviors, and the neural function-structure mappings supporting them, can be acquired and inherited. Advocates of brain modularity, in its different incarnations across scientific subfields, argue that natural selection must target domain-dedicated, separately modifiable neural subsystems, resulting in genetically-specified functional modules. In such modular systems, specification of neuron number and functional connectivity are necessarily linked. Mounting evidence, however, from allometric, developmental, comparative, systems-physiological, neuroimaging and neurological studies suggests that brain elements are used and reused in multiple functional systems. This variable allocation can be seen in short-term neuromodulation, in neuroplasticity over the lifespan and in response to damage. We argue that the same processes are evident in brain evolution. Natural selection must preserve behavioral functions that may co-locate in variable amounts with other functions. In genetics, the uses and problems of pleiotropy, the re-use of genes in multiple networks have been much discussed, but this issue has been sidestepped in neural systems by the invocation of modules. Here we highlight the interaction between evolutionary and developmental mechanisms to produce distributed and overlapping functional architectures in the brain. These adaptive mechanisms must be robust to perturbations that might disrupt critical information processing and action selection, but must also recognize useful new sources of information arising from internal genetic or environmental variability, when those appear. These contrasting properties of robustness and evolvability have been discussed for the basic organization of body plan and fundamental cell physiology. Here we extend them to the evolution and development, evo-devo, of brain structure.

  15. Development of Solar Drying Model for Selected Cambodian Fish Species

    Science.gov (United States)

    Hubackova, Anna; Kucerova, Iva; Chrun, Rithy; Chaloupkova, Petra; Banout, Jan

    2014-01-01

    A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R 2), chi-square (χ 2) test, and root-mean-square error (RMSE), the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing. PMID:25250381

  16. Perch Selection by Three Cooccurring Species of Celithemis (Odonata: Libellulidae: Testing for a Competitive Hierarchy among Similar Species

    Directory of Open Access Journals (Sweden)

    Wade B. Worthen

    2016-01-01

    Full Text Available In many communities of perching dragonflies (Odonata: Libellulidae, a size-dependent competitive hierarchy creates a positive relationship between male body size and perch height. We tested for this pattern among three similar-sized species: Celithemis elisa, C. fasciata, and C. ornata. Males were caught and photographed from May to July 2015 at Ashmore Heritage Preserve, Greenville County, SC, USA, and perch heights and perch distance to open water were measured. Five indices of body size were measured with ImageJ software: abdomen length, forewing length, hindwing length, area of forewing, and area of hindwing. Celithemis fasciata was significantly larger than the other two species for all five anatomical characters and used perches that were significantly taller and closer to open water than the other species, though these differences changed over the summer. Aggressive interactions between and within species were tallied and compared to expected distributions based on mean relative abundances derived from hourly abundance counts. Patterns of interspecific aggression were also consistent with a size-dependent hierarchy: the large C. fasciata was attacked less frequently, and the small C. ornata more frequently, than predicted by their relative abundances. We conclude that even small differences in body size may contribute to niche partitioning in perch selection.

  17. Sexually selected females in the monogamous Western Australian seahorse.

    Science.gov (United States)

    Kvarnemo, Charlotta; Moore, Glenn I; Jones, Adam G

    2007-02-22

    Studies of sexual selection in monogamous species have hitherto focused on sexual selection among males. Here, we provide empirical documentation that sexual selection can also act strongly on females in a natural population with a monogamous mating system. In our field-based genetic study of the monogamous Western Australian seahorse, Hippocampus subelongatus, sexual selection differentials and gradients show that females are under stronger sexual selection than males: mated females are larger than unmated ones, whereas mated and unmated males do not differ in size. In addition, the opportunity for sexual selection (variance in mating success divided by its mean squared) for females is almost three times that for males. These results, which seem to be generated by a combination of a male preference for larger females and a female-biased adult sex ratio, indicate that substantial sexual selection on females is a potentially important but under-appreciated evolutionary phenomenon in monogamous species.

  18. Thromboelastography in Selected Avian Species

    DEFF Research Database (Denmark)

    Andersen, Sophie Susanna Strindberg; Nielsen, Tenna W; Ribeiro, Ângela M

    2015-01-01

    Currently available assay methods and reagents are not optimized for evaluating avian hemostasis; therefore, assessing avian coagulopathies is challenging. Recently, thromboelastography (TEG), which measures the viscoelastic properties of blood, has been used clinically in mammalian species...... to diagnose and characterize hemostatic disorders. To evaluate TEG in healthy individuals of 6 avian species, we modified existing mammalian TEG protocols to allow analysis of citrated, avian whole-blood samples collected from scarlet ibis (Eudocimus ruber) (n = 13), American flamingos ( Phoenicopterus ruber...

  19. Postcopulatory sexual selection is associated with reduced variation in sperm morphology.

    Directory of Open Access Journals (Sweden)

    Sara Calhim

    2007-05-01

    Full Text Available The evolutionary role of postcopulatory sexual selection in shaping male reproductive traits, including sperm morphology, is well documented in several taxa. However, previous studies have focused almost exclusively on the influence of sperm competition on variation among species. In this study we tested the hypothesis that intraspecific variation in sperm morphology is driven by the level of postcopulatory sexual selection in passerine birds.Using two proxy measures of sperm competition level, (i relative testes size and (ii extrapair paternity level, we found strong evidence that intermale variation in sperm morphology is negatively associated with the degree of postcopulatory sexual selection, independently of phylogeny.Our results show that the role of postcopulatory sexual selection in the evolution of sperm morphology extends to an intraspecific level, reducing the variation towards what might be a species-specific 'optimum' sperm phenotype. This finding suggests that while postcopulatory selection is generally directional (e.g., favouring longer sperm across avian species, it also acts as a stabilising evolutionary force within species under intense selection, resulting in reduced variation in sperm morphology traits. We discuss some potential evolutionary mechanisms for this pattern.

  20. Unexpected ancestry of Populus seedlings from a hybrid zone implies a large role for postzygotic selection in the maintenance of species.

    Science.gov (United States)

    Lindtke, Dorothea; Gompert, Zachariah; Lexer, Christian; Buerkle, C Alex

    2014-09-01

    In the context of potential interspecific gene flow, the integrity of species will be maintained by reproductive barriers that reduce genetic exchange, including traits associated with prezygotic isolation or poor performance of hybrids. Hybrid zones can be used to study the importance of different reproductive barriers, particularly when both parental species and hybrids occur in close spatial proximity. We investigated the importance of barriers to gene flow that act early vs. late in the life cycle of European Populus by quantifying the prevalence of homospecific and hybrid matings within a mosaic hybrid zone. We obtained genotypic data for 11 976 loci from progeny and their maternal parents and constructed a Bayesian model to estimate individual admixture proportions and hybrid classes for sampled trees and for the unsampled pollen parent. Matings that included one or two hybrid parents were common, resulting in admixture proportions of progeny that spanned the whole range of potential ancestries between the two parental species. This result contrasts strongly with the distribution of admixture proportions in adult trees, where intermediate hybrids and each of the parental species are separated into three discrete ancestry clusters. The existence of the full range of hybrids in seedlings is consistent with weak reproductive isolation early in the life cycle of Populus. Instead, a considerable amount of selection must take place between the seedling stage and maturity to remove many hybrid seedlings. Our results highlight that high hybridization rates and appreciable hybrid fitness do not necessarily conflict with the maintenance of species integrity. © 2014 John Wiley & Sons Ltd.

  1. Selection for life-history traits to maximize population growth in an invasive marine species

    DEFF Research Database (Denmark)

    Jaspers, Cornelia; Marty, Lise; Kiørboe, Thomas

    2018-01-01

    Species establishing outside their natural range, negatively impacting local ecosystems, are of increasing global concern. They often display life-history features characteristic for r-selected populations with fast growth and high reproduction rates to achieve positive population growth rates (r...

  2. Comparing differential tolerance of native and non-indigenous marine species to metal pollution using novel assay techniques

    International Nuclear Information System (INIS)

    Piola, Richard F.; Johnston, Emma L.

    2009-01-01

    Recent research suggests anthropogenic disturbance may disproportionately advantage non-indigenous species (NIS), aiding their establishment within impacted environments. This study used novel laboratory- and field-based toxicity testing to determine whether non-indigenous and native bryozoans (common within marine epibenthic communities worldwide) displayed differential tolerance to the common marine pollutant copper (Cu). In laboratory assays on adult colonies, NIS showed remarkable tolerance to Cu, with strong post-exposure recovery and growth. In contrast, native species displayed negative growth and reduced feeding efficiency across most exposure levels. Field transplant experiments supported laboratory findings, with NIS growing faster under Cu conditions. In field-based larval assays, NIS showed strong recruitment and growth in the presence of Cu relative to the native species. We suggest that strong selective pressures exerted by the toxic antifouling paints used on transport vectors (vessels), combined with metal contamination in estuarine environments, may result in metal tolerant NIS advantaged by anthropogenically modified selection regimes. - Greater tolerance to pollutants in marine NIS may increase the risk of invasion in port and harbours worldwide by providing a competitive advantage over native taxa.

  3. Development of Solar Drying Model for Selected Cambodian Fish Species

    Directory of Open Access Journals (Sweden)

    Anna Hubackova

    2014-01-01

    Full Text Available A solar drying was investigated as one of perspective techniques for fish processing in Cambodia. The solar drying was compared to conventional drying in electric oven. Five typical Cambodian fish species were selected for this study. Mean solar drying temperature and drying air relative humidity were 55.6°C and 19.9%, respectively. The overall solar dryer efficiency was 12.37%, which is typical for natural convection solar dryers. An average evaporative capacity of solar dryer was 0.049 kg·h−1. Based on coefficient of determination (R2, chi-square (χ2 test, and root-mean-square error (RMSE, the most suitable models describing natural convection solar drying kinetics were Logarithmic model, Diffusion approximate model, and Two-term model for climbing perch and Nile tilapia, swamp eel and walking catfish and Channa fish, respectively. In case of electric oven drying, the Modified Page 1 model shows the best results for all investigated fish species except Channa fish where the two-term model is the best one. Sensory evaluation shows that most preferable fish is climbing perch, followed by Nile tilapia and walking catfish. This study brings new knowledge about drying kinetics of fresh water fish species in Cambodia and confirms the solar drying as acceptable technology for fish processing.

  4. Stability of strong species interactions resist the synergistic effects of local and global pollution in kelp forests.

    Directory of Open Access Journals (Sweden)

    Laura J Falkenberg

    Full Text Available Foundation species, such as kelp, exert disproportionately strong community effects and persist, in part, by dominating taxa that inhibit their regeneration. Human activities which benefit their competitors, however, may reduce stability of communities, increasing the probability of phase-shifts. We tested whether a foundation species (kelp would continue to inhibit a key competitor (turf-forming algae under moderately increased local (nutrient and near-future forecasted global pollution (CO(2. Our results reveal that in the absence of kelp, local and global pollutants combined to cause the greatest cover and mass of turfs, a synergistic response whereby turfs increased more than would be predicted by adding the independent effects of treatments (kelp absence, elevated nutrients, forecasted CO(2. The positive effects of nutrient and CO(2 enrichment on turfs were, however, inhibited by the presence of kelp, indicating the competitive effect of kelp was stronger than synergistic effects of moderate enrichment of local and global pollutants. Quantification of physicochemical parameters within experimental mesocosms suggests turf inhibition was likely due to an effect of kelp on physical (i.e. shading rather than chemical conditions. Such results indicate that while forecasted climates may increase the probability of phase-shifts, maintenance of intact populations of foundation species could enable the continued strength of interactions and persistence of communities.

  5. IT Workforce: Key Practices Help Ensure Strong Integrated Program Teams; Selected Departments Need to Assess Skill Gaps

    Science.gov (United States)

    2016-11-01

    principles and steps associated with workforce planning that agencies can utilize in their efforts to assess and address IT skill gaps. See GAO-04-39...As another example, our prior review of the United States Department of Agriculture’s Farm Service Agency’s Modernize and Innovate the Delivery of...IT WORKFORCE Key Practices Help Ensure Strong Integrated Program Teams; Selected Departments Need to Assess Skill Gaps

  6. Microalgal Species Selection for Biodiesel Production Based on Fuel Properties Derived from Fatty Acid Profiles

    Directory of Open Access Journals (Sweden)

    Md. Nurun Nabi

    2013-10-01

    Full Text Available Physical and chemical properties of biodiesel are influenced by structural features of the fatty acids, such as chain length, degree of unsaturation and branching of the carbon chain. This study investigated if microalgal fatty acid profiles are suitable for biodiesel characterization and species selection through Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE and Graphical Analysis for Interactive Assistance (GAIA analysis. Fatty acid methyl ester (FAME profiles were used to calculate the likely key chemical and physical properties of the biodiesel [cetane number (CN, iodine value (IV, cold filter plugging point, density, kinematic viscosity, higher heating value] of nine microalgal species (this study and twelve species from the literature, selected for their suitability for cultivation in subtropical climates. An equal-parameter weighted (PROMETHEE-GAIA ranked Nannochloropsis oculata, Extubocellulus sp. and Biddulphia sp. highest; the only species meeting the EN14214 and ASTM D6751-02 biodiesel standards, except for the double bond limit in the EN14214. Chlorella vulgaris outranked N. oculata when the twelve microalgae were included. Culture growth phase (stationary and, to a lesser extent, nutrient provision affected CN and IV values of N. oculata due to lower eicosapentaenoic acid (EPA contents. Application of a polyunsaturated fatty acid (PUFA weighting to saturation led to a lower ranking of species exceeding the double bond EN14214 thresholds. In summary, CN, IV, C18:3 and double bond limits were the strongest drivers in equal biodiesel parameter-weighted PROMETHEE analysis.

  7. Effect of Bacillus spp. on seed germination of selected species of the genus Cuscuta (Convolvulaceae

    Directory of Open Access Journals (Sweden)

    Fatemeh Hadizadeh

    2014-04-01

    Full Text Available Species of the genus Cuscuta are annual angiospermic rootless and leafless (achlorophyllous parasitic plants. Bacillus is an example of PGPR bacteria exhibiting plant growth promoting activity. In this study the effects of bacterial suspension on germination of dodder’s seed has been determinated. Seeds of three Cuscuta species were collected from field for evaluating effects of three different Bacillus on its germination. Results show that seed germination of the C. monogyna and C. campestris is inhibited by all three bacterial species. Based on Tukey analysis, the highest inhibitory activity on seed germination of C. monogyna was shown with B. pumilus (68.88%; as well as C. campestris with B. megaterium (95.76% and B. pumilus (91.53%, whilst seed germination of C. europaea was almost identically inhibited by all three bacterial species. This paper reports the variable effects of Bacillus species on the seed germination of selected Cuscuta species.

  8. Inferring species interactions through joint mark–recapture analysis

    Science.gov (United States)

    Yackulic, Charles B.; Korman, Josh; Yard, Michael D.; Dzul, Maria C.

    2018-01-01

    Introduced species are frequently implicated in declines of native species. In many cases, however, evidence linking introduced species to native declines is weak. Failure to make strong inferences regarding the role of introduced species can hamper attempts to predict population viability and delay effective management responses. For many species, mark–recapture analysis is the more rigorous form of demographic analysis. However, to our knowledge, there are no mark–recapture models that allow for joint modeling of interacting species. Here, we introduce a two‐species mark–recapture population model in which the vital rates (and capture probabilities) of one species are allowed to vary in response to the abundance of the other species. We use a simulation study to explore bias and choose an approach to model selection. We then use the model to investigate species interactions between endangered humpback chub (Gila cypha) and introduced rainbow trout (Oncorhynchus mykiss) in the Colorado River between 2009 and 2016. In particular, we test hypotheses about how two environmental factors (turbidity and temperature), intraspecific density dependence, and rainbow trout abundance are related to survival, growth, and capture of juvenile humpback chub. We also project the long‐term effects of different rainbow trout abundances on adult humpback chub abundances. Our simulation study suggests this approach has minimal bias under potentially challenging circumstances (i.e., low capture probabilities) that characterized our application and that model selection using indicator variables could reliably identify the true generating model even when process error was high. When the model was applied to rainbow trout and humpback chub, we identified negative relationships between rainbow trout abundance and the survival, growth, and capture probability of juvenile humpback chub. Effects on interspecific interactions on survival and capture probability were strongly

  9. A comparison of phytoremediation capability of selected plant species for given trace elements

    International Nuclear Information System (INIS)

    Fischerova, Zuzana; Tlustos, Pavel; Jirina Szakova; Kornelie Sichorova

    2006-01-01

    In our experiment, As, Cd, Pb, and Zn remediation possibilities on medium contaminated soil were investigated. Seven plant species with a different trace element accumulation capacity and remediation potential were compared. We found good accumulation capabilities and remediation effectiveness of Salix dasyclados similar to studied hyperaccumulators (Arabidopsis halleri and Thlaspi caerulescens). We have noticed better remediation capability in willow compared to poplar for most of the elements considered in this experiment. On the contrary, poplar species were able to remove a larger portion of Pb as opposed to other species. Nevertheless, the removed volume was very small. The elements found in plant biomass depend substantially on the availability of these elements in the soil. Different element concentrations were determined in natural soil solution and by inorganic salt solution extraction (0.01 mol L -1 CaCl 2 ). Extracted content almost exceeded the element concentration in the soil solution. Element concentrations in soil solution were not significantly affected by sampling time. - Selected accumulator trees grown on medium contaminated soil may have remediation capacity similar to hyperaccumulator species

  10. Sexual selection, germline mutation rate and sperm competition

    Directory of Open Access Journals (Sweden)

    Møller AP

    2003-04-01

    Full Text Available Abstract Background An important component of sexual selection arises because females obtain viability benefits for their offspring from their mate choice. Females choosing extra-pair fertilization generally favor males with exaggerated secondary sexual characters, and extra-pair paternity increases the variance in male reproductive success. Furthermore, females are assumed to benefit from 'good genes' from extra-pair sires. How additive genetic variance in such viability genes is maintained despite strong directional selection remains an evolutionary enigma. We propose that sexual selection is associated with elevated mutation rates, changing the balance between mutation and selection, thereby increasing variance in fitness and hence the benefits to be obtained from good genes sexual selection. Two hypotheses may account for such elevated mutation: (1 Increased sperm production associated with sperm competition may increase mutation rate. (2 Mutator alleles increase mutation rates that are revealed by the expression of condition-dependent secondary sexual characters used by choosy females during their mate choice. M Petrie has independently developed the idea that mutator alleles may account for the maintenance of genetic variation in viability despite strong directional selection. Results A comparative study of birds revealed a positive correlation between mutation rate at minisatellite loci and extra-pair paternity, but not between mutation rate and relative testes mass which is a measure of relative sperm production. Minisatellite mutation rates were not related to longevity, suggesting a meiotic rather than a mitotic origin of mutations. Conclusion We found evidence of increased mutation rate in species with more intense sexual selection. Increased mutation was not associated with increased sperm production, and we suggest that species with intense sexual selection may maintain elevated mutation rates because sexual selection continuously

  11. Sexual selection affects local extinction and turnover in bird communities

    Science.gov (United States)

    Doherty, P.F.; Sorci, G.; Royle, J. Andrew; Hines, J.E.; Nichols, J.D.; Boulinier, T.

    2003-01-01

    Predicting extinction risks has become a central goal for conservation and evolutionary biologists interested in population and community dynamics. Several factors have been put forward to explain risks of extinction, including ecological and life history characteristics of individuals. For instance, factors that affect the balance between natality and mortality can have profound effects on population persistence. Sexual selection has been identified as one such factor. Populations under strong sexual selection experience a number of costs ranging from increased predation and parasitism to enhanced sensitivity to environmental and demographic stochasticity. These findings have led to the prediction that local extinction rates should be higher for species/populations with intense sexual selection. We tested this prediction by analyzing the dynamics of natural bird communities at a continental scale over a period of 21 years (1975-1996), using relevant statistical tools. In agreement with the theoretical prediction, we found that sexual selection increased risks of local extinction (dichromatic birds had on average a 23% higher local extinction rate than monochromatic species). However, despite higher local extinction probabilities, the number of dichromatic species did not decrease over the period considered in this study. This pattern was caused by higher local turnover rates of dichromatic species, resulting in relatively stable communities for both groups of species. Our results suggest that these communities function as metacommunities, with frequent local extinctions followed by colonization. Anthropogenic factors impeding dispersal might therefore have a significant impact on the global persistence of sexually selected species.

  12. Diameter Growth of Juvenile Trees after Gap Formation in a Bolivian Rain Forest: Responses are Strongly Species-specific and Size-dependent.

    NARCIS (Netherlands)

    Soliz-Gamboa, C.C.; Sandbrink, A.; Zuidema, P.A.

    2012-01-01

    We evaluated growth responses to gap formation for juvenile individuals of three canopy rain forest species: Peltogyne cf. heterophylla, Clarisia racemosa and Cedrelinga catenaeformis. Gaps were formed during selective logging operations 7 yr before sampling in a Bolivian rain forest. We collected

  13. Genome-Wide Analysis of the World's Sheep Breeds Reveals High Levels of Historic Mixture and Strong Recent Selection

    Science.gov (United States)

    Kijas, James W.; Lenstra, Johannes A.; Hayes, Ben; Boitard, Simon; Porto Neto, Laercio R.; San Cristobal, Magali; Servin, Bertrand; McCulloch, Russell; Whan, Vicki; Gietzen, Kimberly; Paiva, Samuel; Barendse, William; Ciani, Elena; Raadsma, Herman; McEwan, John; Dalrymple, Brian

    2012-01-01

    Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species. PMID:22346734

  14. Genome-wide analysis of the world's sheep breeds reveals high levels of historic mixture and strong recent selection.

    Directory of Open Access Journals (Sweden)

    James W Kijas

    2012-02-01

    Full Text Available Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species.

  15. Which species? A decision-support tool to guide plant selection in stormwater biofilters

    Science.gov (United States)

    Payne, Emily G. I.; Pham, Tracey; Deletic, Ana; Hatt, Belinda E.; Cook, Perran L. M.; Fletcher, Tim D.

    2018-03-01

    Plant species are diverse in form, function and environmental response. This provides enormous potential for designing nature-based stormwater treatment technologies, such as biofiltration systems. However, species can vary dramatically in their pollutant-removal performance, particularly for nitrogen removal. Currently, there is a lack of information on how to efficiently select from the vast palette of species. This study aimed to identify plant traits beneficial to performance and create a decision-support tool to screen species for further testing. A laboratory experiment using 220 biofilter columns paired plant morphological characteristics with nitrogen removal and water loss for 20 Australian native species and two lawn grasses. Testing was undertaken during wet and dry conditions, for two biofilter designs (saturated zone and free-draining). An extensive root system and high total biomass were critical to the effective removal of total nitrogen (TN) and nitrate (NO3-), driven by high nitrogen assimilation. The same characteristics were key to performance under dry conditions, and were associated with high water use for Australian native plants; linking assimilation and transpiration. The decision-support tool uses these scientific relationships and readily-available information to identify the morphology, natural distribution and stress tolerances likely to be good predictors of plant nitrogen and water uptake.

  16. Bromeliad Selection by Two Salamander Species in a Harsh Environment

    Science.gov (United States)

    Ruano-Fajardo, Gustavo; Rovito, Sean M.; Ladle, Richard J.

    2014-01-01

    Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optimal habitats. Association between bromeliad traits and salamanders has not been studied at a fine scale, despite the intimate association of many salamander species with bromeliads. Here, we identify microhabitat characteristics of epiphytic bromeliads used by two species of the Bolitoglossa morio group (B. morio and B. pacaya) in forest disturbed by volcanic activity in Guatemala. Specifically, we measured multiple variables for bromeliads (height and position in tree, phytotelma water temperature and pH, canopy cover, phytotelma size, leaf size, and tree diameter at breast height), as well as salamander size. We employed a DNA barcoding approach to identify salamanders. We found that B. morio and B. pacaya occurred in microsympatry in bromeliads and that phytotelmata size and temperature of bromeliad microhabitat were the most important factors associated with the presence of salamanders. Moreover, phytotelmata with higher pH contained larger salamanders, suggesting that larger salamanders or aggregated individuals might modify pH. These results show that bromeliad selection is nonrandom with respect to microhabitat characteristics, and provide insight into the relationship between salamanders and this unique arboreal environment. PMID:24892414

  17. Bromeliad selection by two salamander species in a harsh environment.

    Directory of Open Access Journals (Sweden)

    Gustavo Ruano-Fajardo

    Full Text Available Bromeliad phytotelmata are frequently used by several Neotropical amphibian taxa, possibly due to their high humidity, microclimatic stability, and role as a refuge from predators. Indeed, the ability of phytotelmata to buffer against adverse environmental conditions may be instrumental in allowing some amphibian species to survive during periods of environmental change or to colonize sub-optimal habitats. Association between bromeliad traits and salamanders has not been studied at a fine scale, despite the intimate association of many salamander species with bromeliads. Here, we identify microhabitat characteristics of epiphytic bromeliads used by two species of the Bolitoglossa morio group (B. morio and B. pacaya in forest disturbed by volcanic activity in Guatemala. Specifically, we measured multiple variables for bromeliads (height and position in tree, phytotelma water temperature and pH, canopy cover, phytotelma size, leaf size, and tree diameter at breast height, as well as salamander size. We employed a DNA barcoding approach to identify salamanders. We found that B. morio and B. pacaya occurred in microsympatry in bromeliads and that phytotelmata size and temperature of bromeliad microhabitat were the most important factors associated with the presence of salamanders. Moreover, phytotelmata with higher pH contained larger salamanders, suggesting that larger salamanders or aggregated individuals might modify pH. These results show that bromeliad selection is nonrandom with respect to microhabitat characteristics, and provide insight into the relationship between salamanders and this unique arboreal environment.

  18. The sagittal otolith morphology of four selected mugilid species from Iranian waters of the Persian Gulf (Teleostei: Mugilidae

    Directory of Open Access Journals (Sweden)

    Vahideh Salehi

    2016-09-01

    Full Text Available The members of mugilid species are usually difficult to recognize because of the well-known similarity observed in their external morphology. Nevertheless, their identification is very important for local fisheries management and conservation action. Therefore, in the present study we applied otolith morphology to evaluate its significance in identification of four selected mugilid species; Chelon subviridis (Valenciennes, 1836, Liza klunzingeri (Day, 1888, Ellochelon vaigiensis (Quoy & Gaimard, 1825 and Mugil cephalus Linnaeus, 1758 occurring in the Iranian waters of the Persian Gulf in southern Iran. The results indicated several otolith features to be important for identification of the selected mugilid species as follow; the position and sulcus centrality, the curvature of the cauda, and the type of anterior and posterior regions. Based on the total approach evidences, we conclude that otolith morphology in mugilid fishes can be evidently used for the species identification and probably estimation of their phylogeny. The findings are in agreement with the previous studies which documented taxonomic importance of otolith morphology.

  19. Proximity of signallers can maintain sexual signal variation under stabilizing selection

    NARCIS (Netherlands)

    van Wijk, M.; Heath, J.; Lievers, R.; Schal, C.; Groot, A.T.

    2017-01-01

    How sexual communication systems can evolve under stabilizing selection is still a paradox in evolutionary biology. In moths, females emit a species-specific sex pheromone, consisting of a blend of biochemically related components, to which males are attracted. Although males appear to exert strong

  20. Binding capacity and root penetration of seven species selected for revegetation of uranium tailings at Jaduguda in Jharkhand, India

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Lal; Soni, Prafulla [Ecology and Environment Division, Forest Research Institute, Dehradun (India)

    2010-08-25

    Uranium from ores mined at the three mines - Jaduguda, Bhatin and Narwapahar (Jharkhand) - is processed in the mill and the waste emerges as tailings. The recorded radioactivity level in these tailings is very low, but to avoid any long-term effect of these tailings on the atmosphere, humans, cattle as well as native flora and fauna, the tailings are covered with 30 cm layer of soil. This reduces the gamma radiation and radon emission levels. However, to consolidate the soil covering the tailings on a sustainable basis, the area needs to be revegetated by plant species having shallow root systems, good conservation value and low canopy cover. Another important criterion for selection of species is that they should not have any ethnobotanical relevance to the surrounding villages. Considering these criteria, seven native plant species of forestry origin, viz. Colebrookea oppositifolia, Dodonaea viscosa, Furcraea foetida, Imperata cylindrica, Jatropha gossypifolia, Pogostemon benghalense and Saccharum spontaneum have been selected for experimental trials. We describe here the strategies adopted for consolidation of radioactivity in tailings, revegetation practices used and the ecological role of the selected species in consolidating the tailings. (author)

  1. Binding capacity and root penetration of seven species selected for revegetation of uranium tailings at Jaduguda in Jharkhand, India

    International Nuclear Information System (INIS)

    Singh, Lal; Soni, Prafulla

    2010-01-01

    Uranium from ores mined at the three mines - Jaduguda, Bhatin and Narwapahar (Jharkhand) - is processed in the mill and the waste emerges as tailings. The recorded radioactivity level in these tailings is very low, but to avoid any long-term effect of these tailings on the atmosphere, humans, cattle as well as native flora and fauna, the tailings are covered with 30 cm layer of soil. This reduces the gamma radiation and radon emission levels. However, to consolidate the soil covering the tailings on a sustainable basis, the area needs to be revegetated by plant species having shallow root systems, good conservation value and low canopy cover. Another important criterion for selection of species is that they should not have any ethnobotanical relevance to the surrounding villages. Considering these criteria, seven native plant species of forestry origin, viz. Colebrookea oppositifolia, Dodonaea viscosa, Furcraea foetida, Imperata cylindrica, Jatropha gossypifolia, Pogostemon benghalense and Saccharum spontaneum have been selected for experimental trials. We describe here the strategies adopted for consolidation of radioactivity in tailings, revegetation practices used and the ecological role of the selected species in consolidating the tailings. (author)

  2. Composition of Anopheles Species Collected from Selected Malarious Areas of Afghanistan and Iran

    Directory of Open Access Journals (Sweden)

    Helen Hoosh-Deghati

    2017-10-01

    Full Text Available Background: Malarious areas in Iran are close to Afghanistan and Pakistan that urge the researchers to extend their knowledge on malaria epidemiology to the neighboring countries as well. Vectorial capacity differs at species or even at population level, the first essential step is accurate identification of vectors. This study aimed to identify Anopheles species composition in selected malarious areas of Afghanistan and Iran, providing further applied data for other research in two countries.Methods: Adults Anopheles spp. were collected from four provinces in Afghanistan (Badakhshan, Herat, Kunduz, Nangarhar by pyrethrum spray catch, hand collection methods through WHO/EMRO coordination and from Chaba­har County in Iran by pyrethrum spray catch method. Identification was performed using reliable identification key.Results: Totally, 800 female Anopheles mosquitos, 400 from each country were identified at species level. Anophe­les composition in Afghanistan was An. superpictus, An. stephensi and An. hyrcanus. Most prevalent species in Ba­dakhshan and Kunduz were An. superpictus, whereas An. stephensi and An. hyrcanus were respectively found in Nangarhar and Heart. Anopheles species in Chabahar County of Iran were An. stephensi, An. fluviatilis, An. culicifa­cies and An. sergentii. The most prevalent species was An. stephensi.Conclusion: Current study provides a basis for future research such as detection of Plasmodium infection in col­lected samples which is on process by the authors, also for effective implementation of evidence-based malaria vec­tor intervention strategies.

  3. Studies on total polyphenols and reducing power of aqueous extracts from selected lamiaceae species

    Directory of Open Access Journals (Sweden)

    Maria Cioroi

    2010-08-01

    Full Text Available Certain phytochemicals in species are attracting increased attention because of a wide range of biological activities especially the possible cancer preventive properties. Polyphenols, the naturalantioxidants are present in plant extracts and they play a key role in antioxidative defence mechanisms in biological systems and they act as free radicals scavenging agents. Polyphenols might thereforeinhibit development of coronary heart disease and cancers. Basil, oregano and sage are highly fragrant plants whose leaves are used as a seasoning herb for many different types of foods. Aqueous extractswere prepared from basil (Ocimum basilicum L., oregano (Origanum vulgare L. and sage (Salvia officinalis L.. To check the phenols presence, the UV-VIS spectrum was made. The amount of polyphenolic compounds from selected Lamiaceae species was determined by spectrophotometry method using the Folin - Ciocalteau reagent and gallic acid as standard. The range of polyphenols total was between 516,352 mg/100g dried species and 859,617 mg/100g dried species.Reducing power has been established by measuring the redox potential of aqueous extracts. Antioxidant activity was directly correlated with the total amount of polyphenols in the species extracts.The free reducing sugars in aqueous extracts from species were analyzed and correlated to the total content of polyphenols.

  4. Mammal predator and prey species richness are strongly linked at macroscales

    DEFF Research Database (Denmark)

    Sandom, Christopher James; Dalby, Lars; Fløjgaard, Camilla

    2013-01-01

    Predator–prey interactions play an important role for species composition and community dynamics at local scales, but their importance in shaping large-scale gradients of species richness remains unexplored. Here, we use global range maps, structural equation models (SEM), and comprehensive...... databases of dietary preferences and body masses of all terrestrial, non-volant mammals worldwide, to test whether (1) prey-bottom-up or predator- top-down relationships are important drivers of broad-scale species richness gradients once the environment and human influence has been accounted for, (2...... between them (e.g., large prey to small predators), suggesting that mass-related energetic and physiological constraints influence broad-scale richness links, especially for large-bodied mammals. Overall, our results support the idea that trophic interactions can be important drivers of large...

  5. Evidence of natural selection acting on a polymorphic hybrid incompatibility locus in Mimulus.

    Science.gov (United States)

    Sweigart, Andrea L; Flagel, Lex E

    2015-02-01

    As a common cause of reproductive isolation in diverse taxa, hybrid incompatibilities are fundamentally important to speciation. A key question is which evolutionary forces drive the initial substitutions within species that lead to hybrid dysfunction. Previously, we discovered a simple genetic incompatibility that causes nearly complete male sterility and partial female sterility in hybrids between the two closely related yellow monkeyflower species Mimulus guttatus and M. nasutus. In this report, we fine map the two major incompatibility loci-hybrid male sterility 1 (hms1) and hybrid male sterility 2 (hms2)-to small nuclear genomic regions (each <70 kb) that include strong candidate genes. With this improved genetic resolution, we also investigate the evolutionary dynamics of hms1 in a natural population of M. guttatus known to be polymorphic at this locus. Using classical genetic crosses and population genomics, we show that a 320-kb region containing the hms1 incompatibility allele has risen to intermediate frequency in this population by strong natural selection. This finding provides direct evidence that natural selection within plant species can lead to hybrid dysfunction between species. Copyright © 2015 by the Genetics Society of America.

  6. Mushroom's spore size and time of fruiting are strongly related: is moisture important?

    Science.gov (United States)

    Kauserud, Håvard; Heegaard, Einar; Halvorsen, Rune; Boddy, Lynne; Høiland, Klaus; Stenseth, Nils Chr

    2011-04-23

    Most basidiomycete fungi produce annual short-lived sexual fruit bodies from which billions of microscopic spores are spread into the air during a short time period. However, little is known about the selective forces that have resulted in some species fruiting early and others later in the fruiting season. This study of relationships between morphological and ecological characteristics, climate factors and time of fruiting are based upon thorough statistical analyses of 66 520 mapped records from Norway, representing 271 species of autumnal fruiting mushroom species. We found a strong relationship between spore size and time of fruiting; on average, a doubling of spore size (volume) corresponded to 3 days earlier fruiting. Small-spored species dominate in the oceanic parts of Norway, whereas large-spored species are typical of more continental parts. In separate analyses, significant relationships were observed between spore size and climate factors. We hypothesize that these relationships are owing to water balance optimization, driven by water storage in spores as a critical factor for successful germination of primary mycelia in the drier micro-environments found earlier in the fruiting season and/or in continental climates.

  7. Competition and habitat selection in a forest-floor small mammal fauna

    Energy Technology Data Exchange (ETDEWEB)

    Dueser, R D [Univ. of Virginia, Charlottesville; Hallett, J G

    1980-01-01

    In a study of habitat exploitation in a forest-floor small mammal community, we have collected habitat and population data for Peromyscus leucopus, Ochrotomys nuttalli, and Tamias striatus. Using multiple regression analysis, researchers estimate the effects of habitat selection and competition on the local distributions of these species during three seasons. Each of the partial regression coefficients relating the density of an independent species to the density of the dependent species is negative. This result indicates that competition is pervasive among these species. Competitive ability and habitat selectivity both increase in the order Peromyscus-Tamias-Ochrotomys. Peromyscus is a poorly competitive habitat generalist, Ochrotomys is a strongly competitive habitat specialist, and Tamias is intermediate in both respects. The competitive hierarchy is stable between seasons. These results both confirm the conclusions reached in previous studies of this small mammal community and suggest the design of experiments to further clarify the mode and consequences of interaction between these species.

  8. Genetic selection and improvement of hard wood tree species for fuelwood production on sodic soil with particular reference to Prosopis juliflora

    Energy Technology Data Exchange (ETDEWEB)

    Goel, V.L.; Behl, H.M. [National Botanical Research Inst., Lucknow (India). Dept. of Tree Biology

    2001-07-01

    This study is part of a research programme on selection and improvement of fast growing tree species suitable for wood fuel production on sodic wastelands (pH 8.6-10.5). Field trials of nine legumes (Acacia auriculiformis, A. nilotica, Albizia lebbeck, A. procera, Dalbergia sissoo, Leucaena leucocephala, Pongamia pinnata, Prosopis juliflora, Pithecellobium dulce) and three other tree species (Azadirachta indica, Eucalyptus tereticornis and Terminalai arjuna) were selected for this study. Prosopis juliflora was the most promising species in terms of its biomass productivity (68.7 t ha{sup -1}) and fuel value index (148.8) after 8-yr of growth. Acacia nilotica ranked second. Intra-specific variations were screened at provenance and individual tree level in order to improve fuelwood production potential of P. juliflora through selection and breeding. Successful populations (gene pools) and individuals (genotypes) were closed and conserved in clonal gardens to produce quality germplasm for plantations on sodic wastelands. Genetic testing, selection and multiplication of selected material are under progress. This will optimise gains in future afforestation programmes on sodic soils. (Author)

  9. Evaluation and comparison of the content of total polyphenols and antioxidant activity of selected species of the genus Allium

    Directory of Open Access Journals (Sweden)

    Marianna LENKOVÁ

    2016-12-01

    Full Text Available The species of the genus Allium are very important crops for human health. They contain many health beneficial substances, such as polyphenols (especially flavonoids, sulphur compounds, vitamins, mineral substances and substances with antioxidant activity. This work has focused on the comparison of total phenolic content and antioxidant activity of selected species of the genus Allium – garlic (Allium sativum L., chives (Allium schoenoprasum L., ramson (Allium ursinum L. and red, yellow and white onion (Allium cepa L.. Samples of plant material were collected at the stage of full maturity in the area of Nitra. Total polyphenols content was determined using the spectrophotometric method of Folin-Ciocalteu agents. Determined the content of total polyphenols were in the range 444.3 - 1591 mg*kg-1. Total polyphenols content in the observed crops declined in the following order: chives > red onion > garlic > yellow onion > ramson > white onion. Antioxidant activity was measured by the spectrophotometric method using a compound DPPH (2.2-diphenyl-1-picryhydrazyl. Determined the value of antioxidant activity ranged 12.29 – 76.57%. Antioxidant activity observed in crops declined in the following order: chives > ramson > red onion > yellow onion > garlic > white onion. In all the analysed crop plants was confirmed by the strong dependence of the antioxidant activity and the total content of polyphenolic substances.

  10. Accumulation of /sup 210/Po in selected species of Baltic fish

    Energy Technology Data Exchange (ETDEWEB)

    Skwarzec, B

    1988-01-01

    Results are presented here for the /sup 210/Po contents of selected species of Baltic fish. It is shown that /sup 210/Po is non-uniformly distributed within these fish, the highest levels being found in the digestive organs, particularly within the intestine. It is found that the proportional contribution by the digestive organs to the total accumulation of /sup 210/Po is correlated with the degree of repletion of the stomach and that this decreases if food is lacking. Moreover, it is observed that fish represent an important source of supply of /sup 210/Po to humans.

  11. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing.

    Science.gov (United States)

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-09-21

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Consequently, the bacteria are selectively killed on the cathode surface. However, the cell experiment suggested that the level of ROS is safe for normal mammalian cells.

  12. Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard

    International Nuclear Information System (INIS)

    Jaeger, Iris; Hop, Haakon; Gabrielsen, Geir W.

    2009-01-01

    Concentrations and biomagnification of total mercury (TotHg) and methyl mercury (MeHg) were studied in selected species from the pelagic food web in Kongsfjorden, Svalbard. Twelve species of zooplankton, fish and seabirds, were sampled representing a gradient of trophic positions in the Svalbard marine food web. TotHg and MeHg were analysed in liver, muscle and/or whole specimens. The present study is the first to provide MeHg levels in seabirds from the Svalbard area. The relative MeHg levels decreased with increasing levels of TotHg in seabird tissues. Stable isotopes of nitrogen (δ 15 N) were used to determine the trophic levels and the rate of biomagnification of mercury in the food web. A linear relationship between mercury levels and trophic position was found for all seabird species combined and their trophic level, but there was no relationship within species. Biomagnification factors were all > 1 for both TotHg and MeHg, indicating biomagnification from prey to predator. TotHg levels in the different seabirds were similar to levels detected in the Kongsfjorden area in the 1990s.

  13. Separation of chemical species

    International Nuclear Information System (INIS)

    Rentzepis, P.M.

    1977-01-01

    Isotopic separation is accomplished by (1) a second photon irradiation step for selective ionization of a first isotopic species and (2) selective precipitation of a generally immiscible liquid from the saturating vapor phase on the ionized species. The first photon corresponds with a sharply defined spectral portion of the irradiation which exclusively excites the first species to a vibrational level. The second photon further excites this species to its ionization level. Selective precipitation is by coulombic attraction between the ionized species and the vapor. The procedure is applicable to any vapor phase ionizable material

  14. Fractional energy states of strongly-interacting bosons in one dimension

    DEFF Research Database (Denmark)

    Zinner, Nikolaj Thomas; G. Volosniev, A.; V. Fedorov, D.

    2014-01-01

    We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...... than three particles. The states can be probed using the same techniques that have recently been used for fermionic few-body systems in quasi-1D.......We study two-component bosonic systems with strong inter-species and vanishing intra-species interactions. A new class of exact eigenstates is found with energies that are {\\it not} sums of the single-particle energies with wave functions that have the characteristic feature that they vanish over...... extended regions of coordinate space. This is demonstrated in an analytically solvable model for three equal mass particles, two of which are identical bosons, which is exact in the strongly-interacting limit. We numerically verify our results by presenting the first application of the stochastic...

  15. Trans-species polymorphism and selection in the MHC class II DRA genes of domestic sheep.

    Directory of Open Access Journals (Sweden)

    Keith T Ballingall

    Full Text Available Highly polymorphic genes with central roles in lymphocyte mediated immune surveillance are grouped together in the major histocompatibility complex (MHC in higher vertebrates. Generally, across vertebrate species the class II MHC DRA gene is highly conserved with only limited allelic variation. Here however, we provide evidence of trans-species polymorphism at the DRA locus in domestic sheep (Ovis aries. We describe variation at the Ovar-DRA locus that is far in excess of anything described in other vertebrate species. The divergent DRA allele (Ovar-DRA*0201 differs from the sheep reference sequences by 20 nucleotides, 12 of which appear non-synonymous. Furthermore, DRA*0201 is paired with an equally divergent DRB1 allele (Ovar-DRB1*0901, which is consistent with an independent evolutionary history for the DR sub-region within this MHC haplotype. No recombination was observed between the divergent DRA and B genes in a range of breeds and typical levels of MHC class II DR protein expression were detected at the surface of leukocyte populations obtained from animals homozygous for the DRA*0201, DRB1*0901 haplotype. Bayesian phylogenetic analysis groups Ovar-DRA*0201 with DRA sequences derived from species within the Oryx and Alcelaphus genera rather than clustering with other ovine and caprine DRA alleles. Tests for Darwinian selection identified 10 positively selected sites on the branch leading to Ovar-DRA*0201, three of which are predicted to be associated with the binding of peptide antigen. As the Ovis, Oryx and Alcelaphus genera have not shared a common ancestor for over 30 million years, the DRA*0201 and DRB1*0901 allelic pair is likely to be of ancient origin and present in the founding population from which all contemporary domestic sheep breeds are derived. The conservation of the integrity of this unusual DR allelic pair suggests some selective advantage which is likely to be associated with the presentation of pathogen antigen to T

  16. A planning tool for tree species selection and planting schedule in forestation projects considering environmental and socio-economic benefits.

    Science.gov (United States)

    Rollan, Catherine Denise; Li, Richard; San Juan, Jayne Lois; Dizon, Liezel; Ong, Karl Benedict

    2018-01-15

    Species selection is a crucial step in the planning phase of forestation programs given its impact on the results and on stakeholder interactions. This study develops a planning tool for forestation programs that incorporates the selection of tree species and the scheduling of planting and harvesting, while balancing the maximization of the carbon sequestered and income realized, into the forestation decision-making and planning process. The validation of the goal programming model formulated demonstrates that the characteristics of natural tree species along with the behavior of growth and timing of yield are significant factors in achieving the environmental and socio-economic aspirations. The proposed model is therefore useful in gauging species behavior and performance over time. Sensitivity analysis was also conducted where the behavior of the income generated and carbon sequestered with respect to the external factors such as carbon market prices, percentage area allocated for protection and discount factor was assessed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Strong Signature of Natural Selection within an FHIT Intron Implicated in Prostate Cancer Risk

    Science.gov (United States)

    Ding, Yan; Larson, Garrett; Rivas, Guillermo; Lundberg, Cathryn; Geller, Louis; Ouyang, Ching; Weitzel, Jeffrey; Archambeau, John; Slater, Jerry; Daly, Mary B.; Benson, Al B.; Kirkwood, John M.; O'Dwyer, Peter J.; Sutphen, Rebecca; Stewart, James A.; Johnson, David; Nordborg, Magnus; Krontiris, Theodore G.

    2008-01-01

    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, re-sequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D = 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. PMID:18953408

  18. Evaluating broad scale patterns among related species using resource experiments in tropical hummingbirds.

    Science.gov (United States)

    Weinstein, Ben G; Graham, Catherine H

    2016-08-01

    A challenge in community ecology is connecting biogeographic patterns with local scale observations. In Neotropical hummingbirds, closely related species often co-occur less frequently than expected (overdispersion) when compared to a regional species pool. While this pattern has been attributed to interspecific competition, it is important to connect these findings with local scale mechanisms of coexistence. We measured the importance of the presence of competitors and the availability of resources on selectivity at experimental feeders for Andean hummingbirds along a wide elevation gradient. Selectivity was measured as the time a bird fed at a feeder with a high sucrose concentration when presented with feeders of both low and high sucrose concentrations. Resource selection was measured using time-lapse cameras to identity which floral resources were used by each hummingbird species. We found that the increased abundance of preferred resources surrounding the feeder best explained increased species selectivity, and that related hummingbirds with similar morphology chose similar floral resources. We did not find strong support for direct agonism based on differences in body size or phylogenetic relatedness in predicting selectivity. These results suggest closely related hummingbird species have overlapping resource niches, and that the intensity of interspecific competition is related to the abundance of those preferred resources. If these competitive interactions have negative demographic effects, our results could help explain the pattern of phylogenetic overdispersion observed at regional scales. © 2016 by the Ecological Society of America.

  19. Where and how to manage: Optimal selection of conservation actions for multiple species.

    Directory of Open Access Journals (Sweden)

    Astrid van Teeffelen

    2008-01-01

    Full Text Available Multiple alternative options are frequently available for the protection, maintenance or restoration of conservation areas. The choice of a particular management action can have large effects on the species occurring in the area, because different actions have different effects on different species. Together with the fact that conservation funds are limited and particular management actions are costly, it would be desirable to be able to identify where, and what kind of management should be applied to maximize conservation benefits. Currently available site-selection algorithms can identify the optimal set of sites for a reserve network. However, these algorithms have not been designed to answer what kind of action would be most beneficial at these sites when multiple alternative actions are available. We describe an algorithm capable of solving multi-species planning problems with multiple management options per site. The algorithm is based on benefit functions, which translate the effect of a management action on species representation levels into a value, in order to identify the most beneficial option. We test the performance of this algorithm with simulated data for different types of benefit functions and show that the algorithm’s solutions are optimal, or very near globally optimal, partially depending on the type of benefit function used. The good performance of the proposed algorithm suggests that it could be profitably used for large multi-action multi-species conservation planning problems.

  20. Mating System Evolution under Strong Pollen Limitation: Evidence of Disruptive Selection through Male and Female Fitness in Clarkia xantiana.

    Science.gov (United States)

    Briscoe Runquist, Ryan D; Geber, Monica A; Pickett-Leonard, Michael; Moeller, David A

    2017-05-01

    Selection on floral traits in hermaphroditic plants is determined by both male and female reproductive success. However, predictions regarding floral trait and mating system evolution are often based solely on female fitness. Selection via male fitness has the potential to affect the outcomes of floral evolution. In this study, we used paternity analysis to assess individual selfing rates and selection on floral traits via male and female fitness in an experimental population of Clarkia xantiana where pollen limitation of seed set was strong. We detected selection through both female and male fitness with reinforcing or noninterfering patterns of selection through the two sex functions. For female fitness, selection favored reduced herkogamy and protandry, traits that promote increased autonomous selfing. For male fitness, selection on petal area was disruptive, with higher trait values conferring greater pollinator attraction and outcross siring success and smaller trait values leading to higher selfed siring success. Combining both female and male fitness, selection on petal area and protandry was disruptive because intermediate phenotypes were less successful as both males and females. Finally, functional relationships among male and female fertility components indicated that selfing resulted in seed discounting and pollen discounting. Under these functional relationships, the evolutionarily stable selfing rate can be intermediate or predominantly selfing or outcrossing, depending on the segregating load of deleterious mutations.

  1. Evidence for strong intralocus sexual conflict in the Indian meal moth, Plodia interpunctella.

    Science.gov (United States)

    Lewis, Zenobia; Wedell, Nina; Hunt, John

    2011-07-01

    Males and females share a genome and express many shared phenotypic traits, which are often selected in opposite directions. This generates intralocus sexual conflict that may constrain trait evolution by preventing the sexes from reaching their optimal phenotype. Furthermore, if present across multiple loci, intralocus sexual conflict can result in a gender load that may diminish the benefits of sexual selection and help maintain genetic variation for fitness. Despite the importance of intralocus sexual conflict, surprisingly few empirical studies conclusively demonstrate its operation. We show that the pattern of multivariate selection acting on three sexually dimorphic life-history traits (development time, body size, and longevity) in the Indian meal moth, Plodia interpunctella, is opposing for the sexes. Moreover, we combined our estimates of selection with the additive genetic variance-covariance matrix (G) to predict the evolutionary response of the life-history traits in the sexes and showed that the angle between the vector of responses and the vector of sexually antagonistic selection was almost orthogonal at 84.70°. Thus, G biases the predicted response of life-history traits in the sexes away from the direction of sexually antagonistic selection, confirming the presence of strong intralocus sexual conflict in this species. Despite this, sexual dimorphism has evolved in all of the life-history traits examined suggesting that mechanism(s) have evolved to resolve this conflict and allow the sexes to reach their life-history optima. We argue that intralocus sexual conflict is likely to play an important role in the evolution of divergent life-history strategies between the sexes in this species. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  2. Selection of Wild Plant Species from Organic Rice Field in Sumberngepoh Village in Malang as Attractant of Trichogramma spp. (Hymenoptera, Trichogrammatidae

    Directory of Open Access Journals (Sweden)

    Wahyu Kusumayanti Putri

    2014-09-01

    Full Text Available One of the actions in biological control is the use of parasitoid. Some wild plant species can attract those parasitoid. By the fact, the objective of this research are to select some of wild plant species attracting Trichogramma spp. These wild plant were belong to Asteraceae (Eupatorium odoratum, Bidens pilosa, Crassocephalum crepidioides and Mimosaceae (Parkia speciosa, Leucaena glauca, Mimosa pudica. Mass rearing of trichogramma spp. was prepared for those purpose. The selection were conducted by using four armed olfactometer. The percentage of the tested Trichogramma spp. attracted to the wild plant species was noted as well as their orientation duration to select the plant species. The difference of the mean of their orientation duration was analyzed statistically by T-Test. Both of plant familia can attract the parasitoid. This were the plant species that attracted Trichogramma spp. From the most attractive to the lowest one : B. pilosa 22 %, E. odoratum 18.6 %, M. pudica 18.2 %, C. crepidioides 13.8 %, P. speciosa 13.6 %, and L. glauca 13.6 %. For the orientation duration, this are the plant species that can attract the parasitoid from the fastest one to the slowest one : P. speciosa 45.5 seconds, C. crepidioides 46.2 seconds, L. glauca 49 seconds, E. odoratum 50.6 seconds , B. pilosa 53.4 seconds, and M. pudica 55.2 seconds. Keywords : Asteraceae, Mimosaceae, Trichogramma spp.

  3. Indicator species of essential forest tree species in the Burdur district.

    Science.gov (United States)

    Negiz, Mehmet Güvenç; Eser, Yunus; Kuzugüdenll, Emre; Izkan, Kürşad

    2015-01-01

    The forests of Burdur district for long have been subjected to over grazing and individual selection. As a result of this, majority of the forest areas in the district were degraded. In the district, afforestation efforts included majority of forestry implementations. It is well known that selecting suitable species plays an important role for achieving afforestation efforts. In this context, knowing the indicator species among the target species would be used in afforestation efforts, studies on the interrelationships between environmental factors and target species distribution is vital for selecting suitable species for a given area. In this study, Anatolian Black pine (Pinus nigra), Red pine (Pinus brutia), Crimean juniper (Juniperus excelsa) and Taurus cedar (Cedrus libani), essential tree species, were considered as target species. The data taken from 100 sample plots in Burdur district was used. Interspecific correlation analysis was performed to determine the positive and negative indicator species among each of the target species. As a result of ICA, 2 positive (Berberis crataegina, Juniperus oxycedrus), 2 negative (Phillyrea latifolia, Quercus coccifera) for Crimean Juniper, I positive (Juniperus oxycedrus), 3 negative (Onopordium acanthium, Fraxinus ornus, Phillyrea latifolia) for Anatolian black pine, 3 positive (Paliurus spina-christi, Quercus coccifer, Crataegus orientalis), 2 negative (Berberis crataegina, Astragalus nanus) for Red pine and 3 positive (Berberis crataegina, Rhamnus oleoides, Astragalus prusianus) 2 negative (Paliurus spina-christi, Quercus cerris) for Taurus cedarwere defined as indicator plant species. In this way, practical information was obtained for selecting the most suitable species, among the target species, for afforestation efforts in Burdur district.

  4. Impacts of selective logging on inbreeding and gene flow in two Amazonian timber species with contrasting ecological and reproductive characteristics.

    Science.gov (United States)

    Vinson, C C; Kanashiro, M; Harris, S A; Boshier, D H

    2015-01-01

    Selective logging in Brazil allows for the removal of up to 90% of trees above 50 cm diameter of a given timber species, independent of a species' life history characteristics or how quickly it will recover. The genetic and demographic effects of selective logging on two Amazonian timber species (Dipteryx odorata Leguminosae, Jacaranda copaia Bignoniaceae) with contrasting ecological and reproductive characteristics were assessed in the same forest. Genetic diversity and gene flow were characterized by genotyping adults and seed sampled before and after logging, using hypervariable microsatellite markers. Overall, there were no short-term genetic impacts on the J. copaia population, with commercial application of current Brazilian forest management regulations. In contrast, for D. Odorata, selective logging showed a range of genetic impacts, with a 10% loss of alleles, and reductions in siring by pollen from trees within the 546-ha study area (23-11%) and in the number of pollen donors per progeny array (2.8-1.6), illustrating the importance of the surrounding landscape. Asynchrony in flowering between D. odorata trees led to trees with no breeding partners, which could limit the species reproduction and regeneration under current regulations. The results are summarized with other published studies from the same site and the implications for forest management discussed. The different types and levels of impacts associated with each species support the idea that ecological and genetic information by species, ecological guild or reproductive group is essential in helping to derive sustainable logging guidelines for tropical forests. © 2014 John Wiley & Sons Ltd.

  5. Estimated Mortality of Selected Migratory Bird Species from Mowing and Other Mechanical Operations in Canadian Agriculture

    Directory of Open Access Journals (Sweden)

    Joerg Tews

    2013-12-01

    Full Text Available Mechanical operations such as mowing, tilling, seeding, and harvesting are well-known sources of direct avian mortality in agricultural fields. However, there are currently no mortality rate estimates available for any species group or larger jurisdiction. Even reviews of sources of mortality in birds have failed to address mechanical disturbance in farm fields. To overcome this information gap we provide estimates of total mortality rates by mechanical operations for five selected species across Canada. In our step-by-step modeling approach we (i quantified the amount of various types of agricultural land in each Bird Conservation Region (BCR in Canada, (ii estimated population densities by region and agricultural habitat type for each selected species, (iii estimated the average timing of mechanical agricultural activities, egg laying, and fledging, (iv and used these values and additional demographical parameters to derive estimates of total mortality by species within each BCR. Based on our calculations the total annual estimated incidental take of young ranged from ~138,000 for Horned Lark (Eremophila alpestris to as much as ~941,000 for Savannah Sparrow (Passerculus sandwichensis. Net losses to the fall flight of birds, i.e., those birds that would have fledged successfully in the absence of mechanical disturbance, were, for example ~321,000 for Bobolink (Dolichonyx oryzivorus and ~483,000 for Savannah Sparrow. Although our estimates are subject to an unknown degree of uncertainty, this assessment is a very important first step because it provides a broad estimate of incidental take for a set of species that may be particularly vulnerable to mechanical operations and a starting point for future refinements of model parameters if and when they become available.

  6. Co-Culture with Listeria monocytogenes within a Dual-Species Biofilm Community Strongly Increases Resistance of Pseudomonas putida to Benzalkonium Chloride

    Science.gov (United States)

    Giaouris, Efstathios; Chorianopoulos, Nikos; Doulgeraki, Agapi; Nychas, George-John

    2013-01-01

    Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS), as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC) used in inadequate (sub-lethal) concentration (50 ppm). The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species) did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90%) of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE) analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation. PMID:24130873

  7. Co-culture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride.

    Directory of Open Access Journals (Sweden)

    Efstathios Giaouris

    Full Text Available Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS, as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC used in inadequate (sub-lethal concentration (50 ppm. The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90% of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation.

  8. The sagittal otolith morphology of four selected mugilid species from Iranian waters of the Persian Gulf (Teleostei: Mugilidae)

    OpenAIRE

    Vahideh Salehi; Majid Askari Hesni; Azad Teimori; Mohammad Reza Lashkari

    2016-01-01

    The members of mugilid species are usually difficult to recognize because of the well-known similarity observed in their external morphology. Nevertheless, their identification is very important for local fisheries management and conservation action. Therefore, in the present study we applied otolith morphology to evaluate its significance in identification of four selected mugilid species; Chelon subviridis (Valenciennes, 1836), Liza klunzingeri (Day, 1888), Ellochelon vaigiensis (Quoy & Gai...

  9. Reproductive interference explains persistence of aggression between species.

    Science.gov (United States)

    Drury, Jonathan P; Okamoto, Kenichi W; Anderson, Christopher N; Grether, Gregory F

    2015-04-07

    Interspecific territoriality occurs when individuals of different species fight over space, and may arise spontaneously when populations of closely related territorial species first come into contact. But defence of space is costly, and unless the benefits of excluding heterospecifics exceed the costs, natural selection should favour divergence in competitor recognition until the species no longer interact aggressively. Ordinarily males of different species do not compete for mates, but when males cannot distinguish females of sympatric species, females may effectively become a shared resource. We model how reproductive interference caused by undiscriminating males can prevent interspecific divergence, or even cause convergence, in traits used to recognize competitors. We then test the model in a genus of visually orienting insects and show that, as predicted by the model, differences between species pairs in the level of reproductive interference, which is causally related to species differences in female coloration, are strongly predictive of the current level of interspecific aggression. Interspecific reproductive interference is very common and we discuss how it may account for the persistence of interspecific aggression in many taxonomic groups. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  10. Characterization of habitat preferences for selected wildlife species in encinal savannas of the Southwest [Poster

    Science.gov (United States)

    Wendy D. Jones; Carlton M. Jones; Peter F. Ffolliott; Gerald J. Gottfried

    2005-01-01

    The encinal savannas of the sub-mogollon southwestern United States are important for livestock grazing and wildlife habitat. Little data have been collected on the ecology of these Sierra Madrean types of woodland land areas, which makes management difficult. Obtaining information such as habitat preferences for selected wildlife species and livestock can be an...

  11. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. © 2016 The Author(s).

  12. Selective logging in tropical forests decreases the robustness of liana–tree interaction networks to the loss of host tree species

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A.; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F.; Santamaria, Luis; Edwards, David P.

    2016-01-01

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the ‘health’ and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana–tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of ‘extinction debt’. PMID:26936241

  13. Chemical variation in a dominant tree species: population divergence, selection and genetic stability across environments.

    Directory of Open Access Journals (Sweden)

    Julianne M O'Reilly-Wapstra

    Full Text Available Understanding among and within population genetic variation of ecologically important plant traits provides insight into the potential evolutionary processes affecting those traits. The strength and consistency of selection driving variability in traits would be affected by plasticity in differences among genotypes across environments (G×E. We investigated population divergence, selection and environmental plasticity of foliar plant secondary metabolites (PSMs in a dominant tree species, Eucalyptus globulus. Using two common garden trials we examined variation in PSMs at multiple genetic scales; among 12 populations covering the full geographic range of the species and among up to 60 families within populations. Significant genetic variation in the expression of many PSMs resides both among and within populations of E. globulus with moderate (e.g., sideroxylonal A h(2op = 0.24 to high (e.g., macrocarpal G h(2op = 0.48 narrow sense heritabilities and high coefficients of additive genetic variation estimated for some compounds. A comparison of Qst and Fst estimates suggest that variability in some of these traits may be due to selection. Importantly, there was no genetic by environment interaction in the expression of any of the quantitative chemical traits despite often significant site effects. These results provide evidence that natural selection has contributed to population divergence in PSMs in E. globulus, and identifies the formylated phloroglucinol compounds (particularly sideroxylonal and a dominant oil, 1,8-cineole, as candidates for traits whose genetic architecture has been shaped by divergent selection. Additionally, as the genetic differences in these PSMs that influence community phenotypes is stable across environments, the role of plant genotype in structuring communities is strengthened and these genotypic differences may be relatively stable under global environmental changes.

  14. Strong influence of regional species pools on continent-wide structuring of local communities

    OpenAIRE

    Lessard, Jean-Philippe; Borregaard, Michael K.; Fordyce, James A.; Rahbek, Carsten; Weiser, Michael D.; Dunn, Robert R.; Sanders, Nathan J.

    2011-01-01

    There is a long tradition in ecology of evaluating the relative contribution of the regional species pool and local interactions on the structure of local communities. Similarly, a growing number of studies assess the phylogenetic structure of communities, relative to that in the regional species pool, to examine the interplay between broad-scale evolutionary and fine-scale ecological processes. Finally, a renewed interest in the influence of species source pools on communities has shown that...

  15. Butterfly Species Richness in Selected West Albertine Rift Forests

    Directory of Open Access Journals (Sweden)

    Patrice Kasangaki

    2012-01-01

    Full Text Available The butterfly species richness of 17 forests located in the western arm of the Albertine Rift in Uganda was compared using cluster analysis and principal components analysis (PCA to assess similarities among the forests. The objective was to compare the butterfly species richness of the forests. A total of 630 butterfly species were collected in 5 main families. The different species fell into 7 ecological groupings with the closed forest group having the most species and the swamp/wetland group with the fewest number of species. Three clusters were obtained. The first cluster had forests characterized by relatively high altitude and low species richness despite the big area in the case of Rwenzori and being close to the supposed Pleistocene refugium. The second cluster had forests far away from the supposed refugium except Kisangi and moderate species richness with small areas, whereas the third cluster had those forests that were more disturbed, high species richness, and low altitudinal levels with big areas.

  16. Population structure of a widespread species under balancing selection: the case of Arbutus unedo L.

    Directory of Open Access Journals (Sweden)

    Xabier eSantiso

    2016-01-01

    Full Text Available Arbutus unedo L. is an evergreen shrub with a circum-Mediterranean distribution that also reaches the Eurosiberian region in northern Iberia, Atlantic France, and a disjunct population in southern Ireland. Due to the variety of climatic conditions across its distribution range, the populations of A. unedo were expected to display local adaptation. Conversely, common garden experiments revealed that diverse genotypes from a range of provenances produce similar phenotypes through adaptive plasticity, suggesting the action of stabilizing selection across its climatically heterogeneous range. Nonetheless, since an uniform response might also result from extensive gene flow, we have inferred the population structure of A. unedo and assessed whether its extended and largely one-dimensional range influences gene flow with the help of AFLP genotypes for 491 individuals from 19 populations covering the whole range of the species. As we had anticipated, gene flow is restricted in A. unedo, providing further support to the hypothesis that stabilizing selection is the most likely explanation for the homogeneous phenotypes along the range. The Euro-Siberian populations were not particularly isolated from the Mediterranean. Instead, there was a distinct genetic divide between the populations around the Mediterranean Sea and those sampled along Atlantic coasts from northern Africa up to Ireland. This genetic structure suggests the action of historic rather than biogeographic factors as it seems consistent with a scenario of independent glacial refugia in the Atlantic and Mediterranean portions of the range of A. unedo. Genetic exchange was likewise restricted within each set of populations. Nevertheless, IBD was stronger, and FST increased faster with distance, along the Atlantic, suggesting that gene flow might be larger among Mediterranean populations. Genetic diversity was significantly lower in NW Iberia and Ireland than in other populations whereas

  17. Population Structure of a Widespread Species under Balancing Selection: The Case of Arbutus unedo L.

    Science.gov (United States)

    Santiso, Xabier; Lopez, Lua; Retuerto, Rubén; Barreiro, Rodolfo

    2015-01-01

    Arbutus unedo L. is an evergreen shrub with a circum-Mediterranean distribution that also reaches the Eurosiberian region in northern Iberia, Atlantic France, and a disjunct population in southern Ireland. Due to the variety of climatic conditions across its distribution range, the populations of A. unedo were expected to display local adaptation. Conversely, common garden experiments revealed that diverse genotypes from a range of provenances produce similar phenotypes through adaptive plasticity, suggesting the action of stabilizing selection across its climatically heterogeneous range. Nonetheless, since a uniform response might also result from extensive gene flow, we have inferred the population structure of A. unedo and assessed whether its extended and largely one-dimensional range influences gene flow with the help of AFLP genotypes for 491 individuals from 19 populations covering the whole range of the species. As we had anticipated, gene flow is restricted in A. unedo, providing further support to the hypothesis that stabilizing selection is the most likely explanation for the homogeneous phenotypes along the range. The Euro-Siberian populations were not particularly isolated from the Mediterranean. Instead, there was a distinct genetic divide between the populations around the Mediterranean Sea and those sampled along Atlantic coasts from northern Africa up to Ireland. This genetic structure suggests the action of historic rather than biogeographic factors as it seems consistent with a scenario of independent glacial refugia in the Atlantic and Mediterranean portions of the range of A. unedo. Genetic exchange was likewise restricted within each set of populations. Nevertheless, isolation-by-distance (IBD) was stronger, and F ST increased faster with distance, along the Atlantic, suggesting that gene flow might be larger among Mediterranean populations. Genetic diversity was significantly lower in NW Iberia and Ireland than in other populations whereas

  18. Evaluating Hypotheses of Plant Species Invasions on Mediterranean Islands: Inverse Patterns between Alien and Endemic Species

    Directory of Open Access Journals (Sweden)

    Alexander Bjarnason

    2017-08-01

    Full Text Available Invasive alien species cause major changes to ecosystem functioning and patterns of biodiversity, and the main factors involved in invasion success remain contested. Using the Mediterranean island of Crete, Greece as a case study, we suggest a framework for analyzing spatial data of alien species distributions, based on environmental predictors, aiming to gain an understanding of their spatial patterns and spread. Mediterranean islands are under strong ecological pressure from invading species due to their restricted size and increased human impact. Four hypotheses of invasibility, the “propagule pressure hypothesis” (H1, “biotic resistance hypothesis vs. acceptance hypothesis” (H2, “disturbance-mediated hypothesis” (H3, and “environmental heterogeneity hypothesis” (H4 were tested. Using data from alien, native, and endemic vascular plant species, the propagule pressure, biotic resistance vs. acceptance, disturbance-mediated, and environmental heterogeneity hypotheses were tested with Generalized Additive Modeling (GAM of 39 models. Based on model selection, the optimal model includes the positive covariates of native species richness, the negative covariates of endemic species richness, and land area. Variance partitioning between the four hypotheses indicated that the biotic resistance vs. acceptance hypothesis explained the vast majority of the total variance. These results show that areas of high species richness have greater invasibility and support the acceptance hypothesis and “rich-get-richer” distribution of alien species. The negative correlation between alien and endemic species appears to be predominantly driven by altitude, with fewer alien and more endemic species at greater altitudes, and habitat richness. The negative relationship between alien and endemic species richness provides potential for understanding patterns of endemic and alien species on islands, contributing to more effective conservation

  19. Herbaceous forage and selection patterns by ungulates across varying herbivore assemblages in a South African savanna

    NARCIS (Netherlands)

    Treydte, A.C.; Baumgartner, S.; Heitkonig, I.M.A.; Grant, C.C.; Getz, W.M.

    2013-01-01

    Herbivores generally have strong structural and compositional effects on vegetation, which in turn determines the plant forage species available. We investigated how selected large mammalian herbivore assemblages use and alter herbaceous vegetation structure and composition in a southern African

  20. Oribatid communities and heavy metal bioaccumulation in selected species associated with lichens in a heavily contaminated habitat.

    Science.gov (United States)

    Skubała, Piotr; Rola, Kaja; Osyczka, Piotr

    2016-05-01

    The study examines oribatid communities and heavy metal bioaccumulation in selected species associated with different microhabitats of a post-smelting dump, i.e. three lichen species of Cladonia with various growth forms and the slag substrate. The abundance of oribatids collected from the substrate was significantly lower than observed in lichen thalli. The morphology and chemical properties of lichens, and to some extent varying concentrations of heavy metals in thalli, are probably responsible for significant differences in oribatid communities inhabiting different Cladonia species. Some oribatids demonstrate the ability to accumulate zinc and cadmium with unusual efficiency, whereas lead is the most effectively regulated element by all species. A positive correlation was found between Zn content in all studied oribatids and their microhabitats. Oribatids exploring different food resources, i.e. fungivorous and non-fungivorous grazers, show considerable differences in bioconcentrations of certain elements.

  1. Surface-Selective Preferential Production of Reactive Oxygen Species on Piezoelectric Ceramics for Bacterial Killing

    OpenAIRE

    Tan, Guoxin; Wang, Shuangying; Zhu, Ye; Zhou, Lei; Yu, Peng; Wang, Xiaolan; He, Tianrui; Chen, Junqi; Mao, Chuanbin; Ning, Chengyun

    2016-01-01

    Reactive oxygen species (ROS) can be used to kill bacterial cells, and thus the selective generation of ROS from material surfaces is an emerging direction in antibacterial material discovery. We found the polarization of piezoelectric ceramic causes the two sides of the disk to become positively and negatively charged, which translate into cathode and anode surfaces in an aqueous solution. Because of the microelectrolysis of water, ROS are preferentially formed on the cathode surface. Conseq...

  2. Identification of some Fusarium species from selected crop seeds using traditional method and BIO-PCR

    Directory of Open Access Journals (Sweden)

    Tomasz Kulik

    2012-12-01

    Full Text Available We identified a species level of the fungal cultures isolated from selected crop seeds using traditional method and BIO-PCR. The use of BIO-PCR did not correspond completely to the morphological analyses. Both methods showed increased infection with F. poae in winter wheat seed sample originated from north Poland. Fungal culture No 40 (isolated from faba bean and identified with traditional method as mixed culture with F. culmorum and F. graminearum did not produce expected product after PCR reaction with species specific primers OPT18F470, OPT18R470. However, the use of additional primers Fc01F, Fc01R allowed for reliable identification of F. culmorum in the culture.

  3. Nonadiabatic theory of strong-field atomic effects under elliptical polarization

    International Nuclear Information System (INIS)

    Wang Xu; Eberly, J. H.

    2012-01-01

    Elliptically polarized laser fields provide a new channel for access to strong-field processes that are either suppressed or not present under linear polarization. Quantum theory is mostly unavailable for their analysis, and we report here results of a systematic study based on a classical ensemble theory with solution of the relevant ab inito time-dependent Newton equations for selected model atoms. The study's approach is necessarily nonadiabatic, as it follows individual electron trajectories leading to single, double, and triple ionizations. Of particular interest are new results bearing on open questions concerning experimental reports of unexplained species dependences as well as double-electron release times that are badly matched by a conventional adiabatic quantum tunneling theory. We also report the first analysis of electron trajectories for sequential and non-sequential triple ionization.

  4. Strong and Reversible Monovalent Supramolecular Protein Immobilization

    NARCIS (Netherlands)

    Young, Jacqui F.; Nguyen, Hoang D.; Yang, Lanti; Huskens, Jurriaan; Jonkheijm, Pascal; Brunsveld, Luc

    2010-01-01

    Proteins with an iron clasp: Site-selective incorporation of a ferrocene molecule into a protein allows for easy, strong, and reversible supramolecular protein immobilization through a selective monovalent interaction of the ferrocene with a cucurbit[7]uril immobilized on a gold surface. The

  5. Seroprevalence of brucellosis in cattle and selected wildlife species at selected livestock/wildlife interface areas of the Gonarezhou National Park, Zimbabwe.

    Science.gov (United States)

    Ndengu, Masimba; Matope, Gift; de Garine-Wichatitsky, Michel; Tivapasi, Musavengana; Scacchia, Massimo; Bonfini, Barbara; Pfukenyi, Davis Mubika

    2017-10-01

    A study was conducted to investigate seroprevalence and risk factors for Brucella species infection in cattle and some wildlife species in communities living at the periphery of the Great Limpopo Transfrontier Conservation Area in south eastern Zimbabwe. Three study sites were selected based on the type of livestock-wildlife interface: porous livestock-wildlife interface (unrestricted); non-porous livestock-wildlife interface (restricted by fencing); and livestock-wildlife non-interface (totally absent or control). Sera were collected from cattle aged≥2years representing both female and intact male animals. Sera were also collected from selected wild ungulates from Mabalauta (porous interface) and Chipinda (non-interface) areas of the Gonarezhou National Park. Samples were screened for Brucellaantibodies using the Rose Bengal plate test and confirmed by the complement fixation test. Data were analysed by descriptive statistics and multivariate logistic regression modelling. In cattle, brucellosis seroprevalence from all areas was 16.7% (169/1011; 95% CI: 14.5-19.2%). The porous interface recorded a significantly (p=0.03) higher seroprevalence (19.5%; 95% CI: 16.1-23.4%) compared to the non-interface area (13.0%; 95% CI: 9.2-19.9%).The odds of Brucellaseropositivity increased progressively with parity of animals and were also three times higher (OR=3.0, 2.0wildlife and livestock. Copyright © 2017. Published by Elsevier B.V.

  6. Ethical and Animal Welfare Considerations in Relation to Species Selection for Animal Experimentation

    Directory of Open Access Journals (Sweden)

    John Webster

    2014-12-01

    Full Text Available Ethical principles governing the conduct of experiments with animals are reviewed, especially those relating to the choice of species. Legislation requires that the potential harm to animals arising from any procedure should be assessed in advance and justified in terms of its possible benefit to society. Potential harms may arise both from the procedures and the quality of the animals’ lifetime experience. The conventional approach to species selection is to use animals with the “lowest degree of neurophysiological sensitivity”. However; this concept should be applied with extreme caution in the light of new knowledge. The capacity to experience pain may be similar in mammals, birds and fish. The capacity to suffer from fear is governed more by sentience than cognitive ability, so it cannot be assumed that rodents or farm animals suffer less than dogs or primates. I suggest that it is unethical to base the choice of species for animal experimentation simply on the basis that it will cause less distress within society. A set of responsibilities is outlined for each category of moral agent. These include regulators, operators directly concerned with the conduct of scientific experiments and toxicology trials, veterinarians and animal care staff; and society at large.

  7. Ethical and Animal Welfare Considerations in Relation to Species Selection for Animal Experimentation.

    Science.gov (United States)

    Webster, John

    2014-12-03

    Ethical principles governing the conduct of experiments with animals are reviewed, especially those relating to the choice of species. Legislation requires that the potential harm to animals arising from any procedure should be assessed in advance and justified in terms of its possible benefit to society. Potential harms may arise both from the procedures and the quality of the animals' lifetime experience. The conventional approach to species selection is to use animals with the "lowest degree of neurophysiological sensitivity". However; this concept should be applied with extreme caution in the light of new knowledge. The capacity to experience pain may be similar in mammals, birds and fish. The capacity to suffer from fear is governed more by sentience than cognitive ability, so it cannot be assumed that rodents or farm animals suffer less than dogs or primates. I suggest that it is unethical to base the choice of species for animal experimentation simply on the basis that it will cause less distress within society. A set of responsibilities is outlined for each category of moral agent. These include regulators, operators directly concerned with the conduct of scientific experiments and toxicology trials, veterinarians and animal care staff; and society at large.

  8. The strong selective sweep candidate gene ADRA2C does not explain domestication related changes in the stress response of chickens.

    Directory of Open Access Journals (Sweden)

    Magnus Elfwing

    Full Text Available Analysis of selective sweeps to pinpoint causative genomic regions involved in chicken domestication has revealed a strong selective sweep on chromosome 4 in layer chickens. The autoregulatory α-adrenergic receptor 2C (ADRA2C gene is the closest to the selective sweep and was proposed as an important gene in the domestication of layer chickens. The ADRA2C promoter region was also hypermethylated in comparison to the non-selected ancestor of all domesticated chicken breeds, the Red Junglefowl, further supporting its relevance. In mice the receptor is involved in the fight-or-flight response as it modulates epinephrine release from the adrenals. To investigate the involvement of ADRA2C in chicken domestication, we measured gene expression in the adrenals and radiolabeled receptor ligand in three brain regions comparing the domestic White Leghorn strain with the wild ancestor Red Junglefowl. In adrenals ADRA2C was twofold greater expressed than the related receptor gene ADRA2A, indicating that ADRA2C is the predominant modulator of epinephrine release but no strain differences were measured. In hypothalamus and amygdala, regions associated with the stress response, and in striatum, receptor binding pIC50 values ranged between 8.1-8.4, and the level was not influenced by the genotyped allele. Because chicken strains differ in morphology, physiology and behavior, differences attributed to a single gene may be lost in the noise caused by the heterogeneous genetic background. Therefore an F10 advanced intercross strain between White Leghorn and Red Junglefowl was used to investigate effects of ADRA2C alleles on fear related behaviors and fecundity. We did not find compelling genotype effects in open field, tonic immobility, aerial predator, associative learning or fecundity. Therefore we conclude that ADRA2C is probably not involved in the domestication of the stress response in chicken, and the strong selective sweep is probably caused by selection

  9. Isoenzymatic and cytological studies of some Asiatic species of the genus Salsola

    Directory of Open Access Journals (Sweden)

    Aleksandra Wojnicka-Półtorak

    2014-01-01

    Full Text Available The genetic and cytological variability of population of three Salsola species from Asia was investigated, using isozyme electrophoresis and haematoxylin staining. Eight enzyme systems, representing 14-17 loci, were examined: 6PGD, DIA, G6PD, GDH, GOT, MDH, PGM and PGI. Analysis of the chromosome number revealed that the three species have the same number of chromosomes: 2n=18. Parameters describing genetic diversity indicate a very low level of genetic variation of the studied populations. The isozyme data support hypothesis that strong directional selection can result in lower level of genetic variation of arid plant populations.

  10. Nutritional and cultural aspects of plant species selection for a controlled ecological life support system

    Science.gov (United States)

    Hoff, J. E.; Howe, J. M.; Mitchell, C. A.

    1982-01-01

    The feasibility of using higher plants in a controlled ecological life support system is discussed. Aspects of this system considered important in the use of higher plants include: limited energy, space, and mass, and problems relating to cultivation and management of plants, food processing, the psychological impact of vegetarian diets, and plant propagation. A total of 115 higher plant species are compared based on 21 selection criteria.

  11. Agroforestry Species Switchboard

    DEFF Research Database (Denmark)

    Kindt, R.; John, I.; Ordonez, J.

    2016-01-01

    The current version of the Agroforestry Species Switchboard documents the presence of a total of 26,135 plant species (33,813 species including synonyms) across 19 web-based databases. When available, hyperlinks to information on the selected species in particular databases are provided. In total...

  12. Geographic Variation in Advertisement Calls in a Tree Frog Species: Gene Flow and Selection Hypotheses

    Science.gov (United States)

    Jang, Yikweon; Hahm, Eun Hye; Lee, Hyun-Jung; Park, Soyeon; Won, Yong-Jin; Choe, Jae C.

    2011-01-01

    Background In a species with a large distribution relative to its dispersal capacity, geographic variation in traits may be explained by gene flow, selection, or the combined effects of both. Studies of genetic diversity using neutral molecular markers show that patterns of isolation by distance (IBD) or barrier effect may be evident for geographic variation at the molecular level in amphibian species. However, selective factors such as habitat, predator, or interspecific interactions may be critical for geographic variation in sexual traits. We studied geographic variation in advertisement calls in the tree frog Hyla japonica to understand patterns of variation in these traits across Korea and provide clues about the underlying forces for variation. Methodology We recorded calls of H. japonica in three breeding seasons from 17 localities including localities in remote Jeju Island. Call characters analyzed were note repetition rate (NRR), note duration (ND), and dominant frequency (DF), along with snout-to-vent length. Results The findings of a barrier effect on DF and a longitudinal variation in NRR seemed to suggest that an open sea between the mainland and Jeju Island and mountain ranges dominated by the north-south Taebaek Mountains were related to geographic variation in call characters. Furthermore, there was a pattern of IBD in mitochondrial DNA sequences. However, no comparable pattern of IBD was found between geographic distance and call characters. We also failed to detect any effects of habitat or interspecific interaction on call characters. Conclusions Geographic variations in call characters as well as mitochondrial DNA sequences were largely stratified by geographic factors such as distance and barriers in Korean populations of H. japoinca. Although we did not detect effects of habitat or interspecific interaction, some other selective factors such as sexual selection might still be operating on call characters in conjunction with restricted gene

  13. Selective Hydrogenation of Acrolein Over Pd Model Catalysts: Temperature and Particle-Size Effects.

    Science.gov (United States)

    O'Brien, Casey P; Dostert, Karl-Heinz; Schauermann, Swetlana; Freund, Hans-Joachim

    2016-10-24

    The selectivity in the hydrogenation of acrolein over Fe 3 O 4 -supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220-270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR-reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle-size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Screening Level Ecological Risk Assessments of Some Military Munitions and Obscurant-related Compounds for Selected Threatened and Endangered Species

    National Research Council Canada - National Science Library

    Von Stackleberg, Katherine; Amos, Craig; Butler, C; Smith, Thomas; Famely, J; McArdle, M; Southworth, B; Steevens, Jeffrey

    2006-01-01

    ...) associated with munitions. This study evaluates the potential long-term impacts on selected threatened and endangered species resulting from dispersion and deposition of vapors and particles found in the fog oils...

  15. Phylogenetically diverse macrophyte community promotes species diversity of mobile epi-benthic invertebrates

    Science.gov (United States)

    Nakamoto, Kenta; Hayakawa, Jun; Kawamura, Tomohiko; Kodama, Masafumi; Yamada, Hideaki; Kitagawa, Takashi; Watanabe, Yoshiro

    2018-07-01

    Various aspects of plant diversity such as species diversity and phylogenetic diversity enhance the species diversity of associated animals in terrestrial systems. In marine systems, however, the effects of macrophyte diversity on the species diversity of associated animals have received little attention. Here, we sampled in a subtropical seagrass-seaweed mixed bed to elucidate the effect of the macrophyte phylogenetic diversity based on the taxonomic relatedness as well as the macrophyte species diversity on species diversity of mobile epi-benthic invertebrates. Using regression analyses for each macrophyte parameter as well as multiple regression analyses, we found that the macrophyte phylogenetic diversity (taxonomic diversity index: Delta) positively influenced the invertebrate species richness and diversity index (H‧). Although the macrophyte species richness and H‧ also positively influenced the invertebrate species richness, the best fit model for invertebrate species richness did not include them, suggesting that the macrophyte species diversity indirectly influenced invertebrate species diversity. Possible explanations of the effects of macrophyte Delta on the invertebrate species diversity were the niche complementarity effect and the selection effect. This is the first study which demonstrates that macrophyte phylogenetic diversity has a strong effect on the species diversity of mobile epi-benthic invertebrates.

  16. Nutritional Potential of Selected Insect Species Reared on the Island of Sumatra.

    Science.gov (United States)

    Adámková, Anna; Mlček, Jiří; Kouřimská, Lenka; Borkovcová, Marie; Bušina, Tomáš; Adámek, Martin; Bednářová, Martina; Krajsa, Jan

    2017-05-12

    Inhabitants of the Indonesian island of Sumatra are faced with the problem of insufficient food supplies and the consequent risk of undernourishment and health issues. Edible insects as a traditional and readily available food source could be part of the solution. The nutritional value of insects depends on many factors, e.g., species, developmental stage, sex, diet, and climatic conditions. However, edible insects bred in Sumatra for human consumption have never before been assessed with regard to their nutritional value. Our study involved analyses of crude protein, chitin, fat and selected fatty acid contents of giant mealworm larvae ( Zophobas morio ), larvae of the common mealworm ( Tenebrio molitor) and nymphs of the field cricket ( Gryllus assimilis ). Crude protein content in the samples ranged from 46% to 56%. Highest (35%) and lowest (31%) amounts of fat were recorded in giant mealworm larvae and larvae of the common mealworm, respectively. Chitin amounts ranged from 6% to 13%. Based on these values, which are comparable to those known from other food insects reared in different regions of the world, the edible species bred in Sumatra could become food sources with a potential to help stave off hunger and undernourishment.

  17. Radial Distribution Functions of Strongly Coupled Two-Temperature Plasmas

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-10-01

    We present tests of three theoretical models for the radial distribution functions (RDFs) in two-temperature strongly coupled plasmas. RDFs are useful in extending plasma thermodynamics and kinetic theory to strong coupling, but they are usually known only for thermal equilibrium or for approximate one-component model plasmas. Accurate two-component modeling is necessary to understand the impact of strong coupling on inter-species transport, e.g., ambipolar diffusion and electron-ion temperature relaxation. We demonstrate that the Seuferling-Vogel-Toeppfer (SVT) extension of the hypernetted chain equations not only gives accurate RDFs (as compared with classical molecular dynamics simulations), but also has a simple connection with the Yukawa OCP model. This connection gives a practical means to recover the structure of the electron background from knowledge of the ion-ion RDF alone. Using the model RDFs in Effective Potential Theory, we report the first predictions of inter-species transport coefficients of strongly coupled plasmas far from equilibrium. This work is supported by NSF Grant No. PHY-1453736, AFSOR Award No. FA9550-16-1-0221, and used XSEDE computational resources.

  18. Analysis of adaptive evolution in Lyssavirus genomes reveals pervasive diversifying selection during species diversification.

    Science.gov (United States)

    Voloch, Carolina M; Capellão, Renata T; Mello, Beatriz; Schrago, Carlos G

    2014-11-19

    Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G), RNA-dependent RNA polymerase (L) and polymerase (P) genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.

  19. Analysis of Adaptive Evolution in Lyssavirus Genomes Reveals Pervasive Diversifying Selection during Species Diversification

    Directory of Open Access Journals (Sweden)

    Carolina M. Voloch

    2014-11-01

    Full Text Available Lyssavirus is a diverse genus of viruses that infect a variety of mammalian hosts, typically causing encephalitis. The evolution of this lineage, particularly the rabies virus, has been a focus of research because of the extensive occurrence of cross-species transmission, and the distinctive geographical patterns present throughout the diversification of these viruses. Although numerous studies have examined pattern-related questions concerning Lyssavirus evolution, analyses of the evolutionary processes acting on Lyssavirus diversification are scarce. To clarify the relevance of positive natural selection in Lyssavirus diversification, we conducted a comprehensive scan for episodic diversifying selection across all lineages and codon sites of the five coding regions in lyssavirus genomes. Although the genomes of these viruses are generally conserved, the glycoprotein (G, RNA-dependent RNA polymerase (L and polymerase (P genes were frequently targets of adaptive evolution during the diversification of the genus. Adaptive evolution is particularly manifest in the glycoprotein gene, which was inferred to have experienced the highest density of positively selected codon sites along branches. Substitutions in the L gene were found to be associated with the early diversification of phylogroups. A comparison between the number of positively selected sites inferred along the branches of RABV population branches and Lyssavirus intespecies branches suggested that the occurrence of positive selection was similar on the five coding regions of the genome in both groups.

  20. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range.

    Science.gov (United States)

    Zheng, Yulong; Liao, Zhiyong

    2017-11-22

    Invasive plant species often form dense mono-dominant stands in areas they have invaded, while having only sparse distribution in their native ranges, and the reasons behind this phenomenon are a key point of research in invasive species biology. Differences in species composition between native and invasive ranges may contribute to the difference in distribution status. In this study, we found that the high-density condition had a more negative effect on C. odorata than the low-density condition when co-grown with neighbor plants from its native range in Mexico, while this pattern was not in evidence when it was grown with neighbors from its invasive range in China. Different competitive ability and coevolutionary history with C. odorata between native-range neighbors and invasive-range neighbors may lead to the inconsistent patterns.

  1. Selective whole genome amplification for resequencing target microbial species from complex natural samples.

    Science.gov (United States)

    Leichty, Aaron R; Brisson, Dustin

    2014-10-01

    Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host-microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >10(5)-fold amplification of the target genomes with genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2-9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs. Copyright © 2014 by the Genetics Society of America.

  2. The potential of selected macroalgal species for treatment of AMD at different pH ranges in temperate regions

    CSIR Research Space (South Africa)

    Oberholster, Paul J

    2014-09-01

    Full Text Available The metal bioaccumulation potential of selected macroalgae species at different pH ranges was study for usage as part of a possible secondary passive acid mine drainage (AMD) treatment technology in algae ponds. Two separate studies were conducted...

  3. Does Research Information Meet the Needs of Stakeholders? Exploring Evidence Selection in the Global Management of Invasive Species

    Science.gov (United States)

    Bayliss, Helen R.; Wilcox, Andrew; Stewart, Gavin B.; Randall, Nicola P.

    2012-01-01

    This study explored factors affecting information selection by international stakeholders working with invasive species. Despite differences in information requirements between groups, all stakeholders demonstrated a clear preference for free, easily accessible online information, and predominantly used internet search engines and specialist…

  4. Epidemiology of Eimeria species in selected broiler farms of Khoy suburb, West Azarbaijan Province, Iran

    Directory of Open Access Journals (Sweden)

    Fakhri, M.

    2015-12-01

    Full Text Available Intestinal coccidiosis, caused by Eimeria species, is an economically-important disease of poultry production industry worldwide. This study was designed to investigate the prevalence of different Eimeria species in the farmed broilers of Khoy city, West Azarbaijan, North West Iran. A total of 26 broiler farms of different production capacities were arbitrarily selected and examined in 2013. In each of the farms, Litters of two broilers farms were randomly sampled twice a week and examined. The intensity of infection with each of the Eimeria species was assessed on the basis of number of oocysts per gram of litter using Clayton-Lane and McMaster methods. Eimeria species diversity was determined by using oocyst sporulation technique in 2% potassium dichromate solution. Results indicated that 23.08% (6/26 of the broiler farms were infected with Eimeria oocysts. The maximum litter infection rate (7.5×103 was observed in fifth week of the rearing period. The litter infection rate was significantly correlated with kinds of water dispenser, feeder, ventilation, and density. The litters were infected with five Eimeria species; E. maxima (32.67% in 6 farms (23.07%, E. mitis (24% in 6 farms (23.07%, E. acervulina (18% in 5 farms (19.23%, E. tenella (14.67% in 4 farms (15.38%, and E. necatrix (10.67% in 3 farms (11.58%. Results of this study uncovered high rates of litter infection with various Eimeria species in the studied farms, suggesting the establishment of firm health management strategies in the region.

  5. Egg-laying substrate selection for optimal camouflage by quail.

    Science.gov (United States)

    Lovell, P George; Ruxton, Graeme D; Langridge, Keri V; Spencer, Karen A

    2013-02-04

    Camouflage is conferred by background matching and disruption, which are both affected by microhabitat. However, microhabitat selection that enhances camouflage has only been demonstrated in species with discrete phenotypic morphs. For most animals, phenotypic variation is continuous; here we explore whether such individuals can select microhabitats to best exploit camouflage. We use substrate selection in a ground-nesting bird (Japanese quail, Coturnix japonica). For such species, threat from visual predators is high and egg appearance shows strong between-female variation. In quail, variation in appearance is particularly obvious in the amount of dark maculation on the light-colored shell. When given a choice, birds consistently selected laying substrates that made visual detection of their egg outline most challenging. However, the strategy for maximizing camouflage varied with the degree of egg maculation. Females laying heavily maculated eggs selected the substrate that more closely matched egg maculation color properties, leading to camouflage through disruptive coloration. For lightly maculated eggs, females chose a substrate that best matched their egg background coloration, suggesting background matching. Our results show that quail "know" their individual egg patterning and seek out a nest position that provides most effective camouflage for their individual phenotype. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Impacts of land cover data selection and trait parameterisation on dynamic modelling of species' range expansion.

    Directory of Open Access Journals (Sweden)

    Risto K Heikkinen

    Full Text Available Dynamic models for range expansion provide a promising tool for assessing species' capacity to respond to climate change by shifting their ranges to new areas. However, these models include a number of uncertainties which may affect how successfully they can be applied to climate change oriented conservation planning. We used RangeShifter, a novel dynamic and individual-based modelling platform, to study two potential sources of such uncertainties: the selection of land cover data and the parameterization of key life-history traits. As an example, we modelled the range expansion dynamics of two butterfly species, one habitat specialist (Maniola jurtina and one generalist (Issoria lathonia. Our results show that projections of total population size, number of occupied grid cells and the mean maximal latitudinal range shift were all clearly dependent on the choice made between using CORINE land cover data vs. using more detailed grassland data from three alternative national databases. Range expansion was also sensitive to the parameterization of the four considered life-history traits (magnitude and probability of long-distance dispersal events, population growth rate and carrying capacity, with carrying capacity and magnitude of long-distance dispersal showing the strongest effect. Our results highlight the sensitivity of dynamic species population models to the selection of existing land cover data and to uncertainty in the model parameters and indicate that these need to be carefully evaluated before the models are applied to conservation planning.

  7. Looking beyond rare species as umbrella species: Northern Bobwhites (Colinus virginianus) and conservation of grassland and shrubland birds

    Science.gov (United States)

    Crosby, Andrew D.; Elmore, R.D.; Leslie,, David M.; Will, Rodney E.

    2015-01-01

    Changes in land use and land cover throughout the eastern half of North America have caused substantial declines in populations of birds that rely on grassland and shrubland vegetation types, including socially and economically important game birds such as the Northern Bobwhite (Colinus virginianus; hereafter bobwhites). As much attention is focused on habitat management and restoration for bobwhites, they may act as an umbrella species for other bird species with similar habitat requirements. We quantified the relationship of bobwhites to the overall bird community and evaluated the potential for bobwhites to act as an umbrella species for grassland and shrubland birds. We monitored bobwhite presence and bird community composition within 31 sample units on selected private lands in the south-central United States from 2009 to 2011. Bobwhites were strongly associated with other grassland and shrubland birds and were a significant positive predictor for 9 species. Seven of these, including Bell's Vireo (Vireo bell), Dicksissel (Spiza americana), and Grasshopper Sparrow (Ammodramus savannarum), are listed as species of conservation concern. Species richness and occupancy probability of grassland and shrubland birds were higher relative to the overall bird community in sample units occupied by bobwhites. Our results show that bobwhites can act as an umbrella species for grassland and shrubland birds, although the specific species in any given situation will depend on region and management objectives. These results suggest that efficiency in conservation funding can be increased by using public interest in popular game species to leverage resources to meet multiple conservation objectives.

  8. PeptideManager: A Peptide Selection Tool for Targeted Proteomic Studies Involving Mixed Samples from Different Species

    Directory of Open Access Journals (Sweden)

    Kevin eDemeure

    2014-09-01

    Full Text Available The search for clinically useful protein biomarkers using advanced mass spectrometry approaches represents a major focus in cancer research. However, the direct analysis of human samples may be challenging due to limited availability, the absence of appropriate control samples, or the large background variability observed in patient material. As an alternative approach, human tumors orthotopically implanted into a different species (xenografts are clinically relevant models that have proven their utility in pre-clinical research. Patient derived xenografts for glioblastoma have been extensively characterized in our laboratory and have been shown to retain the characteristics of the parental tumor at the phenotypic and genetic level. Such models were also found to adequately mimic the behavior and treatment response of human tumors. The reproducibility of such xenograft models, the possibility to identify their host background and perform tumor-host interaction studies, are major advantages over the direct analysis of human samples.At the proteome level, the analysis of xenograft samples is challenged by the presence of proteins from two different species which, depending on tumor size, type or location, often appear at variable ratios. Any proteomics approach aimed at quantifying proteins within such samples must consider the identification of species specific peptides in order to avoid biases introduced by the host proteome. Here, we present an in-house methodology and tool developed to select peptides used as surrogates for protein candidates from a defined proteome (e.g., human in a host proteome background (e.g., mouse, rat suited for a mass spectrometry analysis. The tools presented here are applicable to any species specific proteome, provided a protein database is available. By linking the information from both proteomes, PeptideManager significantly facilitates and expedites the selection of peptides used as surrogates to analyze

  9. Selective adsorption of refractory sulfur species on active carbons and carbon based CoMo catalyst.

    Science.gov (United States)

    Farag, Hamdy

    2007-03-01

    Adsorption technique could be a reliable alternative in removing to a certain remarkable extent the sulfur species from the feedstock of petroleum oil. The performance of various carbons on adsorption of model sulfur compounds in a simulated feed solution and the sulfur containing compounds in the real gas oil was evaluated. The adsorption experiments have been carried out in a batch scale at ambient temperature and under the atmospheric pressure. In general, the most refractory sulfur compounds in the hydrotreatment reactions were selectively removed and adsorbed. It was found that the adsorbents affinities to dibenzothiophene and 4,6-dimethyldibenzothiophene were much more favored and pronounced than the aromatic matrices like fluorene, 1-methylnaphthalene and 9-methylanthracene. Among the sulfur species, 4,6-dimethyldibenzothiophene was the highest to be removed in terms of both selectivity and capacity over all the present adsorbents. The studied adsorbents showed significant capacities for the polyaromatic thiophenes. The electronic characteristics seem to play a certain role in such behavior. Regeneration of the used adsorbent was successfully attained either by washing it with toluene or by the release of the adsorbates through heat treatment. A suggested adsorptive removal process of sulfur compounds from petroleum distillate over carbon supported CoMo catalyst was discussed.

  10. Landscape genomics: natural selection drives the evolution of mitogenome in penguins.

    Science.gov (United States)

    Ramos, Barbara; González-Acuña, Daniel; Loyola, David E; Johnson, Warren E; Parker, Patricia G; Massaro, Melanie; Dantas, Gisele P M; Miranda, Marcelo D; Vianna, Juliana A

    2018-01-16

    Mitochondria play a key role in the balance of energy and heat production, and therefore the mitochondrial genome is under natural selection by environmental temperature and food availability, since starvation can generate more efficient coupling of energy production. However, selection over mitochondrial DNA (mtDNA) genes has usually been evaluated at the population level. We sequenced by NGS 12 mitogenomes and with four published genomes, assessed genetic variation in ten penguin species distributed from the equator to Antarctica. Signatures of selection of 13 mitochondrial protein-coding genes were evaluated by comparing among species within and among genera (Spheniscus, Pygoscelis, Eudyptula, Eudyptes and Aptenodytes). The genetic data were correlated with environmental data obtained through remote sensing (sea surface temperature [SST], chlorophyll levels [Chl] and a combination of SST and Chl [COM]) through the distribution of these species. We identified the complete mtDNA genomes of several penguin species, including ND6 and 8 tRNAs on the light strand and 12 protein coding genes, 14 tRNAs and two rRNAs positioned on the heavy strand. The highest diversity was found in NADH dehydrogenase genes and the lowest in COX genes. The lowest evolutionary divergence among species was between Humboldt (Spheniscus humboldti) and Galapagos (S. mendiculus) penguins (0.004), while the highest was observed between little penguin (Eudyptula minor) and Adélie penguin (Pygoscelis adeliae) (0.097). We identified a signature of purifying selection (Ka/Ks penguins. In contrast, COX1 had a signature of strong negative selection. ND4 Ka/Ks ratios were highly correlated with SST (Mantel, p-value: 0.0001; GLM, p-value: 0.00001) and thus may be related to climate adaptation throughout penguin speciation. These results identify mtDNA candidate genes under selection which could be involved in broad-scale adaptations of penguins to their environment. Such knowledge may be

  11. Prey selectivity affects reproductive success of a corallivorous reef fish.

    Science.gov (United States)

    Brooker, Rohan M; Jones, Geoffrey P; Munday, Philip L

    2013-06-01

    Most animals consume a narrower range of food resources than is potentially available in the environment, but the underlying basis for these preferences is often poorly understood. Foraging theory predicts that prey selection should represent a trade-off between prey preferences based on nutritional value and prey availability. That is, species should consume preferred prey when available, but select less preferred prey when preferred prey is rare. We employed both field observation and laboratory experiments to examine the relationship between prey selection and preferences in the obligate coral-feeding filefish, Oxymonacanthus longirostris. To determine the drivers of prey selection, we experimentally established prey preferences in choice arenas and tested the consequences of prey preferences for key fitness-related parameters. Field studies showed that individuals fed almost exclusively on live corals from the genus Acropora. While diet was dominated by the most abundant species, Acropora nobilis, fish appeared to preferentially select rarer acroporids, such as A. millepora and A. hyacinthus. Prey choice experiments confirmed strong preferences for these corals, suggesting that field consumption is constrained by availability. In a longer-term feeding experiment, reproductive pairs fed on non-preferred corals exhibited dramatic reductions to body weight, and in hepatic and gonad condition, compared with those fed preferred corals. The majority of pairs fed preferred corals spawned frequently, while no spawning was observed for any pairs fed a non-preferred species of coral. These experiments suggest that fish distinguish between available corals based on their intrinsic value as prey, that reproductive success is dependent on the presence of particular coral species, and that differential loss of preferred corals could have serious consequences for the population success of these dietary specialists.

  12. Evolutionary dynamics of fluctuating populations with strong mutualism

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David

    2013-03-01

    Evolutionary game theory with finite interacting populations is receiving increased attention, including subtle phenomena associated with number fluctuations, i.e., ``genetic drift.'' Models of cooperation and competition often utilize a simplified Moran model, with a strictly fixed total population size. We explore a more general evolutionary model with independent fluctuations in the numbers of two distinct species, in a regime characterized by ``strong mutualism.'' The model has two absorbing states, each corresponding to fixation of one of the two species, and allows exploration of the interplay between growth, competition, and mutualism. When mutualism is favored, number fluctuations eventually drive the system away from a stable fixed point, characterized by cooperation, to one of the absorbing states. Well-mixed populations will thus be taken over by a single species in a finite time, despite the bias towards cooperation. We calculate both the fixation probability and the mean fixation time as a function of the initial conditions and carrying capacities in the strong mutualism regime, using the method of matched asymptotic expansions. Our results are compared to computer simulations.

  13. Recombination Modulates How Selection Affects Linked Sites in Drosophila

    Science.gov (United States)

    McGaugh, Suzanne E.; Heil, Caiti S. S.; Manzano-Winkler, Brenda; Loewe, Laurence; Goldstein, Steve; Himmel, Tiffany L.; Noor, Mohamed A. F.

    2012-01-01

    One of the most influential observations in molecular evolution has been a strong association between local recombination rate and nucleotide polymorphisms across the genome. This is interpreted as evidence for ubiquitous natural selection. The alternative explanation, that recombination is mutagenic, has been rejected by the absence of a similar association between local recombination rate and nucleotide divergence between species. However, many recent studies show that recombination rates are often very different even in closely related species, questioning whether an association between recombination rate and divergence between species has been tested satisfactorily. To circumvent this problem, we directly surveyed recombination across approximately 43% of the D. pseudoobscura physical genome in two separate recombination maps and 31% of the D. miranda physical genome, and we identified both global and local differences in recombination rate between these two closely related species. Using only regions with conserved recombination rates between and within species and accounting for multiple covariates, our data support the conclusion that recombination is positively related to diversity because recombination modulates Hill–Robertson effects in the genome and not because recombination is predominately mutagenic. Finally, we find evidence for dips in diversity around nonsynonymous substitutions. We infer that at least some of this reduction in diversity resulted from selective sweeps and examine these dips in the context of recombination rate. PMID:23152720

  14. Algal bioremediation of waste waters from land-based aquaculture using ulva: selecting target species and strains.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lawton

    Full Text Available The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1 respectively across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1 and Sydney strains had the lowest growth rates (2.5-8.3% day(-1. We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to

  15. Strain selection, biomass to biofuel conversion, and resource colocation have strong impacts on the economic performance of algae cultivation sites

    Directory of Open Access Journals (Sweden)

    Erik R. Venteris

    2014-09-01

    Full Text Available Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. We summarize our past results in a new analysis to explore the relative economic impact of these design choices. Our growth model is used to predict average biomass production for two saline strains (Nannocloropsis salina, Arthrospira sp., one fresh to brackish strain (Chlorella sp., DOE strain 1412, and one freshwater strain (order Sphaeropleales. Biomass to biofuel conversion is compared between lipid extraction (LE and hydrothermal liquefaction (HTL technologies. National-scale models of water, CO2 (as flue gas, land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area, a number sufficient to produce 136E+9 L yr-1 of renewable diesel (36 billion gallons yr-1. Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million dollars yr-1 UF-1. Results based on the most productive strain, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to $4 million yr-1 UF-1, with 1.8 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low sites within 10s of km of each other. Colocation with flue gas sources has a strong influence on rank, but the most costly resource component varies from site to site. The highest rank UFs are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising locations.

  16. Strain Selection, Biomass to Biofuel Conversion, and Resource Colocation have Strong Impacts on the Economic Performance of Algae Cultivation Sites

    Energy Technology Data Exchange (ETDEWEB)

    Venteris, Erik R., E-mail: erik.venteris@pnl.gov; Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard L. [Pacific Northwest National Laboratory, Richland, WA (United States)

    2014-09-16

    Decisions involving strain selection, biomass to biofuel technology, and the location of cultivation facilities can strongly influence the economic viability of an algae-based biofuel enterprise. We summarize our past results in a new analysis to explore the relative economic impact of these design choices. Our growth model is used to predict average biomass production for two saline strains (Nannochloropsis salina and Arthrospira sp.), one fresh to brackish strain (Chlorella sp., DOE strain 1412), and one freshwater strain (order Sphaeropleales). Biomass to biofuel conversion is compared between lipid extraction and hydrothermal liquefaction (HTL) technologies. National-scale models of water, CO{sub 2} (as flue gas), land acquisition, site leveling, construction of connecting roads, and transport of HTL oil to existing refineries are used in conjunction with estimates of fuel value (from HTL) to prioritize and select from 88,692 unit farms (UF, 405 ha in pond area), a number sufficient to produce 136E + 9 L year{sup −1} of renewable diesel [36 billion gallons year{sup −1} (BGY)]. Strain selection and choice of conversion technology have large economic impacts, with differences between combinations of strains and biomass to biofuel technologies being up to $10 million year{sup −1} UF{sup −1}. Results based on the most productive strain, HTL-based fuel conversion, and resource costs show that the economic potential between geographic locations within the selection can differ by up to 4 million year{sup −1} UF{sup −1}, with 1.8 BGY of production possible from the most cost-effective sites. The local spatial variability in site rank is extreme, with very high and low sites within 10 kms of each other. Colocation with flue gas sources has a strong influence on rank, but the most costly resource component varies from site to site. The highest rank UFs are located predominantly in Florida and Texas, but most states south of 37°N latitude contain promising

  17. Characterization of genomic sequence showing strong association with polyembryony among diverse Citrus species and cultivars, and its synteny with Vitis and Populus.

    Science.gov (United States)

    Nakano, Michiharu; Shimada, Takehiko; Endo, Tomoko; Fujii, Hiroshi; Nesumi, Hirohisa; Kita, Masayuki; Ebina, Masumi; Shimizu, Tokurou; Omura, Mitsuo

    2012-02-01

    Polyembryony, in which multiple somatic nucellar cell-derived embryos develop in addition to the zygotic embryo in a seed, is common in the genus Citrus. Previous genetic studies indicated polyembryony is mainly determined by a single locus, but the underlying molecular mechanism is still unclear. As a step towards identification and characterization of the gene or genes responsible for nucellar embryogenesis in Citrus, haplotype-specific physical maps around the polyembryony locus were constructed. By sequencing three BAC clones aligned on the polyembryony haplotype, a single contiguous draft sequence consisting of 380 kb containing 70 predicted open reading frames (ORFs) was reconstructed. Single nucleotide polymorphism genotypes detected in the sequenced genomic region showed strong association with embryo type in Citrus, indicating a common polyembryony locus is shared among widely diverse Citrus cultivars and species. The arrangement of the predicted ORFs in the characterized genomic region showed high collinearity to the genomic sequence of chromosome 4 of Vitis vinifera and linkage group VI of Populus trichocarpa, suggesting that the syntenic relationship among these species is conserved even though V. vinifera and P. trichocarpa are non-apomictic species. This is the first study to characterize in detail the genomic structure of an apomixis locus determining adventitious embryony. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Sexual differences in telomere selection in the wild.

    Science.gov (United States)

    Olsson, Mats; Pauliny, Angela; Wapstra, Erik; Uller, Tobias; Schwartz, Tonia; Miller, Emily; Blomqvist, Donald

    2011-05-01

    Telomere length is restored primarily through the action of the reverse transcriptase telomerase, which may contribute to a prolonged lifespan in some but not all species and may result in longer telomeres in one sex than the other. To what extent this is an effect of proximate mechanisms (e.g. higher stress in males, higher oestradiol/oestrogen levels in females), or is an evolved adaptation (stronger selection for telomere length in one sex), usually remains unknown. Sand lizard (Lacerta agilis) females have longer telomeres than males and better maintain telomere length through life than males do. We also show that telomere length more strongly contributes to life span and lifetime reproductive success in females than males and that telomere length is under sexually diversifying selection in the wild. Finally, we performed a selection analysis with number of recruited offspring into the adult population as a response variable with telomere length, life span and body size as predictor variables. This showed significant differences in selection pressures between the sexes with strong ongoing selection in females, with these three predictors explaining 63% of the variation in recruitment. Thus, the sexually dimorphic telomere dynamics with longer telomeres in females is a result of past and ongoing selection in sand lizards. Finally, we compared the results from our selection analyses based on Telometric-derived data to the results based on data generated by the software ImageJ. ImageJ resulted in shorter average telomere length, but this difference had virtually no qualitative effect on the patterns of ongoing selection. © 2011 Blackwell Publishing Ltd.

  19. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay

    Energy Technology Data Exchange (ETDEWEB)

    Bengtson Nash, S.M. [National Research Centre for Environmental Toxicology, University of Queensland, Brisbane QLD 4108 (Australia)]. E-mail: s.nash@uq.edu.au; Quayle, P.A. [National Research Centre for Environmental Toxicology, University of Queensland, Brisbane QLD 4108 (Australia); Schreiber, U. [Lehrstuhl Botanik I, Julius-von-Sachs-Institut fuer Biowissenschaften, Universitaet Wuerzburg, D-97082 Wuerzburg (Germany); Mueller, J.F. [National Research Centre for Environmental Toxicology, University of Queensland, Brisbane QLD 4108 (Australia)

    2005-05-15

    A phytotoxicity assay based on the ToxY-PAM dual-channel yield analyser has been developed and successfully incorporated into field assessments for the detection of phytotoxicants in water. As a means of further exploring the scope of the assay application and of selecting a model biomaterial to complement the instrument design, nine algal species were exposed to four chemical substances deemed of priority for water quality monitoring purposes (chlorpyrifos, copper, diuron and nonylphenol ethoxylate). Inter-species differences in sensitivity to the four toxicants varied by a factor of 1.9-100. Measurements of photosystem-II quantum yield using these nine single-celled microalgae as biomaterial corroborated previous studies which have shown that the ToxY-PAM dual-channel yield analyser is a highly sensitive method for the detection of PS-II impacting herbicides. Besides Phaeodactylum tricornutum, the previously applied biomaterial, three other species consistently performed well (Nitzschia closterium, Chlorella vulgaris and Dunaliella tertiolecta) and will be used in further test optimisation experiments. In addition to sensitivity, response time was evaluated and revealed a high degree of variation between species and toxicants. While most species displayed relatively weak and slow responses to copper, C. vulgaris demonstrated an IC{sub 10} of 51 {mu}g L{sup -1}, with maximum response measured within 25 minutes and inhibition being accompanied by a large decrease in fluorescence yield. The potential for this C. vulgaris-based bioassay to be used for the detection of copper is discussed. There was no evidence that the standard ToxY-PAM protocol, using these unicellular algae species, could be used for the detection of chlorpyrifos or nonylphenol ethoxylate at environmentally relevant levels.

  20. The selection of a model microalgal species as biomaterial for a novel aquatic phytotoxicity assay

    International Nuclear Information System (INIS)

    Bengtson Nash, S.M.; Quayle, P.A.; Schreiber, U.; Mueller, J.F.

    2005-01-01

    A phytotoxicity assay based on the ToxY-PAM dual-channel yield analyser has been developed and successfully incorporated into field assessments for the detection of phytotoxicants in water. As a means of further exploring the scope of the assay application and of selecting a model biomaterial to complement the instrument design, nine algal species were exposed to four chemical substances deemed of priority for water quality monitoring purposes (chlorpyrifos, copper, diuron and nonylphenol ethoxylate). Inter-species differences in sensitivity to the four toxicants varied by a factor of 1.9-100. Measurements of photosystem-II quantum yield using these nine single-celled microalgae as biomaterial corroborated previous studies which have shown that the ToxY-PAM dual-channel yield analyser is a highly sensitive method for the detection of PS-II impacting herbicides. Besides Phaeodactylum tricornutum, the previously applied biomaterial, three other species consistently performed well (Nitzschia closterium, Chlorella vulgaris and Dunaliella tertiolecta) and will be used in further test optimisation experiments. In addition to sensitivity, response time was evaluated and revealed a high degree of variation between species and toxicants. While most species displayed relatively weak and slow responses to copper, C. vulgaris demonstrated an IC 10 of 51 μg L -1 , with maximum response measured within 25 minutes and inhibition being accompanied by a large decrease in fluorescence yield. The potential for this C. vulgaris-based bioassay to be used for the detection of copper is discussed. There was no evidence that the standard ToxY-PAM protocol, using these unicellular algae species, could be used for the detection of chlorpyrifos or nonylphenol ethoxylate at environmentally relevant levels

  1. Adaptive traits are maintained on steep selective gradients despite gene flow and hybridization in the intertidal zone.

    Directory of Open Access Journals (Sweden)

    Gerardo I Zardi

    Full Text Available Gene flow among hybridizing species with incomplete reproductive barriers blurs species boundaries, while selection under heterogeneous local ecological conditions or along strong gradients may counteract this tendency. Congeneric, externally-fertilizing fucoid brown algae occur as distinct morphotypes along intertidal exposure gradients despite gene flow. Combining analyses of genetic and phenotypic traits, we investigate the potential for physiological resilience to emersion stressors to act as an isolating mechanism in the face of gene flow. Along vertical exposure gradients in the intertidal zone of Northern Portugal and Northwest France, the mid-low shore species Fucus vesiculosus, the upper shore species Fucus spiralis, and an intermediate distinctive morphotype of F. spiralis var. platycarpus were morphologically characterized. Two diagnostic microsatellite loci recovered 3 genetic clusters consistent with prior morphological assignment. Phylogenetic analysis based on single nucleotide polymorphisms in 14 protein coding regions unambiguously resolved 3 clades; sympatric F. vesiculosus, F. spiralis, and the allopatric (in southern Iberia population of F. spiralis var. platycarpus. In contrast, the sympatric F. spiralis var. platycarpus (from Northern Portugal was distributed across the 3 clades, strongly suggesting hybridization/introgression with both other entities. Common garden experiments showed that physiological resilience following exposure to desiccation/heat stress differed significantly between the 3 sympatric genetic taxa; consistent with their respective vertical distribution on steep environmental clines in exposure time. Phylogenetic analyses indicate that F. spiralis var. platycarpus is a distinct entity in allopatry, but that extensive gene flow occurs with both higher and lower shore species in sympatry. Experimental results suggest that strong selection on physiological traits across steep intertidal exposure gradients

  2. Strong Coupling Holography

    CERN Document Server

    Dvali, Gia

    2009-01-01

    We show that whenever a 4-dimensional theory with N particle species emerges as a consistent low energy description of a 3-brane embedded in an asymptotically-flat (4+d)-dimensional space, the holographic scale of high-dimensional gravity sets the strong coupling scale of the 4D theory. This connection persists in the limit in which gravity can be consistently decoupled. We demonstrate this effect for orbifold planes, as well as for the solitonic branes and string theoretic D-branes. In all cases the emergence of a 4D strong coupling scale from bulk holography is a persistent phenomenon. The effect turns out to be insensitive even to such extreme deformations of the brane action that seemingly shield 4D theory from the bulk gravity effects. A well understood example of such deformation is given by large 4D Einstein term in the 3-brane action, which is known to suppress the strength of 5D gravity at short distances and change the 5D Newton's law into the four-dimensional one. Nevertheless, we observe that the ...

  3. Species associations in a species-rich subtropical forest were not well-explained by stochastic geometry of biodiversity.

    Science.gov (United States)

    Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong

    2014-01-01

    The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure.

  4. Species associations in a species-rich subtropical forest were not well-explained by stochastic geometry of biodiversity.

    Directory of Open Access Journals (Sweden)

    Qinggang Wang

    Full Text Available The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1 the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2 The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3 Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47% of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4 We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66% than shrub species (18%. We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure.

  5. Phenological differences among selected residents and long-distance migrant bird species in central Europe

    Science.gov (United States)

    Bartošová, Lenka; Trnka, Miroslav; Bauer, Zdeněk; Možný, Martin; Štěpánek, Petr; Žalud, Zdeněk

    2014-07-01

    The phenological responses to climate of residents and migrants (short- and long-distance) differ. Although few previous studies have focussed on this topic, the agree that changes in phenology are more apparent for residents than for long-distance migrants. We analysed the breeding times of two selected residents ( Sitta europaea, Parus major) and one long-distance migrant ( Ficedula albicollis) from 1961 to 2007 in central Europe. The timing of the phenophases of all three bird species showed a significant advance to earlier times. Nevertheless, the most marked shift was observed for the long-distance migrant (1.9 days per decade on average in mean laying date with linearity at the 99.9 % confidence level). In contrast, the shifts shown by the residents were smaller (1.6 days for S. europaea and 1.5 days for P. major also on average in mean laying date for both, with linearity at the 95 % confidence level). Spearman rank correlation coefficients calculated for pairs of phenophases of given bird species in 20-year subsamples (e.g. 1961-1980, 1962-1981) showed higher phenological separation between the residents and the migrant. This separation is most apparent after the 1980s. Thus, our results indicate that the interconnections between the studied phenological stages of the three bird species are becoming weaker.

  6. Genomic signatures of local directional selection in a high gene flow marine organism, the Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Hansen, Jakob Hemmer; Poulsen, Nina Aagaard

    2009-01-01

    -associated single nucleotide polymorphisms (SNPs) for evidence of selection in local populations of Atlantic cod (Gadus morhua L.) across the species distribution. Results: Our global genome scan analysis identified eight outlier gene loci with very high statistical support, likely to be subject to directional...... selection in local demes, or closely linked to loci under selection. Likewise, on a regional south/north transect of central and eastern Atlantic populations, seven loci displayed strongly elevated levels of genetic differentiation. Selection patterns among populations appeared to be relatively widespread...

  7. Marker-assisted selection for improving quantitative traits of forage crops

    International Nuclear Information System (INIS)

    Dolstra, O.; Denneboom, C.; Vos, Ab L.F. de; Loo, E.N. van

    2007-01-01

    This chapter provides an example of using marker-assisted selection (MAS) for breeding perennial ryegrass (Lolium perenne), a pasture species. A mapping study had shown the presence of quantitative trait loci (QTL) for seven component traits of nitrogen use efficiency (NUE). The NUE-related QTL clustered in five chromosomal regions. These QTL were validated through divergent marker selection in an F 2 population. The criterion used for plant selection was a summation index based on the number of positive QTL alleles. The evaluation studies showed a strong indirect response of marker selection on NUE. Marker selection using a summation index such as applied here proved to be very effective for difficult and complex quantitative traits such as NUE. The strategy is easily applicable in outbreeding crops to raise the frequency of several desirable alleles simultaneously. (author)

  8. Seasonal variation in soil seed bank size and species composition of selected habitat types in Maputaland, South Africa

    Directory of Open Access Journals (Sweden)

    M. J. S. Kellerman

    2007-08-01

    Full Text Available Seasonal variation in seed bank size and species composition of five selected habitat types within the Tembe Elephant Park. South Africa, was investigated. At three-month intervals, soil samples were randomly collected from five different habitat types: a, Licuati forest; b, Licuati thicket; c, a bare or sparsely vegetated zone surrounding the forest edge, referred to as the forest/grassland ecotone; d, grassland; and e, open woodland. Most species in the seed bank flora were either grasses, sedges, or forbs, with hardly any evidence of woody species. The Licuati forest and thicket soils produced the lowest seed densities in all seasons.  Licuati forest and grassland seed banks showed a two-fold seasonal variation in size, those of the Licuati thicket and woodland a three-fold variation in size, whereas the forest/grassland ecotone maintained a relatively large seed bank all year round. The woodland seed bank had the highest species richness, whereas the Licuati forest and thicket soils were poor in species. Generally, it was found that the greatest correspondence in species composition was between the Licuati forest and thicket, as well as the forest/grassland ecotone and grassland seed bank floras.

  9. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino

  10. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators’ preferences than organic acids and inorganic ions

    Science.gov (United States)

    Tiedge, Kira; Lohaus, Gertrud

    2017-01-01

    Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats) to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold). As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context, nectar sugars and amino

  11. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.

    Directory of Open Access Journals (Sweden)

    Kira Tiedge

    Full Text Available Floral nectar contains mainly sugars but also amino acids, organic acids, inorganic ions and secondary compounds to attract pollinators. The genus Nicotiana exhibits great diversity among species in floral morphology, flowering time, nectar compositions, and predominant pollinators. We studied nectar samples of 20 Nicotiana species, composed equally of day- and night-flowering plants and attracting different groups of pollinators (e.g. hummingbirds, moths or bats to investigate whether sugars, amino acids, organic acids and inorganic ions are influenced by pollinator preferences. Glucose, fructose and sucrose were the only sugars found in the nectar of all examined species. Sugar concentration of the nectar of day-flowering species was 20% higher and amino acid concentration was 2-3-fold higher compared to the nectar of night-flowering species. The sucrose-to-hexose ratio was significantly higher in night-flowering species and the relative share of sucrose based on the total sugar correlated with the flower tube length in the nocturnal species. Flowers of different tobacco species contained varying volumes of nectar which led to about 150-fold higher amounts of total sugar per flower in bat- or sunbird-pollinated species than in bee-pollinated or autogamous species. This difference was even higher for total amino acids per flower (up to 1000-fold. As a consequence, some Nicotiana species invest large amounts of organic nitrogen for certain pollinators. Higher concentrations of inorganic ions, predominantly anions, were found in nectar of night-flowering species. Therefore, higher anion concentrations were also associated with pollinator types active at night. Malate, the main organic acid, was present in all nectar samples but the concentration was not correlated with pollinator type. In conclusion, statistical analyses revealed that pollinator types have a stronger effect on nectar composition than phylogenetic relations. In this context

  12. Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data

    Directory of Open Access Journals (Sweden)

    Guisan Antoine

    2009-04-01

    Full Text Available Abstract Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a real absences b pseudo-absences selected randomly from the background and c two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97, and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have

  13. Linking Keystone Species and Functional Groups: A New Operational Definition of the Keystone Species Concept

    OpenAIRE

    Robert D. Davic

    2003-01-01

    The concept of the "keystone species" is redefined to allow for the a priori prediction of these species within ecosystems. A keystone species is held to be a strongly interacting species whose top-down effect on species diversity and competition is large relative to its biomass dominance within a functional group. This operational definition links the community importance of keystone species to a specific ecosystem process, e.g., the regulation of species diversity, within functional groups ...

  14. Aquaporins in the wild: natural genetic diversity and selective pressure in the PIP gene family in five Neotropical tree species

    Directory of Open Access Journals (Sweden)

    Vendramin Giovanni G

    2010-06-01

    Full Text Available Abstract Background Tropical trees undergo severe stress through seasonal drought and flooding, and the ability of these species to respond may be a major factor in their survival in tropical ecosystems, particularly in relation to global climate change. Aquaporins are involved in the regulation of water flow and have been shown to be involved in drought response; they may therefore play a major adaptive role in these species. We describe genetic diversity in the PIP sub-family of the widespread gene family of Aquaporins in five Neotropical tree species covering four botanical families. Results PIP Aquaporin subfamily genes were isolated, and their DNA sequence polymorphisms characterised in natural populations. Sequence data were analysed with statistical tests of standard neutral equilibrium and demographic scenarios simulated to compare with the observed results. Chloroplast SSRs were also used to test demographic transitions. Most gene fragments are highly polymorphic and display signatures of balancing selection or bottlenecks; chloroplast SSR markers have significant statistics that do not conform to expectations for population bottlenecks. Although not incompatible with a purely demographic scenario, the combination of all tests tends to favour a selective interpretation of extant gene diversity. Conclusions Tropical tree PIP genes may generally undergo balancing selection, which may maintain high levels of genetic diversity at these loci. Genetic variation at PIP genes may represent a response to variable environmental conditions.

  15. Differential strengths of selection on S-RNases from Physalis and Solanum (Solanaceae

    Directory of Open Access Journals (Sweden)

    Kohn Joshua R

    2011-08-01

    testing differential selection across populations or species. These tests appear robust to the levels of polymorphism found in diverse S-allele collections subject to strong balancing selection. As predicted, the intensity of selection at the S-locus was higher in the taxon with more recent S-locus diversification. This is the first confirmation by statistical test of differing selection intensities among self-incompatibility alleles from different populations or species.

  16. Prey selection of Tawny owls (Strix aluco) on Yellow necked mouse and Bank Vole

    DEFF Research Database (Denmark)

    Forsom, H. M.; Sunde, P.; Overskaug, K.

    As predators owls may have a strong impact on mortality of their favourite prey, and may therefore act as important selective agents on their prey species. Little is known, however, about whether owls choose prey randomly or if some prey items suffer a higher risk of predation due to certain life...

  17. Diet and density dependent competition affect larval performance and oviposition site selection in the mosquito species Aedes albopictus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Yoshioka Miho

    2012-10-01

    Full Text Available Abstract Background Oviposition-site choice is an essential component of the life history of all mosquito species. According to the oviposition-preference offspring-performance (P-P hypothesis, if optimizing offspring performance and fitness ensures high overall reproductive fitness for a given species, the female should accurately assess details of the heterogeneous environment and lay her eggs preferentially in sites with conditions more suitable to offspring. Methods We empirically tested the P-P hypothesis using the mosquito species Aedes albopictus by artificially manipulating two habitat conditions: diet (measured as mg of food added to a container and conspecific density (CD; number of pre-existing larvae of the same species. Immature development (larval mortality, development time to pupation and time to emergence and fitness (measured as wing length were monitored from first instar through adult emergence using a factorial experimental design over two ascending gradients of diet (2.0, 3.6, 7.2 and 20 mg food/300 ml water and CD (0, 20, 40 and 80 larvae/300 ml water. Treatments that exerted the most contrasting values of larval performance were recreated in a second experiment consisting of single-female oviposition site selection assay. Results Development time decreased as food concentration increased, except from 7.2 mg to 20.0 mg (Two-Way CR ANOVA Post-Hoc test, P > 0.1. Development time decreased also as conspecific density increased from zero to 80 larvae (Two-Way CR ANOVA Post-Hoc test, P . Combined, these results support the role of density-dependent competition for resources as a limiting factor for mosquito larval performance. Oviposition assays indicated that female mosquitoes select for larval habitats with conspecifics and that larval density was more important than diet in driving selection for oviposition sites. Conclusions This study supports predictions of the P-P hypothesis and provides a mechanistic understanding

  18. Impact of strong selection for the PrP major gene on genetic variability of four French sheep breeds (Open Access publication

    Directory of Open Access Journals (Sweden)

    Pantano Thais

    2008-11-01

    Full Text Available Abstract Effective selection on the PrP gene has been implemented since October 2001 in all French sheep breeds. After four years, the ARR "resistant" allele frequency increased by about 35% in young males. The aim of this study was to evaluate the impact of this strong selection on genetic variability. It is focussed on four French sheep breeds and based on the comparison of two groups of 94 animals within each breed: the first group of animals was born before the selection began, and the second, 3–4 years later. Genetic variability was assessed using genealogical and molecular data (29 microsatellite markers. The expected loss of genetic variability on the PrP gene was confirmed. Moreover, among the five markers located in the PrP region, only the three closest ones were affected. The evolution of the number of alleles, heterozygote deficiency within population, expected heterozygosity and the Reynolds distances agreed with the criteria from pedigree and pointed out that neutral genetic variability was not much affected. This trend depended on breed, i.e. on their initial states (population size, PrP frequencies and on the selection strategies for improving scrapie resistance while carrying out selection for production traits.

  19. Selection for rapid embryo development correlates with embryo exposure to maternal androgens among passerine birds.

    Science.gov (United States)

    Schwabl, Hubert; Palacios, Maria G; Martin, Thomas E

    2007-08-01

    Greater offspring predation favors evolution of faster development among species. We hypothesized that greater offspring predation exerts selection on mothers to increase levels of anabolic androgens in egg yolks to achieve faster development. Here, we tested whether (1) concentrations of yolk androgens in passerine species were associated with offspring predation and (2) embryo and nestling development rates were associated with yolk androgen concentrations. We examined three androgens that increase in potency along the synthesis pathway: androstenedione (A(4)) to testosterone (T) to 5 alpha -dihydrotestosterone (5 alpha -DHT). Concentrations of none of these steroids were related to clutch size; only A(4) was allometrically related to egg volume. Species that experience greater predation showed higher yolk concentrations of T and 5 alpha -DHT. Higher concentrations of T and particularly 5 alpha -DHT were strongly correlated with faster development during the embryo period and less so during the nestling period. Development rates were most strongly correlated with 5 alpha -DHT, suggesting that potency increases along the androgen synthesis pathway and that effects are mediated by the androgen receptor pathway. These results are consistent with the hypothesis that selection for faster development by time-dependent offspring mortality may be achieved epigenetically by varying embryo exposure to maternal anabolic steroids.

  20. Sex and caste-specific variation in compound eye morphology of five honeybee species.

    Directory of Open Access Journals (Sweden)

    Martin Streinzer

    Full Text Available Ranging from dwarfs to giants, the species of honeybees show remarkable differences in body size that have placed evolutionary constrains on the size of sensory organs and the brain. Colonies comprise three adult phenotypes, drones and two female castes, the reproductive queen and sterile workers. The phenotypes differ with respect to tasks and thus selection pressures which additionally constrain the shape of sensory systems. In a first step to explore the variability and interaction between species size-limitations and sex and caste-specific selection pressures in sensory and neural structures in honeybees, we compared eye size, ommatidia number and distribution of facet lens diameters in drones, queens and workers of five species (Apis andreniformis, A. florea, A. dorsata, A. mellifera, A. cerana. In these species, male and female eyes show a consistent sex-specific organization with respect to eye size and regional specialization of facet diameters. Drones possess distinctly enlarged eyes with large dorsal facets. Aside from these general patterns, we found signs of unique adaptations in eyes of A. florea and A. dorsata drones. In both species, drone eyes are disproportionately enlarged. In A. dorsata the increased eye size results from enlarged facets, a likely adaptation to crepuscular mating flights. In contrast, the relative enlargement of A. florea drone eyes results from an increase in ommatidia number, suggesting strong selection for high spatial resolution. Comparison of eye morphology and published mating flight times indicates a correlation between overall light sensitivity and species-specific mating flight times. The correlation suggests an important role of ambient light intensities in the regulation of species-specific mating flight times and the evolution of the visual system. Our study further deepens insights into visual adaptations within the genus Apis and opens up future perspectives for research to better understand the

  1. Selective Tree-ring Models: A Novel Method for Reconstructing Streamflow Using Tree Rings

    Science.gov (United States)

    Foard, M. B.; Nelson, A. S.; Harley, G. L.

    2017-12-01

    Surface water is among the most instrumental and vulnerable resources in the Northwest United States (NW). Recent observations show that overall water quantity is declining in streams across the region, while extreme flooding events occur more frequently. Historical streamflow models inform probabilities of extreme flow events (flood or drought) by describing frequency and duration of past events. There are numerous examples of tree-rings being utilized to reconstruct streamflow in the NW. These models confirm that tree-rings are highly accurate at predicting streamflow, however there are many nuances that limit their applicability through time and space. For example, most models predict streamflow from hydrologically altered rivers (e.g. dammed, channelized) which may hinder our ability to predict natural prehistoric flow. They also have a tendency to over/under-predict extreme flow events. Moreover, they often neglect to capture the changing relationships between tree-growth and streamflow over time and space. To address these limitations, we utilized national tree-ring and streamflow archives to investigate the relationships between the growth of multiple coniferous species and free-flowing streams across the NW using novel species-and site-specific streamflow models - a term we coined"selective tree-ring models." Correlation function analysis and regression modeling were used to evaluate the strengths and directions of the flow-growth relationships. Species with significant relationships in the same direction were identified as strong candidates for selective models. Temporal and spatial patterns of these relationships were examined using running correlations and inverse distance weighting interpolation, respectively. Our early results indicate that (1) species adapted to extreme climates (e.g. hot-dry, cold-wet) exhibit the most consistent relationships across space, (2) these relationships weaken in locations with mild climatic variability, and (3) some

  2. Mapping of incidence and management of invasive species Fallopia japonica at selected locations of northwestern Slovakia

    International Nuclear Information System (INIS)

    Paukova, Z.; Krskova, L.

    2011-01-01

    Mapping of one of the most dangerous invasive species Fallopia japonica was conducted at selected locations of northwestern Slovakia: in the cadastral territory of Zazriva, in the village Parnica towards Kralovany, in the village Kralovany and the city of Dolny Kubin - Zaskalie, stretch Timravina in the Lower Orava in late summer and early autumn 2009. We recorded by field survey 24 invading Japanese knotweed in the area of 12.238 m 2 . (authors)

  3. Species-Level Para- and Polyphyly in DNA Barcode Gene Trees: Strong Operational Bias in European Lepidoptera.

    Science.gov (United States)

    Mutanen, Marko; Kivelä, Sami M; Vos, Rutger A; Doorenweerd, Camiel; Ratnasingham, Sujeevan; Hausmann, Axel; Huemer, Peter; Dincă, Vlad; van Nieukerken, Erik J; Lopez-Vaamonde, Carlos; Vila, Roger; Aarvik, Leif; Decaëns, Thibaud; Efetov, Konstantin A; Hebert, Paul D N; Johnsen, Arild; Karsholt, Ole; Pentinsaari, Mikko; Rougerie, Rodolphe; Segerer, Andreas; Tarmann, Gerhard; Zahiri, Reza; Godfray, H Charles J

    2016-11-01

    The proliferation of DNA data is revolutionizing all fields of systematic research. DNA barcode sequences, now available for millions of specimens and several hundred thousand species, are increasingly used in algorithmic species delimitations. This is complicated by occasional incongruences between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service "Monophylizer" to detect non-monophyly in phylogenetic trees and used it to ascertain the incidence of species non-monophyly in COI (a.k.a. cox1) barcode sequence data from 4977 species and 41,583 specimens of European Lepidoptera, the largest data set of DNA barcodes analyzed from this regard. Particular attention was paid to accurate species identification to ensure data integrity. We investigated the effects of tree-building method, sampling effort, and other methodological issues, all of which can influence estimates of non-monophyly. We found a 12% incidence of non-monophyly, a value significantly lower than that observed in previous studies. Neighbor joining (NJ) and maximum likelihood (ML) methods yielded almost equal numbers of non-monophyletic species, but 24.1% of these cases of non-monophyly were only found by one of these methods. Non-monophyletic species tend to show either low genetic distances to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling effort, we estimate that the true incidence of non-monophyly is ∼23%, but with operational factors still being included. Within the operational factors, we separately assessed the

  4. Searching for evidence of selection in avian DNA barcodes.

    Science.gov (United States)

    Kerr, Kevin C R

    2011-11-01

    The barcode of life project has assembled a tremendous number of mitochondrial cytochrome c oxidase I (COI) sequences. Although these sequences were gathered to develop a DNA-based system for species identification, it has been suggested that further biological inferences may also be derived from this wealth of data. Recurrent selective sweeps have been invoked as an evolutionary mechanism to explain limited intraspecific COI diversity, particularly in birds, but this hypothesis has not been formally tested. In this study, I collated COI sequences from previous barcoding studies on birds and tested them for evidence of selection. Using this expanded data set, I re-examined the relationships between intraspecific diversity and interspecific divergence and sampling effort, respectively. I employed the McDonald-Kreitman test to test for neutrality in sequence evolution between closely related pairs of species. Because amino acid sequences were generally constrained between closely related pairs, I also included broader intra-order comparisons to quantify patterns of protein variation in avian COI sequences. Lastly, using 22 published whole mitochondrial genomes, I compared the evolutionary rate of COI against the other 12 protein-coding mitochondrial genes to assess intragenomic variability. I found no conclusive evidence of selective sweeps. Most evidence pointed to an overall trend of strong purifying selection and functional constraint. The COI protein did vary across the class Aves, but to a very limited extent. COI was the least variable gene in the mitochondrial genome, suggesting that other genes might be more informative for probing factors constraining mitochondrial variation within species. © 2011 Blackwell Publishing Ltd.

  5. Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC Genes.

    Directory of Open Access Journals (Sweden)

    Maciej Jan Ejsmond

    2015-11-01

    Full Text Available Major Histocompatibility Complex (MHC genes code for proteins involved in the incitation of the adaptive immune response in vertebrates, which is achieved through binding oligopeptides (antigens of pathogenic origin. Across vertebrate species, substitutions of amino acids at sites responsible for the specificity of antigen binding (ABS are positively selected. This is attributed to pathogen-driven balancing selection, which is also thought to maintain the high polymorphism of MHC genes, and to cause the sharing of allelic lineages between species. However, the nature of this selection remains controversial. We used individual-based computer simulations to investigate the roles of two phenomena capable of maintaining MHC polymorphism: heterozygote advantage and host-pathogen arms race (Red Queen process. Our simulations revealed that levels of MHC polymorphism were high and driven mostly by the Red Queen process at a high pathogen mutation rate, but were low and driven mostly by heterozygote advantage when the pathogen mutation rate was low. We found that novel mutations at ABSs are strongly favored by the Red Queen process, but not by heterozygote advantage, regardless of the pathogen mutation rate. However, while the strong advantage of novel alleles increased the allele turnover rate, under a high pathogen mutation rate, allelic lineages persisted for a comparable length of time under Red Queen and under heterozygote advantage. Thus, when pathogens evolve quickly, the Red Queen is capable of explaining both positive selection and long coalescence times, but the tension between the novel allele advantage and persistence of alleles deserves further investigation.

  6. New method of measuring lichen respiration: response of selected species to temperature, pH and sulphur dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Baddeley, M S; Ferry, B W; Finegan, E J

    1971-01-01

    The respiration of selected lichens and their response to temperature, pH and sulphur dioxide concentration were investigated in aqueous solution using an oxygen electrode. Respiration rates increased to a maximum at 40/sup 0/ C although some individual species showed variations from this general pattern. The optimal pH for respiration was found to be 4.2 except in Hypogymnia physodes (3.2) and Ramalina fastigiata (5.2). Sulfur dioxide at concentrations similar to those likely to be encountered in heavily polluted areas in nature had marked inhibitory effects of the respiration rate of all species investigated but as these variations did not entirely correspond to the tolerances of the species in the field some other factors must also be involved in the sensitivity of lichens to sulphur dioxide pollution. The advantages of using an oxygen electrode rather than manometric or other techniques in studies on the respiration rate of lichens are discussed. 29 references, 3 figures, 2 tables.

  7. Microhabitat selection by three common bird species of montane farmlands in Northern Greece.

    Science.gov (United States)

    Tsiakiris, Rigas; Stara, Kalliopi; Pantis, John; Sgardelis, Stefanos

    2009-11-01

    Common farmland birds are declining throughout Europe; however, marginal farmlands that escaped intensification or land abandonment remain a haven for farmland species in some Mediterranean mountains. The purpose of this study is to identify the most important anthropogenic microhabitat characteristics for Red-Backed Shrike (Lanius collurio), Corn Bunting (Miliaria calandra) and Common Whitethroat (Sylvia communis) in three such areas within the newly established Northern Pindos National Park. We compare land use structural and physiognomic characteristics of the habitat within 133 plots containing birds paired with randomly selected "non-bird" plots. Using logistic regression and classification-tree models we identify the specific habitat requirements for each of the three birds. The three species show a preference for agricultural mosaics dominated by rangelands with scattered shrub or short trees mixed with arable land. Areas with dikes and dirt roads are preferred by all three species, while the presence of fences and periodically burned bushes and hedges are of particular importance for Red-Backed Shrike. Across the gradient of vegetation density and height, M. calandra is mostly found in grasslands with few dwarf shrubs and short trees, S. communis in places with more dense and tall vegetation of shrub, trees and hedges, and L. collurio, being a typical bird of ecotones, occurs in both habitats and in intermediate situations. In all cases those requirements are associated with habitat features maintained either directly or indirectly by the traditional agricultural activities in the area and particularly by the long established extensive controlled grazing that prevent shrub expansion.

  8. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia

    Directory of Open Access Journals (Sweden)

    Manoj Kumar

    2017-10-01

    Full Text Available Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, but they differ in seasonality of solar radiation and in soil water balance due to underlying permafrost in the Arctic. Arcto-alpine plant species are well-adapted to the low temperatures that prevail in their habitats, and plant growth is mainly limited by the availability of nutrients, in particular nitrogen, due to slow mineralization. Nitrogen fixing bacteria are likely important for plant growth in these habitats, but very little is known of these bacteria or forces shaping their communities. In this study, we characterized the potential nitrogen fixing bacterial (PNFB communities associated with two arcto-alpine pioneer plant species, Oxyria digyna (mountain sorrel and Saxifraga oppositifolia (blue saxifrage, in three climate regions. Both of these plants readily colonize low nutrient mineral soils. Our goal was to investigate how climate (region and, on the other hand, host plant and plant species shape these communities. To our knowledge, this is the first comprehensive study describing PNFB communities associated with pioneer plants in different arcto-alpine biomes. Replicate samples were taken from two arctic regions, Kilpisjärvi and Ny-Ålesund, and one alpine region, Mayrhofen. In these, the PNFB communities in the bulk and rhizosphere soils and the plant endospheres were characterized by nifH-targeted PCR and massive parallel sequencing. The data revealed strong effects of climatic region on the dominating nitrogen fixers. Specifically, nifH sequences related to Geobacter (δ-Proteobacteria were present in high relative abundances in the nitrogen-fixing communities in the Mayrhofen and Kilpisjärvi regions, while members of the Clostridiales prevailed in the Kilpisjärvi and Ny-Ålesund regions. The bulk and

  9. Strong Regionality and Dominance of Anaerobic Bacterial Taxa Characterize Diazotrophic Bacterial Communities of the Arcto-Alpine Plant Species Oxyria digyna and Saxifraga oppositifolia.

    Science.gov (United States)

    Kumar, Manoj; van Elsas, Jan Dirk; Nissinen, Riitta

    2017-01-01

    Arctic and alpine biomes are most often strongly nitrogen-limited, and hence biological nitrogen fixation is a strong driver of these ecosystems. Both biomes are characterized by low temperatures and short growing seasons, but they differ in seasonality of solar radiation and in soil water balance due to underlying permafrost in the Arctic. Arcto-alpine plant species are well-adapted to the low temperatures that prevail in their habitats, and plant growth is mainly limited by the availability of nutrients, in particular nitrogen, due to slow mineralization. Nitrogen fixing bacteria are likely important for plant growth in these habitats, but very little is known of these bacteria or forces shaping their communities. In this study, we characterized the potential nitrogen fixing bacterial (PNFB) communities associated with two arcto-alpine pioneer plant species, Oxyria digyna (mountain sorrel) and Saxifraga oppositifolia (blue saxifrage), in three climate regions. Both of these plants readily colonize low nutrient mineral soils. Our goal was to investigate how climate (region) and, on the other hand, host plant and plant species shape these communities. To our knowledge, this is the first comprehensive study describing PNFB communities associated with pioneer plants in different arcto-alpine biomes. Replicate samples were taken from two arctic regions, Kilpisjärvi and Ny-Ålesund, and one alpine region, Mayrhofen. In these, the PNFB communities in the bulk and rhizosphere soils and the plant endospheres were characterized by nifH -targeted PCR and massive parallel sequencing. The data revealed strong effects of climatic region on the dominating nitrogen fixers. Specifically, nifH sequences related to Geobacter (δ- Proteobacteria ) were present in high relative abundances in the nitrogen-fixing communities in the Mayrhofen and Kilpisjärvi regions, while members of the Clostridiales prevailed in the Kilpisjärvi and Ny-Ålesund regions. The bulk and rhizosphere soil

  10. Recovery after 25 years of the tree and palms species diversity on a selectively logged forest in a Venezuelan lowland ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Lozada, J.R.; Arends, E.; Sánchez, D.; Villarreal, A.; Guevara, J.; Soriano, P.; Costa, M.

    2016-07-01

    Aim of the study: We evaluate palm and tree species diversity in a floodplain forest and the changes affecting the plots subjected to different intensities of selective logging. Area of study: The western alluvial plains of Venezuela. Materials and Methods: A randomized complete blocks design was established 25 years ago with three felling treatments (trees with diameter greater than 20 cm, 40 cm and 60 cm). Each treatment had three replications, using 1 ha permanent plots. We have measured all trees and palms bigger than over 10 cm in diameter. The data set was used to calculate the Importance Value Index of each species, the Shannon-Wiener index, the Hill Numbers and the Chao-Sørensen index. Main results: Disturbance increases the importance value index of pioneer species like Cecropia peltata, Ochroma pyramidale and Triplaris americana. All treatments produce changes on the floristic diversity but most of them are not significant. Only the high impact treatment causes a decrease in the species richness, but after 5 year of recovery this parameter is close to its previous levels (N0= 43.5). In logged forests, species loss (9.2%) is lower than in the control plots (11.7%) and is also lower than the rate of occurrence of species input (14.6%). Research highlights: In these logged forests restoration of diversity is acceptable because is higher than 91% (Chao-Sørensen index). Selective logging, with low and medium intensity, is a disturbance that works in a similar way to natural disturbances. All the diversity indexes recovered the pre-harvest level values. (Author)

  11. Positive selection and propeptide repeats promote rapid interspecific divergence of a gastropod sperm protein.

    Science.gov (United States)

    Hellberg, M E; Moy, G W; Vacquier, V D

    2000-03-01

    Male-specific proteins have increasingly been reported as targets of positive selection and are of special interest because of the role they may play in the evolution of reproductive isolation. We report the rapid interspecific divergence of cDNA encoding a major acrosomal protein of unknown function (TMAP) of sperm from five species of teguline gastropods. A mitochondrial DNA clock (calibrated by congeneric species divided by the Isthmus of Panama) estimates that these five species diverged 2-10 MYA. Inferred amino acid sequences reveal a propeptide that has diverged rapidly between species. The mature protein has diverged faster still due to high nonsynonymous substitution rates (> 25 nonsynonymous substitutions per site per 10(9) years). cDNA encoding the mature protein (89-100 residues) shows evidence of positive selection (Dn/Ds > 1) for 4 of 10 pairwise species comparisons. cDNA and predicted secondary-structure comparisons suggest that TMAP is neither orthologous nor paralogous to abalone lysin, and thus marks a second, phylogenetically independent, protein subject to strong positive selection in free-spawning marine gastropods. In addition, an internal repeat in one species (Tegula aureotincta) produces a duplicated cleavage site which results in two alternatively processed mature proteins differing by nine amino acid residues. Such alternative processing may provide a mechanism for introducing novel amino acid sequence variation at the amino-termini of proteins. Highly divergent TMAP N-termini from two other tegulines (Tegula regina and Norrisia norrisii) may have originated by such a mechanism.

  12. Character’s Selection of Leaf Morphology in Some Families (Tree Habit In Sumatra Region for Species Identification

    Directory of Open Access Journals (Sweden)

    Saida Rasnovi

    2014-04-01

    Full Text Available Identification is a basic activity and one of primary objective on systematic. For plant biodiversity studies, it was the first steps that researcher performed before studying any topics in the research area. Unfortunately, species identification is usually a time consuming activity. One of the main objectives of this study was to obtain a set of leaf morphology characters that were useful and efficient enough for species identification, especially on the tree habits group in order to reduce time consuming for the identification species.  All of the leaf morphology characters were selected by correlation coefficient and separation coefficient values. Besides of that, the stability, simplicity and validity of the characters were also part of concern. The characters that had high value of separation coefficient and low value of correlation coefficient would be added one by one as in their rank, until the value of the combination separation coefficient was equal to 1 (100%. The result of this study suggested that 30 from 92 characters of leaf morphology were recommended as a set of characters that useful and efficient enough for species identification.

  13. Comparison of nest-site selection patterns of different sympatric raptor species as a tool for their conservation

    Directory of Open Access Journals (Sweden)

    Poirazidis, K.

    2007-12-01

    Full Text Available In this study the nest-site selection patterns of four tree-nesting sympatric raptor species in Dadia National Park (Greece were compared in order to provide a sound conservation tool for their long-term management in the area. The species studied were the Black vulture (Aegypius monachus, the Lesser-spotted eagle (Aquila pomarina, the Booted eagle (Hieraaetus pennatus and the Goshawk (Accipiter gentilis. Twenty-six variables illustrating the landscape context and vegetation structure of nesting sites were analysed. Multivariate-ANOVA and Discriminant Function Analysis were used to test for significant differentiations in nest-site characteristics among the species. The species studied were initially differentiated by geomorphology and distance to foraging areas. Once these were determined their nesting areas were established according to forest structure. Our results indicate that forest management should integrate the preservation of mature forest stands with sparse canopy and forest heterogeneity in order to conserve suitable nesting habitats for the raptors. Specific conservation measures such as restriction of road construction should be implemented in order to protect the active nests and provisions should be made for adequate nesting sites for the Black vulture, which is sensitive to human disturbance.

  14. Tuning the stereo-hindrance of a curcumin scaffold for the selective imaging of the soluble forms of amyloid beta species.

    Science.gov (United States)

    Li, Yuyan; Yang, Jian; Liu, Hongwu; Yang, Jing; Du, Lei; Feng, Haiwei; Tian, Yanli; Cao, Jianqin; Ran, Chongzhao

    2017-11-01

    Amyloid peptides and proteins are associated with the pathologies of numerous diseases. In the progression of a disease, amyloids exist in soluble and insoluble forms, which are the dominant species at different stages of the disease and they have different degrees of toxicity. However, differentiating between the soluble and insoluble forms is very challenging with small molecule probes due to multiple obstacles that need to be overcome. Inspired by the recognition principle of antibodies for sAβ, we hypothesized that the accessibility/tightness of soluble and insoluble amyloids could be utilized to design imaging probes to recognize different amyloid forms and the stereo-hindrance tuning strategy could be used to design imaging probes for selectively detecting the soluble amyloid beta (sAβ) species in Alzheimer's disease (AD). Herein, we demonstrated that tuning the stereo-hindrance of the phenoxy-alkyl chains at the 4-position of a curcumin scaffold could lead to certain selectivity for sAβ over insoluble Aβs (insAβ). Among the designed compounds, CRANAD-102 showed a 68-fold higher affinity for sAβ than for insAβ (7.5 ± 10 nM vs. 505.9 ± 275.9 nM). Moreover, our imaging data indicated that CRANAD-102 was indeed capable of detecting sAβ in vivo using 4 month old APP/PS1 mice, in which sAβ is the predominant species in the brain. In addition, we also demonstrated that CRANAD-102 could be used to monitor the increase in sAβ loading from the ages of 4 months old to 12 months old. We believe that CRANAD-102 can be a useful probe for selectively detecting sAβ species in AD and that our probe designing strategy can be applied to other amyloids and will have tremendous impact on AD drug development and other amyloid research.

  15. Kinetic evolutionary behavior of catalysis-select migration

    International Nuclear Information System (INIS)

    Wu Yuan-Gang; Lin Zhen-Quan; Ke Jian-Hong

    2012-01-01

    We propose a catalysis-select migration driven evolution model of two-species (A- and B-species) aggregates, where one unit of species A migrates to species B under the catalysts of species C, while under the catalysts of species D the reaction will become one unit of species B migrating to species A. Meanwhile the catalyst aggregates of species C perform self-coagulation, as do the species D aggregates. We study this catalysis-select migration driven kinetic aggregation phenomena using the generalized Smoluchowski rate equation approach with C species catalysis-select migration rate kernel K(k;i,j) = Kkij and D species catalysis-select migration rate kernel J(k;i,j)= Jkij. The kinetic evolution behaviour is found to be dominated by the competition between the catalysis-select immigration and emigration, in which the competition is between JD 0 and KC 0 (D 0 and C 0 are the initial numbers of the monomers of species D and C, respectively). When JD 0 −KC 0 > 0, the aggregate size distribution of species A satisfies the conventional scaling form and that of species B satisfies a modified scaling form. And in the case of JD 0 −KC 0 0 −KC 0 > 0 case. (interdisciplinary physics and related areas of science and technology)

  16. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    Science.gov (United States)

    Sand, Håkan; Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.

  17. Enhanced selectivity in non-heme iron catalysed oxidation of alkanes with peracids : evidence for involvement of Fe(IV)=O species

    NARCIS (Netherlands)

    Berg, Tieme A. van den; Boer, Johannes W. de; Browne, Wesley R.; Roelfes, Gerard; Feringa, Bernard

    2004-01-01

    Catalytic alkane oxidation with high selectivity using peracids and an (N4Py)Fe complex is presented and the role of [(N4Py)Fe(IV)=O]2+ species, molecular oxygen and hydroxyl radicals in the catalysis is discussed.

  18. Transcriptomic profiling of central nervous system regions in three species of honey bee during dance communication behavior.

    Directory of Open Access Journals (Sweden)

    Moushumi Sen Sarma

    2009-07-01

    Full Text Available We conducted a large-scale transcriptomic profiling of selected regions of the central nervous system (CNS across three species of honey bees, in foragers that were performing dance behavior to communicate to their nestmates the location, direction and profitability of an attractive floral resource. We used microarrays to measure gene expression in bees from Apis mellifera, dorsata and florea, species that share major traits unique to the genus and also show striking differences in biology and dance communication. The goals of this study were to determine the extent of regional specialization in gene expression and to explore the molecular basis of dance communication.This "snapshot" of the honey bee CNS during dance behavior provides strong evidence for both species-consistent and species-specific differences in gene expression. Gene expression profiles in the mushroom bodies consistently showed the biggest differences relative to the other CNS regions. There were strong similarities in gene expression between the central brain and the second thoracic ganglion across all three species; many of the genes were related to metabolism and energy production. We also obtained gene expression differences between CNS regions that varied by species: A. mellifera differed the most, while dorsata and florea tended to be more similar.Species differences in gene expression perhaps mirror known differences in nesting habit, ecology and dance behavior between mellifera, florea and dorsata. Species-specific differences in gene expression in selected CNS regions that relate to synaptic activity and motor control provide particularly attractive candidate genes to explain the differences in dance behavior exhibited by these three honey bee species. Similarities between central brain and thoracic ganglion provide a unique perspective on the potential coupling of these two motor-related regions during dance behavior and perhaps provide a snapshot of the energy

  19. Taxonomic evaluation of selected Ganoderma species and database sequence validation

    Directory of Open Access Journals (Sweden)

    Suldbold Jargalmaa

    2017-07-01

    Full Text Available Species in the genus Ganoderma include several ecologically important and pathogenic fungal species whose medicinal and economic value is substantial. Due to the highly similar morphological features within the Ganoderma, identification of species has relied heavily on DNA sequencing using BLAST searches, which are only reliable if the GenBank submissions are accurately labeled. In this study, we examined 113 specimens collected from 1969 to 2016 from various regions in Korea using morphological features and multigene analysis (internal transcribed spacer, translation elongation factor 1-α, and the second largest subunit of RNA polymerase II. These specimens were identified as four Ganoderma species: G. sichuanense, G. cf. adspersum, G. cf. applanatum, and G. cf. gibbosum. With the exception of G. sichuanense, these species were difficult to distinguish based solely on morphological features. However, phylogenetic analysis at three different loci yielded concordant phylogenetic information, and supported the four species distinctions with high bootstrap support. A survey of over 600 Ganoderma sequences available on GenBank revealed that 65% of sequences were either misidentified or ambiguously labeled. Here, we suggest corrected annotations for GenBank sequences based on our phylogenetic validation and provide updated global distribution patterns for these Ganoderma species.

  20. Taxonomic evaluation of selected Ganoderma species and database sequence validation

    Science.gov (United States)

    Jargalmaa, Suldbold; Eimes, John A.; Park, Myung Soo; Park, Jae Young; Oh, Seung-Yoon

    2017-01-01

    Species in the genus Ganoderma include several ecologically important and pathogenic fungal species whose medicinal and economic value is substantial. Due to the highly similar morphological features within the Ganoderma, identification of species has relied heavily on DNA sequencing using BLAST searches, which are only reliable if the GenBank submissions are accurately labeled. In this study, we examined 113 specimens collected from 1969 to 2016 from various regions in Korea using morphological features and multigene analysis (internal transcribed spacer, translation elongation factor 1-α, and the second largest subunit of RNA polymerase II). These specimens were identified as four Ganoderma species: G. sichuanense, G. cf. adspersum, G. cf. applanatum, and G. cf. gibbosum. With the exception of G. sichuanense, these species were difficult to distinguish based solely on morphological features. However, phylogenetic analysis at three different loci yielded concordant phylogenetic information, and supported the four species distinctions with high bootstrap support. A survey of over 600 Ganoderma sequences available on GenBank revealed that 65% of sequences were either misidentified or ambiguously labeled. Here, we suggest corrected annotations for GenBank sequences based on our phylogenetic validation and provide updated global distribution patterns for these Ganoderma species. PMID:28761785

  1. Positive selection in the SLC11A1 gene in the family Equidae.

    Science.gov (United States)

    Bayerova, Zuzana; Janova, Eva; Matiasovic, Jan; Orlando, Ludovic; Horin, Petr

    2016-05-01

    Immunity-related genes are a suitable model for studying effects of selection at the genomic level. Some of them are highly conserved due to functional constraints and purifying selection, while others are variable and change quickly to cope with the variation of pathogens. The SLC11A1 gene encodes a transporter protein mediating antimicrobial activity of macrophages. Little is known about the patterns of selection shaping this gene during evolution. Although it is a typical evolutionarily conserved gene, functionally important polymorphisms associated with various diseases were identified in humans and other species. We analyzed the genomic organization, genetic variation, and evolution of the SLC11A1 gene in the family Equidae to identify patterns of selection within this important gene. Nucleotide SLC11A1 sequences were shown to be highly conserved in ten equid species, with more than 97 % sequence identity across the family. Single nucleotide polymorphisms (SNPs) were found in the coding and noncoding regions of the gene. Seven codon sites were identified to be under strong purifying selection. Codons located in three regions, including the glycosylated extracellular loop, were shown to be under diversifying selection. A 3-bp indel resulting in a deletion of the amino acid 321 in the predicted protein was observed in all horses, while it has been maintained in all other equid species. This codon comprised in an N-glycosylation site was found to be under positive selection. Interspecific variation in the presence of predicted N-glycosylation sites was observed.

  2. Species specificity of social reinstatement in Japanese quail Coturnix japonica genetically selected for high or low levels of social reinstatement behaviour.

    Science.gov (United States)

    Mills, A D; Jones, R B; Faure, J M

    1995-05-01

    Divergent lines of Japanese quail Coturnix japonica showing high (HSR) or low (LSR) levels of social reinstatement (SR) behaviour (as measured in a treadmill apparatus) have been developed. However, it was not known if selection had influenced social reinstatement tendencies in a general or a species-specific fashion. Therefore, the present study compared the SR behaviour of quail chicks of the HSR and LSR lines and of a Control line when the goal box of the treadmill was empty or when it contained small, same-species groups of either Japanese quail, domestic fowl or Guinea fowl chicks. The results clearly demonstrated that the SR behaviour of Japanese quail chicks is species-specific and that this specificity has not been influenced during genetic selection, over sixteen generations, of the HSR and LSR lines. The HSR chicks showed more locomotor activity in the treadmill than did those of the other lines regardless of the nature of the goal-box stimulus. The results are discussed in terms of general activity, underlying fearfulness and social motivation.

  3. Introgression and selection shaped the evolutionary history of sympatric sister-species of coral reef fishes (genus: Haemulon)

    KAUST Repository

    Bernal, Moisés A.

    2016-11-22

    Closely related marine species with large overlapping ranges provide opportunities to study mechanisms of speciation, particularly when there is evidence of gene flow between such lineages. Here, we focus on a case of hybridization between the sympatric sister-species Haemulon maculicauda and H. flaviguttatum, using Sanger sequencing of mitochondrial and nuclear loci, as well as 2422 single nucleotide polymorphisms (SNPs) obtained via restriction site-associated DNA sequencing (RADSeq). Mitochondrial markers revealed a shared haplotype for COI and low divergence for CytB and CR between the sister-species. On the other hand, complete lineage sorting was observed at the nuclear loci and most of the SNPs. Under neutral expectations, the smaller effective population size of mtDNA should lead to fixation of mutations faster than nDNA. Thus, these results suggest that hybridization in the recent past (0.174-0.263Ma) led to introgression of the mtDNA, with little effect on the nuclear genome. Analyses of the SNP data revealed 28 loci potentially under divergent selection between the two species. The combination of mtDNA introgression and limited nuclear DNA introgression provides a mechanism for the evolution of independent lineages despite recurrent hybridization events. This study adds to the growing body of research that exemplifies how genetic divergence can be maintained in the presence of gene flow between closely related species.

  4. Introgression and selection shaped the evolutionary history of sympatric sister-species of coral reef fishes (genus: Haemulon)

    KAUST Repository

    Bernal, Moisé s A.; Gaither, Michelle R.; Simison, W. Brian; Rocha, Luiz A.

    2016-01-01

    Closely related marine species with large overlapping ranges provide opportunities to study mechanisms of speciation, particularly when there is evidence of gene flow between such lineages. Here, we focus on a case of hybridization between the sympatric sister-species Haemulon maculicauda and H. flaviguttatum, using Sanger sequencing of mitochondrial and nuclear loci, as well as 2422 single nucleotide polymorphisms (SNPs) obtained via restriction site-associated DNA sequencing (RADSeq). Mitochondrial markers revealed a shared haplotype for COI and low divergence for CytB and CR between the sister-species. On the other hand, complete lineage sorting was observed at the nuclear loci and most of the SNPs. Under neutral expectations, the smaller effective population size of mtDNA should lead to fixation of mutations faster than nDNA. Thus, these results suggest that hybridization in the recent past (0.174-0.263Ma) led to introgression of the mtDNA, with little effect on the nuclear genome. Analyses of the SNP data revealed 28 loci potentially under divergent selection between the two species. The combination of mtDNA introgression and limited nuclear DNA introgression provides a mechanism for the evolution of independent lineages despite recurrent hybridization events. This study adds to the growing body of research that exemplifies how genetic divergence can be maintained in the presence of gene flow between closely related species.

  5. The role of tin-promoted Pd/MWNTs via the management of carbonaceous species in selective hydrogenation of high concentration acetylene

    International Nuclear Information System (INIS)

    Esmaeili, Elaheh; Mortazavi, Yadollah; Khodadadi, Abbas Ali; Rashidi, Ali Morad; Rashidzadeh, Mehdi

    2012-01-01

    Highlights: ► Synthesis of highly active tin-promoted catalysts by polyol method for selective hydrogenation of high concentration of acetylene. ► A positive change in the catalytic activities of tin-promoted catalysts results from distinct geometric and electronic effects. ► Change in the coverage of acetylenic overlayers for different temperature regions corresponds to the change of the number of isolated adsorption sites. ► The isolated adsorption sites are responsible for the enhancement of selectivity to ethylene with increased temperatures, via the management of the carbonaceous species over the catalyst surface. - Abstract: In the present study, Pd/MWNTs are synthesized using polyol process and modified by tin as a promoter for selective hydrogenation of high concentrated acetylene feedstock. Polyol method results in highly dispersed nanoparticles with a depletion of particle size for tin-promoted Pd catalysts as characterized by TEM. Tin promoter plays a considerable role in hydrogenation of pure acetylene stream. This is attributed to formation of Pd 2 Sn structural phase, confirmed by XRD and TPR techniques, composed mainly of intermetallic species. Catalytic behavior of tin-promoted Pd catalysts is affected by geometric and electronic factors which are more pronounced in the case of Sn/Pd = 0.25. A discontinuity in Arrhenius plots for the Sn-promoted catalysts is appeared, which seems to be due to a kinetic factor as a result of change in acetylene coverage on Pd metallic ensembles at low and high temperature ranges. Higher selectivity of the catalysts to ethylene is attributed to the presence of more isolated adsorption sites on the catalyst surface originated from both intermetallic compounds confirmed by XPS and the ones formed via the carbonaceous species upon the acetylene hydrogenation reaction.

  6. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET.

    Science.gov (United States)

    DeGennaro, Matthew; McBride, Carolyn S; Seeholzer, Laura; Nakagawa, Takao; Dennis, Emily J; Goldman, Chloe; Jasinskiene, Nijole; James, Anthony A; Vosshall, Leslie B

    2013-06-27

    Female mosquitoes of some species are generalists and will blood-feed on a variety of vertebrate hosts, whereas others display marked host preference. Anopheles gambiae and Aedes aegypti have evolved a strong preference for humans, making them dangerously efficient vectors of malaria and Dengue haemorrhagic fever. Specific host odours probably drive this strong preference because other attractive cues, including body heat and exhaled carbon dioxide (CO2), are common to all warm-blooded hosts. Insects sense odours via several chemosensory receptor families, including the odorant receptors (ORs), membrane proteins that form heteromeric odour-gated ion channels comprising a variable ligand-selective subunit and an obligate co-receptor called Orco (ref. 6). Here we use zinc-finger nucleases to generate targeted mutations in the orco gene of A. aegypti to examine the contribution of Orco and the odorant receptor pathway to mosquito host selection and sensitivity to the insect repellent DEET (N,N-diethyl-meta-toluamide). orco mutant olfactory sensory neurons have greatly reduced spontaneous activity and lack odour-evoked responses. Behaviourally, orco mutant mosquitoes have severely reduced attraction to honey, an odour cue related to floral nectar, and do not respond to human scent in the absence of CO2. However, in the presence of CO2, female orco mutant mosquitoes retain strong attraction to both human and animal hosts, but no longer strongly prefer humans. orco mutant females are attracted to human hosts even in the presence of DEET, but are repelled upon contact, indicating that olfactory- and contact-mediated effects of DEET are mechanistically distinct. We conclude that the odorant receptor pathway is crucial for an anthropophilic vector mosquito to discriminate human from non-human hosts and to be effectively repelled by volatile DEET.

  7. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in Brassica rapa and Brassica oleracea.

    Science.gov (United States)

    Cheng, Feng; Sun, Rifei; Hou, Xilin; Zheng, Hongkun; Zhang, Fenglan; Zhang, Yangyong; Liu, Bo; Liang, Jianli; Zhuang, Mu; Liu, Yunxia; Liu, Dongyuan; Wang, Xiaobo; Li, Pingxia; Liu, Yumei; Lin, Ke; Bucher, Johan; Zhang, Ningwen; Wang, Yan; Wang, Hui; Deng, Jie; Liao, Yongcui; Wei, Keyun; Zhang, Xueming; Fu, Lixia; Hu, Yunyan; Liu, Jisheng; Cai, Chengcheng; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Zhang, Jifang; Guo, Ning; Liu, Zhiyuan; Liu, Jin; Sun, Chao; Ma, Yuan; Zhang, Haijiao; Cui, Yang; Freeling, Micheal R; Borm, Theo; Bonnema, Guusje; Wu, Jian; Wang, Xiaowu

    2016-10-01

    Brassica species, including crops such as cabbage, turnip and oilseed, display enormous phenotypic variation. Brassica genomes have all undergone a whole-genome triplication (WGT) event with unknown effects on phenotype diversification. We resequenced 199 Brassica rapa and 119 Brassica oleracea accessions representing various morphotypes and identified signals of selection at the mesohexaploid subgenome level. For cabbage morphotypes with their typical leaf-heading trait, we identified four subgenome loci that show signs of parallel selection among subgenomes within B. rapa, as well as four such loci within B. oleracea. Fifteen subgenome loci are under selection and are shared by these two species. We also detected strong subgenome parallel selection linked to the domestication of the tuberous morphotypes, turnip (B. rapa) and kohlrabi (B. oleracea). Overall, we demonstrated that the mesohexaploidization of the two Brassica genomes contributed to their diversification into heading and tuber-forming morphotypes through convergent subgenome parallel selection of paralogous genes.

  8. Multi-stage gene normalization for full-text articles with context-based species filtering for dynamic dictionary entry selection.

    Science.gov (United States)

    Tsai, Richard Tzong-Han; Lai, Po-Ting

    2011-10-03

    Gene normalization (GN) is the task of identifying the unique database IDs of genes and proteins in literature. The best-known public competition of GN systems is the GN task of the BioCreative challenge, which has been held four times since 2003. The last two BioCreatives, II.5 & III, had two significant differences from earlier tasks: firstly, they provided full-length articles in addition to abstracts; and secondly, they included multiple species without providing species ID information. Full papers introduce more complex targets for GN processing, while the inclusion of multiple species vastly increases the potential size of dictionaries needed for GN. BioCreative III GN uses Threshold Average Precision at a median of k errors per query (TAP-k), a new measure closely related to the well-known average precision, but also reflecting the reliability of the score provided by each GN system. To use full-paper text, we employed a multi-stage GN algorithm and a ranking method which exploit information in different sections and parts of a paper. To handle the inclusion of multiple unknown species, we developed two context-based dynamic strategies to select dictionary entries related to the species that appear in the paper-section-wide and article-wide context. Our originally submitted BioCreative III system uses a static dictionary containing only the most common species entries. It already exceeds the BioCreative III average team performance by at least 24% in every evaluation. However, using our proposed dynamic dictionary strategies, we were able to further improve TAP-5, TAP-10, and TAP-20 by 16.47%, 13.57% and 6.01%, respectively in the Gold 50 test set. Our best dynamic strategy outperforms the best BioCreative III systems in TAP-10 on the Silver 50 test set and in TAP-5 on the Silver 507 set. Our experimental results demonstrate the superiority of our proposed dynamic dictionary selection strategies over our original static strategy and most BioCreative III

  9. Variation in Linked Selection and Recombination Drive Genomic Divergence during Allopatric Speciation of European and American Aspens.

    Science.gov (United States)

    Wang, Jing; Street, Nathaniel R; Scofield, Douglas G; Ingvarsson, Pär K

    2016-07-01

    Despite the global economic and ecological importance of forest trees, the genomic basis of differential adaptation and speciation in tree species is still poorly understood. Populus tremula and Populus tremuloides are two of the most widespread tree species in the Northern Hemisphere. Using whole-genome re-sequencing data of 24 P. tremula and 22 P. tremuloides individuals, we find that the two species diverged ∼2.2-3.1 million years ago, coinciding with the severing of the Bering land bridge and the onset of dramatic climatic oscillations during the Pleistocene. Both species have experienced substantial population expansions following long-term declines after species divergence. We detect widespread and heterogeneous genomic differentiation between species, and in accordance with the expectation of allopatric speciation, coalescent simulations suggest that neutral evolutionary processes can account for most of the observed patterns of genetic differentiation. However, there is an excess of regions exhibiting extreme differentiation relative to those expected under demographic simulations, which is indicative of the action of natural selection. Overall genetic differentiation is negatively associated with recombination rate in both species, providing strong support for a role of linked selection in generating the heterogeneous genomic landscape of differentiation between species. Finally, we identify a number of candidate regions and genes that may have been subject to positive and/or balancing selection during the speciation process. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  10. Effect of inter-species selective interactions on the thermodynamics and nucleation free-energy barriers of a tessellating polyhedral compound

    International Nuclear Information System (INIS)

    Escobedo, Fernando A.

    2016-01-01

    The phase behavior and the homogeneous nucleation of an equimolar mixture of octahedra and cuboctahedra are studied using thermodynamic integration, Gibbs-Duhem integration, and umbrella sampling simulations. The components of this mixture are modeled as polybead objects of equal edge lengths so that they can assemble into a space-filling compound with the CsCl crystal structure. Taking as reference the hard-core system where the compound crystal does not spontaneously nucleate, we quantified the effect of inter-species selective interactions on facilitating the disorder-to-order transition. Facet selective and facet non-selective inter-species attractions were considered, and while the former was expectedly more favorable toward the target tessellating structure, the latter was found to be similarly effective in nucleating the crystal compound. Ranges for the strength of attractions and degree of supersaturation were identified where the nucleation free-energy barrier was small enough to foretell a fast process but large enough to prevent spinodal fluctuations that can trap the system in dense metastable states lacking long-range order. At those favorable conditions, the tendency toward the local orientational order favored by packing entropy is amplified and found to play a key role seeding nuclei with the CsCl structure.

  11. To Eat or Not to Eat? Debris Selectivity by Marine Turtles

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2012-01-01

    Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006–2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas) and by turtle size class (smaller oceanic feeders vs. larger benthic feeders). Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles’ debris preferences (color and type) using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles. PMID:22829894

  12. To eat or not to eat? Debris selectivity by marine turtles.

    Directory of Open Access Journals (Sweden)

    Qamar Schuyler

    Full Text Available Marine debris is a growing problem for wildlife, and has been documented to affect more than 267 species worldwide. We investigated the prevalence of marine debris ingestion in 115 sea turtles stranded in Queensland between 2006-2011, and assessed how the ingestion rates differ between species (Eretmochelys imbricata vs. Chelonia mydas and by turtle size class (smaller oceanic feeders vs. larger benthic feeders. Concurrently, we conducted 25 beach surveys to estimate the composition of the debris present in the marine environment. Based on this proxy measurement of debris availability, we modeled turtles' debris preferences (color and type using a resource selection function, a method traditionally used for habitat and food selection. We found no significant difference in the overall probability of ingesting debris between the two species studied, both of which have similar life histories. Curved carapace length, however, was inversely correlated with the probability of ingesting debris; 54.5% of pelagic sized turtles had ingested debris, whereas only 25% of benthic feeding turtles were found with debris in their gastrointestinal system. Benthic and pelagic sized turtles also exhibited different selectivity ratios for debris ingestion. Benthic phase turtles had a strong selectivity for soft, clear plastic, lending support to the hypothesis that sea turtles ingest debris because it resembles natural prey items such as jellyfish. Pelagic turtles were much less selective in their feeding, though they showed a trend towards selectivity for rubber items such as balloons. Most ingested items were plastic and were positively buoyant. This study highlights the need to address increasing amounts of plastic in the marine environment, and provides evidence for the disproportionate ingestion of balloons by marine turtles.

  13. Evolution of brain region volumes during artificial selection for relative brain size.

    Science.gov (United States)

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  14. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species.

    Science.gov (United States)

    Dreher, Corinna E; Cummings, Molly E; Pröhl, Heike

    2015-01-01

    Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio) shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake) and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast) of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and other ecological

  15. Characterization of courtship sounds of species of the subgroup fasciola (Diptera, Drosophilidae, Drosophila repleta group: interspecific and interpopulational analyses

    Directory of Open Access Journals (Sweden)

    C. T. A. COSTA

    Full Text Available The aim of this work was to characterize the male courtship song pattern of various species of the fasciola subgroup and to determine the level of variation both within and among species. The parameters analyzed were intrapulse interval (PI, interpulse interval (IPI, and intrapulse frequency (IF. Six different species were analyzed: D. coroica (three populations, D. ellisoni, D. fascioloides, D. moju, D. onca, and D. rosinae (one population each. There were significant differences among the six species for these three courtship song parameters. The IPI was the most variable parameter among these species, suggesting that this parameter is important for female discrimination. Four different hypotheses could explain this variation: 1. different selection pressures with absence of flow gene; 2. intraspecific sexual selection; 3. sympatric effects on song evolution; and 4. genetic drift. The PI was the only parameter that was significantly different among the three population of D. coroica. Low variability among populations within the same species was already observed for other subgroups and could be explained by the following hypotheses: strong selection acting on the song parameters, gene flow, or recent colonization from a common source. Additional studies of the courtship song of other species of the fasciola subgroup, as well as for other subgroups of the repleta group, and studies, using molecular makers, that focus on the genetic basis of the differences among these species in courtship song would allow us to evaluate the association of courtship song and sexual isolation in these species, and would also help us to understand the evolution of these behavioural differences.

  16. Ten unique and charismatic new species of Microgastrinae wasps (Hymenoptera, Braconidae from North America

    Directory of Open Access Journals (Sweden)

    Jose Fernandez-Triana

    2018-01-01

    Full Text Available Ten new species within four genera of Microgastrinae parasitoid wasps (Hymenoptera: Braconidae are described from Canada and United States: Diolcogaster ichiroi, Diolcogaster miamensis, Glyptapanteles pseudotsugae, Microgaster archboldensis, Microgaster syntopic, Microplitis altissimus, Microplitis jorgeluisi, Microplitis juanmanueli, Microplitis julioalbertoi, and Microplitis mariamargaritae. The new taxa are significant because they represent the first North American records of a tropical group (species of the basimacula group in Diolcogaster, exemplify interesting ecological cases (niche-based host selection in Glyptapanteles, syntopic species in Microgaster, and showcase unique morphological features and/or altitudinal records (Microplitis. Most of the new species were collected in protected areas or areas with strong research programs (Archbold Biological Station and hammock forests near Miami, Florida; Great Sand Dunes National Park and Preserve, and Mount Evans Wilderness Area, Colorado; Sapelo Island, Georgia; Tonto National Forest, Arizona, and thus are also of value and interest for conservation and research efforts.

  17. Cryptic Plutella species show deep divergence despite the capacity to hybridize.

    Science.gov (United States)

    Perry, Kym D; Baker, Gregory J; Powis, Kevin J; Kent, Joanne K; Ward, Christopher M; Baxter, Simon W

    2018-05-29

    Understanding genomic and phenotypic diversity among cryptic pest taxa has important implications for the management of pests and diseases. The diamondback moth, Plutella xylostella L., has been intensively studied due to its ability to evolve insecticide resistance and status as the world's most destructive pest of brassicaceous crops. The surprise discovery of a cryptic species endemic to Australia, Plutella australiana Landry & Hebert, raised questions regarding the distribution, ecological traits and pest status of the two species, the capacity for gene flow and whether specific management was required. Here, we collected Plutella from wild and cultivated brassicaceous plants from 75 locations throughout Australia and screened 1447 individuals to identify mtDNA lineages and Wolbachia infections. We genotyped genome-wide SNP markers using RADseq in coexisting populations of each species. In addition, we assessed reproductive compatibility in crossing experiments and insecticide susceptibility phenotypes using bioassays. The two Plutella species coexisted on wild brassicas and canola crops, but only 10% of Plutella individuals were P. australiana. This species was not found on commercial Brassica vegetable crops, which are routinely sprayed with insecticides. Bioassays found that P. australiana was 19-306 fold more susceptible to four commonly-used insecticides than P. xylostella. Laboratory crosses revealed that reproductive isolation was incomplete but directionally asymmetric between the species. However, genome-wide nuclear SNPs revealed striking differences in genetic diversity and strong population structure between coexisting wild populations of each species. Nuclear diversity was 1.5-fold higher in P. australiana, yet both species showed limited variation in mtDNA. Infection with a single Wolbachia subgroup B strain was fixed in P. australiana, suggesting that a selective sweep contributed to low mtDNA diversity, while a subgroup A strain infected just 1

  18. Selected results on strong and coulomb-induced correlations from the STAR experiment

    International Nuclear Information System (INIS)

    Sumbera, M.

    2007-01-01

    Using recent high-statistics STAR data from Au + Au and Cu + Cu collisions at full RHIC energy I discuss strong and Coulomb-induced final state interaction effects on identical (pi-pi) and non-identical (pi-XI) particle correlations. Analysis of pi-XI correlations reveals the strong and Coulomb-induced FSI effects, allowing for the first time to estimate spatial extension of pi and XI sources and the average shift between them. Source imaging techniques provide clean separation of details of the source function and are applied to the one-dimensional relative momentum correlation function of identical pions. For low momentum pions, and/or non-central collisions, a large departure from a single-Gaussian shape is observed. (author)

  19. Linking Keystone Species and Functional Groups: A New Operational Definition of the Keystone Species Concept

    Directory of Open Access Journals (Sweden)

    Robert D. Davic

    2003-07-01

    Full Text Available The concept of the "keystone species" is redefined to allow for the a priori prediction of these species within ecosystems. A keystone species is held to be a strongly interacting species whose top-down effect on species diversity and competition is large relative to its biomass dominance within a functional group. This operational definition links the community importance of keystone species to a specific ecosystem process, e.g., the regulation of species diversity, within functional groups at lower trophic levels that are structured by competition for a limited resource. The a priori prediction of keystone species has applied value for the conservation of natural areas.

  20. Comparative transcriptome resources of two Dysosma species (Berberidaceae) and molecular evolution of the CYP719A gene in Podophylloideae.

    Science.gov (United States)

    Mao, Yunrui; Zhang, Yonghua; Xu, Chuan; Qiu, Yingxiong

    2016-01-01

    Dysosma species (Berberidaceae, Podophylloideae) are of great medicinal pharmacogenetic importance and used as model systems to study the drivers and mechanisms of species diversification of temperate plants in East Asia. Recently, we have sequenced the transcriptome of the low-elevation D. versipellis. In this study, we sequenced the transcriptome of the high-elevation D. aurantiocaulis and used comparative genomic approaches to investigate the transcriptome evolution of the two species. We retrieved 53,929 unigenes from D. aurantiocaulis by de novo transcriptome assemblies using the Illumina HiSeq 2000 platform. Comparing the transcriptomes of both species, we identified 4593 orthologs. Estimation of Ka/Ks ratios for 3126 orthologs revealed that none had a Ka/Ks significantly greater than 1, whereas 1273 (Ka/Ks < 0.5, P < 0.05) were inferred to be under purifying selection. A total of 51 primer pairs were successfully designed from 461 EST-SSRs contained in 4593 orthologs. Marker validation assay revealed that 26 (51%) and 41 (80.4%) produced clear fragments with the expected sizes in all Podophylloideae species. Specifically, 19 different sequences of CYP719A were identified from PCR-amplified genomic DNA of all 12 species of Podophylloideae using primers designed from the assembled transcripts. The data further indicated that CYP719A was likely subject to strong selective constraints maintaining only one copy per genome. In Dysosma, there was relaxed purifying selection or more positive selection for high-elevation species. Overall, this study has generated a wealth of molecular resources potentially useful for pharmacogenetic and evolutionary studies in Dysosma and allied taxa. © 2015 John Wiley & Sons Ltd.

  1. Selective advantage of ray florets in Scalesia affinis and S. pedunculata (Asteraceae), two endemic species from the Galápagos

    DEFF Research Database (Denmark)

    Nielsen, Lene Rostgaard; Philipp, Marianne; Siegismund, Hans R.

    2002-01-01

    The presence of neuter ray florets in species within Asteraceae is generally believed to increase pollinator attraction. In the endemic Galápagos genus Scalesia (Asteraceae) a natural variation in the presence/absence of neuter ray florets is found. To evaluate whether the presence of ray florets...... plays a selective role on female reproductive success we chose two species of Scalesia, Scalesia affinis that carries ray florets and S. pedunculata that is rayless. On Santa Cruz Island capitula of S. pedunculata were equipped with fake ray florets while others were untouched. On Isabela Island ray...

  2. Productivity of selected plant species adapted to arid regions. [Crassulacean metabolizing plants; Agave deserti and Ferocactus acanthodes

    Energy Technology Data Exchange (ETDEWEB)

    Nobel, P.S.

    1980-01-01

    The biomass potential of selected arid region species for alcohol production merits careful consideration. The basis for this interest is the current low agronomic use of arid lands and the potential productivity of certain species adapted to these lands. Plants displaying Crassulacean acid metabolism (CAM) are particularly interesting with reference to biomass for fuel in regions with low rainfall, because plants with this photosynthetic process are strikingly efficient in water requirements. For CAM plants, CO/sub 2/ fixation occurs primarily at night, when tissue surface temperature and hence transpirational water loss is less than daytime values. For Agave deserti in the Sonoran desert, the water-use efficiency (mass of CO/sub 2/ fixed/mass of water transpired) over an entire year is an order of magnitude or more larger than for C-3 and C-4 plants. This indicates how well adapted CAM species are to arid regions. The potential productivity per unit land area of CAM plants is fairly substantial and, therefore, of considerable economic interest for arid areas where growth of agricultural plants is minimal.

  3. Geographic variation in species richness, rarity, and the selection of areas for conservation: An integrative approach with Brazilian estuarine fishes

    Science.gov (United States)

    Vilar, Ciro C.; Joyeux, Jean-Christophe; Spach, Henry L.

    2017-09-01

    While the number of species is a key indicator of ecological assemblages, spatial conservation priorities solely identified from species richness are not necessarily efficient to protect other important biological assets. Hence, the results of spatial prioritization analysis would be greatly enhanced if richness were used in association to complementary biodiversity measures. In this study, geographic patterns in estuarine fish species rarity (i.e. the average range size in the study area), endemism and richness, were mapped and integrated to identify regions important for biodiversity conservation along the Brazilian coast. Furthermore, we analyzed the effectiveness of the national system of protected areas to represent these regions. Analyses were performed on presence/absence data of 412 fish species in 0.25° latitudinal bands covering the entire Brazilian biogeographical province. Species richness, rarity and endemism patterns differed and strongly reflected biogeographical limits and regions. However, among the existing 154 latitudinal bands, 48 were recognized as conservation priorities by concomitantly harboring high estuarine fish species richness and assemblages of geographically rare species. Priority areas identified for all estuarine fish species largely differed from those identified for Brazilian endemics. Moreover, there was no significant correlation between the different aspects of the fish assemblages considered (i.e. species richness, endemism or rarity), suggesting that designating reserves based on a single variable may lead to large gaps in the overall protection of biodiversity. Our results further revealed that the existing system of protected areas is insufficient for representing the priority bands we identified. This highlights the urgent need for expanding the national network of protected areas to maintain estuarine ecosystems with high conservation value.

  4. Environmental species sorting dominates forest-bird community assembly across scales

    DEFF Research Database (Denmark)

    Özkan, Korhan; Svenning, J.-C.; Jeppesen, Erik

    2013-01-01

    species richness and composition within the metacommunity. Second, we analysed species' abundance–occupancy relationship across the metacommunity and used null models to assess whether occupancy is determined by species' environmental niches. Third, we used generalized linear models to test for links...... between species' metacommunity-wide occupancy and their broader WP regional populations and assessed whether these links are consistent with environmental species sorting. There was strong environmental control on local species richness and composition patterns within the metacommunity, but non......-environmental spatial factors had also an important joint role. Null model analyses on randomized communities showed that species' occupancy across the metacommunity was strongly determined by species' environmental niches, with occupancy being related to niche position marginality. Species' metacommunity...

  5. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Hartmann, Georg; Schuster, Michael

    2013-01-01

    Highlights: ► We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. ► A selective ligand (sodium thiosulphate) is introduced for species separation. ► A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. ► Measurement of samples with high natural organic mater content is possible. ► Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 ± 0.06 (particle size 2 nm) to 0.52 ± 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L −1 is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L −1 . The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L −1 is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  6. Recombination difference between sexes: a role for haploid selection.

    Directory of Open Access Journals (Sweden)

    Thomas Lenormand

    2005-03-01

    Full Text Available Why the autosomal recombination rate differs between female and male meiosis in most species has been a genetic enigma since the early study of meiosis. Some hypotheses have been put forward to explain this widespread phenomenon and, up to now, only one fact has emerged clearly: In species in which meiosis is achiasmate in one sex, it is the heterogametic one. This pattern, known as the Haldane-Huxley rule, is thought to be a side effect, on autosomes, of the suppression of recombination between the sex chromosomes. However, this rule does not hold for heterochiasmate species (i.e., species in which recombination is present in both sexes but varies quantitatively between sexes and does not apply to species lacking sex chromosomes, such as hermaphroditic plants. In this paper, we show that in plants, heterochiasmy is due to a male-female difference in gametic selection and is not influenced by the presence of heteromorphic sex chromosomes. This finding provides strong empirical support in favour of a population genetic explanation for the evolution of heterochiasmy and, more broadly, for the evolution of sex and recombination.

  7. Stress responsiveness predicts individual variation in mate selectivity.

    Science.gov (United States)

    Vitousek, Maren N; Romero, L Michael

    2013-06-15

    Steroid hormones, including glucocorticoids, mediate a variety of behavioral and physiological processes. Circulating hormone concentrations vary substantially within populations, and although hormone titers predict reproductive success in several species, little is known about how individual variation in circulating hormone concentrations is linked with most reproductive behaviors in free-living organisms. Mate choice is an important and often costly component of reproduction that also varies substantially within populations. We examined whether energetically costly mate selection behavior in female Galápagos marine iguanas (Amblyrhynchus cristatus) was associated with individual variation in the concentrations of hormones previously shown to differ between reproductive and non-reproductive females during the breeding season (corticosterone and testosterone). Stress-induced corticosterone levels - which are suppressed in female marine iguanas during reproduction - were individually repeatable throughout the seven-week breeding period. Mate selectivity was strongly predicted by individual variation in stress-induced corticosterone: reproductive females that secreted less corticosterone in response to a standardized stressor assessed more displaying males. Neither baseline corticosterone nor testosterone predicted variation in mate selectivity. Scaled body mass was not significantly associated with mate selectivity, but females that began the breeding period in lower body condition showed a trend towards being less selective about potential mates. These results provide the first evidence that individual variation in the corticosterone stress response is associated with how selective females are in their choice of a mate, an important contributor to fitness in many species. Future research is needed to determine the functional basis of this association, and whether transient acute increases in circulating corticosterone directly mediate mate choice behaviors

  8. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    Directory of Open Access Journals (Sweden)

    Håkan Sand

    Full Text Available Research on large predator-prey interactions are often limited to the predators' primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces and one small-sized ungulate; roe deer (Capreolus capreolus. Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves' choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population.

  9. Prey Selection of Scandinavian Wolves: Single Large or Several Small?

    Science.gov (United States)

    Eklund, Ann; Zimmermann, Barbara; Wikenros, Camilla; Wabakken, Petter

    2016-01-01

    Research on large predator-prey interactions are often limited to the predators’ primary prey, with the potential for prey switching in systems with multiple ungulate species rarely investigated. We evaluated wolf (Canis lupus) prey selection at two different spatial scales, i.e., inter- and intra-territorial, using data from 409 ungulate wolf-kills in an expanding wolf population in Scandinavia. This expansion includes a change from a one-prey into a two-prey system with variable densities of one large-sized ungulate; moose (Alces alces) and one small-sized ungulate; roe deer (Capreolus capreolus). Among wolf territories, the proportion of roe deer in wolf kills was related to both pack size and roe deer density, but not to moose density. Pairs of wolves killed a higher proportion of roe deer than did packs, and wolves switched to kill more roe deer as their density increased above a 1:1 ratio in relation to the availability of the two species. At the intra-territorial level, wolves again responded to changes in roe deer density in their prey selection whereas we found no effect of snow depth, time during winter, or other predator-related factors on the wolves’ choice to kill moose or roe deer. Moose population density was only weakly related to intra-territorial prey selection. Our results show that the functional response of wolves on moose, the species hitherto considered as the main prey, was strongly dependent on the density of a smaller, alternative, ungulate prey. The impact of wolf predation on the prey species community is therefore likely to change with the composition of the multi-prey species community along with the geographical expansion of the wolf population. PMID:28030549

  10. Species-specific pharmacology of antiestrogens: role of metabolism

    International Nuclear Information System (INIS)

    Jordan, V.C.; Robinson, S.P.

    1987-01-01

    The nonsteroidal antiestrogen tamoxifen exhibits a paradoxial space species pharmacology. The drug is a full estrogen in the mouse, a partial estrogen/antiestrogen in humans and the rat, and an antiestrogen in the chick oviduct. Inasmuch as tamoxifen has antiestrogenic effects in vitro, differential metabolism of tamoxifen to estrogens might occur in the species in which it has antiestrogen pharmacology. Tamoxifen or its metabolite 4-hydroxytamoxifen could lose the alkylaminoethane side chain to form the estrogenic compound metabolite E of bisphenol. Sensitive metabolic studies with [ 3 H]tamoxifen in chicks, rats, and mice identified 4-hydroxytamoxifen as the major metabolite. Athymic mice with transplanted human breast tumors can be used to study the ability of tamoxifen to stimulate tissue or tumor growth. Estradiol caused the growth of transplanted breast cancer cells into solid tumors and a uterotrophic response. However, tamoxifen does not support tumor growth when administered alone, although it stimulates uterines growth. Since a similar profile of metabolites is sequestered in human mouse tissues, these studies strongly support the concept that the drug can selectively stimulate or inhibit events in the target tissues of different species without hometabolic intervention

  11. Quantum magnetism in strongly interacting one-dimensional spinor Bose systems

    DEFF Research Database (Denmark)

    Salami Dehkharghani, Amin; Volosniev, A. G.; Lindgren, E. J.

    2015-01-01

    -range inter-species interactions much larger than their intra-species interactions and show that they have novel energetic and magnetic properties. In the strongly interacting regime, these systems have energies that are fractions of the basic harmonic oscillator trap quantum and have spatially separated......Strongly interacting one-dimensional quantum systems often behave in a manner that is distinctly different from their higher-dimensional counterparts. When a particle attempts to move in a one-dimensional environment it will unavoidably have to interact and 'push' other particles in order...... ground states with manifestly ferromagnetic wave functions. Furthermore, we predict excited states that have perfect antiferromagnetic ordering. This holds for both balanced and imbalanced systems, and we show that it is a generic feature as one crosses from few- to many-body systems....

  12. TRIM5 suppresses cross-species transmission of a primate immunodeficiency virus and selects for emergence of resistant variants in the new species.

    Directory of Open Access Journals (Sweden)

    Andrea Kirmaier

    2010-08-01

    Full Text Available Simian immunodeficiency viruses of sooty mangabeys (SIVsm are the source of multiple, successful cross-species transmissions, having given rise to HIV-2 in humans, SIVmac in rhesus macaques, and SIVstm in stump-tailed macaques. Cellular assays and phylogenetic comparisons indirectly support a role for TRIM5alpha, the product of the TRIM5 gene, in suppressing interspecies transmission and emergence of retroviruses in nature. Here, we investigate the in vivo role of TRIM5 directly, focusing on transmission of primate immunodeficiency viruses between outbred primate hosts. Specifically, we retrospectively analyzed experimental cross-species transmission of SIVsm in two cohorts of rhesus macaques and found a significant effect of TRIM5 genotype on viral replication levels. The effect was especially pronounced in a cohort of animals infected with SIVsmE543-3, where TRIM5 genotype correlated with approximately 100-fold to 1,000-fold differences in viral replication levels. Surprisingly, transmission occurred even in individuals bearing restrictive TRIM5 genotypes, resulting in attenuation of replication rather than an outright block to infection. In cell-culture assays, the same TRIM5 alleles associated with viral suppression in vivo blocked infectivity of two SIVsm strains, but not the macaque-adapted strain SIVmac239. Adaptations appeared in the viral capsid in animals with restrictive TRIM5 genotypes, and similar adaptations coincide with emergence of SIVmac in captive macaques in the 1970s. Thus, host TRIM5 can suppress viral replication in vivo, exerting selective pressure during the initial stages of cross-species transmission.

  13. Seasonal climate manipulations have only minor effects on litter decomposition rates and N dynamics but strong effects on litter P dynamics of sub-arctic bog species.

    Science.gov (United States)

    Aerts, R; Callaghan, T V; Dorrepaal, E; van Logtestijn, R S P; Cornelissen, J H C

    2012-11-01

    Litter decomposition and nutrient mineralization in high-latitude peatlands are constrained by low temperatures. So far, little is known about the effects of seasonal components of climate change (higher spring and summer temperatures, more snow which leads to higher winter soil temperatures) on these processes. In a 4-year field experiment, we manipulated these seasonal components in a sub-arctic bog and studied the effects on the decomposition and N and P dynamics of leaf litter of Calamagrostis lapponica, Betula nana, and Rubus chamaemorus, incubated both in a common ambient environment and in the treatment plots. Mass loss in the controls increased in the order Calamagrostis Litter chemistry showed within each incubation environment only a few and species-specific responses. Compared to the interspecific differences, they resulted in only moderate climate treatment effects on mass loss and these differed among seasons and species. Neither N nor P mineralization in the litter were affected by the incubation environment. Remarkably, for all species, no net N mineralization had occurred in any of the treatments during 4 years. Species differed in P-release patterns, and summer warming strongly stimulated P release for all species. Thus, moderate changes in summer temperatures and/or winter snow addition have limited effects on litter decomposition rates and N dynamics, but summer warming does stimulate litter P release. As a result, N-limitation of plant growth in this sub-arctic bog may be sustained or even further promoted.

  14. Critical silvics of selected crop and competitor species in northwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Buse, L.J.

    1992-12-31

    This guide contains information on 25 plant species which may compete with conifer crop species and on six commercially important conifer species. The guide summarizes information on the autoecology of each species in the context of the Northwestern Ontario Forest Ecosystem Classification. In addition, it evaluates each of the potential competitors with respect to their competitive effects and mechanisms, their response to disturbance and silvicultural treatments (including their adaptation to forest canopy removal, cutting, mechanical site preparation, fire, and herbicides), and their potential value for wildlife. The guide similarly evaluates the six conifer species with respect to their response to competition and ability to respond to release. Summary tables enable quick comparison between species. This guide will assist forest resource managers in developing site-specific vegetation management strategies.

  15. An Analysis of Predator Selection to Affect Aposematic Coloration in a Poison Frog Species.

    Directory of Open Access Journals (Sweden)

    Corinna E Dreher

    Full Text Available Natural selection is widely noted to drive divergence of phenotypic traits. Predation pressure can facilitate morphological divergence, for example the evolution of both cryptic and conspicuous coloration in animals. In this context Dendrobatid frogs have been used to study evolutionary forces inducing diversity in protective coloration. The polytypic strawberry poison frog (Oophaga pumilio shows strong divergence in aposematic coloration among populations. To investigate whether predation pressure is important for color divergence among populations of O. pumilio we selected four mainland populations and two island populations from Costa Rica and Panama. Spectrometric measurements of body coloration were used to calculate color and brightness contrasts of frogs as an indicator of conspicuousness for the visual systems of several potential predators (avian, crab and snake and a conspecific observer. Additionally, we conducted experiments using clay model frogs of different coloration to investigate whether the local coloration of frogs is better protected than non-local color morphs, and if predator communities vary among populations. Overall predation risk differed strongly among populations and interestingly was higher on the two island populations. Imprints on clay models indicated that birds are the main predators while attacks of other predators were rare. Furthermore, clay models of local coloration were equally likely to be attacked as those of non-local coloration. Overall conspicuousness (and brightness contrast of local frogs was positively correlated with attack rates by birds across populations. Together with results from earlier studies we conclude that conspicuousness honestly indicates toxicity to avian predators. The different coloration patterns among populations of strawberry poison frogs in combination with behavior and toxicity might integrate into equally efficient anti-predator strategies depending on local predation and

  16. Selection of forages by timor deer (cervus timorensis blainville) in menjangan island, bali

    Science.gov (United States)

    Ketut Ginantra, I.; Bagus Made Suaskara, Ida; Ketut Muksin, I.

    2018-03-01

    This study was conducted to determine the selection of forages plants by Timor deer (Cervus timorensis) on Menjangan Island and its relation to the availability, chemical and physical properties of feed plants. The study was conducted in July-September 2016 in savanna and monsoon forest habitats. The availability of habitat feed plants in the habitat was determined by the quadrat method, and the species of plant eaten by Timor deer was determined through the microhistological analysis of the fecal sample. The food selection index is determine by the Ivlev index. Energy contents of forages plants by bomb calorimeter apparatus, crude protein analyzed by Semi-Micro Kjeldahl technique, NDF, ADF and lignin levels refer to the method of Goering and Van Soest. Mineral content of calcium (Ca) and phosphorus (P) by using atomic absorption spectrophotometer. Determination of tannin content with Folin Denish reaction. Physical properties determine are water regain capacity and water solubility. The relationship between availability with the utilization of plants by Timor deer was analyzed with the similarity index. Multiple regression statistic to test the relationship between index selection with nutritional value factor and physical characteristic of plant species. The result showed that Timor deer selected 32 plants species of graminoids, forbs and woody plants. Feeding selection of Timor deer is strongly influenced by the availability of forage plants in habitat. The feeding selection was significantly influenced by three predictor variables i.e. positive nutritional value is crude protein and negative nutritional value were lignin and tannins. Selection of forage plant Timor deer is positively correlated with the physical properties of feed plants.

  17. Options in dealing with marine alien species

    NARCIS (Netherlands)

    Pelt-Heerschap, van H.M.L.; Sneekes, A.C.; Foekema, E.M.

    2015-01-01

    Invasive species can have strong impact on the local ecosystem, not only substantial impact on the local ecosystem, but also on economy and human health. This review on marine alien species outlines aspects of prevention, eradication and control strategies. When managing invasive species, prevention

  18. Natural Selection in the Great Apes.

    Science.gov (United States)

    Cagan, Alexander; Theunert, Christoph; Laayouni, Hafid; Santpere, Gabriel; Pybus, Marc; Casals, Ferran; Prüfer, Kay; Navarro, Arcadi; Marques-Bonet, Tomas; Bertranpetit, Jaume; Andrés, Aida M

    2016-12-01

    Natural selection is crucial for the adaptation of populations to their environments. Here, we present the first global study of natural selection in the Hominidae (humans and great apes) based on genome-wide information from population samples representing all extant species (including most subspecies). Combining several neutrality tests we create a multi-species map of signatures of natural selection covering all major types of natural selection. We find that the estimated efficiency of both purifying and positive selection varies between species and is significantly correlated with their long-term effective population size. Thus, even the modest differences in population size among the closely related Hominidae lineages have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments. Most signatures of balancing and positive selection are species-specific, with signatures of balancing selection more often being shared among species. We also identify loci with evidence of positive selection across several lineages. Notably, we detect signatures of positive selection in several genes related to brain function, anatomy, diet and immune processes. Our results contribute to a better understanding of human evolution by putting the evidence of natural selection in humans within its larger evolutionary context. The global map of natural selection in our closest living relatives is available as an interactive browser at http://tinyurl.com/nf8qmzh. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. The evolutionary history of bears is characterized by gene flow across species

    Science.gov (United States)

    Kumar, Vikas; Lammers, Fritjof; Bidon, Tobias; Pfenninger, Markus; Kolter, Lydia; Nilsson, Maria A.; Janke, Axel

    2017-01-01

    Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow. PMID:28422140

  20. The evolutionary history of bears is characterized by gene flow across species.

    Science.gov (United States)

    Kumar, Vikas; Lammers, Fritjof; Bidon, Tobias; Pfenninger, Markus; Kolter, Lydia; Nilsson, Maria A; Janke, Axel

    2017-04-19

    Bears are iconic mammals with a complex evolutionary history. Natural bear hybrids and studies of few nuclear genes indicate that gene flow among bears may be more common than expected and not limited to polar and brown bears. Here we present a genome analysis of the bear family with representatives of all living species. Phylogenomic analyses of 869 mega base pairs divided into 18,621 genome fragments yielded a well-resolved coalescent species tree despite signals for extensive gene flow across species. However, genome analyses using different statistical methods show that gene flow is not limited to closely related species pairs. Strong ancestral gene flow between the Asiatic black bear and the ancestor to polar, brown and American black bear explains uncertainties in reconstructing the bear phylogeny. Gene flow across the bear clade may be mediated by intermediate species such as the geographically wide-spread brown bears leading to large amounts of phylogenetic conflict. Genome-scale analyses lead to a more complete understanding of complex evolutionary processes. Evidence for extensive inter-specific gene flow, found also in other animal species, necessitates shifting the attention from speciation processes achieving genome-wide reproductive isolation to the selective processes that maintain species divergence in the face of gene flow.

  1. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes

    International Nuclear Information System (INIS)

    Catherine, Arnaud; Selma, Maloufi; Mouillot, David; Troussellier, Marc; Bernard, Cécile

    2016-01-01

    Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R"2 = 0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton

  2. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes

    Energy Technology Data Exchange (ETDEWEB)

    Catherine, Arnaud, E-mail: arnocat@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France); Selma, Maloufi, E-mail: maloufi@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France); Mouillot, David, E-mail: david.mouillot@univ-montp2.fr [UMR 9190 MARBEC UM2-CNRS-IRD-UM1-IFREMER, CC 93, Place Eugène Bataillon, Université de Montpellier 2, F-34095 Montpellier (France); Troussellier, Marc, E-mail: troussel@univ-montp2.fr [UMR 9190 MARBEC UM2-CNRS-IRD-UM1-IFREMER, CC 93, Place Eugène Bataillon, Université de Montpellier 2, F-34095 Montpellier (France); Bernard, Cécile, E-mail: cbernard@mnhn.fr [UMR7245 MCAM MNHN-CNRS, Muséum National d' Histoire Naturelle, CC 39, 12 rue Buffon, F-75231 Paris, Cedex 05 (France)

    2016-07-15

    Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R{sup 2} = 0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton

  3. Sound settlement: noise surpasses land cover in explaining breeding habitat selection of secondary cavity-nesting birds.

    Science.gov (United States)

    Kleist, Nathan J; Guralnick, Robert P; Cruz, Alexander; Francis, Clinton D

    2017-01-01

    Birds breeding in heterogeneous landscapes select nest sites by cueing in on a variety of factors from landscape features and social information to the presence of natural enemies. We focus on determining the relative impact of anthropogenic noise on nest site occupancy, compared to amount of forest cover, which is known to strongly influence the selection process. We examine chronic, industrial noise from natural gas wells directly measured at the nest box as well as site-averaged noise, using a well-established field experimental system in northwestern New Mexico. We hypothesized that high levels of noise, both at the nest site and in the environment, would decrease nest box occupancy. We set up nest boxes using a geospatially paired control and experimental site design and analyzed four years of occupancy data from four secondary cavity-nesting birds common to the Colorado Plateau. We found different effects of noise and landscape features depending on species, with strong effects of noise observed in breeding habitat selection of Myiarchus cinerascens, the Ash-throated Flycatcher, and Sialia currucoides, the Mountain Bluebird. In contrast, the amount of forest cover less frequently explained habitat selection for those species or had a smaller standardized effect than the acoustic environment. Although forest cover characterization and management is commonly employed by natural resource managers, our results show that characterizing and managing the acoustic environment should be an important tool in protected area management. © 2016 by the Ecological Society of America.

  4. Similar patterns of frequency-dependent selection on animal personalities emerge in three species of social spiders.

    Science.gov (United States)

    Lichtenstein, J L L; Pruitt, J N

    2015-06-01

    Frequency-dependent selection is thought to be a major contributor to the maintenance of phenotypic variation. We tested for frequency-dependent selection on contrasting behavioural strategies, termed here 'personalities', in three species of social spiders, each thought to represent an independent evolutionary origin of sociality. The evolution of sociality in the spider genus Anelosimus is consistently met with the emergence of two temporally stable discrete personality types: an 'aggressive' or 'docile' form. We assessed how the foraging success of each phenotype changes as a function of its representation within a colony. We did this by creating experimental colonies of various compositions (six aggressives, three aggressives and three dociles, one aggressive and five dociles, six dociles), maintaining them in a common garden for 3 weeks, and tracking the mass gained by individuals of either phenotype. We found that both the docile and aggressive phenotypes experienced their greatest mass gain in mixed colonies of mostly docile individuals. However, the performance of both phenotypes decreased as the frequency of the aggressive phenotype increased. Nearly identical patterns of phenotype-specific frequency dependence were recovered in all three species. Naturally occurring colonies of these spiders exhibit mixtures dominated by the docile phenotype, suggesting that these spiders may have evolved mechanisms to maintain the compositions that maximize the success of the colony without compromising the expected reproductive output of either phenotype. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  5. Improving sperm banking efficiency in endangered species through the use of a sperm selection method in brown bear (Ursus arctos) thawed sperm.

    Science.gov (United States)

    Anel-Lopez, L; Ortega-Ferrusola, C; Álvarez, M; Borragán, S; Chamorro, C; Peña, F J; Morrell, J; Anel, L; de Paz, P

    2017-06-26

    Sperm selection methods such as Single Layer Centrifugation (SLC) have been demonstrated to be a useful tool to improve the quality of sperm samples and therefore to increase the efficiency of other artificial reproductive techniques in several species. This procedure could help to improve the quality of genetic resource banks, which is essential for endangered species. In contrast, these sperm selection methods are optimized and focused on farm animals, where the recovery task is not as important as in endangered species because of their higher sperm availability. The aim of this study was to evaluate two centrifugation methods (300 x g/20 min and 600 x g/10 min) and three concentrations of SLC media (Androcoll-Bear -80, 65 and 50%) to optimise the procedure in order to recover as many sperm with the highest quality as possible. Sperm morphology could be important in the hydrodynamic relationship between the cell and centrifugation medium and thus the effect of sperm head morphometry on sperm yield and its hydrodynamic relationship were studied. The samples selected with Androcoll-Bear 65% showed a very good yield (53.1 ± 2.9) although the yield from Androcoll-Bear 80% was lower (19.3 ± 3.3). The latter showed higher values of motility than the control immediately after post-thawing selection. However, both concentrations of colloid (65 and 80%) showed higher values of viable sperm and viable sperm with intact acrosome than the control. After an incubation of 2 h at 37 °C, the samples from Androcoll-Bear 80% had higher kinematics and proportion of viable sperm with intact acrosome. In the morphometric analysis, the sperm selected by the Androcoll-Bear 80% showed a head with a bigger area which was more elongated than the sperm from other treatments. We conclude that sperm selection with Androcoll-Bear at either 65% or 80% is a suitable technique that allows a sperm population with better quality than the initial sample to be obtained. We recommend the

  6. Signatures of natural selection at the FTO (fat mass and obesity associated locus in human populations.

    Directory of Open Access Journals (Sweden)

    Xuanshi Liu

    Full Text Available Polymorphisms in the first intron of FTO have been robustly replicated for associations with obesity. In the Sorbs, a Slavic population resident in Germany, the strongest effect on body mass index (BMI was found for a variant in the third intron of FTO (rs17818902. Since this may indicate population specific effects of FTO variants, we initiated studies testing FTO for signatures of selection in vertebrate species and human populations.First, we analyzed the coding region of 35 vertebrate FTO orthologs with Phylogenetic Analysis by Maximum Likelihood (PAML, ω = dN/dS to screen for signatures of selection among species. Second, we investigated human population (Europeans/CEU, Yoruba/YRI, Chinese/CHB, Japanese/JPT, Sorbs SNP data for footprints of selection using DnaSP version 4.5 and the Haplotter/PhaseII. Finally, using ConSite we compared transcription factor (TF binding sites at sequences harbouring FTO SNPs in intron three.PAML analyses revealed strong conservation in coding region of FTO (ω<1. Sliding-window results from population genetic analyses provided highly significant (p<0.001 signatures for balancing selection specifically in the third intron (e.g. Tajima's D in Sorbs = 2.77. We observed several alterations in TF binding sites, e.g. TCF3 binding site introduced by the rs17818902 minor allele.Population genetic analysis revealed signatures of balancing selection at the FTO locus with a prominent signal in intron three, a genomic region with strong association with BMI in the Sorbs. Our data support the hypothesis that genes associated with obesity may have been under evolutionary selective pressure.

  7. Strong field control of predissociation dynamics.

    Science.gov (United States)

    Corrales, María E; Balerdi, Garikoitz; Loriot, Vincent; de Nalda, Rebeca; Bañares, Luis

    2013-01-01

    Strong field control scenarios are investigated in the CH3I predissociation dynamics at the origin of the second absorption B-band, in which state-selective electronic predissociation occurs through the crossing with a valence dissociative state. Dynamic Stark control (DSC) and pump-dump strategies are shown capable of altering both the predissociation lifetime and the product branching ratio.

  8. Tolerance and selectivity of cereal species and cultivars to postemergence weed harrowing

    DEFF Research Database (Denmark)

    Rasmussen, Jesper; Nielsen, Helle Højland; Gundersen, Hanne

    2009-01-01

    POST weed harrowing and other cultivation methods to control weeds in early crop growth stages may result in crop damage due to low selectivity between crop and weeds. Crop tolerance to cultivation plays an important role but it has not been clearly defined and analyzed. We introduce a procedure...... for analyzing crop tolerance on the basis of digital image analysis. Crop tolerance is defined as the ability of the crop to avoid yield loss from cultivation in the absence of weeds, and it has two components: resistance and recovery. Resistance is the ability of the crop to resist soil covering and recovery...... abilities to suppress weeds. The order of species' tolerance to weed harrowing was triticale > wheat > barley > oat and the differences were mainly caused by different abilities to recover from soil covering. At 25% soil covering, grain yield loss in triticale was 0.5%, in wheat 2.5%, in barley 3...

  9. Patterns of gene flow define species of thermophilic Archaea.

    Directory of Open Access Journals (Sweden)

    Hinsby Cadillo-Quiroz

    2012-02-01

    Full Text Available Despite a growing appreciation of their vast diversity in nature, mechanisms of speciation are poorly understood in Bacteria and Archaea. Here we use high-throughput genome sequencing to identify ongoing speciation in the thermoacidophilic Archaeon Sulfolobus islandicus. Patterns of homologous gene flow among genomes of 12 strains from a single hot spring in Kamchatka, Russia, demonstrate higher levels of gene flow within than between two persistent, coexisting groups, demonstrating that these microorganisms fit the biological species concept. Furthermore, rates of gene flow between two species are decreasing over time in a manner consistent with incipient speciation. Unlike other microorganisms investigated, we do not observe a relationship between genetic divergence and frequency of recombination along a chromosome, or other physical mechanisms that would reduce gene flow between lineages. Each species has its own genetic island encoding unique physiological functions and a unique growth phenotype that may be indicative of ecological specialization. Genetic differentiation between these coexisting groups occurs in large genomic "continents," indicating the topology of genomic divergence during speciation is not uniform and is not associated with a single locus under strong diversifying selection. These data support a model where species do not require physical barriers to gene flow but are maintained by ecological differentiation.

  10. Patterns of gene flow define species of thermophilic Archaea.

    Science.gov (United States)

    Cadillo-Quiroz, Hinsby; Didelot, Xavier; Held, Nicole L; Herrera, Alfa; Darling, Aaron; Reno, Michael L; Krause, David J; Whitaker, Rachel J

    2012-02-01

    Despite a growing appreciation of their vast diversity in nature, mechanisms of speciation are poorly understood in Bacteria and Archaea. Here we use high-throughput genome sequencing to identify ongoing speciation in the thermoacidophilic Archaeon Sulfolobus islandicus. Patterns of homologous gene flow among genomes of 12 strains from a single hot spring in Kamchatka, Russia, demonstrate higher levels of gene flow within than between two persistent, coexisting groups, demonstrating that these microorganisms fit the biological species concept. Furthermore, rates of gene flow between two species are decreasing over time in a manner consistent with incipient speciation. Unlike other microorganisms investigated, we do not observe a relationship between genetic divergence and frequency of recombination along a chromosome, or other physical mechanisms that would reduce gene flow between lineages. Each species has its own genetic island encoding unique physiological functions and a unique growth phenotype that may be indicative of ecological specialization. Genetic differentiation between these coexisting groups occurs in large genomic "continents," indicating the topology of genomic divergence during speciation is not uniform and is not associated with a single locus under strong diversifying selection. These data support a model where species do not require physical barriers to gene flow but are maintained by ecological differentiation.

  11. Predicting weed problems in maize cropping by species distribution modelling

    Directory of Open Access Journals (Sweden)

    Bürger, Jana

    2014-02-01

    Full Text Available Increasing maize cultivation and changed cropping practices promote the selection of typical maize weeds that may also profit strongly from climate change. Predicting potential weed problems is of high interest for plant production. Within the project KLIFF, experiments were combined with species distribution modelling for this task in the region of Lower Saxony, Germany. For our study, we modelled ecological and damage niches of nine weed species that are significant and wide spread in maize cropping in a number of European countries. Species distribution models describe the ecological niche of a species, these are the environmental conditions under which a species can maintain a vital population. It is also possible to estimate a damage niche, i.e. the conditions under which a species causes damage in agricultural crops. For this, we combined occurrence data of European national data bases with high resolution climate, soil and land use data. Models were also projected to simulated climate conditions for the time horizon 2070 - 2100 in order to estimate climate change effects. Modelling results indicate favourable conditions for typical maize weed occurrence virtually all over the study region, but only a few species are important in maize cropping. This is in good accordance with the findings of an earlier maize weed monitoring. Reaction to changing climate conditions is species-specific, for some species neutral (E. crus-galli, other species may gain (Polygonum persicaria or loose (Viola arvensis large areas of suitable habitats. All species with damage potential under present conditions will remain important in maize cropping, some more species will gain regional importance (Calystegia sepium, Setara viridis.

  12. Species selective preconcentration and quantification of gold nanoparticles using cloud point extraction and electrothermal atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Georg, E-mail: georg.hartmann@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany); Schuster, Michael, E-mail: michael.schuster@tum.de [Department of Chemistry, Technische Universitaet Muenchen, 85748 Garching (Germany)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer We optimized cloud point extraction and ET-AAS parameters for Au-NPs measurement. Black-Right-Pointing-Pointer A selective ligand (sodium thiosulphate) is introduced for species separation. Black-Right-Pointing-Pointer A limit of detection of 5 ng Au-NP per L is achieved for aqueous samples. Black-Right-Pointing-Pointer Measurement of samples with high natural organic mater content is possible. Black-Right-Pointing-Pointer Real water samples including wastewater treatment plant effluent were analyzed. - Abstract: The determination of metallic nanoparticles in environmental samples requires sample pretreatment that ideally combines pre-concentration and species selectivity. With cloud point extraction (CPE) using the surfactant Triton X-114 we present a simple and cost effective separation technique that meets both criteria. Effective separation of ionic gold species and Au nanoparticles (Au-NPs) is achieved by using sodium thiosulphate as a complexing agent. The extraction efficiency for Au-NP ranged from 1.01 {+-} 0.06 (particle size 2 nm) to 0.52 {+-} 0.16 (particle size 150 nm). An enrichment factor of 80 and a low limit of detection of 5 ng L{sup -1} is achieved using electrothermal atomic absorption spectrometry (ET-AAS) for quantification. TEM measurements showed that the particle size is not affected by the CPE process. Natural organic matter (NOM) is tolerated up to a concentration of 10 mg L{sup -1}. The precision of the method expressed as the standard deviation of 12 replicates at an Au-NP concentration of 100 ng L{sup -1} is 9.5%. A relation between particle concentration and the extraction efficiency was not observed. Spiking experiments showed a recovery higher than 91% for environmental water samples.

  13. Improving the size- and species selectivity of cod (Gadus morhua) in demersal mixed-species trawl fisheries

    DEFF Research Database (Denmark)

    Krag, Ludvig Ahm

    reduce the catch of cod without simultaneously reduce the catch of the target species. To optimise the trade-off between discard and loss of marketable catch, solutions have to be specific to particular fisheries or populations of fish. Papers 1 and 3 provide specific examples of how size- and species...

  14. ICRAF Species Switchboard. Version 1.2

    DEFF Research Database (Denmark)

    Kindt, R.; Ordonez, J.; Smith, E.

    2015-01-01

    The current version of the Agroforestry Species Switchboard documents the presence of a total of 26,135 plant species (33,813 species including synonyms) across 19 web-based databases. When available, hyperlinks to information on the selected species in particular databases are provided. In total...

  15. Natural Selection and Genetic Diversity in the Butterfly Heliconius melpomene.

    Science.gov (United States)

    Martin, Simon H; Möst, Markus; Palmer, William J; Salazar, Camilo; McMillan, W Owen; Jiggins, Francis M; Jiggins, Chris D

    2016-05-01

    A combination of selective and neutral evolutionary forces shape patterns of genetic diversity in nature. Among the insects, most previous analyses of the roles of drift and selection in shaping variation across the genome have focused on the genus Drosophila A more complete understanding of these forces will come from analyzing other taxa that differ in population demography and other aspects of biology. We have analyzed diversity and signatures of selection in the neotropical Heliconius butterflies using resequenced genomes from 58 wild-caught individuals of Heliconius melpomene and another 21 resequenced genomes representing 11 related species. By comparing intraspecific diversity and interspecific divergence, we estimate that 31% of amino acid substitutions between Heliconius species are adaptive. Diversity at putatively neutral sites is negatively correlated with the local density of coding sites as well as nonsynonymous substitutions and positively correlated with recombination rate, indicating widespread linked selection. This process also manifests in significantly reduced diversity on longer chromosomes, consistent with lower recombination rates. Although hitchhiking around beneficial nonsynonymous mutations has significantly shaped genetic variation in H. melpomene, evidence for strong selective sweeps is limited overall. We did however identify two regions where distinct haplotypes have swept in different populations, leading to increased population differentiation. On the whole, our study suggests that positive selection is less pervasive in these butterflies as compared to fruit flies, a fact that curiously results in very similar levels of neutral diversity in these very different insects. Copyright © 2016 by the Genetics Society of America.

  16. Population Genomics of Paramecium Species.

    Science.gov (United States)

    Johri, Parul; Krenek, Sascha; Marinov, Georgi K; Doak, Thomas G; Berendonk, Thomas U; Lynch, Michael

    2017-05-01

    Population-genomic analyses are essential to understanding factors shaping genomic variation and lineage-specific sequence constraints. The dearth of such analyses for unicellular eukaryotes prompted us to assess genomic variation in Paramecium, one of the most well-studied ciliate genera. The Paramecium aurelia complex consists of ∼15 morphologically indistinguishable species that diverged subsequent to two rounds of whole-genome duplications (WGDs, as long as 320 MYA) and possess extremely streamlined genomes. We examine patterns of both nuclear and mitochondrial polymorphism, by sequencing whole genomes of 10-13 worldwide isolates of each of three species belonging to the P. aurelia complex: P. tetraurelia, P. biaurelia, P. sexaurelia, as well as two outgroup species that do not share the WGDs: P. caudatum and P. multimicronucleatum. An apparent absence of global geographic population structure suggests continuous or recent dispersal of Paramecium over long distances. Intergenic regions are highly constrained relative to coding sequences, especially in P. caudatum and P. multimicronucleatum that have shorter intergenic distances. Sequence diversity and divergence are reduced up to ∼100-150 bp both upstream and downstream of genes, suggesting strong constraints imposed by the presence of densely packed regulatory modules. In addition, comparison of sequence variation at non-synonymous and synonymous sites suggests similar recent selective pressures on paralogs within and orthologs across the deeply diverging species. This study presents the first genome-wide population-genomic analysis in ciliates and provides a valuable resource for future studies in evolutionary and functional genetics in Paramecium. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Effective identification of Lactobacillus casei group species: genome-based selection of the gene mutL as the target of a novel multiplex PCR assay.

    Science.gov (United States)

    Bottari, Benedetta; Felis, Giovanna E; Salvetti, Elisa; Castioni, Anna; Campedelli, Ilenia; Torriani, Sandra; Bernini, Valentina; Gatti, Monica

    2017-07-01

    Lactobacillus casei,Lactobacillus paracasei and Lactobacillusrhamnosus form a closely related taxonomic group (the L. casei group) within the facultatively heterofermentative lactobacilli. Strains of these species have been used for a long time as probiotics in a wide range of products, and they represent the dominant species of nonstarter lactic acid bacteria in ripened cheeses, where they contribute to flavour development. The close genetic relationship among those species, as well as the similarity of biochemical properties of the strains, hinders the development of an adequate selective method to identify these bacteria. Despite this being a hot topic, as demonstrated by the large amount of literature about it, the results of different proposed identification methods are often ambiguous and unsatisfactory. The aim of this study was to develop a more robust species-specific identification assay for differentiating the species of the L. casei group. A taxonomy-driven comparative genomic analysis was carried out to select the potential target genes whose similarity could better reflect genome-wide diversity. The gene mutL appeared to be the most promising one and, therefore, a novel species-specific multiplex PCR assay was developed to rapidly and effectively distinguish L. casei, L. paracasei and L. rhamnosus strains. The analysis of a collection of 76 wild dairy isolates, previously identified as members of the L. casei group combining the results of multiple approaches, revealed that the novel designed primers, especially in combination with already existing ones, were able to improve the discrimination power at the species level and reveal previously undiscovered intraspecific biodiversity.

  18. Parallel selective pressures drive convergent diversification of phenotypes in pythons and boas.

    Science.gov (United States)

    Esquerré, Damien; Scott Keogh, J

    2016-07-01

    Pythons and boas are globally distributed and distantly related radiations with remarkable phenotypic and ecological diversity. We tested whether pythons, boas and their relatives have evolved convergent phenotypes when they display similar ecology. We collected geometric morphometric data on head shape for 1073 specimens representing over 80% of species. We show that these two groups display strong and widespread convergence when they occupy equivalent ecological niches and that the history of phenotypic evolution strongly matches the history of ecological diversification, suggesting that both processes are strongly coupled. These results are consistent with replicated adaptive radiation in both groups. We argue that strong selective pressures related to habitat-use have driven this convergence. Pythons and boas provide a new model system for the study of macro-evolutionary patterns of morphological and ecological evolution and they do so at a deeper level of divergence and global scale than any well-established adaptive radiation model systems. © 2016 John Wiley & Sons Ltd/CNRS.

  19. Characterization of Candida Species Isolated from cases of Vulvovaginitis in women referring to selected gynecological clinics

    Directory of Open Access Journals (Sweden)

    Batol Bonyadpour

    2016-10-01

    Full Text Available Background and aim: About 20% of non-pregnant women aged 15 to 55 harbour Candida albicans in the vagina .the aimed to determine the Characterization of Candida Species Isolated from women with Vulvovaginitis candidates (VVC of reproductive ages. Methods: this descriptive study was conducted on 280 of who were selected for gathering samples by Purposive sampling based on their history and characteristics of vaginal discharges in 2009. Among these patients, 105 ones were diagnosed with candidiasis. The data were collected using demographic information form and disease symptoms. the species were differentiated using germ tube test, chrome agar test, and chlamidospore test. Data analysis was performed in SPSS V.16, using Descriptive Statistics Results: the prevalence of candida vaginitis was 9.3%.105 samples obtained from patients.. Chlamidospore was detected in 54.3% of the corn meal agar media. Besides, in chrome agar test, 41.9% of the samples turned into green representing candida albicans. In germ tube test, on the other hand, 70.5% of the samples were candida albicans, while 29.5% were candida non-albicans. Overall, The frequency of the Candida albicans, Candida glabrata, Candida tropicalis and  the Candida Krusei were  66.6% , 219%  , 8.6% ,  and 2.9%, respectively. Conclusion: Candida albicans was the most common species leading to the Vulvovaginitis in patients with VCC while other species were at the secondary importance stages.Due to inaccurate diagnosis of the disease based on the clinical symptoms, fungal culture is recommended as a standard diagnostic method.

  20. Photosynthetic response of two seaweed species along an urban pollution gradient: evidence of selection of pollution-tolerant species.

    Science.gov (United States)

    Scherner, F; Bonomi Barufi, J; Horta, P A

    2012-11-01

    Urbanization leads to the expansion of ephemeral seaweed species and the decline of important perennial, canopy-forming seaweed species. Understanding the mechanisms that lead to these changes is a current challenge. In the present study, laboratory assays and field transplantations were performed with two seaweed species: the perennial, canopy-forming seaweed Sargassum stenophyllum and the ephemeral seaweed Ulva lactuca. Photosynthetic efficiency was assessed using modulated chlorophyll fluorometry. Brief exposure to urban waters does not appear to be a major stressor to the photosynthetic efficiency of either species. However, after 26 days of transplantation in urban waters, S. stenophyllum declined, whereas U. lactuca had enhanced photosynthetic efficiency. This difference reflects their divergent abilities to regulate the energy distribution at the PSII and shows that urban stressors alter these mechanisms. Our results provide evidence of the physiological causes for the decline of Sargassum species and the expansion of Ulva species in impacted urban areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis)

    Science.gov (United States)

    FUNK, W. CHRIS; LOVICH, ROBERT E.; HOHENLOHE, PAUL A.; HOFMAN, COURTNEY A.; MORRISON, SCOTT A.; SILLETT, T. SCOTT; GHALAMBOR, CAMERON K.; MALDONADO, JESUS E.; RICK, TORBEN C.; DAY, MITCH D.; POLATO, NICHOLAS R.; FITZPATRICK, SARAH W.; COONAN, TIMOTHY J.; CROOKS, KEVIN R.; DILLON, ADAM; GARCELON, DAVID K.; KING, JULIE L.; BOSER, CHRISTINA L.; GOULD, NICHOLAS; ANDELT, WILLIAM F.

    2016-01-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of 6 subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland gray foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness, and reduced adaptive potential. PMID:26992010

  2. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    Science.gov (United States)

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential. © 2016 John Wiley & Sons Ltd.

  3. A zero discharge green roof system and species selection to optimize evapotranspiration and water retention

    Energy Technology Data Exchange (ETDEWEB)

    Compton, J.S.; Whitlow, T.H. [Cornell, Univ., Urban Horticulture Inst., Ithaca, NY (United States). Dept. of Horticulture

    2006-07-01

    Economic benefits must outweigh costs, with or without governmental subsidies or enforcement in order for green roofs to become commonplace in American cities. Municipal advantages to green roofs include stormwater management, environmental quality and an expansion of the native plant palette. These benefits are difficult to quantify monetarily for the owner of the roof, yet greater water evaporation from storm water attenuation has the ability to increase cooling of the building, an economic benefit to the owner. Current green roof design and testing methods fail to explore systems that maximize stormwater retention and evaporative cooling benefits that are often associated with green roofs. This paper presented the results of a study that investigated an alternate approach that optimizes water loss through evapotranspiration using a zero discharge target and plants that tolerate both medium drought and saturation. Species selection emphasizes native species and salt tolerance, which allows the possibility of grey water irrigation. Species studied include spartina alternafiora and solidago canadensis. Plants were studied over a growing season to examine the rates of ET as they relate to weather conditions, growing media composition and saturation levels, and plant species. The study was conducted on top of a four storey school building located in the South Bronx, New York City. In June 2005, a 3,500 square foot extensive green roof was installed. The conference described the site and study in detail followed by a discussion of the results. This includes a discussion of the planting containers, planting mediums, plant materials, data collection, and irrigation trials. It was concluded that further research is needed to test this concept, and to examine the possibility of supplemental irrigation via off-season rainwater catchment or grey water irrigation. 17 refs., 4 figs.

  4. Species-level para- and polyphyly in DNA barcode gene trees: strong operational bias in European Lepidoptera

    NARCIS (Netherlands)

    Mutanen, M.; Kivelä, S.M.; Vos, R.A.; Doorenweerd, C.; Ratnasingham, S.; Hausmann, A.; Huemer, P.; Dinca, V.; Nieukerken, van E.J.; Lopez-Vaamonde, C.; Vila, R.; Aarvik, L.; Decaëns, T.; Efetov, K.A.; Hebert, P.D.N.; Johnsen, A.; Karsholt, O.; Pentinsaari, M.; Rougerie, R.; Segerer, A.; Tarmann, G.; Zahiri, R.; Godfray, H.C.J.

    2016-01-01

    The proliferation of DNA data is revolutionizing all fields of systematic research. DNA barcode sequences, now available for millions of specimens and several hundred thousand species, are increasingly used in algorithmic species delimitations. This is complicated by occasional incongruences between

  5. Higher Order QED Contributions to the Atomic Structure at Strong Central Fields

    International Nuclear Information System (INIS)

    Mokler, P H

    2007-01-01

    An accurate determination of the precise structure of highly charged, very heavy ions is crucial for understanding QED at strong fields. The experimental advances in the spectroscopy of very heavy, highly charged ions-in particular H-, He- and Li-like species-are reviewed: Presently the ground state Lamb shift for H-like U ions is measured on a 1% level of accuracy; the screening terms in two-electron QED have just been touched by experiments for He-like U; and two-loop QED terms have been determined with ultimate accuracy for Li-like heavy species. The different approaches on QED measurements in strong fields will be discussed and the results compared to theory

  6. Color perception influences microhabitat selection of refugia and affects monitoring success for a cryptic anuran species.

    Science.gov (United States)

    Cohen, Bradley S; MacKenzie, Michelle L; Maerz, John C; Farrell, Christopher B; Castleberry, Steven B

    2016-10-01

    Perceptual-biases are important for understanding an animal's natural history, identifying potential ecological traps, and for developing effective means to monitor individuals and populations. Despite research demonstrating anurans having a positive phototactic response towards blue colors, we do not yet understand if color cues are used functionally beyond sexual selection. The aim of our study was to determine if color cues are used in selecting microhabitat, and if anuran's blue-positive phototactic response could increase selection of artificial PVC refugia used to monitor cryptic camouflaging anuran species. We captured 32 Cope's Gray Treefrogs and placed them in mesh enclosures with three PVC tubes painted blue, brown, and white. Concurrently, we placed blue, brown, or unpainted white PVC tubes in stratified arrays around a treefrog breeding pond, and counted the number of occasions treefrogs occupied different colored PVC tubes. In the confined choice experiment, treefrogs selected blue tubes (48.3%) significantly more often than brown (28.5%) or white (23.2%) tubes. Our field experiment mirrored these findings (52.0% of capture events in blue, 29.0% in brown, and 19.0% in unpainted white tubes). Our results suggest color influences Cope's Gray Treefrog microhabitat selection, and they utilize color vision when choosing refugia. We demonstrate simple, small changes based on perceptual-biases can induce behaviors that may in turn have large impacts on sampling techniques used in monitoring and inventorying. Incorporating non-traditional physiological measures into animal inventorying and monitoring programs can be used in the future to improve conservation efforts. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis.

    Science.gov (United States)

    Kawamoto, Shimpei; Maruya, Mikako; Kato, Lucia M; Suda, Wataru; Atarashi, Koji; Doi, Yasuko; Tsutsui, Yumi; Qin, Hongyan; Honda, Kenya; Okada, Takaharu; Hattori, Masahira; Fagarasan, Sidonia

    2014-07-17

    Foxp3(+) T cells play a critical role for the maintenance of immune tolerance. Here we show that in mice, Foxp3(+) T cells contributed to diversification of gut microbiota, particularly of species belonging to Firmicutes. The control of indigenous bacteria by Foxp3(+) T cells involved regulatory functions both outside and inside germinal centers (GCs), consisting of suppression of inflammation and regulation of immunoglobulin A (IgA) selection in Peyer's patches, respectively. Diversified and selected IgAs contributed to maintenance of diversified and balanced microbiota, which in turn facilitated the expansion of Foxp3(+) T cells, induction of GCs, and IgA responses in the gut through a symbiotic regulatory loop. Thus, the adaptive immune system, through cellular and molecular components that are required for immune tolerance and through the diversification as well as selection of antibody repertoire, mediates host-microbial symbiosis by controlling the richness and balance of bacterial communities required for homeostasis. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Social selection parapatry in Afrotropical sunbirds

    DEFF Research Database (Denmark)

    McEntee, Jay P.; Peñalba, Joshua V.; Werema, Chacha

    2016-01-01

    The extent of range overlap of incipient and recent species depends on the type and magnitude of phenotypic divergence that separates them, and the consequences of phenotypic divergence on their interactions. Signal divergence by social selection likely initiates many speciation events, but may...... yield niche-conserved lineages predisposed to limit each others’ ranges via ecological competition. Here, we examine this neglected aspect of social selection speciation theory in relation to the discovery of a nonecotonal species border between sunbirds. We find that Nectarinia moreaui and Nectarinia...... fuelleborni meet in a ∼6 km wide contact zone, as estimated by molecular cline analysis. These species exploit similar bioclimatic niches, but sing highly divergent learned songs, consistent with divergence by social selection. Cline analyses suggest that within-species stabilizing social selection on song...

  9. Drivers of inter-annual variation and long-term change in High-Arctic spider species abundances

    DEFF Research Database (Denmark)

    Bowden, Joseph J.; Hansen, Oskar L. P.; Olsen, Kent

    2018-01-01

    Understanding how species abundances vary in space and time is a central theme in ecology, yet there are few long-term field studies of terrestrial invertebrate abundances and the determinants of their dynamics. This is particularly relevant in the context of rapid climate change occurring...... in the Arctic. Arthropods can serve as strong indicators of ecosystem change due to their sensitivity to increasing temperatures and other environmental variables. We used spider samples collected by pitfall trapping from three different habitats (fen, mesic and arid heath) in High-Arctic Greenland to assess...... interpretation of long-term trends. We used model selection to determine which climatic variables and/or previous years’ abundance best explained annual variation in species abundances over this period. We identified and used 28 566 adult spiders that comprised eight species. Most notably, the abundances of some...

  10. Balance of bacterial species in the gut

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Balance of bacterial species in the gut. Protective. Lactobacillus species. Bifidobacterium species. Selected E. coli. Saccharomyces boulardii. Clostridium butyricum.

  11. Reranking candidate gene models with cross-species comparison for improved gene prediction

    Directory of Open Access Journals (Sweden)

    Pereira Fernando CN

    2008-10-01

    Full Text Available Abstract Background Most gene finders score candidate gene models with state-based methods, typically HMMs, by combining local properties (coding potential, splice donor and acceptor patterns, etc. Competing models with similar state-based scores may be distinguishable with additional information. In particular, functional and comparative genomics datasets may help to select among competing models of comparable probability by exploiting features likely to be associated with the correct gene models, such as conserved exon/intron structure or protein sequence features. Results We have investigated the utility of a simple post-processing step for selecting among a set of alternative gene models, using global scoring rules to rerank competing models for more accurate prediction. For each gene locus, we first generate the K best candidate gene models using the gene finder Evigan, and then rerank these models using comparisons with putative orthologous genes from closely-related species. Candidate gene models with lower scores in the original gene finder may be selected if they exhibit strong similarity to probable orthologs in coding sequence, splice site location, or signal peptide occurrence. Experiments on Drosophila melanogaster demonstrate that reranking based on cross-species comparison outperforms the best gene models identified by Evigan alone, and also outperforms the comparative gene finders GeneWise and Augustus+. Conclusion Reranking gene models with cross-species comparison improves gene prediction accuracy. This straightforward method can be readily adapted to incorporate additional lines of evidence, as it requires only a ranked source of candidate gene models.

  12. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)

    Navya

    *For Correspondence. e-mail: bashisthsingh2004@rediffmail.com, ... A species complex constitutes groups of closely related species which have diverged ..... there is a strong reproductive isolation too (See review by Singh and Banerjee 2016) .... figure both the loops touch the chromocenter and in our microphotograph ...

  13. Plant selection and soil legacy enhance long-term biodiversity effects.

    Science.gov (United States)

    Zuppinger-Dingley, Debra; Flynn, Dan F B; De Deyn, Gerlinde B; Petermann, Jana S; Schmid, Bernhard

    2016-04-01

    Plant-plant and plant-soil interactions can help maintain plant diversity and ecosystem functions. Changes in these interactions may underlie experimentally observed increases in biodiversity effects over time via the selection of genotypes adapted to low or high plant diversity. Little is known, however, about such community-history effects and particularly the role of plant-soil interactions in this process. Soil-legacy effects may occur if co-evolved interactions with soil communities either positively or negatively modify plant biodiversity effects. We tested how plant selection and soil legacy influence biodiversity effects on productivity, and whether such effects increase the resistance of the communities to invasion by weeds. We used two plant selection treatments: parental plants growing in monoculture or in mixture over 8 yr in a grassland biodiversity experiment in the field, which we term monoculture types and mixture types. The two soil-legacy treatments used in this study were neutral soil inoculated with live or sterilized soil inocula collected from the same plots in the biodiversity experiment. For each of the four factorial combinations, seedlings of eight species were grown in monocultures or four-species mixtures in pots in an experimental garden over 15 weeks. Soil legacy (live inoculum) strongly increased biodiversity complementarity effects for communities of mixture types, and to a significantly weaker extent for communities of monoculture types. This may be attributed to negative plant-soil feedbacks suffered by mixture types in monocultures, whereas monoculture types had positive plant-soil feedbacks, in both monocultures and mixtures. Monocultures of mixture types were most strongly invaded by weeds, presumably due to increased pathogen susceptibility, reduced biomass, and altered plant-soil interactions of mixture types. These results show that biodiversity effects in experimental grassland communities can be modified by the evolution of

  14. Selection of seed lots of Pinus taeda L. for tissue culture

    Directory of Open Access Journals (Sweden)

    Diego Pascoal Golle

    2014-06-01

    Full Text Available The aim of this work was to identify the fungi genera associated with three Pinus taeda L. seed lots and to assess the sanitary and physiological quality of these lots for use as selection criteria for tissue culture and evaluate the in vitro establishment of explants from seminal origin in different nutritive media. It was possible to discriminate the lots on the sanitary and physiological quality, as well as to establish in vitro plants of Pinus taeda from cotyledonary nodes obtained from aseptic seed germination of a selected lot by the sanitary and physiological quality higher. The nutritive media MS, ½ MS and WPM were equally suitable for this purpose. For the sanitary analysis the fungal genera Fusarium, Penicillium and Trichoderma were those of the highest sensitivity. For the physiological evaluation were important the variables: abnormal seedlings, strong normal seedlings; length, fresh and dry weight of strong normal seedlings. The analyzes were favorable to choose lots of seeds for in vitro culture and all culture media were adequate for the establishment of this species in tissue culture.

  15. The Origin of Species

    NARCIS (Netherlands)

    Darwin, Charles

    2005-01-01

    In The Origin of Species Darwin outlined his theory of evolution, which proposed that species had been evolving and differentiating over time under the influence of natural selection. On its publication it became hugely influential, bringing about a seismic shift in the scientific view of humanitys

  16. Suppression of Aflatoxin Production in Aspergillus Species by Selected Peanut (Arachis hypogaea) Stilbenoids.

    Science.gov (United States)

    Sobolev, Victor; Arias, Renee; Goodman, Kerestin; Walk, Travis; Orner, Valerie; Faustinelli, Paola; Massa, Alicia

    2018-01-10

    Aspergillus flavus is a soil fungus that commonly invades peanut seeds and often produces carcinogenic aflatoxins. Under favorable conditions, the fungus-challenged peanut plant produces and accumulates resveratrol and its prenylated derivatives in response to such an invasion. These prenylated stilbenoids are considered peanut antifungal phytoalexins. However, the mechanism of peanut-fungus interaction has not been sufficiently studied. We used pure peanut stilbenoids arachidin-1, arachidin-3, and chiricanine A to study their effects on the viability of and metabolite production by several important toxigenic Aspergillus species. Significant reduction or virtually complete suppression of aflatoxin production was revealed in feeding experiments in A. flavus, Aspergillus parasiticus, and Aspergillus nomius. Changes in morphology, spore germination, and growth rate were observed in A. flavus exposed to the selected peanut stilbenoids. Elucidation of the mechanism of aflatoxin suppression by peanut stilbenoids could provide strategies for preventing plant invasion by the fungi that produce aflatoxins.

  17. Preliminarily study on the maximum handling size, prey size and species selectivity of growth hormone transgenic and non-transgenic common carp Cyprinus carpio when foraging on gastropods

    Science.gov (United States)

    Zhu, Tingbing; Zhang, Lihong; Zhang, Tanglin; Wang, Yaping; Hu, Wei; Olsen, Rolf Eric; Zhu, Zuoyan

    2017-10-01

    The present study preliminarily examined the differences in maximum handling size, prey size and species selectivity of growth hormone transgenic and non-transgenic common carp Cyprinus carpio when foraging on four gastropods species (Bellamya aeruginosa, Radix auricularia, Parafossarulus sinensis and Alocinma longicornis) under laboratory conditions. In the maximum handling size trial, five fish from each age group (1-year-old and 2-year-old) and each genotype (transgenic and non-transgenic) of common carp were individually allowed to feed on B. aeruginosa with wide shell height range. The results showed that maximum handling size increased linearly with fish length, and there was no significant difference in maximum handling size between the two genotypes. In the size selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on three size groups of B. aeruginosa. The results show that the two genotypes of C. carpio favored the small-sized group over the large-sized group. In the species selection trial, three pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on thin-shelled B. aeruginosa and thick-shelled R. auricularia, and five pairs of 2-year-old transgenic and non-transgenic carp were individually allowed to feed on two gastropods species (P. sinensis and A. longicornis) with similar size and shell strength. The results showed that both genotypes preferred thin-shelled Radix auricularia rather than thick-shelled B. aeruginosa, but there were no significant difference in selectivity between the two genotypes when fed on P. sinensis and A. longicornis. The present study indicates that transgenic and non-transgenic C. carpio show similar selectivity of predation on the size- and species-limited gastropods. While this information may be useful for assessing the environmental risk of transgenic carp, it does not necessarily demonstrate that transgenic common carp might

  18. Strongly Deterministic Population Dynamics in Closed Microbial Communities

    Directory of Open Access Journals (Sweden)

    Zak Frentz

    2015-10-01

    Full Text Available Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.

  19. A rapid method for selecting suitable animal species for studying pathogen interactions with plasma protein ligands in vivo.

    Science.gov (United States)

    Naudin, Clément; Schumski, Ariane; Salo-Ahen, Outi M H; Herwald, Heiko; Smeds, Emanuel

    2017-05-01

    Species tropism constitutes a serious problem for developing relevant animal models of infection. Human pathogens can express virulence factors that show specific selectivity to human proteins, while their affinity for orthologs from other species can vary significantly. Suitable animal species must be used to analyse whether virulence factors are potential targets for drug development. We developed an assay that rapidly predicts applicable animal species for studying virulence factors binding plasma proteins. We used two well-characterized Staphylococcus aureus proteins, SSL7 and Efb, to develop an ELISA-based inhibition assay using plasma from different animal species. The interaction between SSL7 and human C5 and the binding of Efb to human fibrinogen and human C3 was studied. Affinity experiments and Western blot analyses were used to validate the assay. Human, monkey and cat plasma interfered with binding of SSL7 to human C5. Binding of Efb to human fibrinogen was blocked in human, monkey, gerbil and pig plasma, while human, monkey, gerbil, rabbit, cat and guinea pig plasma inhibited the binding of Efb to human C3. These results emphasize the importance of choosing correct animal models, and thus, our approach is a rapid and cost-effective method that can be used to prevent unnecessary animal experiments. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  20. Energy value of meat in selected species of feathered game

    Directory of Open Access Journals (Sweden)

    František Vitula

    2011-01-01

    Full Text Available The aim of this work was to compare gross energy (GE in breast and thigh muscles in the following six species of feathered game reared in Europe: guineafowl (Numida meleagris, common pheasant (Phasianus colchicus, Japanese quail (Coturnix coturnix japonica, chukar (Alectoris chucar, grey partridge (Perdix perdix and wild turkey (Meleagris gallopavo. Calorimetric analysis revealed significant (P ≤ 0.05 and highly significant (P ≤ 0.01 differences between individual species in the content of energy in breast and thigh muscles. The highest content of energy (recalculated to dry matter was found in breast muscles from wild turkey (24.75 MJ·kg-1 and Japanese quail (24.57 MJ·kg-1 whereas the highest content of energy (recalculated to dry matter in thigh muscles was found in Japanese quail and grey partridge. Highly significant (P ≤ 0.01 differences in the energy content were also found between breast and thigh muscles in all studied game species except for wild turkey. Differences in the content of energy in muscles between individual species occur mainly due to different contents of fat in muscles. This is also confirmed by high correlation coefficients between the content of energy and the content of fat in breast (r = 0.912 and thigh muscles (r = 0.878. Our study provides more specific data on the amount of energy in muscles of major species of feathered game reared in Europe and significantly extends current knowledge in this field.

  1. Theoretical studies on selectivity of dibenzo-18-crown-6-ether for alkaline earth divalent cations

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Jiyoung [Sangmyung Univ., Seoul (Korea, Republic of)

    2012-04-15

    Crown ether is one of well-known host molecules and able to selectively sequester metal cation. We employed M06-2X density functional theory with IEFPCM and SMD continuum solvation models to study selectivity of dibenzo-18-crown-6-ether (DB18C6) for alkaline earth dications, Ba{sup 2+}, Sr{sup 2+}, Ca{sup 2+}, and Mg{sup 2+} in the gas phase and in aqueous solution. Mg{sup 2+} showed predominantly strong binding affinity in the gas phase because of strong polarization of CO bonds by cation. In aqueous solution, binding free energy differences became smaller among these dications. However, Mg{sup 2+} had the best binding, being incompatible with experimental observations in aqueous solution. The enthalpies of the dication exchange reaction between DB18C6 and water cluster molecules were computed as another estimation of selectivity in aqueous solution. These results also demonstrated that Mg{sup 2+} bound to DB18C6 better than Ba{sup 2+}. We speculated that the species determining selectivity in water could be 2:1 complexes of two DB18C6s and one dication.

  2. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    International Nuclear Information System (INIS)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Ikehara, Yuzuru; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki

    2016-01-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O 2 /He or N 2 /He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation. (paper)

  3. Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface

    Science.gov (United States)

    Yamada, Hiromasa; Sakakita, Hajime; Kato, Susumu; Kim, Jaeho; Kiyama, Satoru; Fujiwara, Masanori; Itagaki, Hirotomo; Okazaki, Toshiya; Ikehara, Sanae; Nakanishi, Hayao; Shimizu, Nobuyuki; Ikehara, Yuzuru

    2016-10-01

    A method for blood coagulation using low-energy atmospheric-pressure plasma (LEAPP) is confirmed as an alternative procedure to reduce tissue damage caused by heat. Blood coagulation using LEAPP behaves differently depending on working gas species; helium is more effective than argon in promoting fast coagulation. To analyse the difference in reactive species produced by helium and argon plasma, spectroscopic measurements were conducted without and with a target material. To compare emissions, blood coagulation experiments using LEAPP for both plasmas were performed under almost identical conditions. Although many kinds of reactive species such as hydroxyl radicals and excited nitrogen molecules were observed with similar intensity in both plasmas, intensities of nitrogen ion molecules and nitric oxide molecules were extremely strong in the helium plasma. It is considered that nitrogen ion molecules were mainly produced by penning ionization by helium metastable. Near the target, a significant increase in the emissions of reactive species is observed. There is a possibility that electron acceleration was induced in a local electric field formed on the surface. However, in argon plasma, emissions from nitrogen ion were not measured even near the target surface. These differences between the two plasmas may be producing the difference in blood coagulation behaviour. To control the surrounding gas of the plasma, a gas-component-controllable chamber was assembled. Filling the chamber with O2/He or N2/He gas mixtures selectively produces either reactive oxygen species or reactive nitrogen species. Through selective treatments, this chamber would be useful in studying the effects of specific reactive species on blood coagulation.

  4. SALMONELLA SPECIES

    African Journals Online (AJOL)

    DR. AMINU

    ... of Salmonella species serotypes in relation to age and sex among children, ..... However, most antimicrobials show sufficient selective toxicity to be of value in ... salmonellosis should be given good attention (Barrow et al., 2007). To reduce ...

  5. THE SYSTEMATICS OF STRONG LENS MODELING QUANTIFIED: THE EFFECTS OF CONSTRAINT SELECTION AND REDSHIFT INFORMATION ON MAGNIFICATION, MASS, AND MULTIPLE IMAGE PREDICTABILITY

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Traci L.; Sharon, Keren, E-mail: tljohn@umich.edu [University of Michigan, Department of Astronomy, 1085 South University Avenue, Ann Arbor, MI 48109-1107 (United States)

    2016-11-20

    Until now, systematic errors in strong gravitational lens modeling have been acknowledged but have never been fully quantified. Here, we launch an investigation into the systematics induced by constraint selection. We model the simulated cluster Ares 362 times using random selections of image systems with and without spectroscopic redshifts and quantify the systematics using several diagnostics: image predictability, accuracy of model-predicted redshifts, enclosed mass, and magnification. We find that for models with >15 image systems, the image plane rms does not decrease significantly when more systems are added; however, the rms values quoted in the literature may be misleading as to the ability of a model to predict new multiple images. The mass is well constrained near the Einstein radius in all cases, and systematic error drops to <2% for models using >10 image systems. Magnification errors are smallest along the straight portions of the critical curve, and the value of the magnification is systematically lower near curved portions. For >15 systems, the systematic error on magnification is ∼2%. We report no trend in magnification error with the fraction of spectroscopic image systems when selecting constraints at random; however, when using the same selection of constraints, increasing this fraction up to ∼0.5 will increase model accuracy. The results suggest that the selection of constraints, rather than quantity alone, determines the accuracy of the magnification. We note that spectroscopic follow-up of at least a few image systems is crucial because models without any spectroscopic redshifts are inaccurate across all of our diagnostics.

  6. Molecular signature of epistatic selection: interrogating genetic interactions in the sex-ratio meiotic drive of Drosophila simulans.

    Science.gov (United States)

    Chevin, Luis-Miguel; Bastide, Héloïse; Montchamp-Moreau, Catherine; Hospital, Frédéric

    2009-06-01

    Fine scale analyses of signatures of selection allow assessing quantitative aspects of a species' evolutionary genetic history, such as the strength of selection on genes. When several selected loci lie in the same genomic region, their epistatic interactions may also be investigated. Here, we study how the neutral polymorphism pattern was shaped by two close recombining loci that cause 'sex-ratio' meiotic drive in Drosophila simulans, as an example of strong selection with potentially strong epistasis. We compare the polymorphism data observed in a natural population with the results of forward stochastic simulations under several contexts of epistasis between the candidate loci for the drive. We compute the likelihood of different possible scenarios, in order to determine which configuration is most consistent with the data. Our results highlight that fine scale analyses of well-chosen candidate genomic regions provide information-rich data that can be used to investigate the genotype-phenotype-fitness map, which can hardly be studied in genome-wide analyses. We also emphasize that initial conditions and time of observation (here, time after the interruption of a partial selective sweep) are crucial parameters in the interpretation of real data, while these are often overlooked in theoretical studies.

  7. Panamanian frog species host unique skin bacterial communities

    Directory of Open Access Journals (Sweden)

    Lisa K. Belden

    2015-10-01

    Full Text Available Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd, that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26% were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in

  8. Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci

    DEFF Research Database (Denmark)

    André, C.; Larsson, L. C.; Laikre, L.

    2010-01-01

    In many marine fish species, genetic population structure is typically weak because populations are large, evolutionarily young and have a high potential for gene flow. We tested whether genetic markers influenced by natural selection are more efficient than the presumed neutral genetic markers t...

  9. A volatolomic approach for studying plant variability: the case of selected Helichrysum species (Asteraceae).

    Science.gov (United States)

    Giuliani, Claudia; Lazzaro, Lorenzo; Calamassi, Roberto; Calamai, Luca; Romoli, Riccardo; Fico, Gelsomina; Foggi, Bruno; Mariotti Lippi, Marta

    2016-10-01

    The species of Helichrysum sect. Stoechadina (Asteraceae) are well-known for their secondary metabolite content and the characteristic aromatic bouquets. In the wild, populations exhibit a wide phenotypic plasticity which makes critical the circumscription of species and infraspecific ranks. Previous investigations on Helichrysum italicum complex focused on a possible phytochemical typification based on hydrodistilled essential oils. Aims of this paper are three-fold: (i) characterizing the volatile profiles of different populations, testing (ii) how these profiles vary across populations and (iii) how the phytochemical diversity may contribute in solving taxonomic problems. Nine selected Helichrysum populations, included within the H. italicum complex, Helichrysum litoreum and Helichrysum stoechas, were investigated. H. stoechas was chosen as outgroup for validating the method. After collection in the wild, plants were cultivated in standard growing conditions for over one year. Annual leafy shoots were screened in the post-blooming period for the emissions of volatile organic compounds (VOCs) by means of headspace solid phase microextraction coupled with gas-chromatography and mass spectrometry (HS-SPME-GC/MS). The VOC composition analysis revealed the production of overall 386 different compounds, with terpenes being the most represented compound class. Statistical data processing allowed the identification of the indicator compounds that differentiate the single populations, revealing the influence of the geographical provenance area in determining the volatile profiles. These results suggested the potential use of VOCs as valuable diacritical characters in discriminating the Helichrysum populations. In addition, the cross-validation analysis hinted the potentiality of this volatolomic study in the discrimination of the Helichrysum species and subspecies, highlighting a general congruence with the current taxonomic treatment of the genus. The consistency

  10. Proteolytic activities in fillets of selected underutilized Australian fish species.

    Science.gov (United States)

    Ahmed, Z; Donkor, O; Street, W A; Vasiljevic, T

    2013-09-01

    The hydrolytic activity of major endogenous proteases, responsible for proteolysis of myofibrillar proteins during post-mortem storage, may be an indicator of the textural quality of fish which influences consumer purchasing behaviour and thus market value of the final product. Furthermore, it may also influence the type and bioactive properties of the peptides released during post-mortem proteolysis of myofibrillar proteins. This study compared the activities of cathepsins B, B+L, D, H and calpain-like enzymes in crude muscle extracted from 16 Australian underutilized fish species. Fish species had a significant effect on the activity of these enzymes with barracouta showing the highest cathepsins B, B+L, D and H activities. Activities of cathepsins B and B+L were higher than cathepsin H for all studied species. The more commercially important rock ling and tiger flathead demonstrated higher cathepsin B+L activity, whereas gemfish and eastern school whiting showed higher activity towards cathepsin B. Underutilized fish species showing higher endogenous protease activities may be suitable for fish sauce production, whereas those with lower protease activities for surimi processing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Active control of methanol carbonylation selectivity over Au/carbon anode by electrochemical potential.

    Science.gov (United States)

    Funakawa, Akiyasu; Yamanaka, Ichiro; Otsuka, Kiyoshi

    2005-05-12

    Electrochemical oxidative carbonylation of methanol was studied over Au supported carbon anode in CO. The major carbonylation products were dimethyl oxalate (DMO) and dimethyl carbonate (DMC). The minor oxidation products were dimethoxy methane (DMM) and methyl formate (MF) from methanol and CO(2). Influences of various reaction conditions were studied on carbonylation activities and selectivities. The selectivities to DMO and DMC can be controlled by the electrochemical potential. Electrocatalysis of Au/carbon anode was studied by cyclic voltammetry (CV), stoichiometric reactions among Au(3+), methanol, and CO, and UV-vis spectra. The Au/carbon anode was characterized by XRD, SEM, and BE images before and after the carbonylation. These experimental facts strongly suggest that transition of oxidation states of Au affects changing of the carbonylation selectivities to DMO and DMC. Au(0) is the active species for the selective DMO formation by direct electrochemical carbonylation at low potentials (selective DMC formation by indirect electrochemical carbonylation through Au(3+)/Au(+) redox at high potentials (>+1.3 V).

  12. Integrative taxonomy and preliminary assessment of species limits in the Liolaemus walkeri complex (Squamata, Liolaemidae with descriptions of three new species from Peru

    Directory of Open Access Journals (Sweden)

    Cesar Aguilar

    2013-12-01

    Full Text Available Species delimitation studies based on integrative taxonomic approaches have received considerable attention in the last few years, and have provided the strongest hypotheses of species boundaries. We used three lines of evidence (molecular, morphological, and niche envelopes to test for species boundaries in Peruvian populations of the Liolaemus walkeri complex. Our results show that different lines of evidence and analyses are congruent in different combinations, for unambiguous delimitation of three lineages that were “hidden” within known species, and now deserve species status. Our phylogenetic analysis shows that L. walkeri, L. tacnae and the three new species are strongly separated from other species assigned to the alticolor-bibronii group. Few conventional morphological characters distinguish the new species from closely related taxa and this highlights the need to integrate other sources of data to erect strong hypothesis of species limits. A taxonomic key for known Peruvian species of the subgenus Lioalemus is provided.

  13. Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum

    International Nuclear Information System (INIS)

    Thijs, Lore; Montero Sistiaga, Maria Luz; Wauthle, Ruben; Xie, Qingge; Kruth, Jean-Pierre; Van Humbeeck, Jan

    2013-01-01

    Selective laser melting (SLM) makes use of a high energy density laser beam to melt successive layers of metallic powders in order to create functional parts. The energy density of the laser is high enough to melt refractory metals like Ta and produce mechanically sound parts. Furthermore, the localized heat input causes a strong directional cooling and solidification. Epitaxial growth due to partial remelting of the previous layer, competitive growth mechanism and a specific global direction of heat flow during SLM of Ta result in the formation of long columnar grains with a 〈1 1 1〉 preferential crystal orientation along the building direction. The microstructure was visualized using both optical and scanning electron microscopy equipped with electron backscattered diffraction and the global crystallographic texture was measured using X-ray diffraction. The thermal profile around the melt pool was modeled using a pragmatic model for SLM. Furthermore, rotation of the scanning direction between different layers was seen to promote the competitive growth. As a result, the texture strength increased to as large as 4.7 for rotating the scanning direction 90° every layer. By comparison of the yield strength measured by compression tests in different orientations and the averaged Taylor factor calculated using the viscoplastic self-consistent model, it was found that both the morphological and crystallographic texture observed in SLM Ta contribute to yield strength anisotropy

  14. The cost of reinforcement: selection on flower color in allopatric populations of Phlox drummondii.

    Science.gov (United States)

    Hopkins, Robin; Rausher, Mark D

    2014-05-01

    Reinforcement is the process by which increased reproductive isolation between incipient species evolves due to selection against maladaptive hybrids or costly hybrid mating. Reinforcement is predicted to create a pattern of greater prezygotic reproductive isolation in regions where the two species co-occur, sympatry, than in allopatry. Although most research on reinforcement focuses on understanding the evolutionary forces acting in sympatry, here we consider what prevents the alleles conferring greater reproductive isolation from spreading into allopatry. We investigate flower color divergence in the wildflower Phlox drummondii, which is caused by reinforcement in the regions sympatric with its congener Phlox cuspidata. Specifically, we performed common garden field experiments and pollinator observations to estimate selection acting on flower color variation in allopatry. We combine our estimates of maternal and paternal fitness using simulations and predict how flower color alleles migrating from sympatry will evolve in allopatry. Our results suggest that strong pollinator preference for the ancestral flower color in allopatry can maintain divergence between allopatric and sympatric populations.

  15. Natural selection on thermal preference, critical thermal maxima and locomotor performance.

    Science.gov (United States)

    Gilbert, Anthony L; Miles, Donald B

    2017-08-16

    Climate change is resulting in a radical transformation of the thermal quality of habitats across the globe. Whereas species have altered their distributions to cope with changing environments, the evidence for adaptation in response to rising temperatures is limited. However, to determine the potential of adaptation in response to thermal variation, we need estimates of the magnitude and direction of natural selection on traits that are assumed to increase persistence in warmer environments. Most inferences regarding physiological adaptation are based on interspecific analyses, and those of selection on thermal traits are scarce. Here, we estimate natural selection on major thermal traits used to assess the vulnerability of ectothermic organisms to altered thermal niches. We detected significant directional selection favouring lizards with higher thermal preferences and faster sprint performance at their optimal temperature. Our analyses also revealed correlational selection between thermal preference and critical thermal maxima, where individuals that preferred warmer body temperatures with cooler critical thermal maxima were favoured by selection. Recent published estimates of heritability for thermal traits suggest that, in concert with the strong selective pressures we demonstrate here, evolutionary adaptation may promote long-term persistence of ectotherms in altered thermal environments. © 2017 The Author(s).

  16. Comparison of climate envelope models developed using expert-selected variables versus statistical selection

    Science.gov (United States)

    Brandt, Laura A.; Benscoter, Allison; Harvey, Rebecca G.; Speroterra, Carolina; Bucklin, David N.; Romañach, Stephanie; Watling, James I.; Mazzotti, Frank J.

    2017-01-01

    Climate envelope models are widely used to describe potential future distribution of species under different climate change scenarios. It is broadly recognized that there are both strengths and limitations to using climate envelope models and that outcomes are sensitive to initial assumptions, inputs, and modeling methods Selection of predictor variables, a central step in modeling, is one of the areas where different techniques can yield varying results. Selection of climate variables to use as predictors is often done using statistical approaches that develop correlations between occurrences and climate data. These approaches have received criticism in that they rely on the statistical properties of the data rather than directly incorporating biological information about species responses to temperature and precipitation. We evaluated and compared models and prediction maps for 15 threatened or endangered species in Florida based on two variable selection techniques: expert opinion and a statistical method. We compared model performance between these two approaches for contemporary predictions, and the spatial correlation, spatial overlap and area predicted for contemporary and future climate predictions. In general, experts identified more variables as being important than the statistical method and there was low overlap in the variable sets (0.9 for area under the curve (AUC) and >0.7 for true skill statistic (TSS). Spatial overlap, which compares the spatial configuration between maps constructed using the different variable selection techniques, was only moderate overall (about 60%), with a great deal of variability across species. Difference in spatial overlap was even greater under future climate projections, indicating additional divergence of model outputs from different variable selection techniques. Our work is in agreement with other studies which have found that for broad-scale species distribution modeling, using statistical methods of variable

  17. A new species of Stamnaria (Leotiomycetes, Helotiales from Western Siberia

    Directory of Open Access Journals (Sweden)

    Danny Haelewaters

    2018-03-01

    Full Text Available A new species of Stamnaria is described based on morphology and molecular data from a collection made in West Siberia. Stamnaria yugrana is differentiated by lanceolate, strongly protruding paraphyses and comparatively narrow, fusoid-clavate ascospores. The apothecia are urn-shaped due to a prominent and even collar as in S. persoonii. The species grows on fallen side branches of Equisetum sylvaticum, a rarely recorded host for Stamnaria. The authors formally describe the new species and provide colour illustrations. In addition, the literature is reviewed on previously described species of Stamnaria. Phylogenetic reconstruction of the Stamnaria lineage, based on the ITS ribosomal DNA, strongly supports the three currently recognised species: S. americana, S. persoonii and S. yugrana.

  18. Methylobacterium Species Promoting Rice and Barley Growth and Interaction Specificity Revealed with Whole-Cell Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF/MS Analysis.

    Directory of Open Access Journals (Sweden)

    Akio Tani

    Full Text Available Methylobacterium species frequently inhabit plant surfaces and are able to utilize the methanol emitted from plants as carbon and energy sources. As some of the Methylobacterium species are known to promote plant growth, significant attention has been paid to the mechanism of growth promotion and the specificity of plant-microbe interactions. By screening our Methylobacterium isolate collection for the high growth promotion effect in vitro, we selected some candidates for field and pot growth tests for rice and barley, respectively. We found that inoculation resulted in better ripening of rice seeds, and increased the size of barley grains but not the total yield. In addition, using whole-cell matrix-assister laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS analysis, we identified and classified Methylobacterium isolates from Methylobacterium-inoculated rice plants. The inoculated species could not be recovered from the rice plants, and in some cases, the Methylobacterium community structure was affected by the inoculation, but not with predomination of the inoculated species. The isolates from non-inoculated barley of various cultivars grown in the same field fell into just two species. These results suggest that there is a strong selection pressure at the species level of Methylobacterium residing on a given plant species, and that selection of appropriate species that can persist on the plant is important to achieve growth promotion.

  19. Diamond vs. square mesh codend in a multi-species trawl fishery of the western Mediterranean: effects on catch composition, yield, size selectivity and discards

    OpenAIRE

    Ordines, F. (Francesc); Massutí, E. (Enric); Guijarro, B. (Beatriz); Mas, R. (Ramon)

    2006-01-01

    Selectivity studies usually describe the effects on target species, whereas information on by-catch and discards is scarce. Nevertheless, large quantities of undersized individuals and invertebrates are discarded in the Mediterranean multi-species bottom trawl fishery. The present work analyses the data from two surveys carried out on the shallow and deep continental shelf (50–78 m, and 147–189 m, respectively) off the Balearic Islands (western Mediterranean). In these surveys, the traditiona...

  20. Selective extraction of trace mercury and cadmium from drinking water sources.

    Science.gov (United States)

    Zhao, Xuan; Zhao, Gang; Wang, Jianlong; Yun, Guichun

    2005-01-01

    In this paper, a new alternative method, i.e., selective extraction by weakly basic anion exchange resin, has been developed for the removal of trace cadmium and mercury ions from drinking water sources. The mechanism of heavy metal removal is based on selective extraction as the results of LEWIS-base-acid interactions. Transfer of trace mercury species from liquid to resin phase coincides well with the performance of film diffusion. The results demonstrated that the presence of chlorine has a negligible influence on the removal of mercury. However, humic acids can strongly bind mercury by the formation of complex compounds and therefore become the obstacle in the diffusion progress. At neutral or base pH, the resin material exhibits the favorable uptake of heavy metals. In filter experiments, the studied resin material offers favorable properties in the selective extraction of trace mercury and cadmium.

  1. Temporal and Spatial Scales Matter: Circannual Habitat Selection by Bird Communities in Vineyards.

    Directory of Open Access Journals (Sweden)

    Claire Guyot

    Full Text Available Vineyards are likely to be regionally important for wildlife, but we lack biodiversity studies in this agroecosystem which is undergoing a rapid management revolution. As vine cultivation is restricted to arid and warm climatic regions, biodiversity-friendly management would promote species typical of southern biomes. Vineyards are often intensively cultivated, mostly surrounded by few natural features and offering a fairly mineral appearance with little ground vegetation cover. Ground vegetation cover and composition may further strongly vary with respect to season, influencing patterns of habitat selection by ecological communities. We investigated season-specific bird-habitat associations to highlight the importance of semi-natural habitat features and vineyard ground vegetation cover throughout the year. Given that avian habitat selection varies according to taxa, guilds and spatial scale, we modelled bird-habitat associations in all months at two spatial scales using mixed effects regression models. At the landscape scale, birds were recorded along 10 1-km long transects in Southwestern Switzerland (February 2014 -January 2015. At the field scale, we compared the characteristics of visited and unvisited vineyard fields (hereafter called parcels. Bird abundance in vineyards tripled in winter compared to summer. Vineyards surrounded by a greater amount of hedges and small woods harboured higher bird abundance, species richness and diversity, especially during the winter season. Regarding ground vegetation, birds showed a season-specific habitat selection pattern, notably a marked preference for ground-vegetated parcels in winter and for intermediate vegetation cover in spring and summer. These season-specific preferences might be related to species-specific life histories: more insectivorous, ground-foraging species occur during the breeding season whereas granivores predominate in winter. These results highlight the importance of

  2. Steering neutral atoms in strong laser fields

    International Nuclear Information System (INIS)

    Eilzer, S; Eichmann, U

    2014-01-01

    The seminal strong-field tunnelling theory introduced by L V Keldysh plays a pivotal role. It has shaped our understanding of atomic strong-field processes, where it represents the first step in complex ionisation dynamics and provides reliable tunnelling rates. Tunnelling rates, however, cannot be necessarily equated with ionisation rates. Taking into account the electron dynamics in the Coulomb potential following the tunnelling process, the process of frustrated tunnelling ionisation has been found to lead to excited Rydberg atoms. Here, we excite He atoms in the strong-field tunnelling regime into Rydberg states. A high percentage of these Rydberg atoms survive in high intensity laser fields. We exploit this fact together with their high polarisability to kinematically manipulate the Rydberg atoms with a second elliptically polarised focused strong laser field. By varying the spatial overlap of the two laser foci, we are able to selectively control the deflection of the Rydberg atoms. The results of semi-classical calculations, which are based on the frustrated tunnelling model and on the ponderomotive acceleration, are in accord with our experimental data. (paper)

  3. Evaluation of a multiple-species approach to monitoring species at the ecoregional scale

    Science.gov (United States)

    Patricia N. Manley; William J. Zielinski; Matthew D. Schlesinger; Sylvia R. Mori

    2004-01-01

    Monitoring is required of land managers and conservation practitioners to assess the success of management actions. "Shortcuts" are sought to reduce monitoring costs, most often consisting of the selection of a small number of species that are closely monitored to represent the status of many associated species and environmental correlates. Assumptions...

  4. Geographic range size and determinants of avian species richness

    DEFF Research Database (Denmark)

    Jetz, Walter; Rahbek, Carsten

    2002-01-01

    Geographic patterns in species richness are mainly based on wide-ranging species because their larger number of distribution records has a disproportionate contribution to the species richness counts. Here we demonstrate how this effect strongly influences our understanding of what determines spe...

  5. Density-dependent effects of ants on selection for bumble bee pollination in Polemonium viscosum.

    Science.gov (United States)

    Galen, Candace; Geib, Jennifer C

    2007-05-01

    Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly

  6. Inductively coupled plasma mass spectrometry study of the retention behavior of arsenic species on various solid phase extraction cartridges and its application in arsenic speciation

    Energy Technology Data Exchange (ETDEWEB)

    Yu Chunhai; Cai Qiantao E-mail: qtcai@cawt.sui.com.sg; Guo Zhongxian; Yang Zhaoguang; Khoo, Soo Beng

    2003-07-18

    Inductively coupled plasma mass spectrometry (ICP-MS) was used to investigate the retention behavior of arsenite, arsenate, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), arsenobetaine (AsB), arsenocholine (AsC), trimethylarsine oxide (TMAO) and tetramethylarsonium ion (TMAI) on various silica-based solid phase extraction (SPE) cartridges. A method for arsenic speciation is then developed on the basis of selective SPE separation of arsenic species and highly sensitive ICP-MS detection. Factors affecting the retention and elution of arsenic species were examined. Results showed that the retention of arsenic species depended on the chemical characteristics of arsenic species and the types of sorbent materials. Change of pH in the range of 2.0-9.0 did not show significant effects on the retention of DMA, AsB, AsC, TMAI and TMAO on an ethylbenzene sulfonic acid-based strong cation exchange (SCX-3) cartridge. pH also did not influence the retention of AsB, AsC, TMAI and TMAO on a mixed-mode (M-M) cartridge containing non-polar, strong cation exchange and strong anion exchange (SAX) functional groups. However, the retentions of As(V) and MMA on the SAX and the M-M cartridge changed with pH. As(V) and MMA were completely retained on the SAX cartridge and sequentially selectively eluted with 1.0 mol l{sup -1} acetic acid (for MMA). DMA, AsB, AsC, TMAI and TMAO were completely retained on the SCX-3 cartridge and sequentially selectively eluted with 1.0 mol l{sup -1} HNO{sub 3} (for DMA). As(V), MMA, AsB, AsC, TMAI and TMAO were completely retained on the M-M cartridge. As(III) was not retained on either cartridge and remained in solution. Arsenic species in solution and those eluted from the cartridges were subsequently determined by ICP-MS. A detection limit of 8 ng l{sup -1} arsenic in water sample was obtained. This method was successfully applied to arsenic speciation in various sources of water samples (drinking water, waste water, raw water, etc.) and US

  7. Patterns of reproductive isolation in the Drosophila subquinaria complex: can reinforced premating isolation cascade to other species?

    Science.gov (United States)

    Humphreys, Devon P.; Rundle, Howard D.; Dyer, Kelly A.

    2016-01-01

    Abstract The reinforcement of premating barriers due to reduced hybrid fitness in sympatry may cause secondary sexual isolation within a species as a by-product. Consistent with this, in the fly Drosophila subquinaria, females that are sympatric with D. recens mate at very low rates not only with D. recens, but also with conspecific D. subquinaria males from allopatry. Here, we ask if these effects of reinforcement cascade more broadly to affect sexual isolation with other closely related species. We assay reproductive isolation of these species with D. transversa and find that choosy D. subquinaria females from the region sympatric with D. recens discriminate strongly against male D. transversa, whereas D. subquinaria from the allopatric region do not. This increased sexual isolation cannot be explained by natural selection to avoid mating with this species, as they are allopatric in geographic range and we do not identify any intrinsic postzygotic isolation between D. subquinaria and D. transversa. Variation in epicuticular hydrocarbons, which are used as mating signals in D. subquinaria, follow patterns of premating isolation: D. transversa and allopatric D. subquinaria are most similar to each other and differ from sympatric D. subquinaria, and those of D. recens are distinct from the other two species. We suggest that the secondary effects of reinforcement may cascade to strengthen reproductive isolation with other species that were not a target of selection. These effects may enhance the divergence that occurs in allopatry to help explain why some species are already sexually isolated upon secondary contact. PMID:29491905

  8. Molecular Tools for the Selective Detection of Nine Diatom Species Biomarkers of Various Water Quality Levels

    Directory of Open Access Journals (Sweden)

    Lucia Cimarelli

    2015-05-01

    Full Text Available Our understanding of the composition of diatom communities and their response to environmental changes is currently limited by laborious taxonomic identification procedures. Advances in molecular technologies are expected to contribute more efficient, robust and sensitive tools for the detection of these ecologically relevant microorganisms. There is a need to explore and test phylogenetic markers as an alternative to the use of rRNA genes, whose limited sequence divergence does not allow the accurate discrimination of diatoms at the species level. In this work, nine diatom species belonging to eight genera, isolated from epylithic environmental samples collected in central Italy, were chosen to implement a panel of diatoms covering the full range of ecological status of freshwaters. The procedure described in this work relies on the PCR amplification of specific regions in two conserved diatom genes, elongation factor 1-a (eEF1-a and silicic acid transporter (SIT, as a first step to narrow down the complexity of the targets, followed by microarray hybridization experiments. Oligonucleotide probes with the potential to discriminate closely related species were designed taking into account the genetic polymorphisms found in target genes. These probes were tested, refined and validated on a small-scale prototype DNA chip. Overall, we obtained 17 highly specific probes targeting eEF1-a and SIT, along with 19 probes having lower discriminatory power recognizing at the same time two or three species. This basic array was validated in a laboratory setting and is ready for tests with crude environmental samples eventually to be scaled-up to include a larger panel of diatoms. Its possible use for the simultaneous detection of diatoms selected from the classes of water quality identified by the European Water Framework Directive is discussed.

  9. Does mechanical disturbance affect the performance and species composition of submerged macrophyte communities?

    Science.gov (United States)

    Zhang, Qian; Xu, Ying-Shou; Huang, Lin; Xue, Wei; Sun, Gong-Qi; Zhang, Ming-Xiang; Yu, Fei-Hai

    2014-05-01

    Submerged macrophyte communities are frequently subjected to disturbance of various frequency and strength. However, there is still little experimental evidence on how mechanical disturbance affects the performance and species composition of such plant communities. In a greenhouse experiment, we constructed wetland communities consisting of five co-occurring clonal submerged macrophyte species (Hydrilla verticillata, Elodea canadensis, Ceratophyllum demersum, Chara fragilis, and Myriophyllum spicatum) and subjected these communities to three mechanical disturbance regimes (no, moderate and strong disturbance). Strong mechanical disturbance greatly decreased overall biomass, number of shoot nodes and total shoot length, and increased species diversity (evenness) of the total community. It also substantially decreased the growth of the most abundant species (H. verticillata), but did not affect growth of the other four species. Our data reveal that strong disturbance can have different effects on different submerged macrophyte species and thus alters the performance and species composition of submerged macrophyte communities.

  10. Growth Response of Selected Mangrove Species to Domestic ...

    African Journals Online (AJOL)

    The sewage system of Dar es Salaam City, Tanzania, serves only 15% of the population, making sewage one of the leading sources of marine pollution. This study was initiated to assess the potential of peri-urban mangrove forests as filters and phyto-remediators of sewage and the growth of two mangrove species under ...

  11. Diversity and aggregation patterns of plant species in a grass community

    Directory of Open Access Journals (Sweden)

    Ran Li

    2014-09-01

    Full Text Available Both composition and aggregation patterns of species in a community are the outcome of community self-organizing. In this paper we conducted analysis on species diversity and aggregation patterns of plant species in a grass community, Zhuhai, China. According to the sampling survey, in total of 47 plant species, belonging to 16 families, were found. Compositae had 10 species (21.3%, seconded by Gramineae (9 species, 19.1%, Leguminosae (6 species, 12.8%, Cyperaceae (4 species, 8.5%, and Malvaceae (3 species, 6.4%. The results revealed that the means of aggregation indices Iδ, I and m*/m were 21.71, 15.71 and 19.89 respectively and thus individuals of most of plant species strongly followed aggregative distribution. Iwao analysis indicated that both individuals of all species and clumps of all individuals of all species followed aggregative distribution. Taylor's power law indicated that individuals of all species followed aggregative distribution and aggregation intensity strengthened as the increase of mean density. We held that the strong aggregation intensity of a species has been resulted from the strong adaptation ability to the environment, the strong interspecific competition ability and the earlier establishment of the species. Fitting goodness of the mean, I, Iδ, m*/m with probability distributions demonstrated that the mean (density, I, Iδ, and m*/m over all species followed Weibull distribution rather than normal distribution. Lophatherum gracile, Paederia scandens (Lour. Merr., Eleusine indica, and Alternanthera philoxeroides (Mart. Griseb. were mostly aggregative, and Oxalis sp., Eleocharis plantagineiformis, Vernonia cinerea (L. Less., and Sapium sebiferum (L. Roxb, were mostly uniform in the spatial distribution. Importance values (IV showed that Cynodon dactylon was the most important species, seconded by Desmodium triflorum (L. DC., Cajanus scarabaeoides (L. Benth., Paspalum scrobiculatum L., and Rhynchelytrum repens. Oxalis

  12. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Science.gov (United States)

    Ripperger, Simon P; Kalko, Elisabeth K V; Rodríguez-Herrera, Bernal; Mayer, Frieder; Tschapka, Marco

    2015-01-01

    Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae), a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  13. Frugivorous bats maintain functional habitat connectivity in agricultural landscapes but rely strongly on natural forest fragments.

    Directory of Open Access Journals (Sweden)

    Simon P Ripperger

    Full Text Available Anthropogenic changes in land use threaten biodiversity and ecosystem functioning by the conversion of natural habitat into agricultural mosaic landscapes, often with drastic consequences for the associated fauna. The first step in the development of efficient conservation plans is to understand movement of animals through complex habitat mosaics. Therefore, we studied ranging behavior and habitat use in Dermanura watsoni (Phyllostomidae, a frugivorous bat species that is a valuable seed disperser in degraded ecosystems. Radio-tracking of sixteen bats showed that the animals strongly rely on natural forest. Day roosts were exclusively located within mature forest fragments. Selection ratios showed that the bats foraged selectively within the available habitat and positively selected natural forest. However, larger daily ranges were associated with higher use of degraded habitats. Home range geometry and composition of focal foraging areas indicated that wider ranging bats performed directional foraging bouts from natural to degraded forest sites traversing the matrix over distances of up to three hundred meters. This behavior demonstrates the potential of frugivorous bats to functionally connect fragmented areas by providing ecosystem services between natural and degraded sites, and highlights the need for conservation of natural habitat patches within agricultural landscapes that meet the roosting requirements of bats.

  14. On the Contribution of Large-Scale Structure to Strong Gravitational Lensing

    Science.gov (United States)

    Faure, C.; Kneib, J.-P.; Hilbert, S.; Massey, R.; Covone, G.; Finoguenov, A.; Leauthaud, A.; Taylor, J. E.; Pires, S.; Scoville, N.; Koekemoer, Anton M.

    2009-04-01

    We study the correlation between the locations of galaxy-galaxy strong-lensing candidates and tracers of large-scale structure from both weak lensing (WL) or X-ray emission. The Cosmological Evolution Survey (COSMOS) is a unique data set, combining deep, high resolution and contiguous imaging in which strong lenses have been discovered, plus unparalleled multiwavelength coverage. To help interpret the COSMOS data, we have also produced mock COSMOS strong- and WL observations, based on ray-tracing through the Millennium Simulation. In agreement with the simulations, we find that strongly lensed images with the largest angular separations are found in the densest regions of the COSMOS field. This is explained by a prevalence among the lens population in dense environments of elliptical galaxies with high total-to-stellar mass ratios, which can deflect light through larger angles. However, we also find that the overall fraction of elliptical galaxies with strong gravitational lensing is independent of the local mass density; this observation is not true of the simulations, which predict an increasing fraction of strong lenses in dense environments. The discrepancy may be a real effect, but could also be explained by various limitations of our analysis. For example, our visual search of strong lens systems could be incomplete and suffer from selection bias; the luminosity function of elliptical galaxies may differ between our real and simulated data; or the simplifying assumptions and approximations used in our lensing simulations may be inadequate. Work is therefore ongoing. Automated searches for strong lens systems will be particularly important in better constraining the selection function.

  15. Anti-amnesic effects of Ganoderma species: A possible cholinergic and antioxidant mechanism.

    Science.gov (United States)

    Kaur, Ravneet; Singh, Varinder; Shri, Richa

    2017-08-01

    Mushrooms are valued for their nutritional as well as medicinal properties. Ganoderma species are used traditionally to treat neurological disorders but scientific evidence for this is insufficient. The present study was designed to systematically evaluate the anti-amnesic effect of selected Ganoderma species i.e. G. mediosinense and G. ramosissimum. Extracts of selected mushroom species were evaluated for their antioxidant activity and acetylcholinesterase (AChE) inhibition using in-vitro assays (DPPH and Ellman tests respectively). The anti-amnesic potential of the most active extract (i.e. 70% methanol extract of G. mediosinense) was confirmed using mouse model of scopolamine-induced amnesia. Mice were treated with bioactive extract and donepezil once orally before the induction of amnesia. Cognitive functions were evaluated using passive shock avoidance (PSA) and novel object recognition (NOR) tests. The effect on brain AChE activity, brain oxidative stress (TBARS level) and neuronal damage (H & E staining) were also assessed. In-vitro results showed strong antioxidant and AChE inhibitory activities by G. mediosinense extract (GME). Therefore, it was selected for in-vivo studies. GME pre-treatment (800mg/kg, p.o.) reversed the effect of scopolamine in mice, evident by significant decrease (p <0.05) in the transfer latency time and increase in object recognition index in PSA and NOR, respectively. GME significantly reduced the brain AChE activity and oxidative stress. Histopathological examination of brain tissues showed decrease in vacuolated cytoplasm and increase in pyramidal cells in brain hippocampal and cortical regions. GME exerts anti-amnesic effect through AChE inhibition and antioxidant mechanisms. Copyright © 2017. Published by Elsevier Masson SAS.

  16. Introduced species as evolutionary traps

    Science.gov (United States)

    Schlaepfer, Martin A.; Sherman, P.W.; Blossey, B.; Runge, M.C.

    2005-01-01

    Invasive species can alter environments in such a way that normal behavioural decision-making rules of native species are no longer adaptive. The evolutionary trap concept provides a useful framework for predicting and managing the impact of harmful invasive species. We discuss how native species can respond to changes in their selective regime via evolution or learning. We also propose novel management strategies to promote the long-term co-existence of native and introduced species in cases where the eradication of the latter is either economically or biologically unrealistic.

  17. Chemically engineering ligand selectivity at the free fatty acid receptor 2 based on pharmacological variation between species orthologs

    DEFF Research Database (Denmark)

    Hudson, Brian D; Christiansen, Elisabeth; Tikhonova, Irina G

    2012-01-01

    When it is difficult to develop selective ligands within a family of related G-protein-coupled receptors (GPCRs), chemically engineered receptors activated solely by synthetic ligands (RASSLs) are useful alternatives for probing receptor function. In the present work, we explored whether a RASSL...... on this receptor and demonstrates that exploitation of pharmacological variation between species orthologs is a powerful method to generate novel chemically engineered GPCRs.-Hudson, B. D., Christiansen, E., Tikhonova, I. G., Grundmann, M., Kostenis, E., Adams, D. R., Ulven, T., Milligan, G. Chemically engineering...

  18. High level of microsynteny and purifying selection affect the evolution of WRKY family in Gramineae.

    Science.gov (United States)

    Jin, Jing; Kong, Jingjing; Qiu, Jianle; Zhu, Huasheng; Peng, Yuancheng; Jiang, Haiyang

    2016-01-01

    The WRKY gene family, which encodes proteins in the regulation processes of diverse developmental stages, is one of the largest families of transcription factors in higher plants. In this study, by searching for interspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found 35 chromosomal segments of subgroup I genes of WRKY family (WRKY I) in four Gramineae species (Brachypodium, rice, sorghum, and maize) formed eight orthologous groups. After a stepwise gene-by-gene reciprocal comparison of all the protein sequences in the WRKY I gene flanking areas, highly conserved regions of microsynteny were found in the four Gramineae species. Most gene pairs showed conserved orientation within syntenic genome regions. Furthermore, tandem duplication events played the leading role in gene expansion. Eventually, environmental selection pressure analysis indicated strong purifying selection for the WRKY I genes in Gramineae, which may have been followed by gene loss and rearrangement. The results presented in this study provide basic information of Gramineae WRKY I genes and form the foundation for future functional studies of these genes. High level of microsynteny in the four grass species provides further evidence that a large-scale genome duplication event predated speciation.

  19. Accumulation of mercury in selected plant species grown in soils contaminated with different mercury compounds

    International Nuclear Information System (INIS)

    Su, Yi; Han, Fengxiang; Shiyab, Safwan; Chen, Jian; Monts, David L.

    2007-01-01

    The objective of our research is to screen and search for suitable plant species for phyto-remediation of mercury-contaminated soil. Currently our effort is specifically focused on mercury removal from the U.S. Department of Energy (DOE) sites, where mercury contamination is a major concern. In order to cost effectively implement mercury remediation efforts, it is necessary now to obtain an improved understanding of biological means of removing mercury and mercury compounds.. Phyto-remediation is a technology that uses various plants to degrade, extract, contain, or immobilize contaminants from soil and water. In particular, phyto-extraction is the uptake of contaminants by plant roots and translocation within the plants to shoots or leaves. Contaminants are generally removed by harvesting the plants. We have investigated phyto-extraction of mercury from contaminated soil by using some of the known metal-accumulating plants since no natural plant species with mercury hyper-accumulating properties has yet been identified. Different natural plant species have been studied for mercury uptake, accumulation, toxicity and overall mercury removal efficiency. Various mercury compounds, such as HgS, HgCl 2 , and Hg(NO 3 ) 2 , were used as contaminant sources. Different types of soil were examined and chosen for phyto-remediation experiments. We have applied microscopy and diffuse reflectance spectrometry as well as conventional analytical chemistry to monitor the phyto-remediation processes of mercury uptake, translocation and accumulation, and the physiological impact of mercury contaminants on selected plant species. Our results indicate that certain plant species, such as beard grass (Polypogon monospeliensis), accumulated a very limited amount of mercury in the shoots ( 2 powder, respectively; no visual stress symptoms were observed. We also studied mercury phyto-remediation using aged soils that contained HgS, HgCl 2 , or Hg(NO 3 ) 2 . We have found that up to hundreds

  20. The transformer species of the Ukrainian Polissya

    Directory of Open Access Journals (Sweden)

    Protopopova Vira V.

    2015-09-01

    Full Text Available The investigation results of the transformer species participation (Echinocystis lobata (Michx. Torr. & A. Gray, Heracleum sosnowskyi Manden., Impatiens glandulifera Royle, I. parviflora DC., Reynoutria japonica Houtt., Robinia pseudoacacia L. in different plant communities of the Ukrainian Polissya (Forest zone of Ukraine are presented. All the abovementioned species are strong edificators in the region that can significantly change important species composition parameters of communities and character of landscape.

  1. Cu(II) bis(thiosemicarbazone) radiopharmaceutical binding to serum albumin: further definition of species dependence and associated substituent effects

    International Nuclear Information System (INIS)

    Basken, Nathan E.; Green, Mark A.

    2009-01-01

    Introduction: The pyruvaldehyde bis(N 4 -methylthiosemicarbazonato)copper(II) (Cu-PTSM) and diacetyl bis(N 4 -methylthiosemicarbazonato)copper(II) (Cu-ATSM) radiopharmaceuticals exhibit strong, species-dependent binding to the IIA site of human serum albumin (HSA), while the related ethylglyoxal bis(thiosemicarbazonato)copper(II) (Cu-ETS) radiopharmaceutical appears to exhibit only nonspecific binding to HSA and animal serum albumins. Methods: To further probe the structural basis for the species dependence of this albumin binding interaction, we examined protein binding of these three radiopharmaceuticals in solutions of albumin and/or serum from a broader array of mammalian species (rat, sheep, donkey, rabbit, cow, pig, dog, baboon, mouse, cat and elephant). We also evaluated the albumin binding of several copper(II) bis(thiosemicarbazone) chelates offering more diverse substitution of the ligand backbone. Results: Cu-PTSM and Cu-ATSM exhibit a strong interaction with HSA that is not apparent with the albumins of other species, while the binding of Cu-ETS to albumin is much less species dependent. The strong interaction of Cu-PTSM with HSA does not appear to simply correlate with variation, relative to the animal albumins, of a single amino acid lining HSA's IIA site. Those agents that selectively interact with HSA share the common feature of only methyl or hydrogen substitution at the carbon atoms of the diimine fragment of the ligand backbone. Conclusions: The interspecies variations in albumin binding of Cu-PTSM and Cu-ATSM are not simply explained by unique amino acid substitutions in the IIA binding pocket of the serum albumins. However, the specific affinity for this region of HSA is disrupted when substituents bulkier than a methyl group appear on the imine carbons of the copper bis(thiosemicarbazone) chelate.

  2. Cu(II) bis(thiosemicarbazone) radiopharmaceutical binding to serum albumin: further definition of species dependence and associated substituent effects

    Energy Technology Data Exchange (ETDEWEB)

    Basken, Nathan E. [Division of Nuclear Pharmacy, Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States); Green, Mark A. [Division of Nuclear Pharmacy, Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States)], E-mail: magreen@purdue.edu

    2009-07-15

    Introduction: The pyruvaldehyde bis(N{sup 4}-methylthiosemicarbazonato)copper(II) (Cu-PTSM) and diacetyl bis(N{sup 4}-methylthiosemicarbazonato)copper(II) (Cu-ATSM) radiopharmaceuticals exhibit strong, species-dependent binding to the IIA site of human serum albumin (HSA), while the related ethylglyoxal bis(thiosemicarbazonato)copper(II) (Cu-ETS) radiopharmaceutical appears to exhibit only nonspecific binding to HSA and animal serum albumins. Methods: To further probe the structural basis for the species dependence of this albumin binding interaction, we examined protein binding of these three radiopharmaceuticals in solutions of albumin and/or serum from a broader array of mammalian species (rat, sheep, donkey, rabbit, cow, pig, dog, baboon, mouse, cat and elephant). We also evaluated the albumin binding of several copper(II) bis(thiosemicarbazone) chelates offering more diverse substitution of the ligand backbone. Results: Cu-PTSM and Cu-ATSM exhibit a strong interaction with HSA that is not apparent with the albumins of other species, while the binding of Cu-ETS to albumin is much less species dependent. The strong interaction of Cu-PTSM with HSA does not appear to simply correlate with variation, relative to the animal albumins, of a single amino acid lining HSA's IIA site. Those agents that selectively interact with HSA share the common feature of only methyl or hydrogen substitution at the carbon atoms of the diimine fragment of the ligand backbone. Conclusions: The interspecies variations in albumin binding of Cu-PTSM and Cu-ATSM are not simply explained by unique amino acid substitutions in the IIA binding pocket of the serum albumins. However, the specific affinity for this region of HSA is disrupted when substituents bulkier than a methyl group appear on the imine carbons of the copper bis(thiosemicarbazone) chelate.

  3. Sex linkage, sex-specific selection, and the role of recombination in the evolution of sexually dimorphic gene expression.

    Science.gov (United States)

    Connallon, Tim; Clark, Andrew G

    2010-12-01

    Sex-biased genes--genes that are differentially expressed within males and females--are nonrandomly distributed across animal genomes, with sex chromosomes and autosomes often carrying markedly different concentrations of male- and female-biased genes. These linkage patterns are often gene- and lineage-dependent, differing between functional genetic categories and between species. Although sex-specific selection is often hypothesized to shape the evolution of sex-linked and autosomal gene content, population genetics theory has yet to account for many of the gene- and lineage-specific idiosyncrasies emerging from the empirical literature. With the goal of improving the connection between evolutionary theory and a rapidly growing body of genome-wide empirical studies, we extend previous population genetics theory of sex-specific selection by developing and analyzing a biologically informed model that incorporates sex linkage, pleiotropy, recombination, and epistasis, factors that are likely to vary between genes and between species. Our results demonstrate that sex-specific selection and sex-specific recombination rates can generate, and are compatible with, the gene- and species-specific linkage patterns reported in the genomics literature. The theory suggests that sexual selection may strongly influence the architectures of animal genomes, as well as the chromosomal distribution of fixed substitutions underlying sexually dimorphic traits. © 2010 The Author(s). Evolution© 2010 The Society for the Study of Evolution.

  4. The Use of Minipig in Drug Discovery and Development: Pros and Cons of Minipig Selection and Strategies to Use as a Preferred Nonrodent Species.

    Science.gov (United States)

    Heining, Peter; Ruysschaert, Tristan

    2016-04-01

    The pig was introduced more than 20 years ago in drug development following attempts of finding a species that shares better homology with human than the dog, based on biophysiological parameters. However, miniaturization, standardized breeding, and health status control were required before the pig could find a broader than niche application in pharmaceutical industry. During the years of experience with minipigs in pharmaceutical research and the science evolving rapidly, the selection of a nonrodent animal species for preclinical safety testing became primarily driven by pharmacological (target expression homologous function), pharmacokinetic, and biophysiological considerations. This offered a broad field of application for the minipig, besides the well-established use in dermal projects in all areas of drug development but also in novel approaches including genetically modified animals. In this article, we look at recent approaches and requirements in the optimal selection of a nonrodent model in pharmaceutical development and critically ask how good a choice the minipig offers for the scientist, how did the testing environment evolve, and what are the key requirements for a broader use of the minipig compared to the other well-established nonrodent species like dog or monkey. © The Author(s) 2015.

  5. Effects of intraguild predators on nest-site selection by prey.

    Science.gov (United States)

    Huang, Wen-San; Pike, David A

    2012-01-01

    Nest-site selection involves tradeoffs between the risk of predation (on females and/or nests) and nest-site quality (microenvironment), and consequently suitable nesting sites are often in limited supply. Interactions with "classical" predators (e.g., those not competing for shared resources) can strongly influence nest-site selection, but whether intraguild predation also influences this behavior is unknown. We tested whether risk of predation from an intraguild predator [the diurnal scincid lizard Eutropis (Mabuya) longicaudata] influences nest-site selection by its prey (the nocturnal gecko Gekko hokouensis) on Orchid Island, Taiwan. These two species putatively compete for shared resources, including invertebrate prey and nesting microhabitat, but the larger E. longicaudata also predates G. hokouensis (but not its hard-shelled eggs). Both species nested within a concrete wall containing a series of drainage holes that have either one ("closed-in") or two openings ("open"). In allopatry, E. longicaudata preferred to nest within holes that were plugged by debris (thereby protecting eggs from water intrusion), whereas G. hokouensis selected holes that were open at both ends (facilitating escape from predators). When we experimentally excluded E. longicaudata from its preferred nesting area, G. hokouensis not only nested in higher abundances, but also modified its nest-site selection, such that communal nesting was more prevalent and both open and closed-in holes were used equally. Egg viability was unaffected by the choice of hole type, but was reduced slightly (by 7%) in the predator exclusion area (presumably due to higher local incubation temperatures). Our field experiment demonstrates that intraguild predators can directly influence the nest density of prey by altering maternal nest-site selection behavior, even when the predator and prey are active at different times of day and the eggs are not at risk of predation.

  6. Species-specific associations between overstory and understory tree species in a semideciduous tropical forest

    Directory of Open Access Journals (Sweden)

    Flaviana Maluf Souza

    2015-03-01

    Full Text Available We investigated the occurrence of associations between overstory and understory tree species in a semideciduous tropical forest. We identified and measured all trees of nine canopy species with diameter at breast height ≥4.8 cm in a 10.24 ha plot and recorded all individuals beneath their canopies ("understory individuals" within the same diameter class. The total density of understory individuals did not significantly differ under different overstory species. One overstory species (Ceiba speciosa showed higher understory species richness compared with five other species. There was a strong positive association between three overstory species (Esenbeckia leiocarpa, Savia dictyocarpa, and C. speciosa and the density of seven understory species (Balfourodendron riedelianum, Chrysophyllum gonocarpum, E. leiocarpa, Holocalyx balansae, Machaerium stipitatum, Rhaminidium elaeocarpum, and S. dictyocarpa. These results probably reflect the outcome of a complex set of interactions including facilitation and competition, and further studies are necessary to better understand the magnitude and type of the effects of individual overstory species on understory species. The occurrence of species-specific associations shown here reinforces the importance of non-random processes in structuring plant communities and suggest that the influence of overstory species on understory species in high-diversity forests may be more significant than previously thought.

  7. Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment.

    Science.gov (United States)

    Šmarda, Petr; Hejcman, Michal; Březinová, Alexandra; Horová, Lucie; Steigerová, Helena; Zedek, František; Bureš, Petr; Hejcmanová, Pavla; Schellberg, Jürgen

    2013-11-01

    Polyploidy and increased genome size are hypothesized to increase organismal nutrient demands, namely of phosphorus (P), which is an essential and abundant component of nucleic acids. Therefore, polyploids and plants with larger genomes are expected to be selectively disadvantaged in P-limited environments. However, this hypothesis has yet to be experimentally tested. We measured the somatic DNA content and ploidy level in 74 vascular plant species in a long-term fertilization experiment. The differences between the fertilizer treatments regarding the DNA content and ploidy level of the established species were tested using phylogeny-based statistics. The percentage and biomass of polyploid species clearly increased with soil P in particular fertilizer treatments, and a similar but weaker trend was observed for the DNA content. These increases were associated with the dominance of competitive life strategy (particularly advantageous in the P-treated plots) in polyploids and the enhanced competitive ability of dominant polyploid grasses at high soil P concentrations, indicating their increased P limitation. Our results verify the hypothesized effect of P availability on the selection of polyploids and plants with increased genome sizes, although the relative contribution of increased P demands vs increased competitiveness as causes of the observed pattern requires further evaluation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  8. Selection of Bacillus species for targeted in situ release of prebiotic galacto-rhamnogalacturonan from potato pulp in piglets

    DEFF Research Database (Denmark)

    Jers, Carsten; Strube, Mikael Lenz; Cantor, Mette D

    2017-01-01

    We have previously shown that galacto-rhamnogalacturonan fibers can be enzymatically extracted from potato pulp and that these fibers have potential for exerting a prebiotic effect in piglets. The spore-forming Bacillus species are widely used as probiotics in feed supplements for pigs. In this s......We have previously shown that galacto-rhamnogalacturonan fibers can be enzymatically extracted from potato pulp and that these fibers have potential for exerting a prebiotic effect in piglets. The spore-forming Bacillus species are widely used as probiotics in feed supplements for pigs....... In this study, we evaluated the option for further functionalizing Bacillus feed supplements by selecting strains possessing the enzymes required for extraction of the potentially prebiotic fibers. We established that it would require production and secretion of pectin lyase and/or polygalacturonase...... of producing prebiotic fibers via a feed containing Bacillus spores and potato pulp and identified candidates for future in vivo evaluation in piglets....

  9. Native species that can replace exotic species in landscaping

    Directory of Open Access Journals (Sweden)

    Elisabeth Regina Tempel Stumpf

    2015-08-01

    Full Text Available Beyond aesthetics, the contemporary landscaping intends to provide other benefits for humans and environment, especially related to the environmental quality of urban spaces and conservation of the species. A trend in this direction is the reduction in the use of exotic plants in their designs, since, over time, they can become agents of replacement of native flora, as it has occurred in Rio Grande do Sul with many species introduced by settlers. However, the use of exotic species is unjustifiable, because the flora diversity of the Bioma Pampa offers many native species with appropriate features to the ornamental use. The commercial cultivation and the implantation of native species in landscaped areas constitute innovations for plant nurseries and landscapers and can provide a positive reduction in extractivism, contributing to dissemination, exploitation and preservation of native flora, and also decrease the impact of chemical products on environment. So, this work intends to identify native species of Bioma Pampa with features and uses similar to the most used exotic species at Brazilian landscaping. The species were selected from consulting books about native plants of Bioma Pampa and plants used at Brazilian landscaping, considering the similarity on habit and architecture, as well as characteristics of leafs, flowers and/or fruits and environmental conditions of occurrence and cultivation. There were identified 34 native species able to properly replace exotic species commonly used. The results show that many native species of Bioma Pampa have interesting ornamental features to landscape gardening, allowing them to replace exotic species that are traditionally cultivated.

  10. Herbicide toxicity, selectivity and hormesis of nicosulfuron on 10 Trichogrammatidae (Hymenoptera) species parasitizing Anagasta ( = Ephestia) kuehniella (Lepidoptera: Pyralidae) eggs.

    Science.gov (United States)

    Leite, Germano L D; de Paulo, Paula D; Zanuncio, José C; Tavares, Wagner De S; Alvarenga, Anarelly C; Dourado, Luan R; Bispo, Edilson P R; Soares, Marcus A

    2017-01-02

    Selective agrochemicals including herbicides that do not affect non-target organisms such as natural enemies are important in the integrated pest management (IPM) programs. The aim of this study was to evaluate the herbicide toxicity, selectivity and hormesis of nicosulfuron, recommended for the corn Zea mays L. (Poaceae) crop, on 10 Trichogrammatidae (Hymenoptera) species. A female of each Trichogramma spp. or Trichogrammatoidea annulata De Santis, 1972 was individually placed in plastic test tubes (no choice) with a cardboard containing 45 flour moth Anagasta ( = Ephestia) kuehniella Zeller, 1879 (Lepidoptera: Pyralidae) eggs. Parasitism by these natural enemies was allowed for 48 h and the cardboards were sprayed with the herbicide nicosulfuron at 1.50 L.ha -1 , along with the control (only distilled water). Nicosulfuron reduced the emergence rate of Trichogramma bruni Nagaraja, 1983 females, but increased that of Trichogramma pretiosum Riley, 1879, Trichogramma acacioi Brun, Moraes and Smith, 1984 and T. annulata females. Conversely, this herbicide increased the emergence rate of Trichogramma brasiliensis Ashmead, 1904, T. bruni, Trichogramma galloi Zucchi, 1988 and Trichogramma soaresi Nagaraja, 1983 males and decreased those of T. acacioi, Trichogramma atopovilia Oatman and Platner, 1983 and T. pretiosum males. In addition, nicosulfuron reduced the sex ratio of T. galloi, Trichogramma bennetti Nagaraja and Nagarkatti, 1973 and T. pretiosum and increased that of T. acacioi, T. bruni, T. annulata, Trichogramma demoraesi Nagaraja, 1983, T. soaresi and T. brasiliensis. The herbicide nicosulfuron was "harmless" (class 1, <30% reduction) for females and the sex ratio of all Trichogrammatidae species based on the International Organization for Biological Control (IOBC) classification. The possible hormesis effect of nicosulfuron on Trichogrammatidae species and on the bacterium Wolbachia sp. (Rickettsiales: Rickettsiaceae) was also discussed.

  11. Selection for Social Signalling Drives the Evolution of Chameleon Colour Change

    Science.gov (United States)

    Stuart-Fox, Devi; Moussalli, Adnan

    2008-01-01

    Rapid colour change is a remarkable natural phenomenon that has evolved in several vertebrate and invertebrate lineages. The two principal explanations for the evolution of this adaptive strategy are (1) natural selection for crypsis (camouflage) against a range of different backgrounds and (2) selection for conspicuous social signals that maximise detectability to conspecifics, yet minimise exposure to predators because they are only briefly displayed. Here we show that evolutionary shifts in capacity for colour change in southern African dwarf chameleons (Bradypodion spp.) are associated with increasingly conspicuous signals used in male contests and courtship. To the chameleon visual system, species showing the most dramatic colour change display social signals that contrast most against the environmental background and amongst adjacent body regions. We found no evidence for the crypsis hypothesis, a finding reinforced by visual models of how both chameleons and their avian predators perceive chameleon colour variation. Instead, our results suggest that selection for conspicuous social signals drives the evolution of colour change in this system, supporting the view that transitory display traits should be under strong selection for signal detectability. PMID:18232740

  12. Polyphyly and gene flow between non-sibling Heliconius species

    Directory of Open Access Journals (Sweden)

    Jiggins Chris D

    2006-04-01

    Full Text Available Abstract Background The view that gene flow between related animal species is rare and evolutionarily unimportant largely antedates sensitive molecular techniques. Here we use DNA sequencing to investigate a pair of morphologically and ecologically divergent, non-sibling butterfly species, Heliconius cydno and H. melpomene (Lepidoptera: Nymphalidae, whose distributions overlap in Central and Northwestern South America. Results In these taxa, we sequenced 30–45 haplotypes per locus of a mitochondrial region containing the genes for cytochrome oxidase subunits I and II (CoI/CoII, and intron-spanning fragments of three unlinked nuclear loci: triose-phosphate isomerase (Tpi, mannose-6-phosphate isomerase (Mpi and cubitus interruptus (Ci genes. A fifth gene, dopa decarboxylase (Ddc produced sequence data likely to be from different duplicate loci in some of the taxa, and so was excluded. Mitochondrial and Tpi genealogies are consistent with reciprocal monophyly, whereas sympatric populations of the species in Panama share identical or similar Mpi and Ci haplotypes, giving rise to genealogical polyphyly at the species level despite evidence for rapid sequence divergence at these genes between geographic races of H. melpomene. Conclusion Recent transfer of Mpi haplotypes between species is strongly supported, but there is no evidence for introgression at the other three loci. Our results demonstrate that the boundaries between animal species can remain selectively porous to gene flow long after speciation, and that introgression, even between non-sibling species, can be an important factor in animal evolution. Interspecific gene flow is demonstrated here for the first time in Heliconius and may provide a route for the transfer of switch-gene adaptations for Müllerian mimicry. The results also forcefully demonstrate how reliance on a single locus may give an erroneous picture of the overall genealogical history of speciation and gene flow.

  13. Characterisation of hydrocarbonaceous overlayers important in metal-catalysed selective hydrogenation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lennon, David; Warringham, Robbie [School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Guidi, Tatiana [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Parker, Stewart F., E-mail: stewart.parker@stfc.ac.uk [ISIS Facility, STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2013-12-12

    Highlights: • Inelastic neutron scattering spectroscopy of a commercial dehydrogenation catalyst. • The overlayer present on the catalyst is predominantly aliphatic. • A population of strongly hydrogen bonded hydroxyls is also present. - Abstract: The hydrogenation of alkynes to alkenes over supported metal catalysts is an important industrial process and it has been shown that hydrocarbonaceous overlayers are important in controlling selectivity profiles of metal-catalysed hydrogenation reactions. As a model system, we have selected propyne hydrogenation over a commercial Pd(5%)/Al{sub 2}O{sub 3} catalyst. Inelastic neutron scattering studies show that the C–H stretching mode ranges from 2850 to 3063 cm{sup −1}, indicating the mostly aliphatic nature of the overlayer and this is supported by the quantification of the carbon and hydrogen on the surface. There is also a population of strongly hydrogen-bonded hydroxyls, their presence would indicate that the overlayer probably contains some oxygen functionality. There is little evidence for any olefinic or aromatic species. This is distinctly different from the hydrogen-poor overlayers that are deposited on Ni/Al{sub 2}O{sub 3} catalysts during methane reforming.

  14. Species richness, area and climate correlates

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Bastos Araujo, Miguel

    2006-01-01

    affects: (1) the selection of climate variables entering a species richness model; and (2) the accuracy of models in predicting species richness in unsampled grid cells. Location Western Europe. Methods Models are developed for European plant, breeding bird, mammal and herptile species richness using...... seven climate variables. Generalized additive models are used to relate species richness, climate and area. Results We found that variation in the grid cell area was large (50 × 50 km: 8-3311 km2; 220 × 220: 193-55,100 km2), but this did not affect the selection of variables in the models. Similarly...... support the assumption that variation in near-equal area cells may be of second-order importance for models explaining or predicting species richness in relation to climate, although there is a possibility that drops in accuracy might increase with grid cell size. The results are, however, contingent...

  15. Arthropod assemblages on native and nonnative plant species of a coastal reserve in California.

    Science.gov (United States)

    Fork, Susanne K

    2010-06-01

    Biological invasions by nonnative plant species are a widespread phenomenon. Many studies have shown strong ecological impacts of plant invasions on native plant communities and ecosystem processes. Far fewer studies have examined effects on associated animal communities. From the perspective of a reserve's land management, I addressed the question of whether arthropod assemblages on two nonnative plant species of concern were impoverished compared with those assemblages associated with two predominant native plant species of that reserve. If the nonnative plant species, Conium maculatum L., and Phalaris aquatica L., supported highly depauperate arthropod assemblages compared with the native plant species, Baccharis pilularis De Candolle and Leymus triticoides (Buckley) Pilger, this finding would provide additional support for prioritizing removal of nonnatives and restoration of natives. I assessed invertebrate assemblages at the taxonomic levels of arthropod orders, Coleoptera families, and Formicidae species, using univariate analyses to examine community attributes (richness and abundance) and multivariate techniques to assess arthropod assemblage community composition differences among plant species. Arthropod richness estimates by taxonomic level between native and nonnative vegetation showed varying results. Overall, arthropod richness of the selected nonnative plants, examined at higher taxonomic resolution, was not necessarily less diverse than two of common native plants found on the reserve, although differences were found among plant species. Impacts of certain nonnative plant species on arthropod assemblages may be more difficult to elucidate than those impacts shown on native plants and ecosystem processes.

  16. Phenol by direct hydroxylation of benzene with nitrous oxide - role of surface oxygen species in the reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Reitzmann, A.; Klemm, E.; Emig, G. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Chemie 1; Buchholz, S.A.; Zanthoff, H.W. [Bochum Univ. (Germany). Inst. of Technical Chemistry

    1998-12-31

    Transient experiments in a Temporal Analysis of Products (TAP) Reactor were performed to elucidate the role of surface oyxgen species in the oxidation of benzene to phenol on ZSM-5 type zeolites with nitrous oxide as a selective oxidant. It was shown by puls experiments with nitrous oxide that the mean lifetime of the generated surface oxygen species is between 0.2s at 500 C and about 4.2 s at 400 C. Afterwards the surface oxygen species desorb as molecular oxygen into the gas phase where total oxidation will take place if hydrocarbons are present. Dual puls experiments consisting of a nitrous oxide puls followed by a benzene puls allowed studying the reactivity of the surface oxygen species formed during the first puls. The observation of the phenol formation was impeded due to the strong sorption of phenol. Multipulse experiments were necessary to reach a pseudo steady state phenol yield. (orig.)

  17. Phenology of selected herbaceous species of northern Wisconsin deciduous forests and forest roads

    International Nuclear Information System (INIS)

    Zavitkovski, J.

    1977-01-01

    Vegetative and reproductive phenophases were observed from 1970 to 1974 on 30 native and 8 introduced herbaceous species growing under deciduous forests and on an abandoned logging road in the Enterprise Radiation Forest in northern Wisconsin. Forest herbs started growing in the same order each year, but logging-road herbs varied. Growth initiation was more variable in the early-starting than in the late-starting species. In most years logging-road herbs started growth a few days earlier than forest herbs. Initiation of flowering of the 38 species was bimodal, culminating around mid-May for forest species and around mid-July for logging-road species. In general, the annual start of flowering varied less than the start of vegetative growth. Duration of flowering of most species was variable, however. Seed ripening times varied strikingly among species, ranging from 11 days for Taraxacum officinale to 101 days for Iris versicolor. Seeds of forest herbs took longer to ripen than those of logging-road species. On the basis of growth initiation of the 6 earliest species, spring arrival in 1970 to 1974 differed by 26 days and appeared to be related to snow disappearance. The growing season of most species paralleled cumulative current-year (May--July) and last-year (August--September) precipitation. Multiple regression analyses between precipitation and average length of growing season explained 87 percent of the total variation for forest herbs and 69 percent of that for logging-road herbs

  18. Species Trials at the Waiakea Arboretum, Hilo, Hawaii

    Science.gov (United States)

    George B. Richmond

    1963-01-01

    Survival counts were made of 84 exotic tree species planted during 1956-1960 in a cleared rain-forest area near Hilo, Hawaii. Growth measurements were recorded for 5- and 6-year-old plantings. Most species had good survival, but some failed entirely. Soil depth was found to have a strong influence on rate of growth, but not on survival. Several valuable timber species...

  19. Interspecific gene flow and maintenance of species integrity in oaks

    Directory of Open Access Journals (Sweden)

    Oliver Gailing

    2014-07-01

    Full Text Available Oak species show a wide variation in morphological and physiological characters, and species boundaries between closely related species are often not clear-cut. Still, despite frequent interspecific gene flow, oaks maintain distinct morphological and physiological adaptations. In sympatric stands, spatial distribution of species with different ecological requirements is not random but constrained by soil and other microenvironmental factors. Pre-zygotic isolation (e.g. cross incompatibilities, asynchrony in flowering, pollen competition and post-zygotic isolation (divergent selection contribute to the maintenance of species integrity in sympatric oak stands. The antagonistic effects of interspecific gene flow and divergent selection are reflected in the low genetic differentiation between hybridizing oak species at most genomic regions interspersed by regions with signatures of divergent selection (outlier regions. In the near future, the availability of high-density genetic linkage maps anchored to scaffolds of a sequenced Q. robur genome will allow to characterize the underlying genes in these outlier regions and their putative role in reproductive isolation between species. Reciprocal transplant experiments of seedlings between parental environments can be used to characterize selection on outlier genes. High transferability of gene-based markers will enable comparative outlier screens in different oak species.

  20. Response-based selection of barley cultivars and legume species for complementarity: Root morphology and exudation in relation to nutrient source.

    Science.gov (United States)

    Giles, Courtney D; Brown, Lawrie K; Adu, Michael O; Mezeli, Malika M; Sandral, Graeme A; Simpson, Richard J; Wendler, Renate; Shand, Charles A; Menezes-Blackburn, Daniel; Darch, Tegan; Stutter, Marc I; Lumsdon, David G; Zhang, Hao; Blackwell, Martin S A; Wearing, Catherine; Cooper, Patricia; Haygarth, Philip M; George, Timothy S

    2017-02-01

    Phosphorus (P) and nitrogen (N) use efficiency may be improved through increased biodiversity in agroecosystems. Phenotypic variation in plants' response to nutrient deficiency may influence positive complementarity in intercropping systems. A multicomponent screening approach was used to assess the influence of P supply and N source on the phenotypic plasticity of nutrient foraging traits in barley (H. vulgare L.) and legume species. Root morphology and exudation were determined in six plant nutrient treatments. A clear divergence in the response of barley and legumes to the nutrient treatments was observed. Root morphology varied most among legumes, whereas exudate citrate and phytase activity were most variable in barley. Changes in root morphology were minimized in plants provided with ammonium in comparison to nitrate but increased under P deficiency. Exudate phytase activity and pH varied with legume species, whereas citrate efflux, specific root length, and root diameter lengths were more variable among barley cultivars. Three legume species and four barley cultivars were identified as the most responsive to P deficiency and the most contrasting of the cultivars and species tested. Phenotypic response to nutrient availability may be a promising approach for the selection of plant combinations for minimal input cropping systems. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. Homage to Bateman: sex roles predict sex differences in sexual selection.

    Science.gov (United States)

    Fritzsche, Karoline; Arnqvis, Göran

    2013-07-01

    Classic sex role theory predicts that sexual selection should be stronger in males in taxa showing conventional sex roles and stronger in females in role reversed mating systems. To test this very central prediction and to assess the utility of different measures of sexual selection, we estimated sexual selection in both sexes in four seed beetle species with divergent sex roles using a novel experimental design. We found that sexual selection was sizeable in females and the strength of sexual selection was similar in females and males in role-reversed species. Sexual selection was overall significantly stronger in males than in females and residual selection formed a substantial component of net selection in both sexes. Furthermore, sexual selection in females was stronger in role-reversed species compared to species with conventional sex roles. Variance-based measures of sexual selection (the Bateman gradient and selection opportunities) were better predictors of sexual dimorphism in reproductive behavior and morphology across species compared to trait-based measures (selection differentials). Our results highlight the importance of using assays that incorporate components of fitness manifested after mating. We suggest that the Bateman gradient is generally the most informative measure of the strength of sexual selection in comparisons across sexes and/or species. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  2. Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species

    Directory of Open Access Journals (Sweden)

    Townsend Henrik J

    2005-11-01

    Full Text Available Abstract High-density oligonucleotide (oligo arrays are a powerful tool for transcript profiling. Arrays based on GeneChip® technology are amongst the most widely used, although GeneChip® arrays are currently available for only a small number of plant and animal species. Thus, we have developed a method to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous species and tested the method by analysing the transcriptome of Brassica oleracea L., a species for which no GeneChip® array is available, using a GeneChip® array designed for Arabidopsis thaliana (L. Heynh. Genomic DNA from B. oleracea was labelled and hybridised to the ATH1-121501 GeneChip® array. Arabidopsis thaliana probe-pairs that hybridised to the B. oleracea genomic DNA on the basis of the perfect-match (PM probe signal were then selected for subsequent B. oleracea transcriptome analysis using a .cel file parser script to generate probe mask files. The transcriptional response of B. oleracea to a mineral nutrient (phosphorus; P stress was quantified using probe mask files generated for a wide range of gDNA hybridisation intensity thresholds. An example probe mask file generated with a gDNA hybridisation intensity threshold of 400 removed > 68 % of the available PM probes from the analysis but retained >96 % of available A. thaliana probe-sets. Ninety-nine of these genes were then identified as significantly regulated under P stress in B. oleracea, including the homologues of P stress responsive genes in A. thaliana. Increasing the gDNA hybridisation intensity thresholds up to 500 for probe-selection increased the sensitivity of the GeneChip® array to detect regulation of gene expression in B. oleracea under P stress by up to 13-fold. Our open-source software to create probe mask files is freely available http://affymetrix.arabidopsis.info/xspecies/ and may be used to facilitate transcriptomic analyses of a wide range of plant and animal

  3. Evolution of resistance to a multiple-herbivore community: genetic correlations, diffuse coevolution, and constraints on the plant's response to selection.

    Science.gov (United States)

    Wise, Michael J; Rausher, Mark D

    2013-06-01

    Although plants are generally attacked by a community of several species of herbivores, relatively little is known about the strength of natural selection for resistance in multiple-herbivore communities-particularly how the strength of selection differs among herbivores that feed on different plant organs or how strongly genetic correlations in resistance affect the evolutionary responses of the plant. Here, we report on a field study measuring natural selection for resistance in a diverse community of herbivores of Solanum carolinense. Using linear phenotypic-selection analyses, we found that directional selection acted to increase resistance to seven species. Selection was strongest to increase resistance to fruit feeders, followed by flower feeders, then leaf feeders. Selection favored a decrease in resistance to a stem borer. Bootstrapping analyses showed that the plant population contained significant genetic variation for each of 14 measured resistance traits and significant covariances in one-third of the pairwise combinations of resistance traits. These genetic covariances reduced the plant's overall predicted evolutionary response for resistance against the herbivore community by about 60%. Diffuse (co)evolution was widespread in this community, and the diffuse interactions had an overwhelmingly constraining (rather than facilitative) effect on the plant's evolution of resistance. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  4. Adaptive training diminishes distractibility in aging across species.

    Science.gov (United States)

    Mishra, Jyoti; de Villers-Sidani, Etienne; Merzenich, Michael; Gazzaley, Adam

    2014-12-03

    Aging is associated with deficits in the ability to ignore distractions, which has not yet been remediated by any neurotherapeutic approach. Here, in parallel auditory experiments with older rats and humans, we evaluated a targeted cognitive training approach that adaptively manipulated distractor challenge. Training resulted in enhanced discrimination abilities in the setting of irrelevant information in both species that was driven by selectively diminished distraction-related errors. Neural responses to distractors in auditory cortex were selectively reduced in both species, mimicking the behavioral effects. Sensory receptive fields in trained rats exhibited improved spectral and spatial selectivity. Frontal theta measures of top-down engagement with distractors were selectively restrained in trained humans. Finally, training gains generalized to group and individual level benefits in aspects of working memory and sustained attention. Thus, we demonstrate converging cross-species evidence for training-induced selective plasticity of distractor processing at multiple neural scales, benefitting distractor suppression and cognitive control. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Can sexual selection drive female life histories? A comparative study on Galliform birds.

    Science.gov (United States)

    Kolm, N; Stein, R W; Mooers, A Ø; Verspoor, J J; Cunningham, E J A

    2007-03-01

    Sexual selection has been identified as a major evolutionary force shaping male life history traits but its impact on female life history evolution is less clear. Here we examine the impact of sexual selection on three key female traits (body size, egg size and clutch size) in Galliform birds. Using comparative independent contrast analyses and directional discrete analyses, based on published data and a new genera-level supertree phylogeny of Galliform birds, we investigated how sexual selection [quantified as sexual size dimorphism (SSD) and social mating system (MS)] affects these three important female traits. We found that female body mass was strongly and positively correlated with egg size but not with clutch size, and that clutch size decreased as egg size increased. We established that SSD was related to MS, and then used SSD as a proxy of the strength of sexual selection. We found both a positive relationship between SSD and female body mass and egg size and that increases in female body mass and egg size tend to occur following increases in SSD in this bird order. This pattern of female body mass increases lagging behind changes in SSD, established using our directional discrete analysis, suggests that female body mass increases as a response to increases in the level of sexual selection and not simply through a strong genetic relationship with male body mass. This suggests that sexual selection is linked to changes in female life history traits in Galliformes and we discuss how this link may shape patterns of life history variation among species.

  6. The nuclear question: rethinking species importance in multi-species animal groups.

    Science.gov (United States)

    Srinivasan, Umesh; Raza, Rashid Hasnain; Quader, Suhel

    2010-09-01

    1. Animals group for various benefits, and may form either simple single-species groups, or more complex multi-species associations. Multi-species groups are thought to provide anti-predator and foraging benefits to participant individuals. 2. Despite detailed studies on multi-species animal groups, the importance of species in group initiation and maintenance is still rated qualitatively as 'nuclear' (maintaining groups) or 'attendant' (species following nuclear species) based on species-specific traits. This overly simplifies and limits understanding of inherently complex associations, and is biologically unrealistic, because species roles in multi-species groups are: (i) likely to be context-specific and not simply a fixed species property, and (ii) much more variable than this dichotomy indicates. 3. We propose a new view of species importance (measured as number of inter-species associations), along a continuum from 'most nuclear' to 'least nuclear'. Using mixed-species bird flocks from a tropical rainforest in India as an example, we derive inter-species association measures from randomizations on bird species abundance data (which takes into account species 'availability') and data on 86 mixed-species flocks from two different flock types. Our results show that the number and average strength of inter-species associations covary positively, and we argue that species with many, strong associations are the most nuclear. 4. From our data, group size and foraging method are ecological and behavioural traits of species that best explain nuclearity in mixed-species bird flocks. Parallels have been observed in multi-species fish shoals, in which group size and foraging method, as well as diet, have been shown to correlate with nuclearity. Further, the context in which multi-species groups occur, in conjunction with species-specific traits, influences the role played by a species in a multi-species group, and this highlights the importance of extrinsic factors in

  7. SPITZER IMAGING OF STRONGLY LENSED HERSCHEL-SELECTED DUSTY STAR-FORMING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Brian; Cooray, Asantha; Calanog, J. A.; Nayyeri, H.; Timmons, N.; Casey, C. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baes, M. [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Chapman, S. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2 (Canada); Dannerbauer, H. [Laboratoire AIM-Paris-Saclay, CEA/DSM/Irfu-CNRS-Université Paris Diderot, CE-Saclay, pt courrier 131, F-91191 Gif-sur-Yvette (France); Da Cunha, E. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn VIC 3122 (Australia); De Zotti, G. [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Dunne, L.; Michałowski, M. J.; Oteo, I. [Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ (United Kingdom); Farrah, D. [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States); Fu, Hai [Department of Physics and Astronomy, University of Iowa, Van Allen Hall, Iowa City, IA 52242 (United States); Gonzalez-Nuevo, J. [Departamento de Fisica, Universidad de Oviedo C/ Calvo Sotelo, s/n, E-33007 Oviedo (Spain); Magdis, G. [Department of Astrophysics, Denys Wilkinson Building, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom); Riechers, D. A. [Department of Astronomy, Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Scott, D. [Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1 (Canada); and others

    2015-11-20

    We present the rest-frame optical spectral energy distribution (SED) and stellar masses of six Herschel-selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5 μm. Due to the spatial resolution of the IRAC observations at the level of 2″, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5 μm, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical SED of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 × 10{sup 10}–4 × 10{sup 11} M{sub ⊙} and star formation rates of around 100 M{sub ⊙} yr{sup −1}. This puts these lensed submillimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.

  8. Cadmium toxicity induced contrasting patterns of concentrations of free sarcosine, specific amino acids and selected microelements in two Noccaea species.

    Science.gov (United States)

    Zemanová, Veronika; Pavlík, Milan; Pavlíková, Daniela

    2017-01-01

    Cadmium (Cd) toxicity affects numerous metabolic processes in plants. In the presence of Cd, plants accumulate specific amino acids which may be beneficial to developing Cd tolerance. Our study aimed to characterize the changes in the metabolism of selected free amino acids that are associated with Cd tolerance, and investigate the levels of selected microelements in order to relate these changes to the adaptation strategies of two metallophytes-Noccaea caerulescens (Redlschlag, Austria) and Noccaea praecox (Mežica, Slovenia). The plants were exposed to Cd contamination (90 mg Cd/kg soil) for 120 days in a pot experiment. Our results showed higher Cd accumulation in N. praecox compared to N. caerulescens. Cadmium contamination reduced the zinc and nickel levels in both species and a mixed effect was determined for copper and manganese content. Differences in free amino acid metabolism were observed between the two metallophytes growing under Cd-free and Cd-loaded conditions. Under Cd-free conditions, aromatic amino acids (phenylalanine, tryptophan and tyrosine) and branched-chain amino acids (leucine, isoleucine and valine) were accumulated more in the leaves of N. praecox than in N. caerulescens. Cd stress increased the content of these amino acids in both species but this increase was significant only in N. caerulescens leaves. Marked differences in the responses of the two species to Cd stress were shown for alanine, phenylalanine, threonine and sarcosine. Cadmium contamination also induced an increase of threonine as alanine and sarcosine decrease, which was larger in N. caerulescens than in N. praecox. All these factors contribute to the higher adaptation of N. praecox to Cd stress.

  9. Long-term impacts of selective logging on two Amazonian tree species with contrasting ecological and reproductive characteristics: inferences from Eco-gene model simulations.

    Science.gov (United States)

    Vinson, C C; Kanashiro, M; Sebbenn, A M; Williams, T C R; Harris, S A; Boshier, D H

    2015-08-01

    The impact of logging and subsequent recovery after logging is predicted to vary depending on specific life history traits of the logged species. The Eco-gene simulation model was used to evaluate the long-term impacts of selective logging over 300 years on two contrasting Brazilian Amazon tree species, Dipteryx odorata and Jacaranda copaia. D. odorata (Leguminosae), a slow growing climax tree, occurs at very low densities, whereas J. copaia (Bignoniaceae) is a fast growing pioneer tree that occurs at high densities. Microsatellite multilocus genotypes of the pre-logging populations were used as data inputs for the Eco-gene model and post-logging genetic data was used to verify the output from the simulations. Overall, under current Brazilian forest management regulations, there were neither short nor long-term impacts on J. copaia. By contrast, D. odorata cannot be sustainably logged under current regulations, a sustainable scenario was achieved by increasing the minimum cutting diameter at breast height from 50 to 100 cm over 30-year logging cycles. Genetic parameters were only slightly affected by selective logging, with reductions in the numbers of alleles and single genotypes. In the short term, the loss of alleles seen in J. copaia simulations was the same as in real data, whereas fewer alleles were lost in D. odorata simulations than in the field. The different impacts and periods of recovery for each species support the idea that ecological and genetic information are essential at species, ecological guild or reproductive group levels to help derive sustainable management scenarios for tropical forests.

  10. Quantifying climate-growth relationships at the stand level in a mature mixed-species conifer forest.

    Science.gov (United States)

    Teets, Aaron; Fraver, Shawn; Weiskittel, Aaron R; Hollinger, David Y

    2018-03-11

    A range of environmental factors regulate tree growth; however, climate is generally thought to most strongly influence year-to-year variability in growth. Numerous dendrochronological (tree-ring) studies have identified climate factors that influence year-to-year variability in growth for given tree species and location. However, traditional dendrochronology methods have limitations that prevent them from adequately assessing stand-level (as opposed to species-level) growth. We argue that stand-level growth analyses provide a more meaningful assessment of forest response to climate fluctuations, as well as the management options that may be employed to sustain forest productivity. Working in a mature, mixed-species stand at the Howland Research Forest of central Maine, USA, we used two alternatives to traditional dendrochronological analyses by (1) selecting trees for coring using a stratified (by size and species), random sampling method that ensures a representative sample of the stand, and (2) converting ring widths to biomass increments, which once summed, produced a representation of stand-level growth, while maintaining species identities or canopy position if needed. We then tested the relative influence of seasonal climate variables on year-to-year variability in the biomass increment using generalized least squares regression, while accounting for temporal autocorrelation. Our results indicate that stand-level growth responded most strongly to previous summer and current spring climate variables, resulting from a combination of individualistic climate responses occurring at the species- and canopy-position level. Our climate models were better fit to stand-level biomass increment than to species-level or canopy-position summaries. The relative growth responses (i.e., percent change) predicted from the most influential climate variables indicate stand-level growth varies less from to year-to-year than species-level or canopy-position growth responses. By

  11. Morpho morphometrics: Shared ancestry and selection drive the evolution of wing size and shape in Morpho butterflies.

    Science.gov (United States)

    Chazot, Nicolas; Panara, Stephen; Zilbermann, Nicolas; Blandin, Patrick; Le Poul, Yann; Cornette, Raphaël; Elias, Marianne; Debat, Vincent

    2016-01-01

    Butterfly wings harbor highly diverse phenotypes and are involved in many functions. Wing size and shape result from interactions between adaptive processes, phylogenetic history, and developmental constraints, which are complex to disentangle. Here, we focus on the genus Morpho (Nymphalidae: Satyrinae, 30 species), which presents a high diversity of sizes, shapes, and color patterns. First, we generate a comprehensive molecular phylogeny of these 30 species. Next, using 911 collection specimens, we quantify the variation of wing size and shape across species, to assess the importance of shared ancestry, microhabitat use, and sexual selection in the evolution of the wings. While accounting for phylogenetic and allometric effects, we detect a significant difference in wing shape but not size among microhabitats. Fore and hindwings covary at the individual and species levels, and the covariation differs among microhabitats. However, the microhabitat structure in covariation disappears when phylogenetic relationships are taken into account. Our results demonstrate that microhabitat has driven wing shape evolution, although it has not strongly affected forewing and hindwing integration. We also found that sexual dimorphism of forewing shape and color pattern are coupled, suggesting a common selective force. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  12. Genomic signatures of geographic isolation and natural selection in coral reef fishes.

    Science.gov (United States)

    Gaither, Michelle R; Bernal, Moisés A; Coleman, Richard R; Bowen, Brian W; Jones, Shelley A; Simison, W Brian; Rocha, Luiz A

    2015-04-01

    The drivers of speciation remain among the most controversial topics in evolutionary biology. Initially, Darwin emphasized natural selection as a primary mechanism of speciation, but the architects of the modern synthesis largely abandoned that view in favour of divergence by geographic isolation. The balance between selection and isolation is still at the forefront of the evolutionary debate, especially for the world's tropical oceans where biodiversity is high, but isolating barriers are few. Here, we identify the drivers of speciation in Pacific reef fishes of the genus Acanthurus by comparative genome scans of two peripheral populations that split from a large Central-West Pacific lineage at roughly the same time. Mitochondrial sequences indicate that populations in the Hawaiian Archipelago and the Marquesas Islands became isolated approximately 0.5 Ma. The Hawaiian lineage is morphologically indistinguishable from the widespread Pacific form, but the Marquesan form is recognized as a distinct species that occupies an unusual tropical ecosystem characterized by upwelling, turbidity, temperature fluctuations, algal blooms and little coral cover. An analysis of 3737 SNPs reveals a strong signal of selection at the Marquesas, with 59 loci under disruptive selection including an opsin Rh2 locus. While both the Hawaiian and Marquesan populations indicate signals of drift, the former shows a weak signal of selection that is comparable with populations in the Central-West Pacific. This contrast between closely related lineages reveals one population diverging due primarily to geographic isolation and genetic drift, and the other achieving taxonomic species status under the influence of selection. © 2015 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  13. Selective logging: do rates of forest turnover in stems, species composition and functional traits decrease with time since disturbance? - A 45 year perspective.

    Science.gov (United States)

    Osazuwa-Peters, Oyomoare L; Jiménez, Iván; Oberle, Brad; Chapman, Colin A; Zanne, Amy E

    2015-12-01

    Selective logging, the targeted harvesting of timber trees in a single cutting cycle, is globally rising in extent and intensity. Short-term impacts of selective logging on tropical forests have been widely investigated, but long-term effects on temporal dynamics of forest structure and composition are largely unknown. Understanding these long-term dynamics will help determine whether tropical forests are resilient to selective logging and inform choices between competing demands of anthropogenic use versus conservation of tropical forests. Forest dynamics can be studied within the framework of succession theory, which predicts that temporal turnover rates should decline with time since disturbance. Here, we investigated the temporal dynamics of a tropical forest in Kibale National Park, Uganda over 45 years following selective logging. We estimated turnover rates in stems, species composition, and functional traits (wood density and diameter at breast height), using observations from four censuses in 1989, 1999, 2006, and 2013, of stems ≥ 10 cm diameter within 17 unlogged and 9 logged 200 × 10 m vegetation plots. We used null models to account for interdependencies among turnover rates in stems, species composition, and functional traits. We tested predictions that turnover rates should be higher and decrease with increasing time since the selective logging event in logged forest, but should be less temporally variable in unlogged forest. Overall, we found higher turnover rates in logged forest for all three attributes, but turnover rates did not decline through time in logged forest and was not less temporally variable in unlogged forest. These results indicate that successional models that assume recovery to pre-disturbance conditions are inadequate for predicting the effects of selective logging on the dynamics of the tropical forest in Kibale. Selective logging resulted in persistently higher turnover rates, which may compromise the carbon storage capacity

  14. Neighborhood diversity of large trees shows independent species patterns in a mixed dipterocarp forest in Sri Lanka.

    Science.gov (United States)

    Punchi-Manage, Ruwan; Wiegand, Thorsten; Wiegand, Kerstin; Getzin, Stephan; Huth, Andreas; Gunatilleke, C V Savitri; Gunatilleke, I A U Nimal

    2015-07-01

    Interactions among neighboring individuals influence plant performance and should create spatial patterns in local community structure. In order to assess the role of large trees in generating spatial patterns in local species richness, we used the individual species-area relationship (ISAR) to evaluate the species richness of trees of different size classes (and dead trees) in circular neighborhoods with varying radius around large trees of different focal species. To reveal signals of species interactions, we compared the ISAR function of the individuals of focal species with that of randomly selected nearby locations. We expected that large trees should strongly affect the community structure of smaller trees in their neighborhood, but that these effects should fade away with increasing size class. Unexpectedly, we found that only few focal species showed signals of species interactions with trees of the different size classes and that this was less likely for less abundant focal species. However, the few and relatively weak departures from independence were consistent with expectations of the effect of competition for space and the dispersal syndrome on spatial patterns. A noisy signal of competition for space found for large trees built up gradually with increasing life stage; it was not yet present for large saplings but detectable for intermediates. Additionally, focal species with animal-dispersed seeds showed higher species richness in their neighborhood than those with gravity- and gyration-dispersed seeds. Our analysis across the entire ontogeny from recruits to large trees supports the hypothesis that stochastic effects dilute deterministic species interactions in highly diverse communities. Stochastic dilution is a consequence of the stochastic geometry of biodiversity in species-rich communities where the identities of the nearest neighbors of a given plant are largely unpredictable. While the outcome of local species interactions is governed for each

  15. Selection of multiple umbrella species for functional and taxonomic diversity to represent urban biodiversity.

    Science.gov (United States)

    Sattler, T; Pezzatti, G B; Nobis, M P; Obrist, M K; Roth, T; Moretti, M

    2014-04-01

    Surrogates, such as umbrella species, are commonly used to reduce the complexity of quantifying biodiversity for conservation purposes. The presence of umbrella species is often indicative of high taxonomic diversity; however, functional diversity is now recognized as an important metric for biodiversity and thus should be considered when choosing umbrella species. We identified umbrella species associated with high taxonomic and functional biodiversity in urban areas in Switzerland. We analyzed 39,752 individuals of 574 animal species from 96 study plots and 1397 presences of 262 plant species from 58 plots. Thirty-one biodiversity measures of 7 taxonomic groups (plants, spiders, bees, ground beetles, lady bugs, weevils and birds) were included in within- and across-taxa analyses. Sixteen measures were taxonomical (species richness and species diversity), whereas 15 were functional (species traits including mobility, resource use, and reproduction). We used indicator value analysis to identify umbrella species associated with single or multiple biodiversity measures. Many umbrella species were indicators of high biodiversity within their own taxonomic group (from 33.3% in weevils to 93.8% in birds), to a lesser extent they were indicators across taxa. Principal component analysis revealed that umbrella species for multiple measures of biodiversity represented different aspects of biodiversity, especially with respect to measures of taxonomic and functional diversity. Thus, even umbrella species for multiple measures of biodiversity were complementary in the biodiversity aspects they represented. Thus, the choice of umbrella species based solely on taxonomic diversity is questionable and may not represent biodiversity comprehensively. Our results suggest that, depending on conservation priorities, managers should choose multiple and complementary umbrella species to assess the state of biodiversity. © 2013 Society for Conservation Biology.

  16. Pressurized Martian-Like Pure CO2 Atmosphere Supports Strong Growth of Cyanobacteria, and Causes Significant Changes in their Metabolism

    Science.gov (United States)

    Murukesan, Gayathri; Leino, Hannu; Mäenpää, Pirkko; Ståhle, Kurt; Raksajit, Wuttinun; Lehto, Harry J.; Allahverdiyeva-Rinne, Yagut; Lehto, Kirsi

    2016-03-01

    Surviving of crews during future missions to Mars will depend on reliable and adequate supplies of essential life support materials, i.e. oxygen, food, clean water, and fuel. The most economical and sustainable (and in long term, the only viable) way to provide these supplies on Martian bases is via bio-regenerative systems, by using local resources to drive oxygenic photosynthesis. Selected cyanobacteria, grown in adequately protective containment could serve as pioneer species to produce life sustaining substrates for higher organisms. The very high (95.3 %) CO2 content in Martian atmosphere would provide an abundant carbon source for photo-assimilation, but nitrogen would be a strongly limiting substrate for bio-assimilation in this environment, and would need to be supplemented by nitrogen fertilizing. The very high supply of carbon, with rate-limiting supply of nitrogen strongly affects the growth and the metabolic pathways of the photosynthetic organisms. Here we show that modified, Martian-like atmospheric composition (nearly 100 % CO2) under various low pressure conditions (starting from 50 mbar to maintain liquid water, up to 200 mbars) supports strong cellular growth. Under high CO2 / low N2 ratio the filamentous cyanobacteria produce significant amount of H2 during light due to differentiation of high amount of heterocysts.

  17. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels.

    Science.gov (United States)

    Van der Putten, Wim H; Macel, Mirka; Visser, Marcel E

    2010-07-12

    Current predictions on species responses to climate change strongly rely on projecting altered environmental conditions on species distributions. However, it is increasingly acknowledged that climate change also influences species interactions. We review and synthesize literature information on biotic interactions and use it to argue that the abundance of species and the direction of selection during climate change vary depending on how their trophic interactions become disrupted. Plant abundance can be controlled by aboveground and belowground multitrophic level interactions with herbivores, pathogens, symbionts and their enemies. We discuss how these interactions may alter during climate change and the resulting species range shifts. We suggest conceptual analogies between species responses to climate warming and exotic species introduced in new ranges. There are also important differences: the herbivores, pathogens and mutualistic symbionts of range-expanding species and their enemies may co-migrate, and the continuous gene flow under climate warming can make adaptation in the expansion zone of range expanders different from that of cross-continental exotic species. We conclude that under climate change, results of altered species interactions may vary, ranging from species becoming rare to disproportionately abundant. Taking these possibilities into account will provide a new perspective on predicting species distribution under climate change.

  18. The potential of selected macroalgal species for treatment of AMD at different pH ranges in temperate regions.

    Science.gov (United States)

    Oberholster, Paul J; Cheng, Po-Hsun; Botha, Anna-Maria; Genthe, Bettina

    2014-09-01

    The metal bioaccumulation potential of selected macroalgae species at different pH ranges was study for usage as part of a possible secondary passive acid mine drainage (AMD) treatment technology in algae ponds. Two separate studies were conducted to determine the suitability of macroalgae for passive treatment when metabolic processes in macrophytes and microorganisms in constructed wetlands decrease during winter months. In the field study, the bioconcentration of metals (mg/kg dry weight) measured in the benthic macroalgae mats was in the following order: site 1. Oedogonium crassum Al > Fe > Mn > Zn; site 2. Klebsormidium klebsii, Al > Fe > Mn > Zn; site 3. Microspora tumidula, Fe > Al > Mn > Zn and site 4. M. tumidula, Fe > Mn > Al > Zn. In the laboratory study, cultured macroalgae K. klebsii, O. crassum and M. tumidula isolated from the field sampling sites were exposed to three different pH values (3, 5 and 7), while bioaccumulation of the metals, Al, Fe, Mn and Zn and glutathione S-transferase (GST) activity were measured in the different selected algae species at a constant water temperature of 14 °C. Bioaccumulation of Al was the highest for O. crassum followed by K. klebsii and M. tumidula (p macroalgae O. crassum at all three tested pH values under constant low water temperature. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Understanding tourists' preference for mammal species in private protected areas: is there a case for extralimital species for ecotourism?

    Directory of Open Access Journals (Sweden)

    Kristine Maciejewski

    Full Text Available Private Protected Areas (PPAs often use wildlife-based ecotourism as their primary means of generating business. Achieving tourist satisfaction has become a strong driving goal in the management of many PPAs, often at the expense of biodiversity. Many extralimitral species, those which historically did not occur in an area, are stocked in PPAs with the intention of increasing ecotourism attractions. Even though the ecological and economic costs of stocking these species are high, the social benefits are not understood and little information exists globally on the ecotourism role of extralimital species. This study assessed the value of stocking extralimital species using questionnaire-based surveys and observing tourists in Shamwari Private Game Reserve in the Eastern Cape Province of South Africa. No difference was found between indigenous and extralimital species with regards to the tourists' weighted scoring system, average amount tourists were willing to pay, total viewing time, average viewing time or the likelihood of stopping to view species when encountered on game drives. During game drives a strong preference was found for the elephant (Loxodonta africana, lion (Panthera leo, leopard (Panthera pardus and cheetah (Acynonix jubatus. With the exception of the cheetah, these species are all members of the "big five" and are indigenous. Species availability and visibility, however, may influence the amount of time tourists spend at an animal sighting. Our analysis suggests that certain extralimital species (typically larger and charismatic species contribute to tourist satisfaction, while particularly the smaller extralimital species add little to the game viewing experience, but add to the costs and risks of the PPAs. We recommend that extralimital species introductions for ecotourism purposes should be approached with caution with regards to the risks to the sustainability of PPAs.

  20. Understanding Tourists’ Preference for Mammal Species in Private Protected Areas: Is There a Case for Extralimital Species for Ecotourism?

    Science.gov (United States)

    Maciejewski, Kristine; Kerley, Graham I. H.

    2014-01-01

    Private Protected Areas (PPAs) often use wildlife-based ecotourism as their primary means of generating business. Achieving tourist satisfaction has become a strong driving goal in the management of many PPAs, often at the expense of biodiversity. Many extralimitral species, those which historically did not occur in an area, are stocked in PPAs with the intention of increasing ecotourism attractions. Even though the ecological and economic costs of stocking these species are high, the social benefits are not understood and little information exists globally on the ecotourism role of extralimital species. This study assessed the value of stocking extralimital species using questionnaire-based surveys and observing tourists in Shamwari Private Game Reserve in the Eastern Cape Province of South Africa. No difference was found between indigenous and extralimital species with regards to the tourists’ weighted scoring system, average amount tourists were willing to pay, total viewing time, average viewing time or the likelihood of stopping to view species when encountered on game drives. During game drives a strong preference was found for the elephant (Loxodonta africana), lion (Panthera leo), leopard (Panthera pardus) and cheetah (Acynonix jubatus). With the exception of the cheetah, these species are all members of the “big five” and are indigenous. Species availability and visibility, however, may influence the amount of time tourists spend at an animal sighting. Our analysis suggests that certain extralimital species (typically larger and charismatic species) contribute to tourist satisfaction, while particularly the smaller extralimital species add little to the game viewing experience, but add to the costs and risks of the PPAs. We recommend that extralimital species introductions for ecotourism purposes should be approached with caution with regards to the risks to the sustainability of PPAs. PMID:24505426

  1. Understanding tourists' preference for mammal species in private protected areas: is there a case for extralimital species for ecotourism?

    Science.gov (United States)

    Maciejewski, Kristine; Kerley, Graham I H

    2014-01-01

    Private Protected Areas (PPAs) often use wildlife-based ecotourism as their primary means of generating business. Achieving tourist satisfaction has become a strong driving goal in the management of many PPAs, often at the expense of biodiversity. Many extralimitral species, those which historically did not occur in an area, are stocked in PPAs with the intention of increasing ecotourism attractions. Even though the ecological and economic costs of stocking these species are high, the social benefits are not understood and little information exists globally on the ecotourism role of extralimital species. This study assessed the value of stocking extralimital species using questionnaire-based surveys and observing tourists in Shamwari Private Game Reserve in the Eastern Cape Province of South Africa. No difference was found between indigenous and extralimital species with regards to the tourists' weighted scoring system, average amount tourists were willing to pay, total viewing time, average viewing time or the likelihood of stopping to view species when encountered on game drives. During game drives a strong preference was found for the elephant (Loxodonta africana), lion (Panthera leo), leopard (Panthera pardus) and cheetah (Acynonix jubatus). With the exception of the cheetah, these species are all members of the "big five" and are indigenous. Species availability and visibility, however, may influence the amount of time tourists spend at an animal sighting. Our analysis suggests that certain extralimital species (typically larger and charismatic species) contribute to tourist satisfaction, while particularly the smaller extralimital species add little to the game viewing experience, but add to the costs and risks of the PPAs. We recommend that extralimital species introductions for ecotourism purposes should be approached with caution with regards to the risks to the sustainability of PPAs.

  2. Changes of wood anatomical characters of selected species of Araucaria- during artificial charring - implications for palaeontology

    Directory of Open Access Journals (Sweden)

    Isa Carla Osterkamp

    2017-11-01

    Full Text Available ABSTRACT Charcoal is widely accepted as evidence of the occurrence of palaeo-wildfire. Although fossil charcoal remains have been used in many studies, investigation into the anatomical changes occurring during charring are few. The present study analyses changes in selected anatomical characters during artificial charring of modern wood of three species of the genus Araucaria (i.e. Araucaria angustifolia, Araucaria bidwillii and Araucaria columnaris. Wood samples of the studied species was charred under controlled conditions at varying temperatures. Measurements of anatomical features of uncharred wood and artificial charcoal were statistically analysed. The anatomical changes were statistically correlated with charring temperatures and most of the parameters showed marked decreases with increasing charring temperature. Compared to the intrinsic variability in anatomical features, both within and between growth rings of an individual plant, the changes induced by temperature account only for a comparatively small percentage of the observed variability. Regarding Araucaria charcoal, it seems possible that at least general taxonomic and palaeoenvironmental implications can be drawn from such material. However, it is not clear so far whether these results and interpretations based on only three taxa, can be generalized for the entire family and anatomically similar fossil taxa or not.

  3. Used-habitat calibration plots: A new procedure for validating species distribution, resource selection, and step-selection models

    Science.gov (United States)

    Fieberg, John R.; Forester, James D.; Street, Garrett M.; Johnson, Douglas H.; ArchMiller, Althea A.; Matthiopoulos, Jason

    2018-01-01

    Species distribution modeling” was recently ranked as one of the top five “research fronts” in ecology and the environmental sciences by ISI's Essential Science Indicators (Renner and Warton 2013), reflecting the importance of predicting how species distributions will respond to anthropogenic change. Unfortunately, species distribution models (SDMs) often perform poorly when applied to novel environments. Compounding on this problem is the shortage of methods for evaluating SDMs (hence, we may be getting our predictions wrong and not even know it). Traditional methods for validating SDMs quantify a model's ability to classify locations as used or unused. Instead, we propose to focus on how well SDMs can predict the characteristics of used locations. This subtle shift in viewpoint leads to a more natural and informative evaluation and validation of models across the entire spectrum of SDMs. Through a series of examples, we show how simple graphical methods can help with three fundamental challenges of habitat modeling: identifying missing covariates, non-linearity, and multicollinearity. Identifying habitat characteristics that are not well-predicted by the model can provide insights into variables affecting the distribution of species, suggest appropriate model modifications, and ultimately improve the reliability and generality of conservation and management recommendations.

  4. Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily

    Directory of Open Access Journals (Sweden)

    Kang Ji Hyoun

    2013-01-01

    Full Text Available Abstract Background Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword – hence their common name “swordtails”. Longer swords are preferred by females from both sworded and – surprisingly also, non-sworded (platyfish species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus. We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. Results We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually

  5. Comprehensive phylogenetic analysis of all species of swordtails and platies (Pisces: Genus Xiphophorus) uncovers a hybrid origin of a swordtail fish, Xiphophorus monticolus, and demonstrates that the sexually selected sword originated in the ancestral lineage of the genus, but was lost again secondarily.

    Science.gov (United States)

    Kang, Ji Hyoun; Schartl, Manfred; Walter, Ronald B; Meyer, Axel

    2013-01-29

    Males in some species of the genus Xiphophorus, small freshwater fishes from Meso-America, have an extended caudal fin, or sword - hence their common name "swordtails". Longer swords are preferred by females from both sworded and - surprisingly also, non-sworded (platyfish) species that belong to the same genus. Swordtails have been studied widely as models in research on sexual selection. Specifically, the pre-existing bias hypothesis was interpreted to best explain the observed bias of females in presumed ancestral lineages of swordless species that show a preference for assumed derived males with swords over their conspecific swordless males. However, many of the phylogenetic relationships within this genus still remained unresolved. Here we construct a comprehensive molecular phylogeny of all 26 known Xiphophorus species, including the four recently described species (X. kallmani, X. mayae, X. mixei and X. monticolus). We use two mitochondrial and six new nuclear markers in an effort to increase the understanding of the evolutionary relationships among the species in this genus. Based on the phylogeny, the evolutionary history and character state evolution of the sword was reconstructed and found to have originated in the common ancestral lineage of the genus Xiphophorus and that it was lost again secondarily. We estimated the evolutionary relationships among all known species of the genus Xiphophorus based on the largest set of DNA markers so far. The phylogeny indicates that one of the newly described swordtail species, Xiphophorus monticolus, is likely to have arisen through hybridization since it is placed with the southern platyfish in the mitochondrial phylogeny, but with the southern swordtails in the nuclear phylogeny. Such discordance between these two types of markers is a strong indication for a hybrid origin. Additionally, by using a maximum likelihood approach the possession of the sexually selected sword trait is shown to be the most likely

  6. Core-satellite species hypothesis and native versus exotic species in secondary succession

    Science.gov (United States)

    Martinez, Kelsey A.; Gibson, David J.; Middleton, Beth A.

    2015-01-01

    A number of hypotheses exist to explain species’ distributions in a landscape, but these hypotheses are not frequently utilized to explain the differences in native and exotic species distributions. The core-satellite species (CSS) hypothesis predicts species occupancy will be bimodally distributed, i.e., many species will be common and many species will be rare, but does not explicitly consider exotic species distributions. The parallel dynamics (PD) hypothesis predicts that regional occurrence patterns of exotic species will be similar to native species. Together, the CSS and PD hypotheses may increase our understanding of exotic species’ distribution relative to natives. We selected an old field undergoing secondary succession to study the CSS and PD hypotheses in conjunction with each other. The ratio of exotic to native species (richness and abundance) was observed through 17 years of secondary succession. We predicted species would be bimodally distributed and that exotic:native species ratios would remain steady or decrease through time under frequent disturbance. In contrast to the CSS and PD hypotheses, native species occupancies were not bimodally distributed at the site, but exotic species were. The exotic:native species ratios for both richness (E:Nrichness) and abundance (E:Ncover) generally decreased or remained constant throughout supporting the PD hypothesis. Our results suggest exotic species exhibit metapopulation structure in old field landscapes, but that metapopulation structures of native species are disrupted, perhaps because these species are dispersal limited in the fragmented landscape.

  7. Where the lake meets the sea: strong reproductive isolation is associated with adaptive divergence between lake resident and anadromous three-spined sticklebacks.

    Directory of Open Access Journals (Sweden)

    Mark Ravinet

    Full Text Available Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L. forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12, we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an

  8. Role of the adsorbed oxygen species in the selective electrochemical reduction of CO_2 to alcohols and carbonyls on copper electrodes

    International Nuclear Information System (INIS)

    Le Duff, Cecile S.; Lawrence, Matthew J.; Rodriguez, Paramaconi

    2017-01-01

    The electrochemical reduction of CO_2 into fuels has gained significant attention recently as source of renewable carbon-based fuels. The unique high selectivity of copper in the electrochemical reduction of CO_2 to hydrocarbons has called much interest in discovering its mechanism. In order to provide significant information about the role of oxygen in the electrochemical reduction of CO_2 on Cu electrodes, the conditions of the surface structure and the composition of the Cu single crystal electrodes were controlled over time. This was achieved using pulsed voltammetry, since the pulse sequence can be programmed to guarantee reproducible initial conditions for the reaction at every fraction of time and at a given frequency. In contrast to the selectivity of CO_2 reduction using cyclic voltammetry and chronoamperometric methods, a large selection of oxygenated hydrocarbons was found under alternating voltage conditions. Product selectivity towards the formation of oxygenated hydrocarbon was associated to the coverage of oxygen species, which is surface-structure- and potential-dependent. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Legal size limit implies strong fisheries selection on sexually selected traits in a temperate wrasse providing male-only parental care

    Directory of Open Access Journals (Sweden)

    Kim Aleksander Tallaksen Halvorsen

    2015-12-01

    Full Text Available Corkwing wrasse (Symphodus melops is a temperate wrasse displaying both sex and male dimorphism and is targeted in a size selective commercial fishery which has increased dramatically since 2008. Wrasses are supplied alive to salmon farms as cleaner fish to combat infestations of Salmon lice. In previous studies, growth and maturation has been found to differ among male morphs and sexes and these groups might therefore be targeted unevenly by the size selective fishery. In the present study, we address this by comparing size regulations and fishing practice with data on sex specific growth and maturation from Western and Southern Norway, two regions varying in density and life histories. Two years of field data on density and length measures was used together with a subsample of otoliths to determine sex specific growth patterns. In the region with high density, nesting males were found to grow faster and mature later than sneaker males and females. Here, most nesting males will reach the minimum size as juveniles, one and two years before females and sneakers respectively. In contrast, sexual dimorphism was much less pronounced in the low density region, and relaxed male-male competition over nesting sites seems a likely explanation for this pattern. Intensive harvesting with selective removal of the larger nesting males could potentially lead to short term effect such as sperm limitation and reduced offspring survival and thus affect the productivity of juveniles. In addition, the current fishing regime may select for reduced growth rates and earlier maturation and oppose sexual selection.

  10. Habitat selection and post-release movement of reintroduced brown treecreeper individuals in restored temperate woodland.

    Directory of Open Access Journals (Sweden)

    Victoria A Bennett

    Full Text Available It is essential to choose suitable habitat when reintroducing a species into its former range. Habitat quality may influence an individual's dispersal decisions and also ultimately where they choose to settle. We examined whether variation in habitat quality (quantified by the level of ground vegetation cover and the installation of nest boxes influenced the movement, habitat choice and survival of a reintroduced bird species. We experimentally reintroduced seven social groups (43 individuals of the brown treecreeper (Climacteris picumnus into two nature reserves in south-eastern Australia. We radio-tracked 18 brown treecreepers from release in November 2009 until February 2010. We observed extensive movements by individuals irrespective of the release environment or an individual's gender. This indicated that individuals were capable of dispersing and actively selecting optimum habitat. This may alleviate pressure on wildlife planners to accurately select the most optimum release sites, so long as the species' requirements are met. There was significant variation in movement between social groups, suggesting that social factors may be a more important influence on movement than habitat characteristics. We found a significant effect of ground vegetation cover on the likelihood of settlement by social groups, with high rates of settlement and survival in dry forests, rather than woodland (where the species typically resides, which has implications for the success of woodland restoration. However, overall the effects of variation in habitat quality were not as strong as we had expected, and resulted in some unpredicted effects such as low survival and settlement in woodland areas with medium levels of ground vegetation cover. The extensive movement by individuals and unforeseen effects of habitat characteristics make it difficult to predict the outcome of reintroductions, the movement behaviour and habitat selection of reintroduced individuals

  11. Species interactions and plant polyploidy.

    Science.gov (United States)

    Segraves, Kari A; Anneberg, Thomas J

    2016-07-01

    Polyploidy is a common mode of speciation that can have far-reaching consequences for plant ecology and evolution. Because polyploidy can induce an array of phenotypic changes, there can be cascading effects on interactions with other species. These interactions, in turn, can have reciprocal effects on polyploid plants, potentially impacting their establishment and persistence. Although there is a wealth of information on the genetic and phenotypic effects of polyploidy, the study of species interactions in polyploid plants remains a comparatively young field. Here we reviewed the available evidence for how polyploidy may impact many types of species interactions that range from mutualism to antagonism. Specifically, we focused on three main questions: (1) Does polyploidy directly cause the formation of novel interactions not experienced by diploids, or does it create an opportunity for natural selection to then form novel interactions? (2) Does polyploidy cause consistent, predictable changes in species interactions vs. the evolution of idiosyncratic differences? (3) Does polyploidy lead to greater evolvability in species interactions? From the scarce evidence available, we found that novel interactions are rare but that polyploidy can induce changes in pollinator, herbivore, and pathogen interactions. Although further tests are needed, it is likely that selection following whole-genome duplication is important in all types of species interaction and that there are circumstances in which polyploidy can enhance the evolvability of interactions with other species. © 2016 Botanical Society of America.

  12. New species of Auritella (Inocybaceae) from Cameroon, with a worldwide key to the known species.

    Science.gov (United States)

    Matheny, P Brandon; Henkel, Terry W; Séné, Olivier; Korotkin, Hailee B; Dentinger, Bryn T M; Aime, M Catherine

    2017-12-01

    Two new species in the genus Auritella ( Inocybaceae ) are described as new from tropical rainforest in Cameroon. Descriptions, photographs, line drawings, and a worldwide taxonomic key to the described species of Auritella are presented. Phylogenetic analysis of 28S rDNA and rpb2 nucleotide sequence data suggests at least five phylogenetic species that can be ascribed to Auritella occur in the region comprising Cameroon and Gabon and constitute a strongly supported monophyletic subgroup within the genus. Phylogenetic analysis of ITS data supports the conspecificity of numerous collections attributed to the two new species as well as the monophyly of Australian species of Auritella . This work raises the known number of described species of Auritella to thirteen worldwide, four of which occur in tropical Africa, one in tropical India, and eight in temperate and tropical regions of Australia. This is the first study to confirm an ectomycorrhizal status of Auritella using molecular data.

  13. Uniform Selection as a Primary Force Reducing Population Genetic Differentiation of Cavitation Resistance across a Species Range

    Science.gov (United States)

    Lamy, Jean-Baptiste; Bouffier, Laurent; Burlett, Régis; Plomion, Christophe; Cochard, Hervé; Delzon, Sylvain

    2011-01-01

    Background Cavitation resistance to water stress-induced embolism determines plant survival during drought. This adaptive trait has been described as highly variable in a wide range of tree species, but little is known about the extent of genetic and phenotypic variability within species. This information is essential to our understanding of the evolutionary forces that have shaped this trait, and for evaluation of its inclusion in breeding programs. Methodology We assessed cavitation resistance (P 50), growth and carbon isotope composition in six Pinus pinaster populations in a provenance and progeny trial. We estimated the heritability of cavitation resistance and compared the distribution of neutral markers (F ST) and quantitative genetic differentiation (Q ST), for retrospective identification of the evolutionary forces acting on these traits. Results/Discussion In contrast to growth and carbon isotope composition, no population differentiation was found for cavitation resistance. Heritability was higher than for the other traits, with a low additive genetic variance (h2 ns = 0.43±0.18, CVA = 4.4%). Q ST was significantly lower than F ST, indicating uniform selection for P 50, rather than genetic drift. Putative mechanisms underlying QST

  14. Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulex species complex

    Directory of Open Access Journals (Sweden)

    Cristescu Melania E

    2011-07-01

    Full Text Available Abstract Background Evidence for historical, demographic and selective factors affecting enzyme evolution can be obtained by examining nucleotide sequence variation in candidate genes such as Lactate dehydrogenase (Ldh. Two closely related Daphnia species can be distinguished by their electrophoretic Ldh genotype and habitat. Daphnia pulex populations are fixed for the S allele and inhabit temporary ponds, while D. pulicaria populations are fixed for the F allele and inhabit large stratified lakes. One locus is detected in most allozyme surveys, but genome sequencing has revealed two genes, LdhA and LdhB. Results We sequenced both Ldh genes from 70 isolates of these two species from North America to determine if the association between Ldh genotype and habitat shows evidence for selection, and to elucidate the evolutionary history of the two genes. We found that alleles in the pond-dwelling D. pulex and in the lake-dwelling D. pulicaria form distinct groups at both loci, and the substitution of Glutamine (S for Glutamic acid (F at amino acid 229 likely causes the electrophoretic mobility shift in the LDHA protein. Nucleotide diversity in both Ldh genes is much lower in D. pulicaria than in D. pulex. Moreover, the lack of spatial structuring of the variation in both genes over a wide geographic area is consistent with a recent demographic expansion of lake populations. Neutrality tests indicate that both genes are under purifying selection, but the intensity is much stronger on LdhA. Conclusions Although lake-dwelling D. pulicaria hybridizes with the other lineages in the pulex species complex, it remains distinct ecologically and genetically. This ecological divergence, coupled with the intensity of purifying selection on LdhA and the strong association between its genotype and habitat, suggests that experimental studies would be useful to determine if variation in molecular function provides evidence that LDHA variants are adaptive.

  15. Oceanographic mechanisms that possibly explain dominance of neritic-tropical zooplankton species assemblages around the Islas Marías Archipelago, Mexico

    Directory of Open Access Journals (Sweden)

    Jaime Gómez-Gutiérrez

    2014-11-01

    Full Text Available The nearshore zooplankton species assemblage, identified per taxonomic groups (20 and per species for 12 selected groups, was analyzed from samples collected during November 2010 at four volcanic islands of the Islas Marías Archipelago (IMA, located 90-120 km offshore Nayarit, Mexico. From chlorophyll-a concentration and zooplankton biovolume perspective mesotrophic conditions prevailed in comparison with the Gulf of California during November. Crustaceans numerically dominated the zooplankton assemblage (92.3% [Copepoda (79.2%, Decapoda larvae (4.7%, Cladocera (3.7%, Mysidacea (2.7%, and Euphausiacea (2.0%]. The other 15 taxonomic groups (7.7% combined accounted each one less than 1.5% of the relative abundance. Species richness of selected taxa (~56%> included 259 taxa (121 identified to species, 117 to genus, and 21 not identified. Tropical species from neritic affinity clearly dominated zooplankton assemblage around IMA. Five tropical Copepoda species [Calanopia minor (Dana, Clausocalanus jobei Frost & Fleminger, Acrocalanus gibber Giesbrecht, Canthocalanus pauper (Giesbrecht, and Centropages furcatus (Dana], a cladoceran Pseudevadne tergestina (Claus, and a Mysidacea species (Mysidium reckettsi Harrison & Bowman dominated the zooplankton assemblage (accounting about 55% of total abundance of the identified species. Except C. furcatus, all these species are not abundant at oceanic regions of the central and northern Gulf of California. The similarity of multiple neritic and tropical species in the zooplankton assemblage from IMA and Cape Corrientes suggests strong coastal-insular plankton connectivity. Episodic current plumes associated with anomalous intense rivers discharge during rainy years, eddies generated by coastal upwelling event that move offshore, and northward regional oceanic circulation are the most likely mesoscale oceanographic processes that cause costal tropical zooplankton drift enhancing coastal-Archipelago species

  16. Zonation and habitat selection on a reclaimed coastal foredune ...

    African Journals Online (AJOL)

    Three distinct zones, four habitats and six subhabitats were identified. Zonation and habitat selection appeared to be related to cover for two small mammal species. The arthropod orders were less susceptible to zonation and strict habitat selection, although some of the species showed selection. The normally unfavourable ...

  17. The diffusion properties of ion implanted species in selected target materials

    International Nuclear Information System (INIS)

    Alton, G.D.; Dellwo, J.; Carter, H.K.; Kormicki, J.; Bartolo, G. di; Batchelder, J.C.; Breitenbach, J.; Chediak, J.A.; Jentoff-Nilsen, K.; Ichikawa, S.

    1995-01-01

    Experiments important to the future success of the Holifield Radioactive Ion Beam Facility (HRIBF) are in progress at the Oak Ridge National Laboratory which are designed to select the most appropriate target material for generating a particular radioactive ion beam (RIB). The 25-MV HHIRF tandem accelerator is used to implant stable complements of interesting radioactive elements into refractory targets mounted in a high-temperature FEBIAD ion source which is open-quotes on-lineclose quotes at the UNISOR facility. The intensity versus time of implanted species, which diffuse from the high-temperature target material (∼1700 degrees C) and are ionized in the FEBIAD ion source, is used to determine release times for a particular projectile/target material combination. From such release data, diffusion coefficients can be derived by fitting the theoretical results obtained by computational solution of Fick's second equation to experimental data. The diffusion coefficient can be used subsequently to predict the release properties of the particular element from the same material in other target geometries and at other temperatures, provided that the activation energy is also known. Diffusion coefficients for Cl implanted into and diffused from CeS and Zr 5 Si 3 and As, Br, and Se implanted into and diffused from Zr 5 Ge 3 have been derived from the resulting intensity versus time profiles. Brief descriptions of the experimental apparatus and procedures utilized in the present experiments and plans for future related experiments are presented

  18. The yule approximation for the site frequency spectrum after a selective sweep.

    Directory of Open Access Journals (Sweden)

    Sebastian Bossert

    Full Text Available In the area of evolutionary theory, a key question is which portions of the genome of a species are targets of natural selection. Genetic hitchhiking is a theoretical concept that has helped to identify various such targets in natural populations. In the presence of recombination, a severe reduction in sequence diversity is expected around a strongly beneficial allele. The site frequency spectrum is an important tool in genome scans for selection and is composed of the numbers S(1,...,S(n-1, where S(k is the number of single nucleotide polymorphisms (SNPs present in k from n individuals. Previous work has shown that both the number of low- and high-frequency variants are elevated relative to neutral evolution when a strongly beneficial allele fixes. Here, we follow a recent investigation of genetic hitchhiking using a marked Yule process to obtain an analytical prediction of the site frequency spectrum in a panmictic population at the time of fixation of a highly beneficial mutation. We combine standard results from the neutral case with the effects of a selective sweep. As simulations show, the resulting formula produces predictions that are more accurate than previous approaches for the whole frequency spectrum. In particular, the formula correctly predicts the elevation of low- and high-frequency variants and is significantly more accurate than previously derived formulas for intermediate frequency variants.

  19. Species climate range influences hydraulic and stomatal traits in Eucalyptus species.

    Science.gov (United States)

    Bourne, Aimee E; Creek, Danielle; Peters, Jennifer M R; Ellsworth, David S; Choat, Brendan

    2017-07-01

    Plant hydraulic traits influence the capacity of species to grow and survive in water-limited environments, but their comparative study at a common site has been limited. The primary aim of this study was to determine whether selective pressures on species originating in drought-prone environments constrain hydraulic traits among related species grown under common conditions. Leaf tissue water relations, xylem anatomy, stomatal behaviour and vulnerability to drought-induced embolism were measured on six Eucalyptus species growing in a common garden to determine whether these traits were related to current species climate range and to understand linkages between the traits. Hydraulically weighted xylem vessel diameter, leaf turgor loss point, the water potential at stomatal closure and vulnerability to drought-induced embolism were significantly ( P Eucalyptus trees has important implications for the limits of species responses to changing environmental conditions and thus for species survival and distribution into the future, and yields new information for physiological models. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  20. ANTIOXIDANT AND ANTIFUNGAL ACTIVITY OF SELECTED MEDICINAL PLANT EXTRACTS AGAINST PHYTOPATHOGENIC FUNGI.

    Science.gov (United States)

    Mahlo, Salome Mamokone; Chauke, Hasani Richard; McGaw, Lyndy; Eloff, Jacobus

    2016-01-01

    Medicinal plants are used by many ethnic groups as a source of medicine for the treatment of various ailments in both humans and domestic animals. These plants produce secondary metabolites that have antimicrobial properties, thus screening of medicinal plants provide another alternative for producing chemical fungicides that are relatively non-toxic and cost-effective. Leaf extracts of selected South African plant species ( Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana ) were investigated for activity against selected phytopathogenic fungi ( Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, P. expansum, Trichoderma harzianum and Fusarium oxysporum ). These plant fungal pathogens causes major economic losses in fruit industry such as blue rot on nectaries and postharvest disease in citrus. Plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens ( Candida albicans and Cryptococcus neoformans ). Antioxidant activity of the selected plant extracts were investigated using a qualitative assay (2, 2-diphenyl-1-picrylhydrazyl (DPPH)). Bioautography assay was used to determine the number of antifungal compounds in plant extracts. All plant extracts were active against the selected plant phytopathogenic fungi. Moreover, Bucida buceras had the best antifungal activity against four of the fungi, with minimum inhibitory concentration (MIC) values as low as 0.02 mg/ml and 0.08 mg/ml against P. expansum, P. janthinellum, T. harzianum and F. oxysporum . The plant extracts of five plant species did not possess strong antioxidant activity. However, methanol extract of X. kraussiana was the most active radical scavenger in the DPPH assay amongst the six medicinal plants screened. No antifungal compounds were observed in some of the plant extracts with good antifungal activity as shown in the microdilution assay, indicating

  1. An experimental study of strong reciprocity in bacteria.

    Science.gov (United States)

    Inglis, R Fredrik; West, Stuart; Buckling, Angus

    2014-02-01

    Strong reciprocity, whereby cooperators punish non-cooperators, may help to explain the evolutionary success of cooperative behaviours. However, theory suggests that selection for strong reciprocity can depend upon tight genetic linkage between cooperation and punishment, to avoid the strategy being outcompeted by non-punishing cooperators. We tested this hypothesis using experimental populations of the bacterium Pseudomonas aeruginosa, which cooperate by producing iron-scavenging siderophores and, in this context, punish non-cooperators with toxins. Consistent with theory, we show that cooperative punishers can indeed invade cheats, but only when the traits are tightly linked. These results emphasize that punishment is only likely to be favoured when the punishment itself leads to a direct or indirect fitness benefit to the actor.

  2. Fatty Acid Composition and Levels of Selected Polyunsaturated Fatty Acids in Four Commercial Important Freshwater Fish Species from Lake Victoria, Tanzania

    Directory of Open Access Journals (Sweden)

    Agnes Robert

    2014-01-01

    Full Text Available Fatty acids (FAs particularly ω3 and ω6 polyunsaturated fatty acids (PUFAs play important role in human health. This study aimed to investigate the composition and levels of selected ω3 PUFAs in four commercial fish species, Nile perch (Lates niloticus, Nile tilapia (Oreochromis niloticus, Tilapia zillii, and dagaa (Rastrineobola argentea from Mwanza Gulf in Lake Victoria. The results indicated that 36 types of FAs with different saturation levels were detected. These FAs were dominated by docosahexaenoic (DHA, eicosapentaenoic (EPA, docosapentaenoic (DPA, and eicosatetraenoic acids. O. niloticus had the highest composition of FAs (34 compared to L. niloticus (27, T. zillii (26, and R. argentea (21. The levels of EPA differed significantly among the four commercial fish species (F=6.19,  P=0.001. The highest EPA levels were found in R. argentea followed by L. niloticus and O. niloticus and the lowest in T. zillii. The DPA levels showed no significant difference among the four fish species studied (F=0.652,  P=0.583. The study concluded that all four commercial species collected from Mwanza Gulf are good for human health, but R. argentea is the best for consumption because it contains higher levels of ω3 FAs, mainly EPA.

  3. Can species-specific prey responses to chemical cues explain prey susceptibility to predation?

    Science.gov (United States)

    Šmejkal, Marek; Ricard, Daniel; Sajdlová, Zuzana; Čech, Martin; Vejřík, Lukáš; Blabolil, Petr; Vejříková, Ivana; Prchalová, Marie; Vašek, Mojmír; Souza, Allan T; Brönmark, Christer; Peterka, Jiří

    2018-05-01

    The perception of danger represents an essential ability of prey for gaining an informational advantage over their natural enemies. Especially in complex environments or at night, animals strongly rely on chemoreception to avoid predators. The ability to recognize danger by chemical cues and subsequent adaptive responses to predation threats should generally increase prey survival. Recent findings suggest that European catfish ( Silurus glanis ) introduction induce changes in fish community and we tested whether the direction of change can be attributed to differences in chemical cue perception. We tested behavioral response to chemical cues using three species of freshwater fish common in European water: rudd ( Scardinius erythrophthalmus ), roach ( Rutilus rutilus ), and perch ( Perca fluviatilis ). Further, we conducted a prey selectivity experiment to evaluate the prey preferences of the European catfish. Roach exhibited the strongest reaction to chemical cues, rudd decreased use of refuge and perch did not alter any behavior in the experiment. These findings suggest that chemical cue perception might be behind community data change and we encourage collecting more community data of tested prey species before and after European catfish introduction to test the hypothesis. We conclude that used prey species can be used as a model species to verify whether chemical cue perception enhances prey survival.

  4. CHEMICAL COMPOSITION, IN VITRO RUMEN FERMENTATION, AND DIGESTIBILITY OF SELECTED BROWSE SPECIES BY BUFFALOES (Bubalus bubalis L. AT A SEMI-DECIDUOUS FOREST IN VENEZUELA

    Directory of Open Access Journals (Sweden)

    Álvaro José Ojeda

    2013-01-01

    Full Text Available To determine the chemical composition and nutritive value of selected browse species by buffaloes (Bubalus bubalis L. in a silvopastoral system at a semi-deciduous tropical forest (SDTF, epidermal fragments in fecal samples from 14 males of Murrah breed were evaluated. The animals grazed for 91 days in 85 ha located in Portuguesa State, Venezuela, of which 35 ha corresponded to natural grass pastures (969.3 ± 28.6 kg DM ha-1, and the rest to SDTF with 463 plant ha-1. Eleven botanical families and 22 species were identified, 40.9% belonged to the Fabaceae family. The specie Guazuma ulmifolia (Sterculiaceae had the highest relative dominancy (60.4% and an Importance Value Index of 162.6. 60.4% of epidermal fragments corresponded to herbaceous Poaceae, and the rest was distributed among five different species, with the highest occurrence (94.6% for Samanea saman and Sida acuta. There were differences (P

  5. Can tree species diversity be assessed with Landsat data in a temperate forest?

    Science.gov (United States)

    Arekhi, Maliheh; Yılmaz, Osman Yalçın; Yılmaz, Hatice; Akyüz, Yaşar Feyza

    2017-10-28

    The diversity of forest trees as an indicator of ecosystem health can be assessed using the spectral characteristics of plant communities through remote sensing data. The objectives of this study were to investigate alpha and beta tree diversity using Landsat data for six dates in the Gönen dam watershed of Turkey. We used richness and the Shannon and Simpson diversity indices to calculate tree alpha diversity. We also represented the relationship between beta diversity and remotely sensed data using species composition similarity and spectral distance similarity of sampling plots via quantile regression. A total of 99 sampling units, each 20 m × 20 m, were selected using geographically stratified random sampling method. Within each plot, the tree species were identified, and all of the trees with a diameter at breast height (dbh) larger than 7 cm were measured. Presence/absence and abundance data (tree species number and tree species basal area) of tree species were used to determine the relationship between richness and the Shannon and Simpson diversity indices, which were computed with ground field data, and spectral variables derived (2 × 2 pixels and 3 × 3 pixels) from Landsat 8 OLI data. The Shannon-Weiner index had the highest correlation. For all six dates, NDVI (normalized difference vegetation index) was the spectral variable most strongly correlated with the Shannon index and the tree diversity variables. The Ratio of green to red (VI) was the spectral variable least correlated with the tree diversity variables and the Shannon basal area. In both beta diversity curves, the slope of the OLS regression was low, while in the upper quantile, it was approximately twice the lower quantiles. The Jaccard index is closed to one with little difference in both two beta diversity approaches. This result is due to increasing the similarity between the sampling plots when they are located close to each other. The intercept differences between two

  6. Effects of species information and furniture price on consumer preferences for selected woods

    Science.gov (United States)

    Matthew Bumgardner; David Nicholls; Geoffrey Donovan

    2007-01-01

    Changing consumer tastes and species availability are influencing the design and manufacture of hardwood products. In addition, the globalization of wood product markets is exposing U.S. consumers to new species. This research evaluates consumer preferences for six domestic wood species--three from the eastern United States and three from the western United States. The...

  7. Ecological drift and local exposures drive enteric bacterial community differences within species of Galápagos iguanas.

    Science.gov (United States)

    Lankau, Emily W; Hong, Pei-Ying; Mackie, Roderick I

    2012-04-01

    Diet strongly influences the intestinal microbial communities through species sorting. Alternatively, these communicates may differ because of chance variation in local microbial exposures or species losses among allopatric host populations (i.e. ecological drift). We investigated how these forces shape enteric communities of Galápagos marine and land iguanas. Geographically proximate populations shared more similar communities within a host ecotype, suggesting a role for ecological drift during host colonization of the islands. Additionally, evidence of taxa sharing between proximate heterospecific host populations suggests that contemporary local exposures also influence the gut community assembly. While selective forces such as host-bacterial interactions or dietary differences are dominant drivers of intestinal community differences among hosts, historical and contemporary processes of ecological drift may lead to differences in bacterial composition within a host species. Whether such differences in community structure translate into geographic variation in benefits derived from these intimate microbial communities remains to be explored. © 2012 Blackwell Publishing Ltd.

  8. An evidence for the strong association of N-methyl-2-pyrrolidinone with some organic species in three Chinese bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.M.; Zong, Z.M.; Jia, J.X.; Liu, G.F.; Wei, X.Y. [China University of Mining and Technology, Xuzhou (China). School for Chemical Engineering

    2008-04-15

    Three Chinese bituminous coals collected from Shenfu, Heidaigou and Feicheng coal fields were respectively extracted with carbon-disulfide/N-methyl-2-pyrrolidinone (CS{sub 2}/NMP) mixed solvent (volume ratio 1:1) at room temperature followed by distillation of CS{sub 2} under ambient pressure and subsequent removal of most of NMP by distillation at 110{sup o}C under reduced pressure to afford mixed solvent-extractable fractions (MSEFs) with small amount of NMP. Acetone-extractable fraction 1 (AEF1) was obtained by extracting each MSEF under ultrasonic irradiation at room temperature and subsequently using a Soxhlet extractor. Direct extraction of each bituminous coal affords acetone-soluble fraction 2 (AEF2). GC/MS analysis shows that mlz of base or secondary peak in mass spectra of a series of components from each AEF1 is 98, whereas such components were not detected in AEF2. Since m/z of base peak in mass spectrum of NMP itself is 99, the base or secondary peak at m/z 98 should result from loss of a-H from NMP, i.e., NMP is strongly associated with some organic species (OSs) and thereby the components detected with base or secodary peak at m/z 98 in their mass spectra should be associated NMP-OS.

  9. Examining the patterns and dynamics of species abundance distributions in succession of forest communities by model selection

    Science.gov (United States)

    Luo, Shao-Ming; Chen, Ping; He, Xiao; Guo, Wei; Li, Bailian

    2018-01-01

    There are a few common species and many rare species in a biological community or a multi-species collection in given space and time. This hollow distribution curve is called species abundance distribution (SAD). Few studies have examined the patterns and dynamics of SADs during the succession of forest communities by model selection. This study explored whether the communities in different successional stages followed different SAD models and whether there existed a best SAD model to reveal their intrinsic quantitative features of structure and dynamics in succession. The abundance (the number of individuals) of each vascular plant was surveyed by quadrat sampling method from the tree, shrub and herb layers in two typical communities (i.e., the evergreen needle- and broad-leaved mixed forest and the monsoon evergreen broad-leaved forest) in southern subtropical Dinghushan Biosphere Reserve, South China. The sites of two forest communities in different successional stages are both 1 ha in area. We collected seven widely representative SAD models with obviously different function forms and transformed them into the same octave (log2) scale. These models are simultaneously confronted with eight datasets from four layers of two communities, and their goodness-of-fits to the data were evaluated by the chi-squared test, the adjusted coefficient of determination and the information criteria. The results indicated that: (1) the logCauchy model followed all the datasets and was the best among seven models; (2) the fitness of each model to the data was not directly related to the successional stage of forest community; (3) according to the SAD curves predicted by the best model (i.e., the logCauchy), the proportion of rare species decreased but that of common ones increased in the upper layers with succession, while the reverse was true in the lower layers; and (4) the difference of the SADs increased between the upper and the lower layers with succession. We concluded that

  10. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance.

    Science.gov (United States)

    Mensah, Sylvanus; Veldtman, Ruan; Assogbadjo, Achille E; Glèlè Kakaï, Romain; Seifert, Thomas

    2016-10-01

    The relationship between biodiversity and ecosystem function has increasingly been debated as the cornerstone of the processes behind ecosystem services delivery. Experimental and natural field-based studies have come up with nonconsistent patterns of biodiversity-ecosystem function, supporting either niche complementarity or selection effects hypothesis. Here, we used aboveground carbon (AGC) storage as proxy for ecosystem function in a South African mistbelt forest, and analyzed its relationship with species diversity, through functional diversity and functional dominance. We hypothesized that (1) diversity influences AGC through functional diversity and functional dominance effects; and (2) effects of diversity on AGC would be greater for functional dominance than for functional diversity. Community weight mean (CWM) of functional traits (wood density, specific leaf area, and maximum plant height) were calculated to assess functional dominance (selection effects). As for functional diversity (complementarity effects), multitrait functional diversity indices were computed. The first hypothesis was tested using structural equation modeling. For the second hypothesis, effects of environmental variables such as slope and altitude were tested first, and separate linear mixed-effects models were fitted afterward for functional diversity, functional dominance, and both. Results showed that AGC varied significantly along the slope gradient, with lower values at steeper sites. Species diversity (richness) had positive relationship with AGC, even when slope effects were considered. As predicted, diversity effects on AGC were mediated through functional diversity and functional dominance, suggesting that both the niche complementarity and the selection effects are not exclusively affecting carbon storage. However, the effects were greater for functional diversity than for functional dominance. Furthermore, functional dominance effects were strongly transmitted by CWM of

  11. A Theory of Flagship Species Action

    Directory of Open Access Journals (Sweden)

    Paul Jepson

    2015-01-01

    Full Text Available The flagship species approach is an enduring strategy in conservation. Academic discussion on flagship species has focussed on two dimensions: on what basis should they be selected and how have they been put to use. Here we consider a third dimension, namely the manner in which flagship species act and have the capacity to galvanise and influence conservation outcomes. Drawing on concepts from the social sciences, viz. affordance, framing, and actor-networks; we discuss examples of flagship species to propose a theory of flagship species action. In brief, our theory posits that a flagship species is one with traits that afford the assembly of relatively coherent networks of associations with ideational elements located in pre-existing cultural framings. These associations give rise to opportunities to align with deep cultural frames, contemporary cultural phenomena and political economy such that when a conservation action is introduced, forms of agency cause the species and human publics to change. The species becomes re-framed (or reinvigorated as a cultural asset speaking for a wider nature, publics and political agendas. Further our theory posits that species with traits that enrol in idea networks incorporating human fears, will have limited flagship capacity. This is because the ability of the representations produced to align with frames incorporating collective aspirations is constrained. In terms of applied conservation practice, our theory suggests that: a key criteria for selecting potential flagship species is presence in existing cultural frames, that effective deployment of flagship species requires an understanding of the species′ cultural associations, and a species ability to galvanise action may be limited to certain times and places. Furthermore, once deployed conservation interests will never have full control over the flagship species: it may act in uncertain and unexpected ways.

  12. Species invasion shifts the importance of predator dependence.

    Science.gov (United States)

    Griffen, Blaine D; Delaney, David G

    2007-12-01

    The strength of interference between foraging individuals can influence per capita consumption rates, with important consequences for predator and prey populations and system stability. Here we demonstrate how the replacement of a previously established invader, the predatory crab Carcinus maenas, by the recently invading predatory crab Hemigrapsus sanguineus shifts predation from a species that experiences strong predator interference (strong predator dependence) to one that experiences weak predator interference (weak predator dependence). We demonstrate using field experiments that differences in the strength of predator dependence persist for these species both when they forage on a single focal prey species only (the mussel Mytilus edulis) and when they forage more broadly across the entire prey community. This shift in predator dependence with species replacement may be altering the biomass across trophic levels, consistent with theoretical predictions, as we show that H. sanguineus populations are much larger than C. maenas populations throughout their invaded ranges. Our study highlights that predator dependence may differ among predator species and demonstrates that different predatory impacts of two conspicuous invasive predators may be explained at least in part by different strengths of predator dependence.

  13. Species Diversity Enhances Predator Growth Rates

    International Nuclear Information System (INIS)

    Olson, M.H.; Jacobs, R.P.; O'Donnell, E.B.

    2007-01-01

    Predators can be important top-down regulators of community structure and are known to have both positive and negative effects on species diversity. However, little is known about the reciprocal effects of species diversity on predators. Across a set of 80 lakes in Connecticut, USA, we found a strong positive correlation between prey species diversity (using the Shannon-Weiner Diversity Index) and growth rates of largemouth bass (Micropterus salmoides). This correlation was strongest for small predators and decreased with body size. Although the underlying mechanisms are not known, the correlation is not driven by total fish abundance, predator abundance, or productivity.

  14. Modification of Sunlight Radiation through Colored Photo-Selective Nets Affects Anthocyanin Profile in Vaccinium spp. Berries.

    Science.gov (United States)

    Zoratti, Laura; Jaakola, Laura; Häggman, Hely; Giongo, Lara

    2015-01-01

    In recent years, the interest on the effects of the specific wavelengths of the light spectrum on growth and metabolism of plants has been increasing markedly. The present study covers the effect of modified sunlight conditions on the accumulation of anthocyanin pigments in two Vaccinium species: the European wild bilberry (V. myrtillus L.) and the cultivated highbush blueberry (V. corymbosum L.). The two Vaccinium species were grown in the same test field in the Alps of Trentino (Northern Italy) under modified light environment. The modification of sunlight radiation was carried out in field, through the use of colored photo-selective nets throughout the berry ripening during two consecutive growing seasons. The anthocyanin profile was then assessed in berries at ripeness. The results indicated that the light responses of the two Vaccinium species studied were different. Although both studied species are shade-adapted plants, 90% shading of sunlight radiation was beneficial only for bilberry plants, which accumulated the highest content of anthocyanins in both seasons. The same condition, instead, was not favorable for blueberries, whose maturation was delayed for at least two weeks, and anthocyanin accumulation was significantly decreased compared to berries grown under sunlight conditions. Moreover, the growing season had strong influence on the anthocyanin accumulation in both species, in relation to temperature flow and sunlight spectra composition during the berry ripening period. Our results suggest that the use of colored photo-selective nets may be a complementary agricultural practice for cultivation of Vaccinium species. However, further studies are needed to analyze the effect of the light spectra modifications to other nutritional properties, and to elucidate the molecular mechanisms behind the detected differences between the two relative Vaccinium species.

  15. Analysis and exploitation of bacterial population from natural uranium-rich soils: selection of a model specie

    International Nuclear Information System (INIS)

    Mondani, L.

    2010-01-01

    It is well known that soils play a key role in controlling the mobility of toxic metals and this property is greatly influenced by indigenous bacterial communities. This study has been conducted on radioactive and controls soils, collected in natural uraniferous areas (Limousin). A physico-chemical and mineralogical analysis of soils samples was carried out.The structure of bacterial communities was estimated by Denaturing Gradient Gel Electrophoresis (DGGE). The community structure is remarkably more stable in the uranium-rich soils than in the control ones, indicating that uranium exerts a high selection from the soils was constructed and screened for uranium resistance in order to study bacteria-uranium interactions. Scanning electron microscopy revealed that a phylo-genetically diverse set of uranium-resistant species ware able to chelate uranium at the cell surface. (author) [fr

  16. Capturing characteristics of beryllium-7 in selected tree species

    International Nuclear Information System (INIS)

    Narazaki, Yukinori; Karube, Yoshiharu.

    1997-01-01

    With regard to 7 Be, a natural radioactive nuclide, the botanical capturing characteristics were compared between eight species of those trees which grow in a local district. The mechanism of such botanical capture by their leaves was discussed. The amounts of captured 7 Be were different by tree species. Higher radioactivities were found in the coniferous trees than in the broadleaf trees. The seasonal change of 7 Be radioactivity in leaves was significantly higher in winter and spring and lower in summer. Since airborne or fallout 7 Be particles stay on the upper face of leaves, the deposited amount depended on the surface area per weight of leaves particularly for evergreen trees. Because the 7 Be amount in leaves depended on the fallout capturing ability of leafs superficial skin as well as the cleaning effect of rain and the like, the radioactivity on the surface can change depending on the surface condition of leaves even in the case the levels of 7 Be fallout stayed the same. (author)

  17. Oxygen-containing coke species in zeolite-catalyzed conversion of methanol to hydrocarbons

    KAUST Repository

    Liu, Zhaohui

    2016-10-06

    Zeolites are the most commonly used catalysts for methanol-to-hydrocarbon (MTH) conversion. Here, we identified two oxygen-containing compounds as coke species in zeolite catalysts after MTH reactions. We investigated the possible influences of the oxygen-containing compounds on coke formation, catalyst deactivation, product selectivity, and the induction period of the MTH reaction through a series of controlled experiments in which one of the identified compounds (2,3-dimethyl-2-cyclopenten-1-one) was co-fed with methanol over a zeolite H-ZSM-5 catalyst. Our results allow us to infer that once produced, the oxygen-containing compounds block the Brønsted acid sites by strong chemisorption and their rapid conversion to aromatics expedites the formation of coke and thus the deactivation of the catalyst. A minor effect of the production of such compounds during the MTH reaction is that the aromatic-based catalytic cycle can be slightly promoted to give higher selectivity to ethylene.

  18. The Herschel-ATLAS: magnifications and physical sizes of 500-μm-selected strongly lensed galaxies

    Science.gov (United States)

    Enia, A.; Negrello, M.; Gurwell, M.; Dye, S.; Rodighiero, G.; Massardi, M.; De Zotti, G.; Franceschini, A.; Cooray, A.; van der Werf, P.; Birkinshaw, M.; Michałowski, M. J.; Oteo, I.

    2018-04-01

    We perform lens modelling and source reconstruction of Sub-millimetre Array (SMA) data for a sample of 12 strongly lensed galaxies selected at 500μm in the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). A previous analysis of the same data set used a single Sérsic profile to model the light distribution of each background galaxy. Here we model the source brightness distribution with an adaptive pixel scale scheme, extended to work in the Fourier visibility space of interferometry. We also present new SMA observations for seven other candidate lensed galaxies from the H-ATLAS sample. Our derived lens model parameters are in general consistent with previous findings. However, our estimated magnification factors, ranging from 3 to 10, are lower. The discrepancies are observed in particular where the reconstructed source hints at the presence of multiple knots of emission. We define an effective radius of the reconstructed sources based on the area in the source plane where emission is detected above 5σ. We also fit the reconstructed source surface brightness with an elliptical Gaussian model. We derive a median value reff ˜ 1.77 kpc and a median Gaussian full width at half-maximum ˜1.47 kpc. After correction for magnification, our sources have intrinsic star formation rates (SFR) ˜ 900-3500 M⊙ yr-1, resulting in a median SFR surface density ΣSFR ˜ 132 M⊙ yr-1 kpc-2 (or ˜218 M⊙ yr-1 kpc-2 for the Gaussian fit). This is consistent with that observed for other star-forming galaxies at similar redshifts, and is significantly below the Eddington limit for a radiation pressure regulated starburst.

  19. Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA

    Science.gov (United States)

    Kumar, S.; Simonson, S.E.; Stohlgren, T.J.

    2009-01-01

    We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.

  20. Widespread Positive Selection Drives Differentiation of Centromeric Proteins in the Drosophila melanogaster subgroup.

    Science.gov (United States)

    Beck, Emily A; Llopart, Ana

    2015-11-25

    Rapid evolution of centromeric satellite repeats is thought to cause compensatory amino acid evolution in interacting centromere-associated kinetochore proteins. Cid, a protein that mediates kinetochore/centromere interactions, displays particularly high amino acid turnover. Rapid evolution of both Cid and centromeric satellite repeats led us to hypothesize that the apparent compensatory evolution may extend to interacting partners in the Condensin I complex (i.e., SMC2, SMC4, Cap-H, Cap-D2, and Cap-G) and HP1s. Missense mutations in these proteins often result in improper centromere formation and aberrant chromosome segregation, thus selection for maintained function and coevolution among proteins of the complex is likely strong. Here, we report evidence of rapid evolution and recurrent positive selection in seven centromere-associated proteins in species of the Drosophila melanogaster subgroup, and further postulate that positive selection on these proteins could be a result of centromere drive and compensatory changes, with kinetochore proteins competing for optimal spindle attachment.

  1. Kin Selection - Mutation Balance

    DEFF Research Database (Denmark)

    Dyken, J. David Van; Linksvayer, Timothy Arnold; Wade, Michael J.

    2011-01-01

    selection-mutation balance, which provides an evolutionary null hypothesis for the statics and dynamics of cheating. When social interactions have linear fitness effects and Hamilton´s rule is satisfied, selection is never strong enough to eliminate recurrent cheater mutants from a population, but cheater...

  2. Selection for social signalling drives the evolution of chameleon colour change.

    Directory of Open Access Journals (Sweden)

    Devi Stuart-Fox

    2008-01-01

    Full Text Available Rapid colour change is a remarkable natural phenomenon that has evolved in several vertebrate and invertebrate lineages. The two principal explanations for the evolution of this adaptive strategy are (1 natural selection for crypsis (camouflage against a range of different backgrounds and (2 selection for conspicuous social signals that maximise detectability to conspecifics, yet minimise exposure to predators because they are only briefly displayed. Here we show that evolutionary shifts in capacity for colour change in southern African dwarf chameleons (Bradypodion spp. are associated with increasingly conspicuous signals used in male contests and courtship. To the chameleon visual system, species showing the most dramatic colour change display social signals that contrast most against the environmental background and amongst adjacent body regions. We found no evidence for the crypsis hypothesis, a finding reinforced by visual models of how both chameleons and their avian predators perceive chameleon colour variation. Instead, our results suggest that selection for conspicuous social signals drives the evolution of colour change in this system, supporting the view that transitory display traits should be under strong selection for signal detectability.

  3. The role of advection in a two-species competition model

    CERN Document Server

    Averill, Isabel; Lou, Yuan

    2017-01-01

    The effects of weak and strong advection on the dynamics of reaction-diffusion models have long been studied. In contrast, the role of intermediate advection remains poorly understood. For example, concentration phenomena can occur when advection is strong, providing a mechanism for the coexistence of multiple populations, in contrast with the situation of weak advection where coexistence may not be possible. The transition of the dynamics from weak to strong advection is generally difficult to determine. In this work the authors consider a mathematical model of two competing populations in a spatially varying but temporally constant environment, where both species have the same population dynamics but different dispersal strategies: one species adopts random dispersal, while the dispersal strategy for the other species is a combination of random dispersal and advection upward along the resource gradient. For any given diffusion rates the authors consider the bifurcation diagram of positive steady states by u...

  4. Phosphorus, and nitrogen co-doped carbon dots as a fluorescent probe for real-time measurement of reactive oxygen and nitrogen species inside macrophages.

    Science.gov (United States)

    Gong, Yunqian; Yu, Bin; Yang, Wen; Zhang, Xiaoling

    2016-05-15

    Phosphorus and nitrogen doped carbon dots (PN-CDs) were conveniently prepared by carbonization of adenosine-5'-triphosphate using a hydrothermal treatment. The PN-CDs with P/C atomic ratio of ca. 9.2/100 emit blue luminescence with high quantum yields of up to 23.5%. The PN-CDs were used as a novel sensing platform for live cell imaging of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including ClO(-), ONOO(-), and NO in macrophages. The nanosensor design is based on our new finding that the strong fluorescence of the PN-CDs can be sensitively and selectively quenched by ROS and RNS both in vitro and in vivo. These results reveal that the PN-CDs can serve as a sensitive sensor for rapid imaging of ROS and RNS signaling with high selectivity and contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Selective and low temperature transition metal intercalation in layered tellurides

    Science.gov (United States)

    Yajima, Takeshi; Koshiko, Masaki; Zhang, Yaoqing; Oguchi, Tamio; Yu, Wen; Kato, Daichi; Kobayashi, Yoji; Orikasa, Yuki; Yamamoto, Takafumi; Uchimoto, Yoshiharu; Green, Mark A.; Kageyama, Hiroshi

    2016-01-01

    Layered materials embrace rich intercalation reactions to accommodate high concentrations of foreign species within their structures, and find many applications spanning from energy storage, ion exchange to secondary batteries. Light alkali metals are generally most easily intercalated due to their light mass, high charge/volume ratio and in many cases strong reducing properties. An evolving area of materials chemistry, however, is to capture metals selectively, which is of technological and environmental significance but rather unexplored. Here we show that the layered telluride T2PTe2 (T=Ti, Zr) displays exclusive insertion of transition metals (for example, Cd, Zn) as opposed to alkali cations, with tetrahedral coordination preference to tellurium. Interestingly, the intercalation reactions proceed in solid state and at surprisingly low temperatures (for example, 80 °C for cadmium in Ti2PTe2). The current method of controlling selectivity provides opportunities in the search for new materials for various applications that used to be possible only in a liquid. PMID:27966540

  6. Sensitivity analysis of uranium solubility under strongly oxidizing conditions

    International Nuclear Information System (INIS)

    Liu, L.; Neretnieks, I.

    1999-01-01

    To evaluate the effect of geochemical conditions in the repository on the solubility of uranium under strongly oxidizing conditions, a mathematical model has been developed to determine the solubility, by utilizing a set of nonlinear algebraic equations to describe the chemical equilibria in the groundwater environment. The model takes into account the predominant precipitation-dissolution reactions, hydrolysis reactions and complexation reactions that may occur under strongly oxidizing conditions. The model also includes the solubility-limiting solids induced by the presence of carbonate, phosphate, silicate, calcium, and sodium in the groundwater. The thermodynamic equilibrium constants used in the solubility calculations are essentially taken from the NEA Thermochemical Data Base of Uranium, with some modification and some uranium minerals added, such as soddyite, rutherfordite, uranophane, uranyl orthophosphate, and becquerelite. By applying this model, the sensitivities of uranium solubility to variations in the concentrations of various groundwater component species are systematically investigated. The results show that the total analytical concentrations of carbonate, phosphate, silicate, and calcium in deep groundwater play the most important role in determining the solubility of uranium under strongly oxidizing conditions

  7. Microsites Matter: Improving the Success of Rare Species Reintroductions.

    Directory of Open Access Journals (Sweden)

    Peter W Dunwiddie

    Full Text Available Our study was undertaken to better understand how to increase the success rates of recovery plantings of a rare hemiparasite, golden paintbrush (Castilleja levisecta-Orobanchaceae. This species is endemic to western Washington and Oregon, USA, and southwestern British Columbia, Canada. Over 5000 golden paintbrush plants were outplanted as plugs in 2007 at six different native prairie sites that were considered to be suitable habitat, based on general evaluations of vegetation and soil conditions. Outplantings were installed at regular intervals along transects up to 1 km long to include a range of conditions occurring at each site. All plantings were re-examined five years later. The patchy distribution of surviving plugs and new recruits within each reintroduction site suggested success is strongly influenced by microsite characteristics. Indicator species analysis of taxa growing in microsites around outplanted golden paintbrush identified species that were positively or negatively associated with paintbrush survival. Species such as Festuca roemeri, Eriophyllum lanatum, and Viola adunca were strong indicators at some sites; non-natives such as Hypochaeris radicata and Teesdalia nudicaulis tended to be frequent negative indicators. Overall, higher richness of native perennial forbs was strongly correlated with both survival and flowering of golden paintbrush, a pattern that may reflect interactions of this hemiparasite with the immediately surrounding plant community. Topographic position also influenced outcomes, with greater survival occurring on mounds and in swales, where soils generally were deeper. Our findings suggest that assessments of site suitability based on vegetation alone, and coarser, site-level assessments that do not characterize heterogeneity at the microsite scale, may not be strong predictors of restoration success over the longer term and in sites with variability in vegetation and soils. By identifying suitable

  8. Assessing species boundaries using multilocus species delimitation in a morphologically conserved group of neotropical freshwater fishes, the Poecilia sphenops species complex (Poeciliidae.

    Directory of Open Access Journals (Sweden)

    Justin C Bagley

    Full Text Available Accurately delimiting species is fundamentally important for understanding species diversity and distributions and devising effective strategies to conserve biodiversity. However, species delimitation is problematic in many taxa, including 'non-adaptive radiations' containing morphologically cryptic lineages. Fortunately, coalescent-based species delimitation methods hold promise for objectively estimating species limits in such radiations, using multilocus genetic data. Using coalescent-based approaches, we delimit species and infer evolutionary relationships in a morphologically conserved group of Central American freshwater fishes, the Poecilia sphenops species complex. Phylogenetic analyses of multiple genetic markers (sequences of two mitochondrial DNA genes and five nuclear loci from 10/15 species and genetic lineages recognized in the group support the P. sphenops species complex as monophyletic with respect to outgroups, with eight mitochondrial 'major-lineages' diverged by ≥2% pairwise genetic distances. From general mixed Yule-coalescent models, we discovered (conservatively 10 species within our concatenated mitochondrial DNA dataset, 9 of which were strongly supported by subsequent multilocus Bayesian species delimitation and species tree analyses. Results suggested species-level diversity is underestimated or overestimated by at least ~15% in different lineages in the complex. Nonparametric statistics and coalescent simulations indicate genealogical discordance among our gene tree results has mainly derived from interspecific hybridization in the nuclear genome. However, mitochondrial DNA show little evidence for introgression, and our species delimitation results appear robust to effects of this process. Overall, our findings support the utility of combining multiple lines of genetic evidence and broad phylogeographical sampling to discover and validate species using coalescent-based methods. Our study also highlights the

  9. Evaluation of habitat quality for selected wildlife species associated with back channels.

    Science.gov (United States)

    Anderson, James T.; Zadnik, Andrew K.; Wood, Petra Bohall; Bledsoe, Kerry

    2013-01-01

    The islands and associated back channels on the Ohio River, USA, are believed to provide critical habitat features for several wildlife species. However, few studies have quantitatively evaluated habitat quality in these areas. Our main objective was to evaluate the habitat quality of back and main channel areas for several species using habitat suitability index (HSI) models. To test the effectiveness of these models, we attempted to relate HSI scores and the variables measured for each model with measures of relative abundance for the model species. The mean belted kingfisher (Ceryle alcyon) HSI was greater on the main than back channel. However, the model failed to predict kingfisher abundance. The mean reproduction component of the great blue heron (Ardea herodias) HSI, total common muskrat (Ondatra zibethicus) HSI, winter cover component of the snapping turtle (Chelydra serpentina) HSI, and brood-rearing component of the wood duck (Aix sponsa) HSI were all greater on the back than main channel, and were positively related with the relative abundance of each species. We found that island back channels provide characteristics not found elsewhere on the Ohio River and warrant conservation as important riparian wildlife habitat. The effectiveness of using HSI models to predict species abundance on the river was mixed. Modifications to several of the models are needed to improve their use on the Ohio River and, likely, other large rivers.

  10. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa.

    Science.gov (United States)

    de la Mata, Raul; Hood, Sharon; Sala, Anna

    2017-07-11

    Long generation times limit species' rapid evolution to changing environments. Trees provide critical global ecosystem services, but are under increasing risk of mortality because of climate change-mediated disturbances, such as insect outbreaks. The extent to which disturbance changes the dynamics and strength of selection is unknown, but has important implications on the evolutionary potential of tree populations. Using a 40-y-old Pinus ponderosa genetic experiment, we provide rare evidence of context-dependent fluctuating selection on growth rates over time in a long-lived species. Fast growth was selected at juvenile stages, whereas slow growth was selected at mature stages under strong herbivory caused by a mountain pine beetle ( Dendroctonus ponderosae ) outbreak. Such opposing forces led to no net evolutionary response over time, thus providing a mechanism for the maintenance of genetic diversity on growth rates. Greater survival to mountain pine beetle attack in slow-growing families reflected, in part, a host-based life-history trade-off. Contrary to expectations, genetic effects on tree survival were greatest at the peak of the outbreak and pointed to complex defense responses. Our results suggest that selection forces in tree populations may be more relevant than previously thought, and have implications for tree population responses to future environments and for tree breeding programs.

  11. Phenotypic selection in natural populations: what limits directional selection?

    Science.gov (United States)

    Kingsolver, Joel G; Diamond, Sarah E

    2011-03-01

    Studies of phenotypic selection document directional selection in many natural populations. What factors reduce total directional selection and the cumulative evolutionary responses to selection? We combine two data sets for phenotypic selection, representing more than 4,600 distinct estimates of selection from 143 studies, to evaluate the potential roles of fitness trade-offs, indirect (correlated) selection, temporally varying selection, and stabilizing selection for reducing net directional selection and cumulative responses to selection. We detected little evidence that trade-offs among different fitness components reduced total directional selection in most study systems. Comparisons of selection gradients and selection differentials suggest that correlated selection frequently reduced total selection on size but not on other types of traits. The direction of selection on a trait often changes over time in many temporally replicated studies, but these fluctuations have limited impact in reducing cumulative directional selection in most study systems. Analyses of quadratic selection gradients indicated stabilizing selection on body size in at least some studies but provided little evidence that stabilizing selection is more common than disruptive selection for most traits or study systems. Our analyses provide little evidence that fitness trade-offs, correlated selection, or stabilizing selection strongly constrains the directional selection reported for most quantitative traits.

  12. Simulation-based marginal likelihood for cluster strong lensing cosmology

    Science.gov (United States)

    Killedar, M.; Borgani, S.; Fabjan, D.; Dolag, K.; Granato, G.; Meneghetti, M.; Planelles, S.; Ragone-Figueroa, C.

    2018-01-01

    Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with Λ cold dark matter cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, α and β. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected z > 0.5 Massive Cluster Survey clusters as a case in point and employing both N-body and hydrodynamic simulations of clusters. We investigate the uncertainty in this estimate and consequential ability to compare competing cosmologies, which arises from incomplete descriptions of baryonic processes, discrepancies in cluster selection criteria, redshift distribution and dynamical state. The relation between triaxial cluster masses at various overdensities provides a promising alternative to the strong lensing test.

  13. Stability of mutualisms in a lattice gas system of two species

    Directory of Open Access Journals (Sweden)

    Yuanshi Wang

    2015-01-01

    Full Text Available This article considers mutualisms in a lattice gas system of two species. The species are mutualistic since each one can provide resources to the other. They are also competitive since they compete for empty sites on the same lattice. The mutualisms are assumed to have a saturated response, and the intraspecific competition is considered because of self-limitation. The mutualism system is characterized by differential equations, which are derived from reactions on lattice and are extension of a previous model. Global stability analysis demonstrates that (i When neither species can survive alone, they can coexist if mutualisms between them are strong and population densities are large, which exhibits the Allee effect in obligate mutualism; (ii When one species can survive alone but the other cannot, the latter one will survive if the mutualistic effect from the former is strong. Even if the effect is intermediate, the latter species can survive by strengthening its mutualistic effect on the former and enhancing its population density; (iii When either species can survive alone, a weak mutualism will lead to extinction of one species. When in coexistence, intermediate strength of mutualism is shown to be beneficial under certain parameter range, while over- or under- mutualism is not good. Furthermore, extremely strong/weak mutualism is exhibited to result in extinction of one/both species. While seven typical dynamics are displayed by numerical simulation in a previous work, they are proved in this work and the eighth one is exhibited. Numerical simul ations validate and extend our conclusions.

  14. Taper and volume equations for selected Appalachian hardwood species

    Science.gov (United States)

    A. Jeff Martin

    1981-01-01

    Coefficients for five taper/volume models are developed for 18 Appalachian hardwood species. Each model can be used to estimate diameter at any point on the bole, height to any preselected diameter, and cubic-foot volume between any two points on the bole. The resulting equations were tested on six sets of independent data and an evaluation of these tests is included,...

  15. Effects of rodent species, seed species, and predator cues on seed fate

    Science.gov (United States)

    Sivy, Kelly J.; Ostoja, Steven M.; Schupp, Eugene W.; Durham, Susan

    2011-07-01

    Seed selection, removal and subsequent management by granivorous animals is thought to be a complex interaction of factors including qualities of the seeds themselves (e.g., seed size, nutritional quality) and features of the local habitat (e.g. perceived predator risk). At the same time, differential seed selection and dispersal is thought to have profound effects on seed fate and potentially vegetation dynamics. In a feeding arena, we tested whether rodent species, seed species, and indirect and direct predation cues influence seed selection and handling behaviors (e.g., scatter hoarding versus larder hoarding) of two heteromyid rodents, Ord's kangaroo rat ( Dipodomys ordii) and the Great Basin pocket mouse ( Perognathus parvus). The indirect cue was shrub cover, a feature of the environment. Direct cues, presented individually, were (1) control, (2) coyote ( Canis latrans) vocalization, (3) coyote scent, (4) red fox ( Vulpes vulpes) scent, or (5) short-eared owl ( Asio flammeus) vocalization. We offered seeds of three sizes: two native grasses, Indian ricegrass ( Achnatherum hymenoides) and bluebunch wheatgrass ( Pseudoroegneria spicata), and the non-native cereal rye ( Secale cereale), each in separate trays. Kangaroo rats preferentially harvested Indian ricegrass while pocket mice predominately harvested Indian ricegrass and cereal rye. Pocket mice were more likely to scatter hoard preferred seeds, whereas kangaroo rats mostly consumed and/or larder hoarded preferred seeds. No predator cue significantly affected seed preferences. However, both species altered seed handling behavior in response to direct predation cues by leaving more seeds available in the seed pool, though they responded to different predator cues. If these results translate to natural dynamics on the landscape, the two rodents are expected to have different impacts on seed survival and plant recruitment via their different seed selection and seed handling behaviors.

  16. Sexual Selection on male cuticular hydrocarbons via male-male competition and female choice.

    Science.gov (United States)

    Lane, S M; Dickinson, A W; Tregenza, T; House, C M

    2016-07-01

    Traditional views of sexual selection assumed that male-male competition and female mate choice work in harmony, selecting upon the same traits in the same direction. However, we now know that this is not always the case and that these two mechanisms often impose conflicting selection on male sexual traits. Cuticular hydrocarbons (CHCs) have been shown to be linked to both social dominance and male attractiveness in several insect species. However, although several studies have estimated the strength and form of sexual selection imposed on male CHCs by female mate choice, none have established whether these chemical traits are also subject to sexual selection via male-male competition. Using a multivariate selection analysis, we estimate and compare sexual selection exerted by male-male competition and female mate choice on male CHC composition in the broad-horned flour beetle Gnatocerus cornutus. We show that male-male competition exerts strong linear selection on both overall CHC abundance and body size in males, while female mate choice exerts a mixture of linear and nonlinear selection, targeting not just the overall amount of CHCs expressed but the relative abundance of specific hydrocarbons as well. We discuss the potential implications of this antagonistic selection with regard to male reproductive success. © 2016 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons Ltd on behalf of European Society for Evolutionary Biology.

  17. Cross-species correlation between queen mating numbers and worker ovary sizes suggests kin conflict may influence ovary size evolution in honeybees

    Science.gov (United States)

    Rueppell, Olav; Phaincharoen, Mananya; Kuster, Ryan; Tingek, Salim

    2011-09-01

    During social evolution, the ovary size of reproductively specialized honey bee queens has dramatically increased while their workers have evolved much smaller ovaries. However, worker division of labor and reproductive competition under queenless conditions are influenced by worker ovary size. Little comparative information on ovary size exists in the different honey bee species. Here, we report ovariole numbers of freshly dissected workers from six Apis species from two locations in Southeast Asia. The average number of worker ovarioles differs significantly among species. It is strongly correlated with the average mating number of queens, irrespective of body size. Apis dorsata, in particular, is characterized by numerous matings and very large worker ovaries. The relation between queen mating number and ovary size across the six species suggests that individual selection via reproductive competition plays a role in worker ovary size evolution. This indicates that genetic diversity, generated by multiple mating, may bear a fitness cost at the colony level.

  18. The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Kefford, Ben J., E-mail: ben.kefford@uts.edu.a [School of Applied Sciences, RMIT University, Victoria (Australia); Centre for Environmental Sustainability, Department of Environmental Science, University of Technology Sydney, New South Wales (Australia); Marchant, Richard [Department of Entomology, Museum of Victoria, Victoria (Australia); Schaefer, Ralf B. [School of Applied Sciences, RMIT University, Victoria (Australia); Metzeling, Leon [EPA Victoria, Macleod, Victoria (Australia); Dunlop, Jason E. [Department of Environment and Resource Management, Indooroopilly, Queensland (Australia); National Research Centre for Environmental Toxicology, University of Queensland, Coopers Plains, Queensland (Australia); Choy, Satish C. [Department of Environment and Resource Management, Indooroopilly, Queensland (Australia); Goonan, Peter [South Australia Environment Protection Authority, Adelaide, South Australia (Australia)

    2011-01-15

    The risk of chemicals for ecological communities is often forecast with species sensitivity distributions (SSDs) which are used to predict the concentration which will protect p% of species (PC{sub p} value). However, at the PC{sub p} value, species richness in nature would not necessary be p% less than at uncontaminated sites. The definition of species richness inherent to SSDs (contaminant category richness) contrasts with species richness typically measured in most field studies (point richness). We determine, for salinity in eastern Australia, whether these definitions of stream macroinvertebrate species richness are commensurable. There were strong relationships (r{sup 2} {>=} 0.87) between mean point species, family and Ephemeroptera, Trichoptera and Plecoptera species richness and their respective contamination category richness. Despite differences in the definition of richness used by SSDs and field biomonitoring, their results in terms of relative species loss from salinity in south-east Australia are similar. We conclude that in our system both definitions are commensurable. - Definitions of species richness inherit in SSDs and biomonitoring are for salinity in south-east Australia commensurable.

  19. The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates

    International Nuclear Information System (INIS)

    Kefford, Ben J.; Marchant, Richard; Schaefer, Ralf B.; Metzeling, Leon; Dunlop, Jason E.; Choy, Satish C.; Goonan, Peter

    2011-01-01

    The risk of chemicals for ecological communities is often forecast with species sensitivity distributions (SSDs) which are used to predict the concentration which will protect p% of species (PC p value). However, at the PC p value, species richness in nature would not necessary be p% less than at uncontaminated sites. The definition of species richness inherent to SSDs (contaminant category richness) contrasts with species richness typically measured in most field studies (point richness). We determine, for salinity in eastern Australia, whether these definitions of stream macroinvertebrate species richness are commensurable. There were strong relationships (r 2 ≥ 0.87) between mean point species, family and Ephemeroptera, Trichoptera and Plecoptera species richness and their respective contamination category richness. Despite differences in the definition of richness used by SSDs and field biomonitoring, their results in terms of relative species loss from salinity in south-east Australia are similar. We conclude that in our system both definitions are commensurable. - Definitions of species richness inherit in SSDs and biomonitoring are for salinity in south-east Australia commensurable.

  20. Role of the adsorbed oxygen species in the selective electrochemical reduction of CO{sub 2} to alcohols and carbonyls on copper electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Le Duff, Cecile S.; Lawrence, Matthew J.; Rodriguez, Paramaconi [School of Chemistry, University of Birmingham, Edgbaston (United Kingdom)

    2017-10-09

    The electrochemical reduction of CO{sub 2} into fuels has gained significant attention recently as source of renewable carbon-based fuels. The unique high selectivity of copper in the electrochemical reduction of CO{sub 2} to hydrocarbons has called much interest in discovering its mechanism. In order to provide significant information about the role of oxygen in the electrochemical reduction of CO{sub 2} on Cu electrodes, the conditions of the surface structure and the composition of the Cu single crystal electrodes were controlled over time. This was achieved using pulsed voltammetry, since the pulse sequence can be programmed to guarantee reproducible initial conditions for the reaction at every fraction of time and at a given frequency. In contrast to the selectivity of CO{sub 2} reduction using cyclic voltammetry and chronoamperometric methods, a large selection of oxygenated hydrocarbons was found under alternating voltage conditions. Product selectivity towards the formation of oxygenated hydrocarbon was associated to the coverage of oxygen species, which is surface-structure- and potential-dependent. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)