WorldWideScience

Sample records for species sensitivity distribution

  1. Do predictions from Species Sensitivity Distributions match with field data?

    Smetanová, S.; Bláha, L.; Liess, M.; Schäfer, R.B.; Beketov, M.A.

    2014-01-01

    Species Sensitivity Distribution (SSD) is a statistical model that can be used to predict effects of contaminants on biological communities, but only few comparisons of this model with field studies have been conducted so far. In the present study we used measured pesticides concentrations from streams in Germany, France, and Finland, and we used SSD to calculate msPAF (multiple substance potentially affected fraction) values based on maximum toxic stress at localities. We compared these SSD-based predictions with the actual effects on stream invertebrates quantified by the SPEAR pesticides bioindicator. The results show that the msPAFs correlated well with the bioindicator, however, the generally accepted SSD threshold msPAF of 0.05 (5% of species are predicted to be affected) severely underestimated the observed effects (msPAF values causing significant effects are 2–1000-times lower). These results demonstrate that validation with field data is required to define the appropriate thresholds for SSD predictions. - Highlights: • We validated the statistical model Species Sensitivity Distribution with field data. • Good correlation was found between the model predictions and observed effects. • But, the generally accepted threshold msPAF 0.05 severely underestimated the effects. - Comparison of the SSD-based prediction with the field data evaluated with the SPEAR pesticides index shows that SSD threshold msPAF of 0.05 severely underestimates the effects observed in the field

  2. Deriving field-based species sensitivity distributions (f-SSDs) from stacked species distribution models (S-SDMs).

    Schipper, Aafke M; Posthuma, Leo; de Zwart, Dick; Huijbregts, Mark A J

    2014-12-16

    Quantitative relationships between species richness and single environmental factors, also called species sensitivity distributions (SSDs), are helpful to understand and predict biodiversity patterns, identify environmental management options and set environmental quality standards. However, species richness is typically dependent on a variety of environmental factors, implying that it is not straightforward to quantify SSDs from field monitoring data. Here, we present a novel and flexible approach to solve this, based on the method of stacked species distribution modeling. First, a species distribution model (SDM) is established for each species, describing its probability of occurrence in relation to multiple environmental factors. Next, the predictions of the SDMs are stacked along the gradient of each environmental factor with the remaining environmental factors at fixed levels. By varying those fixed levels, our approach can be used to investigate how field-based SSDs for a given environmental factor change in relation to changing confounding influences, including for example optimal, typical, or extreme environmental conditions. This provides an asset in the evaluation of potential management measures to reach good ecological status.

  3. Relating biomarkers to whole-organism effects using species sensitivity distributions : A pilot study for marine species exposed to oil

    Smit, M.G.D.; Bechmann, R.K.; Hendriks, A.J.; Skadsheim, A.; Larsen, B.K.; Baussant, T.; Bamber, S.; Sannei, S.

    2009-01-01

    Biomarkers are widely used to measure environmental impacts on marine species. For many biomarkers, it is not clear how the signal levels relate to effects on the whole organism. This paper shows how species sensitivity distributions (SSDs) can be applied to evaluate multiple biomarker responses in

  4. Species sensitivity distributions in a context of practical applications for risk-based decisions

    Posthuma, L.; Traas, T.P.; Roelofs, W.; Winterse, A.; Zwart, D. de; Meent, D. van de [RIVM, Bilthoven (Netherlands)

    2003-07-01

    Different biological species clearly show different sensitivities to toxic compounds present in their habitat. The absence of differences in sensitivity would entail an 'all nothing' response, with all species responding similarly to pollution. Given the sensitivity variation, however, some species show adverse effects, and others flourish. In this sense, variation is 'music for ecotoxicologists'. But it also is a nuisance: ecotoxicologists need to handle the vast diversity of sensitivities in Ecological Risk Assessment (ERA). This contribution addresses a pragmatic, versatile, statistics-based concept to address species sensitivity differences, and shows options for application. In the 1980s, ecotoxicologists have coined the term 'Species Sensitivity Distributions' (SSDs) for the statistical descriptions that can be applied to address sensitivity variation. An SSD is a Probability Density Function (usually bell-shaped) or Cumulative Distribution Function (sigmoid), that relates the environmental concentration (x) to 'risk' (y). Since their original description and use, the concept was further developed, criticised, and tailored to various policy or assessment problems. (orig.)

  5. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data

    Hose, G.C.; Brink, van den P.J.

    2004-01-01

    In Australia, water-quality trigger values for toxicants are derived using protective concentration values based on species-sensitivity distribution (SSD) curves. SSD curves are generally derived from laboratory data with an emphasis on using local or site-specific data. In this study, Australian

  6. Using Bioassays and Species Sensitivity Distributions to Assess Herbicide Toxicity towards Benthic Diatoms

    Larras, Floriane; Bouchez, Agnès; Rimet, Frédéric; Montuelle, Bernard

    2012-01-01

    Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD) could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC5) and the Effective Concentration 50 (EC50) for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC5) and 50 (HC50). Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII) herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and “motile” guild species were more tolerant of PSII inhibitors, while N-autotroph and “low profile” guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron. PMID:22952981

  7. Using bioassays and species sensitivity distributions to assess herbicide toxicity towards benthic diatoms.

    Floriane Larras

    Full Text Available Although benthic diatoms are widely used in ecological studies of aquatic systems, there is still a dearth of data concerning species sensitivities towards several contaminants. Within the same community, different species may respond differently depending on their physiological and ecological characteristics. This lack of knowledge makes specific appropriate risk assessment impossible. To find out whether species sensitivity distribution (SSD could be used to estimate the risk of herbicide toxicity for diatoms, we need to know whether their sensitivity depends on their physiological and ecological characteristics. We carried out single-species bioassays on 11 diatom species exposed to 8 herbicides. Dose-responses relationships were used to extrapolate the Effective Concentration 5 (EC(5 and the Effective Concentration 50 (EC(50 for each exposure. These data were used to fit a SSD curve for each herbicide, and to determine the Hazardous concentration 5 (HC(5 and 50 (HC(50. Our results revealed a high level of variability of the sensitivity in the set of species tested. For photosystem-II inhibitor (PSII herbicides, diatoms species displayed a typical grouping of sensitivity levels consistent with their trophic mode and their ecological guild. N-heterotroph and "motile" guild species were more tolerant of PSII inhibitors, while N-autotroph and "low profile" guild species were more sensitive. Comprehensive SSD curves were obtained for 5 herbicides, but not for sulfonylurea herbicides or for dimetachlor, which had toxicity levels that were below the range of concentration tested. The SSD curves provided the following ranking of toxicity: diuron> terbutryn> isoproturon> atrazine> metolachlor. The HC that affected 5% of the species revealed that, even at the usual environmental concentrations of herbicides, diatom assemblages could be affected, especially by isoproturon, terbutryn, and diuron.

  8. The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates

    Kefford, Ben J., E-mail: ben.kefford@uts.edu.a [School of Applied Sciences, RMIT University, Victoria (Australia); Centre for Environmental Sustainability, Department of Environmental Science, University of Technology Sydney, New South Wales (Australia); Marchant, Richard [Department of Entomology, Museum of Victoria, Victoria (Australia); Schaefer, Ralf B. [School of Applied Sciences, RMIT University, Victoria (Australia); Metzeling, Leon [EPA Victoria, Macleod, Victoria (Australia); Dunlop, Jason E. [Department of Environment and Resource Management, Indooroopilly, Queensland (Australia); National Research Centre for Environmental Toxicology, University of Queensland, Coopers Plains, Queensland (Australia); Choy, Satish C. [Department of Environment and Resource Management, Indooroopilly, Queensland (Australia); Goonan, Peter [South Australia Environment Protection Authority, Adelaide, South Australia (Australia)

    2011-01-15

    The risk of chemicals for ecological communities is often forecast with species sensitivity distributions (SSDs) which are used to predict the concentration which will protect p% of species (PC{sub p} value). However, at the PC{sub p} value, species richness in nature would not necessary be p% less than at uncontaminated sites. The definition of species richness inherent to SSDs (contaminant category richness) contrasts with species richness typically measured in most field studies (point richness). We determine, for salinity in eastern Australia, whether these definitions of stream macroinvertebrate species richness are commensurable. There were strong relationships (r{sup 2} {>=} 0.87) between mean point species, family and Ephemeroptera, Trichoptera and Plecoptera species richness and their respective contamination category richness. Despite differences in the definition of richness used by SSDs and field biomonitoring, their results in terms of relative species loss from salinity in south-east Australia are similar. We conclude that in our system both definitions are commensurable. - Definitions of species richness inherit in SSDs and biomonitoring are for salinity in south-east Australia commensurable.

  9. The definition of species richness used by species sensitivity distributions approximates observed effects of salinity on stream macroinvertebrates

    Kefford, Ben J.; Marchant, Richard; Schaefer, Ralf B.; Metzeling, Leon; Dunlop, Jason E.; Choy, Satish C.; Goonan, Peter

    2011-01-01

    The risk of chemicals for ecological communities is often forecast with species sensitivity distributions (SSDs) which are used to predict the concentration which will protect p% of species (PC p value). However, at the PC p value, species richness in nature would not necessary be p% less than at uncontaminated sites. The definition of species richness inherent to SSDs (contaminant category richness) contrasts with species richness typically measured in most field studies (point richness). We determine, for salinity in eastern Australia, whether these definitions of stream macroinvertebrate species richness are commensurable. There were strong relationships (r 2 ≥ 0.87) between mean point species, family and Ephemeroptera, Trichoptera and Plecoptera species richness and their respective contamination category richness. Despite differences in the definition of richness used by SSDs and field biomonitoring, their results in terms of relative species loss from salinity in south-east Australia are similar. We conclude that in our system both definitions are commensurable. - Definitions of species richness inherit in SSDs and biomonitoring are for salinity in south-east Australia commensurable.

  10. Effects of pesticides on soil invertebrates in laboratory studies: A review and analysis using species sensitivity distributions

    Frampton, G.K.; Jänsch, S.; Scott-Fordsmand, J.J.; Römbke, J.; Brink, van den P.J.

    2006-01-01

    Species sensitivity distributions (SSD) and 5% hazardous concentrations (HC5) are distribution-based approaches for assessing environmental risks of pollutants. These methods have potential for application in pesticide risk assessments, but their applicability for assessing pesticide risks to soil

  11. Protectiveness of Species Sensitivity Distribution Hazard Concentrations for Acute Toxicity Used in Endangered Species Risk Assessment

    A primary objective of threatened and endangered species conservation is to ensure that chemical contaminants and other stressors do not adversely affect listed species. Assessments of the ecological risks of chemical exposures to listed species often rely on the use of surrogate...

  12. Development and application of a species sensitivity distribution for temperature-induced mortality in the aquatic environment

    Vries, de P.; Tamis, J.E.; Murk, A.J.; Smit, M.G.D.

    2008-01-01

    Current European legislation has static water quality objectives for temperature effects, based on the most sensitive species. In the present study a species sensitivity distribution (SSD) for elevated temperatures is developed on the basis of temperature sensitivity data (mortality) of 50 aquatic

  13. Foliar Nutrient Distribution Patterns in Sympatric Maple Species Reflect Contrasting Sensitivity to Excess Manganese.

    Fernando, Denise R; Marshall, Alan T; Lynch, Jonathan P

    2016-01-01

    Sugar maple and red maple are closely-related co-occurring tree species significant to the North American forest biome. Plant abiotic stress effects including nutritional imbalance and manganese (Mn) toxicity are well documented within this system, and are implicated in enhanced susceptibility to biotic stresses such as insect attack. Both tree species are known to overaccumulate foliar manganese (Mn) when growing on unbuffered acidified soils, however, sugar maple is Mn-sensitive, while red maple is not. Currently there is no knowledge about the cellular sequestration of Mn and other nutrients in these two species. Here, electron-probe x-ray microanalysis was employed to examine cellular and sub-cellular deposition of excessively accumulated foliar Mn and other mineral nutrients in vivo. For both species, excess foliar Mn was deposited in symplastic cellular compartments. There were striking between-species differences in Mn, magnesium (Mg), sulphur (S) and calcium (Ca) distribution patterns. Unusually, Mn was highly co-localised with Mg in mesophyll cells of red maple only. The known sensitivity of sugar maple to excess Mn is likely linked to Mg deficiency in the leaf mesophyll. There was strong evidence that Mn toxicity in sugar maple is primarily a symplastic process. For each species, leaf-surface damage due to biotic stress including insect herbivory was compared between sites with acidified and non-acidified soils. Although it was greatest overall in red maple, there was no difference in biotic stress damage to red maple leaves between acidified and non-acidified soils. Sugar maple trees on buffered non-acidified soil were less damaged by biotic stress compared to those on unbuffered acidified soil, where they are also affected by Mn toxicity abiotic stress. This study concluded that foliar nutrient distribution in symplastic compartments is a determinant of Mn sensitivity, and that Mn stress hinders plant resistance to biotic stress.

  14. A Robust Approach to Risk Assessment Based on Species Sensitivity Distributions.

    Monti, Gianna S; Filzmoser, Peter; Deutsch, Roland C

    2018-05-03

    The guidelines for setting environmental quality standards are increasingly based on probabilistic risk assessment due to a growing general awareness of the need for probabilistic procedures. One of the commonly used tools in probabilistic risk assessment is the species sensitivity distribution (SSD), which represents the proportion of species affected belonging to a biological assemblage as a function of exposure to a specific toxicant. Our focus is on the inverse use of the SSD curve with the aim of estimating the concentration, HCp, of a toxic compound that is hazardous to p% of the biological community under study. Toward this end, we propose the use of robust statistical methods in order to take into account the presence of outliers or apparent skew in the data, which may occur without any ecological basis. A robust approach exploits the full neighborhood of a parametric model, enabling the analyst to account for the typical real-world deviations from ideal models. We examine two classic HCp estimation approaches and consider robust versions of these estimators. In addition, we also use data transformations in conjunction with robust estimation methods in case of heteroscedasticity. Different scenarios using real data sets as well as simulated data are presented in order to illustrate and compare the proposed approaches. These scenarios illustrate that the use of robust estimation methods enhances HCp estimation. © 2018 Society for Risk Analysis.

  15. Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids.

    Liu, Yuedan; Wu, Fengchang; Mu, Yunsong; Feng, Chenglian; Fang, Yixiang; Chen, Lulu; Giesy, John P

    2014-01-01

    Both nonparametric and parametric approaches were used to construct SSDs for use in ecological risk assessments. Based on toxicity to representative aquatic species and typical water contaminants of metals and metalloids in China, nonparametric methods based on the bootstrap were statistically superior to the parametric curve-fitting approaches. Knowing what the SSDs for each targeted species are might help in selecting efficient indicator species to use for water quality monitoring. The species evaluated herein showed sensitivity variations to different chemical treatments that were used in constructing the SSDs. For example, D. magna was more sensitive than most species to most chemical treatments, whereas D. rerio was sensitive to Hg and Pb but was tolerant to Zn. HC5 values, derived for the pollutants in this study for protecting Chinese species, differed from those published by the USEPA. Such differences may result from differences in geographical conditions and biota between China and the United States. Thus, the degree of protection desired for aquatic organisms should be formulated to fit local conditions. For approach selection, we recommend all approaches be considered and the most suitable approaches chosen. The selection should be based on the practical information needs of the researcher (viz., species composition, species sensitivity, and geological characteristics of aquatic habitats), since risk assessments usually are focused on certain substances, species, or monitoring sites. We used Tai Lake as a typical freshwater lake in China to assess the risk of metals and metalloids to the aquatic species. We calculated hazard quotients for the metals and metalloids that were found in the water of this lake. Results indicated the decreasing ecological risk of these contaminants in the following order: Hg metalloids to aquatic species. Based on the MEC and HC5 derived from SSDs by nonparametric and parametric approaches together, the risk levels of metals

  16. Improving ecological risk assessment by including bioavailability into species sensitivity distributions: an example for plants exposed to nickel in soil

    Semenzin, E.; Temminghoff, E.J.M.; Marcomini, A.

    2007-01-01

    The variability of species sensitivity distribution (SSD) due to contaminant bioavailability in soil was explored by using nickel as metal of concern. SSDs of toxicity test results of Avena sativa L. originating from different soils and expressed as total content and available (0.01 M CaCl2)

  17. Using species sensitivity distribution approach to assess the risks of commonly detected agricultural pesticides to Australia's tropical freshwater ecosystems.

    Pathiratne, Asoka; Kroon, Frederieke J

    2016-02-01

    To assess the potential impacts of agricultural pesticides on tropical freshwater ecosystems, the present study developed temperature-specific, freshwater species protection concentrations (i.e., ecotoxicity threshold values) for 8 pesticides commonly detected in Australia's tropical freshwaters. Because relevant toxicity data for native tropical freshwater species to assess the ecological risks were mostly absent, scientifically robust toxicity data obtained at ≥20 °C were used for ecologically relevant taxonomic groups representing primary producers and consumers. Species sensitivity distribution (SSD) curves were subsequently generated for predicted chronic exposure using Burrlioz 2.0 software with mixed chronic and converted acute data relevant to exposure conditions at ≥20 °C. Ecotoxicity threshold values for tropical freshwater ecosystem protection were generated for ametryn, atrazine, diuron, metolachlor, and imidacloprid (all moderate reliability), as well as simazine, hexazinone, and tebuthiuron (all low reliability). Using these SSD curves, the retrospective risk assessments for recently reported pesticide concentrations highlight that the herbicides ametryn, atrazine, and diuron are of major concern for ecological health in Australia's tropical freshwater ecosystems. The insecticide imidacloprid also appears to pose an emerging threat to the most sensitive species in tropical freshwater ecosystems. The exposed temperature-specific approach may be applied to develop water quality guideline values for other environmental contaminants detected in tropical freshwater ecosystems until reliable and relevant toxicity data are generated using representative native species. © 2015 SETAC.

  18. Bounding species distribution models

    Thomas J. STOHLGREN, Catherine S. JARNEVICH, Wayne E. ESAIAS,Jeffrey T. MORISETTE

    2011-10-01

    Full Text Available Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for “clamping” model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART and maximum entropy (Maxent models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5: 642–647, 2011].

  19. Bounding Species Distribution Models

    Stohlgren, Thomas J.; Jarnevich, Cahterine S.; Morisette, Jeffrey T.; Esaias, Wayne E.

    2011-01-01

    Species distribution models are increasing in popularity for mapping suitable habitat for species of management concern. Many investigators now recognize that extrapolations of these models with geographic information systems (GIS) might be sensitive to the environmental bounds of the data used in their development, yet there is no recommended best practice for "clamping" model extrapolations. We relied on two commonly used modeling approaches: classification and regression tree (CART) and maximum entropy (Maxent) models, and we tested a simple alteration of the model extrapolations, bounding extrapolations to the maximum and minimum values of primary environmental predictors, to provide a more realistic map of suitable habitat of hybridized Africanized honey bees in the southwestern United States. Findings suggest that multiple models of bounding, and the most conservative bounding of species distribution models, like those presented here, should probably replace the unbounded or loosely bounded techniques currently used [Current Zoology 57 (5): 642-647, 2011].

  20. Predictive value of species sensitivity distributions for effects of herbicides in freshwater ecosystems

    Brink, van den P.J.; Blake, N.; Brock, T.C.M.; Maltby, L.

    2006-01-01

    In this article we present a review of the laboratory and field toxicity of herbicides to aquatic ecosystems. Single-species acute toxicity data and ( micro) mesocosm data were collated for nine herbicides. These data were used to investigate the importance of test species selection in constructing

  1. Future Needs and Recommendations in the Development of Species Sensitivity Distributions: Estimating Toxicity Thresholds for Aquatic Ecological Communities and Assessing Impacts of Chemical Exposures

    A species sensitivity distribution (SSD) is a probability model of the variation of species sensitivities to a stressor, in particular chemical exposure. The SSD approach has been used as a decision support tool in environmental protection and management since the 1980s, and the ...

  2. Improving ecological risk assessment by including bioavailability into species sensitivity distributions: An example for plants exposed to nickel in soil

    Semenzin, Elena; Temminghoff, Erwin J.M.; Marcomini, Antonio

    2007-01-01

    The variability of species sensitivity distribution (SSD) due to contaminant bioavailability in soil was explored by using nickel as metal of concern. SSDs of toxicity test results of Avena sativa L. originating from different soils and expressed as total content and available (0.01 M CaCl 2 ) extractable concentration were compared to SSDs for terrestrial plants derived from literature toxicity data. Also the 'free' nickel (Ni 2+ ) concentration was calculated and compared. The results demonstrated that SSDs based on total nickel content highly depend on the experimental conditions set up for toxicity testing (i.e. selected soil and pH value) and thus on metal bioavailability in soil, resulting in an unacceptable uncertainty for ecological risk estimation. The use in SSDs of plant toxicity data expressed as 0.01 M CaCl 2 extractable metal strongly reduced the uncertainty in the SSD curve and thus can improve the ERA procedure remarkably by taking bioavailability into account. - The use of bioavailability toxicity data can improve species sensitivity distribution (SSD) curves and thus ecological risk assessment (ERA)

  3. Mesocosm validation of the marine No Effect Concentration of dissolved copper derived from a species sensitivity distribution.

    Foekema, E M; Kaag, N H B M; Kramer, K J M; Long, K

    2015-07-15

    The Predicted No Effect Concentration (PNEC) for dissolved copper based on the species sensitivity distribution (SSD) of 24 marine single species tests was validated in marine mesocosms. To achieve this, the impact of actively maintained concentrations of dissolved copper on a marine benthic and planktonic community was studied in 18 outdoor 4.6m(3) mesocosms. Five treatment levels, ranging from 2.9 to 31μg dissolved Cu/L, were created in triplicate and maintained for 82days. Clear effects were observed on gastropod and bivalve molluscs, phytoplankton, zooplankton, sponges and sessile algae. The most sensitive biological endpoints; reproduction success of the bivalve Cerastoderma edule, copepod population development and periphyton growth were significantly affected at concentrations of 9.9μg Cu/L and higher. The No Observed Effect Concentration (NOEC) derived from this study was 5.7μg dissolved Cu/L. Taking into account the DOC concentration of the mesocosm water this NOEC is comparable to the PNEC derived from the SSD. Copyright © 2015. Published by Elsevier B.V.

  4. Ecological risk assessment of organic waste amendments using the species sensitivity distribution from a soil organisms test battery

    Domene, Xavier; Ramirez, Wilson; Mattana, Stefania; Alcaniz, Josep Maria; Andres, Pilar

    2008-01-01

    Safe amendment rates (the predicted no-effect concentration or PNEC) of seven organic wastes were estimated from the species sensitivity distribution of a battery of soil biota tests and compared with different realistic amendment scenarios (different predicted environmental concentrations or PEC). None of the wastes was expected to exert noxious effects on soil biota if applied according either to the usual maximum amendment rates in Europe or phosphorus demands of crops (below 2 tonnes DM ha -1 ). However, some of the wastes might be problematic if applied according to nitrogen demands of crops (above 2 tonnes DM ha -1 ). Ammonium content and organic matter stability of the studied wastes are the most influential determinants of the maximum amendment rates derived in this study, but not pollutant burden. This finding indicates the need to stabilize wastes prior to their reuse in soils in order to avoid short-term impacts on soil communities. - Ecological risk assessment of organic waste amendments

  5. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment

    Xu, Fu-Liu; Li, Yi-Long; Wang, Yin

    2015-01-01

    The species sensitivity distribution (SSD) model is one of the most commonly used methods for ecological risk assessment based on the potentially affected fraction (PAF) of and the combined PAF (msPAF) as quantitative indicators. There are usually four steps for the development of SSD models...... and their applications: (1) obtain the toxicity data of the pollutants; (2) fit the SSD curves; (3) calculate the potentially affected fractions (PAFs) of the individual pollutants for the ecological risk assessment of an individual pollutant; and (4) calculate the accumulated multi-substance potentially affected...... collected from the ecotoxicity database, (3) how to transform the acute toxicity data into chronic data, (4) how to best fit the toxicity data, (5) how to calculate the msPAF of multiple pollutants, and (6) how to determine the uncertainty of the SSD model”. In response to these questions, several...

  6. Impacts of pesticide mixtures in European rivers as predicted by the Species Sensitivity Distribution (SSD) models and SPEAR bioindication

    Jesenska, Sona; Liess, Mathias; Schäfer, Ralf; Beketov, Mikhail; Blaha, Ludek

    2013-04-01

    Species sensitivity distribution (SSD) is statistical method broadly used in the ecotoxicological risk assessment of chemicals. Originally it has been used for prospective risk assessment of single substances but nowadays it is becoming more important also in the retrospective risk assessment of mixtures, including the catchment scale. In the present work, SSD predictions (impacts of mixtures consisting of 25 pesticides; data from several catchments in Germany, France and Finland) were compared with SPEAR-pesticides, which a bioindicator index based on biological traits responsive to the effects of pesticides and post-contamination recovery. The results showed statistically significant correlations (Pearson's R, ppesticides (based on field biomonitoring observations). Comparisons of the thresholds established for the SSD and SPEAR approaches (SPEAR-pesticides=45%, i.e. LOEC level, and msPAF = 0.05 for SSD, i.e. HC5) showed that use of chronic toxicity data significantly improved the agreement between the two methods but the SPEAR-pesticides index was still more sensitive. Taken together, the validation study shows good potential of SSD models in predicting the real impacts of micropollutant mixtures on natural communities of aquatic biota.

  7. Hierarchical species distribution models

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  8. Coupling Satellite Data with Species Distribution and Connectivity Models as a Tool for Environmental Management and Planning in Matrix-Sensitive Species

    Rödder, Dennis; Nekum, Sven; Cord, Anna F.; Engler, Jan O.

    2016-07-01

    Climate change and anthropogenic habitat fragmentation are considered major threats for global biodiversity. As a direct consequence, connectivity is increasingly disrupted in many species, which might have serious consequences that could ultimately lead to the extinction of populations. Although a large number of reserves and conservation sites are designated and protected by law, potential habitats acting as inter-population connectivity corridors are, however, mostly ignored in the common practice of environmental planning. In most cases, this is mainly caused by a lack of quantitative measures of functional connectivity available for the planning process. In this study, we highlight the use of fine-scale potential connectivity models (PCMs) derived from multispectral satellite data for the quantification of spatially explicit habitat corridors for matrix-sensitive species of conservation concern. This framework couples a species distribution model with a connectivity model in a two-step framework, where suitability maps from step 1 are transformed into maps of landscape resistance in step 2 filtered by fragmentation thresholds. We illustrate the approach using the sand lizard ( Lacerta agilis L.) in the metropolitan area of Cologne, Germany, as a case study. Our model proved to be well suited to identify connected as well as completely isolated populations within the study area. Furthermore, due to its fine resolution, the PCM was also able to detect small linear structures known to be important for sand lizards' inter-population connectivity such as railroad embankments. We discuss the applicability and possible implementation of PCMs to overcome shortcomings in the common practice of environmental impact assessments.

  9. Impact of triphenyltin acetate in microcosms simulating floodplain lakes. II. Comparison of species sensitivity distributions between laboratory and semi-field.

    Roessink, I; Belgers, J D M; Crum, S J H; van den Brink, P J; Brock, T C M

    2006-07-01

    The study objectives were to shed light on the types of freshwater organism that are sensitive to triphenyltin acetate (TPT) and to compare the laboratory and microcosm sensitivities of the invertebrate community. The responses of a wide array of freshwater taxa (including invertebrates, phytoplankton and macrophytes) from acute laboratory Single Species Tests (SST) were compared with the concentration-response relationships of aquatic populations in two types of freshwater microcosms. Representatives of several taxonomic groups of invertebrates, and several phytoplankton and vascular plant species proved to be sensitive to TPT, illustrating its diverse modes of toxic action. Statistically calculated ecological risk thresholds (HC5 values) based on 96 h laboratory EC50 values for invertebrates were 1.3 microg/l, while these values on the basis of microcosm-Species Sensitivity Distributions (SSD) for invertebrates in sampling weeks 2-8 after TPT treatment ranged from 0.2 to 0.6 microg/l based on nominal peak concentrations. Responses observed in the microcosms did not differ between system types and sampling dates, indicating that ecological threshold levels are not affected by different community structures including taxa sensitive to TPT. The laboratory-derived invertebrate SSD curve was less sensitive than the curves from the microcosms. Possible explanations for the more sensitive field response are delayed effects and/or additional chronic exposure via the food chain in the microcosms.

  10. A probabilistic method for species sensitivity distributions taking into account the inherent uncertainty and variability of effects to estimate environmental risk.

    Gottschalk, Fadri; Nowack, Bernd

    2013-01-01

    This article presents a method of probabilistically computing species sensitivity distributions (SSD) that is well-suited to cope with distinct data scarcity and variability. First, a probability distribution that reflects the uncertainty and variability of sensitivity is modeled for each species considered. These single species sensitivity distributions are then combined to create an SSD for a particular ecosystem. A probabilistic estimation of the risk is carried out by combining the probability of critical environmental concentrations with the probability of organisms being impacted negatively by these concentrations. To evaluate the performance of the method, we developed SSD and risk calculations for the aquatic environment exposed to triclosan. The case studies showed that the probabilistic results reflect the empirical information well, and the method provides a valuable alternative or supplement to more traditional methods for calculating SSDs based on averaging raw data and/or on using theoretical distributional forms. A comparison and evaluation with single SSD values (5th-percentile [HC5]) revealed the robustness of the proposed method. Copyright © 2012 SETAC.

  11. American pika in a low-elevation lava landscape: expanding the known distribution of a temperature-sensitive species.

    Shinderman, Matt

    2015-09-01

    In 2010, the American pika (Ochotona princeps fenisex) was denied federal protection based on limited evidence of persistence in low-elevation environments. Studies in nonalpine areas have been limited to relatively few environments, and it is unclear whether patterns observed elsewhere (e.g., Bodie, CA) represent other nonalpine habitats. This study was designed to establish pika presence in a new location, determine distribution within the surveyed area, and evaluate influences of elevation, vegetation, lava complexity, and distance to habitat edge on pika site occupancy. In 2011 and 2012, we conducted surveys for American pika on four distinct subalpine lava flows of Newberry National Volcanic Monument, Oregon, USA. Field surveys were conducted at predetermined locations within lava flows via silent observation and active searching for pika sign. Site habitat characteristics were included as predictors of occupancy in multinomial regression models. Above and belowground temperatures were recorded at a subsample of pika detection sites. Pika were detected in 26% (2011) and 19% (2012) of survey plots. Seventy-four pika were detected outside survey plot boundaries. Lava complexity was the strongest predictor of pika occurrence, where pika were up to seven times more likely to occur in the most complicated lava formations. Pika were two times more likely to occur with increasing elevation, although they were found at all elevations in the study area. This study expands the known distribution of the species and provides additional evidence for persistence in nonalpine habitats. Results partially support the predictive occupancy model developed for pika at Craters of the Moon National Monument, another lava environment. Characteristics of the lava environment clearly influence pika site occupancy, but habitat variables reported as important in other studies were inconclusive here. Further work is needed to gain a better understanding of the species' current

  12. High sensitivity detection of Plasmodium species reveals positive correlations between infections of different species, shifts in age distribution and reduced local variation in Papua New Guinea

    Smith Thomas A

    2009-03-01

    Full Text Available Abstract Background When diagnosed by standard light microscopy (LM, malaria prevalence can vary significantly between sites, even at local scale, and mixed species infections are consistently less common than expect in areas co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae. The development of a high-throughput molecular species diagnostic assay now enables routine PCR-based surveillance of malaria infections in large field and intervention studies, and improves resolution of species distribution within and between communities. Methods This study reports differences in the prevalence of infections with all four human malarial species and of mixed infections as diagnosed by LM and post-PCR ligase detection reaction – fluorescent microsphere (LDR-FMA assay in 15 villages in the central Sepik area of Papua New Guinea. Results Significantly higher rates of infection by P. falciparum, P. vivax, P. malariae and Plasmodium ovale were observed in LDR-FMA compared to LM diagnosis (p P. malariae (3.9% vs 13.4% and P. ovale (0.0% vs 4.8%. In contrast to LM diagnosis, which suggested a significant deficit of mixed species infections, a significant excess of mixed infections over expectation was detected by LDR-FMA (p P. falciparum (LM: 7–9 yrs 47.5%, LDR-FMA: 10–19 yrs 74.2% and P. vivax (LM: 4–6 yrs 24.2%, LDR-FMA: 7–9 yrs 50.9% but not P. malariae infections (10–19 yrs, LM: 7.7% LDR-FMA: 21.6%. Significant geographical variation in prevalence was found for all species (except for LM-diagnosed P. falciparum, with the extent of this variation greater in LDR-FMA than LM diagnosed infections (overall, 84.4% vs. 37.6%. Insecticide-treated bednet (ITN coverage was also the dominant factor linked to geographical differences in Plasmodium species infection prevalence explaining between 60.6% – 74.5% of this variation for LDR-FMA and 81.8% – 90.0% for LM (except P. falciparum, respectively. Conclusion The present study

  13. Future needs and recommendations in the development of species sensitivity distributions: Estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures.

    Belanger, Scott; Barron, Mace; Craig, Peter; Dyer, Scott; Galay-Burgos, Malyka; Hamer, Mick; Marshall, Stuart; Posthuma, Leo; Raimondo, Sandy; Whitehouse, Paul

    2017-07-01

    A species sensitivity distribution (SSD) is a probability model of the variation of species sensitivities to a stressor, in particular chemical exposure. The SSD approach has been used as a decision support tool in environmental protection and management since the 1980s, and the ecotoxicological, statistical, and regulatory basis and applications continue to evolve. This article summarizes the findings of a 2014 workshop held by the European Centre for Toxicology and Ecotoxicology of Chemicals and the UK Environment Agency in Amsterdam, The Netherlands, on the ecological relevance, statistical basis, and regulatory applications of SSDs. An array of research recommendations categorized under the topical areas of use of SSDs, ecological considerations, guideline considerations, method development and validation, toxicity data, mechanistic understanding, and uncertainty were identified and prioritized. A rationale for the most critical research needs identified in the workshop is provided. The workshop reviewed the technical basis and historical development and application of SSDs, described approaches to estimating generic and scenario-specific SSD-based thresholds, evaluated utility and application of SSDs as diagnostic tools, and presented new statistical approaches to formulate SSDs. Collectively, these address many of the research needs to expand and improve their application. The highest priority work, from a pragmatic regulatory point of view, is to develop a guidance of best practices that could act as a basis for global harmonization and discussions regarding the SSD methodology and tools. Integr Environ Assess Manag 2017;13:664-674. © 2016 SETAC. © 2016 SETAC.

  14. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) model

    Mu, Yunsong; Wu, Fengchang; Chen, Cheng; Liu, Yuedan; Zhao, Xiaoli; Haiqing Liao; Giesy, John P.

    2014-01-01

    Criteria continuous concentrations (CCCs) are useful for describing chronic exposure to pollutants and setting water quality standards to protect aquatic life. However, because of financial, practical, or ethical restrictions on toxicity testing, few data are available to derive CCCs. In this study, CCCs for 34 metals or metalloids were derived using quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) and the final acute-chronic ratio (FACR) method. The results showed that chronic toxic potencies were correlated with several physico-chemical properties among eight species chosen, where the softness index was the most predictive characteristic. Predicted CCCs for most of the metals, except for Lead and Iron, were within a range of 10-fold of values recommended by the U.S. EPA. The QICAR–SSD model was superior to the FACR method for prediction of data-poor metals. This would have significance for predicting toxic potencies and criteria thresholds of more metals or metalloids. - Highlights: • We investigate relationships between σp and log-NOEC in eight species. • The QICAR–SSD model, FACR, and CMC/CCC were used to predict CCCs. • They are as a supplement to screening for toxicities, criteria and standards. - CCCs for 34 metals/metalloids were predicted by use of QICAR–SSD model and FACR method

  15. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) model.

    Mu, Yunsong; Wu, Fengchang; Chen, Cheng; Liu, Yuedan; Zhao, Xiaoli; Haiqing Liao; Giesy, John P

    2014-05-01

    Criteria continuous concentrations (CCCs) are useful for describing chronic exposure to pollutants and setting water quality standards to protect aquatic life. However, because of financial, practical, or ethical restrictions on toxicity testing, few data are available to derive CCCs. In this study, CCCs for 34 metals or metalloids were derived using quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) and the final acute-chronic ratio (FACR) method. The results showed that chronic toxic potencies were correlated with several physico-chemical properties among eight species chosen, where the softness index was the most predictive characteristic. Predicted CCCs for most of the metals, except for Lead and Iron, were within a range of 10-fold of values recommended by the U.S. EPA. The QICAR-SSD model was superior to the FACR method for prediction of data-poor metals. This would have significance for predicting toxic potencies and criteria thresholds of more metals or metalloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Estimation of vanadium water quality benchmarks for the protection of aquatic life with relevance to the Athabasca Oil Sands region using species sensitivity distributions.

    Schiffer, Stephanie; Liber, Karsten

    2017-11-01

    Elevated vanadium (V) concentrations in oil sands coke, which is produced and stored on site of some major Athabasca Oil Sands companies, could pose a risk to aquatic ecosystems in northern Alberta, Canada, depending on its future storage and utilization. In the present study, V toxicity was determined in reconstituted Athabasca River water to various freshwater organisms, including 2 midge species (Chironomus dilutus and Chironomus riparius; 4-d and 30-d to 40-d exposures) and 2 freshwater fish species (Oncorhynchus mykiss and Pimephales promelas; 4-d and 28-d exposures) to facilitate estimation of water quality benchmarks. The acute toxicity of V was 52.0 and 63.2 mg/L for C. dilutus and C. riparius, respectively, and 4.0 and 14.8 mg V/L for P. promelas and O. mykiss, respectively. Vanadium exposure significantly impaired adult emergence of C. dilutus and C. riparius at concentrations ≥16.7 (31.6% reduction) and 8.3 (18.0% reduction) mg/L, respectively. Chronic toxicity in fish presented as lethality, with chronic 28-d LC50s of 0.5 and 4.3 mg/L for P. promelas and O. mykiss, respectively. These data were combined with data from the peer-reviewed literature, and separate acute and chronic species sensitivity distributions (SSDs) were constructed. The acute and chronic hazardous concentrations endangering only 5% of species (HC5) were estimated as 0.64 and 0.05 mg V/L, respectively. These new data for V toxicity to aquatic organisms ensure that there are now adequate data available for regulatory agencies to develop appropriate water quality guidelines for use in the Athabasca Oil Sands region and elsewhere. Until then, the HC5 values presented in the present study could serve as interim benchmarks for the protection of aquatic life from exposure to hazardous levels of V in local aquatic environments. Environ Toxicol Chem 2017;36:3034-3044. © 2017 SETAC. © 2017 SETAC.

  17. An analysis of sensitivity of CLIMEX parameters in mapping species potential distribution and the broad-scale changes observed with minor variations in parameters values: an investigation using open-field Solanum lycopersicum and Neoleucinodes elegantalis as an example

    da Silva, Ricardo Siqueira; Kumar, Lalit; Shabani, Farzin; Picanço, Marcelo Coutinho

    2018-04-01

    A sensitivity analysis can categorize levels of parameter influence on a model's output. Identifying parameters having the most influence facilitates establishing the best values for parameters of models, providing useful implications in species modelling of crops and associated insect pests. The aim of this study was to quantify the response of species models through a CLIMEX sensitivity analysis. Using open-field Solanum lycopersicum and Neoleucinodes elegantalis distribution records, and 17 fitting parameters, including growth and stress parameters, comparisons were made in model performance by altering one parameter value at a time, in comparison to the best-fit parameter values. Parameters that were found to have a greater effect on the model results are termed "sensitive". Through the use of two species, we show that even when the Ecoclimatic Index has a major change through upward or downward parameter value alterations, the effect on the species is dependent on the selection of suitability categories and regions of modelling. Two parameters were shown to have the greatest sensitivity, dependent on the suitability categories of each species in the study. Results enhance user understanding of which climatic factors had a greater impact on both species distributions in our model, in terms of suitability categories and areas, when parameter values were perturbed by higher or lower values, compared to the best-fit parameter values. Thus, the sensitivity analyses have the potential to provide additional information for end users, in terms of improving management, by identifying the climatic variables that are most sensitive.

  18. Ecological risk assessment of microcystin-LR in the upstream section of the Haihe River based on a species sensitivity distribution model.

    Niu, Zhiguang; Du, Lei; Li, Jiafu; Zhang, Ying; Lv, Zhiwei

    2018-02-01

    The eutrophication of surface water has been the main problem of water quality management in recent decades, and the ecological risk of microcystin-LR (MC-LR), which is the by-product of eutrophication, has drawn more attention worldwide. The aims of our study were to determine the predicted no effect concentration (PNEC) of MC-LR and to assess the ecological risk of MC-LR in the upstream section of the Haihe River. HC 5 (hazardous concentration for 5% of biological species) and PNEC were obtained from a species sensitivity distribution (SSD) model, which was constructed with the acute toxicity data of MC-LR on aquatic organisms. The concentrations of MC-LR in the upstream section of the Haihe River from April to August of 2015 were analysed, and the ecological risk characteristics of MC-LR were evaluated based on the SSD model. The results showed that the HC 5 of MC-LR in freshwater was 17.18 μg/L and PNEC was 5.73 μg/L. The concentrations of MC-LR ranged from 0.68 μg/L to 32.21 μg/L and were obviously higher in summer than in spring. The values of the risk quotient (RQ) ranged from 0.12 to 5.62, suggesting that the risk of MC-LR for aquatic organisms in the river was at a medium or high level during the study period. Compared with other waterbodies in the world, the pollution level of MC-LR in the Haihe River was at a moderate level. This research could promote the study of the ecological risk of MC-LR at the ecosystem level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Impact of triphenyltin acetate in microcosms simulating floodplain lakes; II comparison of species sensitivity distributions between laboratory and semi-field

    Roessink, I.; Belgers, J.D.M.; Crum, S.J.H.; Brink, van den, P.J.; Brock, T.C.M.

    2006-01-01

    The study objectives were to shed light on the types of freshwater organism that are sensitive to triphenyltin acetate (TPT) and to compare the laboratory and microcosm sensitivities of the invertebrate community. The responses of a wide array of freshwater taxa (including invertebrates, phytoplankton and macrophytes) from acute laboratory Single Species Tests (SST) were compared with the concentration¿response relationships of aquatic populations in two types of freshwater microcosms. Repres...

  20. Community structure informs species geographic distributions

    Montesinos-Navarro, Alicia

    2018-05-23

    Understanding what determines species\\' geographic distributions is crucial for assessing global change threats to biodiversity. Measuring limits on distributions is usually, and necessarily, done with data at large geographic extents and coarse spatial resolution. However, survival of individuals is determined by processes that happen at small spatial scales. The relative abundance of coexisting species (i.e. \\'community structure\\') reflects assembly processes occurring at small scales, and are often available for relatively extensive areas, so could be useful for explaining species distributions. We demonstrate that Bayesian Network Inference (BNI) can overcome several challenges to including community structure into studies of species distributions, despite having been little used to date. We hypothesized that the relative abundance of coexisting species can improve predictions of species distributions. In 1570 assemblages of 68 Mediterranean woody plant species we used BNI to incorporate community structure into Species Distribution Models (SDMs), alongside environmental information. Information on species associations improved SDM predictions of community structure and species distributions moderately, though for some habitat specialists the deviance explained increased by up to 15%. We demonstrate that most species associations (95%) were positive and occurred between species with ecologically similar traits. This suggests that SDM improvement could be because species co-occurrences are a proxy for local ecological processes. Our study shows that Bayesian Networks, when interpreted carefully, can be used to include local conditions into measurements of species\\' large-scale distributions, and this information can improve the predictions of species distributions.

  1. Infusing considerations of trophic dependencies into species distribution modelling.

    Trainor, Anne M; Schmitz, Oswald J

    2014-12-01

    Community ecology involves studying the interdependence of species with each other and their environment to predict their geographical distribution and abundance. Modern species distribution analyses characterise species-environment dependency well, but offer only crude approximations of species interdependency. Typically, the dependency between focal species and other species is characterised using other species' point occurrences as spatial covariates to constrain the focal species' predicted range. This implicitly assumes that the strength of interdependency is homogeneous across space, which is not generally supported by analyses of species interactions. This discrepancy has an important bearing on the accuracy of inferences about habitat suitability for species. We introduce a framework that integrates principles from consumer-resource analyses, resource selection theory and species distribution modelling to enhance quantitative prediction of species geographical distributions. We show how to apply the framework using a case study of lynx and snowshoe hare interactions with each other and their environment. The analysis shows how the framework offers a spatially refined understanding of species distribution that is sensitive to nuances in biophysical attributes of the environment that determine the location and strength of species interactions. © 2014 John Wiley & Sons Ltd/CNRS.

  2. Impact of triphenyltin acetate in microcosms simulating floodplain lakes; II comparison of species sensitivity distributions between laboratory and semi-field

    Roessink, I.; Belgers, J.D.M.; Crum, S.J.H.; Brink, van den P.J.; Brock, T.C.M.

    2006-01-01

    The study objectives were to shed light on the types of freshwater organism that are sensitive to triphenyltin acetate (TPT) and to compare the laboratory and microcosm sensitivities of the invertebrate community. The responses of a wide array of freshwater taxa (including invertebrates,

  3. Modelling survival: exposure pattern, species sensitivity and uncertainty.

    Ashauer, Roman; Albert, Carlo; Augustine, Starrlight; Cedergreen, Nina; Charles, Sandrine; Ducrot, Virginie; Focks, Andreas; Gabsi, Faten; Gergs, André; Goussen, Benoit; Jager, Tjalling; Kramer, Nynke I; Nyman, Anna-Maija; Poulsen, Veronique; Reichenberger, Stefan; Schäfer, Ralf B; Van den Brink, Paul J; Veltman, Karin; Vogel, Sören; Zimmer, Elke I; Preuss, Thomas G

    2016-07-06

    The General Unified Threshold model for Survival (GUTS) integrates previously published toxicokinetic-toxicodynamic models and estimates survival with explicitly defined assumptions. Importantly, GUTS accounts for time-variable exposure to the stressor. We performed three studies to test the ability of GUTS to predict survival of aquatic organisms across different pesticide exposure patterns, time scales and species. Firstly, using synthetic data, we identified experimental data requirements which allow for the estimation of all parameters of the GUTS proper model. Secondly, we assessed how well GUTS, calibrated with short-term survival data of Gammarus pulex exposed to four pesticides, can forecast effects of longer-term pulsed exposures. Thirdly, we tested the ability of GUTS to estimate 14-day median effect concentrations of malathion for a range of species and use these estimates to build species sensitivity distributions for different exposure patterns. We find that GUTS adequately predicts survival across exposure patterns that vary over time. When toxicity is assessed for time-variable concentrations species may differ in their responses depending on the exposure profile. This can result in different species sensitivity rankings and safe levels. The interplay of exposure pattern and species sensitivity deserves systematic investigation in order to better understand how organisms respond to stress, including humans.

  4. Effects of malathion and carbendazim on Amazonian freshwater organisms: comparison of tropical and temperate species sensitivity distributions and water quality criteria

    Rico Artero, A.; Waichman, A.V.; Geber-Correa, R.; Brink, van den P.J.

    2011-01-01

    The risk assessment of pesticides for freshwater ecosystems in the Amazon has relied on the use of toxicity data and water quality criteria derived for temperate regions due to a lack of ecotoxicological studies performed with indigenous species. This leaves an unknown margin of uncertainty for the

  5. Confronting species distribution model predictions with species functional traits.

    Wittmann, Marion E; Barnes, Matthew A; Jerde, Christopher L; Jones, Lisa A; Lodge, David M

    2016-02-01

    Species distribution models are valuable tools in studies of biogeography, ecology, and climate change and have been used to inform conservation and ecosystem management. However, species distribution models typically incorporate only climatic variables and species presence data. Model development or validation rarely considers functional components of species traits or other types of biological data. We implemented a species distribution model (Maxent) to predict global climate habitat suitability for Grass Carp (Ctenopharyngodon idella). We then tested the relationship between the degree of climate habitat suitability predicted by Maxent and the individual growth rates of both wild (N = 17) and stocked (N = 51) Grass Carp populations using correlation analysis. The Grass Carp Maxent model accurately reflected the global occurrence data (AUC = 0.904). Observations of Grass Carp growth rate covered six continents and ranged from 0.19 to 20.1 g day(-1). Species distribution model predictions were correlated (r = 0.5, 95% CI (0.03, 0.79)) with observed growth rates for wild Grass Carp populations but were not correlated (r = -0.26, 95% CI (-0.5, 0.012)) with stocked populations. Further, a review of the literature indicates that the few studies for other species that have previously assessed the relationship between the degree of predicted climate habitat suitability and species functional traits have also discovered significant relationships. Thus, species distribution models may provide inferences beyond just where a species may occur, providing a useful tool to understand the linkage between species distributions and underlying biological mechanisms.

  6. Effect factors for marine eutrophication in LCIA based on species sensitivity to hypoxia

    Cosme, Nuno Miguel Dias; Hauschild, Michael Zwicky

    2016-01-01

    -observed-effect-concentrations (LOEC), were compiled from literature for 91 demersal species of fish, crustaceans, molluscs, echinoderms, annelids, and cnidarians, and converted to temperature-specific benthic (100 m depth) LOEC values. Species distribution and LOEC values were combined using a species sensitivity distribution (SSD...

  7. On the Mass Distribution of Animal Species

    Redner, Sidney; Clauset, Aaron; Schwab, David

    2009-03-01

    We develop a simple diffusion-reaction model to account for the broad and asymmetric distribution of adult body masses for species within related taxonomic groups. The model assumes three basic evolutionary features that control body mass: (i) a fixed lower limit that is set by metabolic constraints, (ii) a species extinction risk that is a weakly increasing function of body mass, and (iii) cladogenetic diffusion, in which daughter species have a slight tendency toward larger mass. The steady-state solution for the distribution of species masses in this model can be expressed in terms of the Airy function. This solution gives mass distributions that are in good agreement with data on 4002 terrestrial mammal species from the late Quaternary and 8617 extant bird species.

  8. Ensemble forecasting of species distributions.

    Araújo, Miguel B; New, Mark

    2007-01-01

    Concern over implications of climate change for biodiversity has led to the use of bioclimatic models to forecast the range shifts of species under future climate-change scenarios. Recent studies have demonstrated that projections by alternative models can be so variable as to compromise their usefulness for guiding policy decisions. Here, we advocate the use of multiple models within an ensemble forecasting framework and describe alternative approaches to the analysis of bioclimatic ensembles, including bounding box, consensus and probabilistic techniques. We argue that, although improved accuracy can be delivered through the traditional tasks of trying to build better models with improved data, more robust forecasts can also be achieved if ensemble forecasts are produced and analysed appropriately.

  9. Sensitivity to zinc of Mediterranean woody species important for restoration.

    Disante, Karen B; Fuentes, David; Cortina, Jordi

    2010-04-15

    Heavy metals have increased in natural woodlands and shrublands over the last several decades as a consequence of anthropogenic activities. However, our knowledge of the effects of these elements on woody species is scarce. In this study, we examined the responses of six Mediterranean woody species to increasing levels of zinc in hydroponic culture and discussed the possible implications for the restoration of contaminated sites. The species used, Pinus pinea L., Pinus pinaster Ait., Pinus halepensis Mill., Tetraclinis articulata (Vahl) Mast., Rhamnus alaternus L. and Quercus suber L. represent a climatic gradient from dry sub-humid to semi-arid conditions. Zinc concentrations in shoots ranged from 53 microg g(-1) in Q. suber to 382 microg g(-1) in T. articulata and were well below the levels found in roots. Zinc inhibited root elongation and root biomass and changed the root length distribution per diameter class, but the magnitude of the effects was species-specific. Only P. halepensis and Q. suber showed toxicity symptoms in aboveground parts. Species more characteristic from xeric environments (T. articulata, R. alaternus and P. halepensis) were more sensitive to zinc than species from mesic environments (Q. suber, P. pinaster and P. pinea). According to the Zn responses and bioaccumulation, Q. suber P. pinea and P. halepensis are the best candidates for field trials to test the value of woody species to restore contaminated sites. None of the species tested seemed suitable for phytoremediation. Copyright 2010 Elsevier B.V. All rights reserved.

  10. New trends in species distribution modelling

    Zimmermann, Niklaus E.; Edwards, Thomas C.; Graham, Catherine H.; Pearman, Peter B.; Svenning, Jens-Christian

    2010-01-01

    Species distribution modelling has its origin in the late 1970s when computing capacity was limited. Early work in the field concentrated mostly on the development of methods to model effectively the shape of a species' response to environmental gradients (Austin 1987, Austin et al. 1990). The methodology and its framework were summarized in reviews 10–15 yr ago (Franklin 1995, Guisan and Zimmermann 2000), and these syntheses are still widely used as reference landmarks in the current distribution modelling literature. However, enormous advancements have occurred over the last decade, with hundreds – if not thousands – of publications on species distribution model (SDM) methodologies and their application to a broad set of conservation, ecological and evolutionary questions. With this special issue, originating from the third of a set of specialized SDM workshops (2008 Riederalp) entitled 'The Utility of Species Distribution Models as Tools for Conservation Ecology', we reflect on current trends and the progress achieved over the last decade.

  11. ESUSA: US endangered species distribution file

    Nagy, J.; Calef, C.E.

    1979-10-01

    This report describes a file containing distribution data on endangered species of the United States of Federal concern pursuant to the Endangered Species Act of 1973. Included for each species are (a) the common name, (b) the scientific name, (c) the family, (d) the group (mammal, bird, etc.), (e) Fish and Wildlife Service (FWS) listing and recovery priorities, (f) the Federal legal status, (g) the geographic distribution by counties or islands, (h) Federal Register citations and (i) the sources of the information on distribution of the species. Status types are endangered, threatened, proposed, formally under review, candidate, deleted, and rejected. Distribution is by Federal Information Processing Standard (FIPS) county code and is of four types: designated critical habitat, present range, potential range, and historic range.

  12. Distribution of crayfish species in Hungarian waters

    Mercédesz, Ludányi; Peeters, E.T.H.M.; Kiss, B.; Roessink, I.

    2016-01-01

    Three native crayfish species, i.e.~Astacus astacus, Astacus leptodactylus and Austropotamobius torrentium, occur in Hungary. Lately, however, non-indigenous crustaceans have also invaded the country Their most recent distribution and impact on the occurrences of the native species is not clear.

  13. Finessing atlas data for species distribution models

    Niamir, A.; Skidmore, A.K.; Toxopeus, A.G.; Munoz, A.R.; Real, R.

    2011-01-01

    Aim The spatial resolution of species atlases and therefore resulting model predictions are often too coarse for local applications. Collecting distribution data at a finer resolution for large numbers of species requires a comprehensive sampling effort, making it impractical and expensive. This

  14. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same

  15. From species sensitivity to hypoxia to effect factors modelling in life cycle impact assessment (LCIA)

    Cosme, Nuno Miguel Dias; Hauschild, Michael Zwicky

    ’s sensitivity in five climate zone (polar, subpolar, temperate, subtropical, tropical). Species Sensitivity Distribution (SSD) curves combining DO concentrations and Potentially Affected Fractions (PAF) of species were plotted to estimate hazard concentrations (HC50LOEL) per climate zone, and Effect Factors (EF...

  16. Forms and genesis of species abundance distributions

    Evans O. Ochiaga

    2015-12-01

    Full Text Available Species abundance distribution (SAD is one of the most important metrics in community ecology. SAD curves take a hollow or hyperbolic shape in a histogram plot with many rare species and only a few common species. In general, the shape of SAD is largely log-normally distributed, although the mechanism behind this particular SAD shape still remains elusive. Here, we aim to review four major parametric forms of SAD and three contending mechanisms that could potentially explain this highly skewed form of SAD. The parametric forms reviewed here include log series, negative binomial, lognormal and geometric distributions. The mechanisms reviewed here include the maximum entropy theory of ecology, neutral theory and the theory of proportionate effect.

  17. Distributed Monitoring of Voltage Collapse Sensitivity Indices

    Simpson-Porco, John W.; Bullo, Francesco

    2016-01-01

    The assessment of voltage stability margins is a promising direction for wide-area monitoring systems. Accurate monitoring architectures for long-term voltage instability are typically centralized and lack scalability, while completely decentralized approaches relying on local measurements tend towards inaccuracy. Here we present distributed linear algorithms for the online computation of voltage collapse sensitivity indices. The computations are collectively performed by processors embedded ...

  18. Applications of species distribution modeling to paleobiology

    Svenning, Jens-Christian; Fløjgaard, Camilla; Marske, Katharine Ann

    2011-01-01

    -Pleistocene megafaunal extinctions, past community assembly, human paleobiogeography, Holocene paleoecology, and even deep-time biogeography (notably, providing insights into biogeographic dynamics >400 million years ago). We discuss important assumptions and uncertainties that affect the SDM approach to paleobiology......Species distribution modeling (SDM: statistical and/or mechanistic approaches to the assessment of range determinants and prediction of species occurrence) offers new possibilities for estimating and studying past organism distributions. SDM complements fossil and genetic evidence by providing (i......) quantitative and potentially high-resolution predictions of the past organism distributions, (ii) statistically formulated, testable ecological hypotheses regarding past distributions and communities, and (iii) statistical assessment of range determinants. In this article, we provide an overview...

  19. Exploring similarities among many species distributions

    Simmerman, Scott; Wang, Jingyuan; Osborne, James; Shook, Kimberly; Huang, Jian; Godsoe, William; Simons, Theodore R.

    2012-01-01

    Collecting species presence data and then building models to predict species distribution has been long practiced in the field of ecology for the purpose of improving our understanding of species relationships with each other and with the environment. Due to limitations of computing power as well as limited means of using modeling software on HPC facilities, past species distribution studies have been unable to fully explore diverse data sets. We build a system that can, for the first time to our knowledge, leverage HPC to support effective exploration of species similarities in distribution as well as their dependencies on common environmental conditions. Our system can also compute and reveal uncertainties in the modeling results enabling domain experts to make informed judgments about the data. Our work was motivated by and centered around data collection efforts within the Great Smoky Mountains National Park that date back to the 1940s. Our findings present new research opportunities in ecology and produce actionable field-work items for biodiversity management personnel to include in their planning of daily management activities.

  20. Geographic distribution of wild potato species

    Hijmans, R.J.; Spooner, D.M.

    2001-01-01

    The geographic distribution of wild potatoes (Solanaceae sect. Petota) was analyzed using a database of 6073 georeferenced observations. Wild potatoes occur in 16 countries, but 88% of the observations are from Argentina, Bolivia, Mexico, and Peru. Most species are rare and narrowly endemic: for 77

  1. Applying adverse outcome pathways and species sensitivity-weighted distribution to predicted-no-effect concentration derivation and quantitative ecological risk assessment for bisphenol A and 4-nonylphenol in aquatic environments: A case study on Tianjin City, China.

    Wang, Ying; Na, Guangshui; Zong, Humin; Ma, Xindong; Yang, Xianhai; Mu, Jingli; Wang, Lijun; Lin, Zhongsheng; Zhang, Zhifeng; Wang, Juying; Zhao, Jinsong

    2018-02-01

    Adverse outcome pathways (AOPs) are a novel concept that effectively considers the toxic modes of action and guides the ecological risk assessment of chemicals. To better use toxicity data including biochemical or molecular responses and mechanistic data, we further developed a species sensitivity-weighted distribution (SSWD) method for bisphenol A and 4-nonylphenol. Their aquatic predicted-no-effect concentrations (PNECs) were derived using the log-normal statistical extrapolation method. We calculated aquatic PNECs of bisphenol A and 4-nonylphenol with values of 4.01 and 0.721 µg/L, respectively. The ecological risk of each chemical in different aquatic environments near Tianjin, China, a coastal municipality along the Bohai Sea, was characterized by hazard quotient and probabilistic risk quotient assessment techniques. Hazard quotients of 7.02 and 5.99 at 2 municipal sewage sites using all of the endpoints were observed for 4-nonylphenol, which indicated high ecological risks posed by 4-nonylphenol to aquatic organisms, especially endocrine-disrupting effects. Moreover, a high ecological risk of 4-nonylphenol was indicated based on the probabilistic risk quotient method. The present results show that combining the SSWD method and the AOP concept could better protect aquatic organisms from adverse effects such as endocrine disruption and could decrease uncertainty in ecological risk assessment. Environ Toxicol Chem 2018;37:551-562. © 2017 SETAC. © 2017 SETAC.

  2. ENDANGERED SPECIES SENSITIVITY AND ECOLOGICAL RISK ASSESSMENT

    he U.S. Environmental Protection Agency (EPA), U.S. Fish & Wildlife Service, and National Marine Fisheries Service share a common responsibility for the protection of our nation's aquatic species under the Endangered Species Act (ESA) of 1973. The EPA, under the Federal Insectici...

  3. Distribution of Vulpia species (Poaceae in Poland

    Ludwik Frey

    2011-01-01

    Full Text Available The distribution of four species of the genus Vulpia [V. myuros (L. C.C. Gmel., V. bromoides (L. S.F. Gray, V. ciliata Dumort. and V. geniculata (L. Link] reported in Poland has been studied. Currently, V. myuros and especially V. bromoides are very rare species, and their greatest concentration can be found only in the Lower Silesia region. The number of their localities decreased after 1950 and it seems resonable to include both species in the "red list" of threatened plants in Poland: V. myuros in the EN category, V. bromoides in the CR category. V. ciliata and V. geniculata are very rare ephemerophytes and their localities not confirmed during ca 60 years are of historical interest only.

  4. Species sensitivity distribution approach to primary risk analysis of the metal pyrithione photodegradation product, 2,2'-dipyridyldisulfide in the Inland Sea and induction of notochord undulation in fish embryos.

    Mochida, Kazuhiko; Amano, Haruna; Ito, Katsutoshi; Ito, Mana; Onduka, Toshimitsu; Ichihashi, Hideki; Kakuno, Akira; Harino, Hiroya; Fujii, Kazunori

    2012-08-15

    To carry out a primary risk assessment in the Inland Sea of Japan for 2,2'-dipyridyldisulfide [(PS)(2)], a metal pyrithione photodegradation product, we used a methodology based on the species sensitivity distribution (SSD) estimated with a Bayesian statistical model. We first conducted growth inhibition tests with three marine phytoplankton species, Tetraselmis tetrathele, Chaetoceros calcitrans, and Dunaliella tertiolecta. We also performed acute and early life stage toxicity (ELS) tests with a teleost fish, the mummichog (Fundulus heteroclitus). The algal growth inhibition tests revealed that the 72-h EC(50) ranged from 62 to 1100 μg/L. Acute toxicity tests with larval mummichogs revealed that the 96-h LC(50) was approximately 500 μg/L based on the actual toxicant concentrations. ELS testing of (PS)(2) under continuous flow-through conditions for 50 days revealed that growth was the most sensitive endpoint, and both total length and body weight were significantly lower in the groups exposed to 27 μg/L (PS)(2) compared to the solvent control group. We determined a lowest observed effect concentration of 17 μg/L and a NOEC of 5.9 μg/L based on the actual toxicant concentrations. By using the ecotoxicity data (LC(50) and EC(50)) from this study and previous work, we calculated a hazardous concentration that should protect 95% and 99% of species (HC(5) and HC(1)) based on the SSD derived with a Bayesian statistical model. The medians with 90% confidence intervals (parentheses) of the HC(5) and HC(1) were 31.0 (3.2, 101.8) μg/L and 10.1 (0.5, 44.2) μg/L, respectively. In the ELS test, about 80% of hatched larvae exposed to 243-μg/L (PS)(2) displayed a notochord undulation. To elucidate the cause of the notochord undulation, we carried out embryo toxicity tests by exposing embryos at various developmental stages to (PS)(2). Exposure to (PS)(2) through the entire gastrulae stage was important to induction of the morphological abnormality. Lysyl oxidase activity

  5. Incorporating uncertainty in predictive species distribution modelling.

    Beale, Colin M; Lennon, Jack J

    2012-01-19

    Motivated by the need to solve ecological problems (climate change, habitat fragmentation and biological invasions), there has been increasing interest in species distribution models (SDMs). Predictions from these models inform conservation policy, invasive species management and disease-control measures. However, predictions are subject to uncertainty, the degree and source of which is often unrecognized. Here, we review the SDM literature in the context of uncertainty, focusing on three main classes of SDM: niche-based models, demographic models and process-based models. We identify sources of uncertainty for each class and discuss how uncertainty can be minimized or included in the modelling process to give realistic measures of confidence around predictions. Because this has typically not been performed, we conclude that uncertainty in SDMs has often been underestimated and a false precision assigned to predictions of geographical distribution. We identify areas where development of new statistical tools will improve predictions from distribution models, notably the development of hierarchical models that link different types of distribution model and their attendant uncertainties across spatial scales. Finally, we discuss the need to develop more defensible methods for assessing predictive performance, quantifying model goodness-of-fit and for assessing the significance of model covariates.

  6. Measuring sensitivity in pharmacoeconomic studies. Refining point sensitivity and range sensitivity by incorporating probability distributions.

    Nuijten, M J

    1999-07-01

    The aim of the present study is to describe a refinement of a previously presented method, based on the concept of point sensitivity, to deal with uncertainty in economic studies. The original method was refined by the incorporation of probability distributions which allow a more accurate assessment of the level of uncertainty in the model. In addition, a bootstrap method was used to create a probability distribution for a fixed input variable based on a limited number of data points. The original method was limited in that the sensitivity measurement was based on a uniform distribution of the variables and that the overall sensitivity measure was based on a subjectively chosen range which excludes the impact of values outside the range on the overall sensitivity. The concepts of the refined method were illustrated using a Markov model of depression. The application of the refined method substantially changed the ranking of the most sensitive variables compared with the original method. The response rate became the most sensitive variable instead of the 'per diem' for hospitalisation. The refinement of the original method yields sensitivity outcomes, which greater reflect the real uncertainty in economic studies.

  7. Node-based analysis of species distributions

    Borregaard, Michael Krabbe; Rahbek, Carsten; Fjeldså, Jon

    2014-01-01

    overrepresentation score (SOS) and the geographic node divergence (GND) score, which together combine ecological and evolutionary patterns into a single framework and avoids many of the problems that characterize community phylogenetic methods in current use.This approach goes through each node in the phylogeny...... with case studies on two groups with well-described biogeographical histories: a local-scale community data set of hummingbirds in the North Andes, and a large-scale data set of the distribution of all species of New World flycatchers. The node-based analysis of these two groups generates a set...... of intuitively interpretable patterns that are consistent with current biogeographical knowledge.Importantly, the results are statistically tractable, opening many possibilities for their use in analyses of evolutionary, historical and spatial patterns of species diversity. The method is implemented...

  8. Attenuation of species abundance distributions by sampling

    Shimadzu, Hideyasu; Darnell, Ross

    2015-01-01

    Quantifying biodiversity aspects such as species presence/ absence, richness and abundance is an important challenge to answer scientific and resource management questions. In practice, biodiversity can only be assessed from biological material taken by surveys, a difficult task given limited time and resources. A type of random sampling, or often called sub-sampling, is a commonly used technique to reduce the amount of time and effort for investigating large quantities of biological samples. However, it is not immediately clear how (sub-)sampling affects the estimate of biodiversity aspects from a quantitative perspective. This paper specifies the effect of (sub-)sampling as attenuation of the species abundance distribution (SAD), and articulates how the sampling bias is induced to the SAD by random sampling. The framework presented also reveals some confusion in previous theoretical studies. PMID:26064626

  9. Antibiotics sensitivity profile of proteus species associated with ...

    Antibiotics sensitivity profile of proteus species associated with specific infections at University of Ilorin Teaching Hospital, Ilorin. ... Results of the antimicrobial sensitivity testing showed that Imipenem and Piperacillin antibiotics were the most effective against Proteus sppwith each having 100%, followed by Ceftazidime ...

  10. Distribution of metal and adsorbed guest species in zeolites

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes {sup 129}Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of {sup 129}Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, {sup 129}Xe NMR is insensitive to fine structural details at room temperature.

  11. Distribution of metal and adsorbed guest species in zeolites

    Chmelka, B.F.

    1989-12-01

    Because of their high internal surface areas and molecular-size cavity dimensions, zeolites are used widely as catalysts, shape- selective supports, or adsorbents in a variety of important chemical processes. For metal-catalyzed reactions, active metal species must be dispersed to sites within the zeolite pores that are accessible to diffusing reactant molecules. The distribution of the metal, together with transport and adsorption of reactant molecules in zeolite powders, are crucial to ultimate catalyst performance. The nature of the metal or adsorbed guest distribution is known, however, to be dramatically dependent upon preparatory conditions. Our objective is to understand, at the molecular level, how preparatory treatments influence the distribution of guest species in zeolites, in order that macroscopic adsorption and reaction properties of these materials may be better understood. The sensitivity of xenon to its adsorption environment makes 129 Xe NMR spectroscopy an important diagnostic probe of metal clustering and adsorbate distribution processes in zeolites. The utility of 129 Xe NMR depends on the mobility of the xenon atoms within the zeolite-guest system, together with the length scale of the sample heterogeneity being studied. In large pore zeolites containing dispersed guest species, such as Pt--NaY, 129 Xe NMR is insensitive to fine structural details at room temperature

  12. Gridded Species Distribution, Version 1: Global Amphibians Presence Grids

    National Aeronautics and Space Administration — The Global Amphibians Presence Grids of the Gridded Species Distribution, Version 1 is a reclassified version of the original grids of amphibian species distribution...

  13. A biogeographical perspective on species abundance distributions

    Matthews, Thomas J.; Borges, Paulo A. V.; de Azevedo, Eduardo Brito

    2017-01-01

    It has become increasingly recognized that multiple processes can generate similar shapes of species abundance distributions (SADs), with the result that the fit of a given SAD model cannot unambiguously provide evidence in support of a given theory or model. An alternative approach to comparing...... the fit of different SAD models to data from a single site is to collect abundance data from a variety of sites, and then build models to analyse how different SAD properties (e.g. form, skewness) vary with different predictor variables. Such a biogeographical approach to SAD research is potentially very...... revealing, yet there has been a general lack of interest in SADs in the biogeographical literature. In this Perspective, we address this issue by highlighting findings of recent analyses of SADs that we consider to be of intrinsic biogeographical interest. We use arthropod data drawn from the Azorean...

  14. Projecting future expansion of invasive species: comparing and improving methodologies for species distribution modeling.

    Mainali, Kumar P; Warren, Dan L; Dhileepan, Kunjithapatham; McConnachie, Andrew; Strathie, Lorraine; Hassan, Gul; Karki, Debendra; Shrestha, Bharat B; Parmesan, Camille

    2015-12-01

    Modeling the distributions of species, especially of invasive species in non-native ranges, involves multiple challenges. Here, we developed some novel approaches to species distribution modeling aimed at reducing the influences of such challenges and improving the realism of projections. We estimated species-environment relationships for Parthenium hysterophorus L. (Asteraceae) with four modeling methods run with multiple scenarios of (i) sources of occurrences and geographically isolated background ranges for absences, (ii) approaches to drawing background (absence) points, and (iii) alternate sets of predictor variables. We further tested various quantitative metrics of model evaluation against biological insight. Model projections were very sensitive to the choice of training dataset. Model accuracy was much improved using a global dataset for model training, rather than restricting data input to the species' native range. AUC score was a poor metric for model evaluation and, if used alone, was not a useful criterion for assessing model performance. Projections away from the sampled space (i.e., into areas of potential future invasion) were very different depending on the modeling methods used, raising questions about the reliability of ensemble projections. Generalized linear models gave very unrealistic projections far away from the training region. Models that efficiently fit the dominant pattern, but exclude highly local patterns in the dataset and capture interactions as they appear in data (e.g., boosted regression trees), improved generalization of the models. Biological knowledge of the species and its distribution was important in refining choices about the best set of projections. A post hoc test conducted on a new Parthenium dataset from Nepal validated excellent predictive performance of our 'best' model. We showed that vast stretches of currently uninvaded geographic areas on multiple continents harbor highly suitable habitats for parthenium

  15. SPECIES DISTRIBUTIONS, SURROGACY, AND IMPORTANT CONSERVATION REGIONS IN CANADA

    Conservation actions could be more efficient if there is congruence among taxa in the distribution of species. Patterns in the geographic distribution of species of six taxa were used to identify nationally important sites for conservation in Canada. Species richness and a meas...

  16. Species differences in the sensitivity of avian embryos to methylmercury

    Heinz, G.H.; Hoffman, D.J.; Klimstra, J.D.; Stebbins, K.R.; Kondrad, S.L.; Erwin, C.A.

    2009-01-01

    We injected doses of methylmercury into the air cells of eggs of 26 species of birds and examined the dose-response curves of embryo survival. For 23 species we had adequate data to calculate the median lethal concentration (LC50). Based on the dose-response curves and LC50s, we ranked species according to their sensitivity to injected methylmercury. Although the previously published embryotoxic threshold of mercury in game farm mallards (Anas platyrhynchos) has been used as a default value to protect wild species of birds, we found that, relative to other species, mallard embryos are not very sensitive to injected methylmercury; their LC50 was 1.79 ug/g mercury on a wet-weight basis. Other species we categorized as also exhibiting relatively low sensitivity to injected methylmercury (their LC50s were 1 ug/g mercury or higher) were the hooded merganser (Lophodytes cucullatus), lesser scaup (Aythya affinis), Canada goose (Branta canadensis), double-crested cormorant (Phalacrocorax auritus), and laughing gull (Larus atricilla). Species we categorized as having medium sensitivity (their LC50s were greater than 0.25 ug/g mercury but less than 1 ug/g mercury) were the clapper rail (Rallus longirostris), sandhill crane (Grus canadensis), ring-necked pheasant (Phasianus colchicus), chicken (Gallus gallus), common grackle (Quiscalus quiscula), tree swallow (Tachycineta bicolor), herring gull (Larus argentatus), common tern (S terna hirundo), royal tern (Sterna maxima), Caspian tern (Sterna caspia), great egret (Ardea alba), brown pelican (Pelecanus occidentalis), and anhinga (Anhinga anhinga). Species we categorized as exhibiting high sensitivity (their LC50s were less than 0.25 ug/g mercury) were the American kestrel (Falco sparverius), osprey (Pandion haliaetus), white ibis (Eudocimus albus), snowy egret (Egretta thula), and tri-colored heron (Egretta tricolor). For mallards, chickens, and ring-necked pheasants (all species for which we could compare the toxicity of our

  17. Mapping National Plant Biodiversity Patterns in South Korea with the MARS Species Distribution Model.

    Hyeyeong Choe

    Full Text Available Accurate information on the distribution of existing species is crucial to assess regional biodiversity. However, data inventories are insufficient in many areas. We examine the ability of Multivariate Adaptive Regression Splines (MARS multi-response species distribution model to overcome species' data limitations and portray plant species distribution patterns for 199 South Korean plant species. The study models species with two or more observations, examines their contribution to national patterns of species richness, provides a sensitivity analysis of different range threshold cutoff approaches for modeling species' ranges, and presents considerations for species modeling at fine spatial resolution. We ran MARS models for each species and tested four threshold methods to transform occurrence probabilities into presence or absence range maps. Modeled occurrence probabilities were extracted at each species' presence points, and the mean, median, and one standard deviation (SD calculated to define data-driven thresholds. A maximum sum of sensitivity and specificity threshold was also calculated, and the range maps from the four cutoffs were tested using independent plant survey data. The single SD values were the best threshold tested for minimizing omission errors and limiting species ranges to areas where the associated occurrence data were correctly classed. Eight individual species range maps for rare plant species were identified that are potentially affected by resampling predictor variables to fine spatial scales. We portray spatial patterns of high species richness by assessing the combined range maps from three classes of species: all species, endangered and endemic species, and range-size rarity of all species, which could be used in conservation planning for South Korea. The MARS model is promising for addressing the common problem of few species occurrence records. However, projected species ranges are highly dependent on the

  18. Community structure informs species geographic distributions

    Montesinos-Navarro, Alicia; Estrada, Alba; Font, Xavier; Matias, Miguel G.; Meireles, Catarina; Mendoza, Manuel; Honrado, Joao P.; Prasad, Hari D.; Vicente, Joana R.; Early, Regan

    2018-01-01

    spatial resolution. However, survival of individuals is determined by processes that happen at small spatial scales. The relative abundance of coexisting species (i.e. 'community structure') reflects assembly processes occurring at small scales

  19. Selectivity, specificity, and sensitivity in the photoionization of sputtered species

    Gruen, D.M.; Calaway, W.F.; Pellin, M.J.; Young, C.E.; Spiegel, D.R.; Clayton, R.N.; Davis, A.M.; Blum, J.D.

    1990-01-01

    To deal with the problem of non- or near-resonant ionization, one needs to achieve the highest selectively for photoionization of the species of interest relative to isobarically overlapping species by choosing a specific photoionization scheme tailoring are that is could not have near-overlap with known atomic or molecular energy levels of isobaric species, and that it should lead to saturation of the resonance transitions at the lowest possible laser power levels so as to minimize two- and three-photon nonresonant photoionization processes. Experience has shown that, even when these two conditions are met as closely as possible, non- or near-resonant ionization can still occur, perhaps because of the existence of hitherto unobserved energy levels, photodissociation of sputtered molecules, or other effects. It is becoming clear that maximizing detection sensitivity for a particular species requires one to pay careful attention to the selection of an optimal photoionization scheme. It is the purpose of the present paper to illustrate this point with several examples and to help point the way to still further improvements in detection sensitivity by non- or near-resonant. ionization through detailed exploration of alternative photoionization schemes

  20. Equilibrium of global amphibian species distributions with climate

    Munguí­a, Mariana; Rahbek, Carsten; Rangel, Thiago F.

    2012-01-01

    A common assumption in bioclimatic envelope modeling is that species distributions are in equilibrium with contemporary climate. A number of studies have measured departures from equilibrium in species distributions in particular regions, but such investigations were never carried out for a compl...

  1. Providing the Air Force with Data on Species Sensitive to Noise from Low Flying Aircraft

    Howie, Shara

    2000-01-01

    ...), the ACC must evaluate its air operations for impacts to noise sensitive wildlife. The areas used for training flights change, the list of species believed sensitive to noise changes, the species and the species information are dynamic...

  2. Past, present and future distributions of an Iberian Endemic, Lepus granatensis: ecological and evolutionary clues from species distribution models.

    Pelayo Acevedo

    Full Text Available The application of species distribution models (SDMs in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis were used to i determine the species' ecogeographical constraints, ii hindcast a climatic model for the last glacial maximum (LGM, relating it to inferences derived from molecular studies, and iii calibrate a model to assess the species future distribution trends (up to 2080. Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor is the most important descriptor of the current distribution of the Iberian hare. In addition, the model's output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change.

  3. Past, present and future distributions of an Iberian Endemic, Lepus granatensis: ecological and evolutionary clues from species distribution models.

    Acevedo, Pelayo; Melo-Ferreira, José; Real, Raimundo; Alves, Paulo Célio

    2012-01-01

    The application of species distribution models (SDMs) in ecology and conservation biology is increasing and assuming an important role, mainly because they can be used to hindcast past and predict current and future species distributions. However, the accuracy of SDMs depends on the quality of the data and on appropriate theoretical frameworks. In this study, comprehensive data on the current distribution of the Iberian hare (Lepus granatensis) were used to i) determine the species' ecogeographical constraints, ii) hindcast a climatic model for the last glacial maximum (LGM), relating it to inferences derived from molecular studies, and iii) calibrate a model to assess the species future distribution trends (up to 2080). Our results showed that the climatic factor (in its pure effect and when it is combined with the land-cover factor) is the most important descriptor of the current distribution of the Iberian hare. In addition, the model's output was a reliable index of the local probability of species occurrence, which is a valuable tool to guide species management decisions and conservation planning. Climatic potential obtained for the LGM was combined with molecular data and the results suggest that several glacial refugia may have existed for the species within the major Iberian refugium. Finally, a high probability of occurrence of the Iberian hare in the current species range and a northward expansion were predicted for future. Given its current environmental envelope and evolutionary history, we discuss the macroecology of the Iberian hare and its sensitivity to climate change.

  4. Big data of tree species distributions

    Serra-Diaz, Josep M.; Enquist, Brian J.; Maitner, Brian

    2018-01-01

    are currently available in big databases, several challenges hamper their use, notably geolocation problems and taxonomic uncertainty. Further, we lack a complete picture of the data coverage and quality assessment for open/public databases of tree occurrences. Methods: We combined data from five major...... and data aggregation, especially from national forest inventory programs, to improve the current publicly available data.......Background: Trees play crucial roles in the biosphere and societies worldwide, with a total of 60,065 tree species currently identified. Increasingly, a large amount of data on tree species occurrences is being generated worldwide: from inventories to pressed plants. While many of these data...

  5. species composition, relative abundance and distribution

    Preferred Customer

    College of Natural Sciences, Addis Ababa University, 2011. ISSN: 0379– ... distribution at Entoto Natural Park and escarpment was carried out during July 2009 - March 2010. The study ..... University Press, Princeton and Oxford, 496 pp. 20.

  6. Relating species abundance distributions to species-area curves in two Mediterranean-type shrublands

    Keeley, Jon E.

    2003-01-01

    Based on both theoretical and empirical studies there is evidence that different species abundance distributions underlie different species-area relationships. Here I show that Australian and Californian shrubland communities (at the scale from 1 to 1000 m2) exhibit different species-area relationships and different species abundance patterns. The species-area relationship in Australian heathlands best fits an exponential model and species abundance (based on both density and cover) follows a narrow log normal distribution. In contrast, the species-area relationship in Californian shrublands is best fit with the power model and, although species abundance appears to fit a log normal distribution, the distribution is much broader than in Australian heathlands. I hypothesize that the primary driver of these differences is the abundance of small-stature annual species in California and the lack of annuals in Australian heathlands. Species-area is best fit by an exponential model in Australian heathlands because the bulk of the species are common and thus the species-area curves initially rise rapidly between 1 and 100 m2. Annuals in Californian shrublands generate very broad species abundance distributions with many uncommon or rare species. The power function is a better model in these communities because richness increases slowly from 1 to 100 m2 but more rapidly between 100 and 1000 m2due to the abundance of rare or uncommon species that are more likely to be encountered at coarser spatial scales. The implications of this study are that both the exponential and power function models are legitimate representations of species-area relationships in different plant communities. Also, structural differences in community organization, arising from different species abundance distributions, may lead to different species-area curves, and this may be tied to patterns of life form distribution.

  7. Species Distribution and Antibiotic Resistance in Coagulase ...

    Purpose: The antimicrobial susceptibility of 149 coagulase-negative staphylococci (CoNS) isolates from faecal samples of children in Ile-Ife, Nigeria, was evaluated in order to determine their contribution to antimicrobial resistance in the community. Methods: The isolates were identified to the species level by conventional ...

  8. Weather, not climate, defines distributions of vagile bird species.

    April E Reside

    Full Text Available BACKGROUND: Accurate predictions of species distributions are essential for climate change impact assessments. However the standard practice of using long-term climate averages to train species distribution models might mute important temporal patterns of species distribution. The benefit of using temporally explicit weather and distribution data has not been assessed. We hypothesized that short-term weather associated with the time a species was recorded should be superior to long-term climate measures for predicting distributions of mobile species. METHODOLOGY: We tested our hypothesis by generating distribution models for 157 bird species found in Australian tropical savannas (ATS using modelling algorithm Maxent. The variable weather of the ATS supports a bird assemblage with variable movement patterns and a high incidence of nomadism. We developed "weather" models by relating climatic variables (mean temperature, rainfall, rainfall seasonality and temperature seasonality from the three month, six month and one year period preceding each bird record over a 58 year period (1950-2008. These weather models were compared against models built using long-term (30 year averages of the same climatic variables. CONCLUSIONS: Weather models consistently achieved higher model scores than climate models, particularly for wide-ranging, nomadic and desert species. Climate models predicted larger range areas for species, whereas weather models quantified fluctuations in habitat suitability across months, seasons and years. Models based on long-term climate averages over-estimate availability of suitable habitat and species' climatic tolerances, masking species potential vulnerability to climate change. Our results demonstrate that dynamic approaches to distribution modelling, such as incorporating organism-appropriate temporal scales, improves understanding of species distributions.

  9. Species identification, distribution and abundance of Gerreidae ...

    the distribution and abundance of Gerres in estuaries wa'S collected from July 1978 to ..... the channel area between the W.L.R. and the mouth (not the tidal basin) during ..... overwhelming importance in the kelp beds of Britain. Recently Blaber ...

  10. Thermal sensitivity of cold climate lizards and the importance of distributional ranges.

    Bonino, Marcelo F; Moreno Azócar, Débora L; Schulte, James A; Abdala, Cristian S; Cruz, Félix B

    2015-08-01

    One of the fundamental goals in macroecology is to understand the relationship among species' geographic ranges, ecophysiology, and climate; however, the mechanisms underlying the distributional geographic patterns observed remain unknown for most organisms. In the case of ectotherms this is particularly important because the knowledge of these interactions may provide a robust framework for predicting the potential consequences of climate change in these organisms. Here we studied the relationship of thermal sensitivity and thermal tolerance in Patagonian lizards and their geographic ranges, proposing that species with wider distributions have broader plasticity and thermal tolerance. We predicted that lizard thermal physiology is related to the thermal characteristics of the environment. We also explored the presence of trade-offs of some thermal traits and evaluated the potential effects of a predicted scenario of climate change for these species. We examined sixteen species of Liolaemini lizards from Patagonia representing species with different geographic range sizes. We obtained thermal tolerance data and performance curves for each species in laboratory trials. We found evidence supporting the idea that higher physiological plasticity allows species to achieve broader distribution ranges compared to species with restricted distributions. We also found a trade-off between broad levels of plasticity and higher optimum temperatures of performance. Finally, results from contrasting performance curves against the highest environmental temperatures that lizards may face in a future scenario (year 2080) suggest that the activity of species occurring at high latitudes may be unaffected by predicted climatic changes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Alkylation sensitivity screens reveal a conserved cross-species functionome

    Svilar, David; Dyavaiah, Madhu; Brown, Ashley R.; Tang, Jiang-bo; Li, Jianfeng; McDonald, Peter R.; Shun, Tong Ying; Braganza, Andrea; Wang, Xiao-hong; Maniar, Salony; St Croix, Claudette M.; Lazo, John S.; Pollack, Ian F.; Begley, Thomas J.; Sobol, Robert W.

    2013-01-01

    To identify genes that contribute to chemotherapy resistance in glioblastoma, we conducted a synthetic lethal screen in a chemotherapy-resistant glioblastoma derived cell line with the clinical alkylator temozolomide (TMZ) and an siRNA library tailored towards “druggable” targets. Select DNA repair genes in the screen were validated independently, confirming the DNA glycosylases UNG and MYH as well as MPG to be involved in the response to high dose TMZ. The involvement of UNG and MYH is likely the result of a TMZ-induced burst of reactive oxygen species. We then compared the human TMZ sensitizing genes identified in our screen with those previously identified from alkylator screens conducted in E. coli and S. cerevisiae. The conserved biological processes across all three species composes an Alkylation Functionome that includes many novel proteins not previously thought to impact alkylator resistance. This high-throughput screen, validation and cross-species analysis was then followed by a mechanistic analysis of two essential nodes: base excision repair (BER) DNA glycosylases (UNG, human and mag1, S. cerevisiae) and protein modification systems, including UBE3B and ICMT in human cells or pby1, lip22, stp22 and aim22 in S. cerevisiae. The conserved processes of BER and protein modification were dual targeted and yielded additive sensitization to alkylators in S. cerevisiae. In contrast, dual targeting of BER and protein modification genes in human cells did not increase sensitivity, suggesting an epistatic relationship. Importantly, these studies provide potential new targets to overcome alkylating agent resistance. PMID:23038810

  12. Monitoring Sensitive Bat Species at Los Alamos National Laboratory

    Schoenberg, Kari M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-15

    Bats play a critical role in ecosystems and are vulnerable to disturbance and disruption by human activities. In recent decades, bat populations in the United States and elsewhere have decreased tremendously. There are 47 different species of bat in the United States and 28 of these occur in New Mexico with 15 different species documented at the Los Alamos National Laboratory (LANL) and surrounding areas. Euderma maculatum(the spotted bat) is listed as “threatened” by the state of New Mexico and is known to occur at LANL. Four other species of bats are listed as “sensitive” and also occur here. In 1995, a four year study was initiated at LANL to assess the status of bat species of concern, elucidate distribution and relative abundance, and obtain information on roosting sites. There have been no definitive studies since then. Biologists in the Environmental Protection Division at LANL initiated a multi-year monitoring program for bats in May 2013 to implement the Biological Resources Management Plan. The objective of this ongoing study is to monitor bat species diversity and seasonal activity over time at LANL. Bat species diversity and seasonal activity were measured using an acoustic bat detector, the Pettersson D500X. This ultrasound recording unit is intended for long-term, unattended recording of bat and other high frequency animal calls. During 2013, the detector was deployed at two locations around LANL. Study sites were selected based on proximity to water where bats may be foraging. Recorded bat calls were analyzed using Sonobat, software that can help determine specific species of bat through their calls. A list of bat species at the two sites was developed and compared to lists from previous studies. Species diversity and seasonal activity, measured as the number of call sequences recorded each month, were compared between sites and among months. A total of 17,923 bat calls were recorded representing 15 species. Results indicate that there is a

  13. The species sensivity distribution approach compared to a micrososm study: A case study with the fungicide fluazinam

    Wijngaarden, van R.P.A.; Arts, G.H.P.; Belgers, J.D.M.; Boonstra, H.; Roessink, I.; Schroer, A.F.W.; Brock, T.C.M.

    2010-01-01

    We assessed the sensitivity of freshwater organisms (invertebrates and algae) to the fungicide Shirlan® (active ingredient fluazinam) in single-species laboratory tests and in microcosms. Species sensitivity distribution (SSD) curves were constructed by means of acute toxicity data for 14

  14. A simple model for skewed species-lifetime distributions

    Murase, Yohsuke

    2010-06-11

    A simple model of a biological community assembly is studied. Communities are assembled by successive migrations and extinctions of species. In the model, species are interacting with each other. The intensity of the interaction between each pair of species is denoted by an interaction coefficient. At each time step, a new species is introduced to the system with randomly assigned interaction coefficients. If the sum of the coefficients, which we call the fitness of a species, is negative, the species goes extinct. The species-lifetime distribution is found to be well characterized by a stretched exponential function with an exponent close to 1/2. This profile agrees not only with more realistic population dynamics models but also with fossil records. We also find that an age-independent and inversely diversity-dependent mortality, which is confirmed in the simulation, is a key mechanism accounting for the distribution. © IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.

  15. Book review: A new view on the species abundance distribution

    DeAngelis, Donald L.

    2018-01-01

    The sampled relative abundances of species of a taxonomic group, whether birds, trees, or moths, in a natural community at a particular place vary in a way that suggests a consistent underlying pattern, referred to as the species abundance distribution (SAD). Preston [1] conjectured that the numbers of species, plotted as a histogram of logarithmic abundance classes called octaves, seemed to fit a lognormal distribution; that is, the histograms look like normal distributions, although truncated on the left-hand, or low-species-abundance, end. Although other specific curves for the SAD have been proposed in the literature, Preston’s lognormal distribution is widely cited in textbooks and has stimulated attempts at explanation. An important aspect of Preston’s lognormal distribution is the ‘veil line’, a vertical line drawn exactly at the point of the left-hand truncation in the distribution, to the left of which would be species missing from the sample. Dewdney rejects the lognormal conjecture. Instead, starting with the long-recognized fact that the number of species sampled from a community, when plotted as histograms against population abundance, resembles an inverted J, he presents a mathematical description of an alternative that he calls the ‘J distribution’, a hyperbolic density function truncated at both ends. When multiplied by species richness, R, it becomes the SAD of the sample.

  16. Copper toxicity to different field-collected cladoceran species: intra-and inter-species sensitivity

    Bossuyt, Bart T.A.; Janssen, Colin R.

    2005-01-01

    The acute copper sensitivity of 44 European freshwater cladocerans, from four families (Daphniidae, Bosminidae, Macrothricidae, Chydoridae) and 13 genera (Daphnia, Ctenodaphnia, Ceriodaphnia, Simocephalus, Scapholeberis, Bosmina, Acantholeberis, Alona, Acroperus, Chydorus, Eurycercus, Disparalona and Pleuroxus) were assayed. The 48-h EC 50 s of field-collected organisms tested in reconstituted standard laboratory water ranged from 5.3 to 70.6 μg Cu L -1 . Only among Ctenodaphnia were significant intra-species differences observed. Significant inter-species differences were noted among Alonina and Daphnia. Between all genera tested, a maximum of a 12-fold difference in copper sensitivity was noted. Most animals were more sensitive than a laboratory D. magna clone. A weak non-significant increasing trend was noted between mean cladoceran 48-h EC 50 and ambient copper concentration of the different aquatic systems, suggesting acclimation/adaptation in the field. A positive relationship was also observed between the 48-h EC 50 of the field-collected cladoceran species (without the Chydoridae family) and the size of the organisms. - Zooplankton living in natural waters are more sensitive to copper than laboratory animals

  17. Copper toxicity to different field-collected cladoceran species: intra-and inter-species sensitivity

    Bossuyt, Bart T.A. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium)]. E-mail: bart.bossuyt@ugent.be; Janssen, Colin R. [Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium)

    2005-07-15

    The acute copper sensitivity of 44 European freshwater cladocerans, from four families (Daphniidae, Bosminidae, Macrothricidae, Chydoridae) and 13 genera (Daphnia, Ctenodaphnia, Ceriodaphnia, Simocephalus, Scapholeberis, Bosmina, Acantholeberis, Alona, Acroperus, Chydorus, Eurycercus, Disparalona and Pleuroxus) were assayed. The 48-h EC{sub 50}s of field-collected organisms tested in reconstituted standard laboratory water ranged from 5.3 to 70.6 {mu}g Cu L{sup -1}. Only among Ctenodaphnia were significant intra-species differences observed. Significant inter-species differences were noted among Alonina and Daphnia. Between all genera tested, a maximum of a 12-fold difference in copper sensitivity was noted. Most animals were more sensitive than a laboratory D. magna clone. A weak non-significant increasing trend was noted between mean cladoceran 48-h EC{sub 50} and ambient copper concentration of the different aquatic systems, suggesting acclimation/adaptation in the field. A positive relationship was also observed between the 48-h EC{sub 50} of the field-collected cladoceran species (without the Chydoridae family) and the size of the organisms. - Zooplankton living in natural waters are more sensitive to copper than laboratory animals.

  18. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling.

    Wisz, Mary Susanne; Pottier, Julien; Kissling, W Daniel; Pellissier, Loïc; Lenoir, Jonathan; Damgaard, Christian F; Dormann, Carsten F; Forchhammer, Mads C; Grytnes, John-Arvid; Guisan, Antoine; Heikkinen, Risto K; Høye, Toke T; Kühn, Ingolf; Luoto, Miska; Maiorano, Luigi; Nilsson, Marie-Charlotte; Normand, Signe; Öckinger, Erik; Schmidt, Niels M; Termansen, Mette; Timmermann, Allan; Wardle, David A; Aastrup, Peter; Svenning, Jens-Christian

    2013-02-01

    Predicting which species will occur together in the future, and where, remains one of the greatest challenges in ecology, and requires a sound understanding of how the abiotic and biotic environments interact with dispersal processes and history across scales. Biotic interactions and their dynamics influence species' relationships to climate, and this also has important implications for predicting future distributions of species. It is already well accepted that biotic interactions shape species' spatial distributions at local spatial extents, but the role of these interactions beyond local extents (e.g. 10 km(2) to global extents) are usually dismissed as unimportant. In this review we consolidate evidence for how biotic interactions shape species distributions beyond local extents and review methods for integrating biotic interactions into species distribution modelling tools. Drawing upon evidence from contemporary and palaeoecological studies of individual species ranges, functional groups, and species richness patterns, we show that biotic interactions have clearly left their mark on species distributions and realised assemblages of species across all spatial extents. We demonstrate this with examples from within and across trophic groups. A range of species distribution modelling tools is available to quantify species environmental relationships and predict species occurrence, such as: (i) integrating pairwise dependencies, (ii) using integrative predictors, and (iii) hybridising species distribution models (SDMs) with dynamic models. These methods have typically only been applied to interacting pairs of species at a single time, require a priori ecological knowledge about which species interact, and due to data paucity must assume that biotic interactions are constant in space and time. To better inform the future development of these models across spatial scales, we call for accelerated collection of spatially and temporally explicit species data. Ideally

  19. Near term climate projections for invasive species distributions

    Jarnevich, C.S.; Stohlgren, T.J.

    2009-01-01

    Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas. ?? 2008 Springer Science+Business Media B.V.

  20. Characterization of Quercus species distributed in Jordan using ...

    Characterization of Quercus species distributed in Jordan using morphological and molecular markers. Mohammad S Jawarneh, Mohammad H Brake, Riyadh Muhaidat, Hussein M Migdadi, Jamil N Lahham, Ahmad Ali El-Oqlah ...

  1. Mistaking geography for biology: inferring processes from species distributions.

    Warren, Dan L; Cardillo, Marcel; Rosauer, Dan F; Bolnick, Daniel I

    2014-10-01

    Over the past few decades, there has been a rapid proliferation of statistical methods that infer evolutionary and ecological processes from data on species distributions. These methods have led to considerable new insights, but they often fail to account for the effects of historical biogeography on present-day species distributions. Because the geography of speciation can lead to patterns of spatial and temporal autocorrelation in the distributions of species within a clade, this can result in misleading inferences about the importance of deterministic processes in generating spatial patterns of biodiversity. In this opinion article, we discuss ways in which patterns of species distributions driven by historical biogeography are often interpreted as evidence of particular evolutionary or ecological processes. We focus on three areas that are especially prone to such misinterpretations: community phylogenetics, environmental niche modelling, and analyses of beta diversity (compositional turnover of biodiversity). Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  2. Fast and sensitive method for detecting volatile species in liquids

    Trimarco, Daniel B.; Pedersen, Thomas; Hansen, Ole; Chorkendorff, Ib; Vesborg, Peter C. K.

    2015-07-01

    This paper presents a novel apparatus for extracting volatile species from liquids using a "sniffer-chip." By ultrafast transfer of the volatile species through a perforated and hydrophobic membrane into an inert carrier gas stream, the sniffer-chip is able to transport the species directly to a mass spectrometer through a narrow capillary without the use of differential pumping. This method inherits features from differential electrochemical mass spectrometry (DEMS) and membrane inlet mass spectrometry (MIMS), but brings the best of both worlds, i.e., the fast time-response of a DEMS system and the high sensitivity of a MIMS system. In this paper, the concept of the sniffer-chip is thoroughly explained and it is shown how it can be used to quantify hydrogen and oxygen evolution on a polycrystalline platinum thin film in situ at absolute faradaic currents down to ˜30 nA. To benchmark the capabilities of this method, a CO-stripping experiment is performed on a polycrystalline platinum thin film, illustrating how the sniffer-chip system is capable of making a quantitative in situ measurement of <1 % of a monolayer of surface adsorbed CO being electrochemically stripped off an electrode at a potential scan-rate of 50 mV s-1.

  3. Abundance, distribution and species composition of fish larvae in ...

    improving our knowledge of the abundance, distribution and species diversity ... banks as well as in the mid-channel, thus eliminating any bias that might have .... cond method (Table 2) may bias the importance of a single species due to one, ...

  4. Identity and distribution of southern African sciaenid fish species of ...

    Two Umbrina species, U. canariensis Valenciennes 1843 and U. robinsoni Gilchrist and Thompson 1908, are recognised from southern Africa. The latter species was hitherto believed to be a synonym of Umbrina ronchus Valenciennes 1843 (type locality Canary Islands). U. canariensis is distributed along the South Africa ...

  5. Distribution characteristics of mineral elements in tree Species from ...

    Tree species populations were 44 in Akyaakrom (AS), 29 in Dopiri (DS), and families were 18 in AS and 16 in DS. Tree densities were 121 and 99 in AS and DS, respectively, in 0.57 ha. In terms of tree species population, diversity and density, AS was superior to DS. The distribution of major mineral elements in the leaves ...

  6. Dispersal ability determines the scaling properties of species abundance distributions

    Borda-De-Água, Luís; Whittaker, Robert James; Cardoso, Pedro

    2017-01-01

    with computer simulations, low dispersal ability species generate a hump for intermediate abundance classes earlier than the distributions of high dispersal ability species. Importantly, when plotted as function of sample size, the raw moments of the SADs of arthropods have a power law pattern similar...

  7. The implicit assumption of symmetry and the species abundance distribution

    Alonso, D.; Ostling, A.; Etienne, R.S.

    2008-01-01

    Species abundance distributions (SADs) have played a historical role in the development of community ecology. They summarize information about the number and the relative abundance of the species encountered in a sample from a given community. For years ecologists have developed theory to

  8. The implicit assumption of symmetry and the species abundance distribution

    Alonso, David; Ostling, Annette; Etienne, Rampal S.

    Species abundance distributions (SADs) have played a historical role in the development of community ecology. They summarize information about the number and the relative abundance of the species encountered in a sample from a given community. For years ecologists have developed theory to

  9. A globally-distributed alien invasive species poses risks to United States imperiled species.

    McClure, Meredith L; Burdett, Christopher L; Farnsworth, Matthew L; Sweeney, Steven J; Miller, Ryan S

    2018-03-28

    In the midst of Earth's sixth mass extinction event, non-native species are a driving factor in many imperiled species' declines. One of the most widespread and destructive alien invasive species in the world, wild pigs (Sus scrofa) threaten native species through predation, habitat destruction, competition, and disease transmission. We show that wild pigs co-occur with up to 87.2% of imperiled species in the contiguous U.S. identified as susceptible to their direct impacts, and we project increases in both the number of species at risk and the geographic extent of risks by 2025. Wild pigs may therefore present a severe threat to U.S. imperiled species, with serious implications for management of at-risk species throughout wild pigs' global distribution. We offer guidance for efficient allocation of research effort and conservation resources across species and regions using a simple approach that can be applied to wild pigs and other alien invasive species globally.

  10. Species distribution model transferability and model grain size - finer may not always be better.

    Manzoor, Syed Amir; Griffiths, Geoffrey; Lukac, Martin

    2018-05-08

    Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.

  11. Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California

    Franklin, J.; Wejnert, K.E.; Hathaway, S.A.; Rochester, C.J.; Fisher, R.N.

    2009-01-01

    Aim: Several studies have found that more accurate predictive models of species' occurrences can be developed for rarer species; however, one recent study found the relationship between range size and model performance to be an artefact of sample prevalence, that is, the proportion of presence versus absence observations in the data used to train the model. We examined the effect of model type, species rarity class, species' survey frequency, detectability and manipulated sample prevalence on the accuracy of distribution models developed for 30 reptile and amphibian species. Location: Coastal southern California, USA. Methods: Classification trees, generalized additive models and generalized linear models were developed using species presence and absence data from 420 locations. Model performance was measured using sensitivity, specificity and the area under the curve (AUC) of the receiver-operating characteristic (ROC) plot based on twofold cross-validation, or on bootstrapping. Predictors included climate, terrain, soil and vegetation variables. Species were assigned to rarity classes by experts. The data were sampled to generate subsets with varying ratios of presences and absences to test for the effect of sample prevalence. Join count statistics were used to characterize spatial dependence in the prediction errors. Results: Species in classes with higher rarity were more accurately predicted than common species, and this effect was independent of sample prevalence. Although positive spatial autocorrelation remained in the prediction errors, it was weaker than was observed in the species occurrence data. The differences in accuracy among model types were slight. Main conclusions: Using a variety of modelling methods, more accurate species distribution models were developed for rarer than for more common species. This was presumably because it is difficult to discriminate suitable from unsuitable habitat for habitat generalists, and not as an artefact of the

  12. Species Composition, Relative Abundance and Distribution of the ...

    Species Composition, Relative Abundance and Distribution of the Avian Fauna of Entoto Natural Park and Escarpment, Addis Ababa. ... Eucalyptus plantation, soil erosion, deforestation, habitat fragmentation, settlement and land degradation were the main threats for the distribution of birds in the present study area.

  13. Sample sizes and model comparison metrics for species distribution models

    B.B. Hanberry; H.S. He; D.C. Dey

    2012-01-01

    Species distribution models use small samples to produce continuous distribution maps. The question of how small a sample can be to produce an accurate model generally has been answered based on comparisons to maximum sample sizes of 200 observations or fewer. In addition, model comparisons often are made with the kappa statistic, which has become controversial....

  14. The origin and distribution of neotropical species of Campylopus

    Frahm, Jan-Peter

    1990-01-01

    Of the 65 species of Campylopus known from tropical America, 33 are andine in distribution, 16 are found only in SE Brazil, 8 have wide ranges through Central and South America, 3 species are disjunct in SE-North America and Brazil, 3 are confined to the Caribbean and one species belongs to the circum-pacific and one to the tethyan element. For different parts of the Neotropics, the composition of phytogeographical elements is calculated. For the first time, bryophyte distributions are compar...

  15. Smart optimisation and sensitivity analysis in water distribution systems

    Page, Philip R

    2015-12-01

    Full Text Available optimisation of a water distribution system by keeping the average pressure unchanged as water demands change, by changing the speed of the pumps. Another application area considered, using the same mathematical notions, is the study of the sensitivity...

  16. Map of Life - A Dashboard for Monitoring Planetary Species Distributions

    Jetz, W.

    2016-12-01

    Geographic information about biodiversity is vital for understanding the many services nature provides and their potential changes, yet remains unreliable and often insufficient. By integrating a wide range of knowledge about species distributions and their dynamics over time, Map of Life supports global biodiversity education, monitoring, research and decision-making. Built on a scalable web platform geared for large biodiversity and environmental data, Map of Life endeavors provides species range information globally and species lists for any area. With data and technology provided by NASA and Google Earth Engine, tools under development use remote sensing-based environmental layers to enable on-the-fly predictions of species distributions, range changes, and early warning signals for threatened species. The ultimate vision is a globally connected, collaborative knowledge- and tool-base for regional and local biodiversity decision-making, education, monitoring, and projection. For currently available tools, more information and to follow progress, go to MOL.org.

  17. Uncertainty of future projections of species distributions in mountainous regions.

    Ying Tang

    Full Text Available Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline

  18. Distribution and diversity of twelve Curcuma species in China.

    Zhang, Lanyue; Wei, Jingwen; Yang, Zhiwen; Chen, Feng; Xian, Qiqiu; Su, Ping; Pan, Wanyi; Zhang, Kun; Zheng, Xi; Du, Zhiyun

    2018-02-01

    Genus Curcuma a wild species presents an important source of valuable characters for improving the cultivated Curcuma varieties. Based on the collected germplasms, herbariums, field surveys and other literatures, the ecogeographical diversity of Genus Curcuma and its potential distributions under the present and future climate are analysed by DIVA-GIS. The results indicate Genus Curcuma is distributed over 17 provinces in China, and particularly abundant in Guangxi and Guangdong provinces. The simulated current distributions are close to the actual distribution regions. In the future climate, the suitable areas for four Curcuma species will be extended, while for other three species the regions will be significantly decreased, and thus these valuable resources need protecting.

  19. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    F. J. Bohn

    2018-03-01

    Full Text Available Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP. It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q and a species distribution index (ΩAWP. ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length. The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a

  20. Species composition and forest structure explain the temperature sensitivity patterns of productivity in temperate forests

    Bohn, Friedrich J.; May, Felix; Huth, Andreas

    2018-03-01

    Rising temperatures due to climate change influence the wood production of forests. Observations show that some temperate forests increase their productivity, whereas others reduce their productivity. This study focuses on how species composition and forest structure properties influence the temperature sensitivity of aboveground wood production (AWP). It further investigates which forests will increase their productivity the most with rising temperatures. We described forest structure by leaf area index, forest height and tree height heterogeneity. Species composition was described by a functional diversity index (Rao's Q) and a species distribution index (ΩAWP). ΩAWP quantified how well species are distributed over the different forest layers with regard to AWP. We analysed 370 170 forest stands generated with a forest gap model. These forest stands covered a wide range of possible forest types. For each stand, we estimated annual aboveground wood production and performed a climate sensitivity analysis based on 320 different climate time series (of 1-year length). The scenarios differed in mean annual temperature and annual temperature amplitude. Temperature sensitivity of wood production was quantified as the relative change in productivity resulting from a 1 °C rise in mean annual temperature or annual temperature amplitude. Increasing ΩAWP positively influenced both temperature sensitivity indices of forest, whereas forest height showed a bell-shaped relationship with both indices. Further, we found forests in each successional stage that are positively affected by temperature rise. For such forests, large ΩAWP values were important. In the case of young forests, low functional diversity and small tree height heterogeneity were associated with a positive effect of temperature on wood production. During later successional stages, higher species diversity and larger tree height heterogeneity were an advantage. To achieve such a development, one could plant

  1. Predicting weed problems in maize cropping by species distribution modelling

    Bürger, Jana

    2014-02-01

    Full Text Available Increasing maize cultivation and changed cropping practices promote the selection of typical maize weeds that may also profit strongly from climate change. Predicting potential weed problems is of high interest for plant production. Within the project KLIFF, experiments were combined with species distribution modelling for this task in the region of Lower Saxony, Germany. For our study, we modelled ecological and damage niches of nine weed species that are significant and wide spread in maize cropping in a number of European countries. Species distribution models describe the ecological niche of a species, these are the environmental conditions under which a species can maintain a vital population. It is also possible to estimate a damage niche, i.e. the conditions under which a species causes damage in agricultural crops. For this, we combined occurrence data of European national data bases with high resolution climate, soil and land use data. Models were also projected to simulated climate conditions for the time horizon 2070 - 2100 in order to estimate climate change effects. Modelling results indicate favourable conditions for typical maize weed occurrence virtually all over the study region, but only a few species are important in maize cropping. This is in good accordance with the findings of an earlier maize weed monitoring. Reaction to changing climate conditions is species-specific, for some species neutral (E. crus-galli, other species may gain (Polygonum persicaria or loose (Viola arvensis large areas of suitable habitats. All species with damage potential under present conditions will remain important in maize cropping, some more species will gain regional importance (Calystegia sepium, Setara viridis.

  2. [Species composition and distribution of medical mollusca in Shanghai City].

    Guo, Yun-hai; Lv, Shan; Gu, Wen-biao; Liu, He-xiang; Wu, Ying; Zhang, Yi

    2015-02-01

    To investigate the species diversity and distribution of medical mollusca in Shanghai City. From August 2012 to October 2013, all kinds of habitats in 8 districts and counties in Shanghai City, namely Jiading, Qingpu, Baoshan, Minhang, Songjiang, Jinshan, Chongming, Pudong, were selected for the field survey according to the distribution characteristics of the river system, and all the specimens of medical mollusca in the investigation sites were collected and classified by morphological identification. Meanwhile, the species composition, habitats as well as the fauna of the medical mollusca collected were analyzed. A total of 5,211 specimens were collected, which belonged to 2 classes, 14 families, 18 genera and 25 species, including Oncomelania hupensis hupensis, Pomacea canaliculata, Parafossarulus striatulus, Alocinma longicornis, Physa acuta, Galba pervia, Hippeutis cantori, etc. The species numbers of medical mollusca in Chongming, Jinshan, Pudong new area and Qingpu districts (counties) were 22, 22, 21 and 20, respectively, which were more than those of other areas. The habitat analysis suggested that the species numbers in the river and wetland were the most, both of which were 14 species. The main faunas of the medical mollusca in Shanghai were the cosmopolitan and oriental species. The freshwater gastropod species are paucity in Shanghai City, but almost of them can be served as the intermediate hosts of certain parasites to transmit snail-related parasitic diseases, so the surveillance of medical mollusca should be strengthened.

  3. Monte Carlo Calculation of Sensitivities to Secondaries' Angular Distributions

    Perel, R.L.

    2003-01-01

    An algorithm for Monte Carlo calculation of sensitivities of responses to secondaries' angular distributions (SAD) is developed, based on the differential operator approach. The algorithm was formulated for the sensitivity to Legendre coefficients of the SAD and is valid even in cases where the actual representation of SAD is not in the form of a Legendre series. The algorithm was implemented, for point- or ring-detectors, in a local version of the code MCNP. Numerical tests were performed to validate the algorithm and its implementation. In addition, an algorithm specific for the Kalbach-Mann representation of SAD is presented

  4. Species Distribution modeling as a tool to unravel determinants of palm distribution in Thailand

    Tovaranonte, Jantrararuk; Barfod, Anders S.; Balslev, Henrik

    2011-01-01

    As a consequence of the decimation of the forest cover in Thailand from 50% to ca. 20 % since the 1950ies, it is difficult to gain insight in the drivers behind past, present and future distribution ranges of plant species. Species distribution modeling allows visualization of potential species...... distribution under specific sets of assumptions. In this study we used maximum entropy to map potential distributions of 103 species of palms for which more than 5 herbarium records exist. Palms constitute key-stone plant group from both an ecological, economical and conservation perspective. The models were......) and the Area Under the Curve (AUC). All models performed well with AUC scores above 0.95. The predicted distribution ranges showed high suitability for palms in the southern region of Thailand. It also shows that spatial predictor variables are important in cases where historical processes may explain extant...

  5. Species distribution models of tropical deep-sea snappers.

    Céline Gomez

    Full Text Available Deep-sea fisheries provide an important source of protein to Pacific Island countries and territories that are highly dependent on fish for food security. However, spatial management of these deep-sea habitats is hindered by insufficient data. We developed species distribution models using spatially limited presence data for the main harvested species in the Western Central Pacific Ocean. We used bathymetric and water temperature data to develop presence-only species distribution models for the commercially exploited deep-sea snappers Etelis Cuvier 1828, Pristipomoides Valenciennes 1830, and Aphareus Cuvier 1830. We evaluated the performance of four different algorithms (CTA, GLM, MARS, and MAXENT within the BIOMOD framework to obtain an ensemble of predicted distributions. We projected these predictions across the Western Central Pacific Ocean to produce maps of potential deep-sea snapper distributions in 32 countries and territories. Depth was consistently the best predictor of presence for all species groups across all models. Bathymetric slope was consistently the poorest predictor. Temperature at depth was a good predictor of presence for GLM only. Model precision was highest for MAXENT and CTA. There were strong regional patterns in predicted distribution of suitable habitat, with the largest areas of suitable habitat (> 35% of the Exclusive Economic Zone predicted in seven South Pacific countries and territories (Fiji, Matthew & Hunter, Nauru, New Caledonia, Tonga, Vanuatu and Wallis & Futuna. Predicted habitat also varied among species, with the proportion of predicted habitat highest for Aphareus and lowest for Etelis. Despite data paucity, the relationship between deep-sea snapper presence and their environments was sufficiently strong to predict their distribution across a large area of the Pacific Ocean. Our results therefore provide a strong baseline for designing monitoring programs that balance resource exploitation and

  6. Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species.

    Kastman, Erik K; Kamelamela, Noelani; Norville, Josh W; Cosetta, Casey M; Dutton, Rachel J; Wolfe, Benjamin E

    2016-10-18

    Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. Decades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative staphylococcus (CNS

  7. How can model comparison help improving species distribution models?

    Emmanuel Stephan Gritti

    Full Text Available Today, more than ever, robust projections of potential species range shifts are needed to anticipate and mitigate the impacts of climate change on biodiversity and ecosystem services. Such projections are so far provided almost exclusively by correlative species distribution models (correlative SDMs. However, concerns regarding the reliability of their predictive power are growing and several authors call for the development of process-based SDMs. Still, each of these methods presents strengths and weakness which have to be estimated if they are to be reliably used by decision makers. In this study we compare projections of three different SDMs (STASH, LPJ and PHENOFIT that lie in the continuum between correlative models and process-based models for the current distribution of three major European tree species, Fagussylvatica L., Quercusrobur L. and Pinussylvestris L. We compare the consistency of the model simulations using an innovative comparison map profile method, integrating local and multi-scale comparisons. The three models simulate relatively accurately the current distribution of the three species. The process-based model performs almost as well as the correlative model, although parameters of the former are not fitted to the observed species distributions. According to our simulations, species range limits are triggered, at the European scale, by establishment and survival through processes primarily related to phenology and resistance to abiotic stress rather than to growth efficiency. The accuracy of projections of the hybrid and process-based model could however be improved by integrating a more realistic representation of the species resistance to water stress for instance, advocating for pursuing efforts to understand and formulate explicitly the impact of climatic conditions and variations on these processes.

  8. Comparative sensitivity of five species of macrophytes and six species of algae to atrazine, metribuzin, alachlor, and metolachlor

    Fairchild, James F.; Ruessler, Shane; Carlson, A. Ron

    1998-01-01

    This study determined the relative sensitivity of five species of aquatic macrophytes and six species of algae to four commonly used herbicides (atrazine, metribuzin, alachlor, and metolachlor). Toxicity tests consisted of 96-h (duckweed and algae) or 14-d (submerged macrophytes) static exposures. The triazine herbicides (atrazine and metribuzin) were significantly more toxic to aquatic plants than were the acetanilide herbicides (alachlor and metolachlor). Toxicity studies ranked metribuzin > atrazine > alachlor > metolachlor in decreasing order of overall toxicity to aquatic plants. Relative sensitivities of macrophytes to these herbicides decreased in the order of Ceratophyllum > Najas > Elodea > Lemna > Myriophyllum. Relative sensitivities of algae to herbicides decreased in the order of Selenastrum > Chlorella > Chlamydomonas > Microcystis > Scenedesmus > Anabaena. Algae and macrophytes were of similar overall sensitivities to herbicides. Data indicated that Selenastrum, a commonly tested green alga, was generally more sensitive compared to other plant species. Lemna minor, a commonly tested floating vascular plant, was of intermediate sensitivity, and was fivefold less sensitive than Ceratophyllum, which was the most sensitive species tested. The results indicated that no species was consistently most sensitive, and that a suite of aquatic plant test species may be needed to perform accurate risk assessments of herbicides.

  9. Species distributions, quantum theory, and the enhancement of biodiversity measures

    Real, Raimundo; Barbosa, A. Márcia; Bull, Joseph William

    2017-01-01

    Species distributions are typically represented by records of their observed occurrence at a given spatial and temporal scale. Such records are inevitably incomplete and contingent on the spatial–temporal circumstances under which the observations were made. Moreover, organisms may respond...... biodiversity”. We show how conceptualizing species’ distributions in this way could help overcome important weaknesses in current biodiversity metrics, both in theory and by using a worked case study of mammal distributions in Spain over the last decade. We propose that considerable theoretical advances could...

  10. Five (or so) challenges for species distribution modelling

    Bastos Araujo, Miguel; Guisan, Antoine

    2006-01-01

    Species distribution modelling is central to both fundamental and applied research in biogeography. Despite widespread use of models, there are still important conceptual ambiguities as well as biotic and algorithmic uncertainties that need to be investigated in order to increase confidence in mo...

  11. VEGETATIVE MORPHOLOGY FOR SPECIES IDENTIFICATION OF TROPICAL TREES: FAMILY DISTRIBUTION

    Peter Hargreaves

    2006-03-01

    Full Text Available Tree specimens from the ESAL herbarium of the Universidade Federal de Lavras, Minas Gerais, Brazil, were describedby vegetative characteristics using CARipé, a Microsoft Access database application specially developed for this study. Only onespecimen per species was usually described. Thus, 2 observers described 567 herbarium species as a base to test methods ofidentification as part of a larger study. The present work formed part of that study and provides information on the distribution of22 vegetative characters among 16 families having 10 or more species described. The characters are discussed. The study foundmarked differences, even discontinuities, of distributions of characters between those families. Therefore it should be possible toincorporate phylogenetic relationships into the identification process.

  12. Molluscan indicator species and their potential use in ecological status assessment using species distribution modeling.

    Moraitis, Manos L; Tsikopoulou, Irini; Geropoulos, Antonios; Dimitriou, Panagiotis D; Papageorgiou, Nafsika; Giannoulaki, Marianna; Valavanis, Vasilis D; Karakassis, Ioannis

    2018-05-24

    Marine habitat assessment using indicator species through Species Distribution Modeling (SDM) was investigated. The bivalves: Corbula gibba and Flexopecten hyalinus were the indicator species characterizing disturbed and undisturbed areas respectively in terms of chlorophyll a concentration in Greece. The habitat suitability maps of these species reflected the overall ecological status of the area. The C. gibba model successfully predicted the occurrence of this species in areas with increased physical disturbance driven by chlorophyll a concentration, whereas the habitat map for F. hyalinus showed an increased probability of occurrence in chlorophyll-poor areas, affected mainly by salinity. We advocate the use of C. gibba as a proxy for eutrophication and the incorporation of this species in monitoring studies through SDM methods. For the Mediterranean Sea we suggest the use of F. hyalinus in SDM as an indicator of environmental stability and a possible forecasting tool for salinity fluctuations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Mesocosm validation of the marine No Effect Concentration of dissolved copper derived from a species sensivity distribution

    Foekema, E.M.; Kaag, N.H.B.M.; Kramer, K.J.M.; Long, K.

    2015-01-01

    The Predicted No Effect Concentration (PNEC) for dissolved copper based on the species sensitivity distribution (SSD) of 24 marine single species tests was validated in marine mesocosms. To achieve this, the impact of actively maintained concentrations of dissolved copper on a marine benthic and

  14. The interplay of various sources of noise on reliability of species distribution models hinges on ecological specialisation.

    Soultan, Alaaeldin; Safi, Kamran

    2017-01-01

    Digitized species occurrence data provide an unprecedented source of information for ecologists and conservationists. Species distribution model (SDM) has become a popular method to utilise these data for understanding the spatial and temporal distribution of species, and for modelling biodiversity patterns. Our objective is to study the impact of noise in species occurrence data (namely sample size and positional accuracy) on the performance and reliability of SDM, considering the multiplicative impact of SDM algorithms, species specialisation, and grid resolution. We created a set of four 'virtual' species characterized by different specialisation levels. For each of these species, we built the suitable habitat models using five algorithms at two grid resolutions, with varying sample sizes and different levels of positional accuracy. We assessed the performance and reliability of the SDM according to classic model evaluation metrics (Area Under the Curve and True Skill Statistic) and model agreement metrics (Overall Concordance Correlation Coefficient and geographic niche overlap) respectively. Our study revealed that species specialisation had by far the most dominant impact on the SDM. In contrast to previous studies, we found that for widespread species, low sample size and low positional accuracy were acceptable, and useful distribution ranges could be predicted with as few as 10 species occurrences. Range predictions for narrow-ranged species, however, were sensitive to sample size and positional accuracy, such that useful distribution ranges required at least 20 species occurrences. Against expectations, the MAXENT algorithm poorly predicted the distribution of specialist species at low sample size.

  15. Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone

    Hayes, F.; Jones, M.L.M.; Mills, G.; Ashmore, M.

    2007-01-01

    This study identified 83 species from existing publications suitable for inclusion in a database of sensitivity of species to ozone (OZOVEG database). An index, the relative sensitivity to ozone, was calculated for each species based on changes in biomass in order to test for species traits associated with ozone sensitivity. Meta-analysis of the ozone sensitivity data showed a wide inter-specific range in response to ozone. Some relationships in comparison to plant physiological and ecological characteristics were identified. Plants of the therophyte lifeform were particularly sensitive to ozone. Species with higher mature leaf N concentration were more sensitive to ozone than those with lower leaf N concentration. Some relationships between relative sensitivity to ozone and Ellenberg habitat requirements were also identified. In contrast, no relationships between relative sensitivity to ozone and mature leaf P concentration, Grime's CSR strategy, leaf longevity, flowering season, stomatal density and maximum altitude were found. The relative sensitivity of species and relationships with plant characteristics identified in this study could be used to predict sensitivity to ozone of untested species and communities. - Meta-analysis of the relative sensitivity of semi-natural vegetation species to ozone showed some relationships with physiological and ecological characteristics

  16. SESAM – a new framework integrating macroecological and species distribution models for predicting spatio-temporal patterns of species assemblages

    Guisan, Antoine; Rahbek, Carsten

    2011-01-01

    Two different approaches currently prevail for predicting spatial patterns of species assemblages. The first approach (macroecological modelling, MEM) focuses directly on realized properties of species assemblages, whereas the second approach (stacked species distribution modelling, S-SDM) starts...

  17. Species-free species distribution models describe macroecological properties of protected area networks.

    Robinson, Jason L; Fordyce, James A

    2017-01-01

    Among the greatest challenges facing the conservation of plants and animal species in protected areas are threats from a rapidly changing climate. An altered climate creates both challenges and opportunities for improving the management of protected areas in networks. Increasingly, quantitative tools like species distribution modeling are used to assess the performance of protected areas and predict potential responses to changing climates for groups of species, within a predictive framework. At larger geographic domains and scales, protected area network units have spatial geoclimatic properties that can be described in the gap analysis typically used to measure or aggregate the geographic distributions of species (stacked species distribution models, or S-SDM). We extend the use of species distribution modeling techniques in order to model the climate envelope (or "footprint") of individual protected areas within a network of protected areas distributed across the 48 conterminous United States and managed by the US National Park System. In our approach we treat each protected area as the geographic range of a hypothetical endemic species, then use MaxEnt and 5 uncorrelated BioClim variables to model the geographic distribution of the climatic envelope associated with each protected area unit (modeling the geographic area of park units as the range of a species). We describe the individual and aggregated climate envelopes predicted by a large network of 163 protected areas and briefly illustrate how macroecological measures of geodiversity can be derived from our analysis of the landscape ecological context of protected areas. To estimate trajectories of change in the temporal distribution of climatic features within a protected area network, we projected the climate envelopes of protected areas in current conditions onto a dataset of predicted future climatic conditions. Our results suggest that the climate envelopes of some parks may be locally unique or have

  18. Characterization of Sensitive Species and Habitats Affected by the Operation of USACE Water Resource Development Projects

    Kasul, Richard

    2000-01-01

    ...) work unit titled "Reservoir Operations - Impacts on Target Species." Current knowledge regarding the occurrence of sensitive species that have been identified as a management concern in the operation of Corps projects is reviewed...

  19. Bias correction in species distribution models: pooling survey and collection data for multiple species.

    Fithian, William; Elith, Jane; Hastie, Trevor; Keith, David A

    2015-04-01

    Presence-only records may provide data on the distributions of rare species, but commonly suffer from large, unknown biases due to their typically haphazard collection schemes. Presence-absence or count data collected in systematic, planned surveys are more reliable but typically less abundant.We proposed a probabilistic model to allow for joint analysis of presence-only and survey data to exploit their complementary strengths. Our method pools presence-only and presence-absence data for many species and maximizes a joint likelihood, simultaneously estimating and adjusting for the sampling bias affecting the presence-only data. By assuming that the sampling bias is the same for all species, we can borrow strength across species to efficiently estimate the bias and improve our inference from presence-only data.We evaluate our model's performance on data for 36 eucalypt species in south-eastern Australia. We find that presence-only records exhibit a strong sampling bias towards the coast and towards Sydney, the largest city. Our data-pooling technique substantially improves the out-of-sample predictive performance of our model when the amount of available presence-absence data for a given species is scarceIf we have only presence-only data and no presence-absence data for a given species, but both types of data for several other species that suffer from the same spatial sampling bias, then our method can obtain an unbiased estimate of the first species' geographic range.

  20. The Combined Use of Correlative and Mechanistic Species Distribution Models Benefits Low Conservation Status Species.

    Thibaud Rougier

    Full Text Available Species can respond to climate change by tracking appropriate environmental conditions in space, resulting in a range shift. Species Distribution Models (SDMs can help forecast such range shift responses. For few species, both correlative and mechanistic SDMs were built, but allis shad (Alosa alosa, an endangered anadromous fish species, is one of them. The main purpose of this study was to provide a framework for joint analyses of correlative and mechanistic SDMs projections in order to strengthen conservation measures for species of conservation concern. Guidelines for joint representation and subsequent interpretation of models outputs were defined and applied. The present joint analysis was based on the novel mechanistic model GR3D (Global Repositioning Dynamics of Diadromous fish Distribution which was parameterized on allis shad and then used to predict its future distribution along the European Atlantic coast under different climate change scenarios (RCP 4.5 and RCP 8.5. We then used a correlative SDM for this species to forecast its distribution across the same geographic area and under the same climate change scenarios. First, projections from correlative and mechanistic models provided congruent trends in probability of habitat suitability and population dynamics. This agreement was preferentially interpreted as referring to the species vulnerability to climate change. Climate change could not be accordingly listed as a major threat for allis shad. The congruence in predicted range limits between SDMs projections was the next point of interest. The difference, when noticed, required to deepen our understanding of the niche modelled by each approach. In this respect, the relative position of the northern range limit between the two methods strongly suggested here that a key biological process related to intraspecific variability was potentially lacking in the mechanistic SDM. Based on our knowledge, we hypothesized that local

  1. Distribution patterns of Saccharomyces species in cultural landscapes of Germany.

    Brysch-Herzberg, Michael; Seidel, Martin

    2017-08-01

    The distribution patterns of the three Saccharomyces species, Saccharomyces paradoxus, S. uvarum and S. cerevisiae, were investigated by a culture-dependent approach in order to understand better how these species propagate in the cultural landscape of Germany. Saccharomyces paradoxus, the closest relative of S. cerevisiae, is shown to be a true woodland species. It was frequently found in the soil under conifers indicating that S. paradoxus is an autochthonous member of the microbial community in this habitat. Physiological characteristics of the species like the Crabtree effect and high tolerance against ethanol suggest that the species is adapted to regular supply with considerable amounts of sugars. Additionally, a high proportion of the S. paradoxus strains isolated in this study are shown to have the rare ability to ferment melezitose. For these reasons, it is hypothesized that S. paradoxus may be closely associated with the honeydew system in forests. Saccharomyces cerevisiae was rare in most habitats and only exceeded the frequency of S. paradoxus in habitats characterized by modern agricultural mass production of fruit. Both the landscape structure and the agricultural system heavily influence the frequencies of Saccharomyces species. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Species composition and geographical distribution of Saharan scorpion fauna, Morocco

    Oulaid Touloun

    2016-11-01

    Full Text Available Objective: To describe the species composition of scorpions and to study its geographical distribution in Laayoune-Sakia El Hamra and Dakhla-Oued Ed Dahab regions in July 2014. Methods: To locate scorpions, the ground was examined through searching the places under the stones, rocks and in burrows. The nocturnal missions were also conducted using portable ultraviolet lamps. The scorpions were subsequently identified in the laboratory. Results: The results of the investigations in these regions showed the presence of five scorpion species, two of which Androctonus gonneti and Buthus bonito were endemic in Morocco. Conclusions: This work is allowed to complete the inventory of the studied scorpion fauna and provides some considerations on the distribution patterns in the study area.

  3. Predicting the geographical distribution of two invasive termite species from occurrence data.

    Tonini, Francesco; Divino, Fabio; Lasinio, Giovanna Jona; Hochmair, Hartwig H; Scheffrahn, Rudolf H

    2014-10-01

    Predicting the potential habitat of species under both current and future climate change scenarios is crucial for monitoring invasive species and understanding a species' response to different environmental conditions. Frequently, the only data available on a species is the location of its occurrence (presence-only data). Using occurrence records only, two models were used to predict the geographical distribution of two destructive invasive termite species, Coptotermes gestroi (Wasmann) and Coptotermes formosanus Shiraki. The first model uses a Bayesian linear logistic regression approach adjusted for presence-only data while the second one is the widely used maximum entropy approach (Maxent). Results show that the predicted distributions of both C. gestroi and C. formosanus are strongly linked to urban development. The impact of future scenarios such as climate warming and population growth on the biotic distribution of both termite species was also assessed. Future climate warming seems to affect their projected probability of presence to a lesser extent than population growth. The Bayesian logistic approach outperformed Maxent consistently in all models according to evaluation criteria such as model sensitivity and ecological realism. The importance of further studies for an explicit treatment of residual spatial autocorrelation and a more comprehensive comparison between both statistical approaches is suggested.

  4. Species Distribution Modelling: Contrasting presence-only models with plot abundance data.

    Gomes, Vitor H F; IJff, Stéphanie D; Raes, Niels; Amaral, Iêda Leão; Salomão, Rafael P; de Souza Coelho, Luiz; de Almeida Matos, Francisca Dionízia; Castilho, Carolina V; de Andrade Lima Filho, Diogenes; López, Dairon Cárdenas; Guevara, Juan Ernesto; Magnusson, William E; Phillips, Oliver L; Wittmann, Florian; de Jesus Veiga Carim, Marcelo; Martins, Maria Pires; Irume, Mariana Victória; Sabatier, Daniel; Molino, Jean-François; Bánki, Olaf S; da Silva Guimarães, José Renan; Pitman, Nigel C A; Piedade, Maria Teresa Fernandez; Mendoza, Abel Monteagudo; Luize, Bruno Garcia; Venticinque, Eduardo Martins; de Leão Novo, Evlyn Márcia Moraes; Vargas, Percy Núñez; Silva, Thiago Sanna Freire; Manzatto, Angelo Gilberto; Terborgh, John; Reis, Neidiane Farias Costa; Montero, Juan Carlos; Casula, Katia Regina; Marimon, Beatriz S; Marimon, Ben-Hur; Coronado, Euridice N Honorio; Feldpausch, Ted R; Duque, Alvaro; Zartman, Charles Eugene; Arboleda, Nicolás Castaño; Killeen, Timothy J; Mostacedo, Bonifacio; Vasquez, Rodolfo; Schöngart, Jochen; Assis, Rafael L; Medeiros, Marcelo Brilhante; Simon, Marcelo Fragomeni; Andrade, Ana; Laurance, William F; Camargo, José Luís; Demarchi, Layon O; Laurance, Susan G W; de Sousa Farias, Emanuelle; Nascimento, Henrique Eduardo Mendonça; Revilla, Juan David Cardenas; Quaresma, Adriano; Costa, Flavia R C; Vieira, Ima Célia Guimarães; Cintra, Bruno Barçante Ladvocat; Castellanos, Hernán; Brienen, Roel; Stevenson, Pablo R; Feitosa, Yuri; Duivenvoorden, Joost F; Aymard C, Gerardo A; Mogollón, Hugo F; Targhetta, Natalia; Comiskey, James A; Vicentini, Alberto; Lopes, Aline; Damasco, Gabriel; Dávila, Nállarett; García-Villacorta, Roosevelt; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Emilio, Thaise; Alonso, Alfonso; Neill, David; Dallmeier, Francisco; Ferreira, Leandro Valle; Araujo-Murakami, Alejandro; Praia, Daniel; do Amaral, Dário Dantas; Carvalho, Fernanda Antunes; de Souza, Fernanda Coelho; Feeley, Kenneth; Arroyo, Luzmila; Pansonato, Marcelo Petratti; Gribel, Rogerio; Villa, Boris; Licona, Juan Carlos; Fine, Paul V A; Cerón, Carlos; Baraloto, Chris; Jimenez, Eliana M; Stropp, Juliana; Engel, Julien; Silveira, Marcos; Mora, Maria Cristina Peñuela; Petronelli, Pascal; Maas, Paul; Thomas-Caesar, Raquel; Henkel, Terry W; Daly, Doug; Paredes, Marcos Ríos; Baker, Tim R; Fuentes, Alfredo; Peres, Carlos A; Chave, Jerome; Pena, Jose Luis Marcelo; Dexter, Kyle G; Silman, Miles R; Jørgensen, Peter Møller; Pennington, Toby; Di Fiore, Anthony; Valverde, Fernando Cornejo; Phillips, Juan Fernando; Rivas-Torres, Gonzalo; von Hildebrand, Patricio; van Andel, Tinde R; Ruschel, Ademir R; Prieto, Adriana; Rudas, Agustín; Hoffman, Bruce; Vela, César I A; Barbosa, Edelcilio Marques; Zent, Egleé L; Gonzales, George Pepe Gallardo; Doza, Hilda Paulette Dávila; de Andrade Miranda, Ires Paula; Guillaumet, Jean-Louis; Pinto, Linder Felipe Mozombite; de Matos Bonates, Luiz Carlos; Silva, Natalino; Gómez, Ricardo Zárate; Zent, Stanford; Gonzales, Therany; Vos, Vincent A; Malhi, Yadvinder; Oliveira, Alexandre A; Cano, Angela; Albuquerque, Bianca Weiss; Vriesendorp, Corine; Correa, Diego Felipe; Torre, Emilio Vilanova; van der Heijden, Geertje; Ramirez-Angulo, Hirma; Ramos, José Ferreira; Young, Kenneth R; Rocha, Maira; Nascimento, Marcelo Trindade; Medina, Maria Natalia Umaña; Tirado, Milton; Wang, Ophelia; Sierra, Rodrigo; Torres-Lezama, Armando; Mendoza, Casimiro; Ferreira, Cid; Baider, Cláudia; Villarroel, Daniel; Balslev, Henrik; Mesones, Italo; Giraldo, Ligia Estela Urrego; Casas, Luisa Fernanda; Reategui, Manuel Augusto Ahuite; Linares-Palomino, Reynaldo; Zagt, Roderick; Cárdenas, Sasha; Farfan-Rios, William; Sampaio, Adeilza Felipe; Pauletto, Daniela; Sandoval, Elvis H Valderrama; Arevalo, Freddy Ramirez; Huamantupa-Chuquimaco, Isau; Garcia-Cabrera, Karina; Hernandez, Lionel; Gamarra, Luis Valenzuela; Alexiades, Miguel N; Pansini, Susamar; Cuenca, Walter Palacios; Milliken, William; Ricardo, Joana; Lopez-Gonzalez, Gabriela; Pos, Edwin; Ter Steege, Hans

    2018-01-17

    Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species' area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.

  5. Mechanistic species distribution modeling reveals a niche shift during invasion.

    Chapman, Daniel S; Scalone, Romain; Štefanić, Edita; Bullock, James M

    2017-06-01

    Niche shifts of nonnative plants can occur when they colonize novel climatic conditions. However, the mechanistic basis for niche shifts during invasion is poorly understood and has rarely been captured within species distribution models. We quantified the consequence of between-population variation in phenology for invasion of common ragweed (Ambrosia artemisiifolia L.) across Europe. Ragweed is of serious concern because of its harmful effects as a crop weed and because of its impact on public health as a major aeroallergen. We developed a forward mechanistic species distribution model based on responses of ragweed development rates to temperature and photoperiod. The model was parameterized and validated from the literature and by reanalyzing data from a reciprocal common garden experiment in which native and invasive populations were grown within and beyond the current invaded range. It could therefore accommodate between-population variation in the physiological requirements for flowering, and predict the potentially invaded ranges of individual populations. Northern-origin populations that were established outside the generally accepted climate envelope of the species had lower thermal requirements for bud development, suggesting local adaptation of phenology had occurred during the invasion. The model predicts that this will extend the potentially invaded range northward and increase the average suitability across Europe by 90% in the current climate and 20% in the future climate. Therefore, trait variation observed at the population scale can trigger a climatic niche shift at the biogeographic scale. For ragweed, earlier flowering phenology in established northern populations could allow the species to spread beyond its current invasive range, substantially increasing its risk to agriculture and public health. Mechanistic species distribution models offer the possibility to represent niche shifts by varying the traits and niche responses of individual

  6. Mechanisms controlling the distribution of two invasive Bromus species

    Olga Bykova

    2014-03-01

    Full Text Available In order to predict future range shifts for invasive species it is important to explore their ability to acclimate to the new environment and understand physiological and reproductive constraints controlling their distribution. My dissertation studied mechanisms by which temperature may affect the distribution of two aggressive plant invaders in North America, Bromus tectorum and Bromus rubens. I first evaluated winter freezing tolerance of Bromus species and demonstrated that the mechanism explaining their distinct northern range limits is different acquisition time of freezing tolerance. While B. rubens has a slower rate of freezing acclimation that leads to intolerance of sudden, late-autumn drops in temperature below -12°C, B. tectorum rapidly hardens and so is not impacted by the sudden onset of severe late-autumn cold. In addition, the analysis of male reproductive development and seed production showed that neither species produces seed at or above 36°C, due to complete pollen sterility, which might trigger climate-mediated range contractions at B. tectorum and B. rubens southern margins. Finally, a detailed gas-exchange analysis combined with biochemical modelling demonstrated that both species acclimate to a broad range of temperatures and photosynthetic response to temperature does not explain their current range separation.

  7. Drought tolerance of tropical tree species : functional traits, trade-offs and species distribution

    Markesteijn, L.

    2010-01-01

    KEY-WORDS:
    Bolivia, drought tolerance, shade tolerance, functional traits, trade-offs, ecophysiology, species distribution
    Tropical forests occur under rainfall regimes that vary greatly in the rainfall pattern and frequency and intensity of drought. Consequently water availability is

  8. Development of aquatic life criteria for triclosan and comparison of the sensitivity between native and non-native species.

    Wang, Xiao-Nan; Liu, Zheng-Tao; Yan, Zhen-Guang; Zhang, Cong; Wang, Wei-Li; Zhou, Jun-Li; Pei, Shu-Wei

    2013-09-15

    Triclosan (TCS) is an antimicrobial agent which is used as a broad-spectrum bacteriostatic and found in personal care products, and due to this it is widely spread in the aquatic environment. However, there is no paper dealing with the aquatic life criteria of TCS, mainly result from the shortage of toxicity data of different taxonomic levels. In the present study, toxicity data were obtained from 9 acute toxicity tests and 3 chronic toxicity tests using 9 Chinese native aquatic species from different taxonomic levels, and the aquatic life criteria was derived using 3 methods. Furthermore, differences of species sensitivity distributions (SSD) between native and non-native species were compared. Among the tested species, demersal fish Misgurnus anguillicaudatus was the most sensitive species, and the fishes were more sensitive than the aquatic invertebrates of Annelid and insect, and the insect was the least sensitive species. The comparison showed that there was no significant difference between SSDs constructed from native and non-native taxa. Finally, a criterion maximum concentration of 0.009 mg/L and a criterion continuous concentration of 0.002 mg/L were developed based on different taxa, according to the U.S. Environmental Protection Agency guidelines. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Response of chironomid species (Diptera, Chironomidae to water temperature: effects on species distribution in specific habitats

    L. Marziali

    2013-09-01

    Full Text Available The response of 443 chironomid species to water temperature was analyzed, with the aim of defining their thermal optimum, tolerance limits and thermal habitat. The database included 4442 samples mainly from Italian river catchments collected from the 1950s up to date. Thermal preferences were calculated separately for larval and pupal specimens and for different habitats: high altitude and lowland lakes in the Alpine ecoregion; lowland lakes in the Mediterranean ecoregion; heavily modified water bodies; kryal, krenal, rhithral and potamal in running waters. Optimum response was calculated as mean water temperature, weighted by species abundances; tolerance as weighted standard deviation; skewness and kurtosis as 3rd and 4th moment statistics. The responses were fitted to normal uni- or plurimodal Gaussian models. Cold stenothermal species showed: i unimodal response, ii tolerance for a narrow temperature range, iii optima closed to their minimum temperature values, iv leptokurtic response. Thermophilous species showed: i optima at different temperature values, ii wider tolerance, iii optima near their maximum temperature values, iv platikurtic response, often fitting a plurimodal model. As expected, lower optima values and narrower tolerance were obtained for kryal and krenal, than for rhithral, potamal and lakes. Thermal response curves were produced for each species and were discussed according to species distribution (i.e. altitudinal range in running water and water depth in lakes, voltinism and phylogeny. Thermal optimum and tolerance limits and the definition of the thermal habitat of species can help predicting the impact of global warming on freshwater ecosystems.

  10. Insulin sensitivity in relation to fat distribution and plasma adipocytokines among abusers of anabolic androgenic steroids

    Rasmussen, Jon Jarløv; Schou, Morten; Selmer, Christian

    2017-01-01

    Objective: Abuse of anabolic androgenic steroids (AAS) is prevalent among young men, but information regarding effects on insulin sensitivity and fat distribution is limited. The objective was to investigate insulin sensitivity in relation to fat distribution and adipocytokines among current...

  11. Molybdenum distribution and sensitivity in tomatoes, sunflowers and beans

    Hecht-Buchholz, C

    1973-01-01

    The influence of increasing levels of molybdenum on the growth, molybdenum uptake and distribution in individual plant organs was investigated in tomatoes, beans and sunflowers in a 9 day trial. With tomatoes, which showed marked damage with high molybdenum levels, the molybdenum content of dry matter was highest in the leaf and lowest in the stem. On the other hand, beans, insensitive towards the high molybdenum level, dry matter molybdenum content was appreciably higher in the stem than in the leaf. It is supposed that in plant species, insensitive to high molybdenum levels, molybdenum is held less firmly in this tissue and can attain damaging levels in the cytoplasm of the youngest leaf tissue cells. It is supposed, on the basis of the reactions which were carried out with expressed root juice and on the basis of the yellow coloration attainable in vitro in the tissue caused by the addition of molybdate solution, that the yellow coloration appearing in the cells and plant organs of various plant species, here tomatoes and sunflowers, with high molybdenum levels is due to a reaction between molybdenum and polyvalent phenols in cellsap.

  12. Regional Assessment of Ozone Sensitive Tree Species Using Bioindicator Plants

    John W. Coulston; Gretchen C. Smith; William D. Smith

    2003-01-01

    Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone on forest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document...

  13. Effects of urbanization on carnivore species distribution and richness

    Ordenana, Miguel A.; Crooks, Kevin R.; Boydston, Erin E.; Fisher, Robert N.; Lyren, Lisa M.; Siudyla, Shalene; Haas, Christopher D.; Harris, Sierra; Hathaway, Stacie A.; Turschak, Greta M.; Miles, A. Keith; Van Vuren, Dirk H.

    2010-01-01

    Urban development can have multiple effects on mammalian carnivore communities. We conducted a meta-analysis of 7,929 photographs from 217 localities in 11 camera-trap studies across coastal southern California to describe habitat use and determine the effects of urban proximity (distance to urban edge) and intensity (percentage of area urbanized) on carnivore occurrence and species richness in natural habitats close to the urban boundary. Coyotes (Canis latrans) and bobcats (Lynx rufus) were distributed widely across the region. Domestic dogs (Canis lupus familiaris), striped skunks (Mephitis mephitis), raccoons (Procyon lotor), gray foxes (Urocyon cinereoargenteus), mountain lions (Puma concolor), and Virginia opossums (Didelphis virginiana) were detected less frequently, and long-tailed weasels (Mustela frenata), American badgers (Taxidea taxus), western spotted skunks (Spilogale gracilis), and domestic cats (Felis catus) were detected rarely. Habitat use generally reflected availability for most species. Coyote and raccoon occurrence increased with both proximity to and intensity of urbanization, whereas bobcat, gray fox, and mountain lion occurrence decreased with urban proximity and intensity. Domestic dogs and Virginia opossums exhibited positive and weak negative relationships, respectively, with urban intensity but were unaffected by urban proximity. Striped skunk occurrence increased with urban proximity but decreased with urban intensity. Native species richness was negatively associated with urban intensity but not urban proximity, probably because of the stronger negative response of individual species to urban intensity.

  14. Regional climate model downscaling may improve the prediction of alien plant species distributions

    Liu, Shuyan; Liang, Xin-Zhong; Gao, Wei; Stohlgren, Thomas J.

    2014-12-01

    Distributions of invasive species are commonly predicted with species distribution models that build upon the statistical relationships between observed species presence data and climate data. We used field observations, climate station data, and Maximum Entropy species distribution models for 13 invasive plant species in the United States, and then compared the models with inputs from a General Circulation Model (hereafter GCM-based models) and a downscaled Regional Climate Model (hereafter, RCM-based models).We also compared species distributions based on either GCM-based or RCM-based models for the present (1990-1999) to the future (2046-2055). RCM-based species distribution models replicated observed distributions remarkably better than GCM-based models for all invasive species under the current climate. This was shown for the presence locations of the species, and by using four common statistical metrics to compare modeled distributions. For two widespread invasive taxa ( Bromus tectorum or cheatgrass, and Tamarix spp. or tamarisk), GCM-based models failed miserably to reproduce observed species distributions. In contrast, RCM-based species distribution models closely matched observations. Future species distributions may be significantly affected by using GCM-based inputs. Because invasive plants species often show high resilience and low rates of local extinction, RCM-based species distribution models may perform better than GCM-based species distribution models for planning containment programs for invasive species.

  15. Distribution of Plasmids in Distinct Leptospira Pathogenic Species.

    Wang, Yanzhuo; Zhuang, Xuran; Zhong, Yi; Zhang, Cuicai; Zhang, Yan; Zeng, Lingbing; Zhu, Yongzhang; He, Ping; Dong, Ke; Pal, Utpal; Guo, Xiaokui; Qin, Jinhong

    2015-11-01

    Leptospirosis, caused by pathogenic Leptospira, is a worldwide zoonotic infection. The genus Leptospira includes at least 21 species clustered into three groups--pathogens, non-pathogens, and intermediates--based on 16S rRNA phylogeny. Research on Leptospira is difficult due to slow growth and poor transformability of the pathogens. Recent identification of extrachromosomal elements besides the two chromosomes in L. interrogans has provided new insight into genome complexity of the genus Leptospira. The large size, low copy number, and high similarity of the sequence of these extrachromosomal elements with the chromosomes present challenges in isolating and detecting them without careful genome assembly. In this study, two extrachromosomal elements were identified in L. borgpetersenii serovar Ballum strain 56604 through whole genome assembly combined with S1 nuclease digestion following pulsed-field gel electrophoresis (S1-PFGE) analysis. Further, extrachromosomal elements in additional 15 Chinese epidemic strains of Leptospira, comprising L. borgpetersenii, L. weilii, and L. interrogans, were successfully separated and identified, independent of genome sequence data. Southern blot hybridization with extrachromosomal element-specific probes, designated as lcp1, lcp2 and lcp3-rep, further confirmed their occurrences as extrachromosomal elements. In total, 24 plasmids were detected in 13 out of 15 tested strains, among which 11 can hybridize with the lcp1-rep probe and 11 with the lcp2-rep probe, whereas two can hybridize with the lcp3-rep probe. None of them are likely to be species-specific. Blastp search of the lcp1, lcp2, and lcp3-rep genes with a nonredundant protein database of Leptospira species genomes showed that their homologous sequences are widely distributed among clades of pathogens but not non-pathogens or intermediates. These results suggest that the plasmids are widely distributed in Leptospira species, and further elucidation of their biological

  16. Species distribution modelling for conservation of an endangered endemic orchid.

    Wang, Hsiao-Hsuan; Wonkka, Carissa L; Treglia, Michael L; Grant, William E; Smeins, Fred E; Rogers, William E

    2015-04-21

    Concerns regarding the long-term viability of threatened and endangered plant species are increasingly warranted given the potential impacts of climate change and habitat fragmentation on unstable and isolated populations. Orchidaceae is the largest and most diverse family of flowering plants, but it is currently facing unprecedented risks of extinction. Despite substantial conservation emphasis on rare orchids, populations continue to decline. Spiranthes parksii (Navasota ladies' tresses) is a federally and state-listed endangered terrestrial orchid endemic to central Texas. Hence, we aimed to identify potential factors influencing the distribution of the species, quantify the relative importance of each factor and determine suitable habitat for future surveys and targeted conservation efforts. We analysed several geo-referenced variables describing climatic conditions and landscape features to identify potential factors influencing the likelihood of occurrence of S. parksii using boosted regression trees. Our model classified 97 % of the cells correctly with regard to species presence and absence, and indicated that probability of existence was correlated with climatic conditions and landscape features. The most influential variables were mean annual precipitation, mean elevation, mean annual minimum temperature and mean annual maximum temperature. The most likely suitable range for S. parksii was the eastern portions of Leon and Madison Counties, the southern portion of Brazos County, a portion of northern Grimes County and along the borders between Burleson and Washington Counties. Our model can assist in the development of an integrated conservation strategy through: (i) focussing future survey and research efforts on areas with a high likelihood of occurrence, (ii) aiding in selection of areas for conservation and restoration and (iii) framing future research questions including those necessary for predicting responses to climate change. Our model could also

  17. Determination of the soil hazardous concentrations of bisphenol A using the species sensitivity approach.

    Kwak, Jin Il; Moon, Jongmin; Kim, Dokyung; Cui, Rongxue; An, Youn-Joo

    2018-02-15

    This study describes the determination of the species sensitivity distribution (SSD)-based soil hazardous contamination of bisphenol A for environmental risk assessment. We conducted a battery of bioassays, including acute assays using eight species from six different taxonomic groups and chronic assays using five species from four different taxonomic groups. We determined that our dataset satisfied Australia & New Zealand's guidelines for applying the SSD methodology. Finally, the chronic soil HC 5 and HC 50 values for bisphenol A were estimated to be 13.7 and 74.7mg/kg soil, respectively, for soil ecosystem protection against chronic exposure using the data generated from this and previous studies. Because the soil standard values of bisphenol A for protection of the soil ecosystem are not currently available, the HC values of bisphenol A that we suggested based on the SSD approach would be applied as fundamental data to establish soil standards of bisphenol A for soil ecosystem protection. To our knowledge, this is the first study reporting the soil hazardous concentration of bisphenol A for environmental risk assessment. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints

    Overgaard, Anne Blach; Svenning, J.-C.; Dransfield, John

    2010-01-01

    -climatic environmental predictors, the latter having no discernible effect beyond the climatic control. Hence, at the continental scale, climate constitutes the only strong environmental control of palm species distributions in Africa. With regard to the most important climatic predictors of African palm distributions......, water-related factors were most important for 25 of the 29 species analysed. The strong response of palm distributions to climate in combination with the importance of non-environmental spatial constraints suggests that African palms will be sensitive to future climate changes, but that their ability...

  19. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change.

    Wang, Wen J; He, Hong S; Thompson, Frank R; Spetich, Martin A; Fraser, Jacob S

    2018-09-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are not well represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts. We investigate how species biological traits and environmental heterogeneity affect species distribution shifts. We used a species-specific, spatially explicit forest dynamic model LANDIS PRO, which incorporates site-scale tree species demography and competition, landscape-scale dispersal and disturbances, and regional-scale abiotic controls, to simulate the distribution shifts of four representative tree species with distinct biological traits in the central hardwood forest region of United States. Our results suggested that biological traits (e.g., dispersal capacity, maturation age) were important for determining tree species distribution shifts. Environmental heterogeneity, on average, reduced shift rates by 8% compared to perfect environmental conditions. The average distribution shift rates ranged from 24 to 200myear -1 under climate change scenarios, implying that many tree species may not able to keep up with climate change because of limited dispersal capacity, long generation time, and environmental heterogeneity. We suggest that climate-distribution models should include species demographic processes (e.g., fecundity, dispersal, colonization), biological traits (e.g., dispersal capacity, maturation age), and environmental heterogeneity (e.g., habitat fragmentation) to improve future predictions of species distribution shifts in response to changing climates. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Sapling performance along resource gradients drives tree species distributions within and across tropical forests

    Sterck, F.J.; Markesteijn, L.; Toledo, M.; Schieving, F.; Poorter, L.

    2014-01-01

    Niche differentiation is a major hypothesized determinant of species distributions, but its practical importance is heavily debated and its underlying mechanisms are poorly understood. Trait-based approaches have been used to infer niche differentiation and predict species distributions. For

  1. Distribution of Studied Insectivorous Bat Species of Myanmar

    Nyo Nyo

    2005-10-01

    Fourty-five species of insectivourous bats; Craseonycteris thonglongyai, Emballonura monticola, Taphozous melenopongon, T. theobaldi, T. longimanus, Megaderma lyra, M. spasma, Rhinolophus affinis, R. rouxii, R. pusillus, R. lepidus, R. macrotis, R. trifoliatus, R. pearsoni, R. malayanus, R. stheno, R. thomasi, R. shameli, R. acuminatus, R. marshalli, Rhinolophus sp., Hipposideros pomona, H. larvatus, H. armiger, H. lylei, H. ater, H. fulvus, Aselliscus stoliczkanus, Tadarida plicata, Myotis siligorensis, M. muricola, M. horsfieldii, M. hasseltii, M. chinensis, Scotophilus heathii, S. kuhlii, Ia io, Pipistrellus javanicus, P. coromandra, P. pulveratus, P. paterculus, P. affinis, P. ceylonicus, Miniopterus pusillus and M. magnater were distributed in 7 Divisions; Yangon, Bago, Ayeyawady, Taninthayi, Magway, Mandalay and Sagaing Division, and 7 States; Mon, Kayin, Shan, Chin, Kayah, Kachin and Rakhine States of Myanmar.

  2. The influence of photoreceptor size and distribution on optical sensitivity in the eyes of lanternfishes (Myctophidae)

    Busserolles, Fanny de

    2014-06-13

    The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae). We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s) of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density), indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter) and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence), potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns). Depth distribution at night was a significant factor in most of the

  3. The influence of photoreceptor size and distribution on optical sensitivity in the eyes of lanternfishes (Myctophidae)

    Busserolles, Fanny de; Fitzpatrick, John L.; Marshall, N. Justin; Collin, Shaun P.

    2014-01-01

    The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae). We focus specifically on the photoreceptor cells by examining their size, arrangement, topographic distribution and contribution to optical sensitivity in 53 different species from 18 genera. We also examine the influence(s) of both phylogeny and ecology on these photoreceptor variables using phylogenetic comparative analyses in order to understand the constraints placed on the visual systems of this large group of mesopelagic fishes at the first stage of retinal processing. We report great diversity in the visual system of the Myctophidae at the level of the photoreceptors. Photoreceptor distribution reveals clear interspecific differences in visual specialisations (areas of high rod photoreceptor density), indicating potential interspecific differences in interactions with prey, predators and/or mates. A great diversity in photoreceptor design (length and diameter) and density is also present. Overall, the myctophid eye is very sensitive compared to other teleosts and each species seems to be specialised for the detection of a specific signal (downwelling light or bioluminescence), potentially reflecting different visual demands for survival. Phylogenetic comparative analyses highlight several relationships between photoreceptor characteristics and the ecological variables tested (depth distribution and luminous tissue patterns). Depth distribution at night was a significant factor in most of the

  4. Inferential monitoring of global change impact on biodiversity through remote sensing and species distribution modeling

    Sangermano, Florencia

    2009-12-01

    The world is suffering from rapid changes in both climate and land cover which are the main factors affecting global biodiversity. These changes may affect ecosystems by altering species distributions, population sizes, and community compositions, which emphasizes the need for a rapid assessment of biodiversity status for conservation and management purposes. Current approaches on monitoring biodiversity rely mainly on long term observations of predetermined sites, which require large amounts of time, money and personnel to be executed. In order to overcome problems associated with current field monitoring methods, the main objective of this dissertation is the development of framework for inferential monitoring of the impact of global change on biodiversity based on remotely sensed data coupled with species distribution modeling techniques. Several research pieces were performed independently in order to fulfill this goal. First, species distribution modeling was used to identify the ranges of 6362 birds, mammals and amphibians in South America. Chapter 1 compares the power of different presence-only species distribution methods for modeling distributions of species with different response curves to environmental gradients and sample sizes. It was found that there is large variability in the power of the methods for modeling habitat suitability and species ranges, showing the importance of performing, when possible, a preliminary gradient analysis of the species distribution before selecting the method to be used. Chapter 2 presents a new methodology for the redefinition of species range polygons. Using a method capable of establishing the uncertainty in the definition of existing range polygons, the automated procedure identifies the relative importance of bioclimatic variables for the species, predicts their ranges and generates a quality assessment report to explore prediction errors. Analysis using independent validation data shows the power of this

  5. Analyzing fractal property of species abundance distribution and diversity indexes.

    Su, Qiang

    2016-03-07

    Community diversity is usually characterized by numerical indexes; however it indeed depends on the species abundance distribution (SAD). Diversity indexes and SAD are based on the same information but treating as separate themes. Ranking species abundance from largest to smallest, the decreasing pattern can give the information about the SAD. Frontier proposed such SAD might be a fractal structure, and first applied the Zipf-Mandelbrot model to the SAD study. However, this model fails to include the Zipf model, and also fails to ensure an integer rank. In this study, a fractal model of SAD was reconstructed, and tested with 104 community samples from 8 taxonomic groups. The results show that there was a good fit of the presented model. Fractal parameter (p) determines the SAD of a community. The ecological significance of p relates to the "dominance" of a community. The correlation between p and classical diversity indexes show that Shannon index decreases and Simpson index increases as p increases. The main purpose of this paper is not to compare with other SADs models; it simply provides a new interpretation of SAD model construction, and preliminarily integrates diversity indexes and SAD model into a broader perspective of community diversity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. On the statistical mechanics of species abundance distributions.

    Bowler, Michael G; Kelly, Colleen K

    2012-09-01

    A central issue in ecology is that of the factors determining the relative abundance of species within a natural community. The proper application of the principles of statistical physics to species abundance distributions (SADs) shows that simple ecological properties could account for the near universal features observed. These properties are (i) a limit on the number of individuals in an ecological guild and (ii) per capita birth and death rates. They underpin the neutral theory of Hubbell (2001), the master equation approach of Volkov et al. (2003, 2005) and the idiosyncratic (extreme niche) theory of Pueyo et al. (2007); they result in an underlying log series SAD, regardless of neutral or niche dynamics. The success of statistical mechanics in this application implies that communities are in dynamic equilibrium and hence that niches must be flexible and that temporal fluctuations on all sorts of scales are likely to be important in community structure. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Distribution Modeling of three screwworm species in the ecologically diverse landscape of North West Pakistan.

    Zaidi, Farrah; Fatima, Syeda Hira; Khisroon, Muhammad; Gul, Ayesha

    2016-10-01

    North West Pakistan (NWP) is characterized by four eco-zones: Northern Montane Region, North Western Hills, Submontane Region and Indus Plains. Present study identified 1037 cases of traumatic myiasis in the region during 2012-2015. Screw worm larvae were classified as 12 species: Chrysomya bezziana (Villeneuve), Chryomya megacephala (Fabricius), Chrysomya rufifacies (Macquart), Lucilia cuprina (Wiedemann), Lucilia sericata (Meigen), Lucilia illustris (Meigen), Lucilia porphyrina (Walker), Hemipyrellia ligguriens (Wiedemann), Calliphora vicina (Robineau-Desvoidy), Wohlfahrtia magnifica (Schiner), Sarcophaga crassipalpalis (Macquart), Sarchophaga species. Among these C. bezziana, L. cuprina and W. magnifica with approximately 882 case reports were the principal agents of traumatic myiasis. The species W. magnifica is a first report from Pakistan. In order to investigate spatial distribution of these dominant species we used MaxEnt niche model. Our results revealed a well-established occurrence of C. bezziana and L. cuprina in the four eco-regions while W. magnifica is currently contained in the Submontane Region. Several hot spot areas of infestation were detected all characterized by high human population density showing synanthropic nature of these species. Wohlfahrtia magnifica was excluded from Northern Montane Region with severe winters and Southern Indus Plains with harsh summers revealing that invasive species are initially sensitive to extreme of temperatures. Presence of L. cuprina in the wet areas of North Humid Belt (Maximum annual precipitation: 1641mm) depicted a moisture preference of the species. In perspective of changing climate and future predictions of severe events such as droughts and flooding in NWP, W. magnifica can potentially alter the species composition. Considering these findings in an eco-geographically dynamic region of Pakistan we predict that two factors (1) Growing human population (2) Climatic conditions, equally contribute to range

  8. Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change

    Wen J. Wang; Hong S. He; Frank R. Thompson; Martin A. Spetich; Jacob S. Fraser

    2018-01-01

    Demographic processes (fecundity, dispersal, colonization, growth, and mortality) and their interactions with environmental changes are notwell represented in current climate-distribution models (e.g., niche and biophysical process models) and constitute a large uncertainty in projections of future tree species distribution shifts.We investigate how species biological...

  9. Integrating DNA-based data into bioassessments improves our understanding of species distributions and species habitat relationships

    The integration of DNA-based identification methods into bioassessments could result in more accurate representations of species distributions and species-habitat relationships. DNA-based approaches may be particularly informative for tracking the distributions of rare and/or inv...

  10. Analysis of Sensitivity and Uncertainty in an Individual-Based Model of a Threatened Wildlife Species

    We present a multi-faceted sensitivity analysis of a spatially explicit, individual-based model (IBM) (HexSim) of a threatened species, the Northern Spotted Owl (Strix occidentalis caurina) on a national forest in Washington, USA. Few sensitivity analyses have been conducted on ...

  11. The scotopic visual sensitivity of four species of trout: A comparative study

    Russel B. Rader; Timberley Belish; Michael K. Young; John Rothlisberger

    2007-01-01

    We compared the maximum scotopic visual sensitivity of 4 species of trout from twilight (mesotopic) to fully dark-adapted vision. Scotopic vision is the minimum number of photons to which a fully dark-adapted animal will show a behavioral response. A comparison of visual sensitivity under controlled laboratory conditions showed that brown trout (Salmo trutta...

  12. Drought responses of three closely related Caragana species: implication for their vicarious distribution.

    Ma, Fei; Na, Xiaofan; Xu, Tingting

    2016-05-01

    Drought is a major environmental constraint affecting growth and distribution of plants in the desert region of the Inner Mongolia plateau. Caragana microphylla, C. liouana, and C. korshinskii are phylogenetically close but distribute vicariously in Mongolia plateau. To gain a better understanding of the ecological differentiation between these three species, we examined the leaf gas exchange, growth, water use efficiency, biomass accumulation and allocation by subjecting their seedlings to low and high drought treatments in a glasshouse. Increasing drought stress had a significant effect on many aspects of seedling performance in all species, but the physiology and growth varied with species in response to drought. C. korshinskii exhibited lower sensitivity of photosynthetic rate and growth, lower specific leaf area, higher biomass allocation to roots, higher levels of water use efficiency to drought compared with the other two species. Only minor interspecific differences in growth performances were observed between C. liouana and C. microphylla. These results indicated that faster seedling growth rate and more efficient water use of C. korshinskii should confer increased drought tolerance and facilitate its establishment in more severe drought regions relative to C. liouana and C. microphylla.

  13. Species delimitation of the Hyphydrus ovatus complex in western Palaearctic with an update of species distributions (Coleoptera, Dytiscidae

    Johannes Bergsten

    2017-06-01

    Full Text Available The species status of Hyphydrus anatolicus Guignot, 1957 and H. sanctus Sharp, 1882, previously often confused with the widespread H. ovatus (Linnaeus, 1760, are tested with molecular and morphological characters. Cytochrome c oxidase subunit 1 (CO1 was sequenced for 32 specimens of all three species. Gene-trees were inferred with parsimony, time-free bayesian and strict clock bayesian analyses. The GMYC model was used to estimate species limits. All three species were reciprocally monophyletic with CO1 and highly supported. The GMYC species delimitation analysis unequivocally delimited the three species with no other than the three species solution included in the confidence interval. A likelihood ratio test rejected the one-species null model. Important morphological characters distinguishing the species are provided and illustrated. New distributional data are given for the following species: Hyphydrus anatolicus from Slovakia and Ukraine, and H. aubei Ganglbauer, 1891, and H. sanctus from Turkey.

  14. Distribution of the Ammoniated Species on the Surface of Ceres

    Ammannito, E.; De Sanctis, M. C.; Carrorro, F. G.; Ciarniello, M.; Combe, J. P.; De Angelis, S.; Ehlmann, B. L.; Frigeri, A.; Marchi, S.; McSween, H. Y., Jr.; Raponi, A.; Toplis, M. J.; Tosi, F.; Castillo, J. C.; Capaccioni, F.; Capria, M. T.; Fonte, S.; Giardino, M.; Jaumann, R.; Longobardo, A.; Joy, S. P.; Magni, G.; McCord, T. B.; McFadden, L. A.; Palomba, E.; Pieters, C. M.; Polanskey, C. A.; Prettyman, T. H.; Rayman, M.; Raymond, C. A.; Schenk, P.; Zambon, F.; Russell, C. T.

    2016-12-01

    The Dawn spacecraft has been acquiring data on dwarf planet Ceres since January 2015 (1). The VIR spectrometer (0.25-5.0 μm) acquired data at different altitudes providing information on the composition of the surface of Ceres at resolutions ranging from few kilometers to about one hundred meters (2). The average spectrum of Ceres is well represented by a mixture of dark minerals, Mg- phyllosilicates, ammoniated clays, and Mg carbonates (3). This result confirms previous studies based on ground based spectra (4, 5). Maps of the surface at about 1 km/px show that the components identified in the average spectrum are present all across the surface with variations in their relative abundance (6). Some localized areas however have peculiar spectral characteristics. One example is the spectrum of the bright regions within Occator crater that is most consistent with a large amount of Na-carbonates and possibly ammonium salts (7). The presence of ammoniated species poses a constraint on the pH and redox condition during the evolution of Ceres. Therefore, we have studied the distribution across the surface of such species to better understand the evolutionary pathway of Ceres. References : (1) Russell, C. T. et al. 2016, Science. (2) De Sanctis M.C. et al., The VIR Spectrometer, 2011, Space Science Reviews. (3) De Sanctis M.C. et al. Ammoniated phyllosilicates on dwarf planet Ceres reveal an outer solar system origin, Nature, 2015. (4) King T. et al. (1992) Science, 255, 1551-1553. (5) Rivkin A.S. et al. (2006) Icarus, 185, 563-567. (6) Ammannito E. et al., Spectral diversity of Ceres surface as measured by VIR, 2016, Science. (7) De Sanctis et al. (2016), Nature

  15. Germination sensitivity to water stress in four shrubby species across the Mediterranean Basin.

    Chamorro, D; Luna, B; Ourcival, J-M; Kavgacı, A; Sirca, C; Mouillot, F; Arianoutsou, M; Moreno, J M

    2017-01-01

    Mediterranean shrublands are generally water-limited and fire-driven ecosystems. Seed-based post-fire regeneration may be affected by varying rainfall patterns, depending on species sensitivity to germinate under water stress. In our study, we considered the germination response to water stress in four species from several sites across the Mediterranean Basin. Seeds of species with a hard coat (Cistus monspeliensis, C. salviifolius, Cistaceae, Calicotome villosa, Fabaceae) or soft coat (Erica arborea, Ericaceae), which were exposed or not to a heat shock and smoke (fire cues), were made to germinate under water stress. Final germination percentage, germination speed and viability of seeds were recorded. Germination was modelled using hydrotime analysis and correlated to the water balance characteristics of seed provenance. Water stress was found to decrease final germination in the three hard-seeded species, as well as reduce germination speed. Moreover, an interaction between fire cues and water stress was found, whereby fire cues increased sensitivity to water stress. Seed viability after germination under water stress also declined in two hard-seeded species. Conversely, E. arborea showed little sensitivity to water stress, independent of fire cues. Germination responses varied among populations of all species, and hydrotime parameters were not correlated to site water balance, except in E. arborea when not exposed to fire cues. In conclusion, the species studied differed in germination sensitivity to water stress; furthermore, fire cues increased this sensitivity in the three hard-seeded species, but not in E. arborea. Moreover, populations within species consistently differed among themselves, but these differences could only be related to the provenance locality in E. arborea in seeds not exposed to fire cues. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Effects of climate change on three species of Cupido (Lepidoptera, Lycaenidae with different biogeographic distribution in Andalusia, southern Spain

    Obregón, R.

    2016-03-01

    Full Text Available Knowledge of the spatial distribution of rare or endangered species is of key importance to assess conservation status at different geographic scales and to develop conservation and recovery programs. In this paper we review and update the distribution of three species of Lycaenid butterflies in Andalusia (southern Spain: Cupido carswelli, C. lorquinii, and C. osiris. Cupido carswelli is endemic in south east Spain and is considered a vulnerable species in the Red Book of Invertebrates of Andalusia. Cupido lorquinii is an Iberian–Maghrebian endemism, found in the southern half of the Iberian peninsula. Cupido osiris, widely distributed in Europe and Central Asia, has its southern limit of distribution in Andalusia. We modeled the potential current distribution of these species in Andalusia, using Maxent. Their potential distribution was mainly conditioned by the presence of their host plants and, to a lesser extent, by climatic variables: rainfall during the warmest and coldest quarters of the year and annual mean temperature. AUC test values, sensitivity, and specificity for the three models were high, confirming the accuracy of the models and their high predictive values. We also modeled the potential future distributions of the three species under the climate change scenario A2a. Our results predict a significant reduction in the potential distribution for C. lorquinii —which has a wider distribution in Andalusia than the other two species— and for the more localized species, C. osiris and C. carswelli. This expected decline in the south of the Iberian peninsula highlights the pressing need to design and implement specific conservation plans for these species.

  17. Effects of climate change on three species of Cupido (Lepidoptera, Lycaenidae) with different biogeographic distribution in Andalusia, southern Spain

    Obregon, R.; Fernandez Haeger, J.; Jordano, D.

    2016-07-01

    Knowledge of the spatial distribution of rare or endangered species is of key importance to assess conservation status at different geographic scales and to develop conservation and recovery programs. In this paper we review and update the distribution of three species of Lycaenid butterflies in Andalusia (southern Spain): Cupido carswelli, C. lorquinii, and C. osiris. Cupido carswelli is endemic in south east Spain and is considered a vulnerable species in the Red Book of Invertebrates of Andalusia. Cupido lorquinii is an Iberian–Maghrebian endemism, found in the southern half of the Iberian peninsula. Cupido osiris, widely distributed in Europe and Central Asia, has its southern limit of distribution in Andalusia. We modeled the potential current distribution of these species in Andalusia, using Maxent. Their potential distribution was mainly conditioned by the presence of their host plants and, to a lesser extent, by climatic variables: rainfall during the warmest and coldest quarters of the year and annual mean temperature. AUC test values, sensitivity, and specificity for the three models were high, confirming the accuracy of the models and their high predictive values. We also modeled the potential future distributions of the three species under the climate change scenario A2a. Our results predict a significant reduction in the potential distribution for C. lorquinii —which has a wider distribution in Andalusia than the other two species— and for the more localized species, C. osiris and C. carswelli. This expected decline in the south of the Iberian peninsula highlights the pressing need to design and implement specific conservation plans for these species. (Author)

  18. Using citizen science data to identify the sensitivity of species to human land use.

    Todd, Brian D; Rose, Jonathan P; Price, Steven J; Dorcas, Michael E

    2016-12-01

    Conservation practitioners must contend with an increasing array of threats that affect biodiversity. Citizen scientists can provide timely and expansive information for addressing these threats across large scales, but their data may contain sampling biases. We used randomization procedures to account for possible sampling biases in opportunistically reported citizen science data to identify species' sensitivities to human land use. We analyzed 21,044 records of 143 native reptile and amphibian species reported to the Carolina Herp Atlas from North Carolina and South Carolina between 1 January 1990 and 12 July 2014. Sensitive species significantly associated with natural landscapes were 3.4 times more likely to be legally protected or treated as of conservation concern by state resource agencies than less sensitive species significantly associated with human-dominated landscapes. Many of the species significantly associated with natural landscapes occurred primarily in habitats that had been nearly eradicated or otherwise altered in the Carolinas, including isolated wetlands, longleaf pine savannas, and Appalachian forests. Rare species with few reports were more likely to be associated with natural landscapes and 3.2 times more likely to be legally protected or treated as of conservation concern than species with at least 20 reported occurrences. Our results suggest that opportunistically reported citizen science data can be used to identify sensitive species and that species currently restricted primarily to natural landscapes are likely at greatest risk of decline from future losses of natural habitat. Our approach demonstrates the usefulness of citizen science data in prioritizing conservation and in helping practitioners address species declines and extinctions at large extents. © 2016 Society for Conservation Biology.

  19. Species-independent bioassay for sensitive quantification of antiviral type I interferons

    Penski Nicola

    2010-02-01

    Full Text Available Abstract Background Studies of the host response to infection often require quantitative measurement of the antiviral type I interferons (IFN-α/β in biological samples. The amount of IFN is either determined via its ability to suppress a sensitive indicator virus, by an IFN-responding reporter cell line, or by ELISA. These assays however are either time-consuming and lack convenient readouts, or they are rather insensitive and restricted to IFN from a particular host species. Results An IFN-sensitive, Renilla luciferase-expressing Rift Valley fever virus (RVFV-Ren was generated using reverse genetics. Human, murine and avian cells were tested for their susceptibility to RVFV-Ren after treatment with species-specific IFNs. RVFV-Ren was able to infect cells of all three species, and IFN-mediated inhibition of viral reporter activity occurred in a dose-dependent manner. The sensitivity limit was found to be 1 U/ml IFN, and comparison with a standard curve allowed to determine the activity of an unknown sample. Conclusions RVFV-Ren replicates in cells of several species and is highly sensitive to pre-treatment with IFN. These properties allowed the development of a rapid, sensitive, and species-independent antiviral assay with a convenient luciferase-based readout.

  20. A simple model for skewed species-lifetime distributions

    Murase, Yohsuke; Shimada, Takashi; Ito, Nobuyasu

    2010-01-01

    A simple model of a biological community assembly is studied. Communities are assembled by successive migrations and extinctions of species. In the model, species are interacting with each other. The intensity of the interaction between each pair

  1. Distribution patterns of rare earth elements in various plant species

    Wyttenbach, A.; Tobler, L.; Furrer, V. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs.

  2. Distribution patterns of rare earth elements in various plant species

    Wyttenbach, A.; Tobler, L.; Furrer, V.

    1997-01-01

    The elements La, Ce, Nd, Sm, Eu, Gd, Tb, Yb and Lu have been determined in 6 different plant species by neutron activation analysis. When the concentrations of each species were normalized to Norway spruce, smooth curves were obtained which revealed systematic inter-species differences. (author) 3 figs., 4 refs

  3. Assessing contaminant sensitivity of endangered and threatened aquatic species: Part III. Effluent toxicity tests

    Dwyer, F.J.; Hardesty, D.K.; Henke, C.E.; Ingersoll, C.G.; Whites, D.W.; Augspurger, T.; Canfield, T.J.; Mount, D.R.; Mayer, F.L.

    2005-01-01

    Toxicity tests using standard effluent test procedures described by the U.S. Environmental Protection Agency were conducted with Ceriodaphnia dubia, fathead minnows (Pimephales promelas), and seven threatened and endangered (listed) fish species from four families: (1) Acipenseridae: shortnose sturgeon (Acipenser brevirostrum); (2) Catostomidae; razorback sucker (Xyrauchen texanus); (3) Cyprinidae: bonytail chub (Gila elegans), Cape Fear shiner (Notropis mekistocholas) Colorado pikeminnow (Ptychocheilus lucius), and spotfin chub (Cyprinella monacha); and (4) Poecillidae: Gila topminnow (Poeciliopsis occidentalis). We conducted 7-day survival and growth studies with embryo-larval fathead minnows and analogous exposures using the listed species. Survival and reproduction were also determined with C. dubia. Tests were conducted with carbaryl, ammonia-or a simulated effluent complex mixture of carbaryl, copper, 4-nonylphenol, pentachlorophenol and permethrin at equitoxic proportions. In addition, Cape Fear shiners and spotfin chub were tested using diazinon, copper, and chlorine. Toxicity tests were also conducted with field-collected effluents from domestic or industrial facilities. Bonytail chub and razorback suckers were tested with effluents collected in Arizona whereas effluent samples collected from North Carolina were tested with Cape Fear shiner, spotfin chub, and shortnose sturgeon. The fathead minnow 7-day effluent test was often a reliable estimator of toxic effects to the listed fishes. However, in 21 % of the tests, a listed species was more sensitive than fathead minnows. More sensitive species results varied by test so that usually no species was always more or less sensitive than fathead minnows. Only the Gila topminnow was consistently less sensitive than the fathead minnow. Listed fish species were protected 96% of the time when results for both fathead minnows and C. dubia were considered, thus reinforcing the value of standard whole

  4. Hearing sensitivity in context: Conservation implications for a highly vocal endangered species

    Megan A. Owen

    2016-04-01

    Full Text Available Hearing sensitivity is a fundamental determinant of a species’ vulnerability to anthropogenic noise, however little is known about the hearing capacities of most conservation dependent species. When audiometric data are integrated with other aspects of species’ acoustic ecology, life history, and characteristic habitat topography and soundscape, predictions can be made regarding probable vulnerability to the negative impacts of different types of anthropogenic noise. Here we used an adaptive psychoacoustic technique to measure hearing thresholds in the endangered giant panda; a species that uses acoustic communication to coordinate reproduction. Our results suggest that giant pandas have functional hearing into the ultrasonic range, with good sensitivity between 10.0 and 16.0 kHz, and best sensitivity measured at 12.5–14.0 kHz. We estimated the lower and upper limits of functional hearing as 0.10 and 70.0 kHz respectively. While these results suggest that panda hearing is similar to that of some other terrestrial carnivores, panda hearing thresholds above 14.0 kHz were significantly lower (i.e., more sensitive than those of the polar bear, the only other bear species for which data are available. We discuss the implications of this divergence, as well as the relationship between hearing sensitivity and the spectral parameters of panda vocalizations. We suggest that these data, placed in context, can be used towards the development of a sensory-based model of noise disturbance for the species.

  5. Adaptive Management Plan for Sensitive Plant Species on the Nevada Test Site

    Wills, C. A.

    2001-01-01

    The Nevada Test Site supports numerous plant species considered sensitive because of their past or present status under the Endangered Species Act and with federal and state agencies. In 1998, the U.S. Department of Energy, Nevada Operation Office (DOE/NV) prepared a Resource Management Plan which commits to protects and conserve these sensitive plant species and to minimize accumulative impacts to them. This document presents the procedures of a long-term adaptive management plan which is meant to ensure that these goals are met. It identifies the parameters that are measured for all sensitive plant populations during long-term monitoring and the adaptive management actions which may be taken if significant threats to these populations are detected. This plan does not, however, identify the current list of sensitive plant species know to occur on the Nevada Test Site. The current species list and progress on their monitoring is reported annually by DOE/NV in the Resource Management Plan

  6. Sensitive Indicators of Zonal Stipa Species to Changing Temperature and Precipitation in Inner Mongolia Grassland, China

    Lv, Xiaomin; Zhou, Guangsheng; Wang, Yuhui; Song, Xiliang

    2016-01-01

    Climate change often induces shifts in plant functional traits. However, knowledge related to sensitivity of different functional traits and sensitive indicator representing plant growth under hydrothermal change remains unclear. Inner Mongolia grassland is predicted to be one of the terrestrial ecosystems which are most vulnerable to climate change. In this study, we analyzed the response of four zonal Stipa species (S. baicalensis, S. grandis, S. breviflora, and S. bungeana) from Inner Mongolia grassland to changing temperature (control, increased 1.5, 2, 4, and 6°C), precipitation (decreased 30 and 15%, control, increased 15 and 30%) and their combined effects via climate control chambers. The relative change of functional traits in the unit of temperature and precipitation change was regarded as sensitivity coefficient and sensitive indicators were examined by pathway analysis. We found that sensitivity of the four Stipa species to changing temperature and precipitation could be ranked as follows: S. bungeana > S. grandis > S. breviflora > S. baicalensis. In particular, changes in leaf area, specific leaf area and root/shoot ratio could account for 86% of the changes in plant biomass in the four Stipa species. Also these three measurements were more sensitive to hydrothermal changes than the other functional traits. These three functional indicators reflected the combination of plant production capacity (leaf area), adaptive strategy (root/shoot ratio), instantaneous environmental effects (specific leaf area), and cumulative environmental effects (leaf area and root/shoot ratio). Thus, leaf area, specific leaf area and root/shoot ratio were chosen as sensitive indicators in response to changing temperature and precipitation for Stipa species. These results could provide the basis for predicting the influence of climate change on Inner Mongolia grassland based on the magnitude of changes in sensitive indicators. PMID:26904048

  7. Distribution Patterns of Ohio Stoneflies, with an Emphasis on Rare and Uncommon Species

    Grubbs, Scott A.; Pessimo, Massimo; DeWalt, R. Edward

    2013-01-01

    Presently, 102 stonefly species (Plecoptera) have been reported from Ohio. All 9 Nearctic families are represented. Over 90% of the fauna exhibit a combination of broad Nearctic-widespread, eastern Nearctic-widespread, Appalachian, and eastern Nearctic-unglaciated distributions. In contrast, only 2 species display a central Nearctic-Prairie distribution. Seven species of Perlidae are likely no longer present (Acroneuria evoluta Klapálek, A. perplexa Frison, Attaneuria ruralis (Hagen), and Neoperla mainensis Banks) or have experienced marked range reductions (Acroneuria abnormis (Newman), A. frisoni Stark and Brown, and A. filicis Frison). Another nearly 31% of the fauna (32 species) are rare, uncommon, or have highly-limited distributions within the state. Twelve of these species have Appalachian distributions, and an additional 8 have eastern Nearctic-unglaciated distributions. The distributional status for each of the 32 rare/uncommon species is discussed. PMID:24219390

  8. New distribution records for four mammal species, with notes on their taxonomy and ecology

    G.N. Bronner

    1990-09-01

    Full Text Available New distribution records for four small mammal species (Georychus capensis, Galerella pulverulenta, Rhinolophus swinnyi and Amblysomus julianae are presented, along with relevant notes on the taxonomy, karyology and ecology of these species.

  9. Species composition, abundance and distribution of hydromedusae from Dharamtar estuarine system, adjoining Bombay Harbour

    Santhakumari, V.; Tiwari, L.R.; Nair, V.R.

    Species composition, abundance and distribution of hydromedusae from Dharamtar estuarine system, adjoining Bombay Harbour, Maharashtra, India were investigated during 1984-1985. Twenty six species belonging to 19 genera were obtained from this area...

  10. Formulation and Analysis of an Approximate Expression for Voltage Sensitivity in Radial DC Distribution Systems

    Ho-Yong Jeong

    2015-08-01

    Full Text Available Voltage is an important variable that reflects system conditions in DC distribution systems and affects many characteristics of a system. In a DC distribution system, there is a close relationship between the real power and the voltage magnitude, and this is one of major differences from the characteristics of AC distribution systems. One such relationship is expressed as the voltage sensitivity, and an understanding of voltage sensitivity is very useful to describe DC distribution systems. In this paper, a formulation for a novel approximate expression for the voltage sensitivity in a radial DC distribution system is presented. The approximate expression is derived from the power flow equation with some additional assumptions. The results of approximate expression is compared with an exact calculation, and relations between the voltage sensitivity and electrical quantities are analyzed analytically using both the exact form and the approximate voltage sensitivity equation.

  11. Environmentally Sensitive Areas Surveys Program threatened and endangered species survey: Progress report. Environmental Restoration Program

    King, A.L.; Awl, D.J.; Gabrielsen, C.A.

    1994-09-01

    The Endangered Species Act (originally passed in 1973) is a Federal statute that protects both animal and plant species. The Endangered Species Act identifies species which are, without careful management, in danger of becoming extinct and species that are considered threatened. Along with the designation of threatened or endangered, the Endangered Species Act provides for the identification of appropriate habitat for these species. Since 1993, the United States Department of Energy`s (DOE) Environmental Restoration (ER) Program has supported a program to survey the Oak Ridge Reservation (ORR) for threatened and endangered species. The Environmentally Sensitive Areas Surveys Program initiated vascular plant surveys during fiscal year 1993 and vertebrate animal surveys during fiscal year 1994 to determine the baseline condition of threatened and endangered species on the ORR at the present time. Data collected during these surveys are currently aiding Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Remedial Investigations on the ORR. They also provide data for ER and Waste Management decision documents, ensure that decisions have technical and legal defensibility, provide a baseline for ensuring compliance with principal legal requirements and will increase public confidence in DOE`s adherence to all related environmental resources rules, laws, regulations, and instructions. This report discusses the progress to date of the threatened and endangered species surveys of the ORR.

  12. Assessing the impact of revegetation and weed control on urban sensitive bird species.

    Archibald, Carla L; McKinney, Matthew; Mustin, Karen; Shanahan, Danielle F; Possingham, Hugh P

    2017-06-01

    Nature in cities is concentrated in urban green spaces, which are key areas for urban biodiversity and also important areas to connect people with nature. To conserve urban biodiversity within these natural refugia, habitat restoration such as weed control and revegetation is often implemented. These actions are expected to benefit biodiversity, although species known to be affected by urbanization may not be interacting with restoration in the ways we anticipate. In this study, we use a case study to explore how urban restoration activities impact different bird species. Birds were grouped into urban sensitivity categories and species abundance, and richness was then calculated using a hierarchical species community model for individual species responses, with "urban class" used as the hierarchical parameter. We highlight variable responses of birds to revegetation and weed control based on their level of urban sensitivity. Revegetation of open grassy areas delivers significant bird conservation outcomes, but the effects of weed control are neutral or in some cases negative. Specifically, the species most reliant on remnant vegetation in cities seem to remain stable or decline in abundance in areas with weed control, which we suspect is the result of a simplification of the understorey. The literature reports mixed benefits of weed control between taxa and between locations. We recommend, in our case study site, that weed control be implemented in concert with replanting of native vegetation to provide the understory structure preferred by urban sensitive birds. Understanding the impacts of revegetation and weed control on different bird species is important information for practitioners to make restoration decisions about the allocation of funds for conservation action. This new knowledge can be used both for threatened species and invasive species management.

  13. Determining the factors affecting the distribution of Muscari latifolium, an endemic plant of Turkey, and a mapping species distribution model.

    Yilmaz, Hatice; Yilmaz, Osman Yalçın; Akyüz, Yaşar Feyza

    2017-02-01

    Species distribution modeling was used to determine factors among the large predictor candidate data set that affect the distribution of Muscari latifolium , an endemic bulbous plant species of Turkey, to quantify the relative importance of each factor and make a potential spatial distribution map of M. latifolium . Models were built using the Boosted Regression Trees method based on 35 presence and 70 absence records obtained through field sampling in the Gönen Dam watershed area of the Kazdağı Mountains in West Anatolia. Large candidate variables of monthly and seasonal climate, fine-scale land surface, and geologic and biotic variables were simplified using a BRT simplifying procedure. Analyses performed on these resources, direct and indirect variables showed that there were 14 main factors that influence the species' distribution. Five of the 14 most important variables influencing the distribution of the species are bedrock type, Quercus cerris density, precipitation during the wettest month, Pinus nigra density, and northness. These variables account for approximately 60% of the relative importance for determining the distribution of the species. Prediction performance was assessed by 10 random subsample data sets and gave a maximum the area under a receiver operating characteristic curve (AUC) value of 0.93 and an average AUC value of 0.8. This study provides a significant contribution to the knowledge of the habitat requirements and ecological characteristics of this species. The distribution of this species is explained by a combination of biotic and abiotic factors. Hence, using biotic interaction and fine-scale land surface variables in species distribution models improved the accuracy and precision of the model. The knowledge of the relationships between distribution patterns and environmental factors and biotic interaction of M. latifolium can help develop a management and conservation strategy for this species.

  14. New record of the sympatric distribution of two Asian species of the horseshoe crab

    Chatterji, A.

    distribution of two Asian species of the horses... http://www.ias.ac.in/currsci/sep25/articles14.htm 1 of 3 2/11/05 9:47 AM New record of the sympatric distribution of two Asian species of the horseshoe crab The geographical distribution of four extant species...... http://www.ias.ac.in/currsci/sep25/articles14.htm 2 of 3 2/11/05 9:47 AM This species was found breeding actively on relatively clean and sandy beaches. The other species (C. rotundicauda) was not reported in these areas.However, during the survey...

  15. Endangered Fish Species in Kansas: Historic vs Contemporary Distribution

    Background/Question/Methods Kansas state has more freshwater fish species than other states in the west and northern US. Based on recent count, more than 140 fishes have been documented in Kansas rivers. And at least five are categorized as endangered species in Kansas (and thre...

  16. Iodine uptake and distribution in horticultural and fruit tree species

    Alessandra Caffagni

    2012-07-01

    Full Text Available Iodine is an essential microelement for humans and iodine deficiency disorder (IDD is one of the most widespread nutrient-deficiency diseases in the world. Iodine biofortification of plants provides an attractive opportunity to increase iodine intake in humans and to prevent and control IDD. This study was conducted to investigate the iodine uptake and accumulation in edible portion of two fruit trees: plum and nectarine, and two horticultural crops: tomato and potato. Two type of iodine treatments (soil and foliar spray application, and, for fresh market tomato, two production systems (open field and greenhouse hydroponic culture were tested. The distribution of iodine in potato stem and leaves, and in plum tree fruits, leaves, and branches was investigated. Iodine content of potato tubers after postharvest storage and processing (cooking, and iodine content of nectarine fruits after postharvest storage and processing (peeling were also determined. Differences in iodine accumulation were observed among the four crops, between applications, and between production systems. In open field, the maximum iodine content ranged from 9.5 and 14.3 μg 100 g−1 for plum and nectarine fruit, to 89.4 and 144.0 μg 100 g−1 for potato tuber and tomato fruit, respectively. These results showed that nectarine and plum tree accumulated significantly lower amounts of iodine in their edible tissues, in comparison with potato and tomato. The experiments also indicated hydroponic culture as the most efficient system for iodine uptake in tomato, since its fresh fruits accumulated up to 2423 μg 100 g−1 of iodine. Iodine was stored mainly in the leaves, in all species investigated. Only a small portion of iodine was moved to plum tree branches and fruits, and to potato stems and tubers. No differences in iodine content after fruit peeling was observed. A significant increase in iodine content of potato was observed after baking, whereas a significant decrease was

  17. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  18. Effect factors for marine eutrophication in LCIA based on species sensitivity to hypoxia

    Cosme, Nuno Miguel Dias; Hauschild, Michael Zwicky

    2016-01-01

    Hypoxia is an important environmental stressor to marine species, especially in benthic coastal waters. Increasing anthropogenic emissions of nutrients and organic matter contribute to the depletion of dissolved oxygen (DO). Biotic sensitivity to low levels of DO is determined by the organisms...

  19. Differential sensitivity to natural ultraviolet radiation among phytoplankton species in Arctic lakes (Spitsbergen, Norway)

    Donk, van E.; Faafeng, B.A.; Lange, de H.J.

    2001-01-01

    Incubation experiments demonstrated a differential sensitivity to natural UV-radiation among the dominant phytoplankton species from three Arctic lakes, situated near Ny-Ålesund, Spitsbergen (79° N). The growth of small chlorophytes, diatoms and picocyanobacteria from two oligotrophic lakes was

  20. Two new species of Ateuchus with remarks on ecology, distributions, and evolutionary relationships (Coleoptera, Scarabaeidae, Scarabaeinae).

    Moctezuma, Victor; Sánchez-Huerta, José Luis; Halffter, Gonzalo

    2018-01-01

    Two new species of the genus Ateuchus Weber are described from the region of Los Chimalapas, Oaxaca, Mexico: A. benitojuarezi sp. n. and A. colossus sp. n. A diagnosis for distinguishing these new species from the other species of this genus in North America is included. This paper is illustrated with pictures of the dorsal habitus and the male genitalia of the new species. The evolutionary relationships of the species are discussed, as well as their distribution and ecology. It is considered that the species of the genus Ateuchus present in North and Central America correspond to the Typical Neotropical and Mountain Mesoamerican distribution patterns.

  1. hookworm species distribution around asendabo town jimma zone

    DigLab

    acknowledged cause of anemia as a result of intestinal blood loss. The aim of this study was to ... KEY WORDS: Hookworm species, anemia, helminth, Asendabo, Jimma, Ethiopia. ... nematode parasites Necator americanus and Ancylostoma.

  2. Variation in sensitivity, absorption and density of the central rod distribution with eccentricity.

    Tornow, R P; Stilling, R

    1998-01-01

    To assess the human rod photopigment distribution and sensitivity with high spatial resolution within the central +/-15 degrees and to compare the results of pigment absorption, sensitivity and rod density distribution (number of rods per square degree). Rod photopigment density distribution was measured with imaging densitometry using a modified Rodenstock scanning laser ophthalmoscope. Dark-adapted sensitivity profiles were measured with green stimuli (17' arc diameter, 1 degrees spacing) using a T ubingen manual perimeter. Sensitivity profiles were plotted on a linear scale and rod photopigment optical density distribution profiles were converted to absorption profiles of the rod photopigment layer. Both the absorption profile of the rod photopigment and the linear sensitivity profile for green stimuli show a minimum at the foveal center and increase steeply with eccentricity. The variation with eccentricity corresponds to the rod density distribution. Rod photopigment absorption profiles, retinal sensitivity profiles, and the rod density distribution are linearly related within the central +/-15 degrees. This is in agreement with theoretical considerations. Both methods, imaging retinal densitometry using a scanning laser ophthalmoscope and dark-adapted perimetry with small green stimuli, are useful for assessing the central rod distribution and sensitivity. However, at present, both methods have limitations. Suggestions for improving the reliability of both methods are given.

  3. Temperature affects species distribution in symbiotic populations of Vibrio spp.

    Nishiguchi, M K

    2000-08-01

    The genus Sepiola (Cephalopoda: Sepiolidae) contains 10 known species that occur in the Mediterranean Sea today. All Sepiola species have a light organ that contains at least one of two species of luminous bacteria, Vibrio fischeri and Vibrio logei. The two Vibrio species coexist in at least four Sepiola species (S. affinis, S. intermedia, S. ligulata, and S. robusta), and their concentrations in the light organ depend on changes in certain abiotic factors, including temperature. Strains of V. fischeri grew faster in vitro and in Sepiola juveniles when they were incubated at 26 degrees C. In contrast, strains of V. logei grew faster at 18 degrees C in culture and in Sepiola juveniles. When aposymbiotic S. affinis or S. ligulata juveniles were inoculated with one Vibrio species, all strains of V. fischeri and V. logei were capable of infecting both squid species at the optimum growth temperatures, regardless of the squid host from which the bacteria were initially isolated. However, when two different strains of V. fischeri and V. logei were placed in direct competition with each other at either 18 or 26 degrees C, strains of V. fischeri were present in sepiolid light organs in greater concentrations at 26 degrees C, whereas strains of V. logei were present in greater concentrations at 18 degrees C. In addition to the competition experiments, the ratios of the two bacterial species in adult Sepiola specimens caught throughout the season at various depths differed, and these differences were correlated with the temperature in the surrounding environment. My findings contribute additional data concerning the ecological and environmental factors that affect host-symbiont recognition and may provide insight into the evolution of animal-bacterium specificity.

  4. Distribution and content of ellagitannins in Finnish plant species.

    Moilanen, Johanna; Koskinen, Piia; Salminen, Juha-Pekka

    2015-08-01

    The results of a screening study, in which a total of 82 Finnish plant species were studied for their ellagitannin composition and content, are presented. The total ellagitannin content was determined by HPLC-DAD, the detected ellagitannins were further characterized by HPLC-ESI-QTOF-MS and divided into four structurally different sub-groups. Thirty plant species were found to contain ellagitannins and the ellagitannin content in the crude extracts varied from few mgg(-1) to over a hundred mgg(-1). Plant families that were rich in ellagitannins (>90mgg(-1) of the crude extract) were Onagraceae, Lyhtraceae, Geraniaceae, Elaeagnaceae, Fagaceae and some species from Rosaceae. Plant species that contained moderate amounts of ellagitannins (31-89mgg(-1) of the crude extract) were representatives of the family Rosaceae. Plant species that contained low amounts of ellagitannins (1-30mgg(-1) of the crude extract) were representatives of the families Betulaceae and Myricaceae. The specific ellagitannin composition of the species allowed their chemotaxonomic classification and the comparison between the older Cronquist's classification and the nowadays preferred Angiosperm Phylogeny Group classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Factors influencing non-native tree species distribution in urban landscapes

    Wayne C. Zipperer

    2010-01-01

    Non-native species are presumed to be pervasive across the urban landscape. Yet, we actually know very little about their actual distribution. For this study, vegetation plot data from Syracuse, NY and Baltimore, MD were used to examine non-native tree species distribution in urban landscapes. Data were collected from remnant and emergent forest patches on upland sites...

  6. Current state of the art for statistical modeling of species distributions [Chapter 16

    Troy M. Hegel; Samuel A. Cushman; Jeffrey Evans; Falk Huettmann

    2010-01-01

    Over the past decade the number of statistical modelling tools available to ecologists to model species' distributions has increased at a rapid pace (e.g. Elith et al. 2006; Austin 2007), as have the number of species distribution models (SDM) published in the literature (e.g. Scott et al. 2002). Ten years ago, basic logistic regression (Hosmer and Lemeshow 2000)...

  7. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent.

    Allman, Elizabeth S; Degnan, James H; Rhodes, John A

    2011-06-01

    Gene trees are evolutionary trees representing the ancestry of genes sampled from multiple populations. Species trees represent populations of individuals-each with many genes-splitting into new populations or species. The coalescent process, which models ancestry of gene copies within populations, is often used to model the probability distribution of gene trees given a fixed species tree. This multispecies coalescent model provides a framework for phylogeneticists to infer species trees from gene trees using maximum likelihood or Bayesian approaches. Because the coalescent models a branching process over time, all trees are typically assumed to be rooted in this setting. Often, however, gene trees inferred by traditional phylogenetic methods are unrooted. We investigate probabilities of unrooted gene trees under the multispecies coalescent model. We show that when there are four species with one gene sampled per species, the distribution of unrooted gene tree topologies identifies the unrooted species tree topology and some, but not all, information in the species tree edges (branch lengths). The location of the root on the species tree is not identifiable in this situation. However, for 5 or more species with one gene sampled per species, we show that the distribution of unrooted gene tree topologies identifies the rooted species tree topology and all its internal branch lengths. The length of any pendant branch leading to a leaf of the species tree is also identifiable for any species from which more than one gene is sampled.

  8. Acute sensitivity of three Cladoceran species to different types of microplastics in combination with thermal stress.

    Jaikumar, Gayathri; Baas, Jan; Brun, Nadja R; Vijver, Martina G; Bosker, Thijs

    2018-08-01

    Microplastics (microplastics on freshwater ecosystems, especially under different environmental conditions. In the present study, the sensitivity of two temperate Cladoceran species, Daphnia magna and Daphnia pulex, and a smaller tropical species Ceriodaphnia dubia, to primary microplastics (PMP) and secondary (weathered) microplastics (SMP) was assessed. A prolonged acute toxicity assay (up to 72 or 96 h) was performed at 18°, 22°, and 26 °C, to determine the influence of temperature as an additional stressor and survival data were analysed using toxicokinetic-toxicodynamic (TK-TD) model. Acute sensitivity of D. magna and D. pulex to both PMP and SMP increased sharply with temperature, whereas that of C. dubia remained relatively stable across temperatures. C. dubia was the most sensitive species at 18 °C, followed by D. pulex and D. magna, which were of comparable sensitivity. However, this ranking was reversed at 26 °C as could be seen from the No Effect Concentration (NEC) estimates of the TK-TD model. In addition, SMP and PMP had a similar effect on D. magna and D. pulex, but PMP was more toxic to C. dubia. Effects on survival were strongly time-dependent and became substantially more severe after the standard 48 h test period. Our results indicate that sensitivity to microplastics may differ between species for different types of microplastics, and could be drastically influenced by temperature albeit at high exposure concentrations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Sensitive Multi-Species Emissions Monitoring: Infrared Laser-Based Detection of Trace-Level Contaminants

    Steill, Jeffrey D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Huang, Haifeng [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Hoops, Alexandra A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Patterson, Brian D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Birtola, Salvatore R. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Jaska, Mark [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Strecker, Kevin E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Chandler, David W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bisson, Soott [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    This report summarizes our development of spectroscopic chemical analysis techniques and spectral modeling for trace-gas measurements of highly-regulated low-concentration species present in flue gas emissions from utility coal boilers such as HCl under conditions of high humidity. Detailed spectral modeling of the spectroscopy of HCl and other important combustion and atmospheric species such as H 2 O, CO 2 , N 2 O, NO 2 , SO 2 , and CH 4 demonstrates that IR-laser spectroscopy is a sensitive multi-component analysis strategy. Experimental measurements from techniques based on IR laser spectroscopy are presented that demonstrate sub-ppm sensitivity levels to these species. Photoacoustic infrared spectroscopy is used to detect and quantify HCl at ppm levels with extremely high signal-to-noise even under conditions of high relative humidity. Additionally, cavity ring-down IR spectroscopy is used to achieve an extremely high sensitivity to combustion trace gases in this spectral region; ppm level CH 4 is one demonstrated example. The importance of spectral resolution in the sensitivity of a trace-gas measurement is examined by spectral modeling in the mid- and near-IR, and efforts to improve measurement resolution through novel instrument development are described. While previous project reports focused on benefits and complexities of the dual-etalon cavity ring-down infrared spectrometer, here details on steps taken to implement this unique and potentially revolutionary instrument are described. This report also illustrates and critiques the general strategy of IR- laser photodetection of trace gases leading to the conclusion that mid-IR laser spectroscopy techniques provide a promising basis for further instrument development and implementation that will enable cost-effective sensitive detection of multiple key contaminant species simultaneously.

  10. Biotic and abiotic variables show little redundancy in explaining tree species distributions

    Meier, Elaine S.; Kienast, Felix; Pearman, Peter B.

    2010-01-01

    Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs) most often relate species occurrence data to abiotic var...

  11. Species abundance distributions : moving beyond single prediction theories to integration within an ecological framework

    McGill, Brian J.; Etienne, Rampal S.; Gray, John S.; Alonso, David; Anderson, Marti J.; Benecha, Habtamu Kassa; Dornelas, Maria; Enquist, Brian J.; Green, Jessica L.; He, Fangliang; Hurlbert, Allen H.; Magurran, Anne E.; Marquet, Pablo A.; Maurer, Brian A.; Ostling, Annette; Soykan, Candan U.; Ugland, Karl I.; White, Ethan P.

    2007-01-01

    Species abundance distributions (SADs) follow one of ecology's oldest and most universal laws - every community shows a hollow curve or hyperbolic shape on a histogram with many rare species and just a few common species. Here, we review theoretical, empirical and statistical developments in the

  12. Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework

    McGill, B.J.; Etienne, R.S.; Gray, J.S.; Alonso, D.; Anderson, M.J.; Benecha, H.K.

    2007-01-01

    Species abundance distributions (SADs) follow one of ecology's oldest and most universal laws ¿ every community shows a hollow curve or hyperbolic shape on a histogram with many rare species and just a few common species. Here, we review theoretical, empirical and statistical developments in the

  13. Modelling the potential spatial distribution of mosquito species using three different techniques

    Cianci, D.; Hartemink, N.; Ibáñez-Justicia, A.

    2015-01-01

    Background: Models for the spatial distribution of vector species are important tools in the assessment of the risk of establishment and subsequent spread of vector-borne diseases. The aims of this study are to define the environmental conditions suitable for several mosquito species through species

  14. History-sensitive versus future-sensitive approaches to security in distributed systems

    Hernandez, Alejandro Mario; Nielson, Flemming

    2010-01-01

    We consider the use of aspect oriented techniques as a flexible way to deal with security policies in distributed systems. Recent work suggests to use aspects for analysing the future behaviour of programs and to make access control decisions based on this; this gives the flavour of dealing...

  15. Eco-taxonomic distribution of plant species around motor mechanic ...

    A survey of plant species and their families present in auto mechanic workshops in Benin City and Asaba was carried out. The frequency of occurrence of plants in the sites visited was used to determine prevalence. Peperomia pellucida occurred most in all the sites visited with a 55% frequency. The high rate of occurrence ...

  16. Alien fish species in upper Sakarya River and their distribution ...

    However, the fact that the flood plains have been reclaimed, excessive hunting, destruction of the ecologic balance and invasion of the area by the alien fish species threatens the fish stocks in Sakarya River. In this study, we aimed to determine the dispersion area of Carassius gibelio (Bloch, 1782), Oreochromis niloticus ...

  17. Distribution and diversity of mangrove species in Gokana Local ...

    Plots 1 and 2 were dominated by Rhizophora racemosa (62.07% and 41.17% respectively). Plots 3 were dominated by R. mangle (4 1.67%) while Plots 4 had 26.56% of Acrostichum aureum and 26.56% of Phoenix reclinata. The overlapping mangrove species occurrence (Laguncularia racemosa and R. mangle) at the ...

  18. fish species and size distribution and abundance in different areas

    Larger individuals dominated in deep waters recording a mode at 45.5 cm TL. ... as a result of trophic interactions with introduced species ... sea level. The climate is equatorial with two wet seasons, one between October and. December, the ...

  19. The distribution, composition and abundance of fish species in two ...

    Fish composition and abundance of two Gold mine reservoir were investigated between May, 2008 and May, 2009. Seven fish families comprising of twelve species of fish were caught during the period of study. The families of fish caught included Anabantidae, Channidae, Clariidae, Cichlidae, Melanopluridae, Mormyridae ...

  20. Assessing the sensitivity of avian species abundance to land cover and climate

    LeBrun, Jaymi J.; Thogmartin, Wayne E.; Thompson, Frank R.; Dijak, William D.; Millspaugh, Joshua J.

    2016-01-01

    Climate projections for the Midwestern United States predict southerly climates to shift northward. These shifts in climate could alter distributions of species across North America through changes in climate (i.e., temperature and precipitation), or through climate-induced changes on land cover. Our objective was to determine the relative impacts of land cover and climate on the abundance of five bird species in the Central United States that have habitat requirements ranging from grassland and shrubland to forest. We substituted space for time to examine potential impacts of a changing climate by assessing climate and land cover relationships over a broad latitudinal gradient. We found positive and negative relationships of climate and land cover factors with avian abundances. Habitat variables drove patterns of abundance in migratory and resident species, although climate was also influential in predicting abundance for some species occupying more open habitat (i.e., prairie warbler, blue-winged warbler, and northern bobwhite). Abundance of northern bobwhite increased with winter temperature and was the species exhibiting the most significant effect of climate. Models for birds primarily occupying early successional habitats performed better with a combination of habitat and climate variables whereas models of species found in contiguous forest performed best with land cover alone. These varied species-specific responses present unique challenges to land managers trying to balance species conservation over a variety of land covers. Management activities focused on increasing forest cover may play a role in mitigating effects of future climate by providing habitat refugia to species vulnerable to projected changes. Conservation efforts would be best served focusing on areas with high species abundances and an array of habitats. Future work managing forests for resilience and resistance to climate change could benefit species already susceptible to climate impacts.

  1. Aquatic dance flies (Diptera, Empididae, Clinocerinae and Hemerodromiinae of Greece: species richness, distribution and description of five new species

    Marija Ivković

    2017-12-01

    Full Text Available All records of aquatic dance flies (37 species in subfamily Clinocerinae and 10 species in subfamily Hemerodromiinae from the territory of Greece are summarized, including previously unpublished data and data on five newly described species (Chelifera horvati Ivković & Sinclair, sp. n., Wiedemannia iphigeniae Ivković & Sinclair, sp. n., W. ljerkae Ivković & Sinclair, sp. n., W. nebulosa Ivković & Sinclair, sp. n. and W. pseudoberthelemyi Ivković & Sinclair, sp. n.. The new species are described and illustrated, the male terminalia of Clinocera megalatlantica (Vaillant are illustrated and the distributions of all species within Greece are listed. The aquatic Empididae fauna of Greece consists of 47 species, with the following described species reported for the first time: Chelifera angusta Collin, Hemerodromia melangyna Collin, Clinocera megalatlantica, Kowarzia plectrum (Mik, Phaeobalia dimidiata (Loew, W. (Chamaedipsia beckeri (Mik, W. (Philolutra angelieri Vaillant and W. (P. chvali Joost. A key to species of aquatic Empididae of Greece is provided for the first time. Information related to the European Ecoregions in which species were found is given. Compared to the other studied countries in the Balkans, the Greek species assemblage is most similar to that of the Former Yugoslav Republic of Macedonia.

  2. The role of demography, intra-species variation, and species distribution models in species’ projections under climate change

    Swab, Rebecca Marie; Regan, Helen M.; Matthies, Diethart

    2015-01-01

    Organisms are projected to shift their distribution ranges under climate change. The typical way to assess range shifts is by species distribution models (SDMs), which predict species’ responses to climate based solely on projected climatic suitability. However, life history traits can impact...... species’ responses to shifting habitat suitability. Additionally, it remains unclear if differences in vital rates across populations within a species can offset or exacerbate the effects of predicted changes in climatic suitability on population viability. In order to obtain a fuller understanding...... of the response of one species to projected climatic changes, we coupled demographic processes with predicted changes in suitable habitat for the monocarpic thistle Carlina vulgaris across northern Europe. We first developed a life history model with species-specific average fecundity and survival rates...

  3. Subcellular differences in handling Cu excess in three freshwater fish species contributes greatly to their differences in sensitivity to Cu

    Eyckmans, Marleen; Blust, Ronny; De Boeck, Gudrun

    2012-01-01

    Since changes in metal distribution among tissues and subcellular fractions can provide insights in metal toxicity and tolerance, we investigated this partitioning of Cu in gill and liver tissue of rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio). These fish species are known to differ in their sensitivity to Cu exposure with gibel carp being the most tolerant and rainbow trout the most sensitive. After an exposure to 50 μg/l (0.79 μM) Cu for 24 h, 3 days, 1 week and 1 month, gills and liver of control and exposed fish were submitted to a differential centrifugation procedure. Interestingly, there was a difference in accumulated Cu in the three fish species, even in control fishes. Where the liver of rainbow trout showed extremely high Cu concentrations under control conditions, the amount of Cu accumulated in their gills was much less than in common and gibel carp. At the subcellular level, the gills of rainbow trout appeared to distribute the additional Cu exclusively in the biologically active metal pool (BAM; contains heat-denaturable fraction and organelle fraction). A similar response could be seen in gill tissue of common carp, although the percentage of Cu in the BAM of common carp was lower compared to rainbow trout. Gill tissue of gibel carp accumulated more Cu in the biologically inactive metal pool (BIM compared to BAM; contains heat-stable fraction and metal-rich granule fraction). The liver of rainbow trout seemed much more adequate in handling the excess Cu (compared to its gills), since the storage of Cu in the BIM increased. Furthermore, the high % of Cu in the metal-rich granule fraction and heat-stable fraction in the liver of common carp and especially gibel carp together with the better Cu handling in gill tissue, pointed out the ability of the carp species to minimize the disadvantages related to Cu stress. The differences in Cu distribution at the subcellular level of gills and

  4. Subcellular differences in handling Cu excess in three freshwater fish species contributes greatly to their differences in sensitivity to Cu

    Eyckmans, Marleen, E-mail: marleen.eyckmans@ua.ac.be [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Blust, Ronny; De Boeck, Gudrun [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2012-08-15

    Since changes in metal distribution among tissues and subcellular fractions can provide insights in metal toxicity and tolerance, we investigated this partitioning of Cu in gill and liver tissue of rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio). These fish species are known to differ in their sensitivity to Cu exposure with gibel carp being the most tolerant and rainbow trout the most sensitive. After an exposure to 50 {mu}g/l (0.79 {mu}M) Cu for 24 h, 3 days, 1 week and 1 month, gills and liver of control and exposed fish were submitted to a differential centrifugation procedure. Interestingly, there was a difference in accumulated Cu in the three fish species, even in control fishes. Where the liver of rainbow trout showed extremely high Cu concentrations under control conditions, the amount of Cu accumulated in their gills was much less than in common and gibel carp. At the subcellular level, the gills of rainbow trout appeared to distribute the additional Cu exclusively in the biologically active metal pool (BAM; contains heat-denaturable fraction and organelle fraction). A similar response could be seen in gill tissue of common carp, although the percentage of Cu in the BAM of common carp was lower compared to rainbow trout. Gill tissue of gibel carp accumulated more Cu in the biologically inactive metal pool (BIM compared to BAM; contains heat-stable fraction and metal-rich granule fraction). The liver of rainbow trout seemed much more adequate in handling the excess Cu (compared to its gills), since the storage of Cu in the BIM increased. Furthermore, the high % of Cu in the metal-rich granule fraction and heat-stable fraction in the liver of common carp and especially gibel carp together with the better Cu handling in gill tissue, pointed out the ability of the carp species to minimize the disadvantages related to Cu stress. The differences in Cu distribution at the subcellular level of gills

  5. Leakage localisation method in a water distribution system based on sensitivity matrix: methodology and real test

    Pascual Pañach, Josep

    2010-01-01

    Leaks are present in all water distribution systems. In this paper a method for leakage detection and localisation is presented. It uses pressure measurements and simulation models. Leakage localisation methodology is based on pressure sensitivity matrix. Sensitivity is normalised and binarised using a common threshold for all nodes, so a signatures matrix is obtained. A pressure sensor optimal distribution methodology is developed too, but it is not used in the real test. To validate this...

  6. How much does climate change threaten European forest tree species distributions?

    Dyderski, Marcin K; Paź, Sonia; Frelich, Lee E; Jagodziński, Andrzej M

    2018-03-01

    Although numerous species distribution models have been developed, most were based on insufficient distribution data or used older climate change scenarios. We aimed to quantify changes in projected ranges and threat level by the years 2061-2080, for 12 European forest tree species under three climate change scenarios. We combined tree distribution data from the Global Biodiversity Information Facility, EUFORGEN, and forest inventories, and we developed species distribution models using MaxEnt and 19 bioclimatic variables. Models were developed for three climate change scenarios-optimistic (RCP2.6), moderate (RCP4.5), and pessimistic (RPC8.5)-using three General Circulation Models, for the period 2061-2080. Our study revealed different responses of tree species to projected climate change. The species may be divided into three groups: "winners"-mostly late-successional species: Abies alba, Fagus sylvatica, Fraxinus excelsior, Quercus robur, and Quercus petraea; "losers"-mostly pioneer species: Betula pendula, Larix decidua, Picea abies, and Pinus sylvestris; and alien species-Pseudotsuga menziesii, Quercus rubra, and Robinia pseudoacacia, which may be also considered as "winners." Assuming limited migration, most of the species studied would face a significant decrease in suitable habitat area. The threat level was highest for species that currently have the northernmost distribution centers. Ecological consequences of the projected range contractions would be serious for both forest management and nature conservation. © 2017 John Wiley & Sons Ltd.

  7. High-resolution pattern of mangrove species distribution is controlled by surface elevation

    Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.

    2018-03-01

    Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.

  8. The Quercus feeding Stigmella species of the West Palaearctic: new species, key and distribution (Lepidoptera: Nepticulidae)

    Nieukerken, van E.J.; Johansson, R.

    2003-01-01

    The species of the Stigmella ruficapitella group occurring in the Western Palaearctic and feeding on Quercus are reviewed. We recognise 19 species, five of which are described as new: Stigmella fasciata sp. n. on Quercus pubescens from Slovenia, Croatia, Greece and Turkey, S. cocciferae sp. n. on Q.

  9. Sensitive and ultra-fast species detection using pulsed cavity ringdown spectroscopy

    Alquaity, Awad

    2015-01-01

    Pulsed cavity ringdown spectroscopy (CRDS) is used to develop a novel, ultra-fast, high-sensitivity diagnostic for measuring species concentrations in shock tube experiments. The diagnostic is demonstrated by monitoring trace concentrations of ethylene in the mid-IR region near 949.47 cm-1. Each ringdown measurement is completed in less than 1 μs and the time period between successive pulses is 10 μs. The high sensitivity diagnostic has a noise-equivalent detection limit of 1.08 x 10-5 cm-1 which enables detection of 15 ppm ethylene at fuel pyrolysis conditions (1845 K and 2 bar) and 294 ppb ethylene under ambient conditions (297 K and 1 bar). To our knowledge, this is the first successful application of the cavity ringdown method to the measurement of species time-histories in a shock tube. © 2015 OSA.

  10. Distribution of particulate carbohydrate species in the Bay of Bengal

    Khodse, V.B.; Bhosle, N.B.; Gopalakrishna, V.V.

    and the C/N ratios. Carbohydrate production by micro-organisms is influenced by phase of growth, nutrient status, phytoplankton species composition and/or bacte- rial activity (Morris 1981; D’Souza and Bhosle 2001). Phytoplankton composition varied spatially... Neutral monosaccharides from a hypersaline tropical environment: Applications to the characterization of modern and ancient ecosystems; Geochim. Cosmochim. Acta 57 3063–3071. Morris I 1981 Photosynthetic products, physiological state and phytoplankton...

  11. Distribution patterns of invasive alien species in Alabama, USA

    Xiongwen Chen

    2012-12-01

    Full Text Available Invasive alien species (IAS cause environmental and economical problems. How to effectively manage all IAS at a large area is a challenge.Hypotheses about IAS (such as the “human activity” hypothesis, the “biotic acceptance” and the “biotic resistance” have been proposedfrom numerous studies. Here the state of Alabama in USA, widely occupied by IAS, is used as a case study for characterizing the emergentpatterns of IAS. The results indicate that most IAS are located in metropolitan areas and in the Black Belt area which is a historical intensiveland use area. There are positive relationships between the richness of IAS and the change of human population, the species richness and thenumber of endangered species, as well as the total road length and farmland area across Alabama. This study partially supports the abovethree hypotheses and provides a general pattern of local IAS. Based on possible processes related with IAS, some implications forstrategically managing local IAS are discussed.

  12. Separating the effects of environment and space on tree species distribution: from population to community.

    Lin, Guojun; Stralberg, Diana; Gong, Guiquan; Huang, Zhongliang; Ye, Wanhui; Wu, Linfang

    2013-01-01

    Quantifying the relative contributions of environmental conditions and spatial factors to species distribution can help improve our understanding of the processes that drive diversity patterns. In this study, based on tree inventory, topography and soil data from a 20-ha stem-mapped permanent forest plot in Guangdong Province, China, we evaluated the influence of different ecological processes at different spatial scales using canonical redundancy analysis (RDA) at the community level and multiple linear regression at the species level. At the community level, the proportion of explained variation in species distribution increased with grid-cell sizes, primarily due to a monotonic increase in the explanatory power of environmental variables. At the species level, neither environmental nor spatial factors were important determinants of overstory species' distributions at small cell sizes. However, purely spatial variables explained most of the variation in the distributions of understory species at fine and intermediate cell sizes. Midstory species showed patterns that were intermediate between those of overstory and understory species. At the 20-m cell size, the influence of spatial factors was stronger for more dispersal-limited species, suggesting that much of the spatial structuring in this community can be explained by dispersal limitation. Comparing environmental factors, soil variables had higher explanatory power than did topography for species distribution. However, both topographic and edaphic variables were highly spatial structured. Our results suggested that dispersal limitation has an important influence on fine-intermediate scale (from several to tens of meters) species distribution, while environmental variability facilitates species distribution at intermediate (from ten to tens of meters) and broad (from tens to hundreds of meters) scales.

  13. Tree species distribution in temperate forests is more influenced by soil than by climate.

    Walthert, Lorenz; Meier, Eliane Seraina

    2017-11-01

    Knowledge of the ecological requirements determining tree species distributions is a precondition for sustainable forest management. At present, the abiotic requirements and the relative importance of the different abiotic factors are still unclear for many temperate tree species. We therefore investigated the relative importance of climatic and edaphic factors for the abundance of 12 temperate tree species along environmental gradients. Our investigations are based on data from 1,075 forest stands across Switzerland including the cold-induced tree line of all studied species and the drought-induced range boundaries of several species. Four climatic and four edaphic predictors represented the important growth factors temperature, water supply, nutrient availability, and soil aeration. The climatic predictors were derived from the meteorological network of MeteoSwiss, and the edaphic predictors were available from soil profiles. Species cover abundances were recorded in field surveys. The explanatory power of the predictors was assessed by variation partitioning analyses with generalized linear models. For six of the 12 species, edaphic predictors were more important than climatic predictors in shaping species distribution. Over all species, abundances depended mainly on nutrient availability, followed by temperature, water supply, and soil aeration. The often co-occurring species responded similar to these growth factors. Drought turned out to be a determinant of the lower range boundary for some species. We conclude that over all 12 studied tree species, soil properties were more important than climate variables in shaping tree species distribution. The inclusion of appropriate soil variables in species distribution models allowed to better explain species' ecological niches. Moreover, our study revealed that the ecological requirements of tree species assessed in local field studies and in experiments are valid at larger scales across Switzerland.

  14. Hearing sensitivity in context: Conservation implications for a highly vocal endangered species

    Owen, Megan A.; Keating, Jennifer L.; Denes, Samuel K.; Hawk, Kathy; Fiore, Angela; Thatcher, Julie; Becerra, Jennifer; Hall, Suzanne; Swaisgood, Ronald R.

    2016-01-01

    Hearing sensitivity is a fundamental determinant of a species’ vulnerability to anthropogenic noise, however little is known about the hearing capacities of most conservation dependent species. When audiometric data are integrated with other aspects of species’ acoustic ecology, life history, and characteristic habitat topography and soundscape, predictions can be made regarding probable vulnerability to the negative impacts of different types of anthropogenic noise. Here we used an adaptive ...

  15. Climate Change Sensitivity of Multi-Species Afforestation in Semi-Arid Benin

    Florent Noulèkoun

    2018-06-01

    Full Text Available The early growth stage is critical in the response of trees to climate change and variability. It is not clear, however, what climate metrics are best to define the early-growth sensitivity in assessing adaptation strategies of young forests to climate change. Using a combination of field experiments and modelling, we assessed the climate sensitivity of two promising afforestation species, Jatropha curcas L. and Moringa oleifera Lam., by analyzing their predicted climate–growth relationships in the initial two years after planting on degraded cropland in the semi-arid zone of Benin. The process-based WaNuLCAS model (version 4.3, World Agroforestry Centre, Bogor, Indonesia was used to simulate aboveground biomass growth for each year in the climate record (1981–2016, either as the first or as the second year of tree growth. Linear mixed models related the annual biomass growth to climate indicators, and climate sensitivity indices quantified climate–growth relationships. In the first year, the length of dry spells had the strongest effect on tree growth. In the following year, the annual water deficit and length of dry season became the strongest predictors. Simulated rooting depths greater than those observed in the experiments enhanced biomass growth under extreme dry conditions and reduced sapling sensitivity to drought. Projected increases in aridity implied significant growth reduction, but a multi-species approach to afforestation using species that are able to develop deep-penetrating roots should increase the resilience of young forests to climate change. The results illustrate that process-based modelling, combined with field experiments, can be effective in assessing the climate–growth relationships of tree species.

  16. Role of climate and invasive species in structuring trout distributions in the interior Columbia River Basin, USA

    Wenger, Seth J.; Isaak, Daniel J.; Dunham, Jason B.; Fausch, Kurt D.; Luce, Charles H.; Neville, Helen M.; Rieman, Bruce E.; Young, Michael K.; Nagel, David E.; Horan, Dona L.; Chandler, Gwynne L.

    2011-01-01

    Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus clarkii) and bull trout (Salvelinus confluentus), as well as nonnative brook trout (Salvelinus fontinalis). We also examined the response of the native species to the presence of brook trout. Analyses were conducted using multilevel logistic regression applied to a geographically broad database of 4165 fish surveys. The results indicated that bull trout distributions were strongly related to climatic factors, and more weakly related to the presence of brook trout and geomorphic variables. Cutthroat trout distributions were weakly related to climate but strongly related to the presence of brook trout. Brook trout distributions were related to both climate and geomorphic variables, including proximity to unconfined valley bottoms. We conclude that brook trout and bull trout are likely to be adversely affected by climate warming, whereas cutthroat trout may be less sensitive. The results illustrate the importance of considering species interactions and flow regime alongside temperature in understanding climate effects on fish.

  17. A Species Distribution Modeling Informed Conservation Assessment of Bog Spicebush

    2016-09-14

    Adhikari, Barik , and Upadhaya 2012). These results sug- gest there are many locations potentially suitable for (re)introducing L. subcoriacea across its...References Adhikari, D., S. K. Barik , K. Upadhaya. 2012. Habitat distribution modelling for reintroduction of Ilex khasiana Purk., a critically

  18. Distribution of positive ion species above a diffuse midnight aurora

    Moore, T.E.

    1978-01-01

    The origin of the hot plasma in the Earth's magnetosphere is still open to investigation. Mass composition is an indicator of source region, while the distribution functions bear the signatures of transport and energization processes. Only ions identified as H + and He ++ were detected, and the He ++ was statistically marginal. Coincident magnetic storms are likely to play a crucial role in populating the magnetosphere with energized ionospheric ions. The measured proton distribution was nearly isotropic over downcoming pitch angles at all energies and showed a depleted atmospheric source cone. The high-altitude proton energy distribution had a best fit temperature of 4.5 keV and a number density of 0.17 cm- 3 , corresponding to a peak intensity just over 10 5 cm -2 s -1 sr -1 keV -1 . Altitudinal variations are consistent with the theory of charge exchange of a time-steady incident proton population. Simultaneous electron measurements can be interpreted in terms of an incident electron distribution that is also thermal wih a similar number density but a temperature of 2.5 keV. Taken together, the ion and electron data are consistent with the model of diffuse auroras in which plasma convecting in from the magnetospheric tail precipitates due to strong pitch angle diffusion on auroral field lines linking the near Earth plasma sheet

  19. Spatial distribution and habitat characterisation of mosquito species ...

    Background: Infections with mosquito-borne parasites are common in human populations inhabiting tropical regions of the world. Malaria is endemic along Kenyan Lake Victoria basin and its vectors are fresh water breeders. However, much less is known about the current spatial distribution and habitat characterisation of ...

  20. Species distribution and antifungal susceptibility profile of Candida ...

    HIV-AIDS. 0. 2. 2 (3.8%). Table 2: Distribution of candiduria in the hospital departments. Departments. Total number of patients. Number of positive patients .... Howard M, Cipher D, Revankar. SG. 2010. Occurrence of candiduria in a population of chronically catheterized patients with spinal cord injury. Spinal. Cord.,. 48(1):.

  1. Predicting Environmental Suitability for a Rare and Threatened Species (Lao Newt, Laotriton laoensis) Using Validated Species Distribution Models

    Chunco, Amanda J.; Phimmachak, Somphouthone; Sivongxay, Niane; Stuart, Bryan L.

    2013-01-01

    The Lao newt (Laotriton laoensis) is a recently described species currently known only from northern Laos. Little is known about the species, but it is threatened as a result of overharvesting. We integrated field survey results with climate and altitude data to predict the geographic distribution of this species using the niche modeling program Maxent, and we validated these predictions by using interviews with local residents to confirm model predictions of presence and absence. The results of the validated Maxent models were then used to characterize the environmental conditions of areas predicted suitable for L. laoensis. Finally, we overlaid the resulting model with a map of current national protected areas in Laos to determine whether or not any land predicted to be suitable for this species is coincident with a national protected area. We found that both area under the curve (AUC) values and interview data provided strong support for the predictive power of these models, and we suggest that interview data could be used more widely in species distribution niche modeling. Our results further indicated that this species is mostly likely geographically restricted to high altitude regions (i.e., over 1,000 m elevation) in northern Laos and that only a minute fraction of suitable habitat is currently protected. This work thus emphasizes that increased protection efforts, including listing this species as endangered and the establishment of protected areas in the region predicted to be suitable for L. laoensis, are urgently needed. PMID:23555808

  2. Studies on the sensitivity of several plant species to fluorine gases in Valais

    Bolay, A; Bovay, E

    1965-01-01

    Analysis of apricot, apple and vine leaves showed that at leaf fluorine concentrations up to 25 p.p.m. the foliage was generally free of burns, except that of apricot which showed some damage at a level of 15 p.p.m. Between 26 and 105 p.p.m. the reactions of the foliage were variable, depending on the vegetative state of the plant and on atmospheric conditions (mainly R.H. and rainfall). Above 105 p.p.m. burns were nearly always present on apricot and vine leaves; for apple foliage the toxic level was about 160 p.p.m. The 75 plant species studied were divided into 4 categories depending on their susceptibility to fluorine damage; very susceptible species were those showing typical burning of the leaves when the fluorine content of apricot and vine leaves growing in the immediate vicinity was lower than 100 p.p.m.; susceptible species were those showing necrosis when the fluorine content of apricot leaves was slightly higher than 100 p.p.m.; species of low sensitivity showed necrosis only in heavily polluted zones; and tolerant species were those able to store over 500 p.p.m. fluorine in their leaves without showing visible damage. The very susceptible species may be used as indicators of fluorine in the atmosphere.

  3. Testing species distribution models across space and time: high latitude butterflies and recent warming

    Eskildsen, Anne; LeRoux, Peter C.; Heikkinen, Risto K.

    2013-01-01

    changes at expanding range margins can be predicted accurately. Location. Finland. Methods. Using 10-km resolution butterfly atlas data from two periods, 1992–1999 (t1) and 2002–2009 (t2), with a significant between-period temperature increase, we modelled the effects of climatic warming on butterfly...... butterfly distributions under climate change. Model performance was lower with independent compared to non-independent validation and improved when land cover and soil type variables were included, compared to climate-only models. SDMs performed less well for highly mobile species and for species with long......Aim. To quantify whether species distribution models (SDMs) can reliably forecast species distributions under observed climate change. In particular, to test whether the predictive ability of SDMs depends on species traits or the inclusion of land cover and soil type, and whether distributional...

  4. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David

    2017-01-01

    Background Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. Methodology/Principal findings A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74–0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling

  5. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Nichola Eliza Davies Calvani

    2017-09-01

    Full Text Available Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples.A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76 was observed between the real-time PCR values and the faecal egg count (FEC using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic

  6. Scrambled eggs: A highly sensitive molecular diagnostic workflow for Fasciola species specific detection from faecal samples.

    Calvani, Nichola Eliza Davies; Windsor, Peter Andrew; Bush, Russell David; Šlapeta, Jan

    2017-09-01

    Fasciolosis, due to Fasciola hepatica and Fasciola gigantica, is a re-emerging zoonotic parasitic disease of worldwide importance. Human and animal infections are commonly diagnosed by the traditional sedimentation and faecal egg-counting technique. However, this technique is time-consuming and prone to sensitivity errors when a large number of samples must be processed or if the operator lacks sufficient experience. Additionally, diagnosis can only be made once the 12-week pre-patent period has passed. Recently, a commercially available coprological antigen ELISA has enabled detection of F. hepatica prior to the completion of the pre-patent period, providing earlier diagnosis and increased throughput, although species differentiation is not possible in areas of parasite sympatry. Real-time PCR offers the combined benefits of highly sensitive species differentiation for medium to large sample sizes. However, no molecular diagnostic workflow currently exists for the identification of Fasciola spp. in faecal samples. A new molecular diagnostic workflow for the highly-sensitive detection and quantification of Fasciola spp. in faecal samples was developed. The technique involves sedimenting and pelleting the samples prior to DNA isolation in order to concentrate the eggs, followed by disruption by bead-beating in a benchtop homogeniser to ensure access to DNA. Although both the new molecular workflow and the traditional sedimentation technique were sensitive and specific, the new molecular workflow enabled faster sample throughput in medium to large epidemiological studies, and provided the additional benefit of speciation. Further, good correlation (R2 = 0.74-0.76) was observed between the real-time PCR values and the faecal egg count (FEC) using the new molecular workflow for all herds and sampling periods. Finally, no effect of storage in 70% ethanol was detected on sedimentation and DNA isolation outcomes; enabling transport of samples from endemic to non

  7. Topographic and spatial controls of palm species distributions in a montane rain forest, southern Ecuador

    Svenning, J.-C.; Harlev, D.; Sørensen, M.M.

    2009-01-01

    The northern Andes harbour a flora that is as species-rich or even richer than the 18-times larger lowland Amazon basin. Gaining an understanding of how the high species richness of the Andean region is generated and maintained is therefore of particular interest. Environmental sorting due......). Mantel tests and indicator species analysis showed that both topography and spatial location imposed strong controls on palm species distributions at the study site. Our results suggest that species distributions in the studied montane forest landscape were partly determined by the species' habitat...... distributions at the study site. Other factors must also be involved, notably wind-exposure and hydrology, as discussed for lowland palm communities. Our results show that to understand plant community assembly in the tropical montane forests of the Andes it is too simple to focus just on environmental sorting...

  8. Model-Based Evaluation of Urban River Restoration: Conflicts between Sensitive Fish Species and Recreational Users

    Aude Zingraff-Hamed

    2018-05-01

    Full Text Available Urban rivers are socioecological systems, and restored habitats may be attractive to both sensitive species and recreationists. Understanding the potential conflicts between ecological and recreational values is a critical issue for the development of a sustainable river-management plan. Habitat models are very promising tools for the ecological evaluation of river restoration projects that are already concluded, ongoing, or even to be planned. With our paper, we make a first attempt at integrating recreational user pressure into habitat modeling. The objective of this study was to analyze whether human impact is likely to hinder the re-establishment of a target species despite the successful restoration of physical habitat structures in the case of the restoration of the Isar River in Munich (Germany and the target fish species Chondostroma nasus L. Our analysis combined high-resolution 2D hydrodynamic modeling with mapping of recreational pressure and used an expert-based procedure for modeling habitat suitability. The results are twofold: (1 the restored river contains suitable physical habitats for population conservation but has low suitability for recruitment; (2 densely used areas match highly suitable habitats for C. nasus. In the future, the integrated modeling procedure presented here may allow ecological refuge for sensitive target species to be included in the design of restoration and may help in the development of visitor-management plans to safeguard biodiversity and recreational ecosystem services.

  9. Updating known distribution models for forecasting climate change impact on endangered species.

    Muñoz, Antonio-Román; Márquez, Ana Luz; Real, Raimundo

    2013-01-01

    To plan endangered species conservation and to design adequate management programmes, it is necessary to predict their distributional response to climate change, especially under the current situation of rapid change. However, these predictions are customarily done by relating de novo the distribution of the species with climatic conditions with no regard of previously available knowledge about the factors affecting the species distribution. We propose to take advantage of known species distribution models, but proceeding to update them with the variables yielded by climatic models before projecting them to the future. To exemplify our proposal, the availability of suitable habitat across Spain for the endangered Bonelli's Eagle (Aquila fasciata) was modelled by updating a pre-existing model based on current climate and topography to a combination of different general circulation models and Special Report on Emissions Scenarios. Our results suggested that the main threat for this endangered species would not be climate change, since all forecasting models show that its distribution will be maintained and increased in mainland Spain for all the XXI century. We remark on the importance of linking conservation biology with distribution modelling by updating existing models, frequently available for endangered species, considering all the known factors conditioning the species' distribution, instead of building new models that are based on climate change variables only.

  10. Alien plant species list and distribution for Camdeboo National Park, Eastern Cape Province, South Africa

    Mmoto L. Masubelele

    2009-09-01

    Full Text Available Protected areas globally are threatened by the potential negative impacts that invasive alien plants pose, and Camdeboo National Park (CNP, South Africa, is no exception. Alien plants have been recorded in the CNP since 1981, before it was proclaimed a national park by South African National Parks in 2005. This is the first publication of a list of alien plants in and around the CNP. Distribution maps of some of the first recorded alien plant species are also presented and discussed. To date, 39 species of alien plants have been recorded, of which 13 are invasive and one is a transformer weed. The majority of alien plant species in the park are herbaceous (39% and succulent (24% species. The most widespread alien plant species in the CNP are Atriplex inflata (= A. lindleyi subsp. inflata, Salsola tragus (= S. australis and cacti species, especially Opuntia ficus-indica. Eradication and control measures that have been used for specific problematic alien plant species are described. Conservation implications: This article represents the first step in managing invasive alien plants and includes the collation of a species list and basic information on their distribution in and around the protected area. This is important for enabling effective monitoring of both new introductions and the distribution of species already present. We present the first species list and distribution information for Camdeboo National Park.

  11. Asymmetric biotic interactions and abiotic niche differences revealed by a dynamic joint species distribution model.

    Lany, Nina K; Zarnetske, Phoebe L; Schliep, Erin M; Schaeffer, Robert N; Orians, Colin M; Orwig, David A; Preisser, Evan L

    2018-05-01

    A species' distribution and abundance are determined by abiotic conditions and biotic interactions with other species in the community. Most species distribution models correlate the occurrence of a single species with environmental variables only, and leave out biotic interactions. To test the importance of biotic interactions on occurrence and abundance, we compared a multivariate spatiotemporal model of the joint abundance of two invasive insects that share a host plant, hemlock woolly adelgid (HWA; Adelges tsugae) and elongate hemlock scale (EHS; Fiorina externa), to independent models that do not account for dependence among co-occurring species. The joint model revealed that HWA responded more strongly to abiotic conditions than EHS. Additionally, HWA appeared to predispose stands to subsequent increase of EHS, but HWA abundance was not strongly dependent on EHS abundance. This study demonstrates how incorporating spatial and temporal dependence into a species distribution model can reveal the dependence of a species' abundance on other species in the community. Accounting for dependence among co-occurring species with a joint distribution model can also improve estimation of the abiotic niche for species affected by interspecific interactions. © 2018 by the Ecological Society of America.

  12. Temperature effects on gametophyte life-history traits and geographic distribution of two cryptic kelp species.

    L Valeria Oppliger

    Full Text Available A major determinant of the geographic distribution of a species is expected to be its physiological response to changing abiotic variables over its range. The range of a species often corresponds to the geographic extent of temperature regimes the organism can physiologically tolerate. Many species have very distinct life history stages that may exhibit different responses to environmental factors. In this study we emphasized the critical role of the haploid microscopic stage (gametophyte of the life cycle to explain the difference of edge distribution of two related kelp species. Lessonia nigrescens was recently identified as two cryptic species occurring in parapatry along the Chilean coast: one located north and the other south of a biogeographic boundary at latitude 29-30°S. Six life history traits from microscopic stages were identified and estimated under five treatments of temperature in eight locations distributed along the Chilean coast in order to (1 estimate the role of temperature in the present distribution of the two cryptic L. nigrescens species, (2 compare marginal populations to central populations of the two cryptic species. In addition, we created a periodic matrix model to estimate the population growth rate (λ at the five temperature treatments. Differential tolerance to temperature was demonstrated between the two species, with the gametophytes of the Northern species being more tolerant to higher temperatures than gametophytes from the south. Second, the two species exhibited different life history strategies with a shorter haploid phase in the Northern species contrasted with considerable vegetative growth in the Southern species haploid stage. These results provide strong ecological evidence for the differentiation process of the two cryptic species and show local adaptation of the life cycle at the range limits of the distribution. Ecological and evolutionary implications of these findings are discussed.

  13. Sensitivity Analysis of Dynamic Tariff Method for Congestion Management in Distribution Networks

    Huang, Shaojun; Wu, Qiuwei; Liu, Zhaoxi

    2015-01-01

    The dynamic tariff (DT) method is designed for the distribution system operator (DSO) to alleviate the congestions that might occur in a distribution network with high penetration of distribute energy resources (DERs). Sensitivity analysis of the DT method is crucial because of its decentralized...... control manner. The sensitivity analysis can obtain the changes of the optimal energy planning and thereby the line loading profiles over the infinitely small changes of parameters by differentiating the KKT conditions of the convex quadratic programming, over which the DT method is formed. Three case...

  14. Geographical Distribution of Taenia asiatica and Related Species

    Jeon, Hyeong-Kyu; Rim, Han-Jong

    2009-01-01

    Geographical information of Taenia asiatica is reviewed together with that of T. solium and T. saginata. Current distribution of T. asiatica was found to be mostly from Asian countries: the Republic of Korea, China, Taiwan, Indonesia, and Thailand. Molecular genotypic techniques have found out more countries with T. asiatica from Japan, the Philippines, and Vietnam. Specimens used in this paper were collected from around the world and mostly during international collaboration projects of Korean foundations for parasite control activities (1995-2009) in developing countries. PMID:19885327

  15. Spatially-explicit estimation of geographical representation in large-scale species distribution datasets.

    Kalwij, Jesse M; Robertson, Mark P; Ronk, Argo; Zobel, Martin; Pärtel, Meelis

    2014-01-01

    Much ecological research relies on existing multispecies distribution datasets. Such datasets, however, can vary considerably in quality, extent, resolution or taxonomic coverage. We provide a framework for a spatially-explicit evaluation of geographical representation within large-scale species distribution datasets, using the comparison of an occurrence atlas with a range atlas dataset as a working example. Specifically, we compared occurrence maps for 3773 taxa from the widely-used Atlas Florae Europaeae (AFE) with digitised range maps for 2049 taxa of the lesser-known Atlas of North European Vascular Plants. We calculated the level of agreement at a 50-km spatial resolution using average latitudinal and longitudinal species range, and area of occupancy. Agreement in species distribution was calculated and mapped using Jaccard similarity index and a reduced major axis (RMA) regression analysis of species richness between the entire atlases (5221 taxa in total) and between co-occurring species (601 taxa). We found no difference in distribution ranges or in the area of occupancy frequency distribution, indicating that atlases were sufficiently overlapping for a valid comparison. The similarity index map showed high levels of agreement for central, western, and northern Europe. The RMA regression confirmed that geographical representation of AFE was low in areas with a sparse data recording history (e.g., Russia, Belarus and the Ukraine). For co-occurring species in south-eastern Europe, however, the Atlas of North European Vascular Plants showed remarkably higher richness estimations. Geographical representation of atlas data can be much more heterogeneous than often assumed. Level of agreement between datasets can be used to evaluate geographical representation within datasets. Merging atlases into a single dataset is worthwhile in spite of methodological differences, and helps to fill gaps in our knowledge of species distribution ranges. Species distribution

  16. Species Distribution Modelling of Aedes aegypti in two dengue-endemic regions of Pakistan.

    Fatima, Syeda Hira; Atif, Salman; Rasheed, Syed Basit; Zaidi, Farrah; Hussain, Ejaz

    2016-03-01

    Statistical tools are effectively used to determine the distribution of mosquitoes and to make ecological inferences about the vector-borne disease dynamics. In this study, we utilised species distribution models to understand spatial patterns of Aedes aegypti in two dengue-prevalent regions of Pakistan, Lahore and Swat. Species distribution models can potentially indicate the probability of suitability of Ae. aegypti once introduced to new regions like Swat, where invasion of this species is a recent phenomenon. The distribution of Ae. aegypti was determined by applying the MaxEnt algorithm on a set of potential environmental factors and species sample records. The ecological dependency of species on each environmental variable was analysed using response curves. We quantified the statistical performance of the models based on accuracy assessment and spatial predictions. Our results suggest that Ae. aegypti is widely distributed in Lahore. Human population density and urban infrastructure are primarily responsible for greater probability of mosquito occurrence in this region. In Swat, Ae. aegypti has clumped distribution, where urban patches provide refuge to the species in an otherwise hostile heterogeneous environment and road networks are assumed to have facilitated in passive-mediated dispersal of species. In Pakistan, Ae. aegypti is expanding its range northwards; this could be associated with rapid urbanisation, trade and travel. The main implication of this expansion is that more people are at risk of dengue fever in the northern highlands of Pakistan. © 2016 John Wiley & Sons Ltd.

  17. Effects of Abiotic Factors on the Geographic Distribution of Body Size Variation and Chromosomal Polymorphisms in Two Neotropical Grasshopper Species (Dichroplus: Melanoplinae: Acrididae

    Claudio J. Bidau

    2012-01-01

    Full Text Available We review the effects of abiotic factors on body size in two grasshopper species with large geographical distributions: Dichroplus pratensis and D. vittatus, inhabiting Argentina in diverse natural habitats. Geographical spans for both species provide an opportunity to study the effects of changes in abiotic factors on body size. The analyses of body size distribution in both species revealed a converse Bergmannian pattern: body size is positively correlated with latitude, altitude, and seasonality that influences time available for development and growth. Allen’s rule is also inverted. Morphological variability increases towards the ends of the Bergmannian clines and, in D. pratensis, is related with a central-marginal distribution of chromosomal variants that influence recombination. The converse Bergmannian patterns influence sexual size dimorphism in both species but in different fashions. Body size variation at a microspatial scale in D. pratensis is extremely sensitive to microclimatic clines. We finally compare our results with those for other Orthopteran species.

  18. Plant species distribution along environmental gradient: do belowground interactions with fungi matter?

    Loïc ePellissier

    2013-12-01

    Full Text Available The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of abiotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models, we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.

  19. Species at risk setback distances : the effects of shallow gas activity on the distribution of grassland birds

    Linnen, C.

    2006-01-01

    The effects of shallow gas activity on the distribution of grassland birds was discussed in this presentation. The overall purpose of the study was to examine the effects of minimal disturbance gas wells and associated activity on species richness; effects on species abundance; and effects on the occurrence of species. The presentation provided several hypotheses, including that species richness would increase with increasing distance from gas wells and trails; that abundance and occurrence of sensitive species would increase with distance from gas wells and trails; and that abundance and occurrence of brood parasites and predators would decrease with increasing distance from gas wells and trails. The presentation illustrated the study area and study design. Several graphs representing the study results were also presented. Bird species that were examined included the abundance and occurrence of western meadowlark; horned lark; chestnut-collared longspur; clay-coloured sparrow; vesper sparrow; sprague pipit; savannah sparrow; grasshopper sparrow; baird sparrow; and brown-headed cowbird. A summary slide was also presented that concluded that species richness did not vary with distance from gas development and that brown-headed cowbirds tended to favour areas with gas development and interior habitats. tabs., figs

  20. Dissociation between sensitization and learning-related neuromodulation in an aplysiid species.

    Erixon, N J; Demartini, L J; Wright, W G

    1999-06-14

    Previous phylogenetic analyses of learning and memory in an opisthobranch lineage uncovered a correlation between two learning-related neuromodulatory traits and their associated behavioral phenotypes. In particular, serotonin-induced increases in sensory neuron spike duration and excitability, which are thought to underlie several facilitatory forms of learning in Aplysia, appear to have been lost over the course of evolution in a distantly related aplysiid, Dolabrifera dolabrifera. This deficit is paralleled by a behavioral deficit: individuals of Dolabrifera do not express generalized sensitization (reflex enhancement of an unhabituated response after a noxious stimulus is applied outside of the reflex receptive field) or dishabituation (reflex enhancement of a habituated reflex). The goal of the present study was to confirm and extend this correlation by testing for the neuromodulatory traits and generalized sensitization in an additional species, Phyllaplysia taylori, which is closely related to Dolabrifera. Instead, our results indicated a lack of correlation between the neuromodulatory and behavioral phenotypes. In particular, sensory neuron homologues in Phyllaplysia showed the ancestral neuromodulatory phenotype typified by Aplysia. Bath-applied 10 microM serotonin significantly increased homologue spike duration and excitability. However, when trained with the identical apparatus and protocols that produced generalized sensitization in Aplysia, individuals of Phyllaplysia showed no evidence of sensitization. Thus, this species expresses the neuromodulatory phenotype of its ancestors while appearing to express the behavioral phenotype of its near relative. These results suggests that generalized sensitization can be lost during the course of evolution in the absence of a deficit in these two neuromodulatory traits, and raises the possibility that the two traits may support some other form of behavioral plasticity in Phyllaplysia. The results also raise the

  1. [Species composition and geographical distribution of threatened fishes in Yunnan Province of Southwest China].

    Zhang, Qian; Zhong, Jin-Xin

    2013-05-01

    Based on the related published papers, and by using Geographic Information System (ArcGIS 9.3), this paper analyzed the species composition and geographical distribution of threatened fishes in Yunnan Province of Southwest China. There were 83 threatened species living in the Province, belonging to 5 orders, 13 families, and 47 genera. Cypriniformes was absolutely dominant, with 64 species, followed by Siluriformes, with 16 species. Cyprinidae fishes had 51 species, accounting for 79.7% of Cypriniformes. The most species of Cyprinid fishes were of Barbinae (14 species), Cyprininae (10 species), and Cultrinae (10 species). The threatened fishes could be divided into two zoogeographical regions, i. e., Tibetan Plateau region and Oriental region, and their species composition and geographical distribution were resulted from the historical evolution adapted to the related environments. Whatever in rivers and in lakes, the Cyprinid fishes were both absolutely dominant, occupying 36.1% and 31.3% of the total, respectively. The Cyprinid fishes in rivers were mostly of endangered species, while those in lakes were mostly of vulnerable species. The factors affecting the threatened fishes in the Province were discussed from the two aspects of geodynamic evolution and present situation.

  2. Species-Specific Antimonial Sensitivity in Leishmania Is Driven by Post-Transcriptional Regulation of AQP1

    Mandal, Goutam; Mandal, Srotoswati; Sharma, Mansi; Charret, Karen Santos; Papadopoulou, Barbara; Bhattacharjee, Hiranmoy; Mukhopadhyay, Rita

    2015-01-01

    Leishmania is a digenetic protozoan parasite causing leishmaniasis in humans. The different clinical forms of leishmaniasis are caused by more than twenty species of Leishmania that are transmitted by nearly thirty species of phlebotomine sand flies. Pentavalent antimonials (such as Pentostam or Glucantime) are the first line drugs for treating leishmaniasis. Recent studies suggest that pentavalent antimony (Sb(V)) acts as a pro-drug, which is converted to the more active trivalent form (Sb(III)). However, sensitivity to trivalent antimony varies among different Leishmania species. In general, Leishmania species causing cutaneous leishmaniasis (CL) are more sensitive to Sb(III) than the species responsible for visceral leishmaniasis (VL). Leishmania aquaglyceroporin (AQP1) facilitates the adventitious passage of antimonite down a concentration gradient. In this study, we show that Leishmania species causing CL accumulate more antimonite, and therefore exhibit higher sensitivity to antimonials, than the species responsible for VL. This species-specific differential sensitivity to antimonite is directly proportional to the expression levels of AQP1 mRNA. We show that the stability of AQP1 mRNA in different Leishmania species is regulated by their respective 3’-untranslated regions. The differential regulation of AQP1 mRNA explains the distinct antimonial sensitivity of each species. PMID:25714343

  3. The prevalence and distribution of Fusarium species in Norwegian cereals: a survey

    Kosiak, B.; Torp, M.; Skjerve, E.

    2003-01-01

    the regions. A total of 695 grain samples were analysed. The amount of Fusarium infection varied with cereal species and region of origin. The most frequently isolated Fusarium spp. from all samples were F. avenaceum, F. poae, F. tricinctum and F. culmorum. Other important toxigenic Fusarium spp. were F......In the period 1994-1996 a post-harvest survey was conducted in wheat, barley and oats to assess the occurrence and geographic distribution of Fusarium species in Norwegian cereals. The number of samples investigated was adjusted proportionally to the production of each cereal species within...... and F. culmorum demonstrated in this study , corresponded to previously reported DON-distribution, although DON seems to be produced by different species in different regions. Distribution of the isolated Fusarium species and comparison between cereals and locations are discussed....

  4. Vertical distribution and migration of euphausiid species in the Red Sea

    Wiebe, Peter H.; Bucklin, Ann; Kaartvedt, Stein; Rø stad, Anders; Blanco-Bercial, Leocadio

    2016-01-01

    We addressed how the extreme environmental conditions of the Red Sea impact or alter patterns of vertical distribution and vertical migration of five euphausiid species that are known from other oceans. Euphausia diomedeae was abundant and performed

  5. The derivative based variance sensitivity analysis for the distribution parameters and its computation

    Wang, Pan; Lu, Zhenzhou; Ren, Bo; Cheng, Lei

    2013-01-01

    The output variance is an important measure for the performance of a structural system, and it is always influenced by the distribution parameters of inputs. In order to identify the influential distribution parameters and make it clear that how those distribution parameters influence the output variance, this work presents the derivative based variance sensitivity decomposition according to Sobol′s variance decomposition, and proposes the derivative based main and total sensitivity indices. By transforming the derivatives of various orders variance contributions into the form of expectation via kernel function, the proposed main and total sensitivity indices can be seen as the “by-product” of Sobol′s variance based sensitivity analysis without any additional output evaluation. Since Sobol′s variance based sensitivity indices have been computed efficiently by the sparse grid integration method, this work also employs the sparse grid integration method to compute the derivative based main and total sensitivity indices. Several examples are used to demonstrate the rationality of the proposed sensitivity indices and the accuracy of the applied method

  6. How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.

    Poorter, Hendrik; Jagodzinski, Andrzej M; Ruiz-Peinado, Ricardo; Kuyah, Shem; Luo, Yunjian; Oleksyn, Jacek; Usoltsev, Vladimir A; Buckley, Thomas N; Reich, Peter B; Sack, Lawren

    2015-11-01

    We compiled a global database for leaf, stem and root biomass representing c. 11 000 records for c. 1200 herbaceous and woody species grown under either controlled or field conditions. We used this data set to analyse allometric relationships and fractional biomass distribution to leaves, stems and roots. We tested whether allometric scaling exponents are generally constant across plant sizes as predicted by metabolic scaling theory, or whether instead they change dynamically with plant size. We also quantified interspecific variation in biomass distribution among plant families and functional groups. Across all species combined, leaf vs stem and leaf vs root scaling exponents decreased from c. 1.00 for small plants to c. 0.60 for the largest trees considered. Evergreens had substantially higher leaf mass fractions (LMFs) than deciduous species, whereas graminoids maintained higher root mass fractions (RMFs) than eudicotyledonous herbs. These patterns do not support the hypothesis of fixed allometric exponents. Rather, continuous shifts in allometric exponents with plant size during ontogeny and evolution are the norm. Across seed plants, variation in biomass distribution among species is related more to function than phylogeny. We propose that the higher LMF of evergreens at least partly compensates for their relatively low leaf area : leaf mass ratio. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. The effects of global change on the distribution, species richness and life history of European dragonflies

    Olsen, Kent

    2016-01-01

    traits such as taxonomy, habitat specificity, metabolic plasticity, and biogeographic traits such zoogeographical origin. In Paper I we describe how changes in species richness pattern across Europe correlate with range changes in different taxonomic and biogeographic groups of dragonflies. We found...... specialized species adapted to permanent running (perennial lotic) water habitats. We found that species reproducing in temporary water track climate changes better than species adapted to permanent water. In Paper III we explore the relationship between metabolic plasticity (expressed as the ability to shift...... with less metabolic plasticity. We conducted experimental ex-situ measurements of metabolic rates measured as respiration rates at 10°C and 20°C, respectively, of four Scandinavian dragonfly species. We used two species with a northern distribution, one with a southern distribution and one ubiquitous...

  8. [Effects of sampling plot number on tree species distribution prediction under climate change].

    Liang, Yu; He, Hong-Shi; Wu, Zhi-Wei; Li, Xiao-Na; Luo, Xu

    2013-05-01

    Based on the neutral landscapes under different degrees of landscape fragmentation, this paper studied the effects of sampling plot number on the prediction of tree species distribution at landscape scale under climate change. The tree species distribution was predicted by the coupled modeling approach which linked an ecosystem process model with a forest landscape model, and three contingent scenarios and one reference scenario of sampling plot numbers were assumed. The differences between the three scenarios and the reference scenario under different degrees of landscape fragmentation were tested. The results indicated that the effects of sampling plot number on the prediction of tree species distribution depended on the tree species life history attributes. For the generalist species, the prediction of their distribution at landscape scale needed more plots. Except for the extreme specialist, landscape fragmentation degree also affected the effects of sampling plot number on the prediction. With the increase of simulation period, the effects of sampling plot number on the prediction of tree species distribution at landscape scale could be changed. For generalist species, more plots are needed for the long-term simulation.

  9. The geography of demography: long-term demographic studies and species distribution models reveal a species border limited by adaptation.

    Eckhart, V M; Geber, M A; Morris, W F; Fabio, E S; Tiffin, P; Moeller, D A

    2011-10-01

    Potential causes of species' geographic distribution limits fall into two broad classes: (1) limited adaptation across spatially variable environments and (2) limited opportunities to colonize unoccupied areas. Combining demographic studies, analyses of demographic responses to environmental variation, and species distribution models, we investigated the causes of range limits in a model system, the eastern border of the California annual plant Clarkia xantiana ssp. xantiana. Vital rates of 20 populations varied with growing season temperature and precipitation: fruit number and overwinter survival of 1-year-old seeds declined steeply, while current-year seed germination increased modestly along west-to-east gradients in decreasing temperature, decreasing mean precipitation, and increasing variation in precipitation. Long-term stochastic finite rate of increase, λ(s), exhibited a fourfold range and varied among geologic surface materials as well as with temperature and precipitation. Growth rate declined significantly toward the eastern border, falling below 1 in three of the five easternmost populations. Distribution models employing demographically important environmental variables predicted low habitat favorability beyond the eastern border. Models that filtered or weighted population presences by λ(s) predicted steeper eastward declines in favorability and assigned greater roles in setting the distribution to among-year variation in precipitation and to geologic surface material. These analyses reveal a species border likely set by limited adaptation to declining environmental quality.

  10. Modeling the Distribution of Rare or Cryptic Bird Species of Taiwan

    Tsai-Yu Wu

    2012-12-01

    Full Text Available For the study of the macroecology and conservation of Taiwan’s birds, there was an urgent need to develop distribution models of bird species whose distribution had never before been modeled. Therefore, we here model the distributions of 27 mostly rare and cryptic breeding bird species using a statistical approach which has been shown to be especially reliable for modeling species with a low sample size of presence localities, namely the maximum entropy (Maxent modeling technique. For this purpose, we began with a dedicated attempt to collate as much high-quality distributional data as possible, assembling databases from several scientific reports, contacting individual data recorders and searching publicly accessible database, the internet and the available literature. This effort resulted in 2022 grid cells of 1 × 1 km size being associated with a presence record for one of the 27 species. These records and 10 pre-selected environmental variables were then used to model each species’ probability distribution which we show here with all grid cells below the lowest presence threshold being converted to zeros. We then in detail discuss the interpretation and applicability of these distributions, whereby we pay close attention to habitat requirements, the intactness and fragmentation of their habitat, the general detectability of the species and data reliability. This study is another one in an ongoing series of studies which highlight the usefulness of using large electronic databases and modern analytical methods to help with the monitoring and assessment of Taiwan’s bird species.

  11. The predictive skill of species distribution models for plankton in a changing climate

    Brun, Philipp Georg; Kiørboe, Thomas; Licandro, Priscilla

    2016-01-01

    Statistical species distribution models (SDMs) are increasingly used to project spatial relocations of marine taxa under future climate change scenarios. However, tests of their predictive skill in the real-world are rare. Here, we use data from the Continuous Plankton Recorder program, one...... null models, is essential to assess the robustness of projections of marine planktonic species under climate change...

  12. An analysis of plant species distributions on the floodplain of the ...

    Furthermore, several ruderal species were restricted to elevated sites in close proximity to the channel, occurring on recently formed point bars which are the product of fluvial processes. Disturbance in the form of sediment deposition on point bars is thus an important determinant of species distribution on floodplains of the ...

  13. A new record of Oxychilus alliarius (Gastropoda: Zonitidae with the species distribution in the Czech Republic

    Jitka Horáčková

    2009-12-01

    Full Text Available A new finding of the land snail species Oxychilus alliarius was recorded in the Czech Republic. This West European species was found in the six isolated sites during the last thirteen years always in western part of Bohemia. This paper brings new information on the distribution of Oxychilus alliarius in the Czech Republic.

  14. Global checklist of species of Grania (Clitellata: Enchytraeidae with remarks on their geographic distribution

    Alessandro Prantoni

    2017-12-01

    Full Text Available A checklist of all currently accepted species of Grania Southern, 1913 (Annelida, Clitellata, Enchytraeidae is presented. The genus is widespread over the world and comprises 81 species described to date. Remarks on their geographical distribution, habitat, synonymies and museum catalogue numbers are provided.

  15. Linking macroecology and community ecology: refining predictions of species distributions using biotic interaction networks.

    Staniczenko, Phillip P A; Sivasubramaniam, Prabu; Suttle, K Blake; Pearson, Richard G

    2017-06-01

    Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub-disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species' presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  16. Allergic reactions to vespids: comparison of sensitivities to two species in a Mediterranean area.

    Blanca, M; Miranda, A; Fernandez, J; Terrados, S; Vela, J M; Vega, J M; Gonzalez, J J; Juarez, C

    1988-01-01

    We have studied a group of twenty-seven patients who suffer allergic reactions to vespids stings. Specific IgE antibodies to venom extracts from Polistes gallicus and Vespula germanica were measured by RAST, and the crossreactivity between the two venoms was compared using the RAST inhibition technique. We concluded that, in southern Spain, sensitization to P. gallicus was more prevalent than that to V. germanica, with 44% of the subjects in this study reacting to P. gallicus compared with 33% to V. germanica. However, there was a considerable degree of crossreactivity between the two species. It is evident that Polistes is an important species in this area; however, both in Spain and other Mediterranean countries, V. germanica venom is used almost exclusively for diagnosis and immunotherapy.

  17. Staphyloxanthin photobleaching sensitizes methicillin-resistant Staphylococcus aureus to reactive oxygen species attack

    Dong, Pu-Ting; Mohammad, Haroon; Hui, Jie; Wang, Xiaoyu; Li, Junjie; Liang, Lijia; Seleem, Mohamed N.; Cheng, Ji-Xin

    2018-02-01

    Given that the dearth of new antibiotic development loads an existential burden on successful infectious disease therapy, health organizations are calling for alternative approaches to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, we report a drug-free photonic approach to eliminate MRSA through photobleaching of staphyloxanthin, an indispensable membrane-bound antioxidant of S. aureus. The photobleaching process, uncovered through a transient absorption imaging study and quantitated by absorption spectroscopy and mass spectrometry, decomposes staphyloxanthin, and sensitizes MRSA to reactive oxygen species attack. Consequently, staphyloxanthin bleaching by low-level blue light eradicates MRSA synergistically with external or internal reactive oxygen species. The effectiveness of this synergistic therapy is validated in MRSA culture, MRSAinfected macrophage cells. Collectively, these findings highlight broad applications of staphyloxanthin photobleaching for treatment of MRSA infections.

  18. Coupling ecosystems exposure to nitrogen and species sensitivity to hypoxia: modelling marine eutrophication in LCIA

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    Characterisation modelling in Life Cycle Impact Assessment (LCIA) quantifies impacts of anthropogenic emissions by applying substance-specific impact potentials, or Characterisation Factors (CF), to the amount of substances emitted. Nitrogen (N) emissions from human activities enrich coastal marine...... ecosystems and promote planktonic growth that may lead to marine eutrophication impacts. Excessive algal biomass and dissolved oxygen (DO) depletion typify the ecosystem response to the nutrient input. The present novel method couples a mechanistic model of coastal biological processes that determines...... the ecosystem response (exposure) to anthropogenic N enrichment (eXposure Factor, XF [kgO2·kgN-1]) with the sensitivity of species exposed to oxygen-depleted waters (Effect Factor, EF [(PAF)·m3·kgO2-1], expressed as a Potentially Affected Fraction (PAF) of species). Thus, the coupled indicator (XF*EF, [(PAF)·m3...

  19. Sensitivity study of tensions in distribution networks with respect to injected powers

    Tencio Alfaro, Ernie Fernando

    2013-01-01

    A study of the sensitivity of tension is submitted to small changes of active and reactive power of distributed generators (DG) of a 11 kV radial system of 8 circuits with 75 rods, in which 22 bars with DG and 38 bars with loads. The sensitivities are obtained for 6 load models 3 relations R / X of the lines interconnecting the distributed system, 3 equivalents of Thevenin and high load conditions with low generation and low load with high part of the DG and bars load. The study has obtained to determine which operating conditions of the system have presented the greatest tension sensitivities. A description of the theory of modeling loads and motor is developed for electrical power systems. The several ways to obtain the sensitivity matrix of tension are explained as central axis. (author) [es

  20. Monte Carlo Calculation of Sensitivities to Secondary Angular Distributions. Theory and Validation

    Perell, R. L.

    2002-01-01

    The basic methods for solution of the transport equation that are in practical use today are the discrete ordinates (SN) method, and the Monte Carlo (Monte Carlo) method. While the SN method is typically less computation time consuming, the Monte Carlo method is often preferred for detailed and general description of three-dimensional geometries, and for calculations using cross sections that are point-wise energy dependent. For analysis of experimental and calculated results, sensitivities are needed. Sensitivities to material parameters in general, and to the angular distribution of the secondary (scattered) neutrons in particular, can be calculated by well known SN methods, using the fluxes obtained from solution of the direct and the adjoint transport equations. Algorithms to calculate sensitivities to cross-sections with Monte Carlo methods have been known for quite a time. However, only just recently we have developed a general Monte Carlo algorithm for the calculation of sensitivities to the angular distribution of the secondary neutrons

  1. Evaluation of species richness estimators based on quantitative performance measures and sensitivity to patchiness and sample grain size

    Willie, Jacob; Petre, Charles-Albert; Tagg, Nikki; Lens, Luc

    2012-11-01

    Data from forest herbaceous plants in a site of known species richness in Cameroon were used to test the performance of rarefaction and eight species richness estimators (ACE, ICE, Chao1, Chao2, Jack1, Jack2, Bootstrap and MM). Bias, accuracy, precision and sensitivity to patchiness and sample grain size were the evaluation criteria. An evaluation of the effects of sampling effort and patchiness on diversity estimation is also provided. Stems were identified and counted in linear series of 1-m2 contiguous square plots distributed in six habitat types. Initially, 500 plots were sampled in each habitat type. The sampling process was monitored using rarefaction and a set of richness estimator curves. Curves from the first dataset suggested adequate sampling in riparian forest only. Additional plots ranging from 523 to 2143 were subsequently added in the undersampled habitats until most of the curves stabilized. Jack1 and ICE, the non-parametric richness estimators, performed better, being more accurate and less sensitive to patchiness and sample grain size, and significantly reducing biases that could not be detected by rarefaction and other estimators. This study confirms the usefulness of non-parametric incidence-based estimators, and recommends Jack1 or ICE alongside rarefaction while describing taxon richness and comparing results across areas sampled using similar or different grain sizes. As patchiness varied across habitat types, accurate estimations of diversity did not require the same number of plots. The number of samples needed to fully capture diversity is not necessarily the same across habitats, and can only be known when taxon sampling curves have indicated adequate sampling. Differences in observed species richness between habitats were generally due to differences in patchiness, except between two habitats where they resulted from differences in abundance. We suggest that communities should first be sampled thoroughly using appropriate taxon sampling

  2. Continental-wide distribution of crayfish species in Europe: update and maps

    Kouba A.

    2014-01-01

    Full Text Available Recently published astacological studies substantially improved available data on distribution of crayfish in various European regions. At the same time, spread of invasive species has been recorded, additional non-indigenous species became established in various countries, and losses of populations of native species due to crayfish plague and other negative factors were observed. We overview recent advances in this knowledge, and provide updated colour maps of the distribution of all crayfish species present in Europe. These maps are originally based on the data from the Atlas of Crayfish in Europe published in 2006 as a result of the CRAYNET project, and were further updated from more recently published reports, grey literature, and especially thanks to contributions and feedback of over 70 specialists from 32 countries. Separate maps are available for all indigenous crayfish species in Europe as well as for three most widespread non-indigenous crayfish species. Additionally, two maps give locations of known findings of crayfish species introduced to Europe after 1980. These newly established alien species have so far restricted distributions; however, the frequency of recent reports suggests that findings of such species resulting from releases of aquarium pets will further increase.

  3. [Relation between species distribution of plant community and soil factors under grazing in alpine meadow].

    Niu, Yu Jie; Yang, Si Wei; Wang, Gui Zhen; Liu, Li; Du, Guo Zhen; Hua, Li Min

    2017-12-01

    The research selected the alpine meadow located in the northeastern margin of the Qinghai-Tibet Plateau to study the changes of vegetation community and soil properties under different grazing intensities, as well as the quantitative relation between the distribution patterns of plant species and the physical and chemical properties of soil. The results showed that the grazing caused the differentiation of the initial vegetation community with the dominant plants, Elymus nutans and Stipa grandis. In the plots with high and low grazing intensities, the dominant plants had changed to Kobresia humilis and Melissitus ruthenica, and E. nutans and Poa crymophila, respectively. With the increase of grazing intensity, the plant richness, importance value and biomass were significantly decreased. The sequence of plant species importance value in each plot against grazing intensity could be fitted by a logarithmic model. The number of required plant species was reduced while the importance value of the remaining plant species accounted for 50% of the importance value in the whole vegetation community. The available P, available K, soil compaction, soil water content, stable infiltration rate and large aggregate index were significantly changed with grazing intensity, however, the changes were different. The CCA ordination showed that the soil compaction was the key factor affecting the distribution pattern of the plant species under grazing. The variance decomposition indicated that the soil factors together explained 30.5% of the distribution of the plant species, in particular the soil physical properties alone explained 22.8% of the distribution of the plant species, which had the highest rate of contribution to the plant species distribution. The soil physical properties affected the distribution pattern of plant species on grazed alpine meadow.

  4. Predicting plant invasions under climate change: are species distribution models validated by field trials?

    Sheppard, Christine S; Burns, Bruce R; Stanley, Margaret C

    2014-09-01

    Climate change may facilitate alien species invasion into new areas, particularly for species from warm native ranges introduced into areas currently marginal for temperature. Although conclusions from modelling approaches and experimental studies are generally similar, combining the two approaches has rarely occurred. The aim of this study was to validate species distribution models by conducting field trials in sites of differing suitability as predicted by the models, thus increasing confidence in their ability to assess invasion risk. Three recently naturalized alien plants in New Zealand were used as study species (Archontophoenix cunninghamiana, Psidium guajava and Schefflera actinophylla): they originate from warm native ranges, are woody bird-dispersed species and of concern as potential weeds. Seedlings were grown in six sites across the country, differing both in climate and suitability (as predicted by the species distribution models). Seedling growth and survival were recorded over two summers and one or two winter seasons, and temperature and precipitation were monitored hourly at each site. Additionally, alien seedling performances were compared to those of closely related native species (Rhopalostylis sapida, Lophomyrtus bullata and Schefflera digitata). Furthermore, half of the seedlings were sprayed with pesticide, to investigate whether enemy release may influence performance. The results showed large differences in growth and survival of the alien species among the six sites. In the more suitable sites, performance was frequently higher compared to the native species. Leaf damage from invertebrate herbivory was low for both alien and native seedlings, with little evidence that the alien species should have an advantage over the native species because of enemy release. Correlations between performance in the field and predicted suitability of species distribution models were generally high. The projected increase in minimum temperature and reduced

  5. The effects of drainage on groundwater quality and plant species distribution in stream valley meadows

    Grootjans, A.P.; Diggelen, R. van; Wassen, M.J.; Wiersinga, W.A.

    1988-01-01

    Conditions in fen meadows in Dutch stream valleys are influenced by both deep (Ca2+-rich) and shallow (Ca2+-poor) groundwater flows. The distribution patterns of phreatophytic (groundwater-influenced) plant species showed distinct relationships with the distribution of different groundwater types.

  6. Predictive models of threatened plant species distribution in the Iberian arid south-east

    Benito, Blas M.

    2013-01-01

    Poster on the distribution of three rare, endemic and endangered annual plants of arid zones in the south-eastern Iberian peninsula. Presented in the workshop "Predictive Modelling of Species Distribution: New Tools for the XXI Century (Baeza, Spain, november 2005).

  7. From ratites to rats: the size of fleshy fruits shapes species' distributions and continental rainforest assembly.

    Rossetto, Maurizio; Kooyman, Robert; Yap, Jia-Yee S; Laffan, Shawn W

    2015-12-07

    Seed dispersal is a key process in plant spatial dynamics. However, consistently applicable generalizations about dispersal across scales are mostly absent because of the constraints on measuring propagule dispersal distances for many species. Here, we focus on fleshy-fruited taxa, specifically taxa with large fleshy fruits and their dispersers across an entire continental rainforest biome. We compare species-level results of whole-chloroplast DNA analyses in sister taxa with large and small fruits, to regional plot-based samples (310 plots), and whole-continent patterns for the distribution of woody species with either large (more than 30 mm) or smaller fleshy fruits (1093 taxa). The pairwise genomic comparison found higher genetic distances between populations and between regions in the large-fruited species (Endiandra globosa), but higher overall diversity within the small-fruited species (Endiandra discolor). Floristic comparisons among plots confirmed lower numbers of large-fruited species in areas where more extreme rainforest contraction occurred, and re-colonization by small-fruited species readily dispersed by the available fauna. Species' distribution patterns showed that larger-fruited species had smaller geographical ranges than smaller-fruited species and locations with stable refugia (and high endemism) aligned with concentrations of large fleshy-fruited taxa, making them a potentially valuable conservation-planning indicator. © 2015 The Author(s).

  8. Vegetation in Bangalore's Slums: Composition, Species Distribution, Density, Diversity, and History

    Gopal, Divya; Nagendra, Harini; Manthey, Michael

    2015-06-01

    There is widespread acknowledgement of the need for biodiversity and greening to be part of urban sustainability efforts. Yet we know little about greenery in the context of urban poverty, particularly in slums, which constitute a significant challenge for inclusive development in many rapidly growing cities. We assessed the composition, density, diversity, and species distribution of vegetation in 44 slums of Bangalore, India, comparing these to published studies on vegetation diversity in other land-use categories. Most trees were native to the region, as compared to other land-use categories such as parks and streets which are dominated by introduced species. Of the most frequently encountered tree species, Moringa oleifera and Cocos nucifera are important for food, while Ficus religiosa plays a critical cultural and religious role. Tree density and diversity were much lower in slums compared to richer residential neighborhoods. There are also differences in species preferences, with most plant (herb, shrub and vines) species in slums having economic, food, medicinal, or cultural use, while the species planted in richer residential areas are largely ornamental. Historic development has had an impact on species distribution, with older slums having larger sized tree species, while recent slums were dominated by smaller sized tree species with greater economic and food use. Extensive focus on planting trees and plant species with utility value is required in these congested neighborhoods, to provide livelihood support.

  9. Bio indices for 2,4-D sensitivity between two plant species: Azolla pinnata R.Br. and Vernonia cinerea L. with their cellular responses.

    De, Arnab Kumar; Dey, Narottam; Adak, Malay Kumar

    2016-07-01

    In the present experiment a pteridophytic species Azolla and an angiospermic species Vernonia were evaluated on the basis of cellular reactivity for herbicidal action through ongoing concentrations. Initially, both the species recorded a significant activity of IAA-oxidase as mark of IAA metabolism with herbicidal sensitivity. Still, Vernonia species were more affected on 2,4-D mediated auxin catabolism. The loss of auxin concentrations on the tissues by 2,4-D reaction was also reflected on growth parameters including relative growth rate and chlorophyll biosynthesis. In a dose dependent manner Vernonia plants were more affected with loss of chlorophyll content and decline in relative growth rate. On the other hand, both those parameters were adjusted significantly with 2,4-D accumulation in Azolla . The stability of cellular metabolism was documented by significant down regulation of protein and lipid peroxidation with concomitant moderation to superoxide and hydrogen peroxide accumulation. The later two were more vulnerable to damage in the Vernonia plant with profuse accumulation of protein and lipid peroxidation products. Similarly, tissue specific reaction to superoxide and hydrogen peroxide accumulation were distinctly demarcated in two species significantly. As a whole, the cellular responses and metabolite distribution to 2,4-D sensitization are the features to describe bio-indices for aquatic fern species Azolla with comparison to angiospermic species Vernonia .

  10. Species distribution and introgressive hybridization of two Avicennia species from the Western Hemisphere unveiled by phylogeographic patterns.

    Mori, Gustavo M; Zucchi, Maria I; Sampaio, Iracilda; Souza, Anete P

    2015-04-10

    Mangrove plants grow in the intertidal zone in tropical and subtropical regions worldwide. The global latitudinal distribution of the mangrove is mainly influenced by climatic and oceanographic features. Because of current climate changes, poleward range expansions have been reported for the major biogeographic regions of mangrove forests in the Western and Eastern Hemispheres. There is evidence that mangrove forests also responded similarly after the last glaciation by expanding their ranges. In this context, the use of genetic tools is an informative approach for understanding how historical processes and factors impact the distribution of mangrove species. We investigated the phylogeographic patterns of two Avicennia species, A. germinans and A. schaueriana, from the Western Hemisphere using nuclear and chloroplast DNA markers. Our results indicate that, although Avicennia bicolor, A. germinans and A. schaueriana are independent lineages, hybridization between A. schaueriana and A. germinans is a relevant evolutionary process. Our findings also reinforce the role of long-distance dispersal in widespread mangrove species such as A. germinans, for which we observed signs of transatlantic dispersal, a process that has, most likely, contributed to the breadth of the distribution of A. germinans. However, along the southern coast of South America, A. schaueriana is the only representative of the genus. The distribution patterns of A. germinans and A. schaueriana are explained by their different responses to past climate changes and by the unequal historical effectiveness of relative gene flow by propagules and pollen. We observed that A. bicolor, A. germinans and A. schaueriana are three evolutionary lineages that present historical and ongoing hybridization on the American continent. We also inferred a new evidence of transatlantic dispersal for A. germinans, which may have contributed to its widespread distribution. Despite the generally wider distribution of A

  11. Spatial structures of the environment and of dispersal impact species distribution in competitive metacommunities.

    Ai, Dexiecuo; Gravel, Dominique; Chu, Chengjin; Wang, Gang

    2013-01-01

    The correspondence between species distribution and the environment depends on species' ability to track favorable environmental conditions (via dispersal) and to maintain competitive hierarchy against the constant influx of migrants (mass effect) and demographic stochasticity (ecological drift). Here we report a simulation study of the influence of landscape structure on species distribution. We consider lottery competition for space in a spatially heterogeneous environment, where the landscape is represented as a network of localities connected by dispersal. We quantified the contribution of neutrality and species sorting to their spatial distribution. We found that neutrality increases and the strength of species-sorting decreases with the centrality of a community in the landscape when the average dispersal among communities is low, whereas the opposite was found at elevated dispersal. We also found that the strength of species-sorting increases with environmental heterogeneity. Our results illustrate that spatial structure of the environment and of dispersal must be taken into account for understanding species distribution. We stress the importance of spatial geographic structure on the relative importance of niche vs. neutral processes in controlling community dynamics.

  12. Spatial structures of the environment and of dispersal impact species distribution in competitive metacommunities.

    Dexiecuo Ai

    Full Text Available The correspondence between species distribution and the environment depends on species' ability to track favorable environmental conditions (via dispersal and to maintain competitive hierarchy against the constant influx of migrants (mass effect and demographic stochasticity (ecological drift. Here we report a simulation study of the influence of landscape structure on species distribution. We consider lottery competition for space in a spatially heterogeneous environment, where the landscape is represented as a network of localities connected by dispersal. We quantified the contribution of neutrality and species sorting to their spatial distribution. We found that neutrality increases and the strength of species-sorting decreases with the centrality of a community in the landscape when the average dispersal among communities is low, whereas the opposite was found at elevated dispersal. We also found that the strength of species-sorting increases with environmental heterogeneity. Our results illustrate that spatial structure of the environment and of dispersal must be taken into account for understanding species distribution. We stress the importance of spatial geographic structure on the relative importance of niche vs. neutral processes in controlling community dynamics.

  13. Ecophysiological Traits of Leaves of Three Marsilea Species Distributed in Different Geographical Regions

    Tai-Chung Wu

    2011-11-01

    Full Text Available Marsilea, an amphibian fern genus (containing ca. 80 species characterized by their unusual leaves and reproductive structures, is distributed over the five continents. To investigate the adaptation traits of three Marsilea species (M. crenata, M. quadrifolia, and M. schelpiana, distributed in different geographic regions, to terrestrial conditions, we compared morphological features, optical properties and photosynthetic performance of leaflets of the three species grown in terrestrial environment. The results showed that leaflets of the three species had significant differences in some of the ecophysiogical traits. Among the three species, M. quadrifolia (distributed in temperate region where receiving low precipitation had the highest trichome density on its leaflet surface and the highest water use efficiency, M. schelpiana (mainly in southern Africa where accepting high level of solar irradiance had the tallest petiole and the highest leaf dissection index, total stomatal pore area index, PSII electron transport rate and photosaturated photosynthetic rate, M. crenata (mainly in southeastern Asia region where receiving high precipitation and with high humidity had the lowest leaf dissection index and water use efficiency. Accordingly, leaf characteristics of the three Marsilea species reflect the climate pattern of their habitats. The results also suggest that water availability and light intensity are two of the important factors contributing to the geographic distribution of the three species.

  14. Spatial distribution of the species of the genus Buenoa (Hemiptera: Notonectidae) in Tumaco (Narino, Colombia)

    Padilla Gil, Dora Nancy

    2014-01-01

    The work was carried in the marine agricola farm of the Municipality Tumaco, with the objective of studying the distribution of the species of the genus Buenoa in homogeneous environmental conditions regarding temperature, humidity, altitude and aquatic habitats of the freshwater and the others with different grade of conductivity and dedicated to the marine shrimp farming Litopenaeus vannamei (Boone, 1931). The studied lakes were four of freshwater and four with different conductivity, in the months of June to November 2010. The results showed heterogeneous distribution of the species of the genus Buenoa with major diversity in freshwater (5 species) and lower abundance; while in saltwater had lower diversity (4 species) and major abundance. Only Buenoa dactylis Padilla-Gil 2010 was found in both aquatic environments. It is discussed possible ecological implications than can influence this distribution pattern are discussed.

  15. Distribution and Antimicrobial Resistance Profile of Yersinia Species Isolated From Chicken and Beef Meat

    Shadi Aghamohammad

    2015-11-01

    Full Text Available Background: Foodborne diseases are widespread and growing public health problem in developed and developing countries. There are many microorganisms act as etiological agents for foodborne diseases such as Campylobacter spp., Listeria, Staphylococcos, Salmonella, Bacillus, Yersinia spp. High prevalence of gastrointestinal illness, including fatal cases attributable to yersiniosis, is also observed in many developing countries. Objectives: The purpose of this study was to investigate the prevalence of Yersinia enterocolitica and other Yersinia species in meat and chicken samples in various seasons and to determine their antibiotic resistance profile. Materials and Methods: To investigate the prevalence of Yersinia spp., a total of 450 samples, including chicken (n = 226 and beef meat (n = 224 were collected from supermarkets in Tehran. All samples were transported on ice to the laboratory and microbiological analysis was carried out within 2 hours after the collection. Susceptibility testing of bacterial strains was according to CLSI guideline at 28˚C by the disk diffusion assay. Results: From a total of 450 samples, (226 chickens and 224 beef meats, 70 (15.5% samples were positive for Yersinia spp. Of these isolates, (80% 56 species were identified as Y. enterocolitica, 8 (11% as Y. frederiksenii, 5 (7% as Y. intermedia and 1 (1.4% as Y. kristensenii. The highest rate of resistance was seen against cephalotin (98%, and ampicillin (52%. However, gentamicin and chloramphenicol were the most active antibiotics against the target cultures. Considering the season of isolation, Yersinia spp. were frequently isolated in autumn (52%, followed by spring (29%. Conclusions: Y. enterocolitica was the most spp. distributed among other species. Many factors, such as isolation assay, season, and geographical location play critical role in reports of increase or decrease in the prevalence of the Yersinia spp. all over the world. Our findings demonstrate that

  16. Spatial distribution and interspecific associations of tree species in a tropical seasonal rain forest of China.

    Guoyu Lan

    Full Text Available Studying the spatial pattern and interspecific associations of plant species may provide valuable insights into processes and mechanisms that maintain species coexistence. Point pattern analysis was used to analyze the spatial distribution patterns of twenty dominant tree species, their interspecific spatial associations and changes across life stages in a 20-ha permanent plot of seasonal tropical rainforest in Xishuangbanna, China, to test mechanisms maintaining species coexistence. Torus-translation tests were used to quantify positive or negative associations of the species to topographic habitats. The results showed: (1 fourteen of the twenty tree species were negatively (or positively associated with one or two of the topographic variables, which evidences that the niche contributes to the spatial pattern of these species. (2 Most saplings of the study species showed a significantly clumped distribution at small scales (0-10 m which was lost at larger scales (10-30 m. (3 The degree of spatial clumping deceases from saplings, to poles, to adults indicates that density-dependent mortality of the offspring is ubiquitous in species. (4 It is notable that a high number of positive small-scale interactions were found among the twenty species. For saplings, 42.6% of all combinations of species pairs showed positive associations at neighborhood scales up to five meters, but only 38.4% were negative. For poles and adults, positive associations at these distances still made up 45.5% and 29.5%, respectively. In conclusion, there is considerable evidence for the presence of positive interactions among the tree species, which suggests that species herd protection may occur in our plot. In addition, niche assembly and limited dispersal (likely contribute to the spatial patterns of tree species in the tropical seasonal rain forest in Xishuangbanna, China.

  17. Distribution and ecology of pest fruit fly species in Asia and the Pacific

    Allwood, Allan; Vueti, Ema Tora

    2003-01-01

    Fruit flies belong to the very diverse family Tephritidae, which consists of over 4,500 species distributed in most temperate, sub-tropical and tropical countries. In Asia and the Pacific regions, most of the major pest species belong to two genera. Bactrocera and Dacus. Representatives of Ceratitis occur in southwest Western Australia and the Indian Ocean islands and Carpomya occur in the Indian sub-continent and in Mauritius and Reunion. In the Asian region, 180 species of Bactrocera and 30 species of Dacus have been recorded and in the Australasian and Oceanic region, there are 270 species of Bactrocera and 27 species of Dacus. The diversity of species progressively decreases as the plant/host diversity decreases from west in Indonesia and Papua New Guinea to east in the Polynesian Island countries. The major pest species in the Asian region belong to the dorsalis complex (B. carambolae, B. dorsalis, B. occipitalis, B. philippinensis, B. papayae and B. pyrifoliae) and include other species such as B. cucurbitae, B. zonata, B. latifrons, and others. In the Pacific region, Australia has 100 species of fruit flies. Many Pacific Island countries each have endemic species, several of which are major pests. The factors that impact on populations of fruit flies include host ranges, life cycles, mating and oviposition behavior, dispersal capacity, nutritional, moisture, temperature and light requirements, and competition within and between species. (author)

  18. Spatial distribution, Leishmania species and clinical traits of Cutaneous Leishmaniasis cases in the Colombian army.

    Patino, Luz H; Mendez, Claudia; Rodriguez, Omaira; Romero, Yanira; Velandia, Daniel; Alvarado, Maria; Pérez, Julie; Duque, Maria Clara; Ramírez, Juan David

    2017-08-01

    In Colombia, the cutaneous leishmaniasis (CL) is the most common manifestation across the army personnel. Hence, it is mandatory to determine the species associated with the disease as well as the association with the clinical traits. A total of 273 samples of male patients with CL were included in the study and clinical data of the patients was studied. PCR and sequencing analyses (Cytb and HSP70 genes) were performed to identify the species and the intra-specific genetic variability. A georeferenced database was constructed to identify the spatial distribution of Leishmania species isolated. The identification of five species of Leishmania that circulate in the areas where army personnel are deployed is described. Predominant infecting Leishmania species corresponds to L. braziliensis (61.1%), followed by Leishmania panamensis (33.5%), with a high distribution of both species at geographical and municipal level. The species L. guyanensis, L. mexicana and L. lainsoni were also detected at lower frequency. We also showed the identification of different genotypes within L. braziliensis and L. panamensis. In conclusion, we identified the Leishmania species circulating in the areas where Colombian army personnel are deployed, as well as the high intra-specific genetic variability of L. braziliensis and L. panamensis and how these genotypes are distributed at the geographic level.

  19. Fish species composition, density-distribution patterns, and impingement during upwelling

    Spigarelli, S.A.; Sharma, R.K.

    1975-01-01

    The effects of cooling system intakes and discharges on Lake Michigan fishes are highly dependent on inshore species composition and spatial distribution which, in turn, are affected by natural hydrological conditions. Significant (5 to 10 C) short-term decreases in water temperature (due to upwelling) could cause cold shock in fish equilibrated to either ambient or plume temperatures; substantial changes in distribution due to avoidance or attraction responses; and resultant changes in susceptibility to impingement. The objectives of this study are to characterize the changes in fish species composition, density, and thermal distribution as a result of natural upwellings, and to relate these factors to intake and discharge effects. Day and night sampling was conducted in ambient (reference) and thermal plume waters near the Zion Nuclear Plant on four occasions between 17 July and 11 September 1975. Density-distribution patterns and species composition of fish were determined by means of gill nets, bottom trawls, seines, and a sonic fish locater

  20. Species distributions models in wildlife planning: agricultural policy and wildlife management in the great plains

    Fontaine, Joseph J.; Jorgensen, Christopher; Stuber, Erica F.; Gruber, Lutz F.; Bishop, Andrew A.; Lusk, Jeffrey J.; Zach, Eric S.; Decker, Karie L.

    2017-01-01

    We know economic and social policy has implications for ecosystems at large, but the consequences for a given geographic area or specific wildlife population are more difficult to conceptualize and communicate. Species distribution models, which extrapolate species-habitat relationships across ecological scales, are capable of predicting population changes in distribution and abundance in response to management and policy, and thus, are an ideal means for facilitating proactive management within a larger policy framework. To illustrate the capabilities of species distribution modeling in scenario planning for wildlife populations, we projected an existing distribution model for ring-necked pheasants (Phasianus colchicus) onto a series of alternative future landscape scenarios for Nebraska, USA. Based on our scenarios, we qualitatively and quantitatively estimated the effects of agricultural policy decisions on pheasant populations across Nebraska, in specific management regions, and at wildlife management areas. 

  1. Mid-winter European dabbling duck distributions are not linked to species body mass

    Dalby, Lars; Delany, Simon; Fox, Anthony David

    are likely to play a major role in determining the wintering distribution of short- to medium-distance migratory bird species and its inter-annual variability. As avian thermoregulatory costs scale allometrically with body size, we predicted that the mean mid-winter temperature experienced by six species...... of dabbling ducks wintering in Western Europe would be negatively correlated with body mass. We found no evidence for such a relationship in a large-scale analysis testing for a link between temperature and dabbling duck distributions, suggesting that other factors such as those related to feeding ecology......In order to understand the current changes and to predict future changes in wintering dabbling duck (Anas sp.) distributions in response to climate change, it is important to understand how species distribute themselves on a continental scale in response to temperature. Thermoregulatory costs...

  2. Sensitivity analyses of woody species exposed to air pollution based on ecophysiological measurements.

    Wen, Dazhi; Kuang, Yuanwen; Zhou, Guoyi

    2004-01-01

    Air pollution has been of a major problem in the Pearl River Delta of south China, particularly during the last two decades. Emissions of air pollutants from industries have already led to damages in natural communities and environments in a wide range of the Delta area. Leaf parameters such as chlorophyll fluorescence, leaf area (LA), dry weight (DW) and leaf mass per area (LMA) had once been used as specific indexes of environmental stress. This study aims to determine in situ if the daily variation of chlorophyll fluorescence and other ecophysiological parameters in five seedlings of three woody species, Ilex rotunda, Ficus microcarpa and Machilus chinensis, could be used alone or in combination with other measurements for sensitivity indexes to make diagnoses under air pollution stress and, hence, to choose the correct tree species for urban afforestation in the Delta area. Five seedlings of each species were transplanted in pot containers after their acclimation under shadowing conditions. Chlorophyll fluorescence measurements were made in situ by a portable fluorometer (OS-30, Opti-sciences, U.S.A). Ten random samples of leaves were picked from each species for LA measurements by area-meter (CI-203, CID, Inc., U.S.A). DW was determined after the leaf samples were dried to a constant weight at 65 degrees C. LMA was calculated as the ratio of DW/LA. Leaf N content was analyzed according to the Kjeldhal method, and the extraction of pigments was carried out according Lin et al. The daily mean Fv/Fm (Fv is the variable fluorescence and Fm is the maximum fluorescence) analysis showed that Ilex rotunda and Ficus microcarpa were more highly resistant to pollution stress, followed by Machilus chinensis, implying that the efficiency of photosystem II in I. rotunda was less affected by air pollutants than the other two species. Little difference in daily change of Fv/Fm in I. rotunda between the polluted and the clean site was also observed. However, a relatively large

  3. Environmental niche divergence among three dune shrub sister species with parapatric distributions.

    Chozas, Sergio; Chefaoui, Rosa M; Correia, Otília; Bonal, Raúl; Hortal, Joaquín

    2017-05-01

    The geographical distributions of species are constrained by their ecological requirements. The aim of this work was to analyse the effects of environmental conditions, historical events and biogeographical constraints on the diversification of the three species of the western Mediterranean shrub genus Stauracanthus , which have a parapatric distribution in the Iberian Peninsula. Ecological niche factor analysis and generalized linear models were used to measure the response of all Stauracanthus species to the environmental gradients and map their potential distributions in the Iberian Peninsula. The bioclimatic niche overlap between the three species was determined by using Schoener's index. The genetic differentiation of the Iberian and northern African populations of Stauracanthus species was characterized with GenalEx. The effects on genetic distances of the most important environmental drivers were assessed through Mantel tests and non-metric multidimensional scaling. The three Stauracanthus species show remarkably similar responses to climatic conditions. This supports the idea that all members of this recently diversified clade retain common adaptations to climate and consequently high levels of climatic niche overlap. This contrasts with the diverse edaphic requirements of Stauracanthus species. The populations of the S. genistoides-spectabilis clade grow on Miocene and Pliocene fine-textured sedimentary soils, whereas S. boivinii , the more genetically distant species, occurs on older and more coarse-textured sedimentary substrates. These patterns of diversification are largely consistent with a stochastic process of geographical range expansion and fragmentation coupled with niche evolution in the context of spatially complex environmental fluctuations. : The combined analysis of the distribution, realized environmental niche and phylogeographical relationships of parapatric species proposed in this work allows integration of the biogeographical

  4. Thermal carrying capacity for a thermally-sensitive species at the warmest edge of its range.

    Daniel Ayllón

    Full Text Available Anthropogenic environmental change is causing unprecedented rates of population extirpation and altering the setting of range limits for many species. Significant population declines may occur however before any reduction in range is observed. Determining and modelling the factors driving population size and trends is consequently critical to predict trajectories of change and future extinction risk. We tracked during 12 years 51 populations of a cold-water fish species (brown trout Salmo trutta living along a temperature gradient at the warmest thermal edge of its range. We developed a carrying capacity model in which maximum population size is limited by physical habitat conditions and regulated through territoriality. We first tested whether population numbers were driven by carrying capacity dynamics and then targeted on establishing (1 the temperature thresholds beyond which population numbers switch from being physical habitat- to temperature-limited; and (2 the rate at which carrying capacity declines with temperature within limiting thermal ranges. Carrying capacity along with emergent density-dependent responses explained up to 76% of spatio-temporal density variability of juveniles and adults but only 50% of young-of-the-year's. By contrast, young-of-the-year trout were highly sensitive to thermal conditions, their performance declining with temperature at a higher rate than older life stages, and disruptions being triggered at lower temperature thresholds. Results suggest that limiting temperature effects were progressively stronger with increasing anthropogenic disturbance. There was however a critical threshold, matching the incipient thermal limit for survival, beyond which realized density was always below potential numbers irrespective of disturbance intensity. We additionally found a lower threshold, matching the thermal limit for feeding, beyond which even unaltered populations declined. We predict that most of our study

  5. Use of Recombinant Antigens for Sensitive Serodiagnosis of American Tegumentary Leishmaniasis Caused by Different Leishmania Species.

    Sato, Camila Massae; Sanchez, Maria Carmen Arroyo; Celeste, Beatriz Julieta; Duthie, Malcolm S; Guderian, Jeffrey; Reed, Steven G; de Brito, Maria Edileuza Felinto; Campos, Marliane Batista; de Souza Encarnação, Helia Valeria; Guerra, Jorge; de Mesquita, Tirza Gabrielle Ramos; Pinheiro, Suzana Kanawati; Ramasawmy, Rajendranath; Silveira, Fernando Tobias; de Assis Souza, Marina; Goto, Hiro

    2017-02-01

    American tegumentary leishmaniasis (ATL) (also known as cutaneous leishmaniasis [CL]) is caused by various species of protozoa of the genus Leishmania The diagnosis is achieved on a clinical, epidemiological, and pathological basis, supported by positive parasitological exams and demonstration of leishmanin delayed-type hypersensitivity. Serological assays are not routinely used in the diagnosis because many are considered to have low sensitivity and the particular Leishmania species causing the disease can lead to variable performance. In the present study, we generated recombinant versions of two highly conserved Leishmania proteins, Leishmania (Viannia) braziliensis-derived Lb8E and Lb6H, and evaluated both in enzyme-linked immunosorbent assays (ELISA). Recombinant Lb6H (rLb6H) had better performance and reacted with 100.0% of the ATL and 89.4% of the VL samples. These reactions with rLb6H were highly specific (98.5%) when compared against those for samples from healthy control individuals. We then assessed rLb6H against sera from ATL patients infected with different species of Leishmania prevalent in Brazil [Leishmania (Leishmania) amazonensis, L (Viannia) braziliensis, and L (V) guyanensis] and samples from patients with other infectious diseases. In analyses of 500 sera, ELISA using rLb6H detected all 219 ATL samples (sensitivity of 100.0%) with an overall specificity of 93.9% (considering healthy individuals and other infectious diseases patients). Only a minority of samples from Chagas disease patients possessed antibodies against rLb6H, and all of these responses were low (with a highest reactivity index of 2.2). Taken together, our data support further evaluation of rLb6H and the potential for its routine use in the serological diagnosis of ATL. Copyright © 2017 Sato et al.

  6. Estimating the spatial and temporal distribution of species richness within Sequoia and Kings Canyon National Parks.

    Steve Wathen

    Full Text Available Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians, and plants within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness or declined consistently with increasing elevation (herpetofauna and birds. Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations.

  7. Coagulase-negative Staphylococcus species in bulk milk: Prevalence, distribution, and associated subgroup- and species-specific risk factors.

    De Visscher, A; Piepers, S; Haesebrouck, F; Supré, K; De Vliegher, S

    2017-01-01

    Coagulase-negative staphylococci (CNS) have become the main pathogens causing bovine mastitis in recent years. A huge variation in species distribution among herds has been observed in several studies, emphasizing the need to identify subgroup- and species-specific herd-level factors to improve our understanding of the differences in ecological and epidemiological nature between species. The use of bulk milk samples enables the inclusion of a large(r) number of herds needed to identify herd-level risk factors and increases the likelihood of recovering enough isolates per species needed for conducting subgroup- and, eventually, species-specific analyses at the same time. This study aimed to describe the prevalence and distribution of CNS species in bulk milk samples and to identify associated subgroup- and species-specific herd-level factors. Ninety percent of all bulk milk samples yielded CNS. Staphylococcus equorum was the predominant species, followed by Staphylococcus haemolyticus and Staphylococcus epidermidis. A seasonal effect was observed for several CNS species. Bulk milk samples from herds with a loose-pack or a tiestall housing system were more likely to yield CNS species compared with herds with a freestall barn, except for S. epidermidis, Staphylococcus simulans, and Staphylococcus cohnii. In September, herds in which udders were clipped had lower odds of yielding Staphylococcus chromogenes, S. simulans, and Staphylococcus xylosus, the CNS species assumed to be most relevant for udder health, in their bulk milk than herds in which udder clipping was not practiced. Bulk milk of herds participating in a monthly veterinary udder health-monitoring program was more likely to yield these 3 CNS species. Herds always receiving their milk quality premium or predisinfecting teats before attachment of the milking cluster had lower odds of having S. equorum in their bulk milk. Herds not using a single dry cotton or paper towel for each cow during premilking udder

  8. Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity.

    Pang, Yu; Zhang, Kunning; Yang, Zhen; Jiang, Song; Ju, Zhenyi; Li, Yuxing; Wang, Xuefeng; Wang, Danyang; Jian, Muqiang; Zhang, Yingying; Liang, Renrong; Tian, He; Yang, Yi; Ren, Tian-Ling

    2018-03-27

    Recently, wearable pressure sensors have attracted tremendous attention because of their potential applications in monitoring physiological signals for human healthcare. Sensitivity and linearity are the two most essential parameters for pressure sensors. Although various designed micro/nanostructure morphologies have been introduced, the trade-off between sensitivity and linearity has not been well balanced. Human skin, which contains force receptors in a reticular layer, has a high sensitivity even for large external stimuli. Herein, inspired by the skin epidermis with high-performance force sensing, we have proposed a special surface morphology with spinosum microstructure of random distribution via the combination of an abrasive paper template and reduced graphene oxide. The sensitivity of the graphene pressure sensor with random distribution spinosum (RDS) microstructure is as high as 25.1 kPa -1 in a wide linearity range of 0-2.6 kPa. Our pressure sensor exhibits superior comprehensive properties compared with previous surface-modified pressure sensors. According to simulation and mechanism analyses, the spinosum microstructure and random distribution contribute to the high sensitivity and large linearity range, respectively. In addition, the pressure sensor shows promising potential in detecting human physiological signals, such as heartbeat, respiration, phonation, and human motions of a pushup, arm bending, and walking. The wearable pressure sensor array was further used to detect gait states of supination, neutral, and pronation. The RDS microstructure provides an alternative strategy to improve the performance of pressure sensors and extend their potential applications in monitoring human activities.

  9. Chemosymbiotic species from the Gulf of Cadiz (NE Atlantic: distribution, life styles and nutritional patterns

    C. F. Rodrigues

    2013-04-01

    Full Text Available Previous work in the mud volcanoes from the Gulf of Cadiz (South Iberian Margin revealed a high number of chemosymbiotic species, namely bivalves and siboglinid polychaetes. In this study we give an overview of the distribution and life styles of these species in the Gulf of Cadiz, determine the role of autotrophic symbionts in the nutrition of selected species using stable isotope analyses (δ13C, δ15N and δ34S and investigate the intra-specific variation of isotope signatures within and between study sites. During our studies, we identified twenty siboglinidae and nine bivalve chemosymbiotic species living in fifteen mud volcanoes. Solemyid bivalves and tubeworms of the genus Siboglinum are widespread in the study area, whereas other species were found in a single mud volcano (e.g. "Bathymodiolus" mauritanicus or restricted to deeper mud volcanoes (e.g. Polybrachia sp., Lamelisabella denticulata. Species distribution suggests that different species may adjust their position within the sediment according to their particular needs, and to the intensity and variability of the chemical substrata supply. Tissue stable isotope signatures for selected species are in accordance with values found in other studies, with thiotrophy as the dominant nutritional pathway, and with methanotrophy and mixotrophy emerging as secondary strategies. The heterogeneity in terms of nutrient sources (expressed in the high variance of nitrogen and sulphur values and the ability to exploit different resources by the different species may explain the high diversity of chemosymbiotic species found in the Gulf of Cadiz. This study increases the knowledge on distributional patterns and resource partitioning of chemosymbiotic species and highlights how trophic fuelling varies on spatial scales with direct implications to seep assemblages and potentially to the biodiversity of continental margin.

  10. Species distribution of kobs (Kobus kob) in the Shai Hills Resource Reserve: an exploratory analysis.

    Antwi, Raymond Agyepong; Owusu, Erasmus Henaku; Attuquayefio, Daniel Korley

    2018-02-01

    The well-being of a species fundamentally rests on understanding its biology, home range, and distribution. The highly seasonal distribution of kobs poses conservation and management difficulties, particularly because of the capricious nature of the ever-changing ecological and vegetation dynamics of the ecosystem. Assessing the distribution of kobs and their associated vegetation provides insight into the vulnerability and conservation status of the species. Species distribution and habitat suitability maps were developed and created respectively for the management of kobs in the Shai Hills Resource Reserve. Kob presence data collected was analyzed using the spatial analyst and Hawth's tool in the ArcGIS software where the gradients of kob distribution within the protected area landscape were plotted and mapped. Seven environmental variables including location, land cover/use, slope/elevation, nearness to dams and rivers, temperature, and rainfall were considered to have effect on kob distribution pattern and as such used in the development of species distribution and habitat suitability maps. The results indicated that kobs in the Shai Hills Resource Reserve (SHRR) assume a clumped or contagious distribution pattern where individual kobs are aggregated in patches. Rainfall, temperature, nearness to dams and rivers, slope/elevation, and land cover/use had influence in kob distribution. Of all the cataloged habitats, 86, 13, and 1% were moderately suitable, suitable, and unsuitable, respectively. Long-term survival of species depends on adequately large areas of suitable habitats and opportunities for home range activities between such areas. As such, it is recommended that suitable habitats for kobs be dedicated and designated as conservation areas, especially areas along the western boundary.

  11. Multisite-multivariable sensitivity analysis of distributed watershed models: enhancing the perceptions from computationally frugal methods

    This paper assesses the impact of different likelihood functions in identifying sensitive parameters of the highly parameterized, spatially distributed Soil and Water Assessment Tool (SWAT) watershed model for multiple variables at multiple sites. The global one-factor-at-a-time (OAT) method of Morr...

  12. Historical change in fish species distribution: shifting reference conditions and global warming effects.

    Pont, Didier; Logez, M; Carrel, G; Rogers, C; Haidvogl, G

    Species distributions models (SDM) that rely on estimated relationships between present environmental conditions and species presence-absence are widely used to forecast changes of species distributions caused by global warming but far less to reconstruct historical assemblages. By compiling historical fish data from the turn to the middle of the twentieth century in a similar way for several European catchments (Rhône, Danube), and using already published SDMs based on current observations, we: (1) tested the predictive accuracy of such models for past climatic conditions, (2) compared observed and expected cumulated historical species occurrences at sub-catchment level, and (3) compared the annual variability in the predictions within one sub-catchment (Salzach) under a future climate scenario to the long-term variability of occurrences reconstructed during an extended historical period (1800-2000). We finally discuss the potential of these SDMs to define a "reference condition", the possibility of a shift in baseline condition in relation with anthropogenic pressures, and past and future climate variability. The results of this study clearly highlight the potential of SDM to reconstruct the past composition of European fish assemblages and to analyze the historical ecological status of European rivers. Assessing the uncertainty associated with species distribution projections is of primary importance before evaluating and comparing the past and future distribution of species within a given catchment.

  13. Multi-scale approach for predicting fish species distributions across coral reef seascapes.

    Simon J Pittman

    Full Text Available Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5-300 m radii surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT and Maximum Entropy Species Distribution Modelling (MaxEnt. The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided 'outstanding' model predictions (AUC = >0.9 for three of five fish species. MaxEnt provided 'outstanding' model predictions for two of five species, with the remaining three models considered 'excellent' (AUC = 0.8-0.9. In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy than BRT (68% map accuracy. We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support

  14. Species Distribution Modeling: Comparison of Fixed and Mixed Effects Models Using INLA

    Lara Dutra Silva

    2017-12-01

    Full Text Available Invasive alien species are among the most important, least controlled, and least reversible of human impacts on the world’s ecosystems, with negative consequences affecting biodiversity and socioeconomic systems. Species distribution models have become a fundamental tool in assessing the potential spread of invasive species in face of their native counterparts. In this study we compared two different modeling techniques: (i fixed effects models accounting for the effect of ecogeographical variables (EGVs; and (ii mixed effects models including also a Gaussian random field (GRF to model spatial correlation (Matérn covariance function. To estimate the potential distribution of Pittosporum undulatum and Morella faya (respectively, invasive and native trees, we used geo-referenced data of their distribution in Pico and São Miguel islands (Azores and topographic, climatic and land use EGVs. Fixed effects models run with maximum likelihood or the INLA (Integrated Nested Laplace Approximation approach provided very similar results, even when reducing the size of the presences data set. The addition of the GRF increased model adjustment (lower Deviance Information Criterion, particularly for the less abundant tree, M. faya. However, the random field parameters were clearly affected by sample size and species distribution pattern. A high degree of spatial autocorrelation was found and should be taken into account when modeling species distribution.

  15. Lanthanide ions (III) as sensitizers of melatonin oxidation in reaction mixtures providing reactive species of oxygen and nitrogen

    Kaczmarek, Małgorzata, E-mail: mkaczmar@amu.edu.pl

    2015-06-15

    Chemiluminescence (CL) of the reactive systems providing strong oxidants (reactive species of oxygen and nitrogen) containing lanthanide ions (III) and melatonin, was studied. Kinetic curves of emission decay and spectral distributions of chemiluminescence were obtained. Analysis of differences in the intensity of chemiluminescence and CL spectra proved that excitation of Tb(III) and Dy(III) ions takes place with the energy transfer from the products of melatonin oxidation: N{sup 1}-acetyl-N{sup 2}-formyl-5-methoxykynuramine (AFMK) and N{sup 1}-acetyl-5-methoxykynuramine (AMK) to the lanthanide ions. In the system Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) a linear correlation was established between the integrated CL intensity and melatonin concent. - Highlights: • Chemiluminescence (CL) of melatonin (Mel) oxidation by reactive species of oxygen and nitrogen. • Tb(III) and Dy(III) ions as sensitizers of a melatonin oxidation process. • New CL method for determination of melatonin in pharmaceutical preparations based on CL of Fe(II)/Fe(III)–H{sub 2}O{sub 2}–Mel–Tb(III) system.

  16. Distribution of silica species in cooling water system in nuclear power station

    Akiba, Kenichi; Onozuka, Teruo; Shindo, Manabu.

    1995-01-01

    Distribution of silica species was examined by spectrophotometric method based on the formation of molybdosilicic acid species. Ultra-microamounts of ionic (reactive) silica were determined by collection of silicomolybdenum blue compound on a nitrocellulose membrane filter. Total concentrations of silica including nonionic (polymer and colloidal) species were also determined after decomposition of unreactive silica in alkali solutions. Water in the nuclear reactor (Onagawa BWR No.1) contained high concentration of silica (∼600 ppb) and ionic silica was found to be predominant (∼90%). In condensate system, silica contents were of a lower level (2-6 ppb), but the ionic silica contents were comparable to others (20-60%). The silica species appear to be brought and accumulated in the reactor from the condensate system, and then the silica species change to ionic species under high pressure and high temperature. (author)

  17. Distribution of silica species in cooling water system in nuclear power station

    Akiba, Kenichi [Tohoku Univ., Sendai (Japan). Inst. for Advanced Materials Processing; Onozuka, Teruo; Shindo, Manabu

    1995-12-01

    Distribution of silica species was examined by spectrophotometric method based on the formation of molybdosilicic acid species. Ultra-microamounts of ionic (reactive) silica were determined by collection of silicomolybdenum blue compound on a nitrocellulose membrane filter. Total concentrations of silica including nonionic (polymer and colloidal) species were also determined after decomposition of unreactive silica in alkali solutions. Water in the nuclear reactor (Onagawa BWR No.1) contained high concentration of silica ({approx}600 ppb) and ionic silica was found to be predominant ({approx}90%). In condensate system, silica contents were of a lower level (2-6 ppb), but the ionic silica contents were comparable to others (20-60%). The silica species appear to be brought and accumulated in the reactor from the condensate system, and then the silica species change to ionic species under high pressure and high temperature. (author).

  18. Species Abundance in a Forest Community in South China: A Case of Poisson Lognormal Distribution

    Zuo-Yun YIN; Hai REN; Qian-Mei ZHANG; Shao-Lin PENG; Qin-Feng GUO; Guo-Yi ZHOU

    2005-01-01

    Case studies on Poisson lognormal distribution of species abundance have been rare, especially in forest communities. We propose a numerical method to fit the Poisson lognormal to the species abundance data at an evergreen mixed forest in the Dinghushan Biosphere Reserve, South China. Plants in the tree, shrub and herb layers in 25 quadrats of 20 m×20 m, 5 m×5 m, and 1 m×1 m were surveyed. Results indicated that: (i) for each layer, the observed species abundance with a similarly small median, mode, and a variance larger than the mean was reverse J-shaped and followed well the zero-truncated Poisson lognormal;(ii) the coefficient of variation, skewness and kurtosis of abundance, and two Poisson lognormal parameters (σ andμ) for shrub layer were closer to those for the herb layer than those for the tree layer; and (iii) from the tree to the shrub to the herb layer, the σ and the coefficient of variation decreased, whereas diversity increased. We suggest that: (i) the species abundance distributions in the three layers reflects the overall community characteristics; (ii) the Poisson lognormal can describe the species abundance distribution in diverse communities with a few abundant species but many rare species; and (iii) 1/σ should be an alternative measure of diversity.

  19. Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front

    Smetacek, Victor; Klaas, Christine; Menden-Deuer, Susanne; Rynearson, Tatiana A.

    The quantitative distribution of dominant phytoplankton species was mapped at high spatial resolution (15 km spacing) during a quasi-synoptic, mesoscale survey of hydrographical, chemical, pigment, and zooplankton fields carried out along the Antarctic Polar Front within a grid 140×130 km 2 during austral summer. A rapid assessment method for quantifying phytoplankton species by microscopy in concentrated samples on board enabled estimation of total biomass and that of dominant species at hourly sampling intervals. The biomass distribution pattern derived from this method was remarkably coherent and correlated very well with chlorophyll concentrations and the location of different water masses covered by the grid. A "background" chlorophyll concentration of 0.5 mg m -3 in the grid could be assigned to the uniformly distributed pico- and nanophytoplankton; all higher values (up to 2.0 mg m -3) were contributed by large diatoms. Three species complexes ( Chaetoceros atlanticus/dichaeta, Pseudo-nitzschia cf. Lineola, and Thalassiothrix antarctica) contributed about one-third each to the biomass. Although all species were found throughout the study area, distinct patterns in abundance emerged: The Thalassiothrix maximum was located north of the frontal jet, Chaetoceros biomass was highest along the jet, and Pseudo-nitzschia was the most uniformly distributed of the three taxa. Since the meridional pattern of biomass and species composition persisted for about 5 weeks, despite heavy grazing pressure of small copepods, we hypothesize that the dominant species reflect the highest degree of grazer protection in the assemblage. This is accomplished by large size, needle-shaped cells, and long spines armed with barbs. We suggest that these persistent species sequester the limiting nutrient—iron—from the assemblage of smaller, less-defended species that must hence have higher turn-over rates.

  20. Do abundance distributions and species aggregation correctly predict macroecological biodiversity patterns in tropical forests?

    Wiegand, Thorsten; Lehmann, Sebastian; Huth, Andreas; Fortin, Marie‐Josée

    2016-01-01

    Abstract Aim It has been recently suggested that different ‘unified theories of biodiversity and biogeography’ can be characterized by three common ‘minimal sufficient rules’: (1) species abundance distributions follow a hollow curve, (2) species show intraspecific aggregation, and (3) species are independently placed with respect to other species. Here, we translate these qualitative rules into a quantitative framework and assess if these minimal rules are indeed sufficient to predict multiple macroecological biodiversity patterns simultaneously. Location Tropical forest plots in Barro Colorado Island (BCI), Panama, and in Sinharaja, Sri Lanka. Methods We assess the predictive power of the three rules using dynamic and spatial simulation models in combination with census data from the two forest plots. We use two different versions of the model: (1) a neutral model and (2) an extended model that allowed for species differences in dispersal distances. In a first step we derive model parameterizations that correctly represent the three minimal rules (i.e. the model quantitatively matches the observed species abundance distribution and the distribution of intraspecific aggregation). In a second step we applied the parameterized models to predict four additional spatial biodiversity patterns. Results Species‐specific dispersal was needed to quantitatively fulfil the three minimal rules. The model with species‐specific dispersal correctly predicted the species–area relationship, but failed to predict the distance decay, the relationship between species abundances and aggregations, and the distribution of a spatial co‐occurrence index of all abundant species pairs. These results were consistent over the two forest plots. Main conclusions The three ‘minimal sufficient’ rules only provide an incomplete approximation of the stochastic spatial geometry of biodiversity in tropical forests. The assumption of independent interspecific placements is most

  1. Using species abundance distribution models and diversity indices for biogeographical analyses

    Fattorini, Simone; Rigal, François; Cardoso, Pedro; Borges, Paulo A. V.

    2016-01-01

    We examine whether Species Abundance Distribution models (SADs) and diversity indices can describe how species colonization status influences species community assembly on oceanic islands. Our hypothesis is that, because of the lack of source-sink dynamics at the archipelago scale, Single Island Endemics (SIEs), i.e. endemic species restricted to only one island, should be represented by few rare species and consequently have abundance patterns that differ from those of more widespread species. To test our hypothesis, we used arthropod data from the Azorean archipelago (North Atlantic). We divided the species into three colonization categories: SIEs, archipelagic endemics (AZEs, present in at least two islands) and native non-endemics (NATs). For each category, we modelled rank-abundance plots using both the geometric series and the Gambin model, a measure of distributional amplitude. We also calculated Shannon entropy and Buzas and Gibson's evenness. We show that the slopes of the regression lines modelling SADs were significantly higher for SIEs, which indicates a relative predominance of a few highly abundant species and a lack of rare species, which also depresses diversity indices. This may be a consequence of two factors: (i) some forest specialist SIEs may be at advantage over other, less adapted species; (ii) the entire populations of SIEs are by definition concentrated on a single island, without possibility for inter-island source-sink dynamics; hence all populations must have a minimum number of individuals to survive natural, often unpredictable, fluctuations. These findings are supported by higher values of the α parameter of the Gambin mode for SIEs. In contrast, AZEs and NATs had lower regression slopes, lower α but higher diversity indices, resulting from their widespread distribution over several islands. We conclude that these differences in the SAD models and diversity indices demonstrate that the study of these metrics is useful for

  2. Reliability-based sensitivity of mechanical components with arbitrary distribution parameters

    Zhang, Yi Min; Yang, Zhou; Wen, Bang Chun; He, Xiang Dong; Liu, Qiaoling

    2010-01-01

    This paper presents a reliability-based sensitivity method for mechanical components with arbitrary distribution parameters. Techniques from the perturbation method, the Edgeworth series, the reliability-based design theory, and the sensitivity analysis approach were employed directly to calculate the reliability-based sensitivity of mechanical components on the condition that the first four moments of the original random variables are known. The reliability-based sensitivity information of the mechanical components can be accurately and quickly obtained using a practical computer program. The effects of the design parameters on the reliability of mechanical components were studied. The method presented in this paper provides the theoretic basis for the reliability-based design of mechanical components

  3. Vertical distribution and migration of euphausiid species in the Red Sea

    Wiebe, Peter H.

    2016-06-01

    We addressed how the extreme environmental conditions of the Red Sea impact or alter patterns of vertical distribution and vertical migration of five euphausiid species that are known from other oceans. Euphausia diomedeae was abundant and performed diel vertical migration (DVM) from >200 m in daytime to <100 m at night, similar to its pattern in other ocean regions. Euphausia sibogae and Euphausia sanzoi also showed consistent patterns of DVM across their ranges in the Red Sea and elsewhere. Two species, Stylocheiron affine and Stylocheiron abbreviatum, did not exhibit DVM. DNA barcode sequences for mitochondrial cytochrome oxidase I (COI) were used to confirm species identifications for four species (no previous barcode data exist for E. sanzoi). COI sequence differences averaged 2.8% (SD 3.1%) within species and 16.6% (SD 0.7%) between species, similar to previous studies of euphausiids. Red Sea specimens of S. affine matched morphological descriptions of a western equatorial form and differed 14% from Atlantic and Pacific specimens, suggesting possible cryptic species-level variation within this taxon. Widely distributed species of zooplankton may exhibit broad tolerance ranges for key environmental variables, and have considerable potential to adapt to variable and changing conditions across their geographic range.

  4. Species distribution models and ecological suitability analysis for potential tick vectors of lyme disease in Mexico.

    Illoldi-Rangel, Patricia; Rivaldi, Chissa-Louise; Sissel, Blake; Trout Fryxell, Rebecca; Gordillo-Pérez, Guadalupe; Rodríguez-Moreno, Angel; Williamson, Phillip; Montiel-Parra, Griselda; Sánchez-Cordero, Víctor; Sarkar, Sahotra

    2012-01-01

    Species distribution models were constructed for ten Ixodes species and Amblyomma cajennense for a region including Mexico and Texas. The model was based on a maximum entropy algorithm that used environmental layers to predict the relative probability of presence for each taxon. For Mexico, species geographic ranges were predicted by restricting the models to cells which have a higher probability than the lowest probability of the cells in which a presence record was located. There was spatial nonconcordance between the distributions of Amblyomma cajennense and the Ixodes group with the former restricted to lowlands and mainly the eastern coast of Mexico and the latter to montane regions with lower temperature. The risk of Lyme disease is, therefore, mainly present in the highlands where some Ixodes species are known vectors; if Amblyomma cajennense turns out to be a competent vector, the area of risk also extends to the lowlands and the east coast.

  5. Species distribution modeling based on the automated identification of citizen observations.

    Botella, Christophe; Joly, Alexis; Bonnet, Pierre; Monestiez, Pascal; Munoz, François

    2018-02-01

    A species distribution model computed with automatically identified plant observations was developed and evaluated to contribute to future ecological studies. We used deep learning techniques to automatically identify opportunistic plant observations made by citizens through a popular mobile application. We compared species distribution modeling of invasive alien plants based on these data to inventories made by experts. The trained models have a reasonable predictive effectiveness for some species, but they are biased by the massive presence of cultivated specimens. The method proposed here allows for fine-grained and regular monitoring of some species of interest based on opportunistic observations. More in-depth investigation of the typology of the observations and the sampling bias should help improve the approach in the future.

  6. Species Distribution Models and Ecological Suitability Analysis for Potential Tick Vectors of Lyme Disease in Mexico

    Patricia Illoldi-Rangel

    2012-01-01

    Full Text Available Species distribution models were constructed for ten Ixodes species and Amblyomma cajennense for a region including Mexico and Texas. The model was based on a maximum entropy algorithm that used environmental layers to predict the relative probability of presence for each taxon. For Mexico, species geographic ranges were predicted by restricting the models to cells which have a higher probability than the lowest probability of the cells in which a presence record was located. There was spatial nonconcordance between the distributions of Amblyomma cajennense and the Ixodes group with the former restricted to lowlands and mainly the eastern coast of Mexico and the latter to montane regions with lower temperature. The risk of Lyme disease is, therefore, mainly present in the highlands where some Ixodes species are known vectors; if Amblyomma cajennense turns out to be a competent vector, the area of risk also extends to the lowlands and the east coast.

  7. What are the most crucial soil factors for predicting the distribution of alpine plant species?

    Buri, A.; Pinto-Figueroa, E.; Yashiro, E.; Guisan, A.

    2017-12-01

    Nowadays the use of species distribution models (SDM) is common to predict in space and time the distribution of organisms living in the critical zone. The realized environmental niche concept behind the development of SDM imply that many environmental factors must be accounted for simultaneously to predict species distributions. Climatic and topographic factors are often primary included, whereas soil factors are frequently neglected, mainly due to the paucity of soil information available spatially and temporally. Furthermore, among existing studies, most included soil pH only, or few other soil parameters. In this study we aimed at identifying what are the most crucial soil factors for explaining alpine plant distributions and, among those identified, which ones further improve the predictive power of plant SDMs. To test the relative importance of the soil factors, we performed plant SDMs using as predictors 52 measured soil properties of various types such as organic/inorganic compounds, chemical/physical properties, water related variables, mineral composition or grain size distribution. We added them separately to a standard set of topo-climatic predictors (temperature, slope, solar radiation and topographic position). We used ensemble forecasting techniques combining together several predictive algorithms to model the distribution of 116 plant species over 250 sites in the Swiss Alps. We recorded the variable importance for each model and compared the quality of the models including different soil proprieties (one at a time) as predictors to models having only topo-climatic variables as predictors. Results show that 46% of the soil proprieties tested become the second most important variable, after air temperature, to explain spatial distribution of alpine plants species. Moreover, we also assessed that addition of certain soil factors, such as bulk soil water density, could improve over 80% the quality of some plant species models. We confirm that soil p

  8. Cyclovirus CyCV-VN species distribution is not limited to Vietnam and extends to Africa.

    Garigliany, Mutien-Marie; Hagen, Ralf Matthias; Frickmann, Hagen; May, Jürgen; Schwarz, Norbert Georg; Perse, Amanda; Jöst, Hanna; Börstler, Jessica; Shahhosseini, Nariman; Desmecht, Daniel; Mbunkah, Herbert Afegenwi; Daniel, Achukwi Mbunkah; Kingsley, Manchang Tanyi; Campos, Renata de Mendonca; de Paula, Vanessa Salete; Randriamampionona, Njary; Poppert, Sven; Tannich, Egbert; Rakotozandrindrainy, Raphael; Cadar, Daniel; Schmidt-Chanasit, Jonas

    2014-12-18

    Cycloviruses, small ssDNA viruses of the Circoviridae family, have been identified in the cerebrospinal fluid from symptomatic human patients. One of these species, cyclovirus-Vietnam (CyCV-VN), was shown to be restricted to central and southern Vietnam. Here we report the detection of CyCV-VN species in stool samples from pigs and humans from Africa, far beyond their supposed limited geographic distribution.

  9. Quantifying shark distribution patterns and species-habitat associations: implications of marine park zoning.

    Espinoza, Mario; Cappo, Mike; Heupel, Michelle R; Tobin, Andrew J; Simpfendorfer, Colin A

    2014-01-01

    Quantifying shark distribution patterns and species-specific habitat associations in response to geographic and environmental drivers is critical to assessing risk of exposure to fishing, habitat degradation, and the effects of climate change. The present study examined shark distribution patterns, species-habitat associations, and marine reserve use with baited remote underwater video stations (BRUVS) along the entire Great Barrier Reef Marine Park (GBRMP) over a ten year period. Overall, 21 species of sharks from five families and two orders were recorded. Grey reef Carcharhinus amblyrhynchos, silvertip C. albimarginatus, tiger Galeocerdo cuvier, and sliteye Loxodon macrorhinus sharks were the most abundant species (>64% of shark abundances). Multivariate regression trees showed that hard coral cover produced the primary split separating shark assemblages. Four indicator species had consistently higher abundances and contributed to explaining most of the differences in shark assemblages: C. amblyrhynchos, C. albimarginatus, G. cuvier, and whitetip reef Triaenodon obesus sharks. Relative distance along the GBRMP had the greatest influence on shark occurrence and species richness, which increased at both ends of the sampling range (southern and northern sites) relative to intermediate latitudes. Hard coral cover and distance across the shelf were also important predictors of shark distribution. The relative abundance of sharks was significantly higher in non-fished sites, highlighting the conservation value and benefits of the GBRMP zoning. However, our results also showed that hard coral cover had a large effect on the abundance of reef-associated shark species, indicating that coral reef health may be important for the success of marine protected areas. Therefore, understanding shark distribution patterns, species-habitat associations, and the drivers responsible for those patterns is essential for developing sound management and conservation approaches.

  10. Checklist of American sand flies (Diptera, Psychodidae, Phlebotominae: genera, species, and their distribution

    Paloma Helena Fernandes Shimabukuro

    2017-03-01

    Full Text Available Phlebotomine sand flies are dipteran insects of medical importance because many species are involved in the transmission of pathogens between human and non-human animals. A total of 530 American species of sand flies is presented in an updated checklist, along with their author(s and year of publication using the classification by Galati (1995, 2003. Distribution by country is also provided.

  11. Differences in Crossover Frequency and Distribution among Three Sibling Species of Drosophila

    True, J. R.; Mercer, J. M.; Laurie, C. C.

    1996-01-01

    Comparisons of the genetic and cytogenetic maps of three sibling species of Drosophila reveal marked differences in the frequency and cumulative distribution of crossovers during meiosis. The maps for two of these species, Drosophila melanogaster and D. simulans, have previously been described, while this report presents new map data for D. mauritiana, obtained using a set of P element markers. A genetic map covering nearly the entire genome was constructed by estimating the recombination fra...

  12. Species distribution and drug susceptibility of candida in clinical isolates from a tertiary care centre at Indore

    N Pahwa

    2014-01-01

    Full Text Available Background: The incidence of fungal infections has increased significantly, contributing to morbidity and mortality. This is caused by an alarming increase in infections with multi-drug resistant bacteria leading to overuse of broad-spectrum antimicrobials, which lead to overgrowth of Candida, thus enhancing its opportunity to cause disease. Candida are major human fungal pathogens that cause both mucosal and deep tissue infections. Objective : The aim of our study was to identify the distribution of Candida species among clinical isolates and their sensitivity pattern for common antifungal drugs. Materials and Methods : Two hundred and thirty-seven different clinical isolates of Candida were collected from patients visiting to a tertiary care centre of Indore from 2010 to 2012. Identification of Candida species as well as antifungal sensitivity testing was performed with Vitek2 Compact (Biomerieux France using vitek 2 cards for identification of yeast and yeast like organisms (ID-YST cards. Antifungal susceptibility testing was performed with Vitek2 "Fungal Susceptibility Card (AST YS01 kits respectively. Results : We found that the non-albicans Candida were more prevalent than Candida albicans in paediatric (60 year patients than other age group (4-18, 19-60 years patients and also in intensive care unit (ICU patients as compared to out patient department (OPD patients. Resistance rates for amphotericin B, fluconazole, flucytosine, itraconazole, and voriconazole were 2.9%, 5.9%, 0.0%, 4.2% and 2.5%%, respectively. All the strains of C. krusei were found resistant to fluconazole with intermediate sensitivity to flucytosine. Conclusion: Species-level identification of Candida and their antifungal sensitivity testing should be performed to achieve better clinical results.

  13. Insulin sensitivity in relation to fat distribution and plasma adipocytokines among abusers of anabolic androgenic steroids.

    Rasmussen, Jon Jarløv; Schou, Morten; Selmer, Christian; Johansen, Marie Louise; Gustafsson, Finn; Frystyk, Jan; Dela, Flemming; Faber, Jens; Kistorp, Caroline

    2017-09-01

    Abuse of anabolic androgenic steroids (AAS) is prevalent among young men, but information regarding effects on insulin sensitivity and fat distribution is limited. The objective was to investigate insulin sensitivity in relation to fat distribution and adipocytokines among current and former AAS abusers compared with controls. Cross-sectional study among men involved in recreational strength training. Current and former AAS abusers (n=37 and n=33) and controls (n=30) volunteered from the community. We assessed insulin sensitivity by Matsuda index (oral glucose tolerance test). Using overnight fasting blood samples, adiponectin and leptin were measured. Body composition and fat distribution, including visceral adipose tissue (VAT), were assessed by dual energy X-ray absorptiometry. Current and former AAS abusers displayed lower Matsuda index than controls (%-difference (95%CI) from controls, -26% (-45; -1) and -39% (-55; -18)). Testosterone was markedly higher among current AAS abusers and subnormal among former AAS abusers compared with controls. Current AAS abusers displayed higher mean VAT than controls (388 (17) vs 293 (12) cm 3 , P<.001) whereas body fat %, adiponectin and leptin concentrations were lower. In contrast, former AAS abusers showed highest leptin concentrations and body fat %. Multivariate linear regressions identified VAT as independent predictor of lower Matsuda index among current AAS abusers compared with controls; while body fat % independently predicted lower Matsuda index among former AAS abusers. Both current and former AAS abusers displayed lower insulin sensitivity which could be mediated by higher VAT and total body fat %, respectively. © 2017 John Wiley & Sons Ltd.

  14. Spatial distribution of seeds and seedlings of two tropical tree species: Is there correspondence between patterns?

    Parrado Rosselli, Angela

    2007-01-01

    The spatial patterns of seed and seedling distribution relative to parent trees (seed and seedling shadow, respectively) were studied for Dacryodes chimantensis (Burseraceae) and Brosimum utile (Moraceae), two common tree species of terra firme forests of Colombian Amazonia. The general objective was to assess whether the patterns imposed by seed dispersal change or persist in subsequent life stages occurring during the transition from seeds/saplings to adult stages. Seed and seedling shadows on the ground were characterized for each tree species along four 50-m radial transects from the base of the parent tree. Causes of seed and seedling predation as a function of distance to the parent tree were determined, as well as the spatial consistency between life stages. Results showed that seed density of both Dacryodes and Brosimum declined leptokurtically with distance, and it was skewed towards the parent tree. However, seed density was more skewed and leptokurtic in Dacryodes than in Brosimum. The overall trend was maintained in the seedling stage of both species and was positively correlated with the distribution patterns of seeds. Seed and seedling predation were positively correlated with density and negatively correlated with the distance from the parent tree. Factors that could be generating the high consistency between the spatial patterns of seed and seedling distribution are discussed, as well as its implications in the population structure of both species and the debate on the factors that influence the spatial distribution of plant species in tropical rain forests.

  15. Species distribution models for a migratory bird based on citizen science and satellite tracking data

    Christopher L. Coxen

    2017-07-01

    Full Text Available Species distribution models can provide critical baseline distribution information for the conservation of poorly understood species. Here, we compared the performance of band-tailed pigeon (Patagioenas fasciata species distribution models created using Maxent and derived from two separate presence-only occurrence data sources in New Mexico: 1 satellite tracked birds and 2 observations reported in eBird basic data set. Both models had good accuracy (test AUC > 0.8 and True Skill Statistic > 0.4, and high overlap between suitability scores (I statistic 0.786 and suitable habitat patches (relative rank 0.639. Our results suggest that, at the state-wide level, eBird occurrence data can effectively model similar species distributions as satellite tracking data. Climate change models for the band-tailed pigeon predict a 35% loss in area of suitable climate by 2070 if CO2 emissions drop to 1990 levels by 2100, and a 45% loss by 2070 if we continue current CO2 emission levels through the end of the century. These numbers may be conservative given the predicted increase in drought, wildfire, and forest pest impacts to the coniferous forests the species inhabits in New Mexico. The northern portion of the species’ range in New Mexico is predicted to be the most viable through time.

  16. Species distribution models for a migratory bird based on citizen science and satellite tracking data

    Coxen, Christopher L.; Frey, Jennifer K.; Carleton, Scott A.; Collins, Daniel P.

    2017-01-01

    Species distribution models can provide critical baseline distribution information for the conservation of poorly understood species. Here, we compared the performance of band-tailed pigeon (Patagioenas fasciata) species distribution models created using Maxent and derived from two separate presence-only occurrence data sources in New Mexico: 1) satellite tracked birds and 2) observations reported in eBird basic data set. Both models had good accuracy (test AUC > 0.8 and True Skill Statistic > 0.4), and high overlap between suitability scores (I statistic 0.786) and suitable habitat patches (relative rank 0.639). Our results suggest that, at the state-wide level, eBird occurrence data can effectively model similar species distributions as satellite tracking data. Climate change models for the band-tailed pigeon predict a 35% loss in area of suitable climate by 2070 if CO2 emissions drop to 1990 levels by 2100, and a 45% loss by 2070 if we continue current CO2 emission levels through the end of the century. These numbers may be conservative given the predicted increase in drought, wildfire, and forest pest impacts to the coniferous forests the species inhabits in New Mexico. The northern portion of the species’ range in New Mexico is predicted to be the most viable through time.

  17. The relative sensitivity of freshwater species to antimony(III): Implications for water quality guidelines and ecological risk assessments.

    Obiakor, Maximilian Obinna; Tighe, Matthew; Wang, Zhen; Ezeonyejiaku, Chigozie Damian; Pereg, Lily; Wilson, Susan C

    2017-11-01

    Antimony (Sb) is a pollutant in many jurisdictions, yet its threat to aquatic biota is unclear. Water quality guidelines (WQGs) for Sb are not well established and large uncertainty factors are commonly applied in derivation. We constructed freshwater species sensitivity distributions (SSDs) for Sb(III) using available acute toxicity data sourced from temperate and tropical regional studies. A tiered ecological risk assessment (ERA) approach using risk quotients (RQs) was applied for characterisation of risks presented by Sb(III) concentrations measured in the freshwater environment. Multiple parametric models were fitted for each SSD, with the optimal model used to derive the 5% hazardous concentration (HC5), defined as protective of 95% of species, and the corresponding predicted no effect concentration (PNEC). The HC5 values for whole and temperate SSDs were estimated at 781 and 976 μg L -1 Sb(III), respectively, while the PNECs for both datasets were 156 and 195 μg L -1 Sb(III), respectively. Due to limited tropical data, a temperate-to-tropic extrapolation factor of 10 was used to estimate an interim PNEC for tropical regions of 20 μg L -1 Sb(III). Based on published freshwater Sb(III) concentration values across a range of locations, potential ecological risks posed by Sb(III) in some freshwater systems studied would be classified as medium to high risk, but the majority of locations sampled would fall into the low ecological risk category. Our results facilitate the understanding of toxic effects of Sb(III) to freshwater species but also demonstrate that data for Sb ERA are extremely limited.

  18. The effects of model and data complexity on predictions from species distributions models

    García-Callejas, David; Bastos, Miguel

    2016-01-01

    How complex does a model need to be to provide useful predictions is a matter of continuous debate across environmental sciences. In the species distributions modelling literature, studies have demonstrated that more complex models tend to provide better fits. However, studies have also shown...... that predictive performance does not always increase with complexity. Testing of species distributions models is challenging because independent data for testing are often lacking, but a more general problem is that model complexity has never been formally described in such studies. Here, we systematically...

  19. Ice age distriutions of European small mammals: insights from species distribution modelling

    Fløjgaard, Camilla; Normand, Signe; Skov, Flemming

    2009-01-01

    limits corresponding to the limits of temperate or boreal forest or arctic tundra were used in the analysis. We developed predictive distribution models based on the species present-day European distributions and validated these against their present-day Siberian ranges. The models with the best...... lemmus and Microtus oeconomus), suitable climate was predicted from the Atlantic coast eastward across central Europe and into Russia. Main conclusions. Our results support the idea of more northerly refuge areas in Europe, indicating that boreal species would have found suitable living conditions over...

  20. Species diversity and distribution patterns of the ants of Amazonian Ecuador.

    Kari T Ryder Wilkie

    2010-10-01

    Full Text Available Ants are among the most diverse, abundant and ecologically significant organisms on earth. Although their species richness appears to be greatest in the New World tropics, global patterns of ant diversity and distribution are not well understood. We comprehensively surveyed ant diversity in a lowland primary rainforest in Western Amazonia, Ecuador using canopy fogging, pitfall traps, baits, hand collecting, mini-Winkler devices and subterranean probes to sample ants. A total of 489 ant species comprising 64 genera in nine subfamilies were identified from samples collected in only 0.16 square kilometers. The most species-rich genera were Camponotus, Pheidole, Pseudomyrmex, Pachycondyla, Brachymyrmex, and Crematogaster. Camponotus and Pseudomyrmex were most diverse in the canopy, while Pheidole was most diverse on the ground. The three most abundant ground-dwelling ant genera were Pheidole, Solenopsis and Pyramica. Crematogaster carinata was the most abundant ant species in the canopy; Wasmannia auropunctata was most abundant on the ground, and the army ant Labidus coecus was the most abundant subterranean species. Ant species composition among strata was significantly different: 80% of species were found in only one stratum, 17% in two strata, and 3% in all three strata. Elevation and the number of logs and twigs available as nest sites were significant predictors of ground-dwelling ant species richness. Canopy species richness was not correlated with any ecological variable measured. Subterranean species richness was negatively correlated with depth in the soil. When ant species were categorized using a functional group matrix based on diet, nest-site preference and foraging ecology, the greatest diversity was found in Omnivorous Canopy Nesters. Our study indicates ant species richness is exceptionally high at Tiputini. We project 647-736 ant species in this global hotspot of biodiversity. Considering the relatively small area surveyed, this

  1. A simple, versatile and sensitive cell-based assay for prions from various species.

    Zaira E Arellano-Anaya

    Full Text Available Detection and quantification of prion infectivity is a crucial step for various fundamental and applied aspects of prion research. Identification of cell lines highly sensitive to prion infection led to the development of cell-based titration procedures aiming at replacing animal bioassays, usually performed in mice or hamsters. However, most of these cell lines are only permissive to mouse-adapted prions strains and do not allow titration of prions from other species. In this study, we show that epithelial RK13, a cell line permissive to mouse and bank vole prion strains and to natural prion agents from sheep and cervids, enables a robust and sensitive detection of mouse and ovine-derived prions. Importantly, the cell culture work is strongly reduced as the RK13 cell assay procedure designed here does not require subcultivation of the inoculated cultures. We also show that prions effectively bind to culture plastic vessel and are quantitatively detected by the cell assay. The possibility to easily quantify a wider range of prions, including rodent experimental strains but also natural agents from sheep and cervids, should prompt the spread of cell assays for routine prion titration and lead to valuable information in fundamental and applied studies.

  2. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P.

    2003-01-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 μg m -3 in 1982 and 15.6 μg m -3 in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants

  3. Radiation sensitivity and gene expression in Enchytraeus japonensis, a species of earth worm

    Kubota, Yoshihisa

    2011-01-01

    The importance of radiological protection of the environment based on scientific principles is gaining international recognition as environment issues garner more attention. Earthworm (annelids) is a ubiquitous soil invertebrate known to play an important role in the maintenance of the soil ecosystem and thus selected as one of 12 kinds of reference animals and plants by the ICRP. In the present study, radiation sensitivity and gene expression in a recently described terrestrial oligochaete, Enchytraeus japonensis (E. japonensis) were studied. E. japonensis worms were acutely irradiated at increasing doses of gamma radiation, and the number of worms after 30 days of radiation was examined. The dose effectively inhibiting 50% of proliferation was approximately 22 Gy, which was comparable to the dose required to elicit growth inhibition in other earthworm species. In order to seek other biological endpoints for more sensitive and/or quicker assessment of radiation effects, gene expression profiling in E. japonensis was also performed, and poly (ADP-ribose) polymerase I (PARP I) was identified as a radiation-responsive gene. PARP I transcript level increased dose-dependently. (author)

  4. Reactive oxygen species dynamics in roots of salt sensitive and salt tolerant cultivars of rice.

    Saini, Shivani; Kaur, Navdeep; Pati, Pratap Kumar

    2018-06-01

    Salinity stress is one of the major constraints for growth and survival of plants that affects rice productivity worldwide. Hence, in the present study, roots of two contrasting salinity sensitive cultivars, IR64 (IR64, salt sensitive) and Luna Suvarna (LS, salt tolerant) were compared with regard to the levels of reactive oxygen species (ROS) to derive clues for their differential salt stress adaptation mechanisms. In our investigation, the tolerant cultivar exhibited longer primary roots, more lateral roots, higher root number leading to increased root biomass, with respect to IR64. It was observed that LS roots maintained higher level of H 2 O 2 in comparison to IR64. The activities of various enzymes involved in enzymatic antioxidant defense mechanism (SOD, CAT, GPX, DHAR and MDHAR) were found to be greater in LS roots. Further, the higher transcript level accumulation of genes encoding ROS generating (RbohA, RbohD and RbohE) and scavenging enzymes (Fe-SOD, Chloroplastic Cu/Zn-SOD, CAT and DHAR) were noticed in the roots of tolerant cultivar, LS. Moreover, the content of other stress markers such as total protein and proline were also elevated in LS roots. While, the expression of proline biosynthesis gene (P5CS) and proline catabolism gene (PDH) was observed to be lower in LS. Copyright © 2018. Published by Elsevier Inc.

  5. Sensitive identification of mycobacterial species using PCR-RFLP on bronchial washings.

    Hidaka, E; Honda, T; Ueno, I; Yamasaki, Y; Kubo, K; Katsuyama, T

    2000-03-01

    In 98 patients (24 with active pulmonary tuberculosis [TB] lesions, 28 with cured TB lesions, and 46 with nontuberculous opacities [control group] in chest CT scans), we examined whether washing the bronchus after brushing the lesion, then applying polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) to the bronchial washings might be useful for diagnosing TB and nontuberculous mycobacteriosis (NTMosis). After biopsy and brushing with a bronchoscope, the bronchus connecting to the lesion was washed with 20 ml saline. The saline used for washing the brushes (5 ml; brushing sample), and 3 to 10 ml saline aspirated through the forceps channel (washing sample) were examined by PCR-RFLP, which proved able to identify Mycobacterium tuberculosis and seven species of nontuberculous mycobacteria (NTM). The values obtained for the sensitivity of the PCR-RFLP with respect to the brushing sample, the washing sample, and both samples mixed together were 70, 76, and 91%, respectively, when only patients who were culture-positive or radiologically improved after antituberculous therapy were considered as showing true infection. A mixture of brushing and washing samples provides useful material for PCR and culture, and the PCR-RFLP used here is a good method for the simultaneous identification of several species of mycobacterium (including M. tuberculosis).

  6. Sensitivity of Distributions of Climate System Properties to Surface Temperature Datasets

    Libardoni, A. G.; Forest, C. E.

    2011-12-01

    Predictions of climate change from models depend strongly on the representation of climate system properties emerging from the processes and feedbacks in the models. The quality of any model prediction can be evaluated by determining how well its output reproduces the observed climate system. With this evaluation, the reliability of climate projections derived from the model and provided for policy makers is assessed and quantified. In this study, surface temperature, upper-air temperature, and ocean heat content data are used to constrain the distributions of the parameters that define three climate system properties in the MIT Integrated Global Systems Model: climate sensitivity, the rate of ocean heat uptake into the deep ocean, and net anthropogenic aerosol forcing. In particular, we explore the sensitivity of the distributions to the surface temperature dataset used to estimate the likelihood of model output given the observed climate records. In total, five different reconstructions of past surface temperatures are used and the resulting parameter distribution functions differ from each other. Differences in estimates of climate sensitivity mode and mean are as great as 1 K between the datasets, with an overall range of 1.2 to 5.3 K using the 5-95 confidence intervals. Ocean effective diffusivity is poorly constrained regardless of which dataset is used. All distributions show broad distributions and only three show signs of a distribution mode. When a mode is present, they tend to be for low diffusivity values. Distributions for the net aerosol forcing show similar shapes and cluster into two groups that are shifted by approximately 0.1 watts per square meter. However, the overall spread of forcing values from the 5-95 confidence interval, -0.19 to -0.83 watts per square meter, is small compared to other uncertainties in climate forcings. Transient climate response estimates derived from these distributions range between 0.87 and 2.41 K. Similar to the

  7. Relative Sensitivity of Photosynthesis and Respiration to Freeze-Thaw Stress in Herbaceous Species 1

    Steffen, Kenneth L.; Arora, Rajeev; Palta, Jiwan P.

    1989-01-01

    The relative effect of a freeze-thaw cycle on photosynthesis, respiration, and ion leakage of potato leaf tissue was examined in two potato species, Solanum acaule Bitt. and Solanum commersonii Dun. Photosynthesis was found to be much more sensitive to freezing stress than was respiration, and demonstrated more than a 60% inhibition before any impairment of respiratory function was observed. Photosynthesis showed a slight to moderate inhibition when only 5 to 10% of the total electrolytes had leaked from the tissue (reversible injury). This was in contrast to respiration which showed no impairment until temperatures at which about 50% ion leakage (irreversible injury) had occurred. The influence of freeze-thaw protocol was further examined in S. acaule and S. commersonii, in order to explore discrepancies in the literature as to the relative sensitivities of photosynthesis and respiration. As bath cooling rates increased from 1°C/hour to about 3 or 6°C/hour, there was a dramatic increase in the level of damage to all measured cellular functions. The initiation of ice formation in deeply supercooled tissue caused even greater damage. As the cooling rates used in stress treatments increased, the differential sensitivity between photosynthesis and respiration nearly disappeared. Examination of agriculturally relevant, climatological data from an 11 year period confirmed that air cooling rates in the freezing range do not exceed 2°C/hour. It was demonstrated, in the studies presented here, that simply increasing the actual cooling rate from 1.0 to 2.9°C/hour, in frozen tissue from paired leaflet halves, meant the difference between cell survival and cell death. Images Figure 4 Figure 5 PMID:16666712

  8. Diagnostic sensitivity of ultrasound, radiography and computed tomography for gender determination in four species of lizards.

    Di Ianni, Francesco; Volta, Antonella; Pelizzone, Igor; Manfredi, Sabrina; Gnudi, Giacomo; Parmigiani, Enrico

    2015-01-01

    Gender determination is frequently requested by reptile breeders, especially for species with poor or absent sexual dimorphism. The aims of the current study were to describe techniques and diagnostic sensitivities of ultrasound, radiography, and computed tomography for gender determination (identification of hemipenes) in four species of lizards. Nineteen lizards of known sex, belonging to four different species (Pogona vitticeps, Uromastyx aegyptia, Tiliqua scincoides, Gerrhosaurus major) were prospectively enrolled. With informed owner consent, ultrasound, noncontrast CT, contrast radiography, and contrast CT (with contrast medium administered into the cloaca) were performed in conscious animals. Imaging studies were reviewed by three different operators, each unaware of the gender of the animals and of the results of the other techniques. The lizard was classified as a male when hemipenes were identified. Nineteen lizards were included in the study, 10 females and nine males. The hemipenes were seen on ultrasound in only two male lizards, and appeared as oval hypoechoic structures. Radiographically, hemipenes filled with contrast medium appeared as spindle-shaped opacities. Noncontrast CT identified hemipenes in only two lizards, and these appeared as spindle-shaped kinked structures with hyperattenuating content consistent with smegma. Hemipenes were correctly identified in all nine males using contrast CT (accuracy of 100%). Accuracy of contrast radiography was excellent (94.7%). Accuracy of ultrasound and of noncontrast CT was poor (64.3% and 63.1%, respectively). Findings from the current study supported the use of contrast CT or contrast radiography for gender determination in lizards. © 2014 American College of Veterinary Radiology.

  9. Are range-size distributions consistent with species-level heritability?

    Borregaard, Michael Krabbe; Gotelli, Nicholas; Rahbek, Carsten

    2012-01-01

    The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has...... been that it is not compatible with the observed shape of present-day species range-size distributions (SRDs), a claim that has never been tested. To assess this claim, we used forward simulation of range-size evolution in clades with varying degrees of range-size heritability, and compared the output...

  10. Ferromanganese nodule fauna in the Tropical North Pacific Ocean: Species richness, faunal cover and spatial distribution

    Veillette, Julie; Sarrazin, Jozée; Gooday, Andrew J.; Galéron, Joëlle; Caprais, Jean-Claude; Vangriesheim, Annick; Étoubleau, Joël; Christian, James R.; Kim Juniper, S.

    2007-11-01

    The poorly known ferromanganese nodule fauna is a widespread hard substratum community in the deep sea that will be considerably impacted by large-scale nodule mining operations. The objective of this study was to analyze the spatial distribution of the fauna attached to nodules in the Clarion-Clipperton Fracture Zone at two scales; a regional scale that includes the east (14°N, 130°W) and the west (9°N, 150°W) zones and a local scale in which different geological facies (A, B, C and west) are recognizable. The fauna associated with 235 nodules was quantitatively described: 104 nodules from the east zone (15 of facies A, 50 of facies B and 39 of facies C) and 131 nodules from the west zone. Percent cover was used to quantify the extent of colonization at the time of sampling, for 42 species out of the 62 live species observed. Fauna covered up to 18% of exposed nodule surface with an average of about 3%. While species richness increased with exposed nodule surface, both at the regional and at the facies scales (except for facies A), total species density decreased (again except for facies A). When all nodules were included in the statistical analysis, there was no relation between faunal cover and exposed nodule surface. Nevertheless, faunal cover did decrease with exposed nodule surface for the east zone in general and for both facies B and C in particular. Species distributions among facies were significantly different but explained only a very small portion of the variance (˜5%). We identified two groups of associated species: a first group of two species and a second group of six species. The other species (34) were independently distributed, suggesting that species interactions play only a minor role in the spatial distribution of nodule fauna. The flux of particulate organic carbon to the bottom is the only major environmental factor considered to vary between the two zones within this study. We conclude that the higher species richness and higher

  11. Hylid frogs from Mount Ayanganna, Guyana: new species, redescriptions, and distributional records

    Ross D. MacCulloch

    2005-10-01

    Full Text Available A new species of Osteocephalus, one species of Hyla, three species of Hypsiboas and one of Myersiohyla were collected on Mount Ayanganna, a sandstone Guiana Shield tepui. Hyla warreni, Hypsiboas roraima, H. sibleszi, Myersiohyla kanaima and the new Osteocephalus were collected in high-tepui forest at 1500 m elevation, while Hypsiboas lemai, H. roraima and M. kanaima were also collected in lower montane forest at 870 m. Supplementary descriptions of adults of all species of Hyla, Hypsiboas and Myersiohyla based on the newly collected specimens are provided. Tadpoles of M. kanaima are described. The specimens from Ayanganna represent significant distributional records for several species. This is the first record of Osteocephalus as a member of the Guiana Shield high-tepui herpetofauna.

  12. A new measure of uncertainty importance based on distributional sensitivity analysis for PSA

    Han, Seok Jung; Tak, Nam Il; Chun, Moon Hyun

    1996-01-01

    The main objective of the present study is to propose a new measure of uncertainty importance based on distributional sensitivity analysis. The new measure is developed to utilize a metric distance obtained from cumulative distribution functions (cdfs). The measure is evaluated for two cases: one is a cdf given by a known analytical distribution and the other given by an empirical distribution generated by a crude Monte Carlo simulation. To study its applicability, the present measure has been applied to two different cases. The results are compared with those of existing three methods. The present approach is a useful measure of uncertainty importance which is based on cdfs. This method is simple and easy to calculate uncertainty importance without any complex process. On the basis of the results obtained in the present work, the present method is recommended to be used as a tool for the analysis of uncertainty importance

  13. Addressing potential local adaptation in species distribution models: implications for conservation under climate change

    Hällfors, Maria Helena; Liao, Jishan; Dzurisin, Jason D. K.; Grundel, Ralph; Hyvärinen, Marko; Towle, Kevin; Wu, Grace C.; Hellmann, Jessica J.

    2016-01-01

    Species distribution models (SDMs) have been criticized for involving assumptions that ignore or categorize many ecologically relevant factors such as dispersal ability and biotic interactions. Another potential source of model error is the assumption that species are ecologically uniform in their climatic tolerances across their range. Typically, SDMs to treat a species as a single entity, although populations of many species differ due to local adaptation or other genetic differentiation. Not taking local adaptation into account, may lead to incorrect range prediction and therefore misplaced conservation efforts. A constraint is that we often do not know the degree to which populations are locally adapted, however. Lacking experimental evidence, we still can evaluate niche differentiation within a species' range to promote better conservation decisions. We explore possible conservation implications of making type I or type II errors in this context. For each of two species, we construct three separate MaxEnt models, one considering the species as a single population and two of disjunct populations. PCA analyses and response curves indicate different climate characteristics in the current environments of the populations. Model projections into future climates indicate minimal overlap between areas predicted to be climatically suitable by the whole species versus population-based models. We present a workflow for addressing uncertainty surrounding local adaptation in SDM application and illustrate the value of conducting population-based models to compare with whole-species models. These comparisons might result in more cautious management actions when alternative range outcomes are considered.

  14. Predicting geographic distributions of Phacellodomus species (Aves: Furnariidae in South America based on ecological niche modeling

    Maria da Salete Gurgel Costa

    2014-08-01

    Full Text Available Phacellodomus Reichenbach, 1853, comprises nine species of Furnariids that occur in South America in open and generally dry areas. This study estimated the geographic distributions of Phacellodomus species in South America by ecological niche modeling. Applying maximum entropy method, models were produced for eight species based on six climatic variables and 949 occurrence records. Since highest climatic suitability for Phacellodomus species has been estimated in open and dry areas, the Amazon rainforest areas are not very suitable for these species. Annual precipitation and minimum temperature of the coldest month are the variables that most influence the models. Phacellodomus species occurred in 35 ecoregions of South America. Chaco and Uruguayan savannas were the ecoregions with the highest number of species. Despite the overall connection of Phacellodomus species with dry areas, species such as P. ruber, P. rufifrons, P. ferrugineigula and P. erythrophthalmus occurred in wet forests and wetland ecoregions.

  15. Distribution of 10 periodontal bacterial species in children and adolescents over a 7-year period.

    Nakano, K; Miyamoto, E; Tamura, K; Nemoto, H; Fujita, K; Nomura, R; Ooshima, T

    2008-10-01

    There is scant information available regarding the distribution of periodontal bacterial species in children and adolescents over an extended period. The purpose of this study was to compare bacterial profiles in the same individuals over a period of 7 years. Twenty-six children and adolescents from whom dental plaque and saliva specimens were obtained during both the first (1999-2000) and second (2006-2007) periods, were analyzed. Bacterial DNA was extracted from each specimen and the presence of 10 periodontal bacterial species was determined using a PCR method, with a focus on the red complex species of Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. Subjects with red complex species in saliva specimens obtained during the second collection possessed a significantly higher number of total bacterial species than those without. The detection rate of the red complex species in the second collection period samples was significantly greater in subjects who had two or more species detected in samples taken during the first collection compared with the other subjects. Subjects possessing red complex species may be at possible risk for infection with a high number of periodontal bacterial species during adolescent and younger adult years.

  16. Distribution, feeding and ecomorphology of four species of Auchenipteridae (Teleostei: Siluriformes in Eastern Amazonia, Brazil

    Tiago M. S. Freitas

    Full Text Available ABSTRACT Fish exhibit morphological, physiological and behavioral specializations which enable them to display different ways to explore the environments and resources. Thus, the aim of this study was to verify how four Auchenipteridae species differ in the distribution, feeding habits and morphological traits: Auchenipterichthys longimanus (Günther, 1864, Auchenipterus nuchalis (Spix & Agassiz, 1829, Tatia intermedia (Steindachner, 1877 and Trachelyopterus galeatus (Linnaeus, 1766. This study was conducted in rivers and bays of the Anapú Basin, Pará State (Brazil, where these species are abundant. Specimens were collected using gillnets, and after caught the stomachs were removed for the contents analyzes. Eighteen morphometric measurements from ten adult specimens of each species were taken, combined into fifteen ecomorphological attributes. The species distribution showed that A. longimanus was restricted to rivers, while the others were exclusively caught in the bays. All four species had their diet composed of allochthonous insects, but A. longimanus also exhibited a great frugivorous habit. The most important ecomorphological attributes were relative to the consumption of larger food items (for A. longimanus and T. galeatus and to the longer swimming capacity (for A. longimanus and T. intermedia. These morphological differences and the trophic diversity presented in this study highlighted some important information about how ecomorphological similar species behave and share resources, which may play a significant role on the coexistence of these species in the Anapú Basin.

  17. Distribution and diversity of fungal species in and adjacent to the Los Alamos National Laboratory

    Balice, R.G.; Jarmie, N.; Rogers, F.J.

    1997-12-01

    Fungi have demonstrated their ability to diversify and specialize to take advantage of new environments (Murphy 1996). These species are essential to the normal functioning of ecosystems and the impacts of human activities may be harmful to fungi. There is a need to inventory fungi throughout the range of their environments. Previously archived information representing 43 sample locations was used to perform a preliminary evaluation of the distributions and diversity of fungal species at the Los Alamos National Laboratory and in adjacent environments. Presence-absence data for 71 species of fungi in five habitats, pinon-juniper, canyon-bottom ponderosa pine, ponderosa pine, canyon-bottom mixed conifer, and mixed conifer were analyzed. The results indicate that even though fungi occur in each of the habitats, fungal species are not distributed evenly among these habitats. The richness of fungal species is greater in the canyon-bottom mixed conifer and mixed conifer habitats than in the pinon-juniper, canyon-bottom ponderosa pine or ponderosa pine habitats. All but three of the fungal species were recorded in either the canyon-bottom mixed conifer or the mixed conifer habitats, and all but seven of the fungal species were found in the mixed conifer habitat.

  18. Distribution and diversity of fungal species in and adjacent to the Los Alamos National Laboratory

    Balice, R.G.; Jarmie, N.; Rogers, F.J.

    1997-12-01

    Fungi have demonstrated their ability to diversify and specialize to take advantage of new environments (Murphy 1996). These species are essential to the normal functioning of ecosystems and the impacts of human activities may be harmful to fungi. There is a need to inventory fungi throughout the range of their environments. Previously archived information representing 43 sample locations was used to perform a preliminary evaluation of the distributions and diversity of fungal species at the Los Alamos National Laboratory and in adjacent environments. Presence-absence data for 71 species of fungi in five habitats, pinon-juniper, canyon-bottom ponderosa pine, ponderosa pine, canyon-bottom mixed conifer, and mixed conifer were analyzed. The results indicate that even though fungi occur in each of the habitats, fungal species are not distributed evenly among these habitats. The richness of fungal species is greater in the canyon-bottom mixed conifer and mixed conifer habitats than in the pinon-juniper, canyon-bottom ponderosa pine or ponderosa pine habitats. All but three of the fungal species were recorded in either the canyon-bottom mixed conifer or the mixed conifer habitats, and all but seven of the fungal species were found in the mixed conifer habitat

  19. Geographic distribution of phlebotomine sandfly species (Diptera: Psychodidae) in Central-West Brazil

    de Almeida, Paulo Silva; de Andrade, Andrey José; Sciamarelli, Alan; Raizer, Josué; Menegatti, Jaqueline Aparecida; Hermes, Sandra Cristina Negreli Moreira; de Carvalho, Maria do Socorro Laurentino; Gurgel-Gonçalves, Rodrigo

    2015-01-01

    This study updates the geographic distributions of phlebotomine species in Central-West Brazil and analyses the climatic factors associated with their occurrence. The data were obtained from the entomology services of the state departments of health in Central-West Brazil, scientific collections and a literature review of articles from 1962-2014. Ecological niche models were produced for sandfly species with more than 20 occurrences using the Maxent algorithm and eight climate variables. In all, 2,803 phlebotomine records for 127 species were analysed. Nyssomyia whitmani, Evandromyia lenti and Lutzomyia longipalpis were the species with the greatest number of records and were present in all the biomes in Central-West Brazil. The models, which were produced for 34 species, indicated that the Cerrado areas in the central and western regions of Central-West Brazil were climatically more suitable to sandflies. The variables with the greatest influence on the models were the temperature in the coldest months and the temperature seasonality. The results show that phlebotomine species in Central-West Brazil have different geographical distribution patterns and that climate conditions in essentially the entire region favour the occurrence of at least one Leishmania vector species, highlighting the need to maintain or intensify vector control and surveillance strategies. PMID:26018450

  20. Predicting Species Distributions Using Record Centre Data: Multi-Scale Modelling of Habitat Suitability for Bat Roosts.

    Bellamy, Chloe; Altringham, John

    2015-01-01

    Conservation increasingly operates at the landscape scale. For this to be effective, we need landscape scale information on species distributions and the environmental factors that underpin them. Species records are becoming increasingly available via data centres and online portals, but they are often patchy and biased. We demonstrate how such data can yield useful habitat suitability models, using bat roost records as an example. We analysed the effects of environmental variables at eight spatial scales (500 m - 6 km) on roost selection by eight bat species (Pipistrellus pipistrellus, P. pygmaeus, Nyctalus noctula, Myotis mystacinus, M. brandtii, M. nattereri, M. daubentonii, and Plecotus auritus) using the presence-only modelling software MaxEnt. Modelling was carried out on a selection of 418 data centre roost records from the Lake District National Park, UK. Target group pseudoabsences were selected to reduce the impact of sampling bias. Multi-scale models, combining variables measured at their best performing spatial scales, were used to predict roosting habitat suitability, yielding models with useful predictive abilities. Small areas of deciduous woodland consistently increased roosting habitat suitability, but other habitat associations varied between species and scales. Pipistrellus were positively related to built environments at small scales, and depended on large-scale woodland availability. The other, more specialist, species were highly sensitive to human-altered landscapes, avoiding even small rural towns. The strength of many relationships at large scales suggests that bats are sensitive to habitat modifications far from the roost itself. The fine resolution, large extent maps will aid targeted decision-making by conservationists and planners. We have made available an ArcGIS toolbox that automates the production of multi-scale variables, to facilitate the application of our methods to other taxa and locations. Habitat suitability modelling has the

  1. Comparison of a species distribution model and a process model from a hierarchical perspective to quantify effects of projected climate change on tree species

    Jeffrey E. Schneiderman; Hong S. He; Frank R. Thompson; William D. Dijak; Jacob S. Fraser

    2015-01-01

    Tree species distribution and abundance are affected by forces operating across a hierarchy of ecological scales. Process and species distribution models have been developed emphasizing forces at different scales. Understanding model agreement across hierarchical scales provides perspective on prediction uncertainty and ultimately enables policy makers and managers to...

  2. Assessment of dye distribution in sensitized solar cells by microprobe techniques

    Barreiros, M.A., E-mail: alexandra.barreiros@lneg.pt [Laboratório Nacional de Energia e Geologia, LEN/UES, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa (Portugal); Corregidor, V. [IPFN, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); Alves, L.C. [C2TN, Campus Tecnológico e Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10, 2686-953 Sacavém (Portugal); Guimarães, F. [Laboratório Nacional de Energia e Geologia, LGM/UCTM, Rua da Amieira, Apartado 1089, 4466-901 S. Mamede de Infesta (Portugal); Mascarenhas, J.; Torres, E.; Brites, M.J. [Laboratório Nacional de Energia e Geologia, LEN/UES, Estrada do Paço do Lumiar, 22, 1649-038 Lisboa (Portugal)

    2015-04-01

    Dye sensitized solar cells (DSCs) have received considerable attention once this technology offers economic and environmental advantages over conventional photovoltaic (PV) devices. The PV performance of a DSC relies on the characteristics of its photoanode, which typically consists of a nanocrystalline porous TiO{sub 2} film, enabled with a large adsorptive surface area. Dye molecules that capture photons from light during device operation are attached to the film nanoparticles. The effective loading of the dye in the TiO{sub 2} electrode is of paramount relevance for controlling and optimizing solar cell parameters. Relatively few methods are known today for quantitative evaluation of the total dye adsorbed on the film. In this context, microprobe techniques come out as suitable tools to evaluate the dye surface distribution and depth profile in sensitized films. Electron Probe Microanalysis (EPMA) and Ion Beam Analytical (IBA) techniques using a micro-ion beam were used to quantify and to study the distribution of the Ru organometallic dye in TiO{sub 2} films, making use of the different penetration depth and beam sizes of each technique. Different 1D nanostructured TiO{sub 2} films were prepared, morphologically characterized by SEM, sensitized and analyzed by the referred techniques. Dye load evaluation in different TiO{sub 2} films by three different techniques (PIXE, RBS and EPMA/WDS) provided similar results of Ru/Ti mass fraction ratio. Moreover, it was possible to assess dye surface distribution and its depth profile, by means of Ru signal, and to visualize the dye distribution in sample cross-section through X-ray mapping by EPMA/EDS. PIXE maps of Ru and Ti indicated an homogeneous surface distribution. The assessment of Ru depth profile by RBS showed that some films have homogeneous Ru depth distribution while others present different Ru concentration in the top layer (2 μm thickness). These results are consistent with the EPMA/EDS maps obtained.

  3. Implications of movement for species distribution models - Rethinking environmental data tools.

    Bruneel, Stijn; Gobeyn, Sacha; Verhelst, Pieterjan; Reubens, Jan; Moens, Tom; Goethals, Peter

    2018-07-01

    Movement is considered an essential process in shaping the distributions of species. Nevertheless, most species distribution models (SDMs) still focus solely on environment-species relationships to predict the occurrence of species. Furthermore, the currently used indirect estimates of movement allow to assess habitat accessibility, but do not provide an accurate description of movement. Better proxies of movement are needed to assess the dispersal potential of individual species and to gain a more practical insight in the interconnectivity of communities. Telemetry techniques are rapidly evolving and highly capable to provide explicit descriptions of movement, but their usefulness for SDMs will mainly depend on the ability of these models to deal with hitherto unconsidered ecological processes. More specifically, the integration of movement is likely to affect the environmental data requirements as the connection between environmental and biological data is crucial to provide reliable results. Mobility implies the occupancy of a continuum of space, hence an adequate representation of both geographical and environmental space is paramount to study mobile species distributions. In this context, environmental models, remote sensing techniques and animal-borne environmental sensors are discussed as potential techniques to obtain suitable environmental data. In order to provide an in-depth review of the aforementioned methods, we have chosen to use the modelling of fish distributions as a case study. The high mobility of fish and the often highly variable nature of the aquatic environment generally complicate model development, making it an adequate subject for research. Furthermore, insight into the distribution of fish is of great interest for fish stock assessments and water management worldwide, underlining its practical relevance. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    Nicolas Casajus

    Full Text Available An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  5. An Objective Approach to Select Climate Scenarios when Projecting Species Distribution under Climate Change.

    Casajus, Nicolas; Périé, Catherine; Logan, Travis; Lambert, Marie-Claude; de Blois, Sylvie; Berteaux, Dominique

    2016-01-01

    An impressive number of new climate change scenarios have recently become available to assess the ecological impacts of climate change. Among these impacts, shifts in species range analyzed with species distribution models are the most widely studied. Whereas it is widely recognized that the uncertainty in future climatic conditions must be taken into account in impact studies, many assessments of species range shifts still rely on just a few climate change scenarios, often selected arbitrarily. We describe a method to select objectively a subset of climate change scenarios among a large ensemble of available ones. Our k-means clustering approach reduces the number of climate change scenarios needed to project species distributions, while retaining the coverage of uncertainty in future climate conditions. We first show, for three biologically-relevant climatic variables, that a reduced number of six climate change scenarios generates average climatic conditions very close to those obtained from a set of 27 scenarios available before reduction. A case study on potential gains and losses of habitat by three northeastern American tree species shows that potential future species distributions projected from the selected six climate change scenarios are very similar to those obtained from the full set of 27, although with some spatial discrepancies at the edges of species distributions. In contrast, projections based on just a few climate models vary strongly according to the initial choice of climate models. We give clear guidance on how to reduce the number of climate change scenarios while retaining the central tendencies and coverage of uncertainty in future climatic conditions. This should be particularly useful during future climate change impact studies as more than twice as many climate models were reported in the fifth assessment report of IPCC compared to the previous one.

  6. SO/sub 2/ dose-response sensitivity classification data for crops and natural vegetation species

    Irving, P.M.; Ballou, S.W.

    1980-09-01

    Over the past several years studies have been made on the interaction of sulfur dioxide (SO/sub 2/) and vegetation by performing field research and by developing analytical procedures for applying field observation data to energy impact assessments. As a result of this work, numerous reports have been prepared on crop-pollutant interactions, such as dose-response data; on the applications of such data to screening approaches for identifying crops at risk; and on models that predict crop yield reductions from point source emissions of SO/sub 2/. Data that were used for these studies, such as the crop-at-risk screening procedure, are presented in this report. Maps are also presented that show the national distribution of SO/sub 2/-sensitive crops and natural vegetation.

  7. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute

  8. Species distribution modeling in regions of high need and limited data: waterfowl of China

    Prosser, Diann J.; Ding, Changqing; Erwin, R. Michael; Mundkur, Taej; Sullivan, Jeffery D.; Ellis, Erle C.

    2018-01-01

    BackgroundA number of conservation and societal issues require understanding how species are distributed on the landscape, yet ecologists are often faced with a lack of data to develop models at the resolution and extent desired, resulting in inefficient use of conservation resources. Such a situation presented itself in our attempt to develop waterfowl distribution models as part of a multi-disciplinary team targeting the control of the highly pathogenic H5N1 avian influenza virus in China.MethodsFaced with limited data, we built species distribution models using a habitat suitability approach for China’s breeding and non-breeding (hereafter, wintering) waterfowl. An extensive review of the literature was used to determine model parameters for habitat modeling. Habitat relationships were implemented in GIS using land cover covariates. Wintering models were validated using waterfowl census data, while breeding models, though developed for many species, were only validated for the one species with sufficient telemetry data available.ResultsWe developed suitability models for 42 waterfowl species (30 breeding and 39 wintering) at 1 km resolution for the extent of China, along with cumulative and genus level species richness maps. Breeding season models showed highest waterfowl suitability in wetlands of the high-elevation west-central plateau and northeastern China. Wintering waterfowl suitability was highest in the lowland regions of southeastern China. Validation measures indicated strong performance in predicting species presence. Comparing our model outputs to China’s protected areas indicated that breeding habitat was generally better covered than wintering habitat, and identified locations for which additional research and protection should be prioritized.ConclusionsThese suitability models are the first available for many of China’s waterfowl species, and have direct utility to conservation and habitat planning and prioritizing management of critically

  9. Using Environmental DNA to Improve Species Distribution Models for Freshwater Invaders

    Teja P. Muha

    2017-12-01

    Full Text Available Species Distribution Models (SDMs have been reported as a useful tool for the risk assessment and modeling of the pathways of dispersal of freshwater invasive alien species (IAS. Environmental DNA (eDNA is a novel tool that can help detect IAS at their early stage of introduction and additionally improve the data available for a more efficient management. SDMs rely on presence and absence of the species in the study area to infer the predictors affecting species distributions. Presence is verified once a species is detected, but confirmation of absence can be problematic because this depends both on the detectability of the species and the sampling strategy. eDNA is a technique that presents higher detectability and accuracy in comparison to conventional sampling techniques, and can effectively differentiate between presence or absence of specific species or entire communities by using a barcoding or metabarcoding approach. However, a number of potential bias can be introduced during (i sampling, (ii amplification, (iii sequencing, or (iv through the usage of bioinformatics pipelines. Therefore, it is important to report and conduct the field and laboratory procedures in a consistent way, by (i introducing eDNA independent observations, (ii amplifying and sequencing control samples, (iii achieving quality sequence reads by appropriate clean-up steps, (iv controlling primer amplification preferences, (v introducing PCR-free sequence capturing, (vi estimating primer detection capabilities through controlled experiments and/or (vii post-hoc introduction of “site occupancy-detection models.” With eDNA methodology becoming increasingly routine, its use is strongly recommended to retrieve species distributional data for SDMs.

  10. Entangled-Pair Transmission Improvement Using Distributed Phase-Sensitive Amplification

    Anjali Agarwal

    2014-12-01

    Full Text Available We demonstrate the transmission of time-bin entangled photon pairs through a distributed optical phase-sensitive amplifier (OPSA. We utilize four-wave mixing at telecom wavelengths in a 5-km dispersion-shifted fiber OPSA operating in the low-gain limit. Measurements of two-photon interference curves show no statistically significant degradation in the fringe visibility at the output of the OPSA. In addition, coincidence counting rates are higher than direct passive transmission because of constructive interference between amplitudes of input photon pairs and those generated in the OPSA. Our results suggest that application of distributed phase-sensitive amplification to transmission of entangled photon pairs could be highly beneficial towards advancing the rate and scalability of future quantum communications systems.

  11. Sensitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy

    Danilov, A A; Rudnev, S G; V Vassilevski, Yu; Kramarenko, V K; Nikolaev, D V; Smirnov, A V; Salamatova, V Yu

    2013-01-01

    In this work, an adaptive unstructured tetrahedral mesh generation technology is applied for simulation of segmental bioimpedance measurements using high-resolution whole-body model of the Visible Human Project man. Sensitivity field distributions for a conventional tetrapolar, as well as eight- and ten-electrode measurement configurations are obtained. Based on the ten-electrode configuration, we suggest an algorithm for monitoring changes in the upper lung area.

  12. Sensitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy

    Danilov, A. A.; Kramarenko, V. K.; Nikolaev, D. V.; Rudnev, S. G.; Salamatova, V. Yu; Smirnov, A. V.; Vassilevski, Yu V.

    2013-04-01

    In this work, an adaptive unstructured tetrahedral mesh generation technology is applied for simulation of segmental bioimpedance measurements using high-resolution whole-body model of the Visible Human Project man. Sensitivity field distributions for a conventional tetrapolar, as well as eight- and ten-electrode measurement configurations are obtained. Based on the ten-electrode configuration, we suggest an algorithm for monitoring changes in the upper lung area.

  13. An experimental test of fitness variation across a hydrologic gradient predicts willow and poplar species distributions.

    Wei, Xiaojing; Savage, Jessica A; Riggs, Charlotte E; Cavender-Bares, Jeannine

    2017-05-01

    Environmental filtering is an important community assembly process influencing species distributions. Contrasting species abundance patterns along environmental gradients are commonly used to provide evidence for environmental filtering. However, the same abundance patterns may result from alternative or concurrent assembly processes. Experimental tests are an important means to decipher whether species fitness varies with environment, in the absence of dispersal constraints and biotic interactions, and to draw conclusions about the importance of environmental filtering in community assembly. We performed an experimental test of environmental filtering in 14 closely related willow and poplar species (family Salicaceae) by transplanting cuttings of each species into 40 common gardens established along a natural hydrologic gradient in the field, where competition was minimized and herbivory was controlled. We analyzed species fitness responses to the hydrologic environment based on cumulative growth and survival over two years using aster fitness models. We also examined variation in nine drought and flooding tolerance traits expected to contribute to performance based on a priori understanding of plant function in relation to water availability and stress. We found substantial evidence that environmental filtering along the hydrologic gradient played a critical role in determining species distributions. Fitness variation of each species in the field experiment was used to model their water table depth optima. These optima predicted 68% of the variation in species realized hydrologic niches based on peak abundance in naturally assembled communities in the surrounding region. Multiple traits associated with water transport efficiency and water stress tolerance were correlated with species hydrologic niches, but they did not necessarily covary with each other. As a consequence, species occupying similar hydrologic niches had different combinations of trait values

  14. Diversity and Distribution of Freshwater Amphipod Species in Switzerland (Crustacea: Amphipoda)

    Altermatt, Florian; Alther, Roman; Fišer, Cene; Jokela, Jukka; Konec, Marjeta; Küry, Daniel; Mächler, Elvira; Stucki, Pascal; Westram, Anja Marie

    2014-01-01

    Amphipods are key organisms in many freshwater systems and contribute substantially to the diversity and functioning of macroinvertebrate communities. Furthermore, they are commonly used as bioindicators and for ecotoxicological tests. For many areas, however, diversity and distribution of amphipods is inadequately known, which limits their use in ecological and ecotoxicological studies and handicaps conservation initiatives. We studied the diversity and distribution of amphipods in Switzerland (Central Europe), covering four major drainage basins, an altitudinal gradient of>2,500 m, and various habitats (rivers, streams, lakes and groundwater). We provide the first provisional checklist and detailed information on the distribution and diversity of all amphipod species from Switzerland. In total, we found 29 amphipod species. This includes 16 native and 13 non-native species, one of the latter (Orchestia cavimana) reported here for the first time for Switzerland. The diversity is compared to neighboring countries. We specifically discuss species of the genus Niphargus, which are often receiving less attention. We also found evidence of an even higher level of hidden diversity, and the potential occurrence of further cryptic species. This diversity reflects the biogeographic past of Switzerland, and suggests that amphipods are ideally suited to address questions on endemism and adaptive radiations, post-glaciation re-colonization and invasion dynamics as well as biodiversity-ecosystem functioning relationships in aquatic systems. PMID:25354099

  15. Modeling of the spatial distribution of ten endangered bird species in jurisdiction of Corantioquia

    Gomez M, Ana Maria; Alvarez, Esteban

    2006-01-01

    Recently, thanks to advances made in Geographic Information Systems (GIS), techniques have been developed for the construction of models that predict the spatial distribution of species and other attributes of biodiversity. These methods have allowed for the development of objective criteria that are fundamental for making decisions regarding the creation of protected areas systems throughout the world. In this research, the spatial distribution of ten endangered species of birds found within the jurisdiction of CORANTIOQUIA (JDC from here on) was modelled, using GIS techniques. The JDC was divided into 177 squares of 15 x 10 Km and the following variables were quantified within each one: presence or absence of endangered species of birds, rainfall, temperature, sun brightness, relative humidity, day duration, altitude, vegetal cover, slope and primary net productivity. With the help of logistic regression were made predictive models. Based on logistic regressions techniques predictive models were made. These models allow to explain a percentage between 24% and 80% of spatial distribution variability of these species. Those results can help in the identification of valuable zones for the biodiversity conservation. In places where there are neither the time or the economic resources to carry out exhaustive analyses of biodiversity, the models can predict the probable presence of this endangered species

  16. Probabilistic accounting of uncertainty in forecasts of species distributions under climate change

    Seth J. Wenger; Nicholas A. Som; Daniel C. Dauwalter; Daniel J. Isaak; Helen M. Neville; Charles H. Luce; Jason B. Dunham; Michael K. Young; Kurt D. Fausch; Bruce E. Rieman

    2013-01-01

    Forecasts of species distributions under future climates are inherently uncertain, but there have been few attempts to describe this uncertainty comprehensively in a probabilistic manner. We developed a Monte Carlo approach that accounts for uncertainty within generalized linear regression models (parameter uncertainty and residual error), uncertainty among competing...

  17. Functional traits, drought performance, and the distribution of tree species in tropical forests of Ghana

    Amissah, L.

    2014-01-01

    Tropical forests occur along a rainfall gradient where annual amount, the length and intensity of dry season vary and water availability shapes therefore strongly the distribution of tree species. Annual rainfall in West Africa has declined at a rate of 4% per decade, and climate change

  18. Moisture and nutrients determine the distribution and richness of India's large herbivore species assemblage

    Ahrestani, F.S.; Heitkonig, I.M.A.; Langevelde, van F.; Vaidyanathan, S.; Madhusudan, M.D.; Prins, H.H.T.

    2011-01-01

    The goal of this study was to test whether body-mass based foraging principles, guided by plant available moisture (PAM) and plant available nutrients (PAN), could explain large mammalian herbivore species distribution and richness in India. We tested (1) whether the occurrence of larger-bodied

  19. Species richness and distribution of understorey bryophytes in different forest types in Colombian Amazonia

    Benavides, J.C.; Duque, A.J.; Duivenvoorden, J.F.; Cleef, A.M.

    2006-01-01

    The first bryophyte survey results from Colombian Amazonia are presented. Bryophyte species, differentiated into mosses and liverworts, and further into four life-form classes, were sampled in 0.1-ha plots. These plots were distributed over four landscape units in the middle Caquetá area:

  20. Soil moisture and biogeochemical factors influence the distribution of annual Bromus species

    Jayne Belnap; John M. Stark; Benjamin M. Rau; Edith B. Allen; Susan Phillips

    2016-01-01

    Abiotic factors have a strong influence on where annual Bromus species are found. At the large regional scale, temperature and precipitation extremes determine the boundaries of Bromus occurrence. At the more local scale, soil characteristics and climate influence distribution, cover, and performance. In hot, dry, summer-rainfall-dominated deserts (Sonoran, Chihuahuan...

  1. Distribution and diversity of Arctic-Alpine species in the Balkans

    Stevanovic, Vladimir; Vukojicic, Snezana; Sinzar-Sekulic, Jasmina

    2009-01-01

    The distributions of 77 Arctic-Alpine species in the Balkans are mapped and the centers of their richness and diversity presented. Within the Dinaric Alps these are Mts Vranica, Durmitor, and Prokletije; in the Scardo-Pindhic mountains, Šarplanina-Rudoka-Korab form a continuous chain...

  2. Spatial regression methods capture prediction uncertainty in species distribution model projections through time

    Alan K. Swanson; Solomon Z. Dobrowski; Andrew O. Finley; James H. Thorne; Michael K. Schwartz

    2013-01-01

    The uncertainty associated with species distribution model (SDM) projections is poorly characterized, despite its potential value to decision makers. Error estimates from most modelling techniques have been shown to be biased due to their failure to account for spatial autocorrelation (SAC) of residual error. Generalized linear mixed models (GLMM) have the ability to...

  3. Distributional and natural history notes on five species of amphibians and reptiles from Isla Ometepe, Nicaragua

    Stark, T.; Laurijssens, C.; Weterings, M.J.A.

    2014-01-01

    Relative to the size of the country, the herpetofauna of Nicaragua remains one of the most understudied in Central America (Sunyer et al., 2014). The discovery of new herpetofaunal species in the country and distributional records for certain taxa, however, are not uncommon (Sunyer and Köhler, 2007;

  4. New Data on the Vertical Distribution of Some Species of the Flora in Bulgaria

    Alexander Tashev

    2013-12-01

    Full Text Available During field studies in different floristic regions of Bulgaria in the period 2006-2013, we found localities of Stellaria alsine, Trifolium heldreichianum, Koeleria nitidula, Sieglingia decumbens, Stipa tirsa, Verbascum formanekii, Pedicularis leucodon, Saxifraga stribrnyi, Inula aschersoniana and Scilla bifolia that expand our knowledge of the vertical distribution of these species in Bulgaria, and hence their ecological niche in the country.

  5. Diameter distribution in a Brazilian tropical dry forest domain: predictions for the stand and species.

    Lima, Robson B DE; Bufalino, Lina; Alves, Francisco T; Silva, José A A DA; Ferreira, Rinaldo L C

    2017-01-01

    Currently, there is a lack of studies on the correct utilization of continuous distributions for dry tropical forests. Therefore, this work aims to investigate the diameter structure of a brazilian tropical dry forest and to select suitable continuous distributions by means of statistic tools for the stand and the main species. Two subsets were randomly selected from 40 plots. Diameter at base height was obtained. The following functions were tested: log-normal; gamma; Weibull 2P and Burr. The best fits were selected by Akaike's information validation criterion. Overall, the diameter distribution of the dry tropical forest was better described by negative exponential curves and positive skewness. The forest studied showed diameter distributions with decreasing probability for larger trees. This behavior was observed for both the main species and the stand. The generalization of the function fitted for the main species show that the development of individual models is needed. The Burr function showed good flexibility to describe the diameter structure of the stand and the behavior of Mimosa ophthalmocentra and Bauhinia cheilantha species. For Poincianella bracteosa, Aspidosperma pyrifolium and Myracrodum urundeuva better fitting was obtained with the log-normal function.

  6. Patterns in species richness and distribution of vascular epiphytes in Chiapas, Mexico

    Wolf, J.H.D.; Flamenco-S., A.

    2003-01-01

    Aim We aim to assess regional patterns in the distribution and species richness of vascular epiphytes with an emphasis on forests that differ in altitude and the amount of rainfall. Location Tropical America, in particularly the 75000 km2 large state of Chiapas in southern Mexico at 14.5-18.0º N.

  7. Species Distribution Modelling: Contrasting presence-only models with plot abundance data

    Gomes, Vitor H.F.; Ijff, Stéphanie D.; Raes, Niels; Amaral, Iêda Leão; Salomão, Rafael P.; Coelho, Luiz De Souza; Matos, Francisca Dionízia De Almeida; Castilho, Carolina V.; Filho, Diogenes De Andrade Lima; López, Dairon Cárdenas; Guevara, Juan Ernesto; Magnusson, William E.; Phillips, Oliver L.; Wittmann, Florian; Carim, Marcelo De Jesus Veiga; Martins, Maria Pires; Irume, Mariana Victória; Sabatier, Daniel; Molino, Jean François; Bánki, Olaf S.; Guimarães, José Renan Da Silva; Pitman, Nigel C.A.; Piedade, Maria Teresa Fernandez; Mendoza, Abel Monteagudo; Luize, Bruno Garcia; Venticinque, Eduardo Martins; Novo, Evlyn Márcia Moraes De Leão; Vargas, Percy Núñez; Silva, Thiago Sanna Freire; Manzatto, Angelo Gilberto; Terborgh, John; Reis, Neidiane Farias Costa; Montero, Juan Carlos; Casula, Katia Regina; Marimon, Beatriz S.; Marimon, Ben Hur; Coronado, Euridice N.Honorio; Feldpausch, Ted R.; Duque, Alvaro; Zartman, Charles Eugene; Arboleda, Nicolás Castaño; Killeen, Timothy J.; Mostacedo, Bonifacio; Vasquez, Rodolfo; Schöngart, Jochen; Assis, Rafael L.; Medeiros, Marcelo Brilhante; Simon, Marcelo Fragomeni; Andrade, Ana; Laurance, William F.; Camargo, José Luís; Demarchi, Layon O.; Laurance, Susan G.W.; Farias, Emanuelle De Sousa; Nascimento, Henrique Eduardo Mendonça; Revilla, Juan David Cardenas; Quaresma, Adriano; Costa, Flavia R.C.; Vieira, Ima Célia Guimarães; Cintra, Bruno Barçante Ladvocat; Castellanos, Hernán; Brienen, Roel; Stevenson, Pablo R.; Feitosa, Yuri; Duivenvoorden, Joost F.; Aymard, Gerardo A.C.; Mogollón, Hugo F.; Targhetta, Natalia; Comiskey, James A.; Vicentini, Alberto; Lopes, Aline; Damasco, Gabriel; Dávila, Nállarett; García-Villacorta, Roosevelt; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Emilio, Thaise; Alonso, Alfonso; Neill, David; Dallmeier, Francisco; Ferreira, Leandro Valle; Araujo-Murakami, Alejandro; Praia, Daniel; Do Amaral, Dário Dantas; Carvalho, Fernanda Antunes; De Souza, Fernanda Coelho; Feeley, Kenneth; Arroyo, Luzmila; Pansonato, Marcelo Petratti; Gribel, Rogerio; Villa, Boris; Licona, Juan Carlos; Fine, Paul V.A.; Cerón, Carlos; Baraloto, Chris; Jimenez, Eliana M.; Stropp, Juliana; Engel, Julien; Silveira, Marcos; Mora, Maria Cristina Peñuela; Petronelli, Pascal; Maas, Paul; Thomas-Caesar, Raquel; Henkel, Terry W.; Daly, Doug; Paredes, Marcos Ríos; Baker, Tim R.; Fuentes, Alfredo; Peres, Carlos A.; Chave, Jerome; Pena, Jose Luis Marcelo; Dexter, Kyle G.; Silman, Miles R.; Jørgensen, Peter Møller; Pennington, Toby; Di Fiore, Anthony; Valverde, Fernando Cornejo; Phillips, Juan Fernando; Rivas-Torres, Gonzalo; Von Hildebrand, Patricio; Van Andel, Tinde R.; Ruschel, Ademir R.; Prieto, Adriana; Rudas, Agustín; Hoffman, Bruce; Vela, César I.A.; Barbosa, Edelcilio Marques; Zent, Egleé L.; Gonzales, George Pepe Gallardo; Doza, Hilda Paulette Dávila; Miranda, Ires Paula De Andrade; Guillaumet, Jean Louis; Pinto, Linder Felipe Mozombite; Bonates, Luiz Carlos De Matos; Silva, Natalino; Gómez, Ricardo Zárate; Zent, Stanford; Gonzales, Therany; Vos, Vincent A.; Malhi, Yadvinder; Oliveira, Alexandre A.; Cano, Angela; Albuquerque, Bianca Weiss; Vriesendorp, Corine; Correa, Diego Felipe; Torre, Emilio Vilanova; Van Der Heijden, Geertje; Ramirez-Angulo, Hirma; Ramos, José Ferreira; Young, Kenneth R.; Rocha, Maira; Nascimento, Marcelo Trindade; Medina, Maria Natalia Umaña; Tirado, Milton; Wang, Ophelia; Sierra, Rodrigo; Torres-Lezama, Armando; Mendoza, Casimiro; Ferreira, Cid; Baider, Cláudia; Villarroel, Daniel; Balslev, Henrik; Mesones, Italo; Giraldo, Ligia Estela Urrego; Casas, Luisa Fernanda; Reategui, Manuel Augusto Ahuite; Linares-Palomino, Reynaldo; Zagt, Roderick; Cárdenas, Sasha; Farfan-Rios, William; Sampaio, Adeilza Felipe; Pauletto, Daniela; Sandoval, Elvis H.Valderrama; Arevalo, Freddy Ramirez; Huamantupa-Chuquimaco, Isau; Garcia-Cabrera, Karina; Hernandez, Lionel; Gamarra, Luis Valenzuela; Alexiades, Miguel N.; Pansini, Susamar; Cuenca, Walter Palacios; Milliken, William; Ricardo, Joana; Lopez-Gonzalez, Gabriela; Pos, Edwin; Ter Steege, Hans

    2018-01-01

    Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs.

  8. Sensitivity of air pollution simulations with LOTOS-EUROS to temporal distribution of anthropogenic emissions

    Mues, A.; Kuenen, J.; Hendriks, C.; Manders, A.; Segers, A.; Scholz, Y.; Hueglin, C.; Builtjes, P.; Schaap, M.

    2013-07-01

    In this study the sensitivity of the model performance of the chemistry transport model (CTM) LOTOS-EUROS to the description of the temporal variability of emissions was investigated. Currently the temporal release of anthropogenic emissions is described by European average diurnal, weekly and seasonal time profiles per sector. These default time profiles largely neglect the variation of emission strength with activity patterns, region, species, emission process and meteorology. The three sources dealt with in this study are combustion in energy and transformation industries (SNAP1), non-industrial combustion (SNAP2) and road transport (SNAP7). First the impact of neglecting the temporal emission profiles for these SNAP categories on simulated concentrations was explored. In a~second step, we constructed more detailed emission time profiles for the three categories and quantified their impact on the model performance separately as well as combined. The performance in comparison to observations for Germany was quantified for the pollutants NO2, SO2 and PM10 and compared to a simulation using the default LOTOS-EUROS emission time profiles. In general the largest impact on the model performance was found when neglecting the default time profiles for the three categories. The daily average correlation coefficient for instance decreased by 0.04 (NO2), 0.11 (SO2) and 0.01 (PM10) at German urban background stations compared to the default simulation. A systematic increase of the correlation coefficient is found when using the new time profiles. The size of the increase depends on the source category, the component and station. Using national profiles for road transport showed important improvements of the explained variability over the weekdays as well as the diurnal cycle for NO2. The largest impact of the SNAP1 and 2 profiles were found for SO2. When using all new time profiles simultaneously in one simulation the daily average correlation coefficient increased by 0

  9. Sensitivity of air pollution simulations with LOTOS-EUROS to the temporal distribution of anthropogenic emissions

    Mues, A.; Kuenen, J.; Hendriks, C.; Manders, A.; Segers, A.; Scholz, Y.; Hueglin, C.; Builtjes, P.; Schaap, M.

    2014-01-01

    In this study the sensitivity of the model performance of the chemistry transport model (CTM) LOTOS-EUROS to the description of the temporal variability of emissions was investigated. Currently the temporal release of anthropogenic emissions is described by European average diurnal, weekly and seasonal time profiles per sector. These default time profiles largely neglect the variation of emission strength with activity patterns, region, species, emission process and meteorology. The three sources dealt with in this study are combustion in energy and transformation industries (SNAP1), nonindustrial combustion (SNAP2) and road transport (SNAP7). First of all, the impact of neglecting the temporal emission profiles for these SNAP categories on simulated concentrations was explored. In a second step, we constructed more detailed emission time profiles for the three categories and quantified their impact on the model performance both separately as well as combined. The performance in comparison to observations for Germany was quantified for the pollutants NO2, SO2 and PM10 and compared to a simulation using the default LOTOS-EUROS emission time profiles. The LOTOS-EUROS simulations were performed for the year 2006 with a temporal resolution of 1 h and a horizontal resolution of approximately 25 × 25km2. In general the largest impact on the model performance was found when neglecting the default time profiles for the three categories. The daily average correlation coefficient for instance decreased by 0.04 (NO2), 0.11 (SO2) and 0.01 (PM10) at German urban background stations compared to the default simulation. A systematic increase in the correlation coefficient is found when using the new time profiles. The size of the increase depends on the source category, component and station. Using national profiles for road transport showed important improvements in the explained variability over the weekdays as well as the diurnal cycle for NO2. The largest impact of the SNAP1

  10. The Gaussian atmospheric transport model and its sensitivity to the joint frequency distribution and parametric variability.

    Hamby, D M

    2002-01-01

    Reconstructed meteorological data are often used in some form of long-term wind trajectory models for estimating the historical impacts of atmospheric emissions. Meteorological data for the straight-line Gaussian plume model are put into a joint frequency distribution, a three-dimensional array describing atmospheric wind direction, speed, and stability. Methods using the Gaussian model and joint frequency distribution inputs provide reasonable estimates of downwind concentration and have been shown to be accurate to within a factor of four. We have used multiple joint frequency distributions and probabilistic techniques to assess the Gaussian plume model and determine concentration-estimate uncertainty and model sensitivity. We examine the straight-line Gaussian model while calculating both sector-averaged and annual-averaged relative concentrations at various downwind distances. The sector-average concentration model was found to be most sensitive to wind speed, followed by horizontal dispersion (sigmaZ), the importance of which increases as stability increases. The Gaussian model is not sensitive to stack height uncertainty. Precision of the frequency data appears to be most important to meteorological inputs when calculations are made for near-field receptors, increasing as stack height increases.

  11. Selection bias in species distribution models: An econometric approach on forest trees based on structural modeling

    Martin-StPaul, N. K.; Ay, J. S.; Guillemot, J.; Doyen, L.; Leadley, P.

    2014-12-01

    Species distribution models (SDMs) are widely used to study and predict the outcome of global changes on species. In human dominated ecosystems the presence of a given species is the result of both its ecological suitability and human footprint on nature such as land use choices. Land use choices may thus be responsible for a selection bias in the presence/absence data used in SDM calibration. We present a structural modelling approach (i.e. based on structural equation modelling) that accounts for this selection bias. The new structural species distribution model (SSDM) estimates simultaneously land use choices and species responses to bioclimatic variables. A land use equation based on an econometric model of landowner choices was joined to an equation of species response to bioclimatic variables. SSDM allows the residuals of both equations to be dependent, taking into account the possibility of shared omitted variables and measurement errors. We provide a general description of the statistical theory and a set of applications on forest trees over France using databases of climate and forest inventory at different spatial resolution (from 2km to 8km). We also compared the outputs of the SSDM with outputs of a classical SDM (i.e. Biomod ensemble modelling) in terms of bioclimatic response curves and potential distributions under current climate and climate change scenarios. The shapes of the bioclimatic response curves and the modelled species distribution maps differed markedly between SSDM and classical SDMs, with contrasted patterns according to species and spatial resolutions. The magnitude and directions of these differences were dependent on the correlations between the errors from both equations and were highest for higher spatial resolutions. A first conclusion is that the use of classical SDMs can potentially lead to strong miss-estimation of the actual and future probability of presence modelled. Beyond this selection bias, the SSDM we propose represents

  12. A species-specific nucleosomal signature defines a periodic distribution of amino acids in proteins.

    Quintales, Luis; Soriano, Ignacio; Vázquez, Enrique; Segurado, Mónica; Antequera, Francisco

    2015-04-01

    Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition.

  13. Evaluating the combined effects of climate and land-use change on tree species distributions

    Garcia-Valdes, Raul; Svenning, Jens-Christian; Zavala, Miguel A.

    2015-01-01

    Summary: A large proportion of the world's biodiversity is reportedly threatened by habitat loss and climate change. However, there are few studies that investigate the interaction between these two threats using empirical data. Here, we investigate interactions between climate change and land-use...... change in the future distribution of 23 dominant tree species in mainland Spain. We simulated changes up to year 2100 using a climate-dependent Stochastic Patch Occupancy Model, parameterized with colonization and extinction events recorded in 46 596 survey plots. We estimated that the distribution of 17......% of the habitat, was estimated to reduce species occupancies (relative to baseline projections) by an average of 23% if habitat loss was spatially clumped, and by 35% if it was scattered. If habitat loss occurred in areas already impacted by human activities, species occupancies would be reduced by 26%. Land-use...

  14. Geographic Distribution of Leishmania Species in Ecuador Based on the Cytochrome B Gene Sequence Analysis

    Kato, Hirotomo; Gomez, Eduardo A.; Martini-Robles, Luiggi; Muzzio, Jenny; Velez, Lenin; Calvopiña, Manuel; Romero-Alvarez, Daniel; Mimori, Tatsuyuki; Uezato, Hiroshi; Hashiguchi, Yoshihisa

    2016-01-01

    A countrywide epidemiological study was performed to elucidate the current geographic distribution of causative species of cutaneous leishmaniasis (CL) in Ecuador by using FTA card-spotted samples and smear slides as DNA sources. Putative Leishmania in 165 samples collected from patients with CL in 16 provinces of Ecuador were examined at the species level based on the cytochrome b gene sequence analysis. Of these, 125 samples were successfully identified as Leishmania (Viannia) guyanensis, L. (V.) braziliensis, L. (V.) naiffi, L. (V.) lainsoni, and L. (Leishmania) mexicana. Two dominant species, L. (V.) guyanensis and L. (V.) braziliensis, were widely distributed in Pacific coast subtropical and Amazonian tropical areas, respectively. Recently reported L. (V.) naiffi and L. (V.) lainsoni were identified in Amazonian areas, and L. (L.) mexicana was identified in an Andean highland area. Importantly, the present study demonstrated that cases of L. (V.) braziliensis infection are increasing in Pacific coast areas. PMID:27410039

  15. Geographic Distribution of Leishmania Species in Ecuador Based on the Cytochrome B Gene Sequence Analysis.

    Kato, Hirotomo; Gomez, Eduardo A; Martini-Robles, Luiggi; Muzzio, Jenny; Velez, Lenin; Calvopiña, Manuel; Romero-Alvarez, Daniel; Mimori, Tatsuyuki; Uezato, Hiroshi; Hashiguchi, Yoshihisa

    2016-07-01

    A countrywide epidemiological study was performed to elucidate the current geographic distribution of causative species of cutaneous leishmaniasis (CL) in Ecuador by using FTA card-spotted samples and smear slides as DNA sources. Putative Leishmania in 165 samples collected from patients with CL in 16 provinces of Ecuador were examined at the species level based on the cytochrome b gene sequence analysis. Of these, 125 samples were successfully identified as Leishmania (Viannia) guyanensis, L. (V.) braziliensis, L. (V.) naiffi, L. (V.) lainsoni, and L. (Leishmania) mexicana. Two dominant species, L. (V.) guyanensis and L. (V.) braziliensis, were widely distributed in Pacific coast subtropical and Amazonian tropical areas, respectively. Recently reported L. (V.) naiffi and L. (V.) lainsoni were identified in Amazonian areas, and L. (L.) mexicana was identified in an Andean highland area. Importantly, the present study demonstrated that cases of L. (V.) braziliensis infection are increasing in Pacific coast areas.

  16. Geographic Distribution of Leishmania Species in Ecuador Based on the Cytochrome B Gene Sequence Analysis.

    Hirotomo Kato

    2016-07-01

    Full Text Available A countrywide epidemiological study was performed to elucidate the current geographic distribution of causative species of cutaneous leishmaniasis (CL in Ecuador by using FTA card-spotted samples and smear slides as DNA sources. Putative Leishmania in 165 samples collected from patients with CL in 16 provinces of Ecuador were examined at the species level based on the cytochrome b gene sequence analysis. Of these, 125 samples were successfully identified as Leishmania (Viannia guyanensis, L. (V. braziliensis, L. (V. naiffi, L. (V. lainsoni, and L. (Leishmania mexicana. Two dominant species, L. (V. guyanensis and L. (V. braziliensis, were widely distributed in Pacific coast subtropical and Amazonian tropical areas, respectively. Recently reported L. (V. naiffi and L. (V. lainsoni were identified in Amazonian areas, and L. (L. mexicana was identified in an Andean highland area. Importantly, the present study demonstrated that cases of L. (V. braziliensis infection are increasing in Pacific coast areas.

  17. Distribution, habitat affinities and phenology of the Micrargus herbigradus-species group (Araneae: Linyphiidae) in Poland.

    Wiśniewski, Konrad; Rozwałka, Robert; Wesołowska, Wanda

    2018-01-01

    We review the known information on the distribution and habitat affinities of the Micrargus herbigradus -species group in Poland. The analysis is based on a thorough literature survey, our own materials, and verification of some older collections. We give new diagnostic drawings and review the characters that are useful in identification of species within the group. Three species are present in Poland: M. herbigradus (Blackwall, 1854), M. apertus (O.-P. Cambridge, 1870) and M. georgescuae Millidge, 1976. The latter is recorded for the first time in the country, and we add numerous new localities for the two former species. Micrargus herbigradus is common and widespread in Poland, living in various habitats, with only a slight preference to forests. In contrast, M. apertus is widely distributed but rarely found, while its affinity to forests is the highest within the group. The records of this species are most numerous in lowland forests (up to c. 300 m a.s.l), but it can also be found at higher altitudes. M. georgescuae is found only in montane habitats, both in the Sudetes and the Carpathian Mountains, from above 650 m a.s.l. The adults of all three species occur the whole year round, but seem to be most abundant in May and June.

  18. Distribution of the Chuckwalla, Western Burrowing Owl, and Six Bat Species on the Nevada Test Site

    Cathy A. Willis

    1997-05-01

    Field Surveys were conducted in 1996 to determine the current distribution of several animal species of concern on the Nevada Test Site (NTS). They included the chuckwall (Sauromalus obesus), western burrowing owl (Speotyto cunicularia), and six species of bats. Nineteen chuckwallas and 118 scat locations were found during the chuckwalla field study. Eighteen western burrowing owls were found at 12 sighting locations during the 1996 field study. Of the eleven bat species of concern which might occur on the NTS, five, and possibly six, were captured during this survey. The U.S. Department of Energy, Nevada Operations Office, takes certain management actions to protect and conserve the chuckwalla, western burrowing owl, and bats on the NTS. These actions are described and include: (1) conducting surveys at sites of proposed land-disturbing activities (2) altering projects whenever possible to avoid or minimize impacts to these species (3) maintaining a geospatial database of known habitat for species of concern (4) sharing sighting and trap location data gathered on the NTS with other local land and resource managers, and (5) conducting periodic field surveys to monitor these species distribution and relative abundance on the NTS.

  19. Environmental determinants of the spatial distribution of Mesocestoides spp. and sensitivity of flotation method for the diagnosis of mesocestoidosis.

    Széll, Z; Tolnai, Z; Sréter, T

    2015-09-15

    Mesocestoides spp. are zoonotic cestodes of wild and domesticated carnivores. Although the adult stages are relatively harmless intestinal parasites, the metacestode stages (tetrathyridia) can be responsible for life-threatening peritonitis and pleuritis in several species including dogs, cats, non-human primates and probably man. The aim of the present study was to reveal the spatial distribution pattern of Mesocestoides spp. in the most important final hosts, red foxes (Vulpes vulpes), to analyse the relationship of these patterns with landscape and climate by geographical information systems and to evaluate faecal flotation method for the detection of infection in the final host. Fox carcasses, representing 0.5% of the total fox population were randomly selected out of all the foxes of Hungary. The intestinal tract was examined by sedimentation and counting technique. The sensitivity of the flotation method was evaluated by the testing of the faecal samples of 180 foxes infected with Mesocestoides spp. The prevalence of infection was high in foxes (45.8%; 95% CI=41.0-50.6%), and the parasite was detected in all areas of Hungary. The high prevalence of the parasite in foxes suggests that the infection might also be common in outdoor dogs and cats. Mesocestoides infection could not be detected in any of the foxes by flotation method indicating that the sensitivity of the method is less than 0.6%. Therefore, almost all canine and feline infections remain undetected in the veterinary practice. Based on the statistical analysis, the altitude was the only determinant of the spatial distribution of Mesocestoides spp. indicating that infections in carnivores including dogs and cats can be expected mainly in midland regions (150-750 m above sea level). It might be attributed to the altitude-dependent species richness and abundance of the intermediate and final hosts of the parasite. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. BAYESIAN MODELS FOR SPECIES DISTRIBUTION MODELLING WITH ONLY-PRESENCE RECORDS

    Bartolo de Jesús Villar-Hernández

    2015-08-01

    Full Text Available One of the central issues in ecology is the study of geographical distribution of species of flora and fauna through Species Distribution Models (SDM. Recently, scientific interest has focused on presence-only records. Two recent approaches have been proposed for this problem: a model based on maximum likelihood method (Maxlike and an inhomogeneous poisson process model (IPP. In this paper we discussed two bayesian approaches called MaxBayes and IPPBayes based on Maxlike and IPP model, respectively. To illustrate these proposals, we implemented two study examples: (1 both models were implemented on a simulated dataset, and (2 we modeled the potencial distribution of genus Dalea in the Tehuacan-Cuicatlán biosphere reserve with both models, the results was compared with that of Maxent. The results show that both models, MaxBayes and IPPBayes, are viable alternatives when species distribution are modeled with only-presence records. For simulated dataset, MaxBayes achieved prevalence estimation, even when the number of records was small. In the real dataset example, both models predict similar potential distributions like Maxent does. Â

  1. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    Crase, Beth; Liedloff, Adam; Vesk, Peter A; Fukuda, Yusuke; Wintle, Brendan A

    2014-08-01

    Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment-only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment-only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate

  2. Standard test method for distribution coefficients of inorganic species by the batch method

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of distribution coefficients of chemical species to quantify uptake onto solid materials by a batch sorption technique. It is a laboratory method primarily intended to assess sorption of dissolved ionic species subject to migration through pores and interstices of site specific geomedia. It may also be applied to other materials such as manufactured adsorption media and construction materials. Application of the results to long-term field behavior is not addressed in this method. Distribution coefficients for radionuclides in selected geomedia are commonly determined for the purpose of assessing potential migratory behavior of contaminants in the subsurface of contaminated sites and waste disposal facilities. This test method is also applicable to studies for parametric studies of the variables and mechanisms which contribute to the measured distribution coefficient. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement a...

  3. Facilitating political decisions using species distribution models to assess restoration measures in heavily modified estuaries.

    Heuner, Maike; Weber, Arnd; Schröder, Uwe; Kleinschmit, Birgit; Schröder, Boris

    2016-09-15

    The European Water Framework Directive requires a good ecological potential for heavily modified water bodies. This standard has not been reached for most large estuaries by 2015. Management plans for estuaries fall short in linking implementations between restoration measures and underlying spatial analyses. The distribution of emergent macrophytes - as an indicator of habitat quality - is here used to assess the ecological potential. Emergent macrophytes are capable of settling on gentle tidal flats where hydrodynamic stress is comparatively low. Analyzing their habitats based on spatial data, we set up species distribution models with 'elevation relative to mean high water', 'mean bank slope', and 'length of bottom friction' from shallow water up to the vegetation belt as key predictors representing hydrodynamic stress. Effects of restoration scenarios on habitats were assessed applying these models. Our findings endorse species distribution models as crucial spatial planning tools for implementing restoration measures in modified estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Monitoring the effects of atmospheric ethylene near polyethylene manufacturing plants with two sensitive plant species

    Tonneijck, A.E.G.; Berge, W.F. ten; Jansen, B.P

    2003-05-01

    Atmospheric ethylene from polyethylene manufacturing plants adversely affected the number of flowers and growth of field-grown marigold and petunia. - Data of a multi-year (1977-1983) biomonitoring programme with marigold and petunia around polyethylene manufacturing plants was analysed to assess plant responses to atmospheric ethylene and to determine the area at risk for the phytotoxic effects of this pollutant. In both species, flower formation and growth were severely reduced close to the emission sources and plant performance improved with increasing distance. Plants exposed near the border of the research area had more flowers than the unexposed control while their growth was normal. Measurements of ethylene concentrations at a border site revealed that the growing season mean was 61.5 {mu}g m{sup -3} in 1982 and 15.6 {mu}g m{sup -3} in 1983. In terms of number of flowers, petunia was more sensitive than marigold and adverse effects were observed within ca. 400 m distance from the sources for marigold and within ca. 460 m for petunia. The area at risk (ca. 870 m) for ethylene-induced growth reduction was also limited to the industrial zone. Plants were more sensitive to ethylene in terms of growth reduction than in terms of inhibition of flowering. In the Netherlands, maximum permissible levels of ethylene are currently based on information from laboratory and greenhouse studies. Our results indicate that these levels are rather conservative in protecting field-grown plants against ethylene-induced injury near polyethylene manufacturing plants.

  5. Ring distributions leading to species formation: a global topographic analysis of geographic barriers associated with ring species

    Monahan William B

    2012-03-01

    relative importance of features that define barriers, (ii can be replicated using any kind of continuously distributed environmental variable, and (iii generates spatially explicit hypotheses of geographic species formation. The methods developed here - combined with study of the geographical ecology and genetics of taxa in their environments - should enable recognition of ring species phenomena throughout the world.

  6. Ring distributions leading to species formation: a global topographic analysis of geographic barriers associated with ring species.

    Monahan, William B; Pereira, Ricardo J; Wake, David B

    2012-03-12

    In the mid 20th century, Ernst Mayr and Theodosius Dobzhansky championed the significance of circular overlaps or ring species as the perfect demonstration of speciation, yet in the over 50 years since, only a handful of such taxa are known. We developed a topographic model to evaluate whether the geographic barriers that favor processes leading to ring species are common or rare, and to predict where other candidate ring barriers might be found. Of the 952,147 geographic barriers identified on the planet, only about 1% are topographically similar to barriers associated with known ring taxa, with most of the likely candidates occurring in under-studied parts of the world (for example, marine environments, tropical latitudes). Predicted barriers separate into two distinct categories: (i) single cohesive barriers (barriers - formed by groups of barriers (each 184,000 to 1.7 million km2) in close geographic proximity (totaling 1.9 to 2.3 million km2) - associated with taxa that differentiate at larger spatial scales (birds: Phylloscopus trochiloides and Larus (sp. argentatus and fuscus)). When evaluated globally, we find a large number of cohesive barriers that are topographically similar to those associated with known ring taxa. Yet, compared to cohesive barriers, an order of magnitude fewer composite barriers are similar to those that favor ring divergence in species with higher dispersal. While these findings confirm that the topographic conditions that favor evolutionary processes leading to ring speciation are, in fact, rare, they also suggest that many understudied natural systems could provide valuable demonstrations of continuous divergence towards the formation of new species. Distinct advantages of the model are that it (i) requires no a priori information on the relative importance of features that define barriers, (ii) can be replicated using any kind of continuously distributed environmental variable, and (iii) generates spatially explicit hypotheses of

  7. Morphometry and Distribution of Senecio Nemorensis agg. Species (Asteraceae in Poland

    Rola Kaja

    2014-07-01

    Full Text Available A morphometric analysis based on 316 herbarium specimens of Senecio nemorensis agg. indicated the occurrence of the following four species in Poland: S. germanicus Wallr., S. hercynicus Herborg, S. ovatus (G. Gaertn. et al. Willd. and S. ucranicus Hodálová. Principal component analysis (PCA, analysis of variance (ANOVA/Kruskal-Wallis test and canonical discriminant analysis (CDA were applied. Quantitative characters such as supplementary bract length, leaf base width, ligule length and the supplementary/involucral bract length ratio clearly discriminated taxa within S. nemorensis agg. Included is a distribution map of the investigated species based on the examined material, with particular emphasis on the course of the northeastern boundary of S. hercynicus and the northwestern boundary of S. ucranicus. Also given is a determination key for species within S. nemorensis agg. in Poland, together with morphological descriptions of particular species

  8. Distribution of the invasive plant species Heracleum sosnowskyi Manden. in the Komi Republic (Russia).

    Chadin, Ivan; Dalke, Igor; Zakhozhiy, Ilya; Malyshev, Ruslan; Madi, Elena; Olga Kuzivanova; Kirillov, Dmitrii; Elsakov, Vladimir

    2017-01-01

    Occurrences of the invasive plant species Heracleum sosnowskyi Manden. in the Komi Republic (northeastern part of European Russia) were recorded and published in the Global Biodiversity Information Facility (GBIF http://www.gbif.org) using the RIVR information system (http://ib.komisc.ru/add/rivr/en). RIVR stands for "Rasprostranenie Invasionnyh Vidov Rastenij" [Occurrence of Invasion Plant Species]. This citizen science project aims at collecting occurrence data about invasive plant species with the help of citizen scientists. Information can be added by any user after a simple registration (concept) process. However, the data published in GBIF are provided only by professional scientists. The total study area is approximately 19,000 km 2 . The GBIF resource contains 10894 Heracleum sosnowskyi occurrence points, each with their geographical coordinates and photographs of the plants in the locus of growth. The preliminary results of species distribution modelling on the territory of European North-East Russia presented.

  9. Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species.

    Chakraborty, Koushik; Bose, Jayakumar; Shabala, Lana; Shabala, Sergey

    2016-08-01

    Brassica species are known to possess significant inter and intraspecies variability in salinity stress tolerance, but the cell-specific mechanisms conferring this difference remain elusive. In this work, the role and relative contribution of several key plasma membrane transporters to salinity stress tolerance were evaluated in three Brassica species (B. napus, B. juncea, and B. oleracea) using a range of electrophysiological assays. Initial root growth assay and viability staining revealed that B. napus was most tolerant amongst the three species, followed by B. juncea and B. oleracea At the mechanistic level, this difference was conferred by at least three complementary physiological mechanisms: (i) higher Na(+) extrusion ability from roots resulting from increased expression and activity of plasma membrane SOS1-like Na(+)/H(+) exchangers; (ii) better root K(+) retention ability resulting from stress-inducible activation of H(+)-ATPase and ability to maintain more negative membrane potential under saline conditions; and (iii) reduced sensitivity of B. napus root K(+)-permeable channels to reactive oxygen species (ROS). The last two mechanisms played the dominant role and conferred most of the differential salt sensitivity between species. Brassica napus plants were also more efficient in preventing the stress-induced increase in GORK transcript levels and up-regulation of expression of AKT1, HAK5, and HKT1 transporter genes. Taken together, our data provide the mechanistic explanation for differential salt stress sensitivity amongst these species and shed light on transcriptional and post-translational regulation of key ion transport systems involved in the maintenance of the root plasma membrane potential and cytosolic K/Na ratio as a key attribute for salt tolerance in Brassica species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Distribution

    John R. Jones

    1985-01-01

    Quaking aspen is the most widely distributed native North American tree species (Little 1971, Sargent 1890). It grows in a great diversity of regions, environments, and communities (Harshberger 1911). Only one deciduous tree species in the world, the closely related Eurasian aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911)....

  11. Using mineralogy and higher-level taxonomy as indicators of species sensitivity to pH: A case-study of Puget Sound

    Shallin Busch

    2017-09-01

    Full Text Available Information on ecosystem sensitivity to global change can help guide management decisions. Here, we characterize the sensitivity of the Puget Sound ecosystem to ocean acidification by estimating, at a number of taxonomic levels, the direct sensitivity of its species. We compare sensitivity estimates based on species mineralogy and on published literature from laboratory experiments and field studies. We generated information on the former by building a database of species in Puget Sound with mineralogy estimates for all CaCO3-forming species. For the latter, we relied on a recently developed database and meta-analysis on temperate species responses to increased CO2. In general, species sensitivity estimates based on the published literature suggest that calcifying species are more sensitive to increased CO2 than non-calcifying species. However, this generalization is incomplete, as non-calcifying species also show direct sensitivity to high CO2 conditions. We did not find a strong link between mineral solubility and the sensitivity of species survival to changes in carbonate chemistry, suggesting that, at coarse scales, mineralogy plays a lesser role to other physiological sensitivities. Summarizing species sensitivity at the family level resulted in higher sensitivity scalar scores than at the class level, suggesting that grouping results at the class level may overestimate species sensitivity. This result raises caution about the use of broad generalizations on species response to ocean acidification, particularly when developing summary information for specific locations. While we have much to learn about species response to ocean acidification and how to generalize ecosystem response, this study on Puget Sound suggests that detailed information on species performance under elevated carbon dioxide conditions, summarized at the lowest taxonomic level possible, is more valuable than information on species mineralogy.

  12. Species composition and bathymetric distribution of gorgonians (Anthozoa: Octocorallia on the Southern Mexican Pacific coast

    Rosalinda Abeytia

    2013-09-01

    Full Text Available Gorgonians are important components of coastal ecosystems, as they provide niches, natural compounds with medical applications and are used as bioindicators. Species composition and assemblage structure of gorgonians (Anthozoa: Octocorallia were studied along a bathymetric profile in the Southern Mexican Pacific coast. Species composition was based on specimens collected within a depth range of 0-70m in 15 sites. The relative abundance of species was determined in six sites at four depths (5, 10, 20 and 25m using three 10m2 transects at each depth level. Twenty-seven species of gorgonians belonging to six genera and three families were registered. The species composition varied with depth: 11 species were distributed between 0-25m depth, while 17 species were found between 40-70m depth interval. The shallow zone is characterized by a relatively large abundance of gorgonians, dominated by colonies of Leptogorgia cuspidata and L. ena. In contrast, the deepest zone was characterized by relatively low abundance of gorgonians, dominated by L. alba, the only species observed in both depth intervals. The similarity analysis showed differences in the composition and abundance of species by depth and site, suggesting that the main factor in determining the assemblage structure is depth. Results of this study suggest that the highest richness of gorgonian species in the study area may be located at depths of 40-70m, whereas the highest abundances are found between 5 and 10m depth. This study represents a contribution to the poorly known eastern Pacific gorgonian biota.

  13. Floristic composition, environmental variation and species distribution patterns in burned grassland in southern Brazil.

    Overbeck, G E; Müller, S C; Pillar, V D; Pfadenhauer, J

    2006-11-01

    In regularly burned grassland on Morro Santana, Porto Alegre, RS, Brazil, we investigated differences in the floristic composition and their relation to soil properties, aspect and distance from the forest border. In 48 plots of 0.75 m2, we identified a total of 201 species from a local species pool of approximately 450 to 500 species. Most species occurred in low frequencies, showing clumpy distribution patterns in the studied area. Multivariate analysis showed that plots close to the forest edge clearly differed from plots in the open grassland concerning composition and structure. Plots exposed to the north differed from plots on the top of the hill both in the composition of species as well as in soil variables, mainly due to shallower soil in the former. No strong relation between soil properties and variation in vegetation composition could be detected at a finer scale. The studied grassland, as all grassland vegetation in southern Brazil, is very rich in species compared to other grassland formations worldwide. However, this high biodiversity and conservational value of Campos vegetation in general has so far not been recognized properly. Disturbance is essential to maintain this open vegetation type and its species richness. Fire should be considered as a management option in the absence of grazing.

  14. Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods

    W. Castaings

    2009-04-01

    Full Text Available Variational methods are widely used for the analysis and control of computationally intensive spatially distributed systems. In particular, the adjoint state method enables a very efficient calculation of the derivatives of an objective function (response function to be analysed or cost function to be optimised with respect to model inputs.

    In this contribution, it is shown that the potential of variational methods for distributed catchment scale hydrology should be considered. A distributed flash flood model, coupling kinematic wave overland flow and Green Ampt infiltration, is applied to a small catchment of the Thoré basin and used as a relatively simple (synthetic observations but didactic application case.

    It is shown that forward and adjoint sensitivity analysis provide a local but extensive insight on the relation between the assigned model parameters and the simulated hydrological response. Spatially distributed parameter sensitivities can be obtained for a very modest calculation effort (~6 times the computing time of a single model run and the singular value decomposition (SVD of the Jacobian matrix provides an interesting perspective for the analysis of the rainfall-runoff relation.

    For the estimation of model parameters, adjoint-based derivatives were found exceedingly efficient in driving a bound-constrained quasi-Newton algorithm. The reference parameter set is retrieved independently from the optimization initial condition when the very common dimension reduction strategy (i.e. scalar multipliers is adopted.

    Furthermore, the sensitivity analysis results suggest that most of the variability in this high-dimensional parameter space can be captured with a few orthogonal directions. A parametrization based on the SVD leading singular vectors was found very promising but should be combined with another regularization strategy in order to prevent overfitting.

  15. Extracellular ultrathin fibers sensitive to intracellular reactive oxygen species: Formation of intercellular membrane bridges

    Jung, Se-Hui; Park, Jin-Young; Joo, Jung-Hoon; Kim, Young-Myeong; Ha, Kwon-Soo, E-mail: ksha@kangwon.ac.kr

    2011-07-15

    Membrane bridges are key cellular structures involved in intercellular communication; however, dynamics for their formation are not well understood. We demonstrated the formation and regulation of novel extracellular ultrathin fibers in NIH3T3 cells using confocal and atomic force microscopy. At adjacent regions of neighboring cells, phorbol 12-myristate 13-acetate (PMA) and glucose oxidase induced ultrathin fiber formation, which was prevented by Trolox, a reactive oxygen species (ROS) scavenger. The height of ROS-sensitive ultrathin fibers ranged from 2 to 4 nm. PMA-induced formation of ultrathin fibers was inhibited by cytochalasin D, but not by Taxol or colchicine, indicating that ultrathin fibers mainly comprise microfilaments. PMA-induced ultrathin fibers underwent dynamic structural changes, resulting in formation of intercellular membrane bridges. Thus, these fibers are formed by a mechanism(s) involving ROS and involved in formation of intercellular membrane bridges. Furthermore, ultrastructural imaging of ultrathin fibers may contribute to understanding the diverse mechanisms of cell-to-cell communication and the intercellular transfer of biomolecules, including proteins and cell organelles.

  16. Highly sensitive quantitative PCR for the detection and differentiation of Pseudogymnoascus destructans and other Pseudogymnoascus species.

    Shuey, Megan M; Drees, Kevin P; Lindner, Daniel L; Keim, Paul; Foster, Jeffrey T

    2014-03-01

    White-nose syndrome is a fungal disease that has decimated bat populations across eastern North America. Identification of the etiologic agent, Pseudogymnoascus destructans (formerly Geomyces destructans), in environmental samples is essential to proposed management plans. A major challenge is the presence of closely related species, which are ubiquitous in many soils and cave sediments and often present in high abundance. We present a dual-probe real-time quantitative PCR assay capable of detecting and differentiating P. destructans from closely related fungi in environmental samples from North America. The assay, based on a single nucleotide polymorphism (SNP) specific to P. destructans, is capable of rapid low-level detection from various sampling media, including sediment, fecal samples, wing biopsy specimens, and skin swabs. This method is a highly sensitive, high-throughput method for identifying P. destructans, other Pseudogymnoascus spp., and Geomyces spp. in the environment, providing a fundamental component of research and risk assessment for addressing this disease, as well as other ecological and mycological work on related fungi.

  17. Antitropical distributions and species delimitation in a group of ophiocomid brittle stars (Echinodermata: Ophiuroidea: Ophiocomidae).

    Naughton, K M; O'Hara, T D; Appleton, B; Cisternas, P A

    2014-09-01

    In this paper we examine the phylogeny and biogeography of the temperate genera of the Ophiocomidae (Echinodermata: Ophiuroidea) which have an interesting asymmetrical anti-tropical distribution, with two genera (Ophiocomina and Ophiopteris) previously considered to have a separate species in both the North and South hemispheres, and the third (Clarkcoma) diversifying in the southern Australian/New Zealand region. Our phylogeny, generated from one mitochondrial and two nuclear markers, revealed that Ophiopteris is sister to a mixed Ophiocomina/Clarkcoma clade. Ophiocomina was polyphyletic, with O. nigra and an undescribed species from the South Atlantic Ocean sister to a clade including Clarkcoma species and O. australis. The phylogeny also revealed a number of recently diverged lineages occurring within Clarkcoma, some of which are considered to be cryptic species due to the similarity in morphology combined with the apparent absence of interbreeding in a sympatric distribution, while the status of others is less certain. The phylogeny provides support for two transequatorial events in the group under study. A molecular clock analysis places both events in the middle to late Miocene. The analysis excludes a tectonic vicariance hypothesis for the antitropical distribution associated with the breakup of Pangaea and also excludes the hypothesis of more recent gene flow associated with Plio/Pleistocene glacial cycling. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Diversity distribution patterns of Chinese endemic seed plant species and their implications for conservation planning

    Huang, Jihong; Huang, Jianhua; Lu, Xinghui; Ma, Keping

    2016-01-01

    Endemism is an important concept in biogeography and biodiversity conservation. China is one of the richest countries in biodiversity, with very high levels of plant endemism. In this study, we analysed the distribution patterns of diversity, the degree of differentiation, and the endemicity of Chinese endemic seed plants using the floristic unit as a basic spatial analysis unit and 11 indices. The analysis was based on distribution data of 24,951 native seed plant species (excluding subspecies and varieties) and 12,980 Chinese endemic seed plant species, which were sourced from both specimen records and published references. The distribution patterns of Chinese endemic flora were generally consistent but disproportionate across China for diversity, degree of differentiation and endemicity. The South Hengduan Mountains Subregion had the highest values for all indices. At the regional level, both the Hengduan Mountains and the Central China regions were highest in diversity and degrees of differentiation. However, both the rate of local endemic to native species and the rate of local to Chinese endemic species were highest in the Taiwan Region and the South Taiwan Region. The Hengduan Mountains Region and the Central China Region are two key conservation priority areas for Chinese endemic seed plants. PMID:27658845

  19. Assessing potential impacts associated with contamination events in water distribution systems : a sensitivity analysis.

    Davis, M. J.; Janke, R.; Taxon, T. N. (Decision and Information Sciences); ( EVS); (EPA)

    2010-11-01

    An understanding of the nature of the adverse effects that could be associated with contamination events in water distribution systems is necessary for carrying out vulnerability analyses and designing contamination warning systems. This study examines the adverse effects of contamination events using models for 12 actual water systems that serve populations ranging from about 104 to over 106 persons. The measure of adverse effects that we use is the number of people who are exposed to a contaminant above some dose level due to ingestion of contaminated tap water. For this study the number of such people defines the impact associated with an event. We consider a wide range of dose levels in order to accommodate a wide range of potential contaminants. For a particular contaminant, dose level can be related to a health effects level. For example, a dose level could correspond to the median lethal dose, i.e., the dose that would be fatal to 50% of the exposed population. Highly toxic contaminants may be associated with a particular response at a very low dose level, whereas contaminants with low toxicity may only be associated with the same response at a much higher dose level. This report focuses on the sensitivity of impacts to five factors that either define the nature of a contamination event or involve assumptions that are used in assessing exposure to the contaminant: (1) duration of contaminant injection, (2) time of contaminant injection, (3) quantity or mass of contaminant injected, (4) population distribution in the water distribution system, and (5) the ingestion pattern of the potentially exposed population. For each of these factors, the sensitivities of impacts to injection location and contaminant toxicity are also examined. For all the factors considered, sensitivity tends to increase with dose level (i.e., decreasing toxicity) of the contaminant, with considerable inter-network variability. With the exception of the population distribution (factor 4

  20. Moving Towards Dynamic Ocean Management: How Well Do Modeled Ocean Products Predict Species Distributions?

    Elizabeth A. Becker

    2016-02-01

    Full Text Available Species distribution models are now widely used in conservation and management to predict suitable habitat for protected marine species. The primary sources of dynamic habitat data have been in situ and remotely sensed oceanic variables (both are considered “measured data”, but now ocean models can provide historical estimates and forecast predictions of relevant habitat variables such as temperature, salinity, and mixed layer depth. To assess the performance of modeled ocean data in species distribution models, we present a case study for cetaceans that compares models based on output from a data assimilative implementation of the Regional Ocean Modeling System (ROMS to those based on measured data. Specifically, we used seven years of cetacean line-transect survey data collected between 1991 and 2009 to develop predictive habitat-based models of cetacean density for 11 species in the California Current Ecosystem. Two different generalized additive models were compared: one built with a full suite of ROMS output and another built with a full suite of measured data. Model performance was assessed using the percentage of explained deviance, root mean squared error (RMSE, observed to predicted density ratios, and visual inspection of predicted and observed distributions. Predicted distribution patterns were similar for models using ROMS output and measured data, and showed good concordance between observed sightings and model predictions. Quantitative measures of predictive ability were also similar between model types, and RMSE values were almost identical. The overall demonstrated success of the ROMS-based models opens new opportunities for dynamic species management and biodiversity monitoring because ROMS output is available in near real time and can be forecast.

  1. Assessing distributions of two invasive species of contrasting habits in future climate.

    Panda, Rajendra Mohan; Behera, Mukunda Dev; Roy, Partha Sarathi

    2018-05-01

    Understanding the impact of climate change on species invasion is crucial for sustainable biodiversity conservation. Through this study, we try to answer how species differing in phenological cycles, specifically Cassia tora and Lantana camara, differ in the manner in which they invade new regions in India in the future climate. Since both species occupy identical niches, exploring their invasive potential in different climate change scenarios will offer critical insights into invasion and inform ecosystem management. We use three modelling protocols (i.e., maximum entropy, generalised linear model and generalised additive model) to predict the current distribution. Projections are made for both moderate (A1B) and extreme (A2) IPCC (Intergovernmental Panel on Climate Change) scenarios for the year 2050 and 2100. The study reveals that the distributions of C. tora (annual) and L. camara (perennial) would depend on the precipitation of the warmest quarter and moisture availability. C. tora may demonstrate physiological tolerance to the mean diurnal temperature range and L. camara to the solar radiation. C. tora may invade central India, while L. camara may invade the Western Himalaya, parts of the Eastern Himalaya and the Western Ghats. The distribution ranges of both species could shift in the northern and north-eastern directions in India, owing to changes in moisture availability. The possible alterations in precipitation regimes could lead to water stress, which might have cascading effects on species invasion. L. camara might adapt to climate change better compared with C. tora. This comparative analysis of the future distributions of two invasive plants with contrasting habits demonstrates that temporal complementarity would prevail over the competition. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Physico-chemical thresholds in the distribution of fish species among French lakes

    Roubeix Vincent

    2017-01-01

    Full Text Available The management of lakes requires the definition of physico-chemical thresholds to be used for ecosystem preservation or restoration. According to the European Water Framework Directive, the limits between physico-chemical quality classes must be set consistently with biological quality elements. One way to do this consists in analyzing the response of aquatic communities to environmental gradients across monitoring sites and in identifying ecological community thresholds, i.e. zones in the gradients where the species turnover is the highest. In this study, fish data from 196 lakes in France were considered to derive ecological thresholds using the multivariate method of gradient forest. The analysis was performed on 25 species and 36 environmental parameters. The results revealed the highest importance of maximal water temperature in the distribution of fish species. Other important parameters included geographical factors, dissolved organic carbon concentration and water transparency, while nutrients appeared to have low influence. In spite of the diversity of species responses to the gradients, community thresholds were detected in the gradients of the most important physico-chemical parameters and of total phosphorus and nitrate concentrations as well. The thresholds identified in such macroecological study may highlight new patterns of species natural distribution and improve niche characterization. Moreover, when factors that may be influenced by human activities are involved, the thresholds could be used to set environmental standards for lake preservation.

  3. Climate and soil type together explain the distribution of microendemic species in a biodiversity hotspot.

    Romain Nattier

    Full Text Available The grasshopper genus Caledonula, endemic to New Caledonia, was studied to understand the evolution of species distributions in relation to climate and soil types. Based on a comprehensive sampling of 80 locations throughout the island, the genus was represented by five species, four of which are new to science, of which three are described here. All the species have limited distributions in New Caledonia. Bioclimatic niche modelling shows that all the species were found in association with a wet climate and reduced seasonality, explaining their restriction to the southern half of the island. The results suggest that the genus was ancestrally constrained by seasonality. A molecular phylogeny was reconstructed using two mitochondrial and two nuclear markers. The partially resolved tree showed monophyly of the species found on metalliferous soils, and molecular dating indicated a rather recent origin for the genus. Adaptation to metalliferous soils is suggested by both morphological changes and radiation on these soils. The genus Caledonula is therefore a good model to understand the origin of microendemism in the context of recent and mixed influences of climate and soil type.

  4. Climate and soil type together explain the distribution of microendemic species in a biodiversity hotspot.

    Nattier, Romain; Grandcolas, Philippe; Pellens, Roseli; Jourdan, Hervé; Couloux, Arnaud; Poulain, Simon; Robillard, Tony

    2013-01-01

    The grasshopper genus Caledonula, endemic to New Caledonia, was studied to understand the evolution of species distributions in relation to climate and soil types. Based on a comprehensive sampling of 80 locations throughout the island, the genus was represented by five species, four of which are new to science, of which three are described here. All the species have limited distributions in New Caledonia. Bioclimatic niche modelling shows that all the species were found in association with a wet climate and reduced seasonality, explaining their restriction to the southern half of the island. The results suggest that the genus was ancestrally constrained by seasonality. A molecular phylogeny was reconstructed using two mitochondrial and two nuclear markers. The partially resolved tree showed monophyly of the species found on metalliferous soils, and molecular dating indicated a rather recent origin for the genus. Adaptation to metalliferous soils is suggested by both morphological changes and radiation on these soils. The genus Caledonula is therefore a good model to understand the origin of microendemism in the context of recent and mixed influences of climate and soil type.

  5. Species abundance distributions in neutral models with immigration or mutation and general lifetimes.

    Lambert, Amaury

    2011-07-01

    We consider a general, neutral, dynamical model of biodiversity. Individuals have i.i.d. lifetime durations, which are not necessarily exponentially distributed, and each individual gives birth independently at constant rate λ. Thus, the population size is a homogeneous, binary Crump-Mode-Jagers process (which is not necessarily a Markov process). We assume that types are clonally inherited. We consider two classes of speciation models in this setting. In the immigration model, new individuals of an entirely new species singly enter the population at constant rate μ (e.g., from the mainland into the island). In the mutation model, each individual independently experiences point mutations in its germ line, at constant rate θ. We are interested in the species abundance distribution, i.e., in the numbers, denoted I(n)(k) in the immigration model and A(n)(k) in the mutation model, of species represented by k individuals, k = 1, 2, . . . , n, when there are n individuals in the total population. In the immigration model, we prove that the numbers (I(t)(k); k ≥ 1) of species represented by k individuals at time t, are independent Poisson variables with parameters as in Fisher's log-series. When conditioning on the total size of the population to equal n, this results in species abundance distributions given by Ewens' sampling formula. In particular, I(n)(k) converges as n → ∞ to a Poisson r.v. with mean γ/k, where γ : = μ/λ. In the mutation model, as n → ∞, we obtain the almost sure convergence of n (-1) A(n)(k) to a nonrandom explicit constant. In the case of a critical, linear birth-death process, this constant is given by Fisher's log-series, namely n(-1) A(n)(k) converges to α(k)/k, where α : = λ/(λ + θ). In both models, the abundances of the most abundant species are briefly discussed.

  6. Citizen science contributes to our knowledge of invasive plant species distributions

    Crall, Alycia W.; Jarnevich, Catherine S.; Young, Nicholas E.; Panke, Brendon; Renz, Mark; Stohlgren, Thomas

    2015-01-01

    Citizen science is commonly cited as an effective approach to expand the scale of invasive species data collection and monitoring. However, researchers often hesitate to use these data due to concerns over data quality. In light of recent research on the quality of data collected by volunteers, we aimed to demonstrate the extent to which citizen science data can increase sampling coverage, fill gaps in species distributions, and improve habitat suitability models compared to professionally generated data sets used in isolation. We combined data sets from professionals and volunteers for five invasive plant species (Alliaria petiolata, Berberis thunbergii, Cirsium palustre, Pastinaca sativa, Polygonum cuspidatum) in portions of Wisconsin. Volunteers sampled counties not sampled by professionals for three of the five species. Volunteers also added presence locations within counties not included in professional data sets, especially in southern portions of the state where professional monitoring activities had been minimal. Volunteers made a significant contribution to the known distribution, environmental gradients sampled, and the habitat suitability of P. cuspidatum. Models generated with professional data sets for the other four species performed reasonably well according to AUC values (>0.76). The addition of volunteer data did not greatly change model performance (AUC > 0.79) but did change the suitability surface generated by the models, making them more realistic. Our findings underscore the need to merge data from multiple sources to improve knowledge of current species distributions, and to predict their movement under present and future environmental conditions. The efficiency and success of these approaches require that monitoring efforts involve multiple stakeholders in continuous collaboration via established monitoring networks.

  7. Current Knowledge of Leishmania Vectors in Mexico: How Geographic Distributions of Species Relate to Transmission Areas

    González, Camila; Rebollar-Téllez, Eduardo A.; Ibáñez-Bernal, Sergio; Becker-Fauser, Ingeborg; Martínez-Meyer, Enrique; Peterson, A. Townsend; Sánchez-Cordero, Víctor

    2011-01-01

    Leishmaniases are a group of vector-borne diseases with different clinical manifestations caused by parasites transmitted by sand fly vectors. In Mexico, the sand fly Lutzomyia olmeca olmeca is the only vector proven to transmit the parasite Leishmania mexicana to humans, which causes leishmaniasis. Other vector species with potential medical importance have been obtained, but their geographic distributions and relation to transmission areas have never been assessed. We modeled the ecological niches of nine sand fly species and projected niches to estimate potential distributions by using known occurrences, environmental coverages, and the algorithms GARP and Maxent. All vector species were distributed in areas with known recurrent transmission, except for Lu. diabolica, which appeared to be related only to areas of occasional transmission in northern Mexico. The distribution of Lu. o. olmeca does not overlap with all reported cutaneous leishmaniasis cases, suggesting that Lu. cruciata and Lu. shannoni are likely also involved as primary vectors in those areas. Our study provides useful information of potential risk areas of leishmaniasis transmission in Mexico. PMID:22049037

  8. Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies.

    Vanreusel, Wouter; Maes, Dirk; Van Dyck, Hans

    2007-02-01

    Numerous models for predicting species distribution have been developed for conservation purposes. Most of them make use of environmental data (e.g., climate, topography, land use) at a coarse grid resolution (often kilometres). Such approaches are useful for conservation policy issues including reserve-network selection. The efficiency of predictive models for species distribution is usually tested on the area for which they were developed. Although highly interesting from the point of view of conservation efficiency, transferability of such models to independent areas is still under debate. We tested the transferability of habitat-based predictive distribution models for two regionally threatened butterflies, the green hairstreak (Callophrys rubi) and the grayling (Hipparchia semele), within and among three nature reserves in northeastern Belgium. We built predictive models based on spatially detailed maps of area-wide distribution and density of ecological resources. We used resources directly related to ecological functions (host plants, nectar sources, shelter, microclimate) rather than environmental surrogate variables. We obtained models that performed well with few resource variables. All models were transferable--although to different degrees--among the independent areas within the same broad geographical region. We argue that habitat models based on essential functional resources could transfer better in space than models that use indirect environmental variables. Because functional variables can easily be interpreted and even be directly affected by terrain managers, these models can be useful tools to guide species-adapted reserve management.

  9. Development of a position-sensitive fission counter and measurement of neutron flux distributions

    Yamagishi, Hideshi; Soyama, Kazuhiko; Kakuta, Tsunemi

    2001-08-01

    A position-sensitive fission counter (PSFC) that operates in high neutron flux and high gamma-ray background such as at the side of a power reactor vessel has been developed. Neutron detection using the PSFC with a solenoid electrode is based on a delay-line method. The PSFC that has the outer diameter of 25 mm and the sensitive length of 1000 mm was manufactured for investigation of the performances. The PSFC provided output current pulses that were sufficiently higher than the alpha noise, though the PSFC has a solenoid electrode and large electrode-capacitance. The S/N ratio of PSFC outputs proved to be higher than that of ordinary fission counters with 200 mm sensitive length. A performance test to measure neutron flux distributions by a neutron measuring system with the PSFC was carried out by the side of a graphite pile, W2.4 x H1.4 x L1.2 m, with neutron sources, Am-Be 370 GBq x 2. It was confirmed that the neutron flux distribution was well measured with the system. (author)

  10. Mechanistic species distribution modelling as a link between physiology and conservation.

    Evans, Tyler G; Diamond, Sarah E; Kelly, Morgan W

    2015-01-01

    Climate change conservation planning relies heavily on correlative species distribution models that estimate future areas of occupancy based on environmental conditions encountered in present-day ranges. The approach benefits from rapid assessment of vulnerability over a large number of organisms, but can have poor predictive power when transposed to novel environments and reveals little in the way of causal mechanisms that define changes in species distribution or abundance. Having conservation planning rely largely on this single approach also increases the risk of policy failure. Mechanistic models that are parameterized with physiological information are expected to be more robust when extrapolating distributions to future environmental conditions and can identify physiological processes that set range boundaries. Implementation of mechanistic species distribution models requires knowledge of how environmental change influences physiological performance, and because this information is currently restricted to a comparatively small number of well-studied organisms, use of mechanistic modelling in the context of climate change conservation is limited. In this review, we propose that the need to develop mechanistic models that incorporate physiological data presents an opportunity for physiologists to contribute more directly to climate change conservation and advance the field of conservation physiology. We begin by describing the prevalence of species distribution modelling in climate change conservation, highlighting the benefits and drawbacks of both mechanistic and correlative approaches. Next, we emphasize the need to expand mechanistic models and discuss potential metrics of physiological performance suitable for integration into mechanistic models. We conclude by summarizing other factors, such as the need to consider demography, limiting broader application of mechanistic models in climate change conservation. Ideally, modellers, physiologists and

  11. Species composition, distribution and abundance of chaetodontidae along reef transects in the Flores Sea

    Adrim, Mohammad; Hutomo, Malikusworo

    Observations on chaetodontid fishes were made by applying a visual census technique at 13 coral reef locations in the Flores Sea region in October and November 1984. These observations were made along 50 m transect lines, parallel to the shore or the reef edge at depths between 3 to 12 m. Twenty-three species of Chaetodontidae were observed, representing three genera: Chaetodon (20 species), Heniochus (2 species) and Forcipiger (1 species). Chaetodon kleini, C. trifasciatus, C. melannotus and C. baronessa proved to be the most abundant species, and among them C. kleini and C. trifasciatus were the most widely distributed ones. Chaetodon semeion and C. mertensi were the rarest species. The greatest number of individuals (77) was counted at station 4.268 near Tanjung Burung, Sumbawa, while the greatest number of species (14) was observed at station 4.257, north of Komodo. The lowest number of individuals (17) was counted at station 4.175 near P. Bahuluang, Salayer, while station 4.251 near Teluk Slawi, Komodo, was inhabited by the smallest numbver of species (2). Numerical classification by using the Bray Curtis dissimilarity index resulted in three groups of entities. The first group was characterized by predomination of C. kleini and the second by predomination of C. melannotus. The third one was a loose group not characterized by any predominant species. The analyses indicated that the similarities of the chaetodontid communities between locations are not related to the distance between them, but rather to habitat conditions. For example predomination of C. melannotus is strongly related to the predomination of soft coral. Compared to other areas of Indonesia, e.g. Bali, Seribu Islands, Batam, Sunda Strait, and Ambon Bay, the Flores Sea reefs have a more abundant and more diverse chaetodontid fauna.

  12. Distribution Pattern of Seahorse species (Genus: Hippocampus in Tamilnadu and Kerala Coasts of India

    Aaron Premnath LIPTON

    2013-02-01

    Full Text Available The survey along the Tamilnadu and Kerala coats of India reveled that six species of seahors (Hippocampus fuscus, H. kelloggi, H. kuda, H. histrix H. mohnikei and H. trimaculatus were distributed with different density. Out of the six species, H. fuscus, H. kuda and H. trimaculatus, were the commonly available species in all the observed areas. In Palk Bay, H. kuda was the dominant species constituting 49.10% of the total seahorses encountered. Hippocampus trimaculatus was the second dominant species which accounting 39.28%. The Gulf of Mannar region also most abounded with H. kuda (68.98% followed by H. trimaculatus (20.80%, H. fuscus (9.80%, H. kelloggi (2.23% and H. histrix (0.37%. In Kerala coast, H. trimaculatus was the dominant species (79.68% followed by H. kuda (9.89%, H. kelloggi (8.33% and H. fuscus (2.08%. To infer the variation of six seahorse species the morphometric and meristic characters were analysed. The important morphometric and meristic characters are trunk rings, tail rings, pectoral and dorsal fin rays, trunk length, tail length, coronet height, head length, snout length, snout depth and head depth. Variation in overall body shape, relative snout length, coronet height, number of tail ring was sufficient to separate the specimens to Hippocampus fuscus, H. kelloggi, H. kuda, H. histrix H. mohnikei and H.trimaculatus. The species density and diversity depends on the habitat and biogeography of those areas. Majority of seahorse fishing in Tamilnadu was by shrimp trawl, by-catch and very few target catch by divers also seen in some villages of Palk Bay and Gulf of Mannar region. The shrimp trawl by-catch only bringing more H. trimaculatus than the other species in Kerala coasts.

  13. Collision risks at sea: species composition and altitude distributions of birds in Danish offshore wind farms

    Blew, J.; Hoffmann, M.; Nehls, G. [BioConsult SH (Germany)

    2007-07-01

    This study investigates the collision risks of birds in operating offshore wind farms, focussing on all bird species present in the direct vicinity of the wind farms, their altitude distribution and reactions. The project was conducted jointly by BioConsult SH and the University of Hamburg in the two Danish offshore wind farms Horns Rev (North Sea) and Nysted (Baltic Sea) in the framework of a Danish-German cooperation and financed by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU). Data were collected between March 2005 and November 2006, using a ship anchored at the edge of the offshore wind farms. In this way, bird species of all sizes could be considered. Daytime observations yielded data on species composition, flight routes and potential reactions of the birds. Radar observations provided altitude distributions inside and outside the wind farm area and also reactions. The results shall help to further describe and assess the collision risk of different species groups. Since data analysis is still running, exemplary results will be presented here. 114 species have been recorded in Nysted and 99 in Horns Rev, approximately 65% of which have been observed inside the wind farm areas. Migrating birds seem to avoid flying into the wind farms, whereas individuals present in the areas for extended time periods utilize areas within the wind farms. While a barrier effect exists for species on migration, resident species probably have a higher collision risk. Raptors migrating during daylight frequently enter the wind farm area on their flight routes, correcting their flight paths in order to avoid collisions. Radar results show that during times of intensive migration, the proportion of birds flying at high altitudes and thus above windmill height is higher than in times of low migration intensity. Consequently, there is a lower proportion of migrating birds flying within the risk area. Data will be further analysed to

  14. Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions.

    Garnica, Sigisfredo; Spahn, Philipp; Oertel, Bernhard; Ammirati, Joseph; Oberwinkler, Franz

    2011-07-19

    Cortinarius species in section Calochroi display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1) C. arcuatorum, 2) C. aureofulvus, 3) C. elegantior and 4) C. napus, from populations distributed throughout the Old World, and portions of the New World (Central- and North America) based on genetic variation of 154 haplotype internal transcribed spacer (ITS) sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification. Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in C. arcuatorum and C. elegantior, while C. aureofulvus showed considerably less population structure and C. napus lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within C. arcuatorum, C. aureofulvus and C. elegantior show little or no morphological differentiation, whereas in C. napus there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of C. albobrunnoides and C. albobrunnoides var. violaceovelatus were identical to one another and are treated as one species with a wider range of geographic distribution under C. napus. Our results indicate that each of the Calochroi species has undergone a relatively independent evolutionary history, hypothesised as follows: 1) a widely distributed ancestral population of C. arcuatorum diverged into distinctive sympatric populations in the New World; 2) two divergent lineages in C

  15. Tracking the evolutionary history of Cortinarius species in section Calochroi, with transoceanic disjunct distributions

    Ammirati Joseph

    2011-07-01

    Full Text Available Abstract Background Cortinarius species in section Calochroi display local, clinal and circumboreal patterns of distribution across the Northern Hemisphere where these ectomycorrhizal fungi occur with host trees throughout their geographical range within a continent, or have disjunct intercontinental distributions, the origins of which are not understood. We inferred evolutionary histories of four species, 1 C. arcuatorum, 2 C. aureofulvus, 3 C. elegantior and 4 C. napus, from populations distributed throughout the Old World, and portions of the New World (Central- and North America based on genetic variation of 154 haplotype internal transcribed spacer (ITS sequences from 83 population samples. By describing the population structure of these species across their geographical distribution, we attempt to identify their historical migration and patterns of diversification. Results Models of population structure from nested clade, demographic and coalescent-based analyses revealed genetically differentiated and geographically structured haplotypes in C. arcuatorum and C. elegantior, while C. aureofulvus showed considerably less population structure and C. napus lacked sufficient genetic differentiation to resolve any population structure. Disjunct populations within C. arcuatorum, C. aureofulvus and C. elegantior show little or no morphological differentiation, whereas in C. napus there is a high level of homoplasy and phenotypic plasticity for veil and lamellae colour. The ITS sequences of the type specimens of C. albobrunnoides and C. albobrunnoides var. violaceovelatus were identical to one another and are treated as one species with a wider range of geographic distribution under C. napus. Conclusions Our results indicate that each of the Calochroi species has undergone a relatively independent evolutionary history, hypothesised as follows: 1 a widely distributed ancestral population of C. arcuatorum diverged into distinctive sympatric

  16. Biodiversity, Distributions and Adaptations of Arctic Species in the Context of Environmental Change

    Callaghan, Terry V. [Abisko Scientific Research Station, Abisko (Sweden); Bjoern, Lars Olof [Lund Univ. (Sweden). Dept. of Cell and Organism Biology; Chernov, Yuri [Russian Academy of Sciences, Moscow (Russian Federation). A.N. Severtsov Inst. of Evolutionary Morphology and Animal Ecology] (and others)

    2004-11-01

    adapted to the Arctic's climate: some can metabolize at temperatures down to -39 deg C. Cyanobacteria and algae have a wide range of adaptive strategies that allow them to avoid, or at least minimize UV injury. Microorganisms can tolerate most environmental conditions and they have short generation times which can facilitate rapid adaptation to new environments. In contrast, Arctic plant and animal species are very likely to change their distributions rather than evolve significantly in response to warming.

  17. The Analysis of Tree Species Distribution Information Extraction and Landscape Pattern Based on Remote Sensing Images

    Yi Zeng

    2017-08-01

    Full Text Available The forest ecosystem is the largest land vegetation type, which plays the role of unreplacement with its unique value. And in the landscape scale, the research on forest landscape pattern has become the current hot spot, wherein the study of forest canopy structure is very important. They determines the process and the strength of forests energy flow, which influences the adjustments of ecosystem for climate and species diversity to some extent. The extraction of influencing factors of canopy structure and the analysis of the vegetation distribution pattern are especially important. To solve the problems, remote sensing technology, which is superior to other technical means because of its fine timeliness and large-scale monitoring, is applied to the study. Taking Lingkong Mountain as the study area, the paper uses the remote sensing image to analyze the forest distribution pattern and obtains the spatial characteristics of canopy structure distribution, and DEM data are as the basic data to extract the influencing factors of canopy structure. In this paper, pattern of trees distribution is further analyzed by using terrain parameters, spatial analysis tools and surface processes quantitative simulation. The Hydrological Analysis tool is used to build distributed hydrological model, and corresponding algorithm is applied to determine surface water flow path, rivers network and basin boundary. Results show that forest vegetation distribution of dominant tree species present plaque on the landscape scale and their distribution have spatial heterogeneity which is related to terrain factors closely. After the overlay analysis of aspect, slope and forest distribution pattern respectively, the most suitable area for stand growth and the better living condition are obtained.

  18. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change.

    Zhang, Keliang; Yao, Linjun; Meng, Jiasong; Tao, Jun

    2018-09-01

    Paeonia (Paeoniaceae), an economically important plant genus, includes many popular ornamentals and medicinal plant species used in traditional Chinese medicine. Little is known about the properties of the habitat distribution and the important eco-environmental factors shaping the suitability. Based on high-resolution environmental data for current and future climate scenarios, we modeled the present and future suitable habitat for P. delavayi and P. rockii by Maxent, evaluated the importance of environmental factors in shaping their distribution, and identified distribution shifts under climate change scenarios. The results showed that the moderate and high suitable areas for P. delavayi and P. rockii encompassed ca. 4.46×10 5 km 2 and 1.89×10 5 km 2 , respectively. Temperature seasonality and isothermality were identified as the most critical factors shaping P. delavayi distribution, and UVB-4 and annual precipitation were identified as the most critical for shaping P. rockii distribution. Under the scenario with a low concentration of greenhouse gas emissions (RCP2.6), the range of both species increased as global warming intensified; however, under the scenario with higher concentrations of emissions (RCP8.5), the suitable habitat range of P. delavayi decreased while P. rockii increased. Overall, our prediction showed that a shift in distribution of suitable habitat to higher elevations would gradually become more significant. The information gained from this study should provide a useful reference for implementing long-term conservation and management strategies for these species. Copyright © 2018. Published by Elsevier B.V.

  19. Morphology, Diet Composition, Distribution and Nesting Biology of Four Lark Species in Mongolia

    Galbadrakh Mainjargal

    2013-12-01

    Full Text Available We aimed to enhance existing knowledge of four lark species (Mongolian lark , Horned lark, Eurasian skylark, and Lesser short-toed lark, with respect to nesting biology, distribution, and diet, using long-term dataset collected during 2000–2012. Nest and egg measurements substantially varied among species. For pooled data across species, the clutch size averaged 3.72 ± 1.13 eggs and did not differ among larks. Body mass of nestlings increased signi fi cantly with age at weighing. Daily increase in body mass of lark nestlings ranged between 3.09 and 3.89 gram per day. Unsurprisingly, the majority of lark locations occurred in steppe ecosystems, followed by human created systems; whereas only 1.8% of the pooled locations across species were observed in forest ecosystem. Diet composition did not vary among species in the proportions of major food categories consumed. The most commonly occurring food items were invertebrates and frequently consumed were being beetles (e.g. Coleoptera: Carabidae, Scarabaeidae, and Curculionidae and grasshoppers (e.g. Orthoptera: Acrididae, and their occurrences accounted for 63.7% of insect related food items. Among the fi ve morphological traits we measured, there were signi fi cant differences in wing span, body mass, bill, and tarsus; however tail lengths did not differ across four species.

  20. [Distribution of Candida species in vaginal specimens and evaluation of CHROMagar Candida medium].

    Gültekin, Berna; Yazici, Vesile; Aydin, Neriman

    2005-07-01

    Identification of Candida species is important to guide treatment in vulvovaginal candidiasis which is seen frequently and needs long-term therapy due to recurrence. The aim of this study was to determine the species distribution of Candida isolated from vaginal specimens and evaluation of CHROMagar Candida medium in the laboratory diagnosis. Samples from 80 patients who were clinically diagnosed as vaginitis have been analysed in our laboratory. Colonies appeared on CHROMagar Candida media after 48 hours of incubation at 35 degrees C were evaluated for their colors and characteristics. Candida strains were identified by germ tube test, growth on corn meal Tween 80 agar and when necessary also by API 20 C AUX commercial kit. A total of 84 Candida strains were isolated from 80 patients. Two different Candida species have been isolated from four (5%) of the samples. Among Candida strains isolated, 45 (53.6%) were C. albicans, 29 (34.5%) C. glabrata, 7 (8.3%) C. krusei, and 3 (3.6%) C. kefyr. All of the C. albicans and six of the seven C. krusei isolates have been identified correctly by CHROMagar Candida medium. These results showed that C. albicans is still the most frequently isolated species from vaginal samples. It was concluded that CHROMagar Candida medium is useful for identification of colonies due to frequently seen Candida species and also in differentiation of multiple Candida species grown on the same culture.

  1. DISTRIBUTION AND DIVERSITY OF FUSARIUM SPECIES ASSOCIATED WITH GRASSES IN TEN STATES THROUGHOUT PENINSULAR MALAYSIA

    NUR AIN IZZATI, M.Z

    2009-01-01

    Full Text Available Fusarium is one of the important genera associated with grasses as saprophytes, endophytes and pathogens. A study was carried out on distribution and diversity of Fusarium species associated with two groups of grasses in 10 states throughout Peninsular Malaysia i.e. agricultural grasses (Oryza sativa and Saccharum officinarum and non-agricultural grasses (Axonopus compressus, Centhotheca lappacea, Chloris barbata, Crysopogon aciculatus, Cyanadon dactylon, Dactyloctenium aegyptium, Digitaria ciliaris, Echinochloa colona, Eleusine indica, Eragrostis amabilis, Eragrostis malayana, Eragrostis uniloides, Ischaemum magnum, Panicum brevifolium, Panicum millaneum, Panicum repens, Paspalum commersonii, Paspalum conjugatum, Paspalum orbiculare, Pennisetum purpureum, Sacciolepis indica, Sporobolus diander and Sporobolus indicus. A total of 474 isolates were single-spored and identified by morphological characteristics. F. semitectum was frequently isolated (23.6%, followed by F. sacchari and F. fujikuroi with 15.4% and 14.6%, respectively. The other nine species were F. solani (10.3%, F. proliferatum (8.9%, F. oxysporum (7.4%, F. subglutinans (6.5%, F. equiseti (5.5%, F. verticillioides (3.4%, F. compactum (2.5%, F. chlamydosporum (1.1% and F. longipes (0.8%. Based on the Shannon-Weiner Index, F. solani was the highest (H' = 2.62 isolated from grasses. Species of Fusarium from O. sativa were widely diverse with 11 species, followed by non-agricultural grasses with nine species and S. officinarum with only six species. This is the first report on diversity of Fusarium associated with grasses in Malaysia.

  2. Distributed Evaluation of Local Sensitivity Analysis (DELSA), with application to hydrologic models

    Rakovec, O.; Hill, M. C.; Clark, M. P.; Weerts, A. H.; Teuling, A. J.; Uijlenhoet, R.

    2014-01-01

    This paper presents a hybrid local-global sensitivity analysis method termed the Distributed Evaluation of Local Sensitivity Analysis (DELSA), which is used here to identify important and unimportant parameters and evaluate how model parameter importance changes as parameter values change. DELSA uses derivative-based "local" methods to obtain the distribution of parameter sensitivity across the parameter space, which promotes consideration of sensitivity analysis results in the context of simulated dynamics. This work presents DELSA, discusses how it relates to existing methods, and uses two hydrologic test cases to compare its performance with the popular global, variance-based Sobol' method. The first test case is a simple nonlinear reservoir model with two parameters. The second test case involves five alternative "bucket-style" hydrologic models with up to 14 parameters applied to a medium-sized catchment (200 km2) in the Belgian Ardennes. Results show that in both examples, Sobol' and DELSA identify similar important and unimportant parameters, with DELSA enabling more detailed insight at much lower computational cost. For example, in the real-world problem the time delay in runoff is the most important parameter in all models, but DELSA shows that for about 20% of parameter sets it is not important at all and alternative mechanisms and parameters dominate. Moreover, the time delay was identified as important in regions producing poor model fits, whereas other parameters were identified as more important in regions of the parameter space producing better model fits. The ability to understand how parameter importance varies through parameter space is critical to inform decisions about, for example, additional data collection and model development. The ability to perform such analyses with modest computational requirements provides exciting opportunities to evaluate complicated models as well as many alternative models.

  3. Confidence limits with multiple channels and arbitrary probability distributions for sensitivity and expected background

    Perrotta, A

    2002-01-01

    A MC method is proposed to compute upper limits, in a pure Bayesian approach, when the errors associated with the experimental sensitivity and expected background content are not Gaussian distributed or not small enough to apply usual approximations. It is relatively easy to extend the procedure to the multichannel case (for instance when different decay branching, luminosities or experiments have to be combined). Some of the searches for supersymmetric particles performed in the DELPHI experiment at the LEP electron- positron collider use such a procedure to propagate systematics into the calculation of cross-section upper limits. One of these searches is described as an example. (6 refs).

  4. Modelling the spatial distribution of the nuisance mosquito species Anopheles plumbeus (Diptera: Culicidae) in the Netherlands.

    Ibañez-Justicia, Adolfo; Cianci, Daniela

    2015-05-01

    Landscape modifications, urbanization or changes of use of rural-agricultural areas can create more favourable conditions for certain mosquito species and therefore indirectly cause nuisance problems for humans. This could potentially result in mosquito-borne disease outbreaks when the nuisance is caused by mosquito species that can transmit pathogens. Anopheles plumbeus is a nuisance mosquito species and a potential malaria vector. It is one of the most frequently observed species in the Netherlands. Information on the distribution of this species is essential for risk assessments. The purpose of the study was to investigate the potential spatial distribution of An. plumbeus in the Netherlands. Random forest models were used to link the occurrence and the abundance of An. plumbeus with environmental features and to produce distribution maps in the Netherlands. Mosquito data were collected using a cross-sectional study design in the Netherlands, from April to October 2010-2013. The environmental data were obtained from satellite imagery and weather stations. Statistical measures (accuracy for the occurrence model and mean squared error for the abundance model) were used to evaluate the models performance. The models were externally validated. The maps show that forested areas (centre of the Netherlands) and the east of the country were predicted as suitable for An. plumbeus. In particular high suitability and high abundance was predicted in the south-eastern provinces Limburg and North Brabant. Elevation, precipitation, day and night temperature and vegetation indices were important predictors for calculating the probability of occurrence for An. plumbeus. The probability of occurrence, vegetation indices and precipitation were important for predicting its abundance. The AUC value was 0.73 and the error in the validation was 0.29; the mean squared error value was 0.12. The areas identified by the model as suitable and with high abundance of An. plumbeus, are

  5. Landscape- vs gap-level controls on the abundance of a fire-sensitive, late-successional tree species.

    Michael C. Wimberly; Thomas A. Spies

    2002-01-01

    Tsuga heterophylla (western hemlock), a fire-sensitive, late-successional tree species, is an important component of old-growth forests in the Pacific Northwest, USA. In the Oregon Coast Range, however, T. heterophylla occurs at low densities in or is completely absent from many conifer stands. We used a cellular automata-based...

  6. Density, size and distribution of stomata in 35 rainforest trees species in Central Amazonia

    Miguel Angelo Branco Camargo; Ricardo Antonio Marenco

    2011-01-01

    Stomata are turgor-operated valves that control water loss and CO2 uptake during photosynthesis, and thereby water relation and plant biomass accumulation is closely related to stomatal functioning. The aims of this work were to document how stomata are distributed on the leaf surface and to determine if there is any significant variation in stomatal characteristics among Amazonian tree species, and finally to study the relationship between stomatal density (S D) and tree height. Thirty five ...

  7. Density, size and distribution of stomata in 35 rainforest tree species in Central Amazonia

    Camargo, Miguel Angelo Branco; Marenco, Ricardo Antonio

    2011-01-01

    Stomata are turgor-operated valves that control water loss and CO2 uptake during photosynthesis, and thereby water relation and plant biomass accumulation is closely related to stomatal functioning. The aims of this work were to document how stomata are distributed on the leaf surface and to determine if there is any significant variation in stomatal characteristics among Amazonian tree species, and finally to study the relationship between stomatal density (S D) and tree height. Thirty five ...

  8. Distributional patterns of the South American species of Hyalella (Amphipoda: Hyalellidae)

    De los Ríos-Escalante, Patricio; Morrone, Juan J; Rivera, Reinaldo

    2012-01-01

    Distributional patterns of the South American species of the freshwater amphipod genus Hyalella were analysed using a panbiogeographic approach. Five generalized tracks were found: (1) northern Andes to Lake Titicaca (H. dielaii, H. meinerti, H. dybowskii, H.jelskii, H. lubominsky, and H. pauperocavae; (2) lake Titicaca (H. armata, H. cuprea, H. latinamus, H. lucifugax, H. montforti, H. neveulemairei, H. robusta, H. tiwanaku, H. simplex simplex, and H. solida); (3) central Andes (H. fossamanc...

  9. Species distributions and climate change - linking the past and the future

    Levinsky, Irina

    Climate change is predicted to have a marked impact on biodiversity, and changes in the distributions of numerous species have already been correlated with ongoing climate change. Climatic oscillations, however, were also the rule during the Pleistocene, and a look to the past may therefore shed ...... conditions during the Last Glacial Maximum, explore surrogates for the dispersal ability of African starlings and critically assess the tools I use and the assumptions behind them....

  10. New distribution data of some Pontic and submediterranean plant species in Serbia

    Tomović Gordana M.

    2003-01-01

    Full Text Available We present here the distribution of 11 rare Pontic and submediterranean plant species in Serbia based on field research, herbarium and literature data. These taxa were mapped on 10 x 10 km2 UTM grid. The following taxa were analyzed: Dianthus pinifolius Sibth. & Sm., Doronicum hungaricum Reichenb. fil., Sedum stefco Stefanov, Sempervivum zeleborii Schott, Trifolium pignantii Fauche & Chaub., Ranunculus illyricus L., Potentilla chrysantha Trev., Prunus tenella Batsch, Saxifraga bulbifera L., Linaria pelisseriana (L Miller and Gagea bohemica (Zausc Schul. & Schul.

  11. Design Optimization of Cyber-Physical Distributed Systems using IEEE Time-sensitive Networks (TSN)

    Pop, Paul; Lander Raagaard, Michael; Craciunas, Silviu S.

    2016-01-01

    to the optimization of distributed cyber-physical systems using real-time Ethernet for communication. Then, we formulate two novel optimization problems related to the scheduling and routing of TT and AVB traffic in TSN. Thus, we consider that we know the topology of the network as well as the set of TT and AVB flows......In this paper we are interested in safety-critical real-time applications implemented on distributed architectures supporting the Time-SensitiveNetworking (TSN) standard. The ongoing standardization of TSN is an IEEE effort to bring deterministic real-time capabilities into the IEEE 802.1 Ethernet...... standard supporting safety-critical systems and guaranteed Quality-of-Service. TSN will support Time-Triggered (TT) communication based on schedule tables, Audio-Video-Bridging (AVB) flows with bounded end-to-end latency as well as Best-Effort messages. We first present a survey of research related...

  12. Phase sensitive distributed vibration sensing based on ultraweak fiber Bragg grating array using double-pulse

    Liu, Tao; Wang, Feng; Zhang, Xuping; Zhang, Lin; Yuan, Quan; Liu, Yu; Yan, Zhijun

    2017-08-01

    A distributed vibration sensing technique using double-optical-pulse based on phase-sensitive optical time-domain reflectometry (ϕ-OTDR) and an ultraweak fiber Bragg grating (UWFBG) array is proposed for the first time. The single-mode sensing fiber is integrated with the UWFBG array that has uniform spatial interval and ultraweak reflectivity. The relatively high reflectivity of the UWFBG, compared with the Rayleigh scattering, gains a high signal-to-noise ratio for the signal, which can make the system achieve the maximum detectable frequency limited by the round-trip time of the probe pulse in fiber. A corresponding experimental ϕ-OTDR system with a 4.5 km sensing fiber integrated with the UWFBG array was setup for the evaluation of the system performance. Distributed vibration sensing is successfully realized with spatial resolution of 50 m. The sensing range of the vibration frequency can cover from 3 Hz to 9 kHz.

  13. Prevalence and distribution of Eimeria species in broiler chicken farms of different capacities

    Györke, Adriana; Pop, Loredana; Cozma, Vasile

    2013-01-01

    We conducted a survey in broiler farms from Romania to establish prevalence and distribution of Eimeria species using single PCR assay. We found Eimeria spp. in 21 (91%) out of 23 flocks, and in 11 (92%) out of 12 farms. Four species of Eimeria were identified: E. acervulina (21/23; 91%), E. tenella (14/23; 61%), E. maxima (5/23; 22%) and E. praecox (3/23; 13%). Infection with a single species (E. acervulina) was detected in 6 (26%) infected flocks originated from large farms. Mixed infections were found in 15 (65%) flocks and the most prevalent combination was E. acervulina + E. tenella (8/23; 35%). Four flocks (17%) harboured mixed infection with E. acervulina + E. tenella + E. maxima. E. acervulina was significantly more prevalent in flocks that received ionophores as anticoccidial feed additives. PMID:24309007

  14. Species distributions and climate change:current patterns and future scenarios for biodiversity

    Hof, Christian

    by shifts of their distributional ranges, which affects the spatial patterns of species richness and turnover. Global temperatures are projected to rise by 1.8 - 4°C until the end of the century; hence climate change will most likely leave further imprints on species and ecosystems. This PhD thesis aims......-thirds of the areas harboring the richest amphibian faunas may be heavily impacted by at least one of the major threats by 2080. The stability of the climatic niche influences the need for a species to track climate change via dispersal, or its potential to adapt to novel climatic conditions. I therefore explore...... the phylogenetic signal in climatic niches of the world's amphibians, which serves as a surrogate quantification of niche stability. Results indicate an overall tendency of phylogenetic signal to be present in realised climatic niches, but signal strength varies across biogeographical regions and among amphibian...

  15. Estimating species occurrence, abundance, and detection probability using zero-inflated distributions.

    Wenger, Seth J; Freeman, Mary C

    2008-10-01

    Researchers have developed methods to account for imperfect detection of species with either occupancy (presence absence) or count data using replicated sampling. We show how these approaches can be combined to simultaneously estimate occurrence, abundance, and detection probability by specifying a zero-inflated distribution for abundance. This approach may be particularly appropriate when patterns of occurrence and abundance arise from distinct processes operating at differing spatial or temporal scales. We apply the model to two data sets: (1) previously published data for a species of duck, Anas platyrhynchos, and (2) data for a stream fish species, Etheostoma scotti. We show that in these cases, an incomplete-detection zero-inflated modeling approach yields a superior fit to the data than other models. We propose that zero-inflated abundance models accounting for incomplete detection be considered when replicate count data are available.

  16. [National Trends in the Distribution of Candida Species Causing Candidemia in Japan from 2003 to 2014].

    Kakeya, Hiroshi; Yamada, Koichi; Kaneko, Yukihiro; Yanagihara, Katsunori; Tateda, Kazuhiro; Maesaki, Shigefumi; Takesue, Yoshio; Tomono, Kazunori; Kadota, Jun-Ichi; Kaku, Mitsuo; Miyazaki, Yoshitsugu; Kamei, Katsuhiko; Shibuya, Kazutoshi; Niki, Yoshitiho; Yoshida, Minoru; Sei, Yoshihiro

    2018-01-01

    The Epidemiological Investigation Committee for Human Mycoses in Japan performed a retrospective epidemiological survey of candidemia and causative Candida species. Data from 2003 to 2014 were collected from 10 Japanese university hospitals. A total of 328,318 blood cultures were included. The prevalence of fungi in all cultures and in positive cultures were 0.58±0.09% and 4.46±0.66%, respectively. Among the results that were positive for Candida species (N=1,921), Candida albicans was the most common species (39.5%) and was followed by Candida parapsilosis (23.3%), Candida glabrata (13.2%), Candida tropicalis (7.1%), Candida krusei (3.2%), and others (13.7%). During the last 6 years, the frequency of C. albicans has significantly decreased in Japan, while that of C. glabrata has increased. Additional surveys are needed to continuously monitor the trends in the distribution of candidemia.

  17. Distribution of Po-210 in two species of predatory marine fish from the Brazilian coast

    Mársico, E.T.; Ferreira, M.S.; São Clemente, S.C.; Gouvea, R.C.S.; Jesus, E.F.O.; Conti, C.C.; Conte Junior, C.A.; Kelecom, A.G.A.C.

    2014-01-01

    Polonium-210 ( 210 Po) concentration was quantified in the muscle tissue and organs of two predatory marine fishes (Genypterus brasiliensis and Cynoscion microlepidotus) from Cabo Frio, Rio de Janeiro, Brazil. The species C. microlepidotus, a benthic carnivore, registered higher 210 Po in its tissue. The organs associated with digestion displayed the maximum radionuclide compared with other organs. The average activity was 2 mBq kg −1 for G. brasiliensis and it was 6 mBq kg −1 for C. microlepidotus. The activity concentrations varied significantly between the species and among organs. -- Highlights: • We analyzed the distribution of 210 Po in two species of predator marine fish. • 210 Po tends to accumulate in some organs, which make this radionuclide radiotoxic. • The consumption of small quantities of fish can represent high potential of 210 Po exposure. • Data about 210 Po bioaccumulation in tropical predator marine fish are limited

  18. Zinc species distribution in EDTA-extract residues of zinc-contaminated soil

    Chang, S.-H.; Wei, Y.-L.; Wang, H. Paul

    2007-01-01

    Soil sample from a site heavily contaminated with >10 wt.% zinc is sampled and extracted with aqueous solutions of ethylene diamine tetra-acetic acid (EDTA) that is a reagent frequently used to extract heavy metals in soil remediation. Three liquid/soil ratios (5/1, 20/1, and 100/1) were used in the extracting experiment. The molecular environment of the residual Zn in the EDTA-extract residues of zinc-contaminated soil is investigated with XANES technique. The results indicate that EDTA does not show considerable preference of chelating for any particular Zn species during the extraction. Zn species distribution in the sampled soil is found to resemble that in all EDTA-extract residues; Zn(OH) 2 is determined as the major zinc species (60-70%), seconded by organic zinc (21-26%) and zinc oxide (9-14%)

  19. Effect of nitric acid for equal stabilization and sensitivity of different selenium species in electrothermal atomic absorption spectrometry

    Sahin, Feyime [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Volkan, Muervet [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)]. E-mail: ataman@metu.edu.tr

    2005-08-15

    Determination of selenium by electrothermal atomic absorption spectrometry (ETAAS) is complicated by the presence of different species of this analyte. The presence of different oxidation states (-II, IV and VI) may result in different sensitivities obtained for each species rendering impossible the use of a single species for calibration. These species also exhibit different behaviours regarding thermal stabilities; the temperature program must be provided to conform to this problem. Chemical modifiers are commonly used for thermal stabilization of selenium species. In this study, experiments were carried out to demonstrate the effect of nitric acid in the presence of chemical modifiers. Nickel and palladium + magnesium were selected as the most commonly used chemical modifiers. Using both aqueous and human serum solutions it has been demonstrated that although chemical modifiers provide thermal stabilization of species so that higher ashing temperatures can be used, equal sensitivities cannot be achieved unless nitric acid is also present. Selenite, selenate, selenomethionine and selenocystine were used in experiments. When equal sensitivities for all these species are achieved, determination of total selenium by ETAAS can be performed by using a single species as the standard; selenite was used in this study. Precision was 5.0% or better using peak height signals. There was no significant difference in detection limits (3s) when Ni or Pd + Mg(NO{sub 3}){sub 2} was used as chemical modifier; 37 and 35 pg of selenium were found to be the detection limits for Ni and Pd + Mg(NO{sub 3}){sub 2} chemical modifiers, respectively. For chemical modifications, either 5 {mu}g of Ni or 0.5 {mu}g of Pd and 5 {mu}g of Mg(NO{sub 3}){sub 2} were used; final solutions contained 2.5% HNO{sub 3}. In serum analyses, 10 {mu}g of Ni was used in presence of 2.5% HNO{sub 3}.

  20. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador

    Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven

    2017-01-01

    Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium. PMID:29267357

  1. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador.

    Manchego, Carlos E; Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven

    2017-01-01

    Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium.

  2. The importance of ultraviolet and near-infrared sensitivity for visual discrimination in two species of lacertid lizards.

    Martin, Mélissa; Le Galliard, Jean-François; Meylan, Sandrine; Loew, Ellis R

    2015-02-01

    Male and female Lacertid lizards often display conspicuous coloration that is involved in intraspecific communication. However, visual systems of Lacertidae have rarely been studied and the spectral sensitivity of their retinal photoreceptors remains unknown. Here, we characterise the spectral sensitivity of two Lacertid species from contrasting habitats: the wall lizard Podarcis muralis and the common lizard Zootoca vivipara. Both species possess a pure-cone retina with one spectral class of double cones and four spectral classes of single cones. The two species differ in the spectral sensitivity of the LWS cones, the relative abundance of UVS single cones (potentially more abundant in Z. vivipara) and the coloration of oil droplets. Wall lizards have pure vitamin A1-based photopigments, whereas common lizards possess mixed vitamin A1 and A2 photopigments, extending spectral sensitivity into the near infrared, which is a rare feature in terrestrial vertebrates. We found that spectral sensitivity in the UV and near infrared improves discrimination of small variations in throat coloration among Z. vivipara. Thus, retinal specialisations optimise chromatic resolution in common lizards, indicating that the visual system and visual signals might co-evolve. © 2015. Published by The Company of Biologists Ltd.

  3. Incorporating plant fossil data into species distribution models is not straightforward: Pitfalls and possible solutions

    Moreno-Amat, Elena; Rubiales, Juan Manuel; Morales-Molino, César; García-Amorena, Ignacio

    2017-08-01

    The increasing development of species distribution models (SDMs) using palaeodata has created new prospects to address questions of evolution, ecology and biogeography from wider perspectives. Palaeobotanical data provide information on the past distribution of taxa at a given time and place and its incorporation on modelling has contributed to advancing the SDM field. This has allowed, for example, to calibrate models under past climate conditions or to validate projected models calibrated on current species distributions. However, these data also bear certain shortcomings when used in SDMs that may hinder the resulting ecological outcomes and eventually lead to misleading conclusions. Palaeodata may not be equivalent to present data, but instead frequently exhibit limitations and biases regarding species representation, taxonomy and chronological control, and their inclusion in SDMs should be carefully assessed. The limitations of palaeobotanical data applied to SDM studies are infrequently discussed and often neglected in the modelling literature; thus, we argue for the more careful selection and control of these data. We encourage authors to use palaeobotanical data in their SDMs studies and for doing so, we propose some recommendations to improve the robustness, reliability and significance of palaeo-SDM analyses.

  4. No evidence that boron influences tree species distributions in lowland tropical forests of Panama.

    Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W

    2017-04-01

    It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics. No claim to original US government works New Phytologist © 2016 New Phytologist Trust.

  5. Coagulase-negative Staphylococci in Danish blood cultures: species distribution and antibiotic susceptibility.

    Jarløv, J O; Højbjerg, T; Busch-Sørensen, C; Scheibel, J; Møller, J K; Kolmos, H J; Wandall, D A

    1996-03-01

    The distribution and antibiotic susceptibility of coagulase-negative staphylococci (CoNS) isolated from blood cultures was examined in samples from hospitals covering most of Denmark. A total of 499 CoNS isolates were detected in 477 blood cultures from 340 patients and speciated as Staphylococcus epidermidis, 285; Staphylococcus hominis, 61; Staphylococcus haemolyticus, 43; Staphylococcus warneri, 12; Staphylococcus cohnii, 7; Staphylococcus saprophyticus, 4; Staphylococcus capitis, 2 and Staphylococcus lugdunensis, 1. Seventy-eight isolates could not be identified to species level and six were Micrococcus spp. In 108 (22.6%) blood culture sets, more than one CoNS strain were found, as detected by species identification, antibiogram and biotyping. Significantly more blood cultures from patients in university hospitals were drawn from central venous catheters. Comparing university and non-university hospitals, the overall antibiotic susceptibility among CoNS was only slightly different, except for methicillin and amikacin. The prevalence of methicillin-resistant strains was 35.1% in the university hospital strains vs. 25.3% in the non-university hospital strains. The overall prevalence of methicillin resistance was 32%. Great geographic variation in both species distribution and antibiotic resistance was observed. The high prevalence of S. epidermidis makes subtyping of this species important.

  6. Proximal Soil Sensing - A Contribution for Species Habitat Distribution Modelling of Earthworms in Agricultural Soils?

    Schirrmann, Michael; Joschko, Monika; Gebbers, Robin; Kramer, Eckart; Zörner, Mirjam; Barkusky, Dietmar; Timmer, Jens

    2016-01-01

    Earthworms are important for maintaining soil ecosystem functioning and serve as indicators of soil fertility. However, detection of earthworms is time-consuming, which hinders the assessment of earthworm abundances with high sampling density over entire fields. Recent developments of mobile terrestrial sensor platforms for proximal soil sensing (PSS) provided new tools for collecting dense spatial information of soils using various sensing principles. Yet, the potential of PSS for assessing earthworm habitats is largely unexplored. This study investigates whether PSS data contribute to the spatial prediction of earthworm abundances in species distribution models of agricultural soils. Proximal soil sensing data, e.g., soil electrical conductivity (EC), pH, and near infrared absorbance (NIR), were collected in real-time in a field with two management strategies (reduced tillage / conventional tillage) and sandy to loam soils. PSS was related to observations from a long-term (11 years) earthworm observation study conducted at 42 plots. Earthworms were sampled from 0.5 x 0.5 x 0.2 m³ soil blocks and identified to species level. Sensor data were highly correlated with earthworm abundances observed in reduced tillage but less correlated with earthworm abundances observed in conventional tillage. This may indicate that management influences the sensor-earthworm relationship. Generalized additive models and state-space models showed that modelling based on data fusion from EC, pH, and NIR sensors produced better results than modelling without sensor data or data from just a single sensor. Regarding the individual earthworm species, particular sensor combinations were more appropriate than others due to the different habitat requirements of the earthworms. Earthworm species with soil-specific habitat preferences were spatially predicted with higher accuracy by PSS than more ubiquitous species. Our findings suggest that PSS contributes to the spatial modelling of

  7. Modeling and Sensitivity Study of Consensus Algorithm-Based Distributed Hierarchical Control for DC Microgrids

    Meng, Lexuan; Dragicevic, Tomislav; Roldan Perez, Javier

    2016-01-01

    Distributed control methods based on consensus algorithms have become popular in recent years for microgrid (MG) systems. These kinds of algorithms can be applied to share information in order to coordinate multiple distributed generators within a MG. However, stability analysis becomes a challen......Distributed control methods based on consensus algorithms have become popular in recent years for microgrid (MG) systems. These kinds of algorithms can be applied to share information in order to coordinate multiple distributed generators within a MG. However, stability analysis becomes...... in the communication network, continuous-time methods can be inaccurate for this kind of dynamic study. Therefore, this paper aims at modeling a complete DC MG using a discrete-time approach in order to perform a sensitivity analysis taking into account the effects of the consensus algorithm. To this end......, a generalized modeling method is proposed and the influence of key control parameters, the communication topology and the communication speed are studied in detail. The theoretical results obtained with the proposed model are verified by comparing them with the results obtained with a detailed switching...

  8. Measurement of spatial dose-rate distribution using a position sensitive detector

    Emoto, T.; Torii, T.; Nozaki, T.; Ando, H.

    1994-01-01

    Recently, the radiation detectors using plastic scintillation fibers (PSF) have been developed to measure the positions exposed to radiation such as neutrons and high energy charged particles. In particular, the time of flight (TOF) method for measuring the difference of time that two directional signals of scintillation light reach both ends of a PSF is a rather simple method for the measurement of the spatial distribution of fast neutron fluence rate. It is possible to use the PSF in nuclear facility working areas because of its flexibility, small diameter and long length. In order to apply TOF method to measure spatial gamma dose rate distribution, the characteristic tests of a detector using PSFs were carried out. First, the resolution of irradiated positions and the counting efficiency were measured with collimated gamma ray. The sensitivity to unit dose rate was also obtained. The measurement of spatial dose rate distribution was also carried out. The sensor is made of ten bundled PSFs, and the experimental setup is described. The experiment and the results are reported. It was found that the PSF detector has the good performance to measure spatial gamma dose rate distribution. (K.I.)

  9. Late Quaternary glacier sensitivity to temperature and precipitation distribution in the Southern Alps of New Zealand

    Ann V. Rowan; Simon H. Brocklehurst; David M. Schultz; Mitchell A. Plummer; Leif S. Anderson; Neil F. Glasser

    2014-05-01

    Glaciers respond to climate variations and leave geomorphic evidence that represents an important terrestrial paleoclimate record. However, the accuracy of paleoclimate reconstructions from glacial geology is limited by the challenge of representing mountain meteorology in numerical models. Precipitation is usually treated in a simple manner and yet represents difficult-to-characterize variables such as amount, distribution, and phase. Furthermore, precipitation distributions during a glacial probably differed from present-day interglacial patterns. We applied two models to investigate glacier sensitivity to temperature and precipitation in the eastern Southern Alps of New Zealand. A 2-D model was used to quantify variations in the length of the reconstructed glaciers resulting from plausible precipitation distributions compared to variations in length resulting from change in mean annual air temperature and precipitation amount. A 1-D model was used to quantify variations in length resulting from interannual climate variability. Assuming that present-day interglacial values represent precipitation distributions during the last glacial, a range of plausible present-day precipitation distributions resulted in uncertainty in the Last Glacial Maximum length of the Pukaki Glacier of 17.1?km (24%) and the Rakaia Glacier of 9.3?km (25%), corresponding to a 0.5°C difference in temperature. Smaller changes in glacier length resulted from a 50% decrease in precipitation amount from present-day values (-14% and -18%) and from a 50% increase in precipitation amount (5% and 9%). Our results demonstrate that precipitation distribution can produce considerable variation in simulated glacier extents and that reconstructions of paleoglaciers should include this uncertainty.

  10. Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

    Kathleen A. Dwire; J. Boone Kauffman; John E. Baham

    2006-01-01

    The distribution of riparian plant species is largely driven by hydrologic and soil variables, and riparian plant communities frequently occur in relatively distinct zones along streamside elevational and soil textural gradients. In two montane meadows in northeast Oregon, USA, we examined plant species distribution in three riparian plant communities¡ªdefined as wet,...

  11. Fit-for-purpose: species distribution model performance depends on evaluation criteria -Dutch hoverflies as a case study

    Aguirre-Gutiérrez, J.; Carvalheiro, L.G.; Polce, C.; van Loon, E.E.; Raes, N.; Reemer, M.; Biesmeijer, J.C.

    2013-01-01

    Understanding species distributions and the factors limiting them is an important topic in ecology and conservation, including in nature reserve selection and predicting climate change impacts. While Species Distribution Models (SDM) are the main tool used for these purposes, choosing the best SDM

  12. Validity and sensitivity of a model for assessment of impacts of river floodplain reconstruction on protected and endangered species

    Nooij, R.J.W. de; Lotterman, K.M.; Sande, P.H.J. van de; Pelsma, T.; Leuven, R.S.E.W.; Lenders, H.J.R.

    2006-01-01

    Environmental Impact Assessment (EIA) must account for legally protected and endangered species. Uncertainties relating to the validity and sensitivity of EIA arise from predictions and valuation of effects on these species. This paper presents a validity and sensitivity analysis of a model (BIO-SAFE) for assessment of impacts of land use changes and physical reconstruction measures on legally protected and endangered river species. The assessment is based on links between species (higher plants, birds, mammals, reptiles and amphibians, butterflies and dragon- and damselflies) and ecotopes (landscape ecological units, e.g., river dune, soft wood alluvial forests), and on value assignment to protected and endangered species using different valuation criteria (i.e., EU Habitats and Birds directive, Conventions of Bern and Bonn and Red Lists). The validity of BIO-SAFE has been tested by comparing predicted effects of landscape changes on the diversity of protected and endangered species with observed changes in biodiversity in five reconstructed floodplains. The sensitivity of BIO-SAFE to value assignment has been analysed using data of a Strategic Environmental Assessment concerning the Spatial Planning Key Decision for reconstruction of the Dutch floodplains of the river Rhine, aimed at flood defence and ecological rehabilitation. The weights given to the valuation criteria for protected and endangered species were varied and the effects on ranking of alternatives were quantified. A statistically significant correlation (p < 0.01) between predicted and observed values for protected and endangered species was found. The sensitivity of the model to value assignment proved to be low. Comparison of five realistic valuation options showed that different rankings of scenarios predominantly occur when valuation criteria are left out of the assessment. Based on these results we conclude that linking species to ecotopes can be used for adequate impact assessments

  13. Are species photosynthetic characteristics good predictors of seedling post-hurricane demographic patterns and species spatiotemporal distribution in a hurricane impacted wet montane forest?

    Luke, Denneko; McLaren, Kurt

    2018-05-01

    In situ measurements of leaf level photosynthetic response to light were collected from seedlings of ten tree species from a tropical montane wet forest, the John Crow Mountains, Jamaica. A model-based recursive partitioning ('mob') algorithm was then used to identify species associations based on their fitted photosynthetic response curves. Leaf area dark respiration (RD) and light saturated maximum photosynthetic (Amax) rates were also used as 'mob' partitioning variables, to identify species associations based on seedling demographic patterns (from June 2007 to May 2010) following a hurricane (Aug. 2007) and the spatiotemporal distribution patterns of stems in 2006 and 2012. RD and Amax rates ranged from 1.14 to 2.02 μmol (CO2) m-2s-1 and 2.97-5.87 μmol (CO2) m-2s-1, respectively, placing the ten species in the range of intermediate shade tolerance. Several parsimonious species 'mob' groups were formed based on 1) interspecific differences among species response curves, 2) variations in post-hurricane seedling demographic trends and 3) RD rates and species spatiotemporal distribution patterns at aspects that are more or less exposed to hurricanes. The composition of parsimonious groupings based on photosynthetic curves was not concordant with the groups based on demographic trends but was partially concordant with the RD - species spatiotemporal distribution groups. Our results indicated that the influence of photosynthetic characteristics on demographic traits and species distributions was not straightforward. Rather, there was a complex pattern of interaction between ecophysiological and demographic traits, which determined species successional status, post-hurricane response and ultimately, species distribution at our study site.

  14. Predicting habitat suitability for rare plants at local spatial scales using a species distribution model.

    Gogol-Prokurat, Melanie

    2011-01-01

    If species distribution models (SDMs) can rank habitat suitability at a local scale, they may be a valuable conservation planning tool for rare, patchily distributed species. This study assessed the ability of Maxent, an SDM reported to be appropriate for modeling rare species, to rank habitat suitability at a local scale for four edaphic endemic rare plants of gabbroic soils in El Dorado County, California, and examined the effects of grain size, spatial extent, and fine-grain environmental predictors on local-scale model accuracy. Models were developed using species occurrence data mapped on public lands and were evaluated using an independent data set of presence and absence locations on surrounding lands, mimicking a typical conservation-planning scenario that prioritizes potential habitat on unsurveyed lands surrounding known occurrences. Maxent produced models that were successful at discriminating between suitable and unsuitable habitat at the local scale for all four species, and predicted habitat suitability values were proportional to likelihood of occurrence or population abundance for three of four species. Unfortunately, models with the best discrimination (i.e., AUC) were not always the most useful for ranking habitat suitability. The use of independent test data showed metrics that were valuable for evaluating which variables and model choices (e.g., grain, extent) to use in guiding habitat prioritization for conservation of these species. A goodness-of-fit test was used to determine whether habitat suitability values ranked habitat suitability on a continuous scale. If they did not, a minimum acceptable error predicted area criterion was used to determine the threshold for classifying habitat as suitable or unsuitable. I found a trade-off between model extent and the use of fine-grain environmental variables: goodness of fit was improved at larger extents, and fine-grain environmental variables improved local-scale accuracy, but fine-grain variables

  15. Uptake and internalisation of copper by three marine microalgae: comparison of copper-sensitive and copper-tolerant species.

    Levy, Jacqueline L; Angel, Brad M; Stauber, Jennifer L; Poon, Wing L; Simpson, Stuart L; Cheng, Shuk Han; Jolley, Dianne F

    2008-08-29

    Although it has been well established that different species of marine algae have different sensitivities to metals, our understanding of the physiological and biochemical basis for these differences is limited. This study investigated copper adsorption and internalisation in three algal species with differing sensitivities to copper. The diatom Phaeodactylum tricornutum was particularly sensitive to copper, with a 72-h IC50 (concentration of copper to inhibit growth rate by 50%) of 8.0 microg Cu L(-1), compared to the green algae Tetraselmis sp. (72-h IC50 47 microg Cu L(-1)) and Dunaliella tertiolecta (72-h IC50 530 microg Cu L(-1)). At these IC50 concentrations, Tetraselmis sp. had much higher intracellular copper (1.97+/-0.01 x 10(-13)g Cu cell(-1)) than P. tricornutum (0.23+/-0.19 x 10(-13)g Cu cell(-1)) and D. tertiolecta (0.59+/-0.05 x 10(-13)g Cu cell(-1)), suggesting that Tetraselmis sp. effectively detoxifies copper within the cell. By contrast, at the same external copper concentration (50 microg L(-1)), D. tertiolecta appears to better exclude copper than Tetraselmis sp. by having a slower copper internalisation rate and lower internal copper concentrations at equivalent extracellular concentrations. The results suggest that the use of internal copper concentrations and net uptake rates alone cannot explain differences in species-sensitivity for different algal species. Model prediction of copper toxicity to marine biota and understanding fundamental differences in species-sensitivity will require, not just an understanding of water quality parameters and copper-cell binding, but also further knowledge of cellular detoxification mechanisms.

  16. Ecological relationships of meso-scale distribution in 25 neotropical vertebrate species.

    Michalski, Lincoln José; Norris, Darren; de Oliveira, Tadeu Gomes; Michalski, Fernanda

    2015-01-01

    Vertebrates are a vital ecological component of Amazon forest biodiversity. Although vertebrates are a functionally important part of various ecosystem services they continue to be threatened by anthropogenic impacts throughout the Amazon. Here we use a standardized, regularly spaced arrangement of camera traps within 25km2 to provide a baseline assessment of vertebrate species diversity in a sustainable use protected area in the eastern Brazilian Amazon. We examined seasonal differences in the per species encounter rates (number of photos per camera trap and number of cameras with photos). Generalized linear models (GLMs) were then used to examine the influence of five variables (altitude, canopy cover, basal area, distance to nearest river and distance to nearest large river) on the number of photos per species and on functional groups. GLMs were also used to examine the relationships between large predators [Jaguar (Panthera onca) and Puma (Puma concolor)] and their prey. A total of 649 independent photos of 25 species were obtained from 1,800 camera trap days (900 each during wet and dry seasons). Only ungulates and rodents showed significant seasonal differences in the number of photos per camera. The number of photos differed between seasons for only three species (Mazama americana, Dasyprocta leporina and Myoprocta acouchy) all of which were photographed more (3 to 10 fold increase) during the wet season. Mazama americana was the only species where a significant difference was found in occupancy, with more photos in more cameras during the wet season. For most groups and species variation in the number of photos per camera was only explained weakly by the GLMs (deviance explained ranging from 10.3 to 54.4%). Terrestrial birds (Crax alector, Psophia crepitans and Tinamus major) and rodents (Cuniculus paca, Dasyprocta leporina and M. acouchy) were the notable exceptions, with our GLMs significantly explaining variation in the distribution of all species

  17. Ecological relationships of meso-scale distribution in 25 neotropical vertebrate species.

    Lincoln José Michalski

    Full Text Available Vertebrates are a vital ecological component of Amazon forest biodiversity. Although vertebrates are a functionally important part of various ecosystem services they continue to be threatened by anthropogenic impacts throughout the Amazon. Here we use a standardized, regularly spaced arrangement of camera traps within 25km2 to provide a baseline assessment of vertebrate species diversity in a sustainable use protected area in the eastern Brazilian Amazon. We examined seasonal differences in the per species encounter rates (number of photos per camera trap and number of cameras with photos. Generalized linear models (GLMs were then used to examine the influence of five variables (altitude, canopy cover, basal area, distance to nearest river and distance to nearest large river on the number of photos per species and on functional groups. GLMs were also used to examine the relationships between large predators [Jaguar (Panthera onca and Puma (Puma concolor] and their prey. A total of 649 independent photos of 25 species were obtained from 1,800 camera trap days (900 each during wet and dry seasons. Only ungulates and rodents showed significant seasonal differences in the number of photos per camera. The number of photos differed between seasons for only three species (Mazama americana, Dasyprocta leporina and Myoprocta acouchy all of which were photographed more (3 to 10 fold increase during the wet season. Mazama americana was the only species where a significant difference was found in occupancy, with more photos in more cameras during the wet season. For most groups and species variation in the number of photos per camera was only explained weakly by the GLMs (deviance explained ranging from 10.3 to 54.4%. Terrestrial birds (Crax alector, Psophia crepitans and Tinamus major and rodents (Cuniculus paca, Dasyprocta leporina and M. acouchy were the notable exceptions, with our GLMs significantly explaining variation in the distribution of all

  18. The roles of competition and habitat in the dynamics of populations and species distributions.

    Yackulic, Charles B; Reid, Janice; Nichols, James D; Hines, James E; Davis, Raymond; Forsman, Eric

    2014-02-01

    The role of competition in structuring biotic communities at fine spatial scales is well known from detailed process-based studies. Our understanding of competition's importance at broader scales is less resolved and mainly based on static species distribution maps. Here, we bridge this gap by examining the joint occupancy dynamics of an invading species (Barred Owl, Strix varia) and a resident species (Northern Spotted Owl, Strix occidentalis caurina) in a 1000-km study area over a 22-year period. Past studies of these competitors have focused on the dynamics of one species at a time, hindering efforts to parse out the roles of habitat and competition and to forecast the future of the resident species. In addition, while these studies accounted for the imperfect detection of the focal species, no multi-season analysis of these species has accounted for the imperfect detection of the secondary species, potentially biasing inference. We analyzed survey data using models that combine the general multistate-multi-season occupancy modeling framework with autologistic modeling, allowing us to account for important aspects of our study system. We found that local extinction probability increases for each species when the other is present; however, the effect of the invader on the resident is greater. Although the species prefer different habitats, these habitats are highly correlated at the patch scale, and the impacts of invader on the resident are greatest in patches that would otherwise be optimal. As a consequence, competition leads to a weaker relationship between habitat and Northern Spotted Owl occupancy. Colonization and extinction rates of the invader are closely related to neighborhood occupancy, and over the first half of the study the availability of colonists limited the rate of population growth. Competition is likely to exclude the resident species, both through its immediate effects on local extinction and by indirectly lowering colonization rates as

  19. Biodiversity and the Lotka-Volterra theory of species interactions: open systems and the distribution of logarithmic densities.

    Wilson, William G; Lundberg, Per

    2004-09-22

    Theoretical interest in the distributions of species abundances observed in ecological communities has focused recently on the results of models that assume all species are identical in their interactions with one another, and rely upon immigration and speciation to promote coexistence. Here we examine a one-trophic level system with generalized species interactions, including species-specific intraspecific and interspecific interaction strengths, and density-independent immigration from a regional species pool. Comparisons between results from numerical integrations and an approximate analytic calculation for random communities demonstrate good agreement, and both approaches yield abundance distributions of nearly arbitrary shape, including bimodality for intermediate immigration rates.

  20. Distribution and abundance of diatom species from coastal waters of Karachi, Pakistan

    Khokhar, F. N.; Burhan, Z.; Iqbal, P.; Abbasi, J.; Siddiqui, P.

    2016-01-01

    This is the first comprehensive study on the distribution and abundance of diatom species from the coastal and nearshore waters of Karachi, Pakistan, bordering northern Arabian Sea. A total of 20 genera are recorded in high abundance (Cerataulina, Chaetoceros, Coscinodiscus, Cylindrotheca, Eucampia, Guinardia, Haslea, Hemiaulus, Lauderia, Lennoxia, Leptocylindrus, Navicula, Nitzschia, Trieres, Planktoniella, Pleurosigma, Pseudo-nitzschia, Rhizosolenia, Thalassionema and Thalassiosira). The most abundant genera were observed Guinardia, Chaetoceros, Leptocylindrus, Nitzschia and Lennoxia at all stations. Manora coastal station (MI-1) had high abundance corresponding with high Chlorophyll a (130 meu gL- l) values. Minimum abundance and low chlorophyll a value (0.05μgL-l) were observed at Mubarak Village coastal station (MV-1). Diatom abundance showed significant correlation with Chlorophyll a. In present study 12 centric and 8 pennate forms were recorded and similarly high diversity of centric taxa was observed compared to pennate forms. A total of 134 species are recorded of which 40 species were observed at four stations, 31species at three stations, 23 at two stations and 40 species only at one station. The total phytoplankton and diatom peak abundance was observed