WorldWideScience

Sample records for species mangrove extinction

  1. The loss of species: mangrove extinction risk and geographic areas of global concern.

    Science.gov (United States)

    Polidoro, Beth A; Carpenter, Kent E; Collins, Lorna; Duke, Norman C; Ellison, Aaron M; Ellison, Joanna C; Farnsworth, Elizabeth J; Fernando, Edwino S; Kathiresan, Kandasamy; Koedam, Nico E; Livingstone, Suzanne R; Miyagi, Toyohiko; Moore, Gregg E; Ngoc Nam, Vien; Ong, Jin Eong; Primavera, Jurgenne H; Salmo, Severino G; Sanciangco, Jonnell C; Sukardjo, Sukristijono; Wang, Yamin; Yong, Jean Wan Hong

    2010-04-08

    Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced.

  2. The loss of species: mangrove extinction risk and geographic areas of global concern.

    Directory of Open Access Journals (Sweden)

    Beth A Polidoro

    2010-04-01

    Full Text Available Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16% are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced.

  3. A Global Trend towards the Loss of Evolutionarily Unique Species in Mangrove Ecosystems.

    Directory of Open Access Journals (Sweden)

    Barnabas H Daru

    Full Text Available The mangrove biome stands out as a distinct forest type at the interface between terrestrial, estuarine, and near-shore marine ecosystems. However, mangrove species are increasingly threatened and experiencing range contraction across the globe that requires urgent conservation action. Here, we assess the spatial distribution of mangrove species richness and evolutionary diversity, and evaluate potential predictors of global declines and risk of extinction. We found that human pressure, measured as the number of different uses associated with mangroves, correlated strongly, but negatively, with extinction probability, whereas species ages were the best predictor of global decline, explaining 15% of variation in extinction risk. Although the majority of mangrove species are categorised by the IUCN as Least Concern, our finding that the more threatened species also tend to be those that are more evolutionarily unique is of concern because their extinction would result in a greater loss of phylogenetic diversity. Finally, we identified biogeographic regions that are relatively species-poor but rich in evolutionary history, and suggest these regions deserve greater conservation priority. Our study provides phylogenetic information that is important for developing a unified management plan for mangrove ecosystems worldwide.

  4. A Global Trend towards the Loss of Evolutionarily Unique Species in Mangrove Ecosystems.

    Science.gov (United States)

    Daru, Barnabas H; Yessoufou, Kowiyou; Mankga, Ledile T; Davies, T Jonathan

    2013-01-01

    The mangrove biome stands out as a distinct forest type at the interface between terrestrial, estuarine, and near-shore marine ecosystems. However, mangrove species are increasingly threatened and experiencing range contraction across the globe that requires urgent conservation action. Here, we assess the spatial distribution of mangrove species richness and evolutionary diversity, and evaluate potential predictors of global declines and risk of extinction. We found that human pressure, measured as the number of different uses associated with mangroves, correlated strongly, but negatively, with extinction probability, whereas species ages were the best predictor of global decline, explaining 15% of variation in extinction risk. Although the majority of mangrove species are categorised by the IUCN as Least Concern, our finding that the more threatened species also tend to be those that are more evolutionarily unique is of concern because their extinction would result in a greater loss of phylogenetic diversity. Finally, we identified biogeographic regions that are relatively species-poor but rich in evolutionary history, and suggest these regions deserve greater conservation priority. Our study provides phylogenetic information that is important for developing a unified management plan for mangrove ecosystems worldwide.

  5. Use of Mangroves by Lemurs.

    Science.gov (United States)

    Gardner, Charlie J

    Despite an increasing recognition of the ecosystem services provided by mangroves, we know little about their role in maintaining terrestrial biodiversity, including primates. Madagascar's lemurs are a top global conservation priority, with 94 % of species threatened with extinction, but records of their occurrence in mangroves are scarce. I used a mixed-methods approach to collect published and unpublished observations of lemurs in mangroves: I carried out a systematic literature search and supplemented this with a targeted information request to 1243 researchers, conservation and tourism professionals, and others who may have visited mangroves in Madagascar. I found references to, or observations of, at least 23 species in 5 families using mangroves, representing >20% of lemur species and >50% of species whose distributions include mangrove areas. Lemurs used mangroves for foraging, sleeping, and traveling between terrestrial forest patches, and some were observed as much as 3 km from the nearest permanently dry land. However, most records were anecdotal and thus tell us little about lemur ecology in this habitat. Mangroves are more widely used by lemurs than has previously been recognized and merit greater attention from primate researchers and conservationists in Madagascar.

  6. Molecular phylogeny of mangroves IV. nature and extent of intra-specific genetic variation and species diversity in mangroves

    International Nuclear Information System (INIS)

    Parida, A.; Parani, M.; Lakshmi, M.; Elango, S.; Ram, N.; Anuratha, C.S.

    1998-01-01

    Mangroves occupy estuarine ecosystems in the tropical regions of the world. Despite their highly productive nature and the protective roles they play in the coastal region, the ecosystem as a whole is under severe threat due to various climatic and anthropogenic factors. Therefore, the need for conservation of mangroves is widely emphasised. However, information on existing genetic diversity based on which a strategy for genetic conservation is to be drawn is not available for mangroves. This is primarily because conventional genetic analysis is difficult in these species for various reasons. Therefore, as an aid to our on-going conservation programme, efforts were made to assess the nature and extent of diversity in a number of mangrove species of the Indian coast using molecular markers. The nature and extent of intra-population diversity in sixteen mangrove species and detailed analysis of inter-population genetic polymorphism in four species, Acanthus ilicifolius, Excoecaria agallocha, Avicennia spp and Rhizophora (species and hybrid), is reported in the present communication. (author)

  7. Mangroves as alien species: the case of Hawaii

    Science.gov (United States)

    James A. Allen

    1998-01-01

    Prior to the early 1900s, there were no mangroves in the Hawaiian Archipelago. In 1902, Rhizophora mangle was introduced on the island of Molokai, primarily for the purpose of stabilizing coastal mud flats. This species is now well established in Hawaii, and is found on nearly all of the major islands. At least five other species of mangroves or...

  8. mangrove litter production and seasonality of dominant species

    African Journals Online (AJOL)

    L.A

    storminess, and sea-level rise (Snedaker, 1995; Nigel, 1998). In the last .... mangrove species (three-levels) were entered as fixed factors, with the total litter components ..... Mangroves and climate change in the Florida and Caribbean region:.

  9. Molecular phylogeny of mangroves IV. nature and extent of intra-specific genetic variation and species diversity in mangroves

    Energy Technology Data Exchange (ETDEWEB)

    Parida, A; Parani, M; Lakshmi, M; Elango, S; Ram, N; Anuratha, C S [M.S. Swaminathan Research Foundation, Taramani, Madras (India)

    1998-10-01

    Mangroves occupy estuarine ecosystems in the tropical regions of the world. Despite their highly productive nature and the protective roles they play in the coastal region, the ecosystem as a whole is under severe threat due to various climatic and anthropogenic factors. Therefore, the need for conservation of mangroves is widely emphasised. However, information on existing genetic diversity based on which a strategy for genetic conservation is to be drawn is not available for mangroves. This is primarily because conventional genetic analysis is difficult in these species for various reasons. Therefore, as an aid to our on-going conservation programme, efforts were made to assess the nature and extent of diversity in a number of mangrove species of the Indian coast using molecular markers. The nature and extent of intra-population diversity in sixteen mangrove species and detailed analysis of inter-population genetic polymorphism in four species, Acanthus ilicifolius, Excoecaria agallocha, Avicennia spp and Rhizophora (species and hybrid), is reported in the present communication. (author) 25 refs, 2 figs, 2 tabs

  10. Separating Mangrove Species and Conditions Using Laboratory Hyperspectral Data: A Case Study of a Degraded Mangrove Forest of the Mexican Pacific

    Directory of Open Access Journals (Sweden)

    Chunhua Zhang

    2014-11-01

    Full Text Available Given the scale and rate of mangrove loss globally, it is increasingly important to map and monitor mangrove forest health in a timely fashion. This study aims to identify the conditions of mangroves in a coastal lagoon south of the city of Mazatlán, Mexico, using proximal hyperspectral remote sensing techniques. The dominant mangrove species in this area includes the red (Rhizophora mangle, the black (Avicennia germinans and the white (Laguncularia racemosa mangrove. Moreover, large patches of poor condition black and red mangrove and healthy dwarf black mangrove are commonly found. Mangrove leaves were collected from this forest representing all of the aforementioned species and conditions. The leaves were then transported to a laboratory for spectral measurements using an ASD FieldSpec® 3 JR spectroradiometer (Analytical Spectral Devices, Inc., USA. R2 plot, principal components analysis and stepwise discriminant analyses were then used to select wavebands deemed most appropriate for further mangrove classification. Specifically, the wavebands at 520, 560, 650, 710, 760, 2100 and 2230 nm were selected, which correspond to chlorophyll absorption, red edge, starch, cellulose, nitrogen and protein regions of the spectrum. The classification and validation indicate that these wavebands are capable of identifying mangrove species and mangrove conditions common to this degraded forest with an overall accuracy and Khat coefficient higher than 90% and 0.9, respectively. Although lower in accuracy, the classifications of the stressed (poor condition and dwarf mangroves were found to be satisfactory with accuracies higher than 80%. The results of this study indicate that it could be possible to apply laboratory hyperspectral data for classifying mangroves, not only at the species level, but also according to their health conditions.

  11. Growth Response of Selected Mangrove Species to Domestic ...

    African Journals Online (AJOL)

    The sewage system of Dar es Salaam City, Tanzania, serves only 15% of the population, making sewage one of the leading sources of marine pollution. This study was initiated to assess the potential of peri-urban mangrove forests as filters and phyto-remediators of sewage and the growth of two mangrove species under ...

  12. High-resolution pattern of mangrove species distribution is controlled by surface elevation

    Science.gov (United States)

    Leong, Rick C.; Friess, Daniel A.; Crase, Beth; Lee, Wei Kit; Webb, Edward L.

    2018-03-01

    Mangrove vegetation species respond to multiple environmental gradients, and an enhanced understanding of how mangrove species are distributed across these gradients will facilitate conservation and management. Many environmental gradients correlate with tidal inundation; however small-scale inundation patterns resulting from microtopographical changes are difficult to capture empirically. In contrast, surface elevation is often a suitable, measurable and cost-effective proxy for inundation. This study investigated the relationships between species distribution and surface elevation in a mangrove forest in northwest Singapore. Through high-resolution land surveying, we developed a digital elevation model (DEM) and conducted a comprehensive survey of 4380 trees with a stem diameter ≥ 5 cm. A total of 15 species were encountered, and elevation envelopes were generated for 12. Species envelopes were distributed along an elevation continuum, with most species overlapping within the continuum. Spatial autocorrelation (SAC) was present for nine of the 15 species, and when taken into account, species ordering was modified across the elevation continuum. The presence of SAC strongly reinforces the need for research to control for SAC: classical spatial description of mangrove species distribution should be revised to account for ecological factors. This study suggests that (1) surface elevation applies strong controls on species distribution and (2) most mangroves at our study site have similar physiological tolerances.

  13. PEMBANGUNAN DATABASE MANGROVE UNTUK BIODIVERSITY INFORMATICS BIOFARMAKA IPB

    Directory of Open Access Journals (Sweden)

    Yeni Herdiyeni

    2014-12-01

    Full Text Available Mangroves are a source of traditional medicine that can be used as a source of bioactive compounds. With the conversion of mangrove ecosystem into another designation led to the extinction of mangrove ecosystems. Therefore we need a good management of natural resources. In natural resource management, biodiversity information is needed to sustain the species utilization, exploration potential of the species and their biological and ecological monitoring, policy making, and for the development of biotechnology innovation. Research center of IPB Biopharmaca (Institute for Research and Community Services of Bogor Agricultural University has the mandate to conduct research from upstream to downstream in the medicinal field. This study develops Indonesian mangrove biodiversity database for Biodiversity Informatics. Biodiversity informatics (BI is the development of computer-based technologies for the management of biodiversity information. BI can be used to improve the knowledge management (knowledge management, exploration, analysis, synthesis, and interpretation of data ranging from the level of genomic biodiversity, species level to the ecosystem level. From the results of this study are expected data, information and knowledge of natural wealth mangroves can be managed properly so that the preservation of natural resources can be properly maintained and can be used in particular to the field of medicinal studies.

  14. The ethics of reviving long extinct species.

    Science.gov (United States)

    Sandler, Ronald

    2014-04-01

    There now appears to be a plausible pathway for reviving species that have been extinct for several decades, centuries, or even millennia. I conducted an ethical analysis of de-extinction of long extinct species. I assessed several possible ethical considerations in favor of pursuing de-extinction: that it is a matter of justice; that it would reestablish lost value; that it would create new value; and that society needs it as a conservation last resort. I also assessed several possible ethical arguments against pursuing de-extinction: that it is unnatural; that it could cause animal suffering; that it could be ecologically problematic or detrimental to human health; and that it is hubristic. There are reasons in favor of reviving long extinct species, and it can be ethically acceptable to do so. However, the reasons in favor of pursuing de-extinction do not have to do with its usefulness in species conservation; rather, they concern the status of revived species as scientific and technological achievements, and it would be ethically problematic to promote de-extinction as a significant conservation strategy, because it does not prevent species extinctions, does not address the causes of extinction, and could be detrimental to some species conservation efforts. Moreover, humanity does not have a responsibility or obligation to pursue de-extinction of long extinct species, and reviving them does not address any urgent problem. Therefore, legitimate ecological, political, animal welfare, legal, or human health concerns associated with a de-extinction (and reintroduction) must be thoroughly addressed for it to be ethically acceptable. © 2013 Society for Conservation Biology.

  15. Drifting propagules and receding swamps: genetic footprints of mangrove recolonization and dispersal along tropical coasts.

    Science.gov (United States)

    Nettel, Alejandro; Dodd, Richard S

    2007-04-01

    Two issues that have captured the attention of tropical plant evolutionary biologists in recent years are the relative role of long distance dispersal (LDD) over vicariance in determining plant distributions and debate about the extent that Quaternary climatic changes affected tropical species. Propagules of some mangrove species are assumed to be capable of LDD due to their ability to float and survive for long periods of time in salt water. Mangrove species responded to glaciations with a contraction of their range. Thus, widespread mangrove species are an ideal system to study LDD and recolonization in the tropics. We present phylogenetic and phylogeographic analyses based on internal transcribed spacers region (ITS) sequences, chloroplast DNA (cpDNA), and amplified fragment length polymorphisms (AFLPs) of genomic DNA that demonstrate recent LDD across the Atlantic, rejecting the hypothesis of vicariance for the widespread distribution of the black mangrove (Avicennia germinans). Northern latitude populations likely became extinct during the late Quaternary due to frosts and aridification; these locations were recolonized afterward from southern populations. In some low latitude regions populations went extinct or were drastically reduced during the Quaternary because of lack of suitable habitat as sea levels changed. Our analyses show that low latitude Pacific populations of A. germinans harbor more diversity and reveal deeper divergence than Atlantic populations. Implications for our understanding of phylogeography of tropical species are discussed.

  16. Potential of Combining Optical and Dual Polarimetric SAR Data for Improving Mangrove Species Discrimination Using Rotation Forest

    Directory of Open Access Journals (Sweden)

    Hongsheng Zhang

    2018-03-01

    Full Text Available Classification of mangrove species using satellite images is important for investigating the spatial distribution of mangroves at community and species levels on local, regional and global scales. Hence, studies of mangrove deforestation and reforestation are imperative to support the conservation of mangrove forests. However, accurate discrimination of mangrove species remains challenging due to many factors such as data resolution, species number and spectral confusion between species. In this study, three different combinations of datasets were designed from Worldview-3 and Radarsat-2 data to classify four mangrove species, Kandelia obovate (KO, Avicennia marina (AM, Acanthus ilicifolius (AI and Aegiceras corniculatum (AC. Then, the Rotation Forest (RoF method was employed to classify the four mangrove species. Results indicated the benefits of dual polarimetric SAR data with an improvement of accuracy by 2–3%, which can be useful for more accurate large-scale mapping of mangrove species. Moreover, the difficulty of classifying different mangrove species, in order of increasing difficulty, was identified as KO < AM < AI < AC. Dual polarimetric SAR data are recognized to improve the classification of AI and AC species. Although this improvement is not remarkable, it is consistent for all three methods. The improvement can be particularly important for large-scale mapping of mangrove forest at the species level. These findings also provide useful guidance for future studies using multi-source satellite data for mangrove monitoring and conservation.

  17. Climate Variability and Mangrove Cover Dynamics at Species Level in the Sundarbans, Bangladesh

    Directory of Open Access Journals (Sweden)

    Manoj Kumer Ghosh

    2017-05-01

    Full Text Available Mangrove ecosystems are complex in nature. For monitoring the impact of climate variability in this ecosystem, a multidisciplinary approach is a prerequisite. Changes in temperature and rainfall pattern have been suggested as an influential factor responsible for the change in mangrove species composition and spatial distribution. The main aim of this study was to assess the relationship between temperature, rainfall pattern and dynamics of mangrove species in the Sundarbans, Bangladesh, over a 38 year time period from 1977 to 2015. To assess the relationship, a three stage analytical process was employed. Primarily, the trend of temperature and rainfall over the study period were identified using a linear trend model; then, the supervised maximum likelihood classifier technique was employed to classify images recorded by Landsat series and post-classification comparison techniques were used to detect changes at species level. The rate of change of different mangrove species was also estimated in the second stage. Finally, the relationship between temperature, rainfall and the dynamics of mangroves at species level was determined using a simple linear regression model. The results show a significant statistical relationship between temperature, rainfall and the dynamics of mangrove species. The trends of change for Heritiera fomes and Sonneratia apelatala show a strong relationship with temperature and rainfall, while Ceriops decandra shows a weak relationship. In contrast, Excoecaria agallocha and Xylocarpus mekongensis do not show any significant relationship with temperature and rainfall. On the basis of our results, it can be concluded that temperature and rainfall are important climatic factors influencing the dynamics of three major mangrove species viz. H. fomes, S. apelatala and C. decandra in the Sundarbans.

  18. Community structure of endophytic fungi of four mangrove species in Southern China

    Directory of Open Access Journals (Sweden)

    Jia-Long Li

    2016-10-01

    Full Text Available Mangrove forests play an important role in subtropical and tropical coastal ecosystems. Endophytic fungi are widely distributed in various ecosystems and have great contribution to global biodiversity. In order to better understand the effects of mangrove species and tissue types on endophytic fungal community, we investigated cultivable endophytic fungi in leaves and twigs of four mangroves Aegiceras corniculatum, Avicennia marina, Bruguiera gymnorrhiza, and Kandelia candel in Guangxi, China. The four tree species had similar overall colonisation rates of endophytic fungi (24–33%. The colonisation rates of endophytic fungi were higher in twigs (30–58% than in leaves (6–25% in the four plant species. A total of 36 endophytic fungal taxa were identified based on morphological characteristics and molecular data, including 35 Ascomycota and 1 Basidiomycota, dominated by Phomopsis, Phyllosticta, Xylaria, Leptosphaerulina, and Pestalotiopsis. The diversity of endophytic fungi was higher in twigs than in leaves in the four plant species. Some endophytic fungi showed host and tissue preference. The endophytic fungal community composition was different among four mangrove species and between leaf and twig tissues.

  19. Heavy Metal Concentrations in an Important Mangrove Species, Sonneratia caseolaris, in Peninsular Malaysia

    Directory of Open Access Journals (Sweden)

    Mohd Fazlin Nazli

    2010-01-01

    Full Text Available Mangrove forests in Peninsular Malaysia are increasingly threatened by heavy metal pollution. Due to their unique location, mangroves receive heavy metal pollution from upstream areas and the sea. However, little is known about the capacity of mangrove plants to take up and store heavy metals. In this study, the concentrations of cadmium (Cd, chromium (Cr, copper (Cu, lead (Pb and zinc (Zn in an important mangrove species, Sonneratia caseolaris, were measured. It was found that the total concentrations of Cd, Cr, Cu, Pb, and Zn in the sediments were below the general critical soil concentrations. However, the total concentrations of Cu and Pb in both the roots and leaves of Sonneratia caseolaris exceeded the general normal upper range in plants. This study has therefore shown the potential of Sonneratia caseolaris as a phytoremediation species for selected heavy metals in Malaysian mangrove ecosystem.

  20. Evaluation of multilocus marker efficacy for delineating mangrove species of West Coast India.

    Directory of Open Access Journals (Sweden)

    Ankush Ashok Saddhe

    Full Text Available The plant DNA barcoding is a complex and requires more than one marker(s as compared to animal barcoding. Mangroves are diverse estuarine ecosystem prevalent in the tropical and subtropical zone, but anthropogenic activity turned them into the vulnerable ecosystem. There is a need to build a molecular reference library of mangrove plant species based on molecular barcode marker along with morphological characteristics. In this study, we tested the core plant barcode (rbcL and matK and four promising complementary barcodes (ITS2, psbK-psbI, rpoC1 and atpF-atpH in 14 mangroves species belonging to 5 families from West Coast India. Data analysis was performed based on barcode gap analysis, intra- and inter-specific genetic distance, Automated Barcode Gap Discovery (ABGD, TaxonDNA (BM, BCM, Poisson Tree Processes (PTP and General Mixed Yule-coalescent (GMYC. matK+ITS2 marker based on GMYC method resolved 57.14% of mangroves species and TaxonDNA, ABGD, and PTP discriminated 42.85% of mangrove species. With a single locus analysis, ITS2 exhibited the higher discriminatory power (87.82% and combinations of matK + ITS2 provided the highest discrimination success (89.74% rate except for Avicennia genus. Further, we explored 3 additional markers (psbK-psbI, rpoC1, and atpF-atpH for Avicennia genera (A. alba, A. officinalis and A. marina and atpF-atpH locus was able to discriminate three species of Avicennia genera. Our analysis underscored the efficacy of matK + ITS2 markers along with atpF-atpH as the best combination for mangrove identification in West Coast India regions.

  1. Spatially Synchronous Extinction of Species under External Forcing

    Science.gov (United States)

    Amritkar, R. E.; Rangarajan, Govindan

    2006-06-01

    More than 99% of the species that ever existed on the surface of the Earth are now extinct and their extinction on a global scale has been a puzzle. One may think that a species under an external threat may survive in some isolated locations leading to the revival of the species. Using a general model we show that, under a common external forcing, the species with a quadratic saturation term first undergoes spatial synchronization and then extinction. The effect can be observed even when the external forcing acts only on some locations provided the dynamics contains a synchronizing term. Absence of the quadratic saturation term can help the species to avoid extinction.

  2. Species diversity of culturable endophytic fungi from Brazilian mangrove forests.

    Science.gov (United States)

    de Souza Sebastianes, Fernanda Luiza; Romão-Dumaresq, Aline Silva; Lacava, Paulo Teixeira; Harakava, Ricardo; Azevedo, João Lúcio; de Melo, Itamar Soares; Pizzirani-Kleiner, Aline Aparecida

    2013-08-01

    This study aimed to perform a comparative analysis of the diversity of endophytic fungal communities isolated from the leaves and branches of Rhizophora mangle, Avicennia schaueriana and Laguncularia racemosa trees inhabiting two mangroves in the state of São Paulo, Brazil [Cananeia and Bertioga (oil spill-affected and unaffected)] in the summer and winter. Three hundred and forty-three fungi were identified by sequencing the ITS1-5.8S-ITS2 region of rDNA. Differences were observed in the frequencies of fungi isolated from the leaves and branches of these three different plant species sampled from the Bertioga oil spill-affected and the oil-unaffected mangrove sites in the summer and winter; these differences indicate a potential impact on fungal diversity in the study area due to the oil spill. The molecular identification of the fungi showed that the fungal community associated with these mangroves is composed of at least 34 different genera, the most frequent of which were Diaporthe, Colletotrichum, Fusarium, Trichoderma and Xylaria. The Shannon and the Chao1 indices [H'(95 %) = 4.00, H'(97 %) = 4.22, Chao1(95 %) = 204 and Chao1(97 %) = 603] indicated that the mangrove fungal community possesses a vast diversity and richness of endophytic fungi. The data generated in this study revealed a large reservoir of fungal genetic diversity inhabiting these Brazilian mangrove forests and highlighted substantial differences between the fungal communities associated with distinct plant tissues, plant species, impacted sites and sampling seasons.

  3. The impact of climate change and aquatic salinization on mangrove species in the Bangladesh Sundarbans.

    Science.gov (United States)

    Dasgupta, Susmita; Sobhan, Istiak; Wheeler, David

    2017-10-01

    This paper investigates the possible impacts of climate change on aquatic salinity and mangrove species in the Bangladesh Sundarbans. The impact analysis combines the salinity tolerance ranges of predominant mangrove species with aquatic salinity measures in 27 scenarios of climate change by 2050. The estimates indicate significant overall losses for Heritiera fomes; substantial gains for Excoecaria agallocha; modest changes for Avicennia alba, A. marina, A. officinalis, Ceriops decandra, and Sonneratia apetala; and mixed results for species combinations. Changes in mangrove stocks are likely to change the prospects for forest-based livelihoods. The implications for neighboring communities are assessed by computing changes in high-value mangrove species for the five sub-districts in the Sundarbans. The results of the impact analysis indicate highly varied patterns of gain and loss across the five sub-districts. Overall, however, the results suggest that salinity-induced mangrove migration will have a strongly regressive impact on the value of timber stocks because of the loss of highest value timber species, Heritiera fomes. In addition, the augmented potential for honey production will likely increase conflicts between humans and wildlife in the region.

  4. Mangroves

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, S.; Untawale, A.G.

    bordering Persian Gulf are represented with only few mangrove species. The information on the usages and the impacts on the mangroves of the Indian Ocean region call for an urgent measure of conservation and management of mangroves and are dealt in detail...

  5. One extinct turtle species less: Pelusios seychellensis is not extinct, it never existed.

    Directory of Open Access Journals (Sweden)

    Heiko Stuckas

    Full Text Available Pelusios seychellensis is thought to be a freshwater turtle species endemic to the island of Mahé, Seychelles. There are only three museum specimens from the late 19(th century known. The species has been never found again, despite intensive searches on Mahé. Therefore, P. seychellensis has been declared as "Extinct" by the IUCN and is the sole putatively extinct freshwater turtle species. Using DNA sequences of three mitochondrial genes of the historical type specimen and phylogenetic analyses including all other species of the genus, we provide evidence that the description of P. seychellensis was erroneously based on a widely distributed West African species, P. castaneus. Consequently, we synonymize the two species and delete P. seychellensis from the list of extinct chelonian species and from the faunal list of the Seychelles.

  6. Reintroducing resurrected species: selecting DeExtinction candidates.

    Science.gov (United States)

    Seddon, Philip J; Moehrenschlager, Axel; Ewen, John

    2014-03-01

    Technological advances have raised the controversial prospect of resurrecting extinct species. Species DeExtinction should involve more than the production of biological orphans to be scrutinized in the laboratory or zoo. If DeExtinction is to realize its stated goals of deep ecological enrichment, then resurrected animals must be translocated (i.e., released within suitable habitat). Therefore, DeExtinction is a conservation translocation issue and the selection of potential DeExtinction candidates must consider the feasibility and risks associated with reintroduction. The International Union for the Conservation of Nature (IUCN) Guidelines on Reintroductions and Other Conservation Translocations provide a framework for DeExtinction candidate selection. We translate these Guidelines into ten questions to be addressed early on in the selection process to eliminate unsuitable reintroduction candidates. We apply these questions to the thylacine, Yangtze River Dolphin, and Xerces blue butterfly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Mangrove forests

    Science.gov (United States)

    Ariel E. Lugo; Ernesto. Medina

    2014-01-01

    The mangrove environment is not globally homogeneous, but involves many environmental gradients to which mangrove species must adapt and overcome to maintain the familiar structure and physiognomy associated with the mangrove ecosystem. The stature of mangroves, measured by tree height, decreases along the following environmental gradients from low to high salinity,...

  8. Managing mangroves with benthic biodiversity in mind: Moving beyond roving banditry

    Science.gov (United States)

    Ellison, Aaron M.

    2008-02-01

    This review addresses mangrove management activities in the broader context of the diversity of the mangrove benthos. Goals for mangrove ecosystem management include silviculture, aquaculture, or 'ecosystem services' such as coastal protection. Silvicultural management of mangroves generally neglects the benthos, although benthic invertebrates may affect tree establishment and growth, and community composition of benthic invertebrates may be a reliable indicator of the state of managed mangrove forests. Similarly, mangrove aquaculture focuses on particular species with little attention paid either to impacts on other trophic levels or to feedbacks with the trees. Exploitation of mangrove-associated prawns, crabs, and molluscs has a total economic value > US $4 billion per year. These aquaculture operations still rely on wild-collected stock; world-wide patterns of exploitation fit the well-known process of 'roving banditry', where mobile agents move from location to location, rapidly exploiting and depleting local resources before moving on to other, as-yet unprotected grounds. Collection of brood stock and fishing for other external inputs required by aquaculture (e.g., 'trash fish') removes intermediate trophic levels from marine food webs, may destabilize them, and lead to secondary extinctions of higher-order predators. Increased attention being paid to the role of mangroves in coastal protection following the 2004 Indian Ocean tsunami provides an opportunity to reassess the relative merits of management focused on short-term economic gains. Managing for ecosystem services may ultimately preserve benthic biodiversity in mangrove ecosystems.

  9. Endangered Species and Natural Resource Exploitation: Extinction vs. Coexistence

    OpenAIRE

    Tsur, Yacov; Zemel, Amos

    1994-01-01

    The threat on the survival of animal species due to intensive use of natural resources is incorporated within resource management models, paying special attention to uncertainty regarding the conditions that lead to extinction. The manner in which the potential benefits forgone due to the species extinction (denoted extinction penalty) induce more conservative exploitation policies is studied in detail. When the extinction penalty is ignored, the optimal policy is to drive the resource stock ...

  10. FISHERIES ASSOCIATED WITH MANGROVE ECOSYSTEM IN INDONESIA: A View from a Mangrove Ecologist

    Directory of Open Access Journals (Sweden)

    SUKRISTIJONO SUKARDJO

    2004-01-01

    Full Text Available Blessed with mangrove area of some 9.6 million ha in extent, Indonesia represents an important country with fishery resources being a source of food an d nutrients. The fishery resources utilized by man, such as fishes, crustaceans and mollusks that are found in the mangrove ecosystem/swamp ar ea arc enormous. There is a range of species caught in the mangrove and surrounding areas with over 70 species. However, commercially valued species are limited to a few such as rabbit fish, snapper, grouper, marline catfish, fringe-scale sard ine, and anchovy. Leaf detritus from mangroves contribute a major energy input into fisheries. But information about the study on the relationship between fishery species and mangroves, ecologically and biologically, arc scanty. The mangrove is a physiographic unit, the principal components of which arc organisms. Therefore, the problems are predominantly of a biological nature (e.g., mangroves - fishery relationship. Positive correlation between the mangrove area and penaeid shrimp catch found in Indonesia, the Philippines, Australia and Mexico. Finally, the most important part of the variance of the MSY (Maximum Sustainable Yield of penaieds (53% of the variance could be explained by a combination of area of mangrove habitats and latitude.

  11. Aspergillus species isolated from mangrove forests in Borneo Island, Sarawak, Malaysia

    Directory of Open Access Journals (Sweden)

    J.S.S. Seelan

    2009-06-01

    Full Text Available A study on the occurrence of Aspergillus spp. on selected mangrove forests in Sarawak was conducted to find out their diversity and distribution. Samples were obtained from mangrove soils and leaf litters at different locations, i.e. Sematan, Lundu, Kampung Bako, Bako in Sarawak. Soil and leaf litter samples were taken randomly at different locations with five replicates from each area. A total of 138 isolates of Aspergillus species were obtained from the soil and leaf litter samples by using direct plating and Warcup method. Based on both macroscopic and microscopic observations, using an identification key, individual isolates were classified within the genus Aspergillus, belonging to three subgenera, four sections and five species. The fungi isolates were identified as A. terreus, A. flavipes, A. carneus, A. fumigatus and A. clavatus. The most frequent isolated species was A. flavipes (63.04%, followed by A. fumigatus (16.7%, A. terreus (13.04%, A. carneus (5.8% and A. clavatus (1.44%. All of the isolated Aspergillus species grew well on MEA and CYA at 25°C. A. carneus produced reddish sclerotia on MEA after seven days and this could be used as an important characteristic in this species identification. A. clavatus from mangrove soil in Kampung Bako has shown long conidiophores (ranging from 3-5 cm with swollen hyphal structures, while A. clavatus from Sematan area has shorter conidiophores (ranging from 2.5-3.5 cm on MEA.

  12. Chlorides retention of barium and chromium in two mangrove species Avicennia germinans and Rhizophora mangrove, developed in waters of the oil industry production, by means of the technique of hydroponics cultivation

    International Nuclear Information System (INIS)

    Grosso, J L; Sanchez L E; Avendano D; Restrepo, R

    2000-01-01

    The objective of the present study was to determine the phytoremediation mechanism (phytoextraction y/o rhizofiltration) given by the mangroves Rhizophora mangle and Avicennia germinans, when exposed to waters from an oil production field applying the hidroponia technique like system for growing the species. Determination of chlorides, barium and chromium bioaccumulation in tissues of mangrove species under study was compared with content of these elements in an inert substrate without mangroves. Bioaccumulation of the targeted elements was measured after 308 days exposure of the mangroves to production waters with initial barium and chromium contents of 1.25 g.m -3 and 0.002 g.m -3 respectively, and salinity in the range of 2,000 to 3,000 mg.kg -1 . Bioaccumulation of the studied elements (chlorides, barium and chromium) in tissues of both species was correlated to the increment in biomass of each species, as well as to the general physical condition of the plants. Survival rates higher than 95% of the exposed plants to production water during the time of study, increment in biomass of up to 5.88 g.day -1 , and concentrations of chlorides in tissues in the 0 - 170,000 mg.kg -1 during the considered period were observed. No significant difference between the two mangrove species was obtained. Bioaccumulation in tissues does not cause symptoms of deficiency in growing rates in the studied plants compared to natural rate indexes. Similarly, the analyses of inert substrate around the mangrove roots showed chloride and barium concentrations, contrary to the results of the targeted elements in the inert substrate when mangroves are not present. Both phytoremediation mechanisms were observed for the two mangrove species

  13. Mapping Long-Term Changes in Mangrove Species Composition and Distribution in the Sundarbans

    Directory of Open Access Journals (Sweden)

    Manoj Kumer Ghosh

    2016-12-01

    Full Text Available The Sundarbans mangrove forest is an important resource for the people of the Ganges Delta. It plays an important role in the local as well as global ecosystem by absorbing carbon dioxide and other pollutants from air and water, offering protection to millions of people in the Ganges Delta against cyclone and water surges, stabilizing the shore line, trapping sediment and nutrients, purifying water, and providing services for human beings, such as fuel wood, medicine, food, and construction materials. However, this mangrove ecosystem is under threat, mainly due to climate change and anthropogenic factors. Anthropogenic and climate change-induced degradation, such as over-exploitation of timber and pollution, sea level rise, coastal erosion, increasing salinity, effects of increasing number of cyclones and higher levels of storm surges function as recurrent threats to mangroves in the Sundarbans. In this situation, regular and detailed information on mangrove species composition, their spatial distribution and the changes taking place over time is very important for a thorough understanding of mangrove biodiversity, and this information can also lead to the adoption of management practices designed for the maximum sustainable yield of the Sundarbans forest resources. We employed a maximum likelihood classifier technique to classify images recorded by the Landsat satellite series and used post classification comparison techniques to detect changes at the species level. The image classification resulted in overall accuracies of 72%, 83%, 79% and 89% for the images of 1977, 1989, 2000 and 2015, respectively. We identified five major mangrove species and detected changes over the 38-year (1977–2015 study period. During this period, both Heritiera fomes and Excoecaria agallocha decreased by 9.9%, while Ceriops decandra, Sonneratia apelatala, and Xylocarpus mekongensis increased by 12.9%, 380.4% and 57.3%, respectively.

  14. Ecological resilience indicators for mangrove ecosystems

    Science.gov (United States)

    Day, Richard H.; Allen, Scott T.; Brenner, Jorge; Goodin, Kathleen; Faber-Langendoen, Don; Ames, Katherine Wirt

    2018-01-01

    Mangrove ecosystems are coastal wetland ecosystems dominated by mangrove species that are typically found in the intertidal zone, characterized by frequently flooded saline soil conditions. The majority of the approximately 500,000 acres of mangrove ecosystem in the United States occurs in the NGoM, and almost all of that is in Florida, with over 90 percent in the four southern counties of Lee, Collier, Miami-Dade, and Monroe. Scattered stands and individuals occur north and westward into Louisiana and Texas (Osland et al., 2016). The three common mangrove species are: black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). The mangrove system described in this project includes Tidal Mangrove Shrubland and Tidal Mangrove Forest as classified in CMECS (FGDC, 2012). It is classified as Caribbean Fringe Mangrove (G004) in the USNVC (2016), with a variety of distinct associations, based on species dominance and ecological setting.

  15. [Effects mangrove conversion to pasture on density and shell size of two gastropods in the Turbo River Delta (Urabá Gulf, Caribbean coast of Colombia)].

    Science.gov (United States)

    Blanco, Juan F; Castaño, María C

    2012-12-01

    Mangrove deforestation is widespread in the Greater Caribbean but its impact on macrobenthos has not been evaluated to date. In order to assess the impact of mangrove conversion to pasture, densities and shell sizes of two dominant gastropods (Neritina virginea and Melampus coffeus) were compared among four mangrove types: 1) Rhizophora mangle-dominated fringing mangroves, 2) Avicennia germinans-dominated basin mangroves, 3) Mixed-species basin mangroves, and 4) A. germinans- basin mangroves converted to pastures, in the Turbo River Delta (Urabá Gulf, Colombia). Mangrove types were polygon-delimited with satellite images and color aerial photographs were taken in 2009. Various (nsoil properties (e.g. temperature, pH, organic matter content). Finally, we also hypothesize that the local extinction of N. virginea due to clear-cutting may exert strong negative effects on the ecosystem function because it is a dominant omnivore.

  16. Mangrove postcard

    Science.gov (United States)

    Ball, Lianne C.

    2016-07-14

    Mangrove ecosystems protect vulnerable coastlines from storm effects, recycle nutrients, stabilize shorelines, improve water quality, and provide habitat for commercial and recreational fish species as well as for threatened and endangered wildlife. U.S. Geological Survey scientists conduct research on mangrove ecosystems to provide reliable scientific information about their ecology, productivity, hydrological processes, carbon storage stress response, and restoration success. The Mangrove Science Network is a collaboration of USGS scientists focused on working with natural resource managers to develop and conduct research to inform decisions on mangrove management and restoration. Information about the Mangrove Science Network can be found at: http://www.usgs.gov/ecosystems/environments/mangroves.html.

  17. Artificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms

    Directory of Open Access Journals (Sweden)

    Dezhi Wang

    2018-02-01

    Full Text Available In the dwindling natural mangrove today, mangrove reforestation projects are conducted worldwide to prevent further losses. Due to monoculture and the low survival rate of artificial mangroves, it is necessary to pay attention to mapping and monitoring them dynamically. Remote sensing techniques have been widely used to map mangrove forests due to their capacity for large-scale, accurate, efficient, and repetitive monitoring. This study evaluated the capability of a 0.5-m Pléiades-1 in classifying artificial mangrove species using both pixel-based and object-based classification schemes. For comparison, three machine learning algorithms—decision tree (DT, support vector machine (SVM, and random forest (RF—were used as the classifiers in the pixel-based and object-based classification procedure. The results showed that both the pixel-based and object-based approaches could recognize the major discriminations between the four major artificial mangrove species. However, the object-based method had a better overall accuracy than the pixel-based method on average. For pixel-based image analysis, SVM produced the highest overall accuracy (79.63%; for object-based image analysis, RF could achieve the highest overall accuracy (82.40%, and it was also the best machine learning algorithm for classifying artificial mangroves. The patches produced by object-based image analysis approaches presented a more generalized appearance and could contiguously depict mangrove species communities. When the same machine learning algorithms were compared by McNemar’s test, a statistically significant difference in overall classification accuracy between the pixel-based and object-based classifications only existed in the RF algorithm. Regarding species, monoculture and dominant mangrove species Sonneratia apetala group 1 (SA1 as well as partly mixed and regular shape mangrove species Hibiscus tiliaceus (HT could well be identified. However, for complex and easily

  18. Analysis of Genetic Diversity of Two Mangrove Species with Morphological Alterations in a Natural Environment

    Directory of Open Access Journals (Sweden)

    Catarina Fonseca Lira-Medeiros

    2015-04-01

    Full Text Available Mangrove is an ecosystem subjected to tide, salinity and nutrient variations. These conditions are stressful to most plants, except to mangrove plants that are well-adapted. However, many mangrove areas have extremely stressful conditions, such as salt marshes, and the plants nearby usually present morphological alterations. In Sepetiba Bay, two species of mangrove plants, Avicennia schaueriana and Laguncularia racemosa, have poor development near a salt marsh (SM compared to plants at the riverside (RS, which is considered a favorable habitat in mangroves. The level of genetic diversity and its possible correlation with the morphological divergence of SM and RS plants of both species were assessed by AFLP molecular markers. We found moderate genetic differentiation between A. schaueriana plants from SM and RS areas and depleted genetic diversity on SM plants. On the other hand, Laguncularia racemosa plants had no genetic differentiation between areas. It is possible that a limited gene flow among the studied areas might be acting more intensely on A. schaueriana plants, resulting in the observed genetic differentiation. The populations of Laguncularia racemosa appear to be well connected, as genetic differentiation was not significant between the SM and RS populations. Gene flow and genetic drift are acting on neutral genetic diversity of these two mangrove species in the studied areas, and the observed genetic differentiation of A. schaueriana plants might be correlated with its morphological variation. For L. racemosa, morphological alterations could be related to epigenetic phenomena or adaptive loci polymorphism that should be further investigated.

  19. Changes in mangrove species assemblages and future prediction of the Bangladesh Sundarbans using Markov chain model and cellular automata.

    Science.gov (United States)

    Mukhopadhyay, Anirban; Mondal, Parimal; Barik, Jyotiskona; Chowdhury, S M; Ghosh, Tuhin; Hazra, Sugata

    2015-06-01

    The composition and assemblage of mangroves in the Bangladesh Sundarbans are changing systematically in response to several environmental factors. In order to understand the impact of the changing environmental conditions on the mangrove forest, species composition maps for the years 1985, 1995 and 2005 were studied. In the present study, 1985 and 1995 species zonation maps were considered as base data and the cellular automata-Markov chain model was run to predict the species zonation for the year 2005. The model output was validated against the actual dataset for 2005 and calibrated. Finally, using the model, mangrove species zonation maps for the years 2025, 2055 and 2105 have been prepared. The model was run with the assumption that the continuation of the current tempo and mode of drivers of environmental factors (temperature, rainfall, salinity change) of the last two decades will remain the same in the next few decades. Present findings show that the area distribution of the following species assemblages like Goran (Ceriops), Sundari (Heritiera), Passur (Xylocarpus), and Baen (Avicennia) would decrease in the descending order, whereas the area distribution of Gewa (Excoecaria), Keora (Sonneratia) and Kankra (Bruguiera) dominated assemblages would increase. The spatial distribution of projected mangrove species assemblages shows that more salt tolerant species will dominate in the future; which may be used as a proxy to predict the increase of salinity and its spatial variation in Sundarbans. Considering the present rate of loss of forest land, 17% of the total mangrove cover is predicted to be lost by the year 2105 with a significant loss of fresh water loving mangroves and related ecosystem services. This paper describes a unique approach to assess future changes in species composition and future forest zonation in mangroves under the 'business as usual' scenario of climate change.

  20. Distribution and diversity of mangrove species in Gokana Local ...

    African Journals Online (AJOL)

    Plots 1 and 2 were dominated by Rhizophora racemosa (62.07% and 41.17% respectively). Plots 3 were dominated by R. mangle (4 1.67%) while Plots 4 had 26.56% of Acrostichum aureum and 26.56% of Phoenix reclinata. The overlapping mangrove species occurrence (Laguncularia racemosa and R. mangle) at the ...

  1. Hyperspectral Data for Mangrove Species Mapping: A Comparison of Pixel-Based and Object-Based Approach

    Directory of Open Access Journals (Sweden)

    Muhammad Kamal

    2011-10-01

    Full Text Available Visual image interpretation and digital image classification have been used to map and monitor mangrove extent and composition for decades. The presence of a high-spatial resolution hyperspectral sensor can potentially improve our ability to differentiate mangrove species. However, little research has explored the use of pixel-based and object-based approaches on high-spatial hyperspectral datasets for this purpose. This study assessed the ability of CASI-2 data for mangrove species mapping using pixel-based and object-based approaches at the mouth of the Brisbane River area, southeast Queensland, Australia. Three mapping techniques used in this study: spectral angle mapper (SAM and linear spectral unmixing (LSU for the pixel-based approaches, and multi-scale segmentation for the object-based image analysis (OBIA. The endmembers for the pixel-based approach were collected based on existing vegetation community map. Nine targeted classes were mapped in the study area from each approach, including three mangrove species: Avicennia marina, Rhizophora stylosa, and Ceriops australis. The mapping results showed that SAM produced accurate class polygons with only few unclassified pixels (overall accuracy 69%, Kappa 0.57, the LSU resulted in a patchy polygon pattern with many unclassified pixels (overall accuracy 56%, Kappa 0.41, and the object-based mapping produced the most accurate results (overall accuracy 76%, Kappa 0.67. Our results demonstrated that the object-based approach, which combined a rule-based and nearest-neighbor classification method, was the best classifier to map mangrove species and its adjacent environments.

  2. IDENTIFIKASI TINGKAT KERAWANAN DEGRADASI KAWASAN HUTAN MANGROVE DESA MUARA, TANGERANG, BANTEN

    Directory of Open Access Journals (Sweden)

    Hadisti Nur Aini

    2015-07-01

    Full Text Available This study is intended to estimate the vulnerability of degradation of mangrove forest in Muara Village, Tangerang, Banten. There are five species of mangroves found in mangrove forest of Muara, which are: Avicennia alba, Avicennia officinnalis. Rhizophora apiculata, Rhizophora stylosa, and Rhizophora mucronata. The results showed that the mangrove forest in Muara has a high vulnerability of degradation based on the three vegetation characteristics, such as: density, domination, and biodiversity of mangrove species. The density of mangrove vegetation has only reached 739 individual/Ha. While the biodiversity of mangrove species is low and the domination level of mangrove species is high, in which the dominant species is Rhizophora mucronata. Mangrove rehabilitation activities are required by revegetation methods, and the mangrove species that are used in revegetation process are local species which available in the mangrove forest of Muara. Mangrove rehabilitation process that needs to be done is by revegetation of mangroves and mangrove species conservation. Mangrove species which is suitable for mangrove rehabilitation in Muara Village are Rhizophora mucronata and Avecinnea alba. Keywords: mangrove, forest, degradation, rehabilitation

  3. Climate change, species-area curves and the extinction crisis.

    Science.gov (United States)

    Lewis, Owen T

    2006-01-29

    An article published in the journal Nature in January 2004-in which an international team of biologists predicted that climate change would, by 2050, doom 15-37% of the earth's species to extinction-attracted unprecedented, worldwide media attention. The predictions conflict with the conventional wisdom that habitat change and modification are the most important causes of current and future extinctions. The new extinction projections come from applying a well-known ecological pattern, the species-area relationship (SAR), to data on the current distributions and climatic requirements of 1103 species. Here, I examine the scientific basis to the claims made in the Nature article. I first highlight the potential and pitfalls of using the SAR to predict extinctions in general. I then consider the additional complications that arise when applying SAR methods specifically to climate change. I assess the extent to which these issues call into question predictions of extinctions from climate change relative to other human impacts, and highlight a danger that conservation resources will be directed away from attempts to slow and mitigate the continuing effects of habitat destruction and degradation, particularly in the tropics. I suggest that the most useful contributions of ecologists over the coming decades will be in partitioning likely extinctions among interacting causes and identifying the practical means to slow the rate of species loss.

  4. Accelerated modern human-induced species losses: Entering the sixth mass extinction.

    Science.gov (United States)

    Ceballos, Gerardo; Ehrlich, Paul R; Barnosky, Anthony D; García, Andrés; Pringle, Robert M; Palmer, Todd M

    2015-06-01

    The oft-repeated claim that Earth's biota is entering a sixth "mass extinction" depends on clearly demonstrating that current extinction rates are far above the "background" rates prevailing between the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per 100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this rate with the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing a species as extinct requires meeting stringent criteria. Even under our assumptions, which would tend to minimize evidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to 100 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that have gone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000 years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and the subsequent loss of ecosystem services is still possible through intensified conservation efforts, but that window of opportunity is rapidly closing.

  5. Are mangroves in arid environments isolated systems? Life-history and evidence of dietary contribution from inwelling in a mangrove-resident shrimp species

    Science.gov (United States)

    Al-Maslamani, I.; Walton, M. E. M.; Kennedy, H. A.; Al-Mohannadi, M.; Le Vay, L.

    2013-06-01

    The Arabian Gulf represents one of the more northerly extremes of mangrove distribution in the Indo-Pacific, and is populated only by Avicennia marina, due to its tolerance of high salinity and wide temperature extremes. Recent studies suggest that in the arid coastal environment of the western Arabian Gulf, export of carbon and nitrogen from mangroves to adjacent habitats may be limited, though it is not clear if this is due to low productivity or physical factors such as the lack of freshwater flow and the tidal regime. Although seagrass and macroalgal habitats are relatively much more dominant by area, with only small pockets of mangrove around the edges of embayments, it is not evident if inwelling from these habitats support mangrove fauna. Year-round sampling in mangroves at Al-Khor, Qatar, indicates that Palaemon khori, an endemic shrimp species, is strongly associated with mangroves throughout its post-settlement life cycle, from recruitment as small 9-10 mm juveniles through to mating and egg production. Rapid post-recruitment growth (k = 1.8, L∞ = 42 mm for females, k = 1.5, L∞ = 35 mm for male) means that most individuals reached adult size in the first few months after settlement, with reproduction occurring in the following spring. As might be expected from year-round residence in the mangrove, dual 13C and 15N isotope analysis indicated a strong contribution of mangroves to shrimp tissue growth (Mean and 95% confidence range, 37% and 27-48%), but with a weaker significant contribution from particulate organic matter (20% and 1-37%), mangrove epiphytes (16% and 2-33%) and seagrasses (9% and 0.2-18%). Other primary producers contribute the remaining 18% to shrimp nutrition but the 95% confidence ranges include zero, suggesting possibly non-significant roles in supporting the shrimp population. This dietary information supports the view that fauna resident within arid mangrove systems are mainly dependent on localised retention and cycling of

  6. Accelerated modern human–induced species losses: Entering the sixth mass extinction

    Science.gov (United States)

    Ceballos, Gerardo; Ehrlich, Paul R.; Barnosky, Anthony D.; García, Andrés; Pringle, Robert M.; Palmer, Todd M.

    2015-01-01

    The oft-repeated claim that Earth’s biota is entering a sixth “mass extinction” depends on clearly demonstrating that current extinction rates are far above the “background” rates prevailing between the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we use a recent estimate of a background rate of 2 mammal extinctions per 10,000 species per 100 years (that is, 2 E/MSY), which is twice as high as widely used previous estimates. We then compare this rate with the current rate of mammal and vertebrate extinctions. The latter is conservatively low because listing a species as extinct requires meeting stringent criteria. Even under our assumptions, which would tend to minimize evidence of an incipient mass extinction, the average rate of vertebrate species loss over the last century is up to 100 times higher than the background rate. Under the 2 E/MSY background rate, the number of species that have gone extinct in the last century would have taken, depending on the vertebrate taxon, between 800 and 10,000 years to disappear. These estimates reveal an exceptionally rapid loss of biodiversity over the last few centuries, indicating that a sixth mass extinction is already under way. Averting a dramatic decay of biodiversity and the subsequent loss of ecosystem services is still possible through intensified conservation efforts, but that window of opportunity is rapidly closing. PMID:26601195

  7. Changes in carbon pool and stand structure of a native subtropical mangrove forest after inter-planting with exotic species Sonneratia apetala.

    Science.gov (United States)

    Lu, Weizhi; Yang, Shengchang; Chen, Luzhen; Wang, Wenqing; Du, Xiaona; Wang, Canmou; Ma, Yan; Lin, Guangxuan; Lin, Guanghui

    2014-01-01

    In this study, we compared stand structure, biomass and soil carbon pools, and litterfall production between a mixed mangrove forest consisting of Aegiceras corniculatum inter-planted with the exotic Sonneratia apetala and a native monospecific forest dominated by A. corniculatum in the intertidal area of Zhanjiang, Guangdong Province, southeast China. The goal of this study was to test the hypothesis that inter-planting fast growing exotic mangrove S. apetala into subtropical native mangrove forests will significantly increase C sequestration. Although the tree heights and basal diameters of S. apetala were significantly higher than those of A. corniculatum, the density of the 12-year-old S. apetala trees in the mixed forest was much smaller than that of A. corniculatum in the monospecific forest. In contrast to several previous studies on S. apetala forests planted directly on mangrove-free mudflats, the mixed mangrove forest showed no significant difference in either standing biomass or soil carbon pools from the native monospecific mangrove forest (p = 0.294 and 0.073, respectively) twelve years after inter-planting with S. apetala. Moreover, carbon cycling was likely speeded up after inter-planting S. apetala due to higher litterfall input and lower C/N ratio. Thus, inter-planting fast-growing S. apetala into native mangrove forest is not an effective way to increase carbon sequestration in this subtropical mangrove forest. Given that exotic plant species may exert negative impact on native mangrove species and related epifauna, this fast-growing mangrove species is not suitable for mangrove plantation projects aiming mainly at enhancing carbon sequestration.

  8. First human-caused extinction of a cetacean species?

    Science.gov (United States)

    Turvey, Samuel T; Pitman, Robert L; Taylor, Barbara L; Barlow, Jay; Akamatsu, Tomonari; Barrett, Leigh A; Zhao, Xiujiang; Reeves, Randall R; Stewart, Brent S; Wang, Kexiong; Wei, Zhuo; Zhang, Xianfeng; Pusser, L T; Richlen, Michael; Brandon, John R; Wang, Ding

    2007-10-22

    The Yangtze River dolphin or baiji (Lipotes vexillifer), an obligate freshwater odontocete known only from the middle-lower Yangtze River system and neighbouring Qiantang River in eastern China, has long been recognized as one of the world's rarest and most threatened mammal species. The status of the baiji has not been investigated since the late 1990s, when the surviving population was estimated to be as low as 13 individuals. An intensive six-week multi-vessel visual and acoustic survey carried out in November-December 2006, covering the entire historical range of the baiji in the main Yangtze channel, failed to find any evidence that the species survives. We are forced to conclude that the baiji is now likely to be extinct, probably due to unsustainable by-catch in local fisheries. This represents the first global extinction of a large vertebrate for over 50 years, only the fourth disappearance of an entire mammal family since AD 1500, and the first cetacean species to be driven to extinction by human activity. Immediate and extreme measures may be necessary to prevent the extinction of other endangered cetaceans, including the sympatric Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis).

  9. Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species.

    Directory of Open Access Journals (Sweden)

    John J Wiens

    2016-12-01

    Full Text Available Current climate change may be a major threat to global biodiversity, but the extent of species loss will depend on the details of how species respond to changing climates. For example, if most species can undergo rapid change in their climatic niches, then extinctions may be limited. Numerous studies have now documented shifts in the geographic ranges of species that were inferred to be related to climate change, especially shifts towards higher mean elevations and latitudes. Many of these studies contain valuable data on extinctions of local populations that have not yet been thoroughly explored. Specifically, overall range shifts can include range contractions at the "warm edges" of species' ranges (i.e., lower latitudes and elevations, contractions which occur through local extinctions. Here, data on climate-related range shifts were used to test the frequency of local extinctions related to recent climate change. The results show that climate-related local extinctions have already occurred in hundreds of species, including 47% of the 976 species surveyed. This frequency of local extinctions was broadly similar across climatic zones, clades, and habitats but was significantly higher in tropical species than in temperate species (55% versus 39%, in animals than in plants (50% versus 39%, and in freshwater habitats relative to terrestrial and marine habitats (74% versus 46% versus 51%. Overall, these results suggest that local extinctions related to climate change are already widespread, even though levels of climate change so far are modest relative to those predicted in the next 100 years. These extinctions will presumably become much more prevalent as global warming increases further by roughly 2-fold to 5-fold over the coming decades.

  10. Species diversity, biomass, and carbon stock assessments of a natural mangrove forest in palawan, philippines

    International Nuclear Information System (INIS)

    Abino, A.C.; Lee, Y.J.; Castillo, J.A.A

    2014-01-01

    Philippines claims international recognition for its mangrove-rich ecosystem which play significant functions from the viewpoint of ecosystem services and climate change mitigation. In this study, we assessed the species diversity of the natural mangrove forest of Bahile, Puerto Princesa City, Palawan and evaluated its potential to sequester and store carbon. Sixteen plots with a size of 10 m * 10 m were established using quadrat sampling technique to identify, record, and measure the trees. Diversity index and allometric equations were utilized to determine species diversity, and biomass and carbon stocks. Sediment samples in undisturbed portions using a 30 cm high and 5 cm diameter corer were collected in all plots to determine near-surface sediment carbon. The diversity index (H = 0.9918) was very low having a total of five true mangrove species identified dominated by Rhizophora apiculata Bl. with an importance value index of 148.1%. Among the stands, 74% of the total biomass was attributed to the above-ground (561.2 t ha-1) while 26% was credited to the roots (196.5 t ha-1). The total carbon sequestered and stored in the above-ground and root biomass were 263.8 t C ha-1 (50%) and 92.3 t C ha-1 (17%), respectively. Sediments contained 33% (173.75 t C ha-1) of the mangrove C-stocks. Stored carbon was equivalent to 1944.5 t CO/sub 2/ ha-1. These values suggest that Bahile natural mangrove forest has a potential to sequester and store substantial amounts of atmospheric carbon, hence the need for sustainable management and protection of this important coastal ecosystem. (author)

  11. Degradation of mangrove-derived organic matter in mangrove associated sponges

    NARCIS (Netherlands)

    Hunting, E.R.; de Goeij, J.M.; Asselman, M.; van Soest, R.W.M.; van der Geest, H.G.

    2010-01-01

    Sponge communities found in Caribbean mangroves are typical to this habitat: partly endemic and very distinct from sponge communities on nearby reefs. A trade-off between resistance to competitors and predators appears to influence success of individual sponge species in mangrove habitats. We

  12. Determining species expansion and extinction possibilities using probabilistic and graphical models

    Directory of Open Access Journals (Sweden)

    Chaturvedi Rajesh

    2015-03-01

    Full Text Available Survival of plant species is governed by a number of functions. The participation of each function in species survival and the impact of the contrary behaviour of the species vary from function to function. The probability of extinction of species varies in all such scenarios and has to be calculated separately. Secondly, species follow different patterns of dispersal and localisation at different stages of occupancy state of the site, therefore, the scenarios of competition for resources with climatic shifts leading to deterioration and loss of biodiversity resulting in extinction needs to be studied. Furthermore, most possible deviations of species from climax community states needs to be calculated before species become extinct due to sudden environmental disruption. Globally, various types of anthropogenic disturbances threaten the diversity of biological systems. The impact of these anthropogenic activities needs to be analysed to identify extinction patterns with respect to these activities. All the analyses mentioned above have been tried to be achieved through probabilistic or graphical models in this study.

  13. Global warming and extinctions of endemic species from biodiversity hotspots.

    Science.gov (United States)

    Malcolm, Jay R; Liu, Canran; Neilson, Ronald P; Hansen, Lara; Hannah, Lee

    2006-04-01

    Global warming is a key threat to biodiversity, but few researchers have assessed the magnitude of this threat at the global scale. We used major vegetation types (biomes) as proxies for natural habitats and, based on projected future biome distributions under doubled-CO2 climates, calculated changes in habitat areas and associated extinctions of endemic plant and vertebrate species in biodiversity hotspots. Because of numerous uncertainties in this approach, we undertook a sensitivity analysis of multiple factors that included (1) two global vegetation models, (2) different numbers of biome classes in our biome classification schemes, (3) different assumptions about whether species distributions were biome specific or not, and (4) different migration capabilities. Extinctions were calculated using both species-area and endemic-area relationships. In addition, average required migration rates were calculated for each hotspot assuming a doubled-CO2 climate in 100 years. Projected percent extinctions ranged from hotspots were the Cape Floristic Region, Caribbean, Indo-Burma, Mediterranean Basin, Southwest Australia, and Tropical Andes, where plant extinctions per hotspot sometimes exceeded 2000 species. Under the assumption that projected habitat changes were attained in 100 years, estimated global-warming-induced rates of species extinctions in tropical hotspots in some cases exceeded those due to deforestation, supporting suggestions that global warming is one of the most serious threats to the planet's biodiversity.

  14. Comparative Analysis of Transcriptomes in Rhizophoraceae Provides Insights into the Origin and Adaptive Evolution of Mangrove Plants in Intertidal Environments

    Directory of Open Access Journals (Sweden)

    Wuxia Guo

    2017-05-01

    Full Text Available Mangroves are woody plants that grow at the interface between land and sea in tropical and subtropical latitudes, where they exist in conditions of high salinity, extreme tides, strong winds, high temperatures, and muddy, anaerobic soils. Rhizophoraceae is a key mangrove family, with highly developed morphological and physiological adaptations to extreme conditions. It is an ideal system for the study of the origin and adaptive evolution of mangrove plants. In this study, we characterized and comprehensively compared the transcriptomes of four mangrove species, from all four mangrove genera, as well as their closest terrestrial relative in Rhizophoraceae, using RNA-Seq. We obtained 41,936–48,845 unigenes with N50 values of 982–1,185 bp and 61.42–69.48% annotated for the five species in Rhizophoraceae. Orthology annotations of Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and Clusters of Orthologous Groups revealed overall similarities in the transcriptome profiles among the five species, whereas enrichment analysis identified remarkable genomic characteristics that are conserved across the four mangrove species but differ from their terrestrial relative. Based on 1,816 identified orthologs, phylogeny analysis and divergence time estimation revealed a single origin for mangrove species in Rhizophoraceae, which diverged from the terrestrial lineage ~56.4 million years ago (Mya, suggesting that the transgression during the Paleocene–Eocene Thermal Maximum may have been responsible for the entry of the mangrove lineage of Rhizophoraceae into intertidal environments. Evidence showed that the ancestor of Rhizophoraceae may have experienced a whole genome duplication event ~74.6 Mya, which may have increased the adaptability and survival chances of Rhizophoraceae during and following the Cretaceous–Tertiary extinction. The analysis of positive selection identified 10 positively selected genes from the ancestor branch of

  15. Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama

    Directory of Open Access Journals (Sweden)

    Cerón-Souza Ivania

    2012-10-01

    Full Text Available Abstract Background Mangroves are ecologically important and highly threatened forest communities. Observational and genetic evidence has confirmed the long distance dispersal capacity of water-dispersed mangrove seeds, but less is known about the relative importance of pollen vs. seed gene flow in connecting populations. We analyzed 980 Avicennia germinans for 11 microsatellite loci and 940 Rhizophora mangle for six microsatellite loci and subsampled two non-coding cpDNA regions in order to understand population structure, and gene flow within and among four major estuaries on the Caribbean and Pacific coasts of Panama. Results Both species showed similar rates of outcrossing (t= 0.7 in A. germinans and 0.8 in R. mangle and strong patterns of spatial genetic structure within estuaries, although A. germinans had greater genetic structure in nuclear and cpDNA markers (7 demes > 4 demes and Sp= 0.02 > 0.002, and much greater cpDNA diversity (Hd= 0.8 > 0.2 than R. mangle. The Central American Isthmus serves as an exceptionally strong barrier to gene flow, with high levels nuclear (FST= 0.3-0.5 and plastid (FST= 0.5-0.8 genetic differentiation observed within each species between coasts and no shared cpDNA haplotypes between species on each coast. Finally, evidence of low ratios of pollen to seed dispersal (r = −0.6 in A. germinans and 7.7 in R. mangle, coupled with the strong observed structure in nuclear and plastid DNA among most estuaries, suggests low levels of gene flow in these mangrove species. Conclusions We conclude that gene dispersal in mangroves is usually limited within estuaries and that coastal geomorphology and rare long distance dispersal events could also influence levels of structure.

  16. Comparative genetic structure of two mangrove species in Caribbean and Pacific estuaries of Panama

    Science.gov (United States)

    2012-01-01

    Background Mangroves are ecologically important and highly threatened forest communities. Observational and genetic evidence has confirmed the long distance dispersal capacity of water-dispersed mangrove seeds, but less is known about the relative importance of pollen vs. seed gene flow in connecting populations. We analyzed 980 Avicennia germinans for 11 microsatellite loci and 940 Rhizophora mangle for six microsatellite loci and subsampled two non-coding cpDNA regions in order to understand population structure, and gene flow within and among four major estuaries on the Caribbean and Pacific coasts of Panama. Results Both species showed similar rates of outcrossing (t= 0.7 in A. germinans and 0.8 in R. mangle) and strong patterns of spatial genetic structure within estuaries, although A. germinans had greater genetic structure in nuclear and cpDNA markers (7 demes > 4 demes and Sp= 0.02 > 0.002), and much greater cpDNA diversity (Hd= 0.8 > 0.2) than R. mangle. The Central American Isthmus serves as an exceptionally strong barrier to gene flow, with high levels nuclear (FST= 0.3-0.5) and plastid (FST= 0.5-0.8) genetic differentiation observed within each species between coasts and no shared cpDNA haplotypes between species on each coast. Finally, evidence of low ratios of pollen to seed dispersal (r = −0.6 in A. germinans and 7.7 in R. mangle), coupled with the strong observed structure in nuclear and plastid DNA among most estuaries, suggests low levels of gene flow in these mangrove species. Conclusions We conclude that gene dispersal in mangroves is usually limited within estuaries and that coastal geomorphology and rare long distance dispersal events could also influence levels of structure. PMID:23078287

  17. Ceriops zippeliana Blume (Rhizophoraceae, a New Record of a Mangrove Species in Singapore

    Directory of Open Access Journals (Sweden)

    Chiou-Rong Sheue

    2010-03-01

    Full Text Available Ceriops zippeliana Blume is here reported as a new record for the mangrove forests in Singapore. The botanical description of this new record with color plates and a key to the two Ceriops species in Singapore are provided. It is noteworthy that C. tagal (Perr. C. B. Rob. is rarer than C. zippeliana in Singapore. Thus, special attention for conservation should be focused on C. tagal and a further survey of this genus would provide valuable information to better manage Singapore’s mangrove plant biodiversity.

  18. MANGROVE RESOURCE USES BY LOCAL COMMUNITY IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Cecep Kusmana

    2016-12-01

    Full Text Available Indonesia is an archipelagic country of more than 17,504 islands (28 big islands and 17,475 small islands with the length of coastline estimated at 95,181 km, which bears mangroves from several meters to several kilometers. They are estimated at 3.2 million hectares growing extensively in the five big islands (Java, Sumatra, Kalimantan, Sulawesi, Papua with various community types comprising of about 157 species (52 species of trees, 21 species of shrubs, 13 species of lyana, seven species of palms, 14 species of grasses, eight species of herbs, three species of parasites, 36 species of epiphytes, three species of ferns. The mangroves resources in Indonesia involve the flora, fauna, and land resources which are needed for supporting many kinds of human needs, especially for local community living in surrounding mangroves. For centuries, the Indonesian people have traditionally utilized mangroves. The most significant value of mangrove utilization is the gathering of forest products, classified into timber and non-timber products. The timber refers to poles and firewood, charcoal, and construction materials (e.g. housing material and fishing gears; the latter include tannin, medicines, dye, nypa thatch and shingles, nypa sap for vinegar and winemaking, and food drinks. Traditional uses of mangrove forest products are mainly the direct utilization of the products, usually in small scale. Beside of those, local community are used to utilizing associated mangrove aquatic fauna for supporting their daily life as well as utilizing mangrove habitat for multipurpose uses through agroforestry techniques (silvofishery, agrosilvofishery, agrosilvopastoralfishery systems. So that, the good mangrove ecosystem serves luxurious both flora and fauna species (biodiversity as well as their abundance for signicantly supporting the welfare of coastal community

  19. Associational resistance protects mangrove leaves from crab herbivory

    Science.gov (United States)

    Erickson, Amy A.; Bell, Susan S.; Dawes, Clinton J.

    2012-05-01

    While associational defenses have been well documented in many plant and algal ecosystems, this study is the first to document associational resistance in mangroves. Mangrove tree crab (Aratus pisonii) density and herbivory on three life-stages of the red mangrove (Rhizophora mangle) were documented in pure red versus mixed-species and predominantly non-red mangrove stands containing black (Avicennia germinans) and white (Laguncularia racemosa) mangroves in 1999-2000 in Tampa Bay, Florida. This study first established that R. mangle is the focal species in the context of associational resistance because it is damaged more than either of the other mangrove species. Next, it was hypothesized that crab density and leaf damage on R. mangle would be lower when in mixed-species and predominantly non-red versus red mangrove stands. A non-significant trend suggested that crab density varies among stands, and crab damage on R. mangle leaves was significantly lower in mixed-species and non-red stands. Mechanisms to explain associational resistance were examined. Positive Pearson correlations between the percent of adult R. mangle in a stand and both crab density and R. mangle leaf damage provided support for the resource concentration hypothesis. Limited support was found for the attractant-decoy hypothesis because the total amount of damaged leaves of all mangrove species combined typically differed among stands, suggesting that crabs were not shifting to alternative mangrove species to offset reduced availability of R. mangle leaves. Finally, while R. mangle seedlings were shorter in non-red stands compared to others, intra-specific differences in R. mangle leaf chemistry and sclerophylly among stands failed to explain associational patterns. These combined results argue for the need for additional experiments to elucidate mechanisms responsible for defensive plant associations in mangrove ecosystems and to determine whether such associations could be of use in mangrove

  20. Hydrological Classification, a Practical Tool for Mangrove Restoration.

    Science.gov (United States)

    Van Loon, Anne F; Te Brake, Bram; Van Huijgevoort, Marjolein H J; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations

  1. Hydrological Classification, a Practical Tool for Mangrove Restoration.

    Directory of Open Access Journals (Sweden)

    Anne F Van Loon

    Full Text Available Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number

  2. Minimizing species extinctions through strategic planning for conservation fencing.

    Science.gov (United States)

    Ringma, Jeremy L; Wintle, Brendan; Fuller, Richard A; Fisher, Diana; Bode, Michael

    2017-10-01

    Conservation fences are an increasingly common management action, particularly for species threatened by invasive predators. However, unlike many conservation actions, fence networks are expanding in an unsystematic manner, generally as a reaction to local funding opportunities or threats. We conducted a gap analysis of Australia's large predator-exclusion fence network by examining translocation of Australian mammals relative to their extinction risk. To address gaps identified in species representation, we devised a systematic prioritization method for expanding the conservation fence network that explicitly incorporated population viability analysis and minimized expected species' extinctions. The approach was applied to New South Wales, Australia, where the state government intends to expand the existing conservation fence network. Existing protection of species in fenced areas was highly uneven; 67% of predator-sensitive species were unrepresented in the fence network. Our systematic prioritization yielded substantial efficiencies in that it reduced expected number of species extinctions up to 17 times more effectively than ad hoc approaches. The outcome illustrates the importance of governance in coordinating management action when multiple projects have similar objectives and rely on systematic methods rather than expanding networks opportunistically. © 2017 Society for Conservation Biology.

  3. Mangroves - Nursery for fishes

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Singh, C.

    Mangrove habitats are of a great ecological and socio-economic significance. Goa exhibits fringing mangroves comprising of 15 species. Shizophora mucronata, Avicennia officinalis, Sonneretia alba, S. caseolaris, Exoecaria agallocha and Acanthus...

  4. Phytopythium leanoi sp. nov. and Phytopythium dogmae sp. nov., Phytopythium species associated with mangrove leaf litter from the Philippines

    Directory of Open Access Journals (Sweden)

    Reuel M. Bennett

    2018-02-01

    Full Text Available The genus Phytopythium is a monophyletic taxon of the Peronosporaceae with characteristics intermediate between Phytophthora and Pythium. In the Philippines, reports of Phytopythium are scarce, with the mangrove-swamp-inhabiting species Phytopythium kandeliae being the only species recorded to date. It was the aim of the current study to investigate the diversity of Phytopythium in mangrove habitats in more detail. Based on culture characteristics, morphology, and molecular phylogenetic position, two new species of Phytopythium are described from Philippine mangroves, P. leanoi USTCMS 4102 and P. dogmae USTCMS 4101. Phytopythium leanoi is a species morphologically similar to P. kandeliae, but with the ability to develop gametangia in a homothallic fashion. The other new species, P. dogmae, is characterized by having a short discharge tube, semipapillate to papillate sporangia and frequently exhibiting a clustering of two sporangia per sporangiogenic hypha. With the addition of the two species described in this study, the genus Phytopythium has grown from around 10 to beyond 20 recognized species over the past decade, and it seems likely that several more species of this genus await discovery.

  5. Mangrove expansion and saltmarsh decline at mangrove poleward limits

    Science.gov (United States)

    Saintilan, Neil; Wilson, Nicholas C.; Rogers, Kerrylee; Rajkaran, Anusha; Krauss, Ken W.

    2014-01-01

    Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold-tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the US Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province. In south-eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the pole-ward extension of temperature thresholds co-incident with sea-level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.

  6. Incorporating climate and ocean change into extinction risk assessments for 82 coral species.

    Science.gov (United States)

    Brainard, Russell E; Weijerman, Mariska; Eakin, C Mark; McElhany, Paul; Miller, Margaret W; Patterson, Matt; Piniak, Gregory A; Dunlap, Matthew J; Birkeland, Charles

    2013-12-01

    Many marine invertebrate species facing potential extinction have uncertain taxonomies and poorly known demographic and ecological traits. Uncertainties are compounded when potential extinction drivers are climate and ocean changes whose effects on even widespread and abundant species are only partially understood. The U.S. Endangered Species Act mandates conservation management decisions founded on the extinction risk to species based on the best available science at the time of consideration-requiring prompt action rather than awaiting better information. We developed an expert-opinion threat-based approach that entails a structured voting system to assess extinction risk from climate and ocean changes and other threats to 82 coral species for which population status and threat response information was limited. Such methods are urgently needed because constrained budgets and manpower will continue to hinder the availability of desired data for many potentially vulnerable marine species. Significant species-specific information gaps and uncertainties precluded quantitative assessments of habitat loss or population declines and necessitated increased reliance on demographic characteristics and threat vulnerabilities at genus or family levels. Adapting some methods (e.g., a structured voting system) used during other assessments and developing some new approaches (e.g., integrated assessment of threats and demographic characteristics), we rated the importance of threats contributing to coral extinction risk and assessed those threats against population status and trend information to evaluate each species' extinction risk over the 21st century. This qualitative assessment resulted in a ranking with an uncertainty range for each species according to their estimated likelihood of extinction. We offer guidance on approaches for future biological extinction risk assessments, especially in cases of data-limited species likely to be affected by global-scale threats

  7. Disentangling the effects of climate, species, and management on growth and mortality of southeast Asian mangroves

    Science.gov (United States)

    Baker, Patrick; Bunyavejchewin, Sarayudh; Robinson, Andrew

    2013-04-01

    Mangrove forests are one of the most biologically important ecosystems of the littoral tropics. They provide a wide range of ecosystem services including tsunami protection, food production, and waste processing. They are also rapidly disappearing due to increasing rates of clearance for development and aquaculture. It remains unclear how mangroves will respond to changing climatic conditions. Here we discuss the results of a long-term study that explored the interacting effects of climate, species, and management practices on annual variability of growth and mortality of mangroves in peninsular Thailand. The 15-year study period included the extreme 1997-98 ENSO event that led to widespread drought-induced mortality and forest fires across the region, but which appeared to have little impact on the mangroves. Our results provide an important, and much-needed, framework for conservation and forest management planning in these mangrove forests given future concerns and uncertainty about climate change in the tropics.

  8. Ecology of mangroves in the Jewfish Chain, Exuma, Bahamas

    Science.gov (United States)

    Wilcox, L. V.; Yocom, Thomas G.; Forbes, A. M.

    1976-01-01

    The structure and function of mangrove communities in the Jewfish Chain, Exumas, Bahamas, were investigated for 3-1/2 years. Mangrove vegetation in the Jewfish Chain is similar to that in all the Caribbean-Florida area; Rhizophora mangle L. dominates and is interspersed with Avicennia germinans (L.) Lamk. and Laguncularia racemosa (L.) Gaertn. There is no apparent zonation of these three species. The mangrove communities in the Jewfish Chain occur only where they are protected from prevailing winds, storms, and tides, although all are periodically devastated by hurricanes. We found little or no evidence of coast building within these protected locations. The importance of the mangroves appears to be in providing protection and food for other flora and fauna within this unique ecosystem. Twenty-four species of algae were found in the mangroves, 9 of which had not previously been reported from the Bahamas. Distribution of these algae appears to be correlated to incident solar radiation, desiccation, and tide level. A total of 56 species of fish were found in the mangroves, 2 of which were not previously known from the Bahamas. Many fish taken were juveniles, suggesting that mangroves are a nursery ground for numerous species. Nine species of molluscs were found. Each species had a distinct distribution pattern relative to distance from the seaward edge of the mangroves, as well as a distinct vertical distribution pattern. Seventeen species of decapod crustaceans were recorded. Though several species of birds were noted in the mangroves, three species were most abundant: the white-crowned pigeon (Columba leucocephala) uses the mangrove for nesting but feeds in nearby shrub-thorn communities; the gray kingbird (Tyrannus dominicensis) and green heron (Butorides virescens) nest and feed in the mangroves. Our data do not completely describe a stereotyped mangrove community in the Bahamas, but they do give an indication of community structure and suggest several

  9. Evidence for the role of infectious disease in species extinction and endangerment

    Science.gov (United States)

    Smith, Katherine F.; Sax, Dov F.; Lafferty, Kevin D.

    2006-01-01

    Infectious disease is listed among the top five causes of global species extinctions. However, the majority of available data supporting this contention is largely anecdotal. We used the IUCN Red List of Threatened and Endangered Species and literature indexed in the ISI Web of Science to assess the role of infectious disease in global species loss. Infectious disease was listed as a contributing factor in extinctions known to have occurred since 1500 (833 plants and animals) and as contributing to a species' status as critically endangered in animals). Although infectious diseases appear to play a minor role in global species loss, our findings underscore two important limitations in the available evidence: uncertainty surrounding the threats to species survival and a temporal bias in the data. Several initiatives could help overcome these obstacles, including rigorous scientific tests to determine which infectious diseases present a significant threat at the species level, recognition of the limitations associated with the lack of baseline data for the role of infectious disease in species extinctions, combining data with theory to discern the circumstances under which infectious disease is most likely to serve as an agent of extinction, and improving surveillance programs for the detection of infectious disease. An evidence-based understanding of the role of infectious disease in species extinction and endangerment will help prioritize conservation initiatives and protect global biodiversity.

  10. Efficient RNA extraction protocol for the wood mangrove species Laguncularia racemosa suited for next-generation RNA sequencing

    International Nuclear Information System (INIS)

    Wilwerth, M. W.; Rossetto, P.

    2016-01-01

    Mangrove flora and habitat have immeasurable importance in marine and coastal ecology as well as in the economy. Despite their importance, they are constantly threatened by oil spill accidents and environmental contamination; therefore, it is crucial to understand the changes in gene expression to better predict toxicity in these plants. Among the species of Atlantic coast mangrove (Americas and Africa), Laguncularia racemosa, or white mangrove, is a conspicuous species. The wide distribution of L. racemosa in areas where marine oil exploration is rapidly increasing make it a candidate mangrove species model to uncover the impact of oil spills at the molecular level with the use of massive transcriptome sequencing. However, for this purpose, the RNA extraction protocol should ensure low levels of contaminants and structure integrity. In this study, eight RNA extraction methods were tested and analysed using downstream applications. The InviTrap Spin Plant RNA Mini Kit performed best with regard to purity and integrity. Moreover, the obtained RNA was submitted to cDNA synthesis and RT-PCR, successfully generating amplification products of the expected size. These Results show the applicability of the RNA obtained here for downstream methodologies, such as the construction of cDNA libraries for the Illumina Hi-seq platform. (author)

  11. Mangrove habitat partitioning by Ucides cordatus (Ucididae): effects of the degree of tidal flooding and tree-species composition during its life cycle

    Science.gov (United States)

    Wunderlich, A. C.; Pinheiro, M. A. A.

    2013-06-01

    Environmental factors strongly affect mangrove crabs, and some factors modulate population structure and habitat partitioning during the crabs' life cycle. However, the effect of these environmental factors on habitat selection by mangrove crabs is still unknown. We evaluated habitat selection by the mangrove crab Ucides cordatus in mangrove forests with different degrees of predominance of Rhizophora mangle, Laguncularia racemosa or Avicennia schaueriana, two tidal flooding levels (less- and more-flooded), and two biological periods (breeding and non-breeding seasons). Sampling was conducted in four mangrove forests with different influences of these biotic and abiotic parameters. We used the data for sex ratio to explain environmental partitioning by this species. Females predominated in R. mangle mangroves, independently of the biological period (breeding or non-breeding seasons), and males predominated only in the less-flooded L. racemosa mangroves. The flooding level affected the sex ratio of U. cordatus, with a predominance of males in less-flooded mangroves, independently of the biological period; and a gender balance in the more-flooded mangroves only during the breeding season. Outside the breeding season, the largest specimens were recorded in the R. mangle mangroves, but in the breeding season, the largest crabs were recorded in the L. racemosa mangroves with a higher level of flooding. These results suggest that tree-species composition and tidal flooding level can have a significant effect on the habitat partitioning of sexes and sizes of the mangrove crab U. cordatus both during and outside the breeding season.

  12. Are mangroves in the tropical Atlantic ripe for invasion? Exotic mangrove trees in the forests of South Florida

    Science.gov (United States)

    Fourqurean, James W.; Smith, Thomas J.; Possley, Jennifer; Collins, Timothy M.; Lee, David; Namoff, Sandra

    2010-01-01

    Two species of mangrove trees of Indo-Pacific origin have naturalized in tropical Atlantic mangrove forests in South Florida after they were planted and nurtured in botanic gardens. Two Bruguiera gymnorrhiza trees that were planted in the intertidal zone in 1940 have given rise to a population of at least 86 trees growing interspersed with native mangrove species Rhizophora mangle, Avicennia germinans and Laguncularia racemosa along 100 m of shoreline; the population is expanding at a rate of 5.6% year−1. Molecular genetic analyses confirm very low genetic diversity, as expected from a population founded by two individuals. The maximum number of alleles at any locus was three, and we measured reduced heterozygosity compared to native-range populations. Lumnitzera racemosa was introduced multiple times during the 1960s and 1970s, it has spread rapidly into a forest composed of native R. mangle, A. germinans, Laguncularia racemosa and Conocarpus erectus and now occupies 60,500 m2 of mangrove forest with stem densities of 24,735 ha−1. We estimate the population growth rate of Lumnitzera racemosa to be between 17 and 23% year−1. Populations of both species of naturalized mangroves are dominated by young individuals. Given the long life and water-dispersed nature of propagules of the two exotic species, it is likely that they have spread beyond our survey area. We argue that the species-depauperate nature of tropical Atlantic mangrove forests and close taxonomic relatives in the more species-rich Indo-Pacific region result in the susceptibility of tropical Atlantic mangrove forests to invasion by Indo-Pacific mangrove species.

  13. Is telomere erosion a mechanism of species extinction?

    Science.gov (United States)

    Stindl, Reinhard

    2004-03-15

    According to the fossil record, 99.9% of all species that have ever lived on Earth have disappeared. However, only about 4% died out during the five mass extinction events, whereas it seems that the majority of species vanished without any signs of significant earthbound or extraterrestrial physical threats. Clearly, biological extinction mechanisms are by far the most important, but they are subject to serious limitations concerning the worldwide disappearance of species. In view of that, species-inherent mechanisms, which could lead to the worldwide destabilization of a population, might be worth reconsideration. Telomeres, the protective caps of chromosome ends, and the enzyme telomerase have been well preserved in plants and animals during evolution. In the absence of telomerase activity, telomeric DNA has been shown to shorten every time a cell divides. The concept of a mitotic clock based on the gradual erosion of telomeres is now generally accepted and has been confirmed in numerous plants and animals. Chromosomal rearrangements are the hallmarks of two completely different biological phenomena, cancer and speciation. In premalignant cells, gradual telomere erosion beyond a critical threshold is a well-known inducer of chromosomal instability. The species clock hypothesis, as presented here, is based on the idea of a tiny loss of mean telomere length per generation. This mechanism would not rapidly endanger the survival of a particular species. Yet, after many thousands of generations, critically short telomeres could lead to the weakening and even the extinction of old species and would simultaneously create the unstable chromosomal environment that might result in the origination of new species. Copyright 2004 Wiley-Liss, Inc.

  14. Ecophysiological approach to mangroves: a review

    Directory of Open Access Journals (Sweden)

    Sávia Soares Pascoalini

    2014-09-01

    Full Text Available Mangrove has a high primary productivity that partly results from physiological mechanisms applied by plant species to environmental restrictions. This synthesis aims to assess the state of the art of ecophysiological studies on mangroves and identify gaps that allow increasing scientific knowledge on Brazilian mangroves and their potential contributions to climate changes. The worsening of environmental restrictions, such as increased salinity, longer flooding, and nutrient deficiency, induces a decrease in photosynthetic assimilation, resulting in a reduction in the development of species. The response of a given species to stress depends on its tolerance. We conclude that ecophysiological studies on mangrove vegetation are occasional, and their results differ between field and laboratory studies. In Brazil, this knowledge is still incipient, making it difficult to predict the behavior of species in face of climate change.

  15. Comparative Analysis of the Pattern of Population Genetic Diversity in Three Indo-West Pacific Rhizophora Mangrove Species.

    Science.gov (United States)

    Yan, Yu-Bin; Duke, Norm C; Sun, Mei

    2016-01-01

    Rhizophora species are the most widely distributed mangrove trees in the Indo-West Pacific (IWP) region. Comparative studies of these species with shared life history traits can help identify evolutionary factors that have played most important roles in determining genetic diversity within and between populations in ocean-current dispersed mangrove tree species. We sampled 935 individuals from 54 natural populations for genotyping with 13 microsatellite markers to investigate the level of genetic variation, population structure, and gene flow on a broad geographic scale in Rhizophora apiculata, Rhizophora mucronata , and Rhizophora stylosa across the IWP region. In contrast to the pattern expected of long-lived woody plants with predominant wind-pollination, water-dispersed seeds and wide geographic range, genetic variation within populations was generally low in all the three species, especially in those peripheral populations from geographic range limits. Although the large water-buoyant propagules of Rhizophora have capacity for long distance dispersal, such events might be rare in reality, as reflected by the low level of gene flow and high genetic differentiation between most of population pairs within each species. Phylogeographic separation of Australian and Pacific island populations from SE Asian lineages previously revealed with DNA sequence data was still detectable in R. apiculata based on genetic distances, but this pattern of disjunction was not always evident in R. mucronata and R. stylosa , suggesting that fast-evolving molecular markers could be more suitable for detecting contemporary genetic structure but not deep evolutionary divergence caused by historical vicariance. Given that mangrove species generally have small effective population sizes, we conclude that genetic drift coupled with limited gene flow have played a dominant role in producing the current pattern of population genetic diversity in the IWP Rhizophora species, overshadowing the

  16. Rates of movement of threatened bird species between IUCN red list categories and toward extinction.

    Science.gov (United States)

    Brooke, M de L; Butchart, S H M; Garnett, S T; Crowley, G M; Mantilla-Beniers, N B; Stattersfield, A J

    2008-04-01

    In recent centuries bird species have been deteriorating in status and becoming extinct at a rate that may be 2-3 orders of magnitude higher than in prehuman times. We examined extinction rates of bird species designated critically endangered in 1994 and the rate at which species have moved through the IUCN (World Conservation Union) Red List categories of extinction risk globally for the period 1988-2004 and regionally in Australia from 1750 to 2000. For Australia we drew on historical accounts of the extent and condition of species habitats, spread of invasive species, and changes in sighting frequencies. These data sets permitted comparison of observed rates of movement through the IUCN Red List categories with novel predictions based on the IUCN Red List criterion E, which relates to explicit extinction probabilities determined, for example, by population viability analysis. The comparison also tested whether species listed on the basis of other criteria face a similar probability of moving to a higher threat category as those listed under criterion E. For the rate at which species moved from vulnerable to endangered, there was a good match between observations and predictions, both worldwide and in Australia. Nevertheless, species have become extinct at a rate that, although historically high, is 2 (Australia) to 10 (globally) times lower than predicted. Although the extinction probability associated with the critically endangered category may be too high, the shortfall in realized extinctions can also be attributed to the beneficial impact of conservation intervention. These efforts may have reduced the number of global extinctions from 19 to 3 and substantially slowed the extinction trajectory of 33 additional critically endangered species. Our results suggest that current conservation action benefits species on the brink of extinction, but is less targeted at or has less effect on moderately threatened species.

  17. Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions

    Directory of Open Access Journals (Sweden)

    Wesley Dattilo

    2012-12-01

    Full Text Available The knowledge of the mechanisms that shape biodiversity-stability relationships is essential to understand ecological and evolutionary dynamics of interacting species. However, most studies focus only on species loss and ignore the loss of interactions. In this study, I evaluated the topological structure of two different ant-plant networks: symbiotic (ants and myrmecophytes and nonsymbiotic (ants and plants with extrafloral nectaries. Moreover, I also evaluated in both networks the tolerance to plant and ant species extinction using a new approach. For this, I used models based on simulations of cumulative removals of species from the network at random. Both networks were fundamentally different in the interaction and extinction patterns. The symbiotic network was more specialized and less robust to species extinction. On the other hand, the nonsymbiotic network tends to be functionally redundant and more robust to species extinction. The difference for food resource utilization and ant nesting in both ant-plant interactions can explain the observed pattern. In short, I contributed in this manner to our understanding of the biodiversity maintenance and coevolutionary processes in facultative and obligate mutualisms.

  18. Ecophysiological approach to mangroves: a review

    Directory of Open Access Journals (Sweden)

    Sávia Soares Pascoalini

    2014-05-01

    Full Text Available http://dx.doi.org/10.5007/2175-7925.2014v27n3p1 Mangrove has a high primary productivity that partly results from physiological mechanisms applied by plant species to environmental restrictions. This synthesis aims to assess the state of the art of ecophysiological studies on mangroves and identify gaps that allow increasing scientific knowledge on Brazilian mangroves and their potential contributions to climate changes. The worsening of environmental restrictions, such as increased salinity, longer flooding, and nutrient deficiency, induces a decrease of photosynthetic assimilation, resulting in a reduction in the development of species. The response of a given species to stress depends on its tolerance. We conclude that ecophysiological studies on mangrove vegetation are occasional, and their results differ between field and laboratory studies. In Brazil, this knowledge is still incipient, making it difficult to predict the behavior of species in face of climate change.

  19. Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific

    Science.gov (United States)

    Kovacs, John M.; Wang, Jinfei; Flores-Verdugo, Francisco

    2005-01-01

    Using both IKONOS and in situ LAI-2000 sensor data, a map of estimated LAI, based on NDVI, was created for the Agua Brava Lagoon, Mexican Pacific. The LAI values were then aggregated according to four classes; red mangrove ( Rhizophora mangle), healthy white mangrove ( Laguncularia racemosa), poor condition white mangrove and dead mangrove. Of the live mangrove, calculated at approximately 85% of the forest, mean LAI values of 2.49, 1.74 and 0.85 were determined for the red, healthy white and poor condition white mangrove, respectively. Excluding the dead areas, an overall estimated mangrove LAI value of 1.81 was ascertained for the 71 km 2 of mapped mangrove forest. Although the results do suggest the technique as a very rapid and effective method for monitoring the condition of mangroves at the species level, potential limitations are also discussed.

  20. The carbon holdings of northern Ecuador's mangrove forests

    OpenAIRE

    Hamilton, Stuart E.; Lovette, John; Borbor, Mercy; Millones, Marco

    2016-01-01

    Within a GIS environment, we combine field measures of mangrove diameter, mangrove species distribution, and mangrove density with remotely sensed measures of mangrove location and mangrove canopy cover to estimate the mangrove carbon holdings of northern Ecuador. We find that the four northern estuaries of Ecuador contain approximately 7,742,999 t (plus or minus 15.47 percent) of standing carbon. Of particular high carbon holdings are the Rhizophora mangle dominated mangrove stands found in-...

  1. Sponge species composition, abundance, and cover in marine lakes and coastal mangroves in Berau, Indonesia

    NARCIS (Netherlands)

    Becking, L.E.; Cleary, D.F.R.; Voogd, de N.J.

    2013-01-01

    We compared the species composition, abundance, and cover of sponges in 2 marine lakes (Kakaban Lake and Haji Buang Lake) and adjacent coastal mangroves on the islands of Kakaban and Maratua in the Berau region of Indonesia. We recorded a total of 115 sponge species, 33 of which were restricted to

  2. Global attractors and extinction dynamics of cyclically competing species.

    Science.gov (United States)

    Rulands, Steffen; Zielinski, Alejandro; Frey, Erwin

    2013-05-01

    Transitions to absorbing states are of fundamental importance in nonequilibrium physics as well as ecology. In ecology, absorbing states correspond to the extinction of species. We here study the spatial population dynamics of three cyclically interacting species. The interaction scheme comprises both direct competition between species as in the cyclic Lotka-Volterra model, and separated selection and reproduction processes as in the May-Leonard model. We show that the dynamic processes leading to the transient maintenance of biodiversity are closely linked to attractors of the nonlinear dynamics for the overall species' concentrations. The characteristics of these global attractors change qualitatively at certain threshold values of the mobility and depend on the relative strength of the different types of competition between species. They give information about the scaling of extinction times with the system size and thereby the stability of biodiversity. We define an effective free energy as the negative logarithm of the probability to find the system in a specific global state before reaching one of the absorbing states. The global attractors then correspond to minima of this effective energy landscape and determine the most probable values for the species' global concentrations. As in equilibrium thermodynamics, qualitative changes in the effective free energy landscape indicate and characterize the underlying nonequilibrium phase transitions. We provide the complete phase diagrams for the population dynamics and give a comprehensive analysis of the spatio-temporal dynamics and routes to extinction in the respective phases.

  3. Unraveling the drivers of community dissimilarity and species extinction in fragmented landscapes.

    Science.gov (United States)

    Banks-Leite, Cristina; Ewers, Robert M; Metzger, Jean Paul

    2012-12-01

    Communities in fragmented landscapes are often assumed to be structured by species extinction due to habitat loss, which has led to extensive use of the species-area relationship (SAR) in fragmentation studies. However, the use of the SAR presupposes that habitat loss leads species to extinction but does not allow for extinction to be offset by colonization of disturbed-habitat specialists. Moreover, the use of SAR assumes that species richness is a good proxy of community changes in fragmented landscapes. Here, we assessed how communities dwelling in fragmented landscapes are influenced by habitat loss at multiple scales; then we estimated the ability of models ruled by SAR and by species turnover in successfully predicting changes in community composition, and asked whether species richness is indeed an informative community metric. To address these issues, we used a data set consisting of 140 bird species sampled in 65 patches, from six landscapes with different proportions of forest cover in the Atlantic Forest of Brazil. We compared empirical patterns against simulations of over 8 million communities structured by different magnitudes of the power-law SAR and with species-specific rules to assign species to sites. Empirical results showed that, while bird community composition was strongly influenced by habitat loss at the patch and landscape scale, species richness remained largely unaffected. Modeling results revealed that the compositional changes observed in the Atlantic Forest bird metacommunity were only matched by models with either unrealistic magnitudes of the SAR or by models ruled by species turnover, akin to what would be observed along natural gradients. We show that, in the presence of such compositional turnover, species richness is poorly correlated with species extinction, and z values of the SAR strongly underestimate the effects of habitat loss. We suggest that the observed compositional changes are driven by each species reaching its

  4. Comparative Analysis of the Pattern of Population Genetic Diversity in Three Indo-West Pacific Rhizophora Mangrove Species

    Directory of Open Access Journals (Sweden)

    Yu-Bin Yan

    2016-09-01

    Full Text Available Rhizophora species are the most widely distributed mangrove trees in the Indo-West Pacific (IWP region. Comparative studies of these species with shared life history traits can help identify evolutionary factors that have played most important roles in determining genetic diversity within and between populations in ocean-current dispersed mangrove tree species. We sampled 935 individuals from 54 natural populations for genotyping with 13 microsatellite markers to investigate the level of genetic variation, population structure, and gene flow on a broad geographic scale in Rhizophora apiculata, R. mucronata, and R. stylosa across the IWP region. In contrast to the pattern expected of long-lived woody plants with predominant wind-pollination, water-dispersed seeds and wide geographic range, genetic variation within populations was generally low in all the three species, especially in those peripheral populations from geographic range limits. Although the large water-buoyant propagules of Rhizophora have capacity for long distance dispersal, such events might be rare in reality, as reflected by the low level of gene flow and high genetic differentiation between most of population pairs within each species. Phylogeographic separation of Australian and Pacific island populations from SE Asian lineages previously revealed with DNA sequence data was still detectable in R. apiculata based on genetic distances, but this pattern of disjunction was not always evident in R. mucronata and R. stylosa, suggesting that fast-evolving molecular markers could be more suitable for detecting contemporary genetic structure but not deep evolutionary divergence caused by historical vicariance. Given that mangrove species generally have small effective population sizes, we conclude that genetic drift coupled with limited gene flow have played a dominant role in producing the current pattern of population genetic diversity in the IWP Rhizophora species, overshadowing the

  5. Species Turnover through Time: Colonization and Extinction Dynamics across Metacommunities.

    Science.gov (United States)

    Nuvoloni, Felipe Micali; Feres, Reinaldo José Fazzio; Gilbert, Benjamin

    2016-06-01

    Island biogeography and metacommunity theory often use equilibrium assumptions to predict local diversity, yet nonequilibrium dynamics are common in nature. In nonequilibrium communities, local diversity fluctuates through time as the relative importance of colonization and extinction change. Here, we test the prevalence and causes of nonequilibrium dynamics in metacommunities of mites associated with rubber trees distributed over large spatial (>1,000 km) and temporal (>30-60 generations) scales in Brazil. We measured colonization and extinction rates to test species turnover and nonequilibrium dynamics over a growing season. Mite metacommunities exhibited nonequilibrium dynamics for most months of the year, and these dynamics tracked climatic conditions. Monthly shifts in temperature of more than 1°C resulted in nonequilibrium dynamics, as did mean temperatures outside of two critical ranges. Nonequilibrium dynamics were caused by a change in colonization with temperature change and changes in both colonization and extinction with absolute temperature. Species turnover showed different trends; high relative humidity increased both colonization and extinction rates, increasing turnover but not nonequilibrium dynamics. Our study illustrates that testing nonequilibrium dynamics can provide new insights into the drivers of colonization, extinction, and diversity fluctuations in metacommunities.

  6. Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Michael, E-mail: lewis.michael@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States); Pryor, Rachel; Wilking, Lynn [U.S. Environmental Protection Agency, Office of Research and Development, 1 Sabine Island Drive, Gulf Breeze, FL 32561 (United States)

    2011-10-15

    The scientific literature for fate and effects of non-nutrient contaminant concentrations is skewed for reports describing sediment contamination and bioaccumulation for trace metals. Concentrations for at least 22 trace metals have been reported in mangrove sediments. Some concentrations exceed sediment quality guidelines suggesting adverse effects. Bioaccumulation results are available for at least 11 trace metals, 12 mangrove tissues, 33 mangrove species and 53 species of mangrove-habitat biota. Results are specific to species, tissues, life stage, and season and accumulated concentrations and bioconcentration factors are usually low. Toxicity tests have been conducted with 12 mangrove species and 8 species of mangrove-related fauna. As many as 39 effect parameters, most sublethal, have been monitored during the usual 3 to 6 month test durations. Generalizations and extrapolations for toxicity between species and chemicals are restricted by data scarcity and lack of experimental consistency. This hinders chemical risk assessments and validation of effects-based criteria. - Chemical risk assessments and resource management are restricted by the limited chemical fate and effects database for mangroves.

  7. Mangrove macrobenthos: Assemblages, services, and linkages

    Science.gov (United States)

    Lee, S. Y.

    2008-02-01

    Macrobenthic assemblages are relatively poorly known compared to other components of the mangrove ecosystem. Tropical mangroves support macrobenthic biodiversity resources yet to be properly documented and interpreted. Some methodological challenges, such as the generally high spatial heterogeneity and complexity of the habitat, evidently reduce sampling efficiency and accuracy, while also leaving some microhabitats under-sampled. Macrobenthic assemblage structure seems to be influenced by local environmental conditions, such as hydroperiod, organic matter availability and sediment characteristics. Brachyurans, gastropods and oligochaetes dominate in the sediment, with the former two groups also common on hard surfaces provided by tree trunks, while insects and arachnids inhabit the canopy. Traditionally, studies of mangrove macrobenthos have focused on assemblage structure or the biology of individual species, but more complex inter-specific interactions and the inter-relationship between habitat and the biota are recently being addressed. Brachyuran crabs are the best-studied macrobenthos group, but many issues about their role in mangrove ecosystem dynamics are still controversial. Despite many species of mangrove macrobenthos being referred to as 'trophic dead ends', most serve as important links between recalcitrant mangrove organic matter and estuarine secondary production, through feeding excursion by mobile nekton during the high tide, and macrobenthos-mediated processing and exportation of organic matter. A significant difference in the standing crop biomass of forests between the Indo-west-Pacific (IWP)' and Atlantic-east-Pacific (AEP) mangroves may be related to the difference in species richness of mangrove as well as macrobenthos diversity in the two bioregions. Such differences in assemblage structure may also result in different ecosystem functioning, but the nature of the links is, however, yet to be explored. There is also a strong need for

  8. Mangrove removal in the belize cays: effects on mangrove-associated fish assemblages in the intertidal and subtidal

    Science.gov (United States)

    Taylor, D.S.; Reyier, E.A.; Davis, W.P.; McIvor, C.C.

    2007-01-01

    We investigated the effects of mangrove cutting on fish assemblages in Twin Cays, Belize, in two habitat types. We conducted visual censuses at two sites in adjoining undisturbed/disturbed (30%–70% of shoreline fringe removed) sub-tidal fringing Rhizophora mangle Linnaeus, 1753. Observers recorded significantly more species and individuals in undisturbed sites, especially among smaller, schooling species (e.g., atherinids, clupeids), where densities were up to 200 times greater in undisturbed habitat. Multivariate analyses showed distinct species assemblages between habitats at both sites. In addition, extensive trapping with wire minnow traps within the intertidal zone in both undisturbed and disturbed fringing and transition (landward) mangrove forests was conducted. Catch rates were low: 638 individuals from 24 species over 563 trap-nights. Trap data, however, indicated that mangrove disturbance had minimal effect on species composition in either forest type (fringe/transition). Different results from the two methods (and habitat types) may be explained by two factors: (1) a larger and more detectable species pool in the subtidal habitat, with visual "access" to all species, and (2) the selective nature of trapping. Our data indicate that even partial clearing of shoreline and more landward mangroves can have a significant impact on local fish assemblages.

  9. Extinction Risk of Phytoplankton Species to Potential Killing Mechanisms at the Cretaceous-Paleogene Boundary

    Science.gov (United States)

    Bralower, T. J.; Schueth, J.; Jiang, S.

    2013-05-01

    The impact at Chicxulub caused catastrophic changes in marine habitats including extended darkness, ocean acidification and eutrophication. These changes were devastating to some groups of phytoplankton at the base of the marine food chain while others escaped virtually unscathed. For example, diatoms had ~85% survival across the boundary and dinoflagellates actually increased in diversity. These non-calcareous plankton most likely survived due to their adaptation to high-stress environments and their ability to form spores and resting cysts. The calcareous nannoplankton, however, were decimated with approximately 85% of genera and 93% of species going extinct. Nannoplankton generally lack the ability to encyst and thus, as a group, would have been susceptible to darkness, ocean acidification and eutrophication. However, we still do not fully understand why certain nannofossil taxa survived while others went extinct. Extinction risk, the projected susceptibility of a taxon to extinction based on its ecology and ability to adapt, is a concept that is widely applied to extant species and higher order fossil groups, but not to phytoplankton. This concept is a useful for probing the selectivity of ancient species to mass extinction. Determining the extinction risk of latest Maastrichtian nannoplankton species would be a step towards understanding the selection of survivors. The deep-sea record contains a remarkable archive of nannoplankton extinction and recovery across the Cretaceous-Paleogene boundary. The recovery was geologically extended, enabling detailed comparisons between the ocean basins. A large, global database of assemblages had led to the discovery that the Northern Hemisphere oceans suffered higher nannoplankton extinction rates than the Southern Hemisphere with an ecological "crisis" that lasted for approximately 350 thousand years after the impact. In addition, incumbency played a major role in the origination of new species. Since extinction almost

  10. Recent advances in understanding Colombian mangroves

    Science.gov (United States)

    Polanía, J.; Urrego, L. E.; Agudelo, C. M.

    2015-02-01

    Throughout the last 15 years, researchers at the National University of Colombia at Medellin have studied Colombian mangroves. Remote sensing, pollen analysis of superficial and deep sediments, Holocene coastal vegetation dynamics, sediment dating using 14C and 210Pb, sampling in temporary plots, sampling in temporary and permanent plots, and other techniques have been applied to elucidate long- and short-term mangrove community dynamics. The studied root fouling community is structured by several regulatory mechanisms; habitat heterogeneity increases species richness and abundance. Fringe mangroves were related to Ca concentration in the soil and the increased dominance of Laguncularia racemosa and other nonmangrove tree species, while the riverine mangroves were associated with Mg concentration and the dominance of Rhizophora mangle. The seedling and mangrove tree distributions are determined by a complex gradient of natural and anthropogenic disturbances. Mangrove pollen from surface sediments and the existing vegetation and geomorphology are close interrelated. Plant pollen of mangrove and salt marsh reflects environmental and disturbance conditions, and also reveals forest types. Forest dynamics in both coasts and their sensitivity of to anthropogenic processes are well documented in the Late Quaternary fossil record. Our studies of short and long term allow us to predict the dynamics of mangroves under different scenarios of climate change and anthropogenic stress factors that are operating in Colombian coasts. Future research arises from these results on mangrove forests dynamics, sea-level rise at a fine scale using palynology, conservation biology, and carbon dynamics.

  11. Predicting future mangrove forest migration in the Everglades under rising sea level

    Science.gov (United States)

    Doyle, Thomas W.

    2003-01-01

    Mangroves are highly productive ecosystems that provide valued habitat for fish and shorebirds. Mangrove forests are universally composed of relatively few tree species and a single overstory strata. Three species of true mangroves are common to intertidal zones of the Caribbean and Gulf of Mexico Coast, namely, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangrove forests occupy intertidal settings of the coastal margin of the Everglades along the southwest tip of the Florida peninsula (fig. 1).

  12. Global change impacts on mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangroves are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal forests are important coastal ecosystems that are valued for a variety of ecological and societal goods and services. Major local threats to mangrove ecosystems worldwide include clearcutting and trimming of forests for urban, agricultural, or industrial expansion; hydrological alterations; toxic chemical spills; and eutrophication. In many countries with mangroves, much of the human population resides in the coastal zone, and their activities often negatively impact the integrity of mangrove forests. In addition, eutrophication, which is the process whereby nutrients build up to higher than normal levels in a natural system, is possibly one of the most serious threats to mangroves and associated ecosystems such as coral reefs. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand global impacts on these significant ecosystems.Changes in climate and other factors may also affect mangroves, but in complex ways. Global warming may promote expansion of mangrove forests to higher latitudes and accelerate sea-level rise through melting of polar ice or steric expansion of oceans. Changes in sea level would alter flooding patterns and the structure and areal extent of mangroves. Climate change may also alter rainfall patterns, which would in turn change local salinity regimes and competitive interactions of mangroves with other wetland species. Increases in frequency or intensity of tropical storms and hurricanes in combination with sea-level rise may alter erosion and sedimentation rates in mangrove forests. Another global change factor that may directly affect mangrove growth is increased atmospheric carbon dioxide (CO2), caused by burning of fossil fuels and other factors. Elevated CO2 concentration may increase mangrove growth by stimulating photosynthesis or improving water use

  13. Mangrove expansion into salt marshes alters associated faunal communities

    Science.gov (United States)

    Smee, Delbert L.; Sanchez, James A.; Diskin, Meredith; Trettin, Carl

    2017-03-01

    Climate change is altering the distribution of foundation species, with potential effects on organisms that inhabit these environments and changes to valuable ecosystem functions. In the Gulf of Mexico, black mangroves (Avicennia germinans) are expanding northward into salt marshes dominated by Spartina alterniflora (hereafter Spartina). Salt marshes are essential habitats for many organisms, including ecologically and economically important species such as blue crabs (Callinectes sapidus) and Penaeid shrimp (e.g., Penaeus aztecus), which may be affected by vegetation changes. Black mangroves occupied higher tidal elevations than Spartina, and Spartina was present only at its lowest tidal elevations in sites when mangroves were established. We compared nekton and infaunal communities within monoculture stands of Spartina that were bordered by mangroves to nearby areas where mangroves had not yet become established. Nekton and infaunal communities were significantly different in Spartina stands bordered by mangroves, even though salinity and temperature were not different. Overall abundance and biomass of nekton and infauna was significantly higher in marshes without mangroves, although crabs and fish were more abundant in mangrove areas. Black mangrove expansion as well as other ongoing vegetation shifts will continue in a warming climate. Understanding how these changes affect associated species is necessary for management, mitigation, and conservation.

  14. Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States.

    Science.gov (United States)

    Osland, Michael J; Enwright, Nicholas; Day, Richard H; Doyle, Thomas W

    2013-05-01

    We live in an era of unprecedented ecological change in which ecologists and natural resource managers are increasingly challenged to anticipate and prepare for the ecological effects of future global change. In this study, we investigated the potential effect of winter climate change upon salt marsh and mangrove forest foundation species in the southeastern United States. Our research addresses the following three questions: (1) What is the relationship between winter climate and the presence and abundance of mangrove forests relative to salt marshes; (2) How vulnerable are salt marshes to winter climate change-induced mangrove forest range expansion; and (3) What is the potential future distribution and relative abundance of mangrove forests under alternative winter climate change scenarios? We developed simple winter climate-based models to predict mangrove forest distribution and relative abundance using observed winter temperature data (1970-2000) and mangrove forest and salt marsh habitat data. Our results identify winter climate thresholds for salt marsh-mangrove forest interactions and highlight coastal areas in the southeastern United States (e.g., Texas, Louisiana, and parts of Florida) where relatively small changes in the intensity and frequency of extreme winter events could cause relatively dramatic landscape-scale ecosystem structural and functional change in the form of poleward mangrove forest migration and salt marsh displacement. The ecological implications of these marsh-to-mangrove forest conversions are poorly understood, but would likely include changes for associated fish and wildlife populations and for the supply of some ecosystem goods and services. © 2012 Blackwell Publishing Ltd.

  15. Hydrological Classification, a Practical Tool for Mangrove Restoration

    OpenAIRE

    Van Loon, Anne F.; Te Brake, Bram; Van Huijgevoort, Marjolein H. J.; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined....

  16. Plant diversity and biomass of Marudu bay mangroves in Malaysia

    International Nuclear Information System (INIS)

    Hanum, F.; Kudus, K.A.; Saari, N.S

    2012-01-01

    The mangroves of Marudu Bay in the state of Sabah is situated at the tip of Borneo Island, and at the southern limit of the Coral Triangle whose waters hold the highest diversity of corals, fish, molluscks, crustaceans and marine plant species in the world. The ecosystem shows a deterioration due to unsustainable fishing, pollution and encroachment, and these are impacting the Marudu Bay coastal communities economically. Fishing is the major economic activity here. Realising the importance of conserving the mangroves to uplift the socio-economic livelihood of the coastal community, a resource inventory of the mangroves and its productivity study were carried out. A total of 16 plant species in 12 genera and 9 families were identified. It was also found that 0.7 ha is capable of capturing all the species in the mangrove forest. The mangrove forests of Marudu Bay are dominated by Rhizopora apiculata and R. mucronata. The highest Importance Value index (IVI) was given by Rhizophora mucronata. Total Above Ground Biomass (TAGB) for 1-ha of mangrove forest in Marudu Bay was estimated to be 98.4 t/ha. It was found in other parallel studies that the mangroves of Marudu Bay are productive ecosystems that provide valuable habitats, nurseries and spawning grounds for various commercially important species of fish and invertebrates such as shrimp besides many species of wildlife. The mangroves at Marudu Bay are not only aesthetically attractive but provide opportunities for ecotourism activities that can be undertaken by the local community inhabiting the area to uplift their meagre income, These activities include mangrove cruising, recreational fishing, educational tourism and mangrove honey production, amongst others. This way, the degradation of the mangrove in Marudu Bay can be halted and reversed. (author)

  17. Hydrological classification, a practical tool for mangrove restoration

    NARCIS (Netherlands)

    Loon, van Anne F.; Brake, te Bram; Huijgevoort, Van Marjolein H.J.; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration

  18. KEANEKARAGAM MANGROVE DI WILAYAH TAPAK, TUGUREJO, SEMARANG

    Directory of Open Access Journals (Sweden)

    NKT Martuti

    2014-06-01

    Full Text Available Abstrak __________________________________________________________________________________________ Konversi kawasan mangrove menjadi lahan tambak ikan/udang merupakan penyebab utama rusaknya ekosistem mangrove di Indonesia. Eksploitasi kawasan mangrove yang terus menerus dilakukan berpotensi mereduksi keanekaragaman spesies tumbuhan yang memiliki peran dan fungsi utama secara ekologis. Dusun Tapak merupakan salah satu wilayah di Kota Semarang yang ekosistem mangrovenya masih terjaga. Pengumpulan data primer pada penelitian ini meliputi pengukuran sebaran vegetasi mangrove. Data vegetasi mangrove dianalisis untuk mendapatkan Indeks Nilai Penting (INP dan Indeks Keanekaragaman. Pada tingkat pertumbuhan pohon, Avicennia marina merupakan spesies yang memiliki nilai penting tertinggi pada S II (300 %, S III (287,14 %, dan S IV (186,08 %, sedangkan spesies Rhizophora mucronata memiliki nilai penting tertinggi pada S I (232,06. Berdasarkan hasil analisis vegetasi mangrove di Wilayah Tapak, terdapat 5 spesies mangrove yang berhasil dijumpai, yaitu Rhizophora mucronata, Avicennia marina, Excoecaria aghalloca, Brugueira cylindrical, dan Xylocarpus mocullensis. Hasil penelitian dapat disimpulkan  bahwa Nilai Keanekaragaman mangrove wilayah Tapak rendah (0-0,469.  Hal ini dikarenakan ekosistem mangrove Wilayah Tapak merupakan ekosistem buatan, dengan jenis dan jumlah mangrove yang dominan terdiri dari Rhizophora mucronata dan Avicennia marina.   Abstract __________________________________________________________________________________________ The conversion of the mangrove conservation area into fish/shrimp ponds has been the major cause of the destruction of mangrove ecosystem in Indonesia. The ongoing exploitation of mangrove area potentially reduces the plant species diversity of the area. The mangrove area in Tapak Sub-Village of Semarang City is relatively conserved. The primary data collected in this research consisted of the mangrove vegetation

  19. Diversity and distribution of epiphytic bromeliads in a Brazilian subtropical mangrove.

    Science.gov (United States)

    Sousa, Mariana M DE; Colpo, Karine D

    2017-01-01

    It is not unusual to find epiphytic bromeliads in mangroves, but most studies on mangrove vegetation do not record their presence. This study aimed to evaluate the diversity and distribution of epiphytic bromeliads in a subtropical mangrove. The richness, abundance and life form (atmospheric and tank) of bromeliads were recorded and compared among host tree species and waterline proximity. The effects of diameter and height of host trees on the abundance of bromeliads were also assessed. The mangrove was composed of Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle. We recorded seven bromeliad species of the genera Tillandsia and Vriesea. The waterline proximity did not affect the abundance or diversity of bromeliads, but atmospheric forms were predominant near the waterline, whereas tank bromeliads were more frequent in the interior of the mangrove. The three mangrove species hosted bromeliads, but L. racemosa was the preferred host. The species composition showed that the distribution of bromeliads is more related to the host species than to the distance from the waterline. Bromeliad abundance increased with tree size. Bromeliads can be biological indicators of ecosystem health; therefore, inventories and host tree preferences are necessary knowledge for an adequate management of sensitive ecosystems as mangroves.

  20. Modeling hurricane effects on mangrove ecosystems

    Science.gov (United States)

    Doyle, Thomas W.

    1997-01-01

    Mangrove ecosystems are at their most northern limit along the coastline of Florida and in isolated areas of the gulf coast in Louisiana and Texas. Mangroves are marine-based forests that have adapted to colonize and persist in salty intertidal waters. Three species of mangrove trees are common to the United States, black mangrove (Avicennia germinans), white mangrove (Laguncularia racemosa), and red mangrove (Rhizophora mangle). Mangroves are highly productive ecosystems and provide valuable habitat for fisheries and shorebirds. They are susceptible to lightning and hurricane disturbance, both of which occur frequently in south Florida. Climate change studies predict that, while these storms may not become more frequent, they may become more intense with warming sea temperatures. Sea-level rise alone has the potential for increasing the severity of storm surge, particularly in areas where coastal habitats and barrier shorelines are rapidly deteriorating. Given this possibility, U.S. Geological Survey researchers modeled the impact of hurricanes on south Florida mangrove communities.

  1. Birds Communities at Mangrove of Batu Ampar, Kubu Raya District, West Kalimantan Province

    Directory of Open Access Journals (Sweden)

    Jarwadi Budi Hernowo

    2016-08-01

    Full Text Available Batu Ampar mangrove is an important bird habitat especially for birds which have relation to mangrove ecosystem in West Kalimantan. The research was conducted in February to March 2007, at mangrove Batu Ampar demo site. Sampling was done to get representative area for bird survey. The 19 transects were chosen as sampling site to collect bird data such as species and number of individual. Bird surveys were carried out using Reconnaissance method and index point of abundance (IPA count method. The length of each transect was approximately 500 m. The results showed that the bird community's structure dominated by insectivorous birds represented approximately 60 % of total bird's species at mangrove Batu Ampar demo site. The abundance numbers of the individual with the bird's species has relation pattern like J opposite. Percentage of dominant bird species was approximately 11%, those are such as stork billed kingfisher, white-collared kingfisher, common iora, chestnuts-rumped babbler, Strip-Tit Babbler, magpie robin, ashy tailorbird, mangrove blue flycatcher, pied fantail, mangrove whistler, Brown-throated Sunbird and Cooper-Throated Sunbird. Vertical structure of mangrove vegetation was used by birds at mangrove Batu Ampar demo site is mainly B stratum, and it used around 60% birds species. Based on dendrogram analysis there were 5 cluster birds species. The mangrove bird specialists found at sampling area were mangrove blue flycatcher and Cooper throated sunbird.

  2. When is an "Extinct" Species Really Extinct? Gauging the Search Efforts for Hawaiian Forest Birds and the Ivory-Billed Woodpecker

    Directory of Open Access Journals (Sweden)

    J. Michael. Scott

    2008-12-01

    Full Text Available Rare species, particularly those in inaccessible habitat, can go years without being observed. If we are to allocate conservation resources appropriately to conserving such species, it is important to be able to distinguish "rare" from "extinct." Criteria for designating extinction, however, tend to be arbitrary or vaguely defined. This designation should not be made unless the search effort has been sufficient to yield a high degree of confidence that the species is in fact absent. We develop models to assess the probability of extinction and the search effort necessary to detect an individual in a small population. We apply these models to searches for nine potentially extinct Hawaiian forest birds and for the Ivory-billed Woodpecker (Campephilus principalis in intensively searched areas in Arkansas. The Hawaiian forest bird survey was extensive, providing excellent information on population sizes and habitat associations of species encountered during the survey. Nonetheless, we conclude that the survey effort was not sufficient to conclude extinction (p > 0.90 for populations of 10 or fewer individuals for those species that were not encountered during surveys. In contrast, our analysis for Ivory-billed Woodpeckers suggests that, unless there were actually two or fewer birds present, the search effort was sufficient to conclude (p > 0.95 that Ivory-billed woodpeckers were not present in the intensively searched area. If one assumes distributions other than uniform, there is a greater chance that Ivory-billed Woodpeckers may persist in the intensively searched areas. Conclusions regarding occupancy of suitable habitat throughout the rest of the former range will require similarly intensive survey efforts. The degree of confidence in the absence of the Ivory-billed Woodpecker depended in part on our assumptions about the distribution of birds in the search area. For species with limited detection distance and small populations, a massive search

  3. Invasive rats on tropical islands: Their population biology and impacts on native species

    OpenAIRE

    Harper, Grant A.; Bunbury, Nancy

    2015-01-01

    The three most invasive rat species, black or ship rat Rattus rattus, brown or Norway rats, R. norvegicus and Pacific rat, R. exulans have been incrementally introduced to islands as humans have explored the world’s oceans. They have caused serious deleterious effects through predation and competition, and extinction of many species on tropical islands, many of which are biodiversity hotspots. All three rat species are found in virtually all habitat types, including mangrove and arid shrub la...

  4. Estimating the ecology of extinct species with paleoecological data assimilation

    Science.gov (United States)

    Raiho, A.; McLachlan, J. S.; Dietze, M.

    2017-12-01

    In order to understand long term, unobservable ecosystem processes, ecologists must use both paleoecoloigcal data and ecosystem models. Models parameterize species competitive interactions using modern data. But, modern ecological or physiological observations are not available for extinct species, making it difficult for models to conceptualize their ecology. For instance, American chestnut (Castanea dentata), who played a large role in forests of northeastern US, was decimated by disease to virtual extinction. Since chestnut's demise, defining its ecology has been controversial. Models typically assume that chestnut's ecology was very similar to oak; They parameterize chestnut like oak species. These assumptions are drawn from paleoecological data, but these data are often reported without uncertainty. Since the paleoecological data are often reported without uncertainty, paleoecological data has never been directly incorporated with ecosystem models. We developed a Bayesian statistical model to estimate fractional composition from paleoecological data with uncertainty. Then, we assimilated this data product into an ecosystem model for long term forest succession using a generalized ensemble adjustment filter to determine which species demographic parameters lead to changes in species composition over the last 2,000 years at Harvard Forest. We found that chestnut was strongly negatively correlated with white pine (Pinus strobus) and red oak (Quercus rubra) in the process covariance matrix, suggesting a strong competitive interaction that is not currently understood by models for forest succession. These findings provide support for utilizing a data assimilation framework to ecologically interpret paleoecological data or data products to learn about the ecology of extinct species.

  5. Diversity and distribution of epiphytic bromeliads in a Brazilian subtropical mangrove

    Directory of Open Access Journals (Sweden)

    MARIANA M. DE SOUSA

    Full Text Available ABSTRACT It is not unusual to find epiphytic bromeliads in mangroves, but most studies on mangrove vegetation do not record their presence. This study aimed to evaluate the diversity and distribution of epiphytic bromeliads in a subtropical mangrove. The richness, abundance and life form (atmospheric and tank of bromeliads were recorded and compared among host tree species and waterline proximity. The effects of diameter and height of host trees on the abundance of bromeliads were also assessed. The mangrove was composed of Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle. We recorded seven bromeliad species of the genera Tillandsia and Vriesea. The waterline proximity did not affect the abundance or diversity of bromeliads, but atmospheric forms were predominant near the waterline, whereas tank bromeliads were more frequent in the interior of the mangrove. The three mangrove species hosted bromeliads, but L. racemosa was the preferred host. The species composition showed that the distribution of bromeliads is more related to the host species than to the distance from the waterline. Bromeliad abundance increased with tree size. Bromeliads can be biological indicators of ecosystem health; therefore, inventories and host tree preferences are necessary knowledge for an adequate management of sensitive ecosystems as mangroves.

  6. Mangrove microclimates alter seedling dynamics at the range edge.

    Science.gov (United States)

    Devaney, John L; Lehmann, Michael; Feller, Ilka C; Parker, John D

    2017-10-01

    Recent climate warming has led to asynchronous species migrations, with major consequences for ecosystems worldwide. In woody communities, localized microclimates have the potential to create feedback mechanisms that can alter the rate of species range shifts attributed to macroclimate drivers alone. Mangrove encroachment into saltmarsh in many areas is driven by a reduction in freeze events, and this encroachment can further modify local climate, but the subsequent impacts on mangrove seedling dynamics are unknown. We monitored microclimate conditions beneath mangrove canopies and adjacent open saltmarsh at a freeze-sensitive mangrove-saltmarsh ecotone and assessed survival of experimentally transplanted mangrove seedlings. Mangrove canopies buffered night time cooling during the winter, leading to interspecific differences in freeze damage on mangrove seedlings. However, mangrove canopies also altered biotic interactions. Herbivore damage was higher under canopies, leading to greater mangrove seedling mortality beneath canopies relative to saltmarsh. While warming-induced expansion of mangroves can lead to positive microclimate feedbacks, simultaneous fluctuations in biotic drivers can also alter seedling dynamics. Thus, climate change can drive divergent feedback mechanisms through both abiotic and biotic channels, highlighting the importance of vegetation-microclimate interactions as important moderators of climate driven range shifts. © 2017 by the Ecological Society of America.

  7. Detecting fragmentation extinction thresholds for forest understory plant species in peninsular Spain.

    Science.gov (United States)

    Rueda, Marta; Moreno Saiz, Juan Carlos; Morales-Castilla, Ignacio; Albuquerque, Fabio S; Ferrero, Mila; Rodríguez, Miguel Á

    2015-01-01

    Ecological theory predicts that fragmentation aggravates the effects of habitat loss, yet empirical results show mixed evidences, which fail to support the theory instead reinforcing the primary importance of habitat loss. Fragmentation hypotheses have received much attention due to their potential implications for biodiversity conservation, however, animal studies have traditionally been their main focus. Here we assess variation in species sensitivity to forest amount and fragmentation and evaluate if fragmentation is related to extinction thresholds in forest understory herbs and ferns. Our expectation was that forest herbs would be more sensitive to fragmentation than ferns due to their lower dispersal capabilities. Using forest cover percentage and the proportion of this percentage occurring in the largest patch within UTM cells of 10-km resolution covering Peninsular Spain, we partitioned the effects of forest amount versus fragmentation and applied logistic regression to model occurrences of 16 species. For nine models showing robustness according to a set of quality criteria we subsequently defined two empirical fragmentation scenarios, minimum and maximum, and quantified species' sensitivity to forest contraction with no fragmentation, and to fragmentation under constant forest cover. We finally assessed how the extinction threshold of each species (the habitat amount below which it cannot persist) varies under no and maximum fragmentation. Consistent with their preference for forest habitats probability occurrences of all species decreased as forest cover contracted. On average, herbs did not show significant sensitivity to fragmentation whereas ferns were favored. In line with theory, fragmentation yielded higher extinction thresholds for two species. For the remaining species, fragmentation had either positive or non-significant effects. We interpret these differences as reflecting species-specific traits and conclude that although forest amount is of

  8. Detecting fragmentation extinction thresholds for forest understory plant species in peninsular Spain.

    Directory of Open Access Journals (Sweden)

    Marta Rueda

    Full Text Available Ecological theory predicts that fragmentation aggravates the effects of habitat loss, yet empirical results show mixed evidences, which fail to support the theory instead reinforcing the primary importance of habitat loss. Fragmentation hypotheses have received much attention due to their potential implications for biodiversity conservation, however, animal studies have traditionally been their main focus. Here we assess variation in species sensitivity to forest amount and fragmentation and evaluate if fragmentation is related to extinction thresholds in forest understory herbs and ferns. Our expectation was that forest herbs would be more sensitive to fragmentation than ferns due to their lower dispersal capabilities. Using forest cover percentage and the proportion of this percentage occurring in the largest patch within UTM cells of 10-km resolution covering Peninsular Spain, we partitioned the effects of forest amount versus fragmentation and applied logistic regression to model occurrences of 16 species. For nine models showing robustness according to a set of quality criteria we subsequently defined two empirical fragmentation scenarios, minimum and maximum, and quantified species' sensitivity to forest contraction with no fragmentation, and to fragmentation under constant forest cover. We finally assessed how the extinction threshold of each species (the habitat amount below which it cannot persist varies under no and maximum fragmentation. Consistent with their preference for forest habitats probability occurrences of all species decreased as forest cover contracted. On average, herbs did not show significant sensitivity to fragmentation whereas ferns were favored. In line with theory, fragmentation yielded higher extinction thresholds for two species. For the remaining species, fragmentation had either positive or non-significant effects. We interpret these differences as reflecting species-specific traits and conclude that although

  9. BAT (MAMMALIA: CHIROPTERA DIVERSITY IN AN AREA OF MANGROVE FOREST IN SOUTHERN PERNAMBUCO, BRAZIL, WITH A NEW SPECIES RECORD AND NOTES ON ECTOPARASITES (DIPTERA: STREBLIDAE

    Directory of Open Access Journals (Sweden)

    FÁBIO A.M. SOARES

    Full Text Available ABSTRACT This study reports the occurrence of bat species and their ectoparasites to a mangrove area of the State of Pernambuco. The bats were captured for seven consecutive months in four mangrove areas. Sampling occurred for 12 consecutive hours each night collection where mist-nets were used. Eighty-three bats of 14 species were captured. Of these, only 53 Phyllostomidae family bats found themselves parasited. We identified seven species of flies of the family Streblidae parasitizing bats. The diversity of bats is H’ = 2.19 for all areas sampled and the prevalence of streblid ranged from 8.3 to 66,6. The mean intensity ranged from one and five. It is reported for the first time the occurrence of Lophostoma brasiliense to the mangrove ecosystem, besides two species of streblid to Pernambuco.

  10. Advancing mangrove macroecology

    Science.gov (United States)

    Rivera-Monroy, Victor H.; Osland, Michael J.; Day, John W.; Ray, Santanu; Rovai, Andre S.; Day, Richard H.; Mukherjee, Joyita; Rivera-Monroy, Victor H.; Lee, Shing Yip; Kristensen, Erik; Twilley, Robert R.

    2017-01-01

    Mangrove forests provide a wide range of ecosystem services to society, yet they are among the most anthropogenically impacted coastal ecosystems in the world. In this chapter, we discuss and provide examples for how macroecology can advance our understanding of mangrove ecosystems. Macroecology is broadly defined as a discipline that uses statistical analyses to investigate large-scale, universal patterns in the distribution, abundance, diversity, and organization of species and ecosystems, including the scaling of ecological processes and structural and functional relationships. Macroecological methods can be used to advance our understanding of how non-linear responses in natural systems can be triggered by human impacts at local, regional, and global scales. Although macroecology has the potential to gain knowledge on universal patterns and processes that govern mangrove ecosystems, the application of macroecological methods to mangroves has historically been limited by constraints in data quality and availability. Here we provide examples that include evaluations of the variation in mangrove forest ecosystem structure and function in relation to macroclimatic drivers (e.g., temperature and rainfall regimes) and climate change. Additional examples include work focused upon the continental distribution of aboveground net primary productivity and carbon storage, which are rapidly advancing research areas. These examples demonstrate the value of a macroecological perspective for the understanding of global- and regional-scale effects of both changing environmental conditions and management actions on ecosystem structure, function, and the supply of goods and services. We also present current trends in mangrove modeling approaches and their potential utility to test hypotheses about mangrove structural and functional properties. Given the gap in relevant experimental work at the regional scale, we also discuss the potential use of mangrove restoration and

  11. Wide Ranging Insect Infestation of the Pioneer Mangrove Sonneratia alba by Two Insect Species along the Kenyan Coast.

    Directory of Open Access Journals (Sweden)

    Elisha Mrabu Jenoh

    Full Text Available Insect infestation of mangroves currently threatens mangrove forest health and management. In the Western Indian Ocean region, little is known about insect damage to mangroves despite the fact that numerous infestations have occurred. In Kenya, infestations of Sonneratia alba have persisted for almost two decades, yet the taxonomic identity of the infesting pest(s, the extent of infestation, the pests' biology, the impacts of infestation on host and the ecosystem, the host's defensive strategies to the infestation are poorly understood. S. alba is a ubiquitous, pioneer mangrove species of the Indo-Pacific, occurring along the waterfront in a variety of mangrove ecosystem settings. Our main objectives were to identify the pest(s responsible for the current dieback of S. alba in Kenya, and to determine the extent of infestation. To identify the pests responsible for infestation, we trapped emergent insects and reared larvae in the laboratory. To determine the overall extent of infestation within the S. alba zone, we assessed nine sites along the entire Kenyan coastline for the presence or absence of infested mangroves. Insect infestation in two mangrove embayments (Gazi and Mida was quantified in depth. Two wood-boring insects were identified: a metarbelid moth (Lepidoptera, Cossoidea of undescribed genus and the beetle Bottegia rubra (Cerambycidae, Lamiinae.The metarbelid moth infests mangroves in both northern (from Ngomeni to Kiunga and southern regions (from Vanga to Mtwapa of the Kenyan coast. B. rubra appeared in low density in Gazi, and in high density in Mida, Kilifi, and Ngomeni, with densities gradually decreasing northward. Insect infestation levels reached 18% in Gazi and 25% of S. alba stands in Mida. Our results indicate that B. rubra has the ability to infest young mangrove trees and expand its range, posing a danger to rehabilitation efforts where plantations have been established. Thus, there is great need for forest managers to

  12. Leaf gas exchange characteristics of three neotropical mangrove species in response to varying hydroperiod

    Science.gov (United States)

    Krauss, Ken W.; Twilley, Robert R.; Doyle, Thomas W.; Gardiner, Emile S.

    2006-01-01

    We determined how different hydroperiods affected leaf gas exchange characteristics of greenhouse-grown seedlings (2002) and saplings (2003) of the mangrove species Avicennia germinans (L.) Stearn., Laguncularia racemosa (L.) Gaertn. f., and Rhizophora mangle L. Hydroperiod treatments included no flooding (unflooded), intermittent flooding (intermittent), and permanent flooding (flooded). Plants in the intermittent treatment were measured under both flooded and drained states and compared separately. In the greenhouse study, plants of all species maintained different leaf areas in the contrasting hydroperiods during both years. Assimilation–light response curves indicated that the different hydroperiods had little effect on leaf gas exchange characteristics in either seedlings or saplings. However, short-term intermittent flooding for between 6 and 22 days caused a 20% reduction in maximum leaf-level carbon assimilation rate, a 51% lower light requirement to attain 50% of maximum assimilation, and a 38% higher demand from dark respiration. Although interspecific differences were evident for nearly all measured parameters in both years, there was little consistency in ranking of the interspecific responses. Species by hydroperiod interactions were significant only for sapling leaf area. In a field study, R. mangle saplings along the Shark River in the Everglades National Park either demonstrated no significant effect or slight enhancement of carbon assimilation and water-use efficiency while flooded. We obtained little evidence that contrasting hydroperiods affect leaf gas exchange characteristics of mangrove seedlings or saplings over long time intervals; however, intermittent flooding may cause short-term depressions in leaf gas exchange. The resilience of mangrove systems to flooding, as demonstrated in the permanently flooded treatments, will likely promote photosynthetic and morphological adjustment to slight hydroperiod shifts in many settings..

  13. The physiology of mangrove trees with changing climate

    Science.gov (United States)

    Lovelock, Catherine E.; Krauss, Ken W.; Osland, Michael J.; Reef, Ruth; Ball, Marilyn C.; Meinzer, Frederick C.; Niinemets, Ülo

    2016-01-01

    Mangrove forests grow on saline, periodically flooded soils of the tropical and subtropical coasts. The tree species that comprise the mangrove are halophytes that have suites of traits that confer differing levels of tolerance of salinity, aridity, inundation and extremes of temperature. Here we review how climate change and elevated levels of atmospheric CO2 will influence mangrove forests. Tolerance of salinity and inundation in mangroves is associated with the efficient use of water for photosynthetic carbon gain which unpins anticipated gains in productivity with increasing levels of CO2. We review evidence of increases in productivity with increasing CO2, finding that enhancements in growth appear to be similar to trees in non-mangrove habitats and that gains in productivity with elevated CO2 are likely due to changes in biomass allocation. High levels of trait plasticity are observed in some mangrove species, which potentially facilitates their responses to climate change. Trait plasticity is associated with broad tolerance of salinity, aridity, low temperatures and nutrient availability. Because low temperatures and aridity place strong limits on mangrove growth at the edge of their current distribution, increasing temperatures over time and changing rainfall patterns are likely to have an important influence on the distribution of mangroves. We provide a global analysis based on plant traits and IPCC scenarios of changing temperature and aridity that indicates substantial global potential for mangrove expansion.

  14. Stable isotope-guided analysis of biomagnification profiles of arsenic species in a tropical mangrove ecosystem

    International Nuclear Information System (INIS)

    Tu, Nguyen Phuc Cam; Agusa, Tetsuro; Ha, Nguyen Ngoc; Tuyen, Bui Cach; Tanabe, Shinsuke; Takeuchi, Ichiro

    2011-01-01

    We performed stable carbon and nitrogen-guided analyses of biomagnification profiles of arsenic (As) species, including total As, lipid-soluble As, eight water-soluble As compounds (arsenobetaine (AB), arsenocholine (AC), tetramethylarsonium ion (TETRA), trimethylarsine oxide (TMAO), dimethylarsinic acid (DMA), monomethylarsonic acid (MMA), arsenate (As[V]), and arsenite (As[III])), and non-extracted As in a tropical mangrove ecosystem in the Ba Ria Vung Tau, South Vietnam. Arsenobetaine was the predominant As species (65-96% of water-soluble As). Simple linear regression slopes of log-transformed concentrations of total As, As fractions or individual As compounds on stable nitrogen isotopic ratio (δ 15 N) values are regarded as indices of biomagnification. In this ecosystem, lipid-soluble As (slope, 0.130) and AB (slope, 0.108) were significantly biomagnified through the food web; total As and other water-soluble As compounds were not. To our knowledge, this is one of the first reports on biomagnification profiles of As compounds from a tropical mangrove ecosystem.

  15. Bacterial N2-fixation in mangrove ecosystems: insights from a diazotroph-mangrove interaction.

    Science.gov (United States)

    Alfaro-Espinoza, Gabriela; Ullrich, Matthias S

    2015-01-01

    Mangrove forests are highly productive ecosystems but represent low nutrient environments. Nitrogen availability is one of the main factors limiting mangrove growth. Diazotrophs have been identified as key organisms that provide nitrogen to these environments. N2-fixation by such organisms was found to be higher in the mangrove roots than in surrounding rhizosphere. Moreover, previous studies showed that mangroves grew better in the presence of N2-fixers indicating a potentially mutualistic relationship. However, the molecular signals and mechanisms that govern these interactions are still poorly understood. Here we present novel insights in the interaction of a diazotroph with a mangrove species to improve our understanding of the molecular and ecophysiological relationship between these two organisms under controlled conditions. Our results showed that Marinobacterium mangrovicola is a versatile organism capable of competing with other organisms to survive for long periods in mangrove soils. N2-fixation by this bacterium was up-regulated in the presence of mangrove roots, indicating a possible beneficial interaction. The increase in N2-fixation was limited to cells of the exponential growth phase suggesting that N2-fixation differs over the bacterial growth cycle. Bacterial transformants harboring a transcriptional nifH::gusA fusion showed that M. mangrovicola successfully colonized mangrove roots and simultaneously conducted N2-fixation. The colonization process was stimulated by the lack of an external carbon source suggesting a possible mutualistic relationship. M. mangrovicola represents an interesting genetically accessible diazotroph, which colonize mangrove roots and exhibit higher N2-fixation in the presence of mangrove roots. Consequently, we propose this microorganism as a tool to study molecular interactions between N2-fixers and mangrove plants and to better understand how changes in the environment could impact these important and relatively unknown

  16. Improving extinction projections across scales and habitats using the countryside species-area relationship.

    Science.gov (United States)

    Martins, Inês Santos; Pereira, Henrique Miguel

    2017-10-10

    The species-area relationship (SAR) has been often used to project species extinctions as a consequence of habitat loss. However, recent studies have suggested that the SAR may overestimate species extinctions, at least in the short-term. We argue that the main reason for this overestimation is that the classic SAR ignores the persistence of species in human-modified habitats. We use data collected worldwide to analyse what is the fraction of bird and plant species that remain in different human-modified habitats at the local scale after full habitat conversion. We observe that both taxa have consistent responses to the different land-use types, with strongest reductions in species richness in cropland across the globe, and in pasture in the tropics. We show that the results from these studies cannot be linearly scaled from plots to large regions, as this again overestimates the impacts of land-use change on biodiversity. The countryside SAR provides a unifying framework to incorporate both the effect of species persistence in the landscape matrix and the non-linear response of the proportion of species extinctions to sampling area, generating more realistic projections of biodiversity loss.

  17. Evolutionary diversity among Atlantic coast mangroves

    Science.gov (United States)

    Dodd, Richard S.; Rafii, Zara A.; Fromard, François; Blasco, François

    1998-06-01

    Current knowledge of intraspecific variation of mangrove species is limited in terms of rangewide distributions and is mostly restricted to morphological analyses, which have indicated a high degree of homogeneity. However, our analyses of the aliphatic hydrocarbon and triterpenoid fraction of foliar waxes (by gas chromatography and mass spectroscopy) of mangrove species ( Rhizophora mangle, Avicennia germinans and Laguncularia racemosa) from Gabon in West Africa and French Guiana in South America show significant genetic differentiation between eastern and western Atlantic provenances. The greater diversity in lipid composition, and the tendency for longer carbon chain lengths in all taxa from Africa, may suggest that American mangroves exhibit derived characteristics. A consequence of this hypothesis would be that Atlantic mangroves are unlikely to have dispersed from the Tethys via the Pacific, as has been proposed by some authors. More widespread sampling within the Atlantic and east Pacific region is needed to support and confirm these results.

  18. A post-classifier for mangrove mapping using ecological data

    NARCIS (Netherlands)

    Vaiphasa, C.; Skidmore, A.K.; Boer, de W.F.

    2006-01-01

    global decline in tropical mangrove forests is one of the most serious problems of the world's coastal ecosystems. This problem results in an increasing demand of detailed mangrove maps at the species level for monitoring mangrove ecosystems and their diversity. Consequently, this research is the

  19. Myxomycetes from mangroves: species occurring in the state of Maranhão, northeastern Brazil

    Directory of Open Access Journals (Sweden)

    L. A. N. N. Agra

    Full Text Available Abstract Mangrove swamps and forests cover over 137,000 km2 distributed latitudinally among subtropical zones, 7% of which are in Brazil, with a greater density in the country’s northernmost region. Considering that the community of Myxomycetes recorded for this environment is hardly known, three areas located in the state of Maranhão were investigated. Two field trips were conducted, one at the beginning of the rainy season and another during the dry season. In each area, two plots (125 m2 equidistant 100 m apart from each other were surveyed. In these areas, standing dead tree trunks and dead branches still attached to the mother plant that were above the tideline, were examined. On these same occasions, samples of the aerial litter and from the cortex of living trees (Rhizophora were collected for the preparation of moist chambers cultures. Twenty-one specimens were obtained from field and moist chambers, belonging to 11 species, distributed in nine genera and five families. Seven species are new records from Maranhão. There was a predominance of r-strategist (73% over K-strategist (27% species. Cribraria violacea, Comatricha tenerrima, Echinostelium minutum, and Fuligo septica are new worldwide records from mangrove environments, and Oligonema flavidum is reported for the first time from Brazil.

  20. Drivers of extinction risk in African mammals: the interplay of distribution state, human pressure, conservation response and species biology.

    Science.gov (United States)

    Di Marco, Moreno; Buchanan, Graeme M; Szantoi, Zoltan; Holmgren, Milena; Grottolo Marasini, Gabriele; Gross, Dorit; Tranquilli, Sandra; Boitani, Luigi; Rondinini, Carlo

    2014-01-01

    Although conservation intervention has reversed the decline of some species, our success is outweighed by a much larger number of species moving towards extinction. Extinction risk modelling can identify correlates of risk and species not yet recognized to be threatened. Here, we use machine learning models to identify correlates of extinction risk in African terrestrial mammals using a set of variables belonging to four classes: species distribution state, human pressures, conservation response and species biology. We derived information on distribution state and human pressure from satellite-borne imagery. Variables in all four classes were identified as important predictors of extinction risk, and interactions were observed among variables in different classes (e.g. level of protection, human threats, species distribution ranges). Species biology had a key role in mediating the effect of external variables. The model was 90% accurate in classifying extinction risk status of species, but in a few cases the observed and modelled extinction risk mismatched. Species in this condition might suffer from an incorrect classification of extinction risk (hence require reassessment). An increased availability of satellite imagery combined with improved resolution and classification accuracy of the resulting maps will play a progressively greater role in conservation monitoring.

  1. Mangroves in the Gulf of California increase fishery yields.

    Science.gov (United States)

    Aburto-Oropeza, Octavio; Ezcurra, Exequiel; Danemann, Gustavo; Valdez, Víctor; Murray, Jason; Sala, Enric

    2008-07-29

    Mangroves are disappearing rapidly worldwide despite their well documented biodiversity and the ecosystem services they provide. Failure to link ecological processes and their societal benefits has favored highly destructive aquaculture and tourism developments that threaten mangroves and result in costly "externalities." Specifically, the potentially irreparable damage to fisheries because of mangrove loss has been belittled and is greatly underestimated. Here, we show that, in the Gulf of California, fisheries landings are positively related to the local abundance of mangroves and, in particular, to the productive area in the mangrove-water fringe that is used as nursery and/or feeding grounds by many commercial species. Mangrove-related fish and crab species account for 32% of the small-scale fisheries landings in the region. The annual economic median value of these fisheries is US $37,500 per hectare of mangrove fringe, falling within the higher end of values previously calculated worldwide for all mangrove services together. The ten-year discounted value of one hectare of fringe is >300 times the official cost set by the Mexican government. The destruction of mangroves has a strong economic impact on local fishing communities and on food production in the region. Our valuation of the services provided by mangroves may prove useful in making appropriate decisions for a more efficient and sustainable use of wetlands.

  2. Belowground dynamics in mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangrove ecosystems are tropical/subtropical communities of primarily tree species that grow in the intertidal zone. These tidal communities are important coastal ecosystems that are valued for a variety of ecological and societal goods and services (fig. 1). Mangrove wetlands are important filters of materials moving between the land and sea, trapping sediment, nutrients, and pollutants in runoff from uplands and preventing their direct introduction into sensitive marine ecosystems such as seagrass beds and coral reefs. Mangroves serve as nursery grounds and refuge for a variety of organisms and are consequently vital to the biological productivity of coastal waters. Furthermore, because mangroves are highly resilient to disturbances such as hurricanes, they represent a self-sustaining, protective barrier for human populations living in the coastal zone. Mangrove ecosystems also contribute to shoreline stabilization through consolidation of unstable mineral sediments and peat formation. In order to help conserve mangrove ecoystems, scientists with the United States Geological Survey (USGS) at the National Wetlands Research Center are working to more fully understand the dynamics that impact these vital ecosystems.

  3. Rarity, species richness, and the threat of extinction--are plants the same as animals?

    Directory of Open Access Journals (Sweden)

    Sandra Knapp

    2011-05-01

    Full Text Available Assessment of conservation status is done both for areas or habitats and for species (or taxa. IUCN Red List categories have been the principal method of categorising species in terms of extinction risk, and have been shown to be robust and helpful in the groups for which they have been developed. A recent study highlights properties associated with extinction risk in flowering plants, focusing on the species-rich hot spot of the Cape region of South Africa, and concludes that merely following methods derived from studies of vertebrates may not provide the best estimates of extinction risk for plants. Biology, geography, and history all are important factors in risk, and the study poses many questions about how we categorise and assess species for conservation priorities.

  4. Contrasting demographic history and gene flow patterns of two mangrove species on either side of the Central American Isthmus

    Science.gov (United States)

    Cerón-Souza, Ivania; Gonzalez, Elena G; Schwarzbach, Andrea E; Salas-Leiva, Dayana E; Rivera-Ocasio, Elsie; Toro-Perea, Nelson; Bermingham, Eldredge; McMillan, W Owen

    2015-01-01

    Comparative phylogeography offers a unique opportunity to understand the interplay between past environmental events and life-history traits on diversification of unrelated but co-distributed species. Here, we examined the effects of the quaternary climate fluctuations and palaeomarine currents and present-day marine currents on the extant patterns of genetic diversity in the two most conspicuous mangrove species of the Neotropics. The black (Avicennia germinans, Avicenniaceae) and the red (Rhizophora mangle, Rhizophoraceae) mangroves have similar geographic ranges but are very distantly related and show striking differences on their life-history traits. We sampled 18 Atlantic and 26 Pacific locations for A. germinans (N = 292) and R. mangle (N = 422). We performed coalescence simulations using microsatellite diversity to test for evidence of population change associated with quaternary climate fluctuations. In addition, we examined whether patterns of genetic variation were consistent with the directions of major marine (historical and present day) currents in the region. Our demographic analysis was grounded within a phylogeographic framework provided by the sequence analysis of two chloroplasts and one flanking microsatellite region in a subsample of individuals. The two mangrove species shared similar biogeographic histories including: (1) strong genetic breaks between Atlantic and Pacific ocean basins associated with the final closure of the Central American Isthmus (CAI), (2) evidence for simultaneous population declines between the mid-Pleistocene and early Holocene, (3) asymmetric historical migration with higher gene flow from the Atlantic to the Pacific oceans following the direction of the palaeomarine current, and (4) contemporary gene flow between West Africa and South America following the major Atlantic Ocean currents. Despite the remarkable differences in life-history traits of mangrove species, which should have had a strong influence on seed

  5. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree—Support Vector Machine Approach

    Directory of Open Access Journals (Sweden)

    Benjamin W. Heumann

    2011-11-01

    Full Text Available Mangroves provide valuable ecosystem goods and services such as carbon sequestration, habitat for terrestrial and marine fauna, and coastal hazard mitigation. The use of satellite remote sensing to map mangroves has become widespread as it can provide accurate, efficient, and repeatable assessments. Traditional remote sensing approaches have failed to accurately map fringe mangroves and true mangrove species due to relatively coarse spatial resolution and/or spectral confusion with landward vegetation. This study demonstrates the use of the new Worldview-2 sensor, Object-based image analysis (OBIA, and support vector machine (SVM classification to overcome both of these limitations. An exploratory spectral separability showed that individual mangrove species could not be spectrally separated, but a distinction between true and associate mangrove species could be made. An OBIA classification was used that combined a decision-tree classification with the machine-learning SVM classification. Results showed an overall accuracy greater than 94% (kappa = 0.863 for classifying true mangroves species and other dense coastal vegetation at the object level. There remain serious challenges to accurately mapping fringe mangroves using remote sensing data due to spectral similarity of mangrove and associate species, lack of clear zonation between species, and mixed pixel effects, especially when vegetation is sparse or degraded.

  6. Trends in extinction risk for imperiled species in Canada.

    Directory of Open Access Journals (Sweden)

    Brett Favaro

    Full Text Available Protecting and promoting recovery of species at risk of extinction is a critical component of biodiversity conservation. In Canada, the Committee on the Status of Endangered Wildlife in Canada (COSEWIC determines whether species are at risk of extinction or extirpation, and has conducted these assessments since 1977. We examined trends in COSEWIC assessments to identify whether at-risk species that have been assessed more than once tended to improve, remain constant, or deteriorate in status, as a way of assessing the effectiveness of biodiversity conservation in Canada. Of 369 species that met our criteria for examination, 115 deteriorated, 202 remained unchanged, and 52 improved in status. Only 20 species (5.4% improved to the point where they were 'not at risk', and five of those were due to increased sampling efforts rather than an increase in population size. Species outcomes were also dependent on the severity of their initial assessment; for example, 47% of species that were initially listed as special concern deteriorated between assessments. After receiving an at-risk assessment by COSEWIC, a species is considered for listing under the federal Species at Risk Act (SARA, which is the primary national tool that mandates protection for at-risk species. We examined whether SARA-listing was associated with improved COSEWIC assessment outcomes relative to unlisted species. Of 305 species that had multiple assessments and were SARA-listed, 221 were listed at a level that required identification and protection of critical habitat; however, critical habitat was fully identified for only 56 of these species. We suggest that the Canadian government should formally identify and protect critical habitat, as is required by existing legislation. In addition, our finding that at-risk species in Canada rarely recover leads us to recommend that every effort be made to actively prevent species from becoming at-risk in the first place.

  7. Conservation Status of Marine Biodiversity in Oceania: An Analysis of Marine Species on the IUCN Red List of Threatened Species

    Directory of Open Access Journals (Sweden)

    Beth A. Polidoro

    2011-01-01

    Full Text Available Given the economic and cultural dependence on the marine environment in Oceania and a rapidly expanding human population, many marine species populations are in decline and may be vulnerable to extinction from a number of local and regional threats. IUCN Red List assessments, a widely used system for quantifying threats to species and assessing species extinction risk, have been completed for 1190 marine species in Oceania to date, including all known species of corals, mangroves, seagrasses, sea snakes, marine mammals, sea birds, sea turtles, sharks, and rays present in Oceania, plus all species in five important perciform fish groups. Many of the species in these groups are threatened by the modification or destruction of coastal habitats, overfishing from direct or indirect exploitation, pollution, and other ecological or environmental changes associated with climate change. Spatial analyses of threatened species highlight priority areas for both site- and species-specific conservation action. Although increased knowledge and use of newly available IUCN Red List assessments for marine species can greatly improve conservation priorities for marine species in Oceania, many important fish groups are still in urgent need of assessment.

  8. Occurrence of Streptomyces aurantiacus in Mangroves of Bhitarkanika

    Directory of Open Access Journals (Sweden)

    Gupta, N.

    2007-01-01

    Full Text Available Thirteen strains of Streptomyces were isolated from phyllosphere of nine mangrove tree species found in Bhitarkanika mangrove ecosystem of Orissa. According to physiological, biochemical data, all 13 of the isolates were taxonomically identified to the genus Streptomyces as aurantiacus species. All strains are grayish, spirals and forming amorphous colony. Almost all utilized araginose, produced H2S, resistant towards rifampicin and penicillin, urea except few strains. However, they exhibited different extracellular activity like phosphate solubilization, lipase and L asparaginase production. This is a unique report from this mangrove ecosystem as far as Streptomyces occurrence is concerned.

  9. Putative extinction of two sawfish species in Mexico and the United States

    Directory of Open Access Journals (Sweden)

    Pablo del Monte-Luna

    Full Text Available All species of sawfish are listed by the International Union for the Conservation of Nature (IUCN as endangered or critically endangered. In fact, the smalltooth sawfish Pristis pectinata, and the largetooth sawfish Pristis pristis, have been declared to be regionally and locally extinct from the US Atlantic coast and the Gulf of California, Mexico, respectively, likely due to overfishing. However, here we dispute these claims by illustrating how lack of existence of a given species within a region can be misconstrued as evidence for extinction.

  10. Demographic History and Reproductive Output Correlates with Intraspecific Genetic Variation in Seven Species of Indo-Pacific Mangrove Crabs.

    Science.gov (United States)

    Fratini, Sara; Ragionieri, Lapo; Cannicci, Stefano

    2016-01-01

    The spatial distribution and the amount of intraspecific genetic variation of marine organisms are strongly influenced by many biotic and abiotic factors. Comparing biological and genetic data characterizing species living in the same habitat can help to elucidate the processes driving these variation patterns. Here, we present a comparative multispecies population genetic study on seven mangrove crabs co-occurring in the West Indian Ocean characterized by planktotrophic larvae with similar pelagic larval duration. Our main aim was to investigate whether a suite of biological, behavioural and ecological traits could affect genetic diversities of the study species in combination with historical demographic parameters. As possible current explanatory factors, we used the intertidal micro-habitat colonised by adult populations, various parameters of individual and population fecundity, and the timing of larval release. As the genetic marker, we used partial sequences of cytochrome oxidase subunit I gene. Genetic and ecological data were collected by the authors and/or gathered from primary literature. Permutational multiple regression models and ANOVA tests showed that species density and their reproductive output in combination with historical demographic parameters could explain the intraspecific genetic variation indexes across the seven species. In particular, species producing consistently less eggs per spawning event showed higher values of haplotype diversity. Moreover, Tajima's D parameters well explained the recorded values for haplotype diversity and average γst. We concluded that current intraspecific gene diversities in crabs inhabiting mangrove forests were affected by population fecundity as well as past demographic history. The results were also discussed in terms of management and conservation of fauna in the Western Indian Ocean mangroves.

  11. Demographic History and Reproductive Output Correlates with Intraspecific Genetic Variation in Seven Species of Indo-Pacific Mangrove Crabs.

    Directory of Open Access Journals (Sweden)

    Sara Fratini

    Full Text Available The spatial distribution and the amount of intraspecific genetic variation of marine organisms are strongly influenced by many biotic and abiotic factors. Comparing biological and genetic data characterizing species living in the same habitat can help to elucidate the processes driving these variation patterns. Here, we present a comparative multispecies population genetic study on seven mangrove crabs co-occurring in the West Indian Ocean characterized by planktotrophic larvae with similar pelagic larval duration. Our main aim was to investigate whether a suite of biological, behavioural and ecological traits could affect genetic diversities of the study species in combination with historical demographic parameters. As possible current explanatory factors, we used the intertidal micro-habitat colonised by adult populations, various parameters of individual and population fecundity, and the timing of larval release. As the genetic marker, we used partial sequences of cytochrome oxidase subunit I gene. Genetic and ecological data were collected by the authors and/or gathered from primary literature. Permutational multiple regression models and ANOVA tests showed that species density and their reproductive output in combination with historical demographic parameters could explain the intraspecific genetic variation indexes across the seven species. In particular, species producing consistently less eggs per spawning event showed higher values of haplotype diversity. Moreover, Tajima's D parameters well explained the recorded values for haplotype diversity and average γst. We concluded that current intraspecific gene diversities in crabs inhabiting mangrove forests were affected by population fecundity as well as past demographic history. The results were also discussed in terms of management and conservation of fauna in the Western Indian Ocean mangroves.

  12. KAJIAN DEGRADASI LAHAN MANGROVE DI PESISIR DESA LABUHAN SANGORO KECAMATAN MARONGE KABUPATEN SUMBAWA

    Directory of Open Access Journals (Sweden)

    Lalu Samsul Rizal

    2015-06-01

    Full Text Available The aims of the research was to determine the perceptions of stakeholders (Community, Government and Employers, to know the potential of mangrove species and determine the impact of mangrove degradation on fish and non-fish biota, at Labuhan Sangoro coastal village. This study was conducted for three months from April to June 2012. Data were analyzed descriptively using a Likert scale for the perception of stakeholders. Potential mangrove species was examined using transects and to determine the impact of mangrove degradation on species diversity of aquatic fauna associated with mangrove were obtained by observation of nonparticipant method. The results showed that perceptions of stakeholders towards preservation and conservation of mangrove land, the 87% strongly agreed, 66% agreed and 22% disagreed, government and employers 86% strongly agree, 78% agree and disagree 3%, but not yet to the application phase. The potential of mangrove type in the coastal village of Labuan Sangoro at Station 1, 2, 3, and 4 by R. mucronata and R. stylosa, Transect I dominated by Rhizophora mucronata, R. stylosa, R. apiculata, Sonneratia alba, Lumnitzera racemosa and Ceriops tagal, transect II by Avicennia marina, R. mucronata and R. stylosa, Transect III by A. marina and R. mucronata and transect IV by R. mucronata and R. stylosa. Fish eatch on the condition of low and high degradation condition, the dominant fish species caught is Beronang (Siganus sp, non-fish species dominated by Crab (Scylla serrata. The number of catches in the low mangrove land degradation conditions wais 2,609 species of fish and non-fish tail 4678, on the high mangrove degradation conditions, the fish catch was 1,090 and non-fish was 1,114. The diversity, uniformity and the dominance of species, classified in the category of low and moderate levels.

  13. Effects of hydrology on red mangrove recruits

    Science.gov (United States)

    Doyle, Thomas W.

    2003-01-01

    Coastal wetlands along the Gulf of Mexico have been experiencing significant shifts in hydrology and salinity levels over the past century as a result of changes in sea level and freshwater drainage patterns. Local land management in coastal zones has also impacted the hydrologic regimes of salt marshes and mangrove areas. Parks and refuges in south Florida that contain mangrove forests have, in some cases, been ditched or impounded to control mosquito outbreaks and to foster wildlife use. And while mangroves dominate the subtropical coastlines of Florida and thrive in saltwater environments, little is known about how they respond to changes in hydrology under managed or variable tidal conditions. USGS researchers designed a study to evaluate the basic hydrological requirements of mangroves so that their health and survival may be more effectively managed in controlled impoundments and restored wetlands. Mangroves are commonly found in the intertidal zone (between low and high tides) in a rather broad spectrum of hydrologic settings. Because they thrive at the interface of land and sea, mangroves are subject to changes in freshwater flow (flow rate, nutrients, pollutants) and to marine influences (sea-level rise, salinity). Salinity has long been recognized as a controlling factor that determines the health and distribution of mangrove forests. Field and experimental observations indicate that most mangrove species achieve their highest growth potential under brackish conditions (modest salinity) between 10 and 20 parts per thousand (ppt). Yet, if provided with available propagules, successful regeneration, and limited competition from other plants, then mangroves can survive and thrive in freshwater systems as well. Because little is known about the growthand survival patterns of mangrove species relative to changing hydrology, USGS scientists conducted greenhouse and field experiments to determine how flooded or drained patterns of hydrology would influence

  14. High prices for rare species can drive large populations extinct: the anthropogenic Allee effect revisited.

    Science.gov (United States)

    Holden, Matthew H; McDonald-Madden, Eve

    2017-09-21

    Consumer demand for plant and animal products threatens many populations with extinction. The anthropogenic Allee effect (AAE) proposes that such extinctions can be caused by prices for wildlife products increasing with species rarity. This price-rarity relationship creates financial incentives to extract the last remaining individuals of a population, despite higher search and harvest costs. The AAE has become a standard approach for conceptualizing the threat of economic markets on endangered species. Despite its potential importance for conservation, AAE theory is based on a simple graphical model with limited analysis of possible population trajectories. By specifying a general class of functions for price-rarity relationships, we show that the classic theory can understate the risk of species extinction. AAE theory proposes that only populations below a critical Allee threshold will go extinct due to increasing price-rarity relationships. Our analysis shows that this threshold can be much higher than the original theory suggests, depending on initial harvest effort. More alarmingly, even species with population sizes above this Allee threshold, for which AAE predicts persistence, can be destined to extinction. Introducing even a minimum price for harvested individuals, close to zero, can cause large populations to cross the classic anthropogenic Allee threshold on a trajectory towards extinction. These results suggest that traditional AAE theory may give a false sense of security when managing large harvested populations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Vicariance and Oceanic Barriers Drive Contemporary Genetic Structure of Widespread Mangrove Species Sonneratia alba J. Sm in the Indo-West Pacific

    Directory of Open Access Journals (Sweden)

    Alison K. S. Wee

    2017-12-01

    Full Text Available Patterns of genetic structure are essential for a comprehensive understanding of the evolution and biogeography of a species. Here, we investigated the genetic patterns of one of the most widespread and abundant mangrove species in the Indo-West Pacific, Sonneratia alba J. Sm., in order to gain insights into the ecological and evolutionary drivers of genetic structure in mangroves. We employed 11 nuclear microsatellite loci and two chloroplast regions to genotyped 25 S. alba populations. Our objectives were to (1 assess the level of genetic diversity and its geographic distribution; and (2 determine the genetic structure of the populations. Our results revealed significant genetic differentiation among populations. We detected a major genetic break between Indo-Malesia and Australasia, and further population subdivision within each oceanic region in these two major clusters. The phylogeographic patterns indicated a strong influence of vicariance, oceanic barriers and geographic distance on genetic structure. In addition, we found low genetic diversity and high genetic drift at range edge. This study advances the scope of mangrove biogeography by demonstrating a unique scenario whereby a widespread species has limited dispersal and high genetic divergence among populations.

  16. CASE STUDY: Community Based Ecological Mangrove Rehabilitation (CBEMR) in Indonesia

    OpenAIRE

    Brown, Ben; Fadillah, Ratna; Nurdin, Yusran; Soulsby, Iona; Ahmad, Rio

    2014-01-01

    While successful examples of large-scale (5 000-10 000 ha) ecological wetland/mangrove rehabilitation projects exist worldwide, mangrove rehabilitation efforts in Indonesia, both large and small, have mainly failed. The majority of projects (both government programs and non-government initiatives) have oversimplified the technical processes of mangrove rehabilitation, favouring the direct planting of a restricted subset of mangrove species (from the family Rhizophoracea), commonly in the lowe...

  17. Mangrove plantation over a limestone reef - Good for the ecology?

    Science.gov (United States)

    Asaeda, Takashi; Barnuevo, Abner; Sanjaya, Kelum; Fortes, Miguel D.; Kanesaka, Yoshikazu; Wolanski, Eric

    2016-05-01

    There have been efforts to restore degraded tropical and subtropical mangrove forests. While there have been many failures, there have been some successes but these were seldom evaluated to test to what level the created mangrove wetlands reproduce the characteristics of the natural ecosystem and thus what ecosystem services they can deliver. We provide such a detailed assessment for the case of Olango and Banacon Islands in the Philippines where the forest was created over a limestone reef where mangroves did not exist in one island but they covered most of the other island before deforestation in the 1940s and 1950s. The created forest appears to have reached a steady state after 60 years. As is typical of mangrove rehabilitation efforts worldwide, planting was limited to a single Rhizophora species. While a forest has been created, it does not mimic a natural forest. There is a large difference between the natural and planted forests in terms of forest structure and species diversity, and tree density. The high density of planted trees excludes importing other species from nearby natural forests; therefore the planted forest remains mono-specific even after several decades and shows no sign of mimicking the characteristics of a natural forest. The planted forests provided mangrove propagules that invaded nearby natural forests. The planted forest has also changed the substratum from sandy to muddy. The outline of the crown of the planted forest has become smooth and horizontal, contrary to that of a natural forest, and this changes the local landscape. Thus we recommend that future mangrove restoration schemes should modify their methodology in order to plant several species, maintain sufficient space between trees for growth, include the naturally dominant species, and create tidal creeks, in order to reproduce in the rehabilitated areas some of the key ecosystem characteristics of natural mangrove forests.

  18. Mangrove root communities in Jobos Bay

    International Nuclear Information System (INIS)

    Yoshioka, P.M.

    1975-01-01

    Based on the presence and absence of species, at least two major types of mangrove root communities exist in Jobos Bay. One community, occurring mainly along the Aguirre Ship Channel, is composed of species characteristic of coastal waters. Another occurring in Jobos Bay and in mangrove channels in the vinicity of Mar Negro Lagoon is characterized by embayment species. Water mass is the best single parameter which correlates with the different communities. In general, subtidal species are more susceptible to elevated temperatures than intertidal species and consequently will be the first affected. Because most of the predators and competitors are subtidal, the predation and competition which limit populations may be cut back. The effect will first be seen in increased populations of barnacles, because they are severely limited by predation and competition but are physiologically quite tolerant. The intertidal species should flourish (on a relative basis) and their vertical distributions should be extended downward. These effects are only primary. Many species which would do best in thermally altered situations are colonizing or fugitive species. It is unknown whether such an assemblage could persist with continued recruitment and growth of new individuals. The dominance of these colonizing or fugitive species may be only temporary, however, because blue-green algae are tolerant of elevated temperatures and have a negative effect on barnacle recruitment and growth. Consequently, blue-green algae may eventually dominate thermally affected mangrove roots

  19. De novo assembly of the transcriptome of Aegiceras corniculatum, a mangrove species in the Indo-West Pacific region.

    Science.gov (United States)

    Fang, Lu; Yang, Yuchen; Guo, Wuxia; Li, Jianfang; Zhong, Cairong; Huang, Yelin; Zhou, Renchao; Shi, Suhua

    2016-08-01

    Aegiceras corniculatum (L.) Blanco is one of the most salt tolerant mangrove species and can thrive in 3% salinity at the seaward edge of mangrove forests. Here we sequenced the transcriptome of A. corniculatum used Illumina GA platform to develop its genomic resources for ecological and evolutionary studies. We obtained about 50 million high-quality paired-end reads with 75bp in length. Using the short read assembler Velvet, we yielded 49,437 contigs with the average length of 625bp. A total of 32,744 (66.23%) contigs showed significant similarity to the GenBank non-redundant (NR) protein database. 30,911 and 18,004 of these sequences were assigned to Gene Ontology and eukaryotic orthologous groups of proteins (KOG). A total of 4942 transcripts from our assemblies had significant similarity with KEGG Orthologs and were involved in 144 KEGG pathways, while 9899 unigenes had enzyme commission (EC) numbers. In addition, 9792 transcriptome-derived SSRs were identified from 7342 sequences. With our strict criteria, 4165 candidate SNPs were also identified from 2058 contigs. Some of these SNPs were further validated by Sanger sequencing. Genomic resources generated in this study should be valuable in ecological, evolutionary, and functional genomics studies for this mangrove species. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Mollusks in the Mangrove Rehabilitation Areas in Western Pangasinan, Philippines

    Directory of Open Access Journals (Sweden)

    Rene B. De Vera

    2015-12-01

    Full Text Available Mollusks are predominantly found inmangrove ecosystems. Nowadays, these are declining due to habitat disturbances. This study was conducted in Western, Pangasinan, with mangrove rehabilitation projects under Community Based Forest Management Agreement. Four mangrove rehabilitation areas were looked into: Pilar and Victory, Bolinao; and Awile and Tori-tori, Anda, Pangasinan. Purposive sampling was done in selecting the mangrove rehabilitation areas. Ten percent sampling of the areas using the belt transect quadrat method was employed. Diversity, dominance , richness and evenness indices for mollusks were determined. Mann Whitney test, Student’s t-test and Kruskal Wallis test were used. A total of fourteen kinds of mollusks species were identified. The species were Tectusfenestratus (fenestrate top, Terebraliasulcata (Sulcate swamp perith, Haliotisovinagemelin (oval abalone, Neritaplanospiraanton (flat spired nerite, Clithionoualensis(dubious nerite, Fasciolaria trapezium (trapezium horse conch, Nasarriuspullus (ribbed dog whelk, Trochusmaculatus (maculated top, Rhinoclavisvertagus (Common vertagus , Telescopium telescopium (Telescope Snail, Isognomonephippium (saddle tree oyster Crassostriairedali (slipper oyster, Strombuslabiatus (Plicate conch and Polymesodaexpansa (Yellowish mangrove clam. The highest mollusks species diversity and richness indeces were observed in Victory, Bolinao. Mollusks species dominance and evenness indeces were highest in Pilar, Bolinao and Tori-tori, Anda, respectively. The study revealed a significant difference in the probability of gathering mollusks species in the four mangrove rehabilitation areas. It is recommended that fisherfolkand coastal communities be educated about the need for mollusks conservation and habitat protection. It is expected that this study may provide light to future research on mangrove fauna particularly mollusks in Pangasinan.

  1. Influence of Propagule Flotation Longevity and Light Availability on Establishment of Introduced Mangrove Species in Hawaiʻi

    Science.gov (United States)

    James A. Allen; Ken W. Krauss

    2006-01-01

    Although no mangrove species are native to the Hawaiian Archipelago, both (Rhizophora mangle) and (Bruguiera sexangula) were introduced and have become naturalized. (Rhizophora mangle) has spread to almost every major Hawaiian island, but (B. sexangula) has established only on O...

  2. Assessment of mangroves from Goa, west coast India using DNA barcode.

    Science.gov (United States)

    Saddhe, Ankush Ashok; Jamdade, Rahul Arvind; Kumar, Kundan

    2016-01-01

    Mangroves are salt-tolerant forest ecosystems of tropical and subtropical intertidal regions. They are among most productive, diverse, biologically important ecosystem and inclined toward threatened system. Identification of mangrove species is of critical importance in conserving and utilizing biodiversity, which apparently hindered by a lack of taxonomic expertise. In recent years, DNA barcoding using plastid markers rbcL and matK has been suggested as an effective method to enrich traditional taxonomic expertise for rapid species identification and biodiversity inventories. In the present study, we performed assessment of available 14 mangrove species of Goa, west coast India based on core DNA barcode markers, rbcL and matK. PCR amplification success rate, intra- and inter-specific genetic distance variation and the correct identification percentage were taken into account to assess candidate barcode regions. PCR and sequence success rate were high in rbcL (97.7 %) and matK (95.5 %) region. The two candidate chloroplast barcoding regions (rbcL, matK) yielded barcode gaps. Our results clearly demonstrated that matK locus assigned highest correct identification rates (72.09 %) based on TaxonDNA Best Match criteria. The concatenated rbcL + matK loci were able to adequately discriminate all mangrove genera and species to some extent except those in Rhizophora, Sonneratia and Avicennia. Our study provides the first endorsement of the species resolution among mangroves using plastid genes with few exceptions. Our future work will be focused on evaluation of other barcode markers to delineate complete resolution of mangrove species and identification of putative hybrids.

  3. Development of allometric relations for three mangrove species in South Florida for use in the Greater Everglades Ecosystem restoration

    Science.gov (United States)

    Smith, T. J.; Whelan, K.R.T.

    2006-01-01

    Mathematical relations that use easily measured variables to predict difficult-to-measure variables are important to resource managers. In this paper we develop allometric relations to predict total aboveground biomass and individual components of biomass (e.g., leaves, stems, branches) for three species of mangroves for Everglades National Park, Florida, USA. The Greater Everglades Ecosystem is currently the subject of a 7.8-billion-dollar restoration program sponsored by federal, state, and local agencies. Biomass and production of mangroves are being used as a measure of restoration success. A technique for rapid determination of biomass over large areas is required. We felled 32 mangrove trees and separated each plant into leaves, stems, branches, and for Rhizophora mangle L., prop roots. Wet weights were measured in the field and subsamples returned to the laboratory for determination of wet-to-dry weight conversion factors. The diameter at breast height (DBH) and stem height were also measured. Allometric equations were developed for each species for total biomass and components of biomass. We compared our equations with those from the same, or similar, species from elsewhere in the world. Our equations explained ???93% of the variance in total dry weight using DBH. DBH is a better predictor of dry weight than is stem height and DBH is much easier to measure. Furthermore, our results indicate that there are biogeographic differences in allometric relations between regions. For a given DBH, stems of all three species have less mass in Florida than stems from elsewhere in the world. ?? Springer 2006.

  4. PERANAN MANGROVE SEBAGAI BIOFILTER PENCEMARAN AIR WILAYAH TAMBAK BANDENG TAPAK, SEMARANG (Role of Mangrove as Water Pollution Biofilter in Milkfish Pond, Tapak, Semarang

    Directory of Open Access Journals (Sweden)

    Nana T.M. Kariada

    2014-10-01

    Full Text Available ABSTRAK Mangrove yang tumbuh di ujung sungai besar berperan sebagai penampung terakhir bagi limbah dari industri di perkotaan dan perkampungan hulu yang terbawa aliran sungai. Area hutan mangrove mempunyai kemampuan mengakumulasi logam berat yang terdapat dalam ekosistem tempat tumbuhnya. Tujuan yang hendak dicapai dari  penelitian ini adalah mengkaji peranan mangrove sebagai biofilter pencemaran air dan  mengetahui jenis mangrove yang terbaik berperan sebagai biofilter pencemaran air di di lingkungan tambak bandeng Tapak Kota Semarang. Desain yang digunakan dalam penelitian ini adalah deskriptif eksploratif. Berdasarkan hasil penelitian tentang akumulasi logam berat Cu antara air dan sedimen tambak, diperoleh hasil telah terjadi akumulasi Cu dengan Faktor Konsentrasi antara 43-400.  Pada stasiun 3 dan 4 terdapat akumulasi Cu dengan nilai Faktor Konsentrasi 3 dan 0,3. Hal ini menunjukkan akumulasi Cu dari sedimen ke akar mangrove relatif masih kecil. Perbedaan akumulasi dari tiap stasiun penelitian yang diamati menunjukkan adanya perbedaan jenis mangrove yang tumbuh pada masing-masing stasiun penelitian. Mangrove yang berada di lingkungan tambak bandeng wilayah Tapak Kota Semarang disimpulkan dapat berperan sebagai biofilter pencemaran air yang ada di perairan tersebut. Mangrove dari jenis Avicennia marina mempunyai peranan yang lebih baik dari jenis Rhizophora sp sebagai biofilter pencemaran air di lingkungan tambak bandeng Tapak Kota Semarang.   ABSTRACT Mangroves,  that is growing at the end of a great river, has a role as the last place for the waste water from urban and domestic industry at the upstream that were carried by the flow of river. Mangrove area  has  ability to accumulate a heavy metals  which is contained in it. The  goals  from this research is to assess role of mangrove as biofilter of water pollution and to find out the best species of mangrove as biofilter of water pollution in milkifish pond in Tapak, Semarang

  5. Post-Glacial Expansion and Population Genetic Divergence of Mangrove Species Avicennia germinans (L.) Stearn and Rhizophora mangle L. along the Mexican Coast

    Science.gov (United States)

    Sandoval-Castro, Eduardo; Dodd, Richard S.; Riosmena-Rodríguez, Rafael; Enríquez-Paredes, Luis Manuel; Tovilla-Hernández, Cristian; López-Vivas, Juan Manuel; Aguilar-May, Bily; Muñiz-Salazar, Raquel

    2014-01-01

    Mangrove forests in the Gulf of California, Mexico represent the northernmost populations along the Pacific coast and thus they are likely to be source populations for colonization at higher latitudes as climate becomes more favorable. Today, these populations are relatively small and fragmented and prior research has indicated that they are poor in genetic diversity. Here we set out to investigate whether the low diversity in this region was a result of recent colonization, or fragmentation and genetic drift of once more extensive mangroves due to climatic changes in the recent past. By sampling the two major mangrove species, Rhizophora mangle and Avicennia germinans, along the Pacific and Atlantic coasts of Mexico, we set out to test whether concordant genetic signals could elucidate recent evolution of the ecosystem. Genetic diversity of both mangrove species showed a decreasing trend toward northern latitudes along the Pacific coast. The lowest levels of genetic diversity were found at the range limits around the Gulf of California and the outer Baja California peninsula. Lack of a strong spatial genetic structure in this area and recent northern gene flow in A. germinans suggest recent colonization by this species. On the other hand, lack of a signal of recent northern dispersal in R. mangle, despite the higher dispersal capability of this species, indicates a longer presence of populations, at least in the southern Gulf of California. We suggest that the longer history, together with higher genetic diversity of R. mangle at the range limits, likely provides a gene pool better able to colonize northwards under climate change than A. germinans. PMID:24699389

  6. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment.

    Science.gov (United States)

    Weaver, Carolyn A; Armitage, Anna R

    2018-01-01

    Global changes, such as increased temperatures and elevated CO2, are driving shifts in plant species distribution and dominance, like woody plant encroachment into grasslands. Local factors within these ecotones can influence the rate of regime shifts. Woody encroachment is occurring worldwide, though there has been limited research within coastal systems, where mangrove (woody shrub/tree) stands are expanding into salt marsh areas. Because coastal systems are exposed to various degrees of nutrient input, we investigated how nutrient enrichment may locally impact mangrove stand expansion and salt marsh displacement over time. We fertilized naturally co-occurring Avicennia germinans (black mangrove) and Spartina alterniflora (smooth cordgrass) stands in Port Aransas, TX, an area experiencing mangrove encroachment within the Northern Gulf of Mexico mangrove-marsh ecotone. After four growing seasons (2010-2013) of continuous fertilization, Avicennia was more positively influenced by nutrient enrichment than Spartina. Most notably, fertilized plots had a higher density of taller (> 0.5 m) mangroves and mangrove maximum height was 46% taller than in control plots. Fertilization may promote an increase in mangrove stand expansion within the mangrove-marsh ecotone by shifting Avicennia height distribution. Avicennia individuals, which reach certain species-specific height thresholds, have reduced negative neighbor effects and have higher resilience to freezing temperatures, which may increase mangrove competitive advantage over marsh grass. Therefore, we propose that nutrient enrichment, which augments mangrove height, could act locally as a positive feedback to mangrove encroachment, by reducing mangrove growth suppression factors, thereby accelerating the rates of increased mangrove coverage and subsequent marsh displacement. Areas within the mangrove-marsh ecotone with high anthropogenic nutrient input may be at increased risk of a regime shift from grass to woody

  7. Nutrient enrichment shifts mangrove height distribution: Implications for coastal woody encroachment

    Science.gov (United States)

    Armitage, Anna R.

    2018-01-01

    Global changes, such as increased temperatures and elevated CO2, are driving shifts in plant species distribution and dominance, like woody plant encroachment into grasslands. Local factors within these ecotones can influence the rate of regime shifts. Woody encroachment is occurring worldwide, though there has been limited research within coastal systems, where mangrove (woody shrub/tree) stands are expanding into salt marsh areas. Because coastal systems are exposed to various degrees of nutrient input, we investigated how nutrient enrichment may locally impact mangrove stand expansion and salt marsh displacement over time. We fertilized naturally co-occurring Avicennia germinans (black mangrove) and Spartina alterniflora (smooth cordgrass) stands in Port Aransas, TX, an area experiencing mangrove encroachment within the Northern Gulf of Mexico mangrove-marsh ecotone. After four growing seasons (2010–2013) of continuous fertilization, Avicennia was more positively influenced by nutrient enrichment than Spartina. Most notably, fertilized plots had a higher density of taller (> 0.5 m) mangroves and mangrove maximum height was 46% taller than in control plots. Fertilization may promote an increase in mangrove stand expansion within the mangrove-marsh ecotone by shifting Avicennia height distribution. Avicennia individuals, which reach certain species-specific height thresholds, have reduced negative neighbor effects and have higher resilience to freezing temperatures, which may increase mangrove competitive advantage over marsh grass. Therefore, we propose that nutrient enrichment, which augments mangrove height, could act locally as a positive feedback to mangrove encroachment, by reducing mangrove growth suppression factors, thereby accelerating the rates of increased mangrove coverage and subsequent marsh displacement. Areas within the mangrove-marsh ecotone with high anthropogenic nutrient input may be at increased risk of a regime shift from grass to woody

  8. Multiple-geographic-scale genetic structure of two mangrove tree species: the roles of mating system, hybridization, limited dispersal and extrinsic factors.

    Directory of Open Access Journals (Sweden)

    Gustavo M Mori

    Full Text Available Mangrove plants comprise a unique group of organisms that grow within the intertidal zones of tropical and subtropical regions and whose distributions are influenced by both biotic and abiotic factors. To understand how these extrinsic and intrinsic processes influence a more fundamental level of the biological hierarchy of mangroves, we studied the genetic diversity of two Neotropical mangrove trees, Avicenniagerminans and A. schaueriana, using microsatellites markers. As reported for other sea-dispersed species, there was a strong differentiation between A. germinans and A. schaueriana populations sampled north and south of the northeastern extremity of South America, likely due to the influence of marine superficial currents. Moreover, we observed fine-scale genetic structures even when no obvious physical barriers were present, indicating pollen and propagule dispersal limitation, which could be explained by isolation-by-distance coupled with mating system differences. We report the first evidence of ongoing hybridization between Avicennia species and that these hybrids are fertile, although this interspecific crossing has not contributed to an increase in the genetic diversity the populations where A. germinans and A. schaueriana hybridize. These findings highlight the complex interplay between intrinsic and extrinsic factors that shape the distribution of the genetic diversity in these sea-dispersed colonizer species.

  9. IDENTIFIKASI TINGKAT KERAWANAN DEGRADASI KAWASAN HUTAN MANGROVE DESA MUARA, TANGERANG, BANTEN

    OpenAIRE

    Hadisti Nur Aini; Omo Rusdiana; Sri Mulatsih

    2015-01-01

    This study is intended to estimate the vulnerability of degradation of mangrove forest in Muara Village, Tangerang, Banten. There are five species of mangroves found in mangrove forest of Muara, which are: Avicennia alba, Avicennia officinnalis. Rhizophora apiculata, Rhizophora stylosa, and Rhizophora mucronata. The results showed that the mangrove forest in Muara has a high vulnerability of degradation based on the three vegetation characteristics, such as: density, domination, and biodivers...

  10. Biomass and Habitat Characteristics of Epiphytic Macroalgae in the Sibuti Mangroves, Sarawak, Malaysia.

    Science.gov (United States)

    Isa, Hasmidah Md; Kamal, Abu Hena Mustafa; Idris, Mohd Hanafi; Rosli, Zamri; Ismail, Johan

    2017-01-01

    Mangroves support diverse macroalgal assemblages as epibionts on their roots and tree trunks. These algae provide nutrients to the primary consumers in the aquatic food web and have been reported to be substantial contributors to marine ecosystems. The species diversity, biomass, and habitat characteristics of mangrove macroalgae were investigated at three stations in the Sibuti mangrove estuary, Sarawak, Malaysia, from November 2012 to October 2013. Three groups of macroalgae were recorded and were found to be growing on mangrove prop roots, namely Rhodophyta ( Caloglossa ogasawaraensis , Caloglossa adhaerens , Caloglossa stipitata , Bostrychia anomala, and Hypnea sp.), Chlorophyta ( Chaetomorpha minima and Chaetomorpha sp.), and Phaeophyta ( Dictyota sp.). The biomass of macroalgae was not influenced ( p >0.05) by the season in this mangrove forest habitat. The macroalgal species Hypnea sp. contributed the highest biomass at both Station 1 (210.56 mg/cm 2 ) and Station 2 (141.72 mg/cm 2 ), while the highest biomass was contributed by B. anomala (185.89 mg/cm 2 ) at Station 3. This study shows that the species distribution and assemblages of mangrove macroalgae were influenced by environmental parameters such as water nutrients, dissolved solids, and salinity in the estuarine mangrove habitats of Sibuti, Sarawak.

  11. Sap flow characteristics of neotropical mangroves in flooded and drained soils

    Science.gov (United States)

    Krauss, Ken W.; Young, P. Joy; Chambers, Jim L.; Doyle, Thomas W.; Twilley, Robert R.

    2007-01-01

    Effects of flooding on water transport in mangroves have previously been investigated in a few studies, most of which were conducted on seedlings in controlled settings. In this study, we used heat-dissipation sap probes to determine if sap flow (Js) attenuates with radial depth into the xylem of mature trees of three south Florida mangrove species growing in Rookery Bay. This was accomplished by inserting sap probes at multiple depths and monitoring diurnal flow. For most species and diameter size class combinations tested, Js decreased dramatically beyond a radial depth of 2 or 4 cm, with little sap flow beyond a depth of 6 cm. Mean Js was reduced on average by 20% in Avicennia germinans (L.) Stearn, Laguncularia racemosa (L.) Gaertn. f. and Rhizophora mangle L. trees when soils were flooded. Species differences were highly significant, with L. racemosahaving the greatest midday Js of about 26g H2O H2O m−2s−1 at a radial depth of 2 cm compared with a mean for the other two species of about 15 g H2O m−2s−1. Sap flow at a depth of 2 cm in mangroves was commensurate with rates reported for other forested wetland tree species. We conclude that: (1) early spring flooding of basin mangrove forests causes reductions in sap flow in mature mangrove trees; (2) the sharp attenuations in Js along the radial profile have implications for understanding whole-tree water use strategies by mangrove forests; and (3) regardless of flood state, individual mangrove tree water use follows leaf-level mechanisms in being conservative.

  12. Do Mangroves Subsidize Carbon to Adjacent Mudflat Fish Communities?

    Science.gov (United States)

    Henkel, S.; Kasten, S.; Hartmann, J.; Staubwasser, M.; Hernandez, M. F.; West, L.; Midway, S. R.; Polito, M. J.

    2017-12-01

    Mangroves are often implicated as energetic sources for fisheries productivity. However, the validity of this connection still remains in contention. Stable isotopes may provide answers by tracking the use of specific basal carbon sources in fish and invertebrates living in mangrove-mudflat habitat mosaics. We analyzed 307 consumer samples representing n=44 fish and invertebrate species collected from mangrove forest creeks and adjacent mudflats in coastal Tanzania using bulk carbon and nitrogen stable isotope analysis. Given the proposed high productivity of mangrove habitats, we hypothesize that mudflat communities will have carbon stable isotope values similar to mangrove communities either through the flux of mangrove carbon into adjacent mudflats and/or via the movement of mudflat fish communities into and out of mangrove habitats. Alternatively, mangrove carbon is often refractory, which may result in mudflat communities with isotopic values that differ from those found in adjacent mangrove communities. This scenario would suggest limited carbon flow between mudflat and mangrove food webs and that the movement of fish into and out of mangrove habitats is related to shelter from predation more than feeding. Data analysis is ongoing to test these competing hypotheses. By understanding the contribution of mangrove carbon to adjacent habitats, managers in Tanzania can make better informed decisions regarding the protection of mangroves and the local fisheries, which are a crucial source of income and food.

  13. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Science.gov (United States)

    Serafy, Joseph E; Shideler, Geoffrey S; Araújo, Rafael J; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider

  14. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    Directory of Open Access Journals (Sweden)

    Joseph E Serafy

    Full Text Available Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1 Are reef fish abundances limited by mangrove forest area?; and (2 Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1 focus analyses on species that use mangroves as nurseries, (2 consider more than the mean fish abundance response to mangrove forest extent; and/or (3 quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i

  15. Assessment and Comparison of salt Content in Mangrove Plants in Sri Lanka

    Directory of Open Access Journals (Sweden)

    N. P. Dissanayake

    2009-09-01

    Full Text Available Due to the predicted threats of global warming and sea level rise, the salt tolerance and salt accumulative abilities of plants have become popular contentious topics. Mangroves are one of the major groups of salt tolerant plants and several mechanisms are known as instrumental in their salt tolerance. Salt excretion through leaf drop is given as one, but its validity is questioned by some recent works compelling the necessity for further studies. Knowledge of the salt contents in different mangrove plants is a pre requisite for such studies. Hence, this study aimed to quantify and compare the salt content in mature leaves of nine mangrove species in Sri Lanka., i.e. Aegiceras corniculatum, Avicennia marina, Avicennia officinalis, Bruguiera gymnorrhiza, Bruguiera sexangula, Ceriops tagal, Excoecaria agallocha, Lumnitzera racemosa, Rhizophora apiculata and Rhizophora mucronata which are growing in the same mangrove system; the Rekawa lagoon in Sri Lanka. Two species of non mangrove plants, Gliricidia sepium and Artocarpus heterophyllus, which were growing in inland areas were also selected for comparison. The concentration of Na+ in leaves was considered as a measure of the salt concentration. The Na+ in leaves was extracted by acid digestion and quantified by flame photometry. The salt content of mangroves was measured under two contrasting hydrological situations: at the highest and lowest water levels of the lagoon. Rekawa lagoon can be considered as a ‘barrier built estuary’, the highest water level occurs when the lagoon mouth is blocked due to the formation of the sand bar and the water level is increased by fresh water inflow, inundating the total mangrove area and decreasing the soil/water salinity. The water level of the lagoon becomes lowest when the lagoon mouth is opened (naturally or by dredging and lagoon water is flushed out to the sea. Then the salinity of lagoon water becomes high due to sea water influx. The results showed

  16. Developing community-based mangrove management through eco-tourism in North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Bimantara, Y.; Siagian, M.; Wati, R.; Slamet, B.; Sulistiyono, N.; Nuryawan, A.; Leidonad, R.

    2018-03-01

    Mangrove forests in North Sumatera, Indonesia existed in the east coast of Sumatera Island and commonly thrived in Langkat, Deli Serdang, Batubara, Tanjung Balai, Asahan, Labuhanbatu until Serdang Bedagai. The present study describes the developing community-based mangrove management (CBMM) through eco-tourism in two locations, Lubuk Kertang (LK) of Langkat and Sei Nagalawan (SN) of Serdang Bedagai, North Sumatra, Indonesia. Mangrove ecosystem, coastal villagers and visitors, and related stakeholder were analyzed to present the potential of mangrove ecosystem, the ecological suitability, and the carrying capacity then continued with SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis. Results showed that mangrove diversity in LK consist of fifteen species which Rhizophora apiculata and Avicennia lanata dominated the area, where mangroves in SN found seven species dominated by R. apiculata and A. officinalis. Based on the suitability level of mangrove ecosystem for ecotourism development, LK and SN were categorized as suitable and conditionally suitable, respectively. The carrying capacity of mangrove ecotourism for LK and SN were 36 and 36 people/day respectively. SWOT analysis revealed that both locations of eco-tourism have a potential eco-tourism attraction, high mangrove biodiversity, possible human resources, and real people’s perception on the importance of mangrove conservation, and relatively easy access. The study present suggested that mangrove ecotourism is a sustainable form of land use, to contributing the environmental protection and providing socio-economic benefits to the local people through indirect values of the natural resources.

  17. IMPORTANCE OF MANGROVE TO REDUCE THE TSUNAMI WAVE ENERGY

    Directory of Open Access Journals (Sweden)

    Anastasia Neni Candra Purnamasari

    2017-09-01

    Full Text Available Mangrove has a very important role to reduce the tsunami wave energy. It is shown that the coastal areas have no vegetation or in this case will have an impact Mangrove forests greater damage due to tsunami waves than the coastal areas of vegetation. The purpose of the Term Paper is proved the importance of Mangrove to reduce the tsunami wave energy by comparing the various methods that have been observed in some case studies on the impact of the tsunami that occurred in several Asian countries in 2004 and case studies on ocean waves on the Gulf coast of south Florida. Based on the research results that could dampen Mangrove Tsunami wave energy. Tsunami wave energy can be reduced by several factors, namely mangrove species, tree size, vast mangrove forest, nature tree structure, and the size limit Mangrove forest (as far as how much of the ocean to the surface.

  18. Persistence and extinction of an n-species mutualism model with random perturbations in a polluted environment

    Science.gov (United States)

    He, Xin; Shan, Meijing; Liu, Meng

    2018-02-01

    An n-species stochastic Lotka-Volterra cooperative model in a polluted environment is proposed and studied. For each species, sufficient conditions for extinction, non-persistence in the mean and weak persistence in the mean are established. The threshold between weak persistence in the mean and extinction is obtained. Several numerical figures are also worked out to validate the theoretical results.

  19. Evaluation of Two Approaches to Defining Extinction Risk under the U.S. Endangered Species Act.

    Science.gov (United States)

    Thompson, Grant G; Maguire, Lynn A; Regan, Tracey J

    2018-05-01

    The predominant definition of extinction risk in conservation biology involves evaluating the cumulative distribution function (CDF) of extinction time at a particular point (the "time horizon"). Using the principles of decision theory, this article develops an alternative definition of extinction risk as the expected loss (EL) to society resulting from eventual extinction of a species. Distinct roles are identified for time preference and risk aversion. Ranges of tentative values for the parameters of the two approaches are proposed, and the performances of the two approaches are compared and contrasted for a small set of real-world species with published extinction time distributions and a large set of hypothetical extinction time distributions. Potential issues with each approach are evaluated, and the EL approach is recommended as the better of the two. The CDF approach suffers from the fact that extinctions that occur at any time before the specified time horizon are weighted equally, while extinctions that occur beyond the specified time horizon receive no weight at all. It also suffers from the fact that the time horizon does not correspond to any natural phenomenon, and so is impossible to specify nonarbitrarily; yet the results can depend critically on the specified value. In contrast, the EL approach has the advantage of weighting extinction time continuously, with no artificial time horizon, and the parameters of the approach (the rates of time preference and risk aversion) do correspond to natural phenomena, and so can be specified nonarbitrarily. © 2017 Society for Risk Analysis.

  20. A phantom extinction? New insights into extinction dynamics of the Don-hare Lepus tanaiticus.

    Science.gov (United States)

    Prost, S; Knapp, M; Flemmig, J; Hufthammer, A K; Kosintsev, P; Stiller, M; Hofreiter, M

    2010-09-01

    The Pleistocene to Holocene transition was accompanied by a worldwide extinction event affecting numerous mammalian species. Several species such as the woolly mammoth and the giant deer survived this extinction wave, only to go extinct a few thousand years later during the Holocene. Another example for such a Holocene extinction is the Don-hare, Lepus tanaiticus, which inhabited the Russian plains during the late glacial. After being slowly replaced by the extant mountain hare (Lepus timidus), it eventually went extinct during the middle Holocene. Here, we report the phylogenetic relationship of L. tanaiticus and L. timidus based on a 339-basepair (bp) fragment of the mitochondrial D-loop. Phylogenetic tree- and network reconstructions do not support L. tanaiticus and L. timidus being different species. Rather, we suggest that the two taxa represent different morphotypes of a single species and the extinction of 'L. tanaiticus' represents the disappearance of a local morphotype rather than the extinction of a species.

  1. Dynamics in mangroves assessed by high-resolution and multi-temporal satellite data: a case study in Zhanjiang Mangrove National Nature Reserve (ZMNNR, P. R. China

    Directory of Open Access Journals (Sweden)

    K. Leempoel

    2013-08-01

    Full Text Available Mangrove forests are declining across the globe, mainly because of human intervention, and therefore require an evaluation of their past and present status (e.g. areal extent, species-level distribution, etc. to implement better conservation and management strategies. In this paper, mangrove cover dynamics at Gaoqiao (P. R. China were assessed through time using 1967, 2000 and 2009 satellite imagery (sensors Corona KH-4B, Landsat ETM+, GeoEye-1 respectively. Firstly, multi-temporal analysis of satellite data was undertaken, and secondly biotic and abiotic differences were analysed between the different mangrove stands, assessed through a supervised classification of a high-resolution satellite image. A major decline in mangrove cover (−36% was observed between 1967 and 2009 due to rice cultivation and aquaculture practices. Moreover, dike construction has prevented mangroves from expanding landward. Although a small increase of mangrove area was observed between 2000 and 2009 (+24%, the ratio mangrove / aquaculture kept decreasing due to increased aquaculture at the expense of rice cultivation in the vicinity. From the land-use/cover map based on ground-truth data (5 × 5 m plot-based tree measurements (August–September, 2009 as well as spectral reflectance values (obtained from pansharpened GeoEye-1, both Bruguiera gymnorrhiza and small Aegiceras corniculatum are distinguishable at 73–100% accuracy, whereas tall A. corniculatum was correctly classified at only 53% due to its mixed vegetation stands with B. gymnorrhiza (overall classification accuracy: 85%. In the case of sediments, sand proportion was significantly different between the three mangrove classes. Overall, the advantage of very high resolution satellite images like GeoEye-1 (0.5 m for mangrove spatial heterogeneity assessment and/or species-level discrimination was well demonstrated, along with the complexity to provide a precise classification for non-dominant species (e

  2. Commercial capture of the mangrove crab, Ucides cordatus (L., 1763, in the Gargaú mangrove, RJ

    Directory of Open Access Journals (Sweden)

    Ana Paula Madeira Di Beneditto

    2005-05-01

    Full Text Available The purpose of this study was analyze the biometry of the mangrove crab, Ucides cordatus (L., 1763, captured commercially in the Gargaú Mangrove (RJ, comparing common practices with the demands of Law no 52/2003 of IBAM A – Brazilian Agency of Environment and Natural Resources – and making inferences about the fishing community’s perception of the species. From April 2002 to March 2003, 571 specimens were analyzed and the highest frequency of males and females was registered in a carapace width of 6,0 6,5cm. The exploration of the mangrove crab is conducted all year round and the gear known as “redinha” is used in its capture, disrespecting the abovementioned law. However, the capture excludes ovigerous females and small-sized specimens, which reflects the fishing community’s concerns about this resource. The exploitation of this crab population probably interferes in its growth pattern, and managerial action needs to be implemented, considering not only the recommendations of scientific studies, but also the local fishermen’s knowledge of the species.

  3. Effect of mangrove restoration on crab burrow density in Luoyangjiang Estuary, China

    Directory of Open Access Journals (Sweden)

    Wei Li

    2015-07-01

    Full Text Available Background Mangrove restoration seeks to restore or rebuild degraded mangrove systems. The methods of mangrove restoration include ecological projects and restoration-oriented technologies, the latter of which are designed to restore the structure, processes as well as related physical, chemical and biological characteristics of wetlands and to ensure the provision of ecosystem services. As important components of mangrove ecosystem, benthic organisms and crabs play a key role in nutrient cycling. In addition, mangrove restoration, such as vegetation restoration measures, can lead to changes in the benthic faunal communities. This study investigates whether the presence of different mangrove species, age and canopy cover of mangrove communities affect the density of crab burrows. Methods The Luoyangjiang Estuary, in the southeast of Fujian Province, was selected as our research area. A survey, covering 14 sites, was conducted to investigate the impacts of mangrove restoration on the density of crab burrows in four rehabilitated forests with different stand ages and canopy. Results It was found that differences in vegetation types had a large impact on crab density and that the density of crab burrows was lower on exposed beaches (non-mangrove than under mature Kandelia candel, Aegiceras corniculatum and Avicennia marina communities. In general, the amount of leaf litter and debris on mangrove mudflats was greater than on the beaches as food sources for crabs. Two-factor analysis of variance (ANOVA shows that changes in mangrove species and age since restoration had different effects on crab burrow density. The effect of canopy cover was highly significant on crab burrow density. Conclusions The results suggest that in the process of mangrove restoration the combined effects of mangrove stand age, canopy cover and other factors should be taken into account. This study further supports the findings of the future scientific research and practice on

  4. Chemical contamination assessment in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as biomonitor species.

    Science.gov (United States)

    Aguirre-Rubí, Javier R; Luna-Acosta, Andrea; Etxebarría, Nestor; Soto, Manu; Espinoza, Félix; Ahrens, Michael J; Marigómez, Ionan

    2018-05-01

    This paper aims to contribute to the use of mangrove cupped oyster, Crassostrea rhizophorae, as a biomonitor species for chemical contamination assessment in mangrove-lined Caribbean coastal systems. Sampling was carried out in eight localities (three in Nicaragua and five in Colombia) with different types and levels of contamination. Oysters were collected during the rainy and dry seasons of 2012-2013 and the tissue concentrations of metals, polycyclic aromatic hydrocarbons (PAHs), and persistent organic pollutants (POPs) were determined. Low tissue concentrations of metals (except Hg) and PAHs; moderate-to-high tissue concentrations of Hg, hexachlorocyclohexanes (HCHs), and dichlorodiphenyl-trichloroethanes (DDTs); detectable levels of chlorpyrifos, polychlorinated biphenyls (PCBs) (mainly CB28, CB118, CB138 and CB 153) and brominated diphenyl ethers 85 (BDE85); and negligible levels of musks were recorded in Nicaraguan oysters. A distinct profile of POPs was identified in Colombia, where the tissue concentrations of PCBs and synthetic musk fragrances were low to moderate, and Ag, As, Cd, Pb, and PAHs ranged from moderate to extremely high. Overall, the values recorded for HCHs, DDTs and PCBs in Nicaraguan mangrove cupped oysters greatly exceeded the reference values in tissues of C. rhizophorae from the Wider Caribbean Region, whereas only the levels of PCBs were occasionally surpassed in Colombia. Different contaminant profiles were distinguished between oysters from Nicaragua and Colombia in radar plots constructed using the main groups of contaminants (metals, PAHs, musks, PCBs, and organochlorine pesticides (OCPs)). Likewise, integrated pollution indices revealed differences in the levels of contaminants. Moreover, the profiles and levels in oyster tissues also varied with season. Thus, principal component analysis clearly discriminated Nicaraguan and Colombian localities and, especially in Colombia, seasonal trends in chemical contamination and differences

  5. Estimating mangrove in Florida: trials monitoring rare ecosystems

    Science.gov (United States)

    Mark J. Brown

    2015-01-01

    Mangrove species are keystone components in coastal ecosystems and are the interface between forest land and sea. Yet, estimates of their area have varied widely. Forest Inventory and Analysis (FIA) data from ground-based sample plots provide one estimate of the resource. Initial FIA estimates of the mangrove resource in Florida varied dramatically from those compiled...

  6. Modern examples of extinctions

    DEFF Research Database (Denmark)

    Lövei, Gabor L

    2013-01-01

    No species lives forever, and extinction is the ultimate fate of all living species. The fossil record indicates that a recent extinction wave affecting terrestrial vertebrates was parallel with the arrival of modern humans to areas formerly uninhabited by them. These modern instances of extinction...

  7. Extinction and survival in two-species annihilation

    Science.gov (United States)

    Amar, J. G.; Ben-Naim, E.; Davis, S. M.; Krapivsky, P. L.

    2018-02-01

    We study diffusion-controlled two-species annihilation with a finite number of particles. In this stochastic process, particles move diffusively, and when two particles of opposite type come into contact, the two annihilate. We focus on the behavior in three spatial dimensions and for initial conditions where particles are confined to a compact domain. Generally, one species outnumbers the other, and we find that the difference between the number of majority and minority species, which is a conserved quantity, controls the behavior. When the number difference exceeds a critical value, the minority becomes extinct and a finite number of majority particles survive, while below this critical difference, a finite number of particles of both species survive. The critical difference Δc grows algebraically with the total initial number of particles N , and when N ≫1 , the critical difference scales as Δc˜N1 /3 . Furthermore, when the initial concentrations of the two species are equal, the average number of surviving majority and minority particles, M+ and M-, exhibit two distinct scaling behaviors, M+˜N1 /2 and M-˜N1 /6 . In contrast, when the initial populations are equal, these two quantities are comparable M+˜M-˜N1 /3 .

  8. Extinction in Two-Species Nonlinear Discrete Competitive System

    Directory of Open Access Journals (Sweden)

    Liqiong Pu

    2016-01-01

    Full Text Available We propose a nonlinear discrete system of two species with the effect of toxic substances. By constructing a suitable Lyapunov-type function, we obtain the sufficient conditions which guarantee that one of the components will be driven to extinction while the other will be globally attractive with any positive solution of a discrete equation. Two examples together with their numerical simulations illustrate the feasibility of our main results. The results not only improve but also complement some known results.

  9. Conservation genetics of a critically endangered limpet genus and rediscovery of an extinct species.

    Directory of Open Access Journals (Sweden)

    Diarmaid Ó Foighil

    Full Text Available A third of all known freshwater mollusk extinctions worldwide have occurred within a single medium-sized American drainage. The Mobile River Basin (MRB of Alabama, a global hotspot of temperate freshwater biodiversity, was intensively industrialized during the 20(th century, driving 47 of its 139 endemic mollusk species to extinction. These include the ancylinid limpet Rhodacmea filosa, currently classified as extinct (IUCN Red List, a member of a critically endangered southeastern North American genus reduced to a single known extant population (of R. elatior in the MRB.We document here the tripling of known extant populations of this North American limpet genus with the rediscovery of enduring Rhodacmea filosa in a MRB tributary and of R. elatior in its type locality: the Green River, Kentucky, an Ohio River Basin (ORB tributary. Rhodacmea species are diagnosed using untested conchological traits and we reassessed their systematic and conservation status across both basins using morphometric and genetic characters. Our data corroborated the taxonomic validity of Rhodacmea filosa and we inferred a within-MRB cladogenic origin from a common ancestor bearing the R. elatior shell phenotype. The geographically-isolated MRB and ORB R. elatior populations formed a cryptic species complex: although overlapping morphometrically, they exhibited a pronounced phylogenetic disjunction that greatly exceeded that of within-MRB R. elatior and R. filosa sister species.Rhodacmea filosa, the type species of the genus, is not extinct. It persists in a Coosa River tributary and morphometric and phylogenetic analyses confirm its taxonomic validity. All three surviving populations of the genus Rhodacmea merit specific status. They collectively contain all known survivors of a phylogenetically highly distinctive North American endemic genus and therefore represent a concentrated fraction of continental freshwater gastropod biodiversity. We recommend the establishment

  10. Diversity and spatial heterogeneity of mangrove associated sponges of Curaçao and Aruba

    NARCIS (Netherlands)

    Hunting, E.R.; van Soest, R.W.M.; van der Geest, H.G.; Vos, A.; Debrot, A.O.

    2008-01-01

    Sponges are major epibionts of mangrove roots in the Caribbean. Mangrove sponge communities in the Caribbean mainly consist of species that are typical to this habitat and community compositions often differ from those found on coral reefs nearby. Heterogeneity in species distributions between

  11. Changes in biotic and abiotic processes following mangrove clearing

    Science.gov (United States)

    Granek, Elise; Ruttenberg, Benjamin I.

    2008-12-01

    Mangrove forests, important tropical coastal habitats, are in decline worldwide primarily due to removal by humans. Changes to mangrove systems can alter ecosystem properties through direct effects on abiotic factors such as temperature, light and nutrient supply or through changes in biotic factors such as primary productivity or species composition. Despite the importance of mangroves as transitional habitats between land and sea, little research has examined changes that occur when they are cleared. We examined changes in a number of biotic and abiotic factors following the anthropogenic removal of red mangroves ( Rhizophora mangle) in the Panamanian Caribbean, including algal biomass, algal diversity, algal grazing rates, light penetration, temperature, sedimentation rates and sediment organic content. In this first study examining multiple ecosystem-level effects of mangrove disturbance, we found that areas cleared of mangroves had higher algal biomass and richness than intact mangrove areas. This increase in algal biomass and richness was likely due to changes in abiotic factors (e.g. light intensity, temperature), but not biotic factors (fish herbivory). Additionally the algal and cyanobacterial genera dominating mangrove-cleared areas were rare in intact mangroves and included a number of genera that compete with coral for space on reefs. Interestingly, sedimentation rates did not differ between intact and cleared areas, but the sediments that accumulated in intact mangroves had higher organic content. These findings are the first to demonstrate that anthropogenic clearing of mangroves changes multiple biotic and abiotic processes in mangrove forests and that some of these changes may influence adjacent habitats such as coral reefs and seagrass beds. Additional research is needed to further explore the community and ecosystem-level effects of mangrove clearing and their influence on adjacent habitats, but it is clear that mangrove conservation is an

  12. Atoll mangroves and associated flora from Republic of Maldives, Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Untawale, A.G.

    of the north atolls. Male' atoll was totally devoid of mangroves due to their large scale reclamation mainly for urbanisation and tourism. Mangrove flora comprised of 12 species and was dominated by Bruguiera cylindrica followed by Lumnitzera racemosa, Ceriops...

  13. Rescuing Ecosystems from Extinction Cascades

    Science.gov (United States)

    Sahasrabudhe, Sagar; Motter, Adilson

    2010-03-01

    Food web perturbations stemming from climate change, overexploitation, invasive species, and natural disasters often cause an initial loss of species that results in a cascade of secondary extinctions. Using a predictive modeling framework, here we will present a systematic network-based approach to reduce the number of secondary extinctions. We will show that the extinction of one species can often be compensated by the concurrent removal of a second specific species, which is a counter-intuitive effect not previously tested in complex food webs. These compensatory perturbations frequently involve long-range interactions that are not a priori evident from local predator-prey relationships. Strikingly, in numerous cases even the early removal of a species that would eventually be extinct by the cascade is found to significantly reduce the number of cascading extinctions. Other nondestructive interventions based on partial removals and growth suppression and/or mortality increase are shown to sometimes prevent all secondary extinctions.

  14. The impact of shrimp farming on mangrove ecosystems

    DEFF Research Database (Denmark)

    Ashton, Elizabeth Clare

    2008-01-01

    . Policy to position shrimp farms behind mangroves can be effective but also requires good institutional capacity and coordination, effective enforcement, incentives, land tenure and participation of all stakeholders for success. Better management practices have been identified which reduce impacts......Farmed shrimp production and value continue to increase with Asia producing the global majority of shrimp and the USA, Japan and Europe being the main importers. Shrimp farming systems are very diverse in their management, size and impacts. There are many causes for mangrove loss but the conversion...... of mangroves to shrimp farms has caused considerable attention. The major issues of shrimp farming include the loss of important ecological and socio-economic functions of mangrove ecosystems, changes in hydrology, salinization, introduction of non-native species and diseases, pollution from effluents...

  15. Diversity and spatial heterogeneity of mangrove associated sponges of Curaçao and Aruba

    OpenAIRE

    Hunting, E.R.; van Soest, R.W.M.; van der Geest, H.G.; Vos, A.; Debrot, A.O.

    2008-01-01

    Sponges are major epibionts of mangrove roots in the Caribbean. Mangrove sponge communities in the Caribbean mainly consist of species that are typical to this habitat and community compositions often differ from those found on coral reefs nearby. Heterogeneity in species distributions between locations and within locations between roots is often reported. This study quantifi es the diversity and abundance of mangrove associated sponges in the inner bays of Curaçao and Aruba and correlates va...

  16. An in vitro efficacy validation of mangrove associates

    Institute of Scientific and Technical Information of China (English)

    Aseer Manilal; Behailu Merdekios; Jose Paul Veliyath Paul; Akbar Idhayadhulla; Chinnaswamy Muthukumar; Mulugeta Melkie

    2014-01-01

    Objective: To investigate the in vitro antimicrobial potential of mangrove associates against a battery of human and shrimp pathogenic bacteria and to elucidate its antimicrobial principles.Methods:(southwest coast of India) vicinity were extracted in different organic solvents of increasing polarity. The resultant extracts obtained from the respective species were examined for the antimicrobial activity against a panel of shrimp and human pathogens by agar diffusion assay.Results:In the present study, 12 species of mangrove associates collected from the Kollam inophyllum (C. inophyllum), Cerbera odollam and Dalbergia candenatensis] were found to be active. The broadest and highest rank of activity was observed in the crude extract of C. inophyllum. Amongst the pathogens tested, shrimp pathogenic Vibrios were the most sensitive organisms while human pathogens were found to be a bit resistant. In the present study, ethyl acetate was found to be the best solvent for extracting antimicrobial metabolites. The bioactive principles present in the crude extract of C. inophyllum were chemically elucidated by gas chromatography-mass spectrometer. The gas chromatography-mass spectrometer studies revealed the presence of two principal compounds such as 1-Dimethyl(phenyl)silyloxyhexadecane (24.73%) and β-d-Mannofuranoside, O-geranyl (50%) which might play functional role in the chemical defense against microbial invasion.Conclusions:Of the 12 species evaluated, three species of mangrove associates [Calophyllum inophyllum is a promising candidate for the development of plant-based human and veterinary grade antibiotics in future. Based on the overall findings, it could be inferred that the mangrove associate C.

  17. Rapidly shifting baselines in Yangtze fishing communities and local memory of extinct species.

    Science.gov (United States)

    Turvey, Samuel T; Barrett, Leigh A; Yujiang, Hao; Lei, Zhang; Xinqiao, Zhang; Xianyan, Wang; Yadong, Huang; Kaiya, Zhou; Hart, Tom; Ding, Wang

    2010-06-01

    Local ecological knowledge can provide a unique source of data for conservation, especially in efforts to investigate the status of rare or possibly extinct species, but it is unlikely to remain constant over time. Loss of perspective about past ecological conditions caused by lack of communication between generations may create "shifting baseline syndrome," in which younger generations are less aware of local species diversity or abundance in the recent past. This phenomenon has been widely discussed, but has rarely been examined quantitatively. We present new evidence of shifting baselines in local perception of regional species declines and on the duration of "community memory" of extinct species on the basis of extensive interviews with fishers in communities across the middle-lower Yangtze basin. Many Yangtze species have experienced major declines in recent decades, and the Yangtze River dolphin or baiji (Lipotes vexillifer) and Yangtze paddlefish (Psephurus gladius) may have become extinct during the 21(st) century. Although informants across all age classes were strongly aware of the Yangtze ecosystem's escalating resource depletion and environmental degradation, older informants were more likely to recognize declines in two commercially important fish species, Reeves' shad (Tenualosa reevesii) and Yangtze pufferfish (Takifugu fasciatus), and to have encountered baiji and paddlefish in the past. Age was also a strong predictor of whether informants had even heard of baiji or paddlefish, with younger informants being substantially less likely to recognize either species. A marked decrease in local knowledge about the Yangtze freshwater megafauna matched the time of major population declines of these species from the 1970s onwards, and paddlefish were already unknown to over 70% of all informants below the age of 40 and to those who first started fishing after 1995. This rapid rate of cultural baseline shift suggests that once even megafaunal species cease to

  18. Global patterns in the poleward expansion of mangrove forests

    Science.gov (United States)

    Cavanaugh, K. C.; Feller, I. C.

    2016-12-01

    Understanding the processes that limit the geographic ranges of species is one of the central goals of ecology and biogeography. This issue is particularly relevant for coastal wetlands given that climate change is expected to lead to a `tropicalization' of temperate coastal and marine ecosystems. In coastal wetlands around the world, there have already been observations of mangroves expanding into salt marshes near the current poleward range limits of mangroves. However, there is still uncertainty regarding regional variability in the factors that control mangrove range limits. Here we used time series of Landsat satellite imagery to characterize patterns of mangrove abundance near their poleward range limits around the world. We tested the commonly held assumption that temporal variation in abundance should increase towards the edge of the range. We also compared variability in mangrove abundance to climate factors thought to set mangrove range limits (air temperature, water temperature, and aridity). In general, variability in mangrove abundance at range edges was high relative to range centers and this variability was correlated to one or more climate factors. However, the strength of these relationships varied among poleward range limits, suggesting that some mangrove range limits are control by processes other than climate, such as dispersal limitation.

  19. Influences of salinity and shade on seedling photosynthesis and growth of two mangrove species, Rhizophora mangle and Bruguiera sexangula, introduced to Hawaii

    Science.gov (United States)

    Krauss, K.W.; Allen, J.A.

    2003-01-01

    Rhizophora mangle was first introduced to Hawaii in 1902 to promote shoreline stabilization. Intertidal competition with native and introduced salt marsh species was low, and beyond the early 1920s, mangrove forests expanded rapidly. An additional mangrove species, Bruguiera sexangula, was introduced in 1922 and currently co-occurs with R. mangle in only a few stands on the north shore and windward sides of Oahu. Where the two species overlap, R. mangle, having colonized intertidal zones first, forms nearly monospecific forest stands. To determine why R. mangle remains the dominant mangrove, we initiated a greenhouse study to compare seedling growth and photosynthetic light response of both species growing at two light levels and contrasting salinity regimes (2, 10, 32 PSU). The asymptotic nature of B. sexangula' s assimilation response is indicative of stomatal regulation, whereas only light level appears to regulate photosynthesis in R. mangle. Shifts in patterns of biomass allocation and physiological response indicate two contrasting strategies relative to sunlight and salinity. B. sexangula's strategy is characterized by slow growth with little variation under favorable conditions and morphological plasticity under stressful conditions, which allows for adjustments in carbon gain efficiency (morphological strategy). On the other hand, R. mangle's strategy involves faster growth under a wide range of environmental conditions with physiological enhancement of carbon assimilation (physiological strategy). Low salinity combined with reduced light, or simply low sunlight alone, appears to favor R. mangle and B. sexangula equally. High salinity places greater, but not overwhelming, stress on B. sexangula seedlings, but tends to favor R. mangle at higher light levels.

  20. Waterbirds diversity in Peniti mangrove forest, Pontianak Regency

    Directory of Open Access Journals (Sweden)

    DEWI ELFIDASARI

    2006-01-01

    Full Text Available The aim of this research was to know waterbirds diversity in the Peniti mangrove forest, Pontianak Regency. This research was found 19 species (9 families of waterbirds that living in the Peniti mangrove forest, Pontianak Regency, West Kalimantan. This identification showed that four species were member of Sternitidae Family, three species were member of Ardeidae Family, other three species were member of Anatidae Family, two species were member of Laridae Family, two species from Accipritidae Family, and Alcedinidae Family. One species from Ciconidae Family, Scolopacidae Family, and Ploceidae Family. Thirteen species of them were protected in Indonesia; there were Egretta garzetta, E. sacra, Ardea cinerea, Ciconia episcopus, Larus ridibundus, L. brunnicephalus, Sterna sumatrana, S. dougallii, Anous minutus, Gygis alba, Halcyon pileata, Todirhamphus chloris, and Lonchura fuscans. Lochura fuscans was belonging to Indonesian endemic birds, because we only found this bird species in Kalimantan Islands. Two species, Haliaetus leucogaster and Haliastur indus were the International protected species according to Appendix II Convention on International Trade in Endangered Species (CITES.

  1. Global analysis of threat status reveals higher extinction risk in tropical than in temperate bird sister species

    Directory of Open Access Journals (Sweden)

    Reif Jiří

    2016-06-01

    Full Text Available Given increasing pressures upon biodiversity, identification of species’ traits related to elevated extinction risk is useful for more efficient allocation of limited resources for nature conservation. Despite its need, such a global analysis was lacking in the case of birds. Therefore, we performed this exercise for avian sister species using information about their global extinction risk from IUCN Red List. We focused on 113 pairs of sister species, each containing a threatened and an unthreatened species to factor out the effects of common evolutionary history on the revealed relationship. We collected data on five traits with expected relationships to species’ extinction risk based on previous studies performed at regional or national levels: breeding habitat (recognizing forest, grassland, wetland and oceanic species, latitudinal range position (temperate and tropics species, migration strategy (migratory and resident species, diet (carnivorous, insectivorous, herbivorous and omnivorous species and body mass. We related the extinction risk using IUCN threat level categories to species’ traits using generalised linear mixed effects models expecting lower risk for forest, temperate, omnivorous and smaller-bodied species. Our expectation was confirmed only in the case of latitudinal range position, as we revealed higher threat level for tropical than for temperate species. This relationship was robust to different methods of threat level expression and cannot be explained by a simple association of high bird species richness with the tropical zone. Instead, it seems that tropical species are more threatened because of their intrinsic characteristics such as slow life histories, adaptations to stable environments and small geographic ranges. These characteristics are obviously disadvantageous in conditions of current human-induced environmental perturbations. Moreover, given the absence of habitat effects, our study indicates that such

  2. Significance of Mangroves in the Arid Environment of the Sultanate of Oman

    Directory of Open Access Journals (Sweden)

    M.M. Fouda

    1996-01-01

    Full Text Available Little is known of the ecological role of the only species of mangrove, Avicemnia marina, in Oman. This study provides information on the physical habitat of three mangrove areas( Qurm, Mahout and Shinas in relation to the main features of each area ( i.e. community structure, soil and water analysis and biota. The climate of three mangrove areas and surrounding regions is hot and arid; all have very low rainfall (less than 100mm yr, high air temperature (mean 27”C, relative humidity (57.8% at Qurm and 72% at Mahout and Shinas , solar radiation ( more than 500 MVH cm2 and evaporation rates (more than 3000 mm yr2. Mangrove trees folowered during January-March, fruits matured during April- May, seedlings fell in June , seeds germinated in July-August and leaves were produced in September. Difference among sites included areal  extent ( 162 ha in Mabout, 74 ha in Quran and 53 ha in Shinas and high variability in mangrove structure within and between sites . The most obvious differences between sites related to tree height diameter , density and basal area. The increase in tree diameter was associated with increase in tree height and basal area, but an impressive relationship existed between tree diameter and density. Significant differences in soil texture and chemical analysis were found  within and between the three mangrove sites. Soil texture wasdominated by sand; however, site( highest at Qurm,, 32% and clay ( highest at Mahout , 10.1% were present in considerable amounts. Soils of Mhout had the highest organic matter (10.2% – totall nitrogeon ( 0.2% , available phosphorus ( 56.2ppm and sulphate ( 17.1 meq 100g contents compared to those from Qurm and Shinas. Water temperature ranged 22-38C and salinity showed small variations at Mahout ( 37-40 and Shinas ( 37-40 but at Qurm, salinity showed remarkable variation from fresh and brackish water (10 to hypersaline  water ( more than 100. Dissolved oxygen averaged 8.1( 4.8-12.7 mg and PH was

  3. Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment II.

    Science.gov (United States)

    Liu, Meng; Wang, Ke

    2010-12-07

    This is a continuation of our paper [Liu, M., Wang, K., 2010. Persistence and extinction of a stochastic single-species model under regime switching in a polluted environment, J. Theor. Biol. 264, 934-944]. Taking both white noise and colored noise into account, a stochastic single-species model under regime switching in a polluted environment is studied. Sufficient conditions for extinction, stochastic nonpersistence in the mean, stochastic weak persistence and stochastic permanence are established. The threshold between stochastic weak persistence and extinction is obtained. The results show that a different type of noise has a different effect on the survival results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing.

    Science.gov (United States)

    Zhang, Yanying; Yang, Qingsong; Ling, Juan; Van Nostrand, Joy D; Shi, Zhou; Zhou, Jizhong; Dong, Junde

    2017-01-01

    Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata , Avicennia marina , and Ceriops tagal , was undertaken using high - throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem.

  5. Diversity and Structure of Diazotrophic Communities in Mangrove Rhizosphere, Revealed by High-Throughput Sequencing

    Directory of Open Access Journals (Sweden)

    Yanying Zhang

    2017-10-01

    Full Text Available Diazotrophic communities make an essential contribution to the productivity through providing new nitrogen. However, knowledge of the roles that both mangrove tree species and geochemical parameters play in shaping mangove rhizosphere diazotrophic communities is still elusive. Here, a comprehensive examination of the diversity and structure of microbial communities in the rhizospheres of three mangrove species, Rhizophora apiculata, Avicennia marina, and Ceriops tagal, was undertaken using high-throughput sequencing of the 16S rRNA and nifH genes. Our results revealed a great diversity of both the total microbial composition and the diazotrophic composition specifically in the mangrove rhizosphere. Deltaproteobacteria and Gammaproteobacteria were both ubiquitous and dominant, comprising an average of 45.87 and 86.66% of total microbial and diazotrophic communities, respectively. Sulfate-reducing bacteria belonging to the Desulfobacteraceae and Desulfovibrionaceae were the dominant diazotrophs. Community statistical analyses suggested that both mangrove tree species and additional environmental variables played important roles in shaping total microbial and potential diazotroph communities in mangrove rhizospheres. In contrast to the total microbial community investigated by analysis of 16S rRNA gene sequences, most of the dominant diazotrophic groups identified by nifH gene sequences were significantly different among mangrove species. The dominant diazotrophs of the family Desulfobacteraceae were positively correlated with total phosphorus, but negatively correlated with the nitrogen to phosphorus ratio. The Pseudomonadaceae were positively correlated with the concentration of available potassium, suggesting that diazotrophs potentially play an important role in biogeochemical cycles, such as those of nitrogen, phosphorus, sulfur, and potassium, in the mangrove ecosystem.

  6. The Relative Impact of Climate Change on the Extinction Risk of Tree Species in the Montane Tropical Andes.

    Science.gov (United States)

    Tejedor Garavito, Natalia; Newton, Adrian C; Golicher, Duncan; Oldfield, Sara

    2015-01-01

    There are widespread concerns that anthropogenic climate change will become a major cause of global biodiversity loss. However, the potential impact of climate change on the extinction risk of species remains poorly understood, particularly in comparison to other current threats. The objective of this research was to examine the relative impact of climate change on extinction risk of upper montane tree species in the tropical Andes, an area of high biodiversity value that is particularly vulnerable to climate change impacts. The extinction risk of 129 tree species endemic to the region was evaluated according to the IUCN Red List criteria, both with and without the potential impacts of climate change. Evaluations were supported by development of species distribution models, using three methods (generalized additive models, recursive partitioning, and support vector machines), all of which produced similarly high AUC values when averaged across all species evaluated (0.82, 0.86, and 0.88, respectively). Inclusion of climate change increased the risk of extinction of 18-20% of the tree species evaluated, depending on the climate scenario. The relative impact of climate change was further illustrated by calculating the Red List Index, an indicator that shows changes in the overall extinction risk of sets of species over time. A 15% decline in the Red List Index was obtained when climate change was included in this evaluation. While these results suggest that climate change represents a significant threat to tree species in the tropical Andes, they contradict previous suggestions that climate change will become the most important cause of biodiversity loss in coming decades. Conservation strategies should therefore focus on addressing the multiple threatening processes currently affecting biodiversity, rather than focusing primarily on potential climate change impacts.

  7. Mangrove state

    International Nuclear Information System (INIS)

    Casas Monroy, Oscar; Perdomo Trujillo, Laura

    2002-01-01

    The authors do a diagnostic of the mangroves in Colombia, on the natural regeneration of the mangrove forest, the quality of the waters in the Bay of Chengue and on the structure of the mangrove forest, among other topics

  8. Chemical characterization of terrestrial gastropods of Brazilian mangroves by EDXRF

    International Nuclear Information System (INIS)

    Mélo, Julyanne T.B.; Pereira Neto, Alberto; França, Elvis J. de; Silva, Bruno F.; Melo, Ana M.M.A.

    2017-01-01

    In environmental studies, the application of multielement analytical techniques such as X-ray Fluorescence by Energy Dispersion - EDXRF is interesting due to the rapidity in the analysis and preservation of the sample. In the work, Fe, Mg, Mn, P, Sr and Zn were quantified in gastropods of the species Littoraria anguliferae Melampus coffea of mangroves located in tourist regions of Itamaracá, Pernambuco, and Barra de Guaratiba, Rio de Janeiro, Brazil. The samples were analyzed by EDXRF at a pressure lower than 30 Pa, detection time of 840 seconds in a Shimadzu EDX-720 model spectrometer. To guarantee the quality of the analytical procedure, reference materials SRM 2976 - Musseltissue and SRM 1547 - Peachleaves were analyzed. In both locations, the mass fractions of Mg and P were similar for L. anguliferae. For Zn, the average mass fraction of more than 3,000 mg kg -1 of the Barra de Guaratiba animals was considerably higher than that obtained in the Itamaracá mangrove. The M. coffea species also presented a considerably higher accumulation of Zn (approximately 4500 mg kg -1 ) when compared to the mass fraction obtained in the Pernambuco mangrove. For Sr, there was a higher concentration in the Itamaracá mangrove (400mg kg -1 for L. anguliferae 180 mg kg -1 for M. coffea) compared to that obtained in Barra de Guaratiba. The analytical technique of EDXRF was successfully employed for the evaluation of both molluscan species as biomonitoring of the environmental quality of mangroves

  9. Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change.

    Science.gov (United States)

    Crase, Beth; Vesk, Peter A; Liedloff, Adam; Wintle, Brendan A

    2015-08-01

    Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied ), the instability of suitable area (Einstability ) and the overlap between the current and future spatial distribution (Eoverlap ). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and

  10. Dynamic control of osmolality and ionic composition of the xylem sap in two mangrove species.

    Science.gov (United States)

    López-Portillo, Jorge; Ewers, Frank W; Méndez-Alonzo, Rodrigo; Paredes López, Claudia L; Angeles, Guillermo; Alarcón Jiménez, Ana Luisa; Lara-Domínguez, Ana Laura; Torres Barrera, María Del Carmen

    2014-06-01

    • Premise of the study: Xylem sap osmolality and salinity is a critical unresolved issue in plant function with impacts on transport efficiency, pressure gradients, and living cell turgor pressure, especially for halophytes such as mangrove trees.• Methods: We collected successive xylem vessel sap samples from stems and shoots of Avicennia germinans and Laguncularia racemosa using vacuum and pressure extraction and measured their osmolality. Following a series of extractions with the pressure chamber, we depressurized the shoot and pressurized again after various equilibration periods (minutes to hours) to test for dynamic control of osmolality. Transpiration and final sap osmolality were measured in shoots perfused with deionized water or different seawater dilutions.• Key results: For both species, the sap osmolality values of consecutive samples collected by vacuum extraction were stable and matched those of the initial samples extracted with the pressure chamber. Further extraction of samples with the pressure chamber decreased sap osmolality, suggesting reverse osmosis occurred. However, sap osmolalities increased when longer equilibration periods after sap extraction were allowed. Analysis of expressed sap with HPLC indicated a 1:1 relation between measured osmolality and the osmolality of the inorganic ions in the sap (mainly Na + , K + , and Cl - ), suggesting no contamination by organic compounds. In stems perfused with deionized water, the sap osmolality increased to mimic the native sap osmolality.• Conclusions: Xylem sap osmolality and ionic contents are dynamically adjusted by mangroves and may help modulate turgor pressure, hydraulic conductivity, and water potential, thus being important for mangrove physiology, survival, and distribution. © 2014 Botanical Society of America, Inc.

  11. Transcriptome analysis of the Holly mangrove Acanthus ilicifolius and its terrestrial relative, Acanthus leucostachyus, provides insights into adaptation to intertidal zones.

    Science.gov (United States)

    Yang, Yuchen; Yang, Shuhuan; Li, Jianfang; Deng, Yunfei; Zhang, Zhang; Xu, Shaohua; Guo, Wuxia; Zhong, Cairong; Zhou, Renchao; Shi, Suhua

    2015-08-14

    Acanthus is a unique genus consisting of both true mangrove and terrestrial species; thus, it represents an ideal system for studying the origin and adaptive evolution of mangrove plants to intertidal environments. However, little is known regarding the two respects of mangrove species in Acanthus. In this study, we sequenced the transcriptomes of the pooled roots and leaves tissues for a mangrove species, Acanthus ilicifolius, and its terrestrial congener, A. leucostachyus, to illustrate the origin of the mangrove species in this genus and their adaptive evolution to harsh habitats. We obtained 73,039 and 69,580 contigs with N50 values of 741 and 1557 bp for A. ilicifolius and A. leucostachyus, respectively. Phylogenetic analyses based on four nuclear segments and three chloroplast fragments revealed that mangroves and terrestrial species in Acanthus fell into different clades, indicating a single origin of the mangrove species in Acanthus. Based on 6634 orthologs, A. ilicifolius and A. leucostachyus were found to be highly divergent, with a peak of synonymous substitution rate (Ks) distribution of 0.145 and an estimated divergence time of approximately 16.8 million years ago (MYA). The transgression in the Early to Middle Miocene may be the major reason for the entry of the mangrove lineage of Acanthus into intertidal environments. Gene ontology (GO) classifications of the full transcriptomes did not show any apparent differences between A. ilicifolius and A. leucostachyus, suggesting the absence of gene components specific to the mangrove transcriptomes. A total of 99 genes in A. ilicifolius were identified with signals of positive selection. Twenty-three of the 99 positively selected genes (PSGs) were found to be involved in salt, heat and ultraviolet stress tolerance, seed germination and embryo development under periodic inundation. These stress-tolerance related PSGs may be crucial for the adaptation of the mangrove species in this genus to stressful marine

  12. Mangrove exploitation effects on biodiversity and ecosystem services

    DEFF Research Database (Denmark)

    Malik, Abdul; Fensholt, Rasmus; Mertz, Ole

    2015-01-01

    species. Rhizophora sp. was the most widely used as it was deemed the most suitable for firewood and charcoal. In addition, it is the main species planted in mangrove restoration projects, which have focused on establishing production forest rather than restoring natural species composition and structure...

  13. Assessing the Fauna Diversity of Marudu Bay Mangrove Forest, Sabah, Malaysia, for Future Conservation

    Directory of Open Access Journals (Sweden)

    Mohamed Zakaria

    2015-04-01

    Full Text Available Mangrove is an evergreen, salt tolerant plant community, which grows in inter-tidal coastal zones of tropical and subtropical regions of the world. They are ecologically important for many fauna species and are rich in food resources and consist of many different vegetation structures. They serve as ideal foraging and nursery grounds for a wide array of species such as birds, mammals, reptiles, fishes and aquatic invertebrates. In spite of their crucial role, around 50% of mangrove habitats have been lost and degraded in the past two decades. The fauna diversity of mangrove habitat at Marudu Bay, Sabah, East Malaysia was examined using various methods: i.e. aquatic invertebrates by swap nets, fish by angling rods and cast nets, reptiles, birds, and mammals through direct sighting. The result showed that Marudu Bay mangrove habitats harbored a diversity of fauna species including 22 aquatic invertebrate species (encompassing 11 crustacean species, six mollusk species and four worm species, 36 fish species, 74 bird species, four reptile species, and four mammal species. The wide array of fauna species could be due to the availability of complex vegetation structures, sheltered beaches and tidal mudflats, which are rich in food resources and also offer safe foraging and breeding grounds for them. These heterogeneous habitats must be protected in a sustainable way in order to ensure the continued presence of aquatic and terrestrial fauna species for future generations.

  14. The mangrove as a temporary habitat for fish: the Eucinostomus Species at Guaratuba Bay, Brazil (25º 52'S;48º 39'W

    Directory of Open Access Journals (Sweden)

    Paulo de Tarso C. Chaves

    1999-01-01

    Full Text Available Several coastal fish use the estuarine habitat during a part of their life cycle. These sites are considered good for the reproductive activity, as well as for the growth of larvae and juveniles. Concerning the Gerreidae, however, many studies reveal that most species leave the estuaries to reproduce at sea. At Guaratuba Bay, southern Brazil, this family is represented by three genera and five species, which make an important fraction of the local assemblage. The present study investigated the populational structure and breeding habits of three Eucinostomus species, in order to know what relationship exists between them and the mangrove. It was found that the Guaratuba mangrove represents a transitory habitat for the life cycle of the Eucinostomus species. The sub-adults grow in the mangrove throughout the year and leave this milieu in spring or summer, when they complete the gonadal maturation and presumably spawn. E. argenteus and E. gula do not return to the mangrove after spawning. The three species feed mainly on polychaetes, but differences occur with respect to the secondary components of the diet.No manguezal da Baía de Guaratuba, litoral sul do Brasil, os Gerreidae são representados por 3 gêneros e 5 espécies, compondo uma parcela numericamente importante da ictiofauna local. Este trabalho descreve a estrutura populacional e os hábitos reprodutivos de Eucinostomus argenteus, E. gula e E. melanopterus, reconhecendo as relações que mantêm com o manguezal. Os resultados indicam que o manguezal representa para elas um habitat transitório. Os subadultos crescem na área ao longo do ano, deixando-na na primavera ou no verão, quando completam a maturação e desovam, no mar ou em outra região da Baía. E. argenteus e E. gula não retornam ao manguezal após a desova, mas E. melanopterus provavelmente sim. As três espécies alimentam-se sobretudo de poliquetos, apresentando diferenças nos itens secundários da dieta.

  15. Is Climate Change Shifting the Poleward Limit of Mangroves?

    KAUST Repository

    Hickey, Sharyn M.

    2017-02-01

    Ecological (poleward) regime shifts are a predicted response to climate change and have been well documented in terrestrial and more recently ocean species. Coastal zones are amongst the most susceptible ecosystems to the impacts of climate change, yet studies particularly focused on mangroves are lacking. Recent studies have highlighted the critical ecosystem services mangroves provide, yet there is a lack of data on temporal global population response. This study tests the notion that mangroves are migrating poleward at their biogeographical limits across the globe in line with climate change. A coupled systematic approach utilising literature and land surface and air temperature data was used to determine and validate the global poleward extent of the mangrove population. Our findings indicate that whilst temperature (land and air) have both increased across the analysed time periods, the data we located showed that mangroves were not consistently extending their latitudinal range across the globe. Mangroves, unlike other marine and terrestrial taxa, do not appear to be experiencing a poleward range expansion despite warming occurring at the present distributional limits. Understanding failure for mangroves to realise the global expansion facilitated by climate warming may require a focus on local constraints, including local anthropogenic pressures and impacts, oceanographic, hydrological, and topographical conditions.

  16. STRUKTUR DAN KOMPOSISI JENIS HUTAN MANGROVE DI GOLO SEPANG – KECAMATAN BOLENG KABUPATEN MANGGARAI BARAT

    Directory of Open Access Journals (Sweden)

    M. Hidayatullah

    2014-09-01

    Full Text Available This study aimed to determine mangrove forest structure and composition in Golo Sepang Village, Manggarai Barat District. Important value index and diversity index value obtained from mangrove vegetation analysis were used as indicators for determining mangrove forest structure and diversity. Transect method with square frame along the line was applied in vegetation analysis. Totally 10 lines and 30 plots were applied for getting types of mangrove, growth parametersvalue (height and diameter and others related information. This study found that the stucture of mangrove consist of 5 familyes with 10 species, namely: Rhizophoraceae (Ceriops tagal (Perr, Rhizophora apiculata (Bi, R. mucronata Lmk., Bruguiera parviflora (Roxb., B. sexangula (Lour dan B. gymnorrizha (L. Lamk., Fabaceae (Derris trifoliata Lour, Meliaceae (Xylocarpus granatum Koen, Pteridaceae (Acrosthicum aereum Linn and Lythraceae (Phempis acidula Forst. R. apiculata (Bi is the most dominant species founded in 7 of 10 total sites. Two sites, Sotri and Muara Kiri, have the highest important value index (300% for R. Apiculata species. The highest individual density is found at Sotri site, with value 1.300 tree/hectare, while the lowest density, 100 trees/hectare is found at Muara Kanan site. In diversity of mangrove, all sites were categorized as low with highest diversity index value 1,06.Keywords: Mangrove forest, structure and composition, Golo Sepang

  17. Persistence and extinction of a stochastic single-specie model under regime switching in a polluted environment.

    Science.gov (United States)

    Liu, Meng; Wang, Ke

    2010-06-07

    A new single-species model disturbed by both white noise and colored noise in a polluted environment is developed and analyzed. Sufficient criteria for extinction, stochastic nonpersistence in the mean, stochastic weak persistence in the mean, stochastic strong persistence in the mean and stochastic permanence of the species are established. The threshold between stochastic weak persistence in the mean and extinction is obtained. The results show that both white and colored environmental noises have sufficient effect to the survival results. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Mangrove vegetation in Amazonia: a review of studies from the coast of Pará and Maranhão States, north Brazil

    OpenAIRE

    Menezes,Moirah Paula Machado de; Berger,Uta; Mehlig,Ulf

    2008-01-01

    The present study is a compilation of the literature about vegetation of mangrove forest of the north coast of Brazil. It synthesizes the knowledge about this important ecosystem and lists the currently available literature. The study focuses on the coast of Pará and Maranhão states, which are covered by a continuous belt of mangroves. The mangrove flora comprises six mangrove tree species and several associated species. Mangrove tree height and stem diameter vary as a function of abiotic loc...

  19. LESSON LEARNED FROM MANGROVE REHABILITATION PROGRAM IN INDONESIA

    Directory of Open Access Journals (Sweden)

    Cecep Kusmana

    2017-07-01

    Full Text Available Indonesia as an archipelagic country more than 17,504 islands with the length of coastline estimated at 95,181 km bears mangroves from several meters to several kilometers. They grow extensively in the five big islands (Jawa, Sumatra, Kalimantan, Sulawesi, Papua. At the year of 2009, Agency of Survey Coordination and National Mapping (Bakosurtanal of Indonesia reported the existing mangrove forest area in Indonesia of about 3,244,018 ha, however Directorate General of Land Rehabilitation and Social Forestry, Ministry of Forestry (Ditjen RLPS MoF of Indonesia at 2007 reported about 7,758,411 ha of mangrove area in Indonesia (including existing vegetated mangrove area. It was further reported that those mangroves were 30.7% in good condition, 27.4% moderate-destroyed, and 41.9% heavy-destroyed. In order to rehabilitate destroyed mangrove ecosystems, Indonesia applies at least three type of planting designs (square planting design, zig zag planting design, and cluster planting design and eight planting techniques (“banjar harian” technique, bamboo pole technique, guludan technique, water break technique, huge polybag technique, ditch muddy technique, huge mole technique, cluster technique. Generally, in Indonesia Rhizophora spp. are used for mangrove rehabilitation and/or restoration with the spacing of 1x1 m spending varied planting cost based on the site local condition and planting technique used. The mangrove planting ranged from about Rp. 14.2 million using propagules to Rp. 18.5 million using cultured seedlings. Recently, local community used to utilizing associated mangrove aquatic fauna for supporting their daily life as well as utilizing mangrove habitat for multipurpose uses through agroforestry techniques (silvofishery, agrosilvofishery, agrosilvopastoralfishery systems. So that, the good mangrove ecosystem serves luxurious both flora and fauna species (biodiversity as well as their abundance for significantly

  20. Trophic redundancy reduces vulnerability to extinction cascades.

    Science.gov (United States)

    Sanders, Dirk; Thébault, Elisa; Kehoe, Rachel; Frank van Veen, F J

    2018-03-06

    Current species extinction rates are at unprecedentedly high levels. While human activities can be the direct cause of some extinctions, it is becoming increasingly clear that species extinctions themselves can be the cause of further extinctions, since species affect each other through the network of ecological interactions among them. There is concern that the simplification of ecosystems, due to the loss of species and ecological interactions, increases their vulnerability to such secondary extinctions. It is predicted that more complex food webs will be less vulnerable to secondary extinctions due to greater trophic redundancy that can buffer against the effects of species loss. Here, we demonstrate in a field experiment with replicated plant-insect communities, that the probability of secondary extinctions is indeed smaller in food webs that include trophic redundancy. Harvesting one species of parasitoid wasp led to secondary extinctions of other, indirectly linked, species at the same trophic level. This effect was markedly stronger in simple communities than for the same species within a more complex food web. We show that this is due to functional redundancy in the more complex food webs and confirm this mechanism with a food web simulation model by highlighting the importance of the presence and strength of trophic links providing redundancy to those links that were lost. Our results demonstrate that biodiversity loss, leading to a reduction in redundant interactions, can increase the vulnerability of ecosystems to secondary extinctions, which, when they occur, can then lead to further simplification and run-away extinction cascades. Copyright © 2018 the Author(s). Published by PNAS.

  1. Modelling drivers of mangrove propagule dispersal and restoration of abandoned shrimp farms

    Directory of Open Access Journals (Sweden)

    D. Di Nitto

    2013-07-01

    Full Text Available Propagule dispersal of four mangrove species Rhizophora mucronata, R. apiculata, Ceriops tagal and Avicennia officinalis in the Pambala–Chilaw Lagoon Complex (Sri Lanka was studied by combining a hydrodynamic model with species-specific knowledge on propagule dispersal behaviour. Propagule transport was simulated using a finite-volume advection-diffusion model to investigate the effect of dispersal vectors (tidal flow, freshwater discharge and wind, trapping agents (retention by vegetation and seed characteristics (buoyancy on propagule dispersal patterns. Sensitivity analysis showed that smaller propagules, like the oval-shaped propagules of Avicennia officinalis, dispersed over larger distances and were most sensitive to changing values of retention by mangrove vegetation compared to larger, torpedo-shaped propagules of Rhizophora spp. and C. tagal. Directional propagule dispersal in this semi-enclosed lagoon with a small tidal range was strongly concentrated towards the edges of the lagoon and channels. Short distance dispersal appeared to be the main dispersal strategy for all four studied species, with most of the propagules being retained within the vegetation. Only a small proportion (max. 5% of propagules left the lagoon through a channel connecting the lagoon with the open sea. Wind significantly influenced dispersal distance and direction once propagules entered the lagoon or adjacent channels. Implications of these findings for mangrove restoration were tested by simulating partial removal in the model of dikes around abandoned shrimp ponds to restore tidal hydrology and facilitate natural recolonisation by mangroves. The specific location of dike removal, (with respect to the vicinity of mangroves and independently suitable hydrodynamic flows, was found to significantly affect the resultant quantities and species of inflowing propagules and hence the potential effectiveness of natural regeneration. These results demonstrate the

  2. Climate change, elevational range shifts, and bird extinctions.

    Science.gov (United States)

    Sekercioglu, Cagan H; Schneider, Stephen H; Fay, John P; Loarie, Scott R

    2008-02-01

    Limitations imposed on species ranges by the climatic, ecological, and physiological effects of elevation are important determinants of extinction risk. We modeled the effects of elevational limits on the extinction risk of landbirds, 87% of all bird species. Elevational limitation of range size explained 97% of the variation in the probability of being in a World Conservation Union category of extinction risk. Our model that combined elevational ranges, four Millennium Assessment habitat-loss scenarios, and an intermediate estimate of surface warming of 2.8 degrees C, projected a best guess of 400-550 landbird extinctions, and that approximately 2150 additional species would be at risk of extinction by 2100. For Western Hemisphere landbirds, intermediate extinction estimates based on climate-induced changes in actual distributions ranged from 1.3% (1.1 degrees C warming) to 30.0% (6.4 degrees C warming) of these species. Worldwide, every degree of warming projected a nonlinear increase in bird extinctions of about 100-500 species. Only 21% of the species predicted to become extinct in our scenarios are currently considered threatened with extinction. Different habitat-loss and surface-warming scenarios predicted substantially different futures for landbird species. To improve the precision of climate-induced extinction estimates, there is an urgent need for high-resolution measurements of shifts in the elevational ranges of species. Given the accelerating influence of climate change on species distributions and conservation, using elevational limits in a tested, standardized, and robust manner can improve conservation assessments of terrestrial species and will help identify species that are most vulnerable to global climate change. Our climate-induced extinction estimates are broadly similar to those of bird species at risk from other factors, but these estimates largely involve different sets of species.

  3. Nutrient controls on biocomplexity of mangrove ecosystems

    Science.gov (United States)

    McKee, Karen L.

    2004-01-01

    Mangrove forests are important coastal ecosystems that provide a variety of ecological and societal services. These intertidal, tree-dominated communities along tropical coastlines are often described as “simple systems,” compared to other tropical forests with larger numbers of plant species and multiple understory strata; however, mangrove ecosystems have complex trophic structures, and organisms exhibit unique physiological, morphological, and behavioral adaptations to environmental conditions characteristic of the land-sea interface. Biogeochemical functioning of mangrove forests is also controlled by interactions among the microbial, plant, and animal communities and feedback linkages mediated by hydrology and other forcing functions. Scientists with the U.S. Geological Survey (USGS) at the National Wetlands Research Center are working to understand more fully the impact of nutrient variability on these delicate and important ecosystems.

  4. KERUSAKAN EKOSISTEM MANGROVE AKIBAT KONVERSI LAHAN DI KAMPUNG TOBATI DAN KAMPUNG NAFRI, JAYAPURA

    Directory of Open Access Journals (Sweden)

    Meivy Arizona

    2016-10-01

    menunjukkan bahwa pembentukan mangrove masih dalam kondisi baik.    ABSTRACT The research area are Tobati and Nafri villages in Jayapura-Papua. The aim of this research is 1 to study the kinds of mangrove that had been changed by human activities, 2 to study the condition of water and soil in the area which had been changed by land conversion, 3 to know the society responses about the mangrove ecosystems damaged and their contributes in mangrove ecosystems management.The methods used are transect line quadrate plots across the mangrove zones and distribution area with three times repeating. The quadrate plot sizes were 10m x 20m for trees, 1m x 1m for herbs, seedling and grasses. The parameter measures were densities, frequencies, basal areas and important values of mangrove. The physic parameter measures were water that included temperature pH, salinity, and soil qualities such as organic matters, Savailable Pavailable, Caavailable, Mgavailable, Naavailable,  Ntotal, pH, temperature and the soil textures. The analysis of the physic parameter was using variant analysis. Social parameter that been measured were numbers of population, occupation, education, and knowledge about mangrove ecosystems. The methods that used for identifying the culture of the society of Tobati villagers were survied and interviewed with 50 respondents. The respondents have been separated in 2 groups of 40 repondents that were taken from Tobati village and the rest of it were taken from Nafri village.The results showed that mere are seven species of mangrove (Rhizophora mucronata, Rhizophora apiculata, Rhizophora sfylosa, Csriops tagal, Snnneratia alba, Xylocarpus mollucensis and Scyphiphora hydrophyllacea in Tobati village. Species mangrove that showed in Nafri village were nine species, seven species which similar with Tobati except for Bruguiera gymnorrhiza and Aegiceras comiculatum were not showed in Tobati village. The existence of mangrove vegetation that been changed by land conversion in

  5. Remote Sensing of Mangrove Ecosystems: A Review

    Directory of Open Access Journals (Sweden)

    Stefan Dech

    2011-04-01

    Full Text Available Mangrove ecosystems dominate the coastal wetlands of tropical and subtropical regions throughout the world. They provide various ecological and economical ecosystem services contributing to coastal erosion protection, water filtration, provision of areas for fish and shrimp breeding, provision of building material and medicinal ingredients, and the attraction of tourists, amongst many other factors. At the same time, mangroves belong to the most threatened and vulnerable ecosystems worldwide and experienced a dramatic decline during the last half century. International programs, such as the Ramsar Convention on Wetlands or the Kyoto Protocol, underscore the importance of immediate protection measures and conservation activities to prevent the further loss of mangroves. In this context, remote sensing is the tool of choice to provide spatio-temporal information on mangrove ecosystem distribution, species differentiation, health status, and ongoing changes of mangrove populations. Such studies can be based on various sensors, ranging from aerial photography to high- and medium-resolution optical imagery and from hyperspectral data to active microwave (SAR data. Remote-sensing techniques have demonstrated a high potential to detect, identify, map, and monitor mangrove conditions and changes during the last two decades, which is reflected by the large number of scientific papers published on this topic. To our knowledge, a recent review paper on the remote sensing of mangroves does not exist, although mangrove ecosystems have become the focus of attention in the context of current climate change and discussions of the services provided by these ecosystems. Also, climate change-related remote-sensing studies in coastal zones have increased drastically in recent years. The aim of this review paper is to provide a comprehensive overview and sound summary of all of the work undertaken, addressing the variety of remotely sensed data applied for mangrove

  6. Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth

    OpenAIRE

    Castro, Renata Assis; Dourado, Manuella Nóbrega; Almeida, Jaqueline Raquel de; Lacava, Paulo Teixeira; Nave, André; Melo, Itamar Soares de; Azevedo, João Lucio de; Quecine, Maria Carolina

    2018-01-01

    ABSTRACT Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000 km2 along all the coast). Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for th...

  7. Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth

    OpenAIRE

    Castro, Renata Assis; Dourado, Manuella Nóbrega; Almeida, Jaqueline Raquel de; Lacava, Paulo Teixeira; Nave, André; Melo, Itamar Soares de; Azevedo, João Lucio de; Quecine, Maria Carolina

    2017-01-01

    Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000 km2 along all the coast). Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for their abili...

  8. Drawbacks of mangrove rehabilitation schemes: Lessons learned from the large-scale mangrove plantations

    Science.gov (United States)

    Barnuevo, Abner; Asaeda, Takashi; Sanjaya, Kelum; Kanesaka, Yoshikazu; Fortes, Miguel

    2017-11-01

    Mangrove rehabilitation programs received much attention in the past decades as a response to widespread global degradation. While the documented successes and failures of mangrove rehabilitation accomplishments were varied, the objective and scheme is common, mainly focused on planting and creating monospecific plantations. This study assessed the structural development and complexity of the large-scale plantations in the central part of Philippines and compared it with the adjacent natural stand as reference. Our study showed that planted forest in both sites had lower structural complexity than the reference natural forest. Between sites, secondary succession in the monospecific plantation in Banacon Island was inhibited as reflected by low regeneration potential, whereas recruitment and colonization of non-planted species was promoted in Olango Island. Even 60 years after the forest was created in Banacon Island, it still lacked the understory of young cohorts which together comprise the regeneration potential that can supposedly add to the structural complexity. Although a potential seed source from adjacent natural forest is available, recruitment and colonization of non-planted species did not progress. MDS analysis of tree density data showed clustering of planted forest from the natural stand. The average SIMPER dissimilarity was 79.9% and the species with highest contributions were R. stylosa (74.6%), S. alba (11.1%) and A. marina (10.6%). Within the natural forest, the same species had the highest dissimilarity contribution, whereas in the planted forest, only R. stylosa contributed the highest dissimilarity. The same trend was also revealed in the MDS ordination analysis of diameter at breast height (DBH). A one-way ANOSIM permutation test of the density and DBH showed a significant difference between the planted and natural forests. Thus, as part of silviculture management intervention, the current practices of mangrove reforestation needs to be

  9. Above Ground Carbon Stock Estimates of Mangrove Forest Using Worldview-2 Imagery in Teluk Benoa, Bali

    Science.gov (United States)

    Candra, E. D.; Hartono; Wicaksono, P.

    2016-11-01

    Mangrove forests have a role as an absorbent and a carbon sink to a reduction CO2 in the atmosphere. Based on the previous studies found that mangrove forests have the ability to sequestering carbon through photosynthesis and carbon burial of sediment effectively. The value and distribution of carbon stock are important to understand through remote sensing technology. In this study, will estimate the carbon stock using WorldView-2 imagery with and without distinction mangrove species. Worldview-2 is a high resolution image with 2 meters spatial resolution and eight spectral bands. Worldview-2 potential to estimate carbon stock in detail. Vegetation indices such as DVI (Difference Vegetation Index), EVI (Enhanced Vegetation Index), and MRE-SR (Modified Red Edge-Simple Ratio) and field data were modeled to determine the best vegetation indices to estimate carbon stocks. Carbon stock estimated by allometric equation approach specific to each species of mangrove. Worldview-2 imagery to map mangrove species with an accuracy of 80.95%. Total carbon stock estimation results in the study area of 35.349,87 tons of dominant species Rhizophora apiculata, Rhizophora mucronata and Sonneratia alba.

  10. High frequency of functional extinctions in ecological networks.

    Science.gov (United States)

    Säterberg, Torbjörn; Sellman, Stefan; Ebenman, Bo

    2013-07-25

    Intensified exploitation of natural populations and habitats has led to increased mortality rates and decreased abundances of many species. There is a growing concern that this might cause critical abundance thresholds of species to be crossed, with extinction cascades and state shifts in ecosystems as a consequence. When increased mortality rate and decreased abundance of a given species lead to extinction of other species, this species can be characterized as functionally extinct even though it still exists. Although such functional extinctions have been observed in some ecosystems, their frequency is largely unknown. Here we use a new modelling approach to explore the frequency and pattern of functional extinctions in ecological networks. Specifically, we analytically derive critical abundance thresholds of species by increasing their mortality rates until an extinction occurs in the network. Applying this approach on natural and theoretical food webs, we show that the species most likely to go extinct first is not the one whose mortality rate is increased but instead another species. Indeed, up to 80% of all first extinctions are of another species, suggesting that a species' ecological functionality is often lost before its own existence is threatened. Furthermore, we find that large-bodied species at the top of the food chains can only be exposed to small increases in mortality rate and small decreases in abundance before going functionally extinct compared to small-bodied species lower in the food chains. These results illustrate the potential importance of functional extinctions in ecological networks and lend strong support to arguments advocating a more community-oriented approach in conservation biology, with target levels for populations based on ecological functionality rather than on mere persistence.

  11. Functional traits of selected mangrove species in Brazil as biological indicators of different environmental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Arrivabene, Hiulana Pereira [Universidade Federal do Espírito Santo, Centro de Ciências Humanas e Naturais, Departamento de Ciências Biológicas, 29075-910 Vitória, Espírito Santo (Brazil); Souza, Iara [Universidade Federal de São Carlos, Centro de Ciências Biológicas e da Saúde, Departamento de Ciências Fisiológicas, 13565-905 São Carlos (Brazil); Có, Walter Luiz Oliveira [Associação Educational de Vitória, Departamento de Biologia, 29053-360 Vitória (Brazil); Rodella, Roberto Antônio [Universidade Estadual Paulista Júlio de Mesquita Filho, Campus de Botucatu, Instituto de Biociências, Departamento de Botânica, C. Postal 510, 18618-000 Botucatu, São Paulo (Brazil); Wunderlin, Daniel Alberto, E-mail: dwunder@fcq.unc.edu.ar [Instituto de Ciencia y Tecnología de Alimentos Córdoba (ICYTAC), CONICET, Dpto. Qca. Orgánica, Fac. Cs. Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba (Argentina); and others

    2014-04-01

    Ecological studies on phenotypic plasticity illustrate the relevance of this phenomenon in nature. Conditions of biota reflect environmental changes, highlighting the adaptability of resident species that can be used as bioindicators of such changes. We report the morpho-anatomical plasticity of leaves of Avicennia schaueriana Stapf and Leechm. ex Moldenke, Laguncularia racemosa (L.) C.F.Gaertn. and Rhizophora mangle L., evaluated in three estuaries (Vitória bay, Santa Cruz and Itaúnas River; state of Espírito Santo, Brazil), considering five areas of mangrove ecosystems with diverse environmental issues. Two sampling sites are part of the Ecological Station Lameirão Island in Vitória bay, close to a harbor. A third sampling site in Cariacica (Vitória bay) is inside the Vitória harbor and also is influenced by domestic sewage. The fourth studied area (Santa Cruz) is part of Piraquê Mangrove Ecological Reservation, while the fifth (Itaúnas River) is a small mangrove, with sandy sediment and greater photosynthetically active radiation, also not strongly influenced by anthropic activity. Results pointed out the morpho-anatomical plasticity in studied species, showing that A. schaueriana and L. racemosa might be considered the most appropriate bioindicators to indicate different settings and environmental conditions. Particularly, the dry mass per leaf area (LMA) of A. schaueriana was the main biomarker measured. In our study, LMA of A. schaueriana was positively correlated with salinity (Spearman 0.71), Mn content (0.81) and pH (0.82) but negatively correlated with phosphorus content (− 0.63). Thus, the evaluation of modification in LMA of A. schaueriana pointed out changes among five studied sites, suggesting its use to reflect changes in the environment, which could be also useful in the future to evaluate the climate change. - Highlights: • We investigated adaptive modifications in plants in response to differences among three estuaries. • We used

  12. Functional traits of selected mangrove species in Brazil as biological indicators of different environmental conditions

    International Nuclear Information System (INIS)

    Arrivabene, Hiulana Pereira; Souza, Iara; Có, Walter Luiz Oliveira; Rodella, Roberto Antônio; Wunderlin, Daniel Alberto

    2014-01-01

    Ecological studies on phenotypic plasticity illustrate the relevance of this phenomenon in nature. Conditions of biota reflect environmental changes, highlighting the adaptability of resident species that can be used as bioindicators of such changes. We report the morpho-anatomical plasticity of leaves of Avicennia schaueriana Stapf and Leechm. ex Moldenke, Laguncularia racemosa (L.) C.F.Gaertn. and Rhizophora mangle L., evaluated in three estuaries (Vitória bay, Santa Cruz and Itaúnas River; state of Espírito Santo, Brazil), considering five areas of mangrove ecosystems with diverse environmental issues. Two sampling sites are part of the Ecological Station Lameirão Island in Vitória bay, close to a harbor. A third sampling site in Cariacica (Vitória bay) is inside the Vitória harbor and also is influenced by domestic sewage. The fourth studied area (Santa Cruz) is part of Piraquê Mangrove Ecological Reservation, while the fifth (Itaúnas River) is a small mangrove, with sandy sediment and greater photosynthetically active radiation, also not strongly influenced by anthropic activity. Results pointed out the morpho-anatomical plasticity in studied species, showing that A. schaueriana and L. racemosa might be considered the most appropriate bioindicators to indicate different settings and environmental conditions. Particularly, the dry mass per leaf area (LMA) of A. schaueriana was the main biomarker measured. In our study, LMA of A. schaueriana was positively correlated with salinity (Spearman 0.71), Mn content (0.81) and pH (0.82) but negatively correlated with phosphorus content (− 0.63). Thus, the evaluation of modification in LMA of A. schaueriana pointed out changes among five studied sites, suggesting its use to reflect changes in the environment, which could be also useful in the future to evaluate the climate change. - Highlights: • We investigated adaptive modifications in plants in response to differences among three estuaries. • We used

  13. Evaluation of Rehabilitation Strategies and Management Schemes for the Improvement of Mangrove Management Programs in Lingayen Gulf

    Directory of Open Access Journals (Sweden)

    Severino Salmo III

    2007-06-01

    Full Text Available We evaluated the mangrove rehabilitation strategies and management schemes in five municipalities in Lingayen Gulf (Bolinao, Anda, Bani, Alaminos and San Fernando. Mangrove planting appears to be the first and only option used in the area, ignoring other recommended management strategies, e.g. conservation, landscaping, and sustainable production. All planting sites were located in coastal fringes and are mostly monospeficic stands of the species Rhizophora mucronata. The planted mangroves were constrained by low seedling survival and stunted growth as probably caused by poor species-substrate matching, mono-species planting and pest infestations. Three management schemes were noted: community-managed (Bolinao and Anda, local government unit (LGU-managed (Alaminos and San Fernando, and co-managed between the LGU and the community (Bani. The community-managed mangrove areas have the benefits of voluntary efforts from community-based organizations in conducting daily management activities but were constrained with budgetary and logistical concerns. In contrast, both LGU-managed and co-managed areas received institutional and logistical supports from their respective municipal governments, but lacking community participation made mangrove management difficult. Almost two decades of mangrove management indeed helped improved the mangrove forest condition, at least in terms of forest structure. These projects demonstrated some level of success but also encountered several setbacks. Several lessons can be derived from these areas that can help improve the mangrove rehabilitation and management approaches in Lingayen Gulf. Among the recommendations are: (1 provide ordinance enacting the remaining natural secondary growth mangroves as marine protected areas, (2 promote planting in former mangrove areas by reverting abandoned, idled and unproductive aquaculture ponds to mangroves; (3 improve management schemes by formulating resource management plan

  14. Anthropogenic protection alters the microbiome in intertidal mangrove wetlands in Hainan Island.

    Science.gov (United States)

    Yun, Juanli; Deng, Yongcui; Zhang, Hongxun

    2017-08-01

    Intertidal mangrove wetlands are of great economic and ecological importance. The regular influence of tides has led to the microbial communities in these wetlands differing significantly from those in other habitats. In this study, we investigated the microbiomes of the two largest mangrove wetlands in Hainan Island, China, which have different levels of anthropogenic protection. Soil samples were collected from the root zone of 13 mangrove species. The microbial composition, including key functional groups, was assessed using Illumina sequencing. Bioinformatics analysis showed that there was a significant difference in the microbiomes between the protected Bamen Bay and the unprotected Dongzhai Bay. The overall microbiome was assigned into 78 phyla and Proteobacteria was the most abundant phylum at both sites. In the protected wetland, there were fewer marine-related microbial communities, such as sulfate-reducing bacteria, and more terrestrial-related communities, such as Verrucomicrobia methanotrophs. We also observed distinct microbial compositions among the different mangrove species at the protected site. Our data suggest that the different microbiomes of the two mangrove wetlands are the result of a complex interaction of the different environmental variables at the two sites.

  15. A new species of micro-mangrove crab of the genus Haberma Ng & Schubart, 2002 (Crustacea, Brachyura, Sesarmidae) from Hong Kong.

    Science.gov (United States)

    Cannicci, Stefano; Ng, Peter L K

    2017-01-01

    The sesarmid genus Haberma Ng & Schubart, 2002, currently contains two species of small mangrove crabs with the first two pairs of the male ambulatory legs possessing characteristic subchelate dactyli and propodi. A new species, H. tingkok , is here described from Hong Kong. It can be separated from H. nanum Ng & Schubart, 2002 (from Singapore), and H. kamora Rahayu & Ng, 2005 (from Indonesian Papua) by its carapace shape, proportions of the ambulatory legs, and structures of the male pleon and male first gonopod.

  16. Taxonomic, biogeographic, and taphonomic reassessment of a large extinct species of paca from the Quaternary of Brazil

    Directory of Open Access Journals (Sweden)

    Elver Luiz Mayer

    2016-12-01

    Full Text Available The taxonomy of extinct species of Cuniculus (Caviomorpha, Rodentia, Mammalia is confusing and poorly studied. Here we provide a taxonomic review of extinct cuniculids, and discuss the taxonomic, biogeographic, taphonomic and chronologic aspects of new remains of an extinct large cuniculid from Brazilian Quaternary Gruta Cuvieri cave deposits. Our taxonomic review suggests that Cuniculus rugiceps (Lund, 1837 is the valid taxon to include all available occurrences of extinct cuniculids. The most evident features of this taxon are its larger size and the stronger and more densely distributed rugosities on the skull external surface when compared to the extant species. At present, the distribution of C. rugiceps is restricted to the tropical region of Brazil. Regarding the new remains, taphonomic analysis of the specimens from Cuvieri Cave suggests our sample is represented by at least seven individuals that accumulated within the cave deposit by pitfall entrapment. The biostratinomy of the specimens was characterized by prolonged surface exposure inside the pit with fragmentation and displacement caused mostly by falling and subsequent trampling by individuals of the same and/or other species. The stratigraphically controlled excavations and chronological data allowed the establishment of a Late Pleistocene minimum age for these specimens.

  17. Malthusian Catastrophe: Species Extinction Caused By Oversized Population

    OpenAIRE

    Pan, Xubin

    2017-01-01

    There is one pseudo-extinction debt and four occurring conditions for real extinction debt. Since small and oversized populations have a high extinction risk, Pan threshold (upper limit) was calculated for Verhulst-Pear logistic growth model and logistic model with the Allee effect, an important parameter corresponding to Allee threshold (lower limit).

  18. Extinction risk escalates in the tropics.

    Directory of Open Access Journals (Sweden)

    Jana C Vamosi

    Full Text Available The latitudinal biodiversity gradient remains one of the most widely recognized yet puzzling patterns in nature. Presently, the high level of extinction of tropical species, referred to as the "tropical biodiversity crisis", has the potential to erode this pattern. While the connection between species richness, extinction, and speciation has long intrigued biologists, these interactions have experienced increased poignancy due to their relevancy to where we should concentrate our conservation efforts. Natural extinction is a phenomenon thought to have its own latitudinal gradient, with lower extinction rates in the tropics being reported in beetles, birds, mammals, and bivalves. Processes that have buffered ecosystems from high extinction rates in the past may also buffer ecosystems against disturbance of anthropogenic origin. While potential parallels between historical and present-day extinction patterns have been acknowledged, they remain only superficially explored and plant extinction patterns have been particularly neglected. Studies on the disappearances of animal species have reached conflicting conclusions, with the rate of extinction appearing either higher or lower in species richness hotspots. Our global study of extinction risk in vascular plants finds disproportionately higher extinction risk in tropical countries, even when indicators of human pressure (GDP, population density, forest cover change are taken into account. Our results are at odds with the notion that the tropics represent a museum of plant biodiversity (places of historically lowered extinction and we discuss mechanisms that may reconcile this apparent contradiction.

  19. Extinction risk escalates in the tropics.

    Science.gov (United States)

    Vamosi, Jana C; Vamosi, Steven M

    2008-01-01

    The latitudinal biodiversity gradient remains one of the most widely recognized yet puzzling patterns in nature. Presently, the high level of extinction of tropical species, referred to as the "tropical biodiversity crisis", has the potential to erode this pattern. While the connection between species richness, extinction, and speciation has long intrigued biologists, these interactions have experienced increased poignancy due to their relevancy to where we should concentrate our conservation efforts. Natural extinction is a phenomenon thought to have its own latitudinal gradient, with lower extinction rates in the tropics being reported in beetles, birds, mammals, and bivalves. Processes that have buffered ecosystems from high extinction rates in the past may also buffer ecosystems against disturbance of anthropogenic origin. While potential parallels between historical and present-day extinction patterns have been acknowledged, they remain only superficially explored and plant extinction patterns have been particularly neglected. Studies on the disappearances of animal species have reached conflicting conclusions, with the rate of extinction appearing either higher or lower in species richness hotspots. Our global study of extinction risk in vascular plants finds disproportionately higher extinction risk in tropical countries, even when indicators of human pressure (GDP, population density, forest cover change) are taken into account. Our results are at odds with the notion that the tropics represent a museum of plant biodiversity (places of historically lowered extinction) and we discuss mechanisms that may reconcile this apparent contradiction.

  20. The contribution of mangrove expansion to salt marsh loss on the Texas Gulf Coast.

    Science.gov (United States)

    Armitage, Anna R; Highfield, Wesley E; Brody, Samuel D; Louchouarn, Patrick

    2015-01-01

    Landscape-level shifts in plant species distribution and abundance can fundamentally change the ecology of an ecosystem. Such shifts are occurring within mangrove-marsh ecotones, where over the last few decades, relatively mild winters have led to mangrove expansion into areas previously occupied by salt marsh plants. On the Texas (USA) coast of the western Gulf of Mexico, most cases of mangrove expansion have been documented within specific bays or watersheds. Based on this body of relatively small-scale work and broader global patterns of mangrove expansion, we hypothesized that there has been a recent regional-level displacement of salt marshes by mangroves. We classified Landsat-5 Thematic Mapper images using artificial neural networks to quantify black mangrove (Avicennia germinans) expansion and salt marsh (Spartina alterniflora and other grass and forb species) loss over 20 years across the entire Texas coast. Between 1990 and 2010, mangrove area grew by 16.1 km(2), a 74% increase. Concurrently, salt marsh area decreased by 77.8 km(2), a 24% net loss. Only 6% of that loss was attributable to mangrove expansion; most salt marsh was lost due to conversion to tidal flats or water, likely a result of relative sea level rise. Our research confirmed that mangroves are expanding and, in some instances, displacing salt marshes at certain locations. However, this shift is not widespread when analyzed at a larger, regional level. Rather, local, relative sea level rise was indirectly implicated as another important driver causing regional-level salt marsh loss. Climate change is expected to accelerate both sea level rise and mangrove expansion; these mechanisms are likely to interact synergistically and contribute to salt marsh loss.

  1. Selecting for extinction: nonrandom disease-associated extinction homogenizes amphibian biotas.

    Science.gov (United States)

    Smith, Kevin G; Lips, Karen R; Chase, Jonathan M

    2009-10-01

    Studying the patterns in which local extinctions occur is critical to understanding how extinctions affect biodiversity at local, regional and global spatial scales. To understand the importance of patterns of extinction at a regional spatial scale, we use data from extirpations associated with a widespread pathogenic agent of amphibian decline, Batrachochytrium dendrobatidis (Bd) as a model system. We apply novel null model analyses to these data to determine whether recent extirpations associated with Bd have resulted in selective extinction and homogenization of diverse tropical American amphibian biotas. We find that Bd-associated extinctions in this region were nonrandom and disproportionately, but not exclusively, affected low-occupancy and endemic species, resulting in homogenization of the remnant amphibian fauna. The pattern of extirpations also resulted in phylogenetic homogenization at the family level and ecological homogenization of reproductive mode and habitat association. Additionally, many more species were extirpated from the region than would be expected if extirpations occurred randomly. Our results indicate that amphibian declines in this region are an extinction filter, reducing regional amphibian biodiversity to highly similar relict assemblages and ultimately causing amplified biodiversity loss at regional and global scales.

  2. A robust nonparametric method for quantifying undetected extinctions.

    Science.gov (United States)

    Chisholm, Ryan A; Giam, Xingli; Sadanandan, Keren R; Fung, Tak; Rheindt, Frank E

    2016-06-01

    How many species have gone extinct in modern times before being described by science? To answer this question, and thereby get a full assessment of humanity's impact on biodiversity, statistical methods that quantify undetected extinctions are required. Such methods have been developed recently, but they are limited by their reliance on parametric assumptions; specifically, they assume the pools of extant and undetected species decay exponentially, whereas real detection rates vary temporally with survey effort and real extinction rates vary with the waxing and waning of threatening processes. We devised a new, nonparametric method for estimating undetected extinctions. As inputs, the method requires only the first and last date at which each species in an ensemble was recorded. As outputs, the method provides estimates of the proportion of species that have gone extinct, detected, or undetected and, in the special case where the number of undetected extant species in the present day is assumed close to zero, of the absolute number of undetected extinct species. The main assumption of the method is that the per-species extinction rate is independent of whether a species has been detected or not. We applied the method to the resident native bird fauna of Singapore. Of 195 recorded species, 58 (29.7%) have gone extinct in the last 200 years. Our method projected that an additional 9.6 species (95% CI 3.4, 19.8) have gone extinct without first being recorded, implying a true extinction rate of 33.0% (95% CI 31.0%, 36.2%). We provide R code for implementing our method. Because our method does not depend on strong assumptions, we expect it to be broadly useful for quantifying undetected extinctions. © 2016 Society for Conservation Biology.

  3. Identifying the best season for mapping evergreen swamp and mangrove species using leaf-level spectra in an estuarine system in KwaZulu-Natal, South Africa

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2014-10-01

    Full Text Available would provide the best discrimination of six evergreen tree species, associated with swamp (Ficus Trichopoda), mangrove (Avicennia marina, Bruguiera gymnorrhiza, Hibiscus tiliaceus), wetlands in adjacent woodlands (Syzygium cordatum) and coastal...

  4. Host-exclusivity and host-recurrence by wood decay fungi (Basidiomycota - Agaricomycetes in Brazilian mangroves

    Directory of Open Access Journals (Sweden)

    Georgea S. Nogueira-Melo

    2017-09-01

    Full Text Available ABSTRACT This study aimed to investigate for the first time the ecological interactions between species of Agaricomycetes and their host plants in Brazilian mangroves. Thirty-two field trips were undertaken to four mangroves in the state of Pernambuco, Brazil, from April 2009 to March 2010. One 250 x 40 m stand was delimited in each mangrove and six categories of substrates were artificially established: living Avicennia schaueriana (LA, dead A. schaueriana (DA, living Rhizophora mangle (LR, dead R. mangle (DR, living Laguncularia racemosa (LL and dead L. racemosa (DL. Thirty-three species of Agaricomycetes were collected, 13 of which had more than five reports and so were used in statistical analyses. Twelve species showed significant values for fungal-plant interaction: one of them was host-exclusive in DR, while five were host-recurrent on A. schauerianna; six occurred more in dead substrates, regardless the host species. Overall, the results were as expected for environments with low plant species richness, and where specificity, exclusivity and/or recurrence are more easily seen. However, to properly evaluate these relationships, mangrove ecosystems cannot be considered homogeneous since they can possess different plant communities, and thus different types of fungal-plant interactions.

  5. Evolution in Australasian mangrove forests: multilocus phylogenetic analysis of the Gerygone warblers (Aves: Acanthizidae.

    Directory of Open Access Journals (Sweden)

    Árpád S Nyári

    Full Text Available The mangrove forests of Australasia have many endemic bird species but their evolution and radiation in those habitats has been little studied. One genus with several mangrove specialist species is Gerygone (Passeriformes: Acanthizidae. The phylogeny of the Acanthizidae is reasonably well understood but limited taxon sampling for Gerygone has constrained understanding of its evolution and historical biogeography in mangroves. Here we report on a phylogenetic analysis of Gerygone based on comprehensive taxon sampling and a multilocus dataset of thirteen loci spread across the avian genome (eleven nuclear and two mitochondrial loci. Since Gerygone includes three species restricted to Australia's coastal mangrove forests, we particularly sought to understand the biogeography of their evolution in that ecosystem. Analyses of individual loci, as well as of a concatenated dataset drawn from previous molecular studies indicates that the genus as currently defined is not monophyletic, and that the Grey Gerygone (G. cinerea from New Guinea should be transferred to the genus Acanthiza. The multilocus approach has permitted the nuanced view of the group's evolution into mangrove ecosystems having occurred on multiple occasions, in three non-overlapping time frames, most likely first by the G. magnirostris lineage, and subsequently followed by those of G. tenebrosa and G. levigaster.

  6. Mangrove peat analysis and reconstruction of vegetation history at the Pelican Cays, Belize

    Science.gov (United States)

    McKee, K.L.; Faulkner, P.L.

    2000-01-01

    The substrate beneath mangrove forests in the Pelican Cays complex is predominately peat composed mainly of mangrove roots. Leaves and wood account for less than 20% of the peat mass. At Cat Cay, the depth of the peat ranges from 0.2 m along the shoreline to 1.65 m in the island center, indicating that the island has expanded horizontally as well as vertically through below-ground, biogenic processes. Mangrove roots thus play a critical role in the soil formation, vertical accretion, and stability of these mangrove cays. The species composition of fossil roots changes markedly with depth: Rhizophora mangle (red mangrove) was the initial colonizer on a coral base, followed by Avicennia germinans (black mangrove), which increased in abundance and expanded radially from the center of the island. The center of the Avicennia stand ultimately died, leaving an unvegetated, shallow pond. The peat thus retains a record of mangrove development, succession, and deterioration in response to sea-level change and concomitant hydroedaphic conditions controlling dispersal, establishment, growth, and mortality of mangroves on oceanic islands in Belize.

  7. A new species of micro-mangrove crab of the genus Haberma Ng & Schubart, 2002 (Crustacea, Brachyura, Sesarmidae from Hong Kong

    Directory of Open Access Journals (Sweden)

    Stefano Cannicci

    2017-03-01

    Full Text Available The sesarmid genus Haberma Ng & Schubart, 2002, currently contains two species of small mangrove crabs with the first two pairs of the male ambulatory legs possessing characteristic subchelate dactyli and propodi. A new species, H. tingkok, is here described from Hong Kong. It can be separated from H. nanum Ng & Schubart, 2002 (from Singapore, and H. kamora Rahayu & Ng, 2005 (from Indonesian Papua by its carapace shape, proportions of the ambulatory legs, and structures of the male pleon and male first gonopod.

  8. Extinction debt: a challenge for biodiversity conservation.

    Science.gov (United States)

    Kuussaari, Mikko; Bommarco, Riccardo; Heikkinen, Risto K; Helm, Aveliina; Krauss, Jochen; Lindborg, Regina; Ockinger, Erik; Pärtel, Meelis; Pino, Joan; Rodà, Ferran; Stefanescu, Constantí; Teder, Tiit; Zobel, Martin; Steffan-Dewenter, Ingolf

    2009-10-01

    Local extinction of species can occur with a substantial delay following habitat loss or degradation. Accumulating evidence suggests that such extinction debts pose a significant but often unrecognized challenge for biodiversity conservation across a wide range of taxa and ecosystems. Species with long generation times and populations near their extinction threshold are most likely to have an extinction debt. However, as long as a species that is predicted to become extinct still persists, there is time for conservation measures such as habitat restoration and landscape management. Standardized long-term monitoring, more high-quality empirical studies on different taxa and ecosystems and further development of analytical methods will help to better quantify extinction debt and protect biodiversity.

  9. Komposisi dan Kelimpahan Ikan di Ekosistem Mangrove di Kedungmalang, Jepara (Fish Community Structure in Mangrove Ecosystem at Kedung Malang, Jepara Regency

    Directory of Open Access Journals (Sweden)

    Sri Redjeki

    2014-06-01

    was conducted during May to August of 2011. The samples were taken in three location  with true mangrove (Rhizophora sp. and associate mangrove (Cyperus sp.   The results of this study found 10 fish families, i.e. Mugilidae, Ariidae, Eleotridae, Pristigasteridae, Gobiidae, Drepanidae, Belonidae, Adrianichtyidae, Aplocheilidae, and Haemulidae. The most commonly found is Mugilidae, in the contrary, Belonidae was found to be the lowest abundance family. Mugillidae is euryhaline and catadramous species that enter estuaries and river during high tide and form big school in the waters with sandy or muddy bottom. The sample from Kedungmalang mainly juvenile of Mugillidae.  In general, fish abundance at low tide is always higher than high tide. Abundance of fish in Rhizophora sp. was higher than those in Cyperus sp. both in the low tide or high tide. Keywords: mangrove ecosystem, fish, composition, Mugillidae

  10. Biological correlates of extinction risk in bats.

    Science.gov (United States)

    Jones, Kate E; Purvis, Andy; Gittleman, John L

    2003-04-01

    We investigated patterns and processes of extinction and threat in bats using a multivariate phylogenetic comparative approach. Of nearly 1,000 species worldwide, 239 are considered threatened by the International Union for Conservation of Nature and Natural Resources (IUCN) and 12 are extinct. Small geographic ranges and low wing aspect ratios are independently found to predict extinction risk in bats, which explains 48% of the total variance in IUCN assessments of threat. The pattern and correlates of extinction risk in the two bat suborders are significantly different. A higher proportion (4%) of megachiropteran species have gone extinct in the last 500 years than microchiropteran bats (0.3%), and a higher proportion is currently at risk of extinction (Megachiroptera: 34%; Microchiroptera: 22%). While correlates of microchiropteran extinction risk are the same as in the order as a whole, megachiropteran extinction is correlated more with reproductive rate and less with wing morphology. Bat extinction risk is not randomly distributed phylogenetically: closely related species have more similar levels of threat than would be expected if extinction risk were random. Given the unbalanced nature of the evolutionary diversification of bats, it is probable that the amount of phylogenetic diversity lost if currently threatened taxa disappear may be greater than in other clades with numerically more threatened species.

  11. Evolution of opercle shape in cichlid fishes from Lake Tanganyika - adaptive trait interactions in extant and extinct species flocks.

    Science.gov (United States)

    Wilson, Laura A B; Colombo, Marco; Sánchez-Villagra, Marcelo R; Salzburger, Walter

    2015-11-20

    Phenotype-environment correlations and the evolution of trait interactions in adaptive radiations have been widely studied to gain insight into the dynamics underpinning rapid species diversification. In this study we explore the phenotype-environment correlation and evolution of operculum shape in cichlid fishes using an outline-based geometric morphometric approach combined with stable isotope indicators of macrohabitat and trophic niche. We then apply our method to a sample of extinct saurichthyid fishes, a highly diverse and near globally distributed group of actinopterygians occurring throughout the Triassic, to assess the utility of extant data to inform our understanding of ecomorphological evolution in extinct species flocks. A series of comparative methods were used to analyze shape data for 54 extant species of cichlids (N = 416), and 6 extinct species of saurichthyids (N = 44). Results provide evidence for a relationship between operculum shape and feeding ecology, a concentration in shape evolution towards present along with evidence for convergence in form, and significant correlation between the major axes of shape change and measures of gut length and body elongation. The operculum is one of few features that can be compared in extant and extinct groups, enabling reconstruction of phenotype-environment interactions and modes of evolutionary diversification in deep time.

  12. The mangrove tangle: short-term bio-physical interactions in coastal mangroves

    NARCIS (Netherlands)

    Horstman, Erik

    2014-01-01

    Mangroves are coastal wetland ecosystems in the upper intertidal area. Salt-tolerant mangrove vegetation dwells on fine substrates in sheltered, low-energy coastal environments such as estuaries and lagoons. At the interface between land and sea, mangroves provide a plethora of regulating, habitat

  13. Can we avoid the Sixth Mass Extinction? Setting today's extinction crisis in the context of the Big Five

    Science.gov (United States)

    Barnosky, A. D.

    2012-12-01

    While the ultimate extinction driver now—Homo sapiens—is unique with respect to the drivers of past extinctions, comparison of parallel neontological and paleontological information helps calibrate how far the so-called Sixth Mass Extinction has progressed and whether it is inevitable. Such comparisons document that rates of extinction today are approaching or exceeding those that characterized the Big Five Mass Extinctions. Continuation of present extinction rates for vertebrates, for example, would result in 75% species loss—the minimum benchmark exhibited in the Big Five extinctions—within 3 to 22 centuries, assuming constant rates of loss and no threshold effects. Preceding and during each of the Big Five, the global ecosystem experienced major changes in climate, atmospheric chemisty, and ocean chemistry—not unlike what is being observed presently. Nevertheless, only 1-2% of well-assessed modern species have been lost over the past five centuries, still far below what characterized past mass extinctions in the strict paleontological sense. For mammals, adding in the end-Pleistocene species that died out would increase the species-loss percentage by some 5%. If threatened vertebrate species were to actually go extinct, losses would rise to between 14 and 40%, depending on the group. Such observations highlight that, although many species have already had their populations drastically reduced to near-critical levels, the Sixth Mass Extinction has not yet progressed to the point where it is unavoidable. Put another way, the vast majority of species that have occupied the world in concert with Homo sapiens are still alive and are possible to save. That task, however, will require slowing the abnormally high extinction rates that are now in progress, which in turn requires unified efforts to cap human population growth, decrease the average human footprint, reduce fossil fuel use while simultaneously increasing clean energy technologies, integrate

  14. Carbon stocks and potential carbon storage in the mangrove forests of China.

    Science.gov (United States)

    Liu, Hongxiao; Ren, Hai; Hui, Dafeng; Wang, Wenqing; Liao, Baowen; Cao, Qingxian

    2014-01-15

    Mangrove forests provide important ecosystem services, and play important roles in terrestrial and oceanic carbon (C) cycling. Although the C stocks or storage in terrestrial ecosystems in China have been frequently assessed, the C stocks in mangrove forests have often been overlooked. In this study, we estimated the C stocks and the potential C stocks in China's mangrove forests by combining our own field data with data from the National Mangrove Resource Inventory Report and from other published literature. The results indicate that mangrove forests in China store about 6.91 ± 0.57 Tg C, of which 81.74% is in the top 1 m soil, 18.12% in the biomass of mangrove trees, and 0.08% in the ground layer (i.e. mangrove litter and seedlings). The potential C stocks are as high as 28.81 ± 4.16 Tg C. On average, mangrove forests in China contain 355.25 ± 82.19 Mg C ha(-1), which is consistent with the global average of mangrove C density at similar latitudes, but higher than the average C density in terrestrial forests in China. Our results suggest that C storage in mangroves can be increased by selecting high C-density species for afforestation and stand improvement, and even more by increasing the mangrove area. The information gained in this study will facilitate policy decisions concerning the restoration of mangrove forests in China. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Evaluation of Rhizophora Mucronata Growth at first-year Mangrove Restoration at Abandoned Ponds, Langkat, North Sumatra

    Science.gov (United States)

    Basyuni, M.; Telaumbanua, TFC; Wati, R.; Sulistyono, N.; Putri, LAP

    2018-03-01

    Degraded mangrove areas can be restored and rehabilitated. In Indonesia, one of the main recommended of mangrove species for restoration of degraded was Rhizophora mucronata. The purpose of the study was to evaluate R. mucronata growth at first-year mangrove restoration at abandoned shrimp ponds, Pulau Sembilan village, Langkat, North Sumatera, Indonesia. The recovery area divided into three zones based on the salinity concentration, landward, middle, and seaward zones. The evaluation parameters of mangrove reforestation consist of seedling diameter and height, leaves number, and seedling growth rate. Results showed that 3 of 4 evaluation parameters of R. mucronata growth belong to landward zone, namely seedlings diameter, the number of leaves, and percentage of growth. By contrast, height R. mucronata seedlings dominated in the middle area. The study also found that the proper zone for mangrove restoration with R. mucronata was in the landward with 96% growth rate and 30 part per thousand salinity concentration. The present study, therefore, suggested that the recommended species for the degraded area was the prerequisite for successful mangrove restoration.

  16. Herbivory enhances the resistance of mangrove forest to cordgrass invasion.

    Science.gov (United States)

    Zhang, Yihui; Meng, Hanyu; Wang, Yi; He, Qiang

    2018-06-01

    The biotic resistance hypothesis proposes that biotic interactions, such as competition and herbivory, resist the establishment and spread of non-native species. The relative and interactive role of competition and herbivory in resisting plant invasions, however, remains poorly understood. We investigated the interactive role of competition and herbivory (by the native rodent Rattus losea) in resisting Spartina alterniflora (cordgrass) invasions into mangrove forests. In southern China, although exotic cordgrass numerically dominates intertidal mudflats and open gaps in mangrove forests, intact forests appear to be highly resistant to cordgrass invasion. A field transplant and rodent exclusion experiment showed that while the impact of rodent grazing on cordgrass was weak on mangrove forest edges and open mudflats, rodent grazing strongly suppressed cordgrass in mangrove understory habitats. A greenhouse experiment confirmed a synergistic interaction between grazing and light availability (a proxy for mangrove shading and light competition) in suppressing cordgrass establishment, with the strongest impacts of grazing in low light conditions that likely weakened cordgrass to survive and resprout. When both were present, as in mangrove understory habitats, grazing and low light acted in concert to eliminate cordgrass establishment, resulting in resistance of mangrove forests to cordgrass invasion. Our results reveal that grazing by native herbivores can enhance the resistance of mangrove forests to cordgrass invasion in southern China, and suggest that investigating multifactor interactions may be critical to understanding community resistance to exotic invasions. © 2018 by the Ecological Society of America.

  17. The systematic position of Equus hydruntinus, an extinct species of Pleistocene equid⋆

    Science.gov (United States)

    Burke, Ariane; Eisenmann, Vera; Ambler, Graeme K.

    2003-05-01

    Palaeolithic people commonly hunted Equus hydruntinus, an extinct species of equid whose cursorial body proportions suggest an adaptation to semi-arid conditions. Despite the frequency with which it is encountered in fossil deposits, only partial cranial remains have been reported until now. As a result, the systematic affiliation of the species remains a subject of controversy. Two nearly complete E. hydruntinus crania are presented here for the first time. These skulls show that E. hydruntinus is a distinct species, more closely related to the hemiones (Asiatic asses) than to any other equid. This suggests that the social organisation of E. hydruntinus followed one of two known equid sociotypes: resource defense territoriality.

  18. Manglicolous fungi from Chorao mangroves, Goa, West coast of India: Diversity and frequency of occurrence

    Digital Repository Service at National Institute of Oceanography (India)

    Sarma, V.V.; Raghukumar, S.

    In this paper marine fungi colonizing the decomposing substrata belonging to Rhizophora mucronata and Avicennia marina, at Chorao mangroves, Mandovi river, Goa, West coast of India, are reported. Totally, 45 fungal species from Mandovi mangroves...

  19. Mass extinction in poorly known taxa.

    Science.gov (United States)

    Régnier, Claire; Achaz, Guillaume; Lambert, Amaury; Cowie, Robert H; Bouchet, Philippe; Fontaine, Benoît

    2015-06-23

    Since the 1980s, many have suggested we are in the midst of a massive extinction crisis, yet only 799 (0.04%) of the 1.9 million known recent species are recorded as extinct, questioning the reality of the crisis. This low figure is due to the fact that the status of very few invertebrates, which represent the bulk of biodiversity, have been evaluated. Here we show, based on extrapolation from a random sample of land snail species via two independent approaches, that we may already have lost 7% (130,000 extinctions) of the species on Earth. However, this loss is masked by the emphasis on terrestrial vertebrates, the target of most conservation actions. Projections of species extinction rates are controversial because invertebrates are essentially excluded from these scenarios. Invertebrates can and must be assessed if we are to obtain a more realistic picture of the sixth extinction crisis.

  20. Coatal salt marshes and mangrove swamps in China

    Science.gov (United States)

    Yang, Shi-Lun; Chen, Ji-Yu

    1995-12-01

    Based on plant specimen data, sediment samples, photos, and sketches from 45 coastal crosssections, and materials from two recent countrywide comprehensive investigations on Chinese coasts and islands, this paper deals with China’s vegetative tidal-flats: salt marshes and mangrove swamps. There are now 141700 acres of salt marshes and 51000 acres of mangrove swamps which together cover about 30% of the mud-coast area of the country and distribute between 18°N (Southern Hainan Island) and 41 °N (Liaodong Bay). Over the past 45 years, about 1750000 acres of salt marshes and 49400 acres of mangrove swamps have been reclaimed. The 2.0×109 tons of fine sediments input by rivers into the Chinese seas form extensive tidal flats, the soil basis of coastal helophytes. Different climates result in the diversity of vegetation. The 3˜8 m tidal range favors intertidal zone development. Of over 20 plant species in the salt marshes, native Suaeda salsa, Phragmites australis, Aeluropus littoralis, Zoysia maerostachys, Imperata cylindrica and introduced Spartina anglica are the most extensive in distribution. Of the 41 mangrove swamps species, Kandelia candel, Bruguiera gymnorrhiza, Excoecaria agallocha and Avicennia marina are much wider in latitudinal distribution than the others. Developing stages of marshes originally relevant to the evolution of tidal flats are given out. The roles of pioneer plants in decreasing flood water energy and increasing accretion rate in the Changjiang River delta are discussed.

  1. The description of a new species Polymastigos javaensis n.sp. (Annelida: Capitellidae) from the Segara Anakan mangroves, Central Java, Indonesia.

    Science.gov (United States)

    Pamungkas, Joko

    2015-06-29

    A new species, Polymastigos javaensis n. sp., is described from sandy clay sediment (0-30 cm depth) of the Segara Anakan mangroves. The species is described based on the distribution of capillaries and hooks, and the form of the prostomium, thorax, abdomen, lateral organs, genital pores, branchiae and pygidium. Methyl green staining pattern was applied to examine the similarity between the material of this study and Green's material. Polymastigos javaensis n. sp. is the second species belonging to the genus Polymastigos, after P. reishi Green, 2002. It differs from P. reishi in the form of abdominal segments and hooks, and the methyl green staining pattern. A key to distinguish the two species is provided in this paper.

  2. Large-scale distribution patterns of mangrove nematodes: A global meta-analysis.

    Science.gov (United States)

    Brustolin, Marco C; Nagelkerken, Ivan; Fonseca, Gustavo

    2018-05-01

    Mangroves harbor diverse invertebrate communities, suggesting that macroecological distribution patterns of habitat-forming foundation species drive the associated faunal distribution. Whether these are driven by mangrove biogeography is still ambiguous. For small-bodied taxa, local factors and landscape metrics might be as important as macroecology. We performed a meta-analysis to address the following questions: (1) can richness of mangrove trees explain macroecological patterns of nematode richness? and (2) do local landscape attributes have equal or higher importance than biogeography in structuring nematode richness? Mangrove areas of Caribbean-Southwest Atlantic, Western Indian, Central Indo-Pacific, and Southwest Pacific biogeographic regions. We used random-effects meta-analyses based on natural logarithm of the response ratio (lnRR) to assess the importance of macroecology (i.e., biogeographic regions, latitude, longitude), local factors (i.e., aboveground mangrove biomass and tree richness), and landscape metrics (forest area and shape) in structuring nematode richness from 34 mangroves sites around the world. Latitude, mangrove forest area, and forest shape index explained 19% of the heterogeneity across studies. Richness was higher at low latitudes, closer to the equator. At local scales, richness increased slightly with landscape complexity and decreased with forest shape index. Our results contrast with biogeographic diversity patterns of mangrove-associated taxa. Global-scale nematode diversity may have evolved independently of mangrove tree richness, and diversity of small-bodied metazoans is probably more closely driven by latitude and associated climates, rather than local, landscape, or global biogeographic patterns.

  3. Pharmacognosy of mangrove plants in the system of unani medicine

    Directory of Open Access Journals (Sweden)

    C Govindasamy

    2012-05-01

    Full Text Available Mangrove plants are found to have medicinal values and have been used traditionally by local medical practitioners in worldwide. In nature, more than 65 species of mangrove plants, 18 species are found to be widely used by local medical practitioners in many countries like India, Africa, Southeast Asia, South America, Australia etc. Moreover, etanobotanical records regarding medical use of mangrove plants are very limited and very unique. One to its astringent property, tannin is suitable in the treatment of tonsillitis, pharyngeatis, hemorrhoids. slaik eruion and burns. It is taken internally, to diarrohea and intestinal bleeding. The extracts of barks of Bruguiera sexangula are active against two human tumors, sarcoma 180 and lexis lung carcinoma. Tannin is also used as an antidote for metallic, alkaloidal and sylycosidic poisons with which it forms a soluble precipitate. Stigma sterol has been shown to have slight hyper cholesterolinic effect which exerts no effect on heart or liver in unani medicine.

  4. Flood regime as a driver of the distribution of mangrove and salt marsh species in a subtropical estuary

    Science.gov (United States)

    Spier, Daphne; Gerum, Humberto L. N.; Noernberg, Maurício A.; Lana, Paulo C.

    2016-09-01

    Tidal patterns of the subtropical Paranaguá Estuarine Complex, in southern Brazil, are strongly affected by episodic cold fronts and by the coastal geometry and bottom topography, resulting in high temporal variability and marked gradients in flood regime. We delimit tolerance ranges of submersion and exposure for representative plant and animal species from local mangroves and salt marshes, through a quantitative analysis of flooding patterns in three estuarine sectors. Our results are consistent with flood regime being the leading factor on how species are distributed over the intertidal flats of the PEC. Subleading factors might be related to salinity, sediment composition and nutrient flow.

  5. Higher marine fungi from mangroves (Manglicolous fungi)

    Digital Repository Service at National Institute of Oceanography (India)

    ChinnaRaj, S.

    of higher marine fungi which included 23 Ascomycetes, 2 Basidiomycetes and 17 Deuteromycetes (Kohlmeyer and Kohlmeyer, 1979). Hyde (1990a) listed 120 species from 29 mangroves from all over the World this includes 87 Ascomycetes, 2 Basidiomycetes and 31...

  6. Stochastic resonance and noise delayed extinction in a model of two competing species

    Science.gov (United States)

    Valenti, D.; Fiasconaro, A.; Spagnolo, B.

    2004-01-01

    We study the role of the noise in the dynamics of two competing species. We consider generalized Lotka-Volterra equations in the presence of a multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence of a periodic driving term, which accounts for the environment temperature variation. We find noise-induced periodic oscillations of the species concentrations and stochastic resonance phenomenon. We find also a nonmonotonic behavior of the mean extinction time of one of the two competing species as a function of the additive noise intensity.

  7. Discovery or Extinction of New Scleroderma Species in Amazonia?

    Directory of Open Access Journals (Sweden)

    Iuri G Baseia

    Full Text Available The Amazon Forest is a hotspot of biodiversity harboring an unknown number of undescribed taxa. Inventory studies are urgent, mainly in the areas most endangered by human activities such as extensive dam construction, where species could be in risk of extinction before being described and named. In 2015, intensive studies performed in a few locations in the Brazilian Amazon rainforest revealed three new species of the genus Scleroderma: S. anomalosporum, S. camassuense and S. duckei. The two first species were located in one of the many areas flooded by construction of hydroelectric dams throughout the Amazon; and the third in the Reserva Florestal Adolpho Ducke, a protected reverse by the INPA. The species were identified through morphology and molecular analyses of barcoding sequences (Internal Transcribed Spacer nrDNA. Scleroderma anomalosporum is characterized mainly by the smooth spores under LM in mature basidiomata (under SEM with small, unevenly distributed granules, a characteristic not observed in other species of the genus, the large size of the basidiomata, up to 120 mm diameter, and the stelliform dehiscence; S. camassuense mainly by the irregular to stellate dehiscence, the subreticulated spores and the bright sulfur-yellow colour, and Scleroderma duckei mainly by the verrucose exoperidium, stelliform dehiscence, and verrucose spores. Description, illustration and affinities with other species of the genus are provided.

  8. Source correlation of biomarkers in a mangrove ecosystem on Santa Catarina Island in southern Brazil.

    Science.gov (United States)

    Silva, Cesar A; Madureira, Luiz A S

    2012-09-01

    The relative distribution of several compounds identified in four samples of recently deposited sediments of the Itacorubi Mangrove located on the Santa Catarina Island, southern Brazil, was compared with similar data on compounds extracted from fresh leaves of three mangrove species (Avicennia schaueriana, the dominant species in the area, Rhizophora mangle and Laguncularia racemosa) and the Gramineae Spartinna alterniflora. Terpenols, previously identified in mangrove species in northern Brazil, were also found. A. schaueriana mainly contains β-amyrin (90.6 μg g(-1) of extractable organic matter); low amounts of friedelin, betulin and germanicol were detected only in the leaf extract of this species. R. mangle also contained a significant amount of β-amyrin and it was the only species where taraxerol was detected. In contrast to the leaves, sediment extracts were dominated by germanicol, α-amyrin and campesterol. Despite its chemical lability, betulin was also detected. Two homologous series of α and ω-hydroxy fatty acids were detected in the acid-alkaline fraction. In spite of being reported in the literature as components of terrigenous plants, saturated ω-hydroxy acids were not identified. Our results indicate that although triterpenols may be used as biomarkers for mangrove-derived organic matter, their relative distribution can change according to the region.

  9. TINGKAT KEBERHASILAN PENANAMAN POHON MANGROVE (KASUS: PESISIR PULAU UNTUNG JAWA KEPULAUAN SERIBU

    Directory of Open Access Journals (Sweden)

    Adi Winata

    2016-03-01

    Full Text Available Increasing land demand for human life tends to lead the most transitional allotment of land conservation in the coastal zone into settlements, ports, aquaculture, and other means of livelihood. Including mangrove ecosystem in coastal region of Kepulauan Seribu. The purpose of study was to measure success rate of mangrove trees planting and growth rate of mangrove trees. The design of the study was exploratory research using a quantitative approach. The population were mangrove trees which was planted at Community Services Program Universitas Terbuka on October 28th 2013. The mangrove species is Rhizophora mucronata. Sample was determained from some land areas with created plot survei (3 x 3 m in 10 locations at Untung Jawa Island. Data yang dikumpulkan pada penelitian ini adalah data primer dan sekunder. Data were collected using survey method, and presented in the form of frequency tables and descriptions, and analyzed descriptively. Data was be primary data including the number of mangrove trees, mangrove tree height, number of leaves, leaf length, and leaf width. The results indicated that the success rate of mangrove tress planting reached 72%. This was indicated that Rhizophora mucronata had fairly wide range of habitats, hence it is easy to live in the research location. Overall, the growth rate of mangrove trees showed good results, in terms of tree height, number of leaves, leaf length and leaf width.

  10. A unique coral community in the mangroves of Hurricane Hole, St. John, US Virgin Islands

    Science.gov (United States)

    Rogers, Caroline S.

    2017-01-01

    Corals do not typically thrive in mangrove environments. However, corals are growing on and near the prop roots of red mangrove trees in Hurricane Hole, an area within the Virgin Islands Coral Reef National Monument under the protection of the US National Park Service in St. John, US Virgin Islands. This review summarizes current knowledge of the remarkable biodiversity of this area. Over 30 scleractinian coral species, about the same number as documented to date from nearby coral reefs, grow here. No other mangrove ecosystems in the Caribbean are known to have so many coral species. This area may be a refuge from changing climate, as these corals weathered the severe thermal stress and subsequent disease outbreak that caused major coral loss on the island’s coral reefs in 2005 and 2006. Shading by the red mangrove trees reduces the stress that leads to coral bleaching. Seawater temperatures in these mangroves are more variable than those on the reefs, and some studies have shown that this variability results in corals with a greater resistance to higher temperatures. The diversity of sponges and fish is also high, and a new genus of serpulid worm was recently described. Continuing research may lead to the discovery of more new species.

  11. Extinction and the fossil record

    Science.gov (United States)

    Sepkoski, J. J. Jr; Sepkoski JJ, ,. J. r. (Principal Investigator)

    1994-01-01

    The author examines evidence of mass extinctions in the fossil record and searches for reasons for such large extinctions. Five major mass extinctions eliminated at least 40 percent of animal genera in the oceans and from 65 to 95 percent of ocean species. Questions include the occurrence of gradual or catastrophic extinctions, causes, environment, the capacity of a perturbation to cause extinctions each time it happens, and the possibility and identification of complex events leading to a mass extinction.

  12. Taxonomic survey of Drosophilidae (Diptera) from mangrove forests of Santa Catarina Island, Southern Brazil.

    Science.gov (United States)

    Schmitz, Hermes J; Valente, Vera L S; Hofmann, Paulo R P

    2007-01-01

    Assemblages of drosophilids have been characterised in several environments of the Brazilian territory, like the Atlantic Rain Forest, urban areas, cerrados, the Amazon Forest, and others. The present survey is the first attempt to characterise the fauna of Drosophilidae in mangrove forests, an environment typical of tropical coasts worldwide. Twenty-eight samples were collected from the three main mangrove forests of Santa Catarina Island, southern Brazil, using banana-baited traps hung in trees. Samples were taken in January (summer), April (autumn), July (winter) and October (spring) between July 2002 and July 2005. In total, 82,942 specimens of drosophilids were caught, belonging to 69 species of six genera - Amiota Loew, Drosophila Fallén, Leucophenga Mik, Scaptodrosophila Duda, Zaprionus Coquillett and Zygothrica Wiedemann. The high abundance of D. simulans Sturtevant was remarkable, with some notable peaks of D. malerkotliana Parshad & Paika in autumn samples. Other common species were Zaprionus indianus Gupta, D. mediostriata Duda and D. willistoni Sturtevant. We also collected 45,826 flies of family Curtonotidae, the sister-group of Drosophilidae virtually absent in other environments. The assemblages of drosophilids were very similar in the three mangrove forests surveyed, despite the different surrounding environments. In general, the species sampled in the mangroves were the same as those observed in the surrounding environments, but in varying abundances. This suggests that drosophilids are differently affected by environmental pressures operating in mangroves.

  13. Antioxidants in mangrove plants and endophytic fungal associations

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Naveenan, T.; Varatharajan, G.R.; Rajasabapathy, R.; Meena, R.M.

    different mangrove species and the predominant endophytic fungus Aspergillus flavus were analyzed using various in vitro assay systems (such as iron chelating capacity, reducing power, and hydroxyl radicals/ hydrogen peroxide/l-diphenyl-2-picrylhydrazyl...

  14. Are vegetated areas of mangroves attractive to juvenile and small fish? The case of Dongzhaigang Bay, Hainan Island, China

    Science.gov (United States)

    Wang, Mao; Huang, Zhenyuan; Shi, Fushan; Wang, Wenqing

    2009-11-01

    Well-developed aerial roots of mangroves make it difficult to study how fish utilize the mangrove forest as a habitat. In the present study, we compared the differences in fish assemblages in three major types of habitats of mangrove estuary (vegetated area, treeless mudflat, and creek) of a mangrove bay in Hainan Island, China, at different seasons during two consecutive years. Three types of gears, centipede net, gill net and cast net, were used in the different habitats of mangrove estuary and sampling efficiencies among gears were evaluated. Centipede nets were used in all the three types of habitats and cast nets and gill nets in treeless mudflats and creeks. Fish assemblages were dependent on gears used. Centipede net could efficiently catch fish occurring both inside and outside of vegetated areas efficiently. A total of 115 fish species in 51 families were collected. In terms of numbers of species per family, Gobiidae was the most diverse (17 species), followed by Mugilidae (5 species). Almost all of the fish were juvenile or small fish and few predators were recorded, implying low predation pressure in the bay. ANOVA analysis showed that significant seasonal and spatial variation existed in species richness, abundance, and biomass, which were less in the vegetated areas than those of treeless mudflats and creeks. The attraction of vegetated areas to fish was less than that of creeks and mudflats. Many species were specific to a particular habitat type, 4 species occurring exclusively in the creeks, 45 species occurring exclusively in the treeless mudflats, and 5 species occurring exclusively in the vegetated areas. The results indicated that mangrove estuaries were potentially attractive habitats for juvenile and small fish, but this attraction was accomplished by a connection of vegetated areas, treeless mudflats and creeks, not only by vegetated areas.

  15. Holocene mangrove swamps of West Africa sedimentology and soils

    Science.gov (United States)

    Marius, C.; Lucas, J.

    The mangrove swamps of West African Coast belong to the Atlantic type which is characterized by a small number of species. They colonize tidal environments which are dissected by numerous meandering tidal channels and are presently subject to a low rate of sediment accumulation. The mangrove vegetation exhibits a characteristic zonation pattern that basically reflects the adaptation of the various species to saline conditions. The typical zonation sequence is: Rhizophora racemosa (or Rh. mangle), Rh. mangle + Avicennia africana, Avicennia, flooded tanne, barren tanne, herbaceous tanne. The tannes are generated by aridic climatic conditions, heavy soil and water salt content, and are, in a way a peculiar feature of mangrove swamps in West Africa. The sediment colonized by the mangroves is relatively homogenous. Mineralogically, they are dominated by quartz and clay to which are associated halite, pyrite and jarosite. The clay suite is mainly composed of smectite and kaolinite. Smectite is predominant in the inlet areas and is replaced inland by kaolinite. Chemically, the sediments contain very low amounts of Ca, bases and trace elements. The mangrove swamp floodwaters have a chemical composition similar to that of seawater. It is dominated by sodium and chloride. Morphologically, the ripening of the soils appears with a chestnut mash colour horizon and buttery consistency in relation with the decomposition of fibrous roots of Rhizophora and also with pale yellow jarosite mottles in the top horizons of the tanne profiles due to the oxidation of pyrine. The two main properties of the mangrove soils of West Africa are acidity and salinity; the first is related to the high content of sulphur and the second to the sea influence. The acidity has to be connected mainly to the Rhizophora vegetation whose the root system is a real trap for catching the pyrites resulting from the reduction of the sulphates of sea water by the sulphate reducing bacteria, in a reduced

  16. Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities.

    Science.gov (United States)

    Atkinson, Scott C; Jupiter, Stacy D; Adams, Vanessa M; Ingram, J Carter; Narayan, Siddharth; Klein, Carissa J; Possingham, Hugh P

    2016-01-01

    Incorporating the values of the services that ecosystems provide into decision making is becoming increasingly common in nature conservation and resource management policies, both locally and globally. Yet with limited funds for conservation of threatened species and ecosystems there is a desire to identify priority areas where investment efficiently conserves multiple ecosystem services. We mapped four mangrove ecosystems services (coastal protection, fisheries, biodiversity, and carbon storage) across Fiji. Using a cost-effectiveness analysis, we prioritised mangrove areas for each service, where the effectiveness was a function of the benefits provided to the local communities, and the costs were associated with restricting specific uses of mangroves. We demonstrate that, although priority mangrove areas (top 20%) for each service can be managed at relatively low opportunity costs (ranging from 4.5 to 11.3% of overall opportunity costs), prioritising for a single service yields relatively low co-benefits due to limited geographical overlap with priority areas for other services. None-the-less, prioritisation of mangrove areas provides greater overlap of benefits than if sites were selected randomly for most ecosystem services. We discuss deficiencies in the mapping of ecosystems services in data poor regions and how this may impact upon the equity of managing mangroves for particular services across the urban-rural divide in developing countries. Finally we discuss how our maps may aid decision-makers to direct funding for mangrove management from various sources to localities that best meet funding objectives, as well as how this knowledge can aid in creating a national mangrove zoning scheme.

  17. Prioritising Mangrove Ecosystem Services Results in Spatially Variable Management Priorities.

    Directory of Open Access Journals (Sweden)

    Scott C Atkinson

    Full Text Available Incorporating the values of the services that ecosystems provide into decision making is becoming increasingly common in nature conservation and resource management policies, both locally and globally. Yet with limited funds for conservation of threatened species and ecosystems there is a desire to identify priority areas where investment efficiently conserves multiple ecosystem services. We mapped four mangrove ecosystems services (coastal protection, fisheries, biodiversity, and carbon storage across Fiji. Using a cost-effectiveness analysis, we prioritised mangrove areas for each service, where the effectiveness was a function of the benefits provided to the local communities, and the costs were associated with restricting specific uses of mangroves. We demonstrate that, although priority mangrove areas (top 20% for each service can be managed at relatively low opportunity costs (ranging from 4.5 to 11.3% of overall opportunity costs, prioritising for a single service yields relatively low co-benefits due to limited geographical overlap with priority areas for other services. None-the-less, prioritisation of mangrove areas provides greater overlap of benefits than if sites were selected randomly for most ecosystem services. We discuss deficiencies in the mapping of ecosystems services in data poor regions and how this may impact upon the equity of managing mangroves for particular services across the urban-rural divide in developing countries. Finally we discuss how our maps may aid decision-makers to direct funding for mangrove management from various sources to localities that best meet funding objectives, as well as how this knowledge can aid in creating a national mangrove zoning scheme.

  18. Isolation and enzyme bioprospection of endophytic bacteria associated with plants of Brazilian mangrove ecosystem.

    Science.gov (United States)

    Castro, Renata A; Quecine, Maria Carolina; Lacava, Paulo T; Batista, Bruna D; Luvizotto, Danice M; Marcon, Joelma; Ferreira, Anderson; Melo, Itamar S; Azevedo, João L

    2014-01-01

    The mangrove ecosystem is a coastal tropical biome located in the transition zone between land and sea that is characterized by periodic flooding, which confers unique and specific environmental conditions on this biome. In these ecosystems, the vegetation is dominated by a particular group of plant species that provide a unique environment harboring diverse groups of microorganisms, including the endophytic microorganisms that are the focus of this study. Because of their intimate association with plants, endophytic microorganisms could be explored for biotechnologically significant products, such as enzymes, proteins, antibiotics and others. Here, we isolated endophytic microorganisms from two mangrove species, Rhizophora mangle and Avicennia nitida, that are found in streams in two mangrove systems in Bertioga and Cananéia, Brazil. Bacillus was the most frequently isolated genus, comprising 42% of the species isolated from Cananéia and 28% of the species from Bertioga. However, other common endophytic genera such as Pantoea, Curtobacterium and Enterobacter were also found. After identifying the isolates, the bacterial communities were evaluated for enzyme production. Protease activity was observed in 75% of the isolates, while endoglucanase activity occurred in 62% of the isolates. Bacillus showed the highest activity rates for amylase and esterase and endoglucanase. To our knowledge, this is the first reported diversity analysis performed on endophytic bacteria obtained from the branches of mangrove trees and the first overview of the specific enzymes produced by different bacterial genera. This work contributes to our knowledge of the microorganisms and enzymes present in mangrove ecosystems.

  19. Investigating chlorophyll and nitrogen levels of mangroves at Al-Khor, Qatar: an integrated chemical analysis and remote sensing approach.

    Science.gov (United States)

    Al-Naimi, Noora; Al-Ghouti, Mohammad A; Balakrishnan, Perumal

    2016-05-01

    Mangroves are unique ecosystems that dominate tropical and subtropical coastlines around the world. They provide shelter and nursery to wide variety of species such as fish and birds. Around 73 species of mangroves were recognized around the world. In Qatar, there is only one mangrove species Avicennia marina that is predominant along the northeastern coast. Assessing the health of these valuable ecosystems is vital for protection, management, and conservation of those resources. In this study, an integrated approach of chemical and remote sensing analysis was implemented to investigate the current status of the mangrove trees in Al-Khor, Qatar. Fifteen different A. marina trees from different locations in the mangrove forest were examined for their chlorophyll and nitrogen content levels. Soil analysis was also conducted to understand the effect of moisture on nitrogen availability. Results shows that currently, mangroves are in a good status in terms of nitrogen availability and chlorophyll levels which are related and both are key factors for photosynthesis. Remote sensing techniques were used for chlorophyll prediction. The results showed that these methods have the potential to be used for chlorophyll prediction and estimation.

  20. Mangrove forest decline

    DEFF Research Database (Denmark)

    Malik, Abdul; Mertz, Ole; Fensholt, Rasmus

    2017-01-01

    Mangrove forests in the tropics and subtropics grow in saline sediments in coastal and estuarine environments. Preservation of mangrove forests is important for many reasons, including the prevention of coastal erosion and seawater intrusion; the provision of spawning, nursery, and feeding grounds...... of diverse marine biota; and for direct use (such as firewood, charcoal, and construction material)—all of which benefit the sustainability of local communities. However, for many mangrove areas of the world, unsustainable resource utilization and the profit orientation of communities have often led to rapid...... and severe mangrove loss with serious consequences. The mangrove forests of the Takalar District, South Sulawesi, are studied here as a case area that has suffered from degradation and declining spatial extent during recent decades. On the basis of a post-classification comparison of change detection from...

  1. The Effect of Size and Ecology on Extinction Susceptibility

    Science.gov (United States)

    Huynh, C.; Yuan, A.; Heim, N.; Payne, J.

    2015-12-01

    Although life on Earth first emerged as prokaryotic organisms, it eventually evolved into billions of different species. However, extinctions on Earth, especially the five mass extinctions, have decimated species. So what leads to a species survival or demise during a mass extinction? Are certain species more susceptible to extinctions based on their size and ecology? For this project, we focused on the data of marine animals. To examine the impact of size and ecology on a species's likelihood of survival, we compared the sizes and ecologies of the survivors and victims of the five mass extinctions. The ecology, or life mode, of a genus consists of the combination of tiering, motility, and feeding mechanism. Tiering refers to the animal's typical location in the water column and sediments, motility refers to its ability to move, and feeding mechanism describes the way the organism eats; together, they describe the animal's behavior. We analyzed the effect of ecology on survival using logistic regression, which compares life mode to the success or failure of a genus during each mass extinction interval. For organism size, we found the extinct organisms' mean size (both volume and length) and compared it with the average size of survivors on a graph. Our results show that while surviving genera of mass extinctions tended to be slightly larger than those that went extinct, there was no significant difference. Even though the Permian (Changhsingian) and Triassic (Rhaetian) extinctions had larger surviving species, likewise the difference was small. Ecology had a more obvious impact on the likelihood of survival; fast-moving, predatory pelagic organisms were the most likely to go extinct, while sedentary, infaunal suspension feeders had the greatest chances of survival. Overall, ecology played a greater role than size in determining the survival of a species. With this information, we can use ecology to predict which species would survive future extinctions.

  2. Fish extinctions alter nutrient recycling in tropical freshwaters.

    Science.gov (United States)

    McIntyre, Peter B; Jones, Laura E; Flecker, Alexander S; Vanni, Michael J

    2007-03-13

    There is increasing evidence that species extinctions jeopardize the functioning of ecosystems. Overfishing and other human influences are reducing the diversity and abundance of fish worldwide, but the ecosystem-level consequences of these changes have not been assessed quantitatively. Recycling of nutrients is one important ecosystem process that is directly influenced by fish. Fish species vary widely in the rates at which they excrete nitrogen and phosphorus; thus, altering fish communities could affect nutrient recycling. Here, we use extensive field data on nutrient recycling rates and population sizes of fish species in a Neotropical river and Lake Tanganyika, Africa, to evaluate the effects of simulated extinctions on nutrient recycling. In both of these species-rich ecosystems, recycling was dominated by relatively few species, but contributions of individual species differed between nitrogen and phosphorus. Alternative extinction scenarios produced widely divergent patterns. Loss of the species targeted by fishermen led to faster declines in nutrient recycling than extinctions in order of rarity, body size, or trophic position. However, when surviving species were allowed to increase after extinctions, these compensatory responses had strong moderating effects even after losing many species. Our results underscore the complexity of predicting the consequences of extinctions from species-rich animal communities. Nevertheless, the importance of exploited species in nutrient recycling suggests that overfishing could have particularly detrimental effects on ecosystem functioning.

  3. Extent of mangrove nursery habitats determines the geographic distribution of a coral reef fish in a South-Pacific archipelago.

    Directory of Open Access Journals (Sweden)

    Christelle Paillon

    Full Text Available Understanding the drivers of species' geographic distribution has fundamental implications for the management of biodiversity. For coral reef fishes, mangroves have long been recognized as important nursery habitats sustaining biodiversity in the Western Atlantic but there is still debate about their role in the Indo-Pacific. Here, we combined LA-ICP-MS otolith microchemistry, underwater visual censuses (UVC and mangrove cartography to estimate the importance of mangroves for the Indo-Pacific coral reef fish Lutjanus fulviflamma in the archipelago of New Caledonia. Otolith elemental compositions allowed high discrimination of mangroves and reefs with 83.8% and 98.7% correct classification, respectively. Reefs were characterized by higher concentrations of Rb and Sr and mangroves by higher concentrations of Ba, Cr, Mn and Sn. All adult L. fulviflamma collected on reefs presented a mangrove signature during their juvenile stage with 85% inhabiting mangrove for their entire juvenile life (about 1 year. The analysis of 2942 UVC revealed that the species was absent from isolated islands of the New Caledonian archipelago where mangroves were absent. Furthermore, strong positive correlations existed between the abundance of L. fulviflamma and the area of mangrove (r = 0.84 for occurrence, 0.93 for density and 0.89 for biomass. These results indicate that mangrove forest is an obligatory juvenile habitat for L. fulviflamma in New Caledonia and emphasize the potential importance of mangroves for Indo-Pacific coral reef fishes.

  4. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone

    Science.gov (United States)

    Osland, Michael J.; Day, Richard H.; Larriviere, Jack C.; From, Andrew S.

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  5. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans): equations for a climate sensitive mangrove-marsh ecotone.

    Science.gov (United States)

    Osland, Michael J; Day, Richard H; Larriviere, Jack C; From, Andrew S

    2014-01-01

    Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans) at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1) total aboveground biomass; (2) leaf biomass; (3) stem plus branch biomass; and (4) leaf area. Plant volume (i.e., a combination of crown area and plant height) was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  6. Arsenic enrichment in mangroves, and sediments along Karachi coast, Pakistan

    Directory of Open Access Journals (Sweden)

    Rashida Parveen

    2013-08-01

    Full Text Available Objective: To assess the arsenic (As concentration in different parts of mangroves Avicennia marina and sediments in Karachi coastal area i.e. Korangi Creek , Manora, Kakapir and Sandspit. Methods: Sites are identified for sampling owing to their vicinity to industrial activities. Sandspit is targeted for its being devoid of industries. The hydride generation atomic absorption spectrometry (HG-AAS were used to analyse the concentration of arsenic in mangrove and sediment. Results: The high concentration of As was found in roots and middle aerial part as compared to the upper part of mangroves. The concentrations of As was found higher in sediments as compared to the mangroves. There is a seasonal variation of As enrichment in mangrove and sediments as dry seasons showed higher concentration while in rainy season dilution factors may be attributed to the low level of As. The concentration variation of As in sampling sites of mangroves and sediments following the trend i.e. Korangi Creek >Manora>Kakapir>Sandspit. The statistical analysis (Two way ANOVA of data exhibited no significant difference (P>0.05 for trace metals concentrations in mangrove as well as in sediments. Conclusions: It is obvious to conclude that As should be continuously monitored in different environmental segments. The data must correlate with geographical distribution of As, quantification in different species, their solubility and bioavailability to understand the possible factors responsible for environmental pollution. The present study will be helpful to improve water management resources.

  7. Biocomplexity in Mangrove Ecosystems

    Science.gov (United States)

    Feller, I. C.; Lovelock, C. E.; Berger, U.; McKee, K. L.; Joye, S. B.; Ball, M. C.

    2010-01-01

    Mangroves are an ecological assemblage of trees and shrubs adapted to grow in intertidal environments along tropical coasts. Despite repeated demonstration of their economic and societal value, more than 50% of the world's mangroves have been destroyed, 35% in the past two decades to aquaculture and coastal development, altered hydrology, sea-level rise, and nutrient overenrichment. Variations in the structure and function of mangrove ecosystems have generally been described solely on the basis of a hierarchical classification of the physical characteristics of the intertidal environment, including climate, geomorphology, topography, and hydrology. Here, we use the concept of emergent properties at multiple levels within a hierarchical framework to review how the interplay between specialized adaptations and extreme trait plasticity that characterizes mangroves and intertidal environments gives rise to the biocomplexity that distinguishes mangrove ecosystems. The traits that allow mangroves to tolerate variable salinity, flooding, and nutrient availability influence ecosystem processes and ultimately the services they provide. We conclude that an integrated research strategy using emergent properties in empirical and theoretical studies provides a holistic approach for understanding and managing mangrove ecosystems.

  8. Ontogenetic dietary changes of coral reef fishes in the mangrove-seagress-reef continuum: stable isotope and gut-content analysis

    NARCIS (Netherlands)

    Cocheret de la Morinière, E.; Pollux, B.J.A.; Nagelkerken, I.; Hemminga, M.A.; Huiskes, A.H.L.; Van der Velde, G.

    2003-01-01

    Juveniles of a number of reef fish species develop in shallow-water 'nursery' habitats such as mangroves and seagrass beds, and then migrate to the coral reef. This implies that some reef fish species are distributed over the mangrove-seagrass-reef continuum in subpopulations with different size

  9. Algae associated with mangroves

    Digital Repository Service at National Institute of Oceanography (India)

    Dhargalkar, V.K.

    are uprooted and enter the mangrove area. The epiphytic algal flora on mangrove trunks, pneumatophores, stilt roots, upper branches and canopies are comparatively poor. With regard to biotic factors there are a number of animals grazing on mangrove associated...

  10. Extremely low genetic diversity across mangrove taxa reflects past sea level changes and hints at poor future responses.

    Science.gov (United States)

    Guo, Zixiao; Li, Xinnian; He, Ziwen; Yang, Yuchen; Wang, Wenqing; Zhong, Cairong; Greenberg, Anthony J; Wu, Chung-I; Duke, Norman C; Shi, Suhua

    2018-04-01

    The projected increases in sea levels are expected to affect coastal ecosystems. Tropical communities, anchored by mangrove trees and having experienced frequent past sea level changes, appear to be vibrant at present. However, any optimism about the resilience of these ecosystems is premature because the impact of past climate events may not be reflected in the current abundance. To assess the impact of historical sea level changes, we conducted an extensive genetic diversity survey on the Indo-Malayan coast, a hotspot with a large global mangrove distribution. A survey of 26 populations in six species reveals extremely low genome-wide nucleotide diversity and hence very small effective population sizes (N e ) in all populations. Whole-genome sequencing of three mangrove species further shows the decline in N e to be strongly associated with the speed of past changes in sea level. We also used a recent series of flooding events in Yalong Bay, southern China, to test the robustness of mangroves to sea level changes in relation to their genetic diversity. The events resulted in the death of half of the mangrove trees in this area. Significantly, less genetically diverse mangrove species suffered much greater destruction. The dieback was accompanied by a drastic reduction in local invertebrate biodiversity. We thus predict that tropical coastal communities will be seriously endangered as the global sea level rises. Well-planned coastal development near mangrove forests will be essential to avert this crisis. © 2017 John Wiley & Sons Ltd.

  11. Decadal Stability of Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan; Aljowair, Abdulaziz; Duarte, Carlos M.; Irigoien, Xabier

    2015-01-01

    Across the Earth, mangroves play an important role in coastal protection, both as nurseries and carbon sinks. However, due to various human and environmental impacts, the coverage of mangroves is declining on a global scale. The Red Sea is in the northern-most area of the distribution range of mangroves. Little is known about the surface covered by mangroves at this northern limit or about the changes experienced by Red Sea mangroves. We sought to study changes in the coverage of Red Sea mangroves by using multi-temporal Landsat data (1972, 2000 and 2013). Interestingly, our results show that there has been no decline in mangrove stands in the Red Sea but rather a slight increase. The area covered by mangroves is about 69 Km2 along the African shore and 51 Km2 along the Arabian Peninsula shore. From 1972 to 2013, the area covered by mangroves increased by about 0.29% y-1. We conclude that the trend exhibited by Red Sea mangroves departs from the general global decline of mangroves. Along the Red Sea, mangroves expanded by 12% over the 41 years from 1972 to 2013. Losses to Red Sea mangroves, mostly due to coastal development, have been compensated by afforestation projects.

  12. Decadal Stability of Red Sea Mangroves

    KAUST Repository

    Almahasheer, Hanan

    2015-12-15

    Across the Earth, mangroves play an important role in coastal protection, both as nurseries and carbon sinks. However, due to various human and environmental impacts, the coverage of mangroves is declining on a global scale. The Red Sea is in the northern-most area of the distribution range of mangroves. Little is known about the surface covered by mangroves at this northern limit or about the changes experienced by Red Sea mangroves. We sought to study changes in the coverage of Red Sea mangroves by using multi-temporal Landsat data (1972, 2000 and 2013). Interestingly, our results show that there has been no decline in mangrove stands in the Red Sea but rather a slight increase. The area covered by mangroves is about 69 Km2 along the African shore and 51 Km2 along the Arabian Peninsula shore. From 1972 to 2013, the area covered by mangroves increased by about 0.29% y-1. We conclude that the trend exhibited by Red Sea mangroves departs from the general global decline of mangroves. Along the Red Sea, mangroves expanded by 12% over the 41 years from 1972 to 2013. Losses to Red Sea mangroves, mostly due to coastal development, have been compensated by afforestation projects.

  13. Keragaman ikan di perairan ekosistem mangrove Desa Jaring Halus Kabupaten Langkat, Sumatera Utara

    Directory of Open Access Journals (Sweden)

    Diandra Putri

    2017-08-01

    Full Text Available Mangrove areas of Jaring Halus village have the potential of fish resources. Fish found in mangrove ecosystems, both settled and just transit to spawning and nursery will increase biodiversity in these ecosystems. This study aims to determine the diversity of fish species found in the waters of the mangrove areas of Jaring Halus village Langkat District. Sampling was done 3 times in December 2016 - January 2017 with an interval of 2 weeks for a period of two months. Fish samples obtained by using nets to catch fish (Fixed Gill Net that is attached to the stake. Total fish species were obtained as many as 19 species of fish belonging to the 8 orders, 14 families, and 16 genera. Fish from Family Mugilidae and Ambassidae and Gobiidae always found in every station and at every time of data collection. In station 1 found 12 species, station 2 found 10 species and station 3 found nine types. The first sampling was obtained 11 species of fish, the second sampling found 15 species of fish. In the third sampling found 14 species of fish. The fish was dominated seriding fish (A. buruensis of family Ambassidae, anchovy spikes (S. heterolobus of family Engraulidae, and mullets (V. Engeli of family Mugilidae and Mudskipper (P. Kaloko of family Gobiidae Kawasan perairan mangrove Desa Jaring Halus memiliki potensi sumberdaya ikan. Ikan yang terdapat pada ekosistem mangrove, baik yang menetap atau hanya transit untuk melakukan pemijahan serta memelihara anakannya akan menambah keanekaragaman hayati pada ekosistem tersebut. Penelitian ini bertujuan untuk mengetahui keragaman jenis ikan yang terdapat pada perairan kawasan mangrove. Sampling dilakukan sebanyak 3 kali yakni pada bulan Desember 2016 – Januari 2017 dengan interval kurun waktu 2 minggu selama 2 bulan. Sampel ikan diperoleh dengan cara menangkap menggunakan jaring ikan (Fixed Gill Net yang ditancapkan dengan pancang. Total jenis ikan yang diperoleh sebanyak 19 jenis ikan yang termasuk ke dalam 8 ordo

  14. Impacts of exotic mangroves and mangrove control on tide pool fish assemblages

    Science.gov (United States)

    Richard A. MacKenzie; Cailtin L. Kryss

    2013-01-01

    Fish were sampled from tide pools in Hawaii to determine how exotic mangroves Rhizophora mangle and the use of herbicides to chemically eradicate them are impacting tide pool fish assemblages. Ecological parameters were compared among mangrove-invaded, native vegetated, and non-vegetated tide pools before and after mangroves had been chemically...

  15. ANALISIS FINANSIALPOLA PENGGUNAAN LAHAN MANGROVE

    Directory of Open Access Journals (Sweden)

    Indra Gumay Febryano

    2014-11-01

    The expansion of aquaculture in coastal areas has become a major cause of mangroves deforestation. That has been taking place on a massive scale and impact on the social, economics, and ecology aspects in coastal areas. This study aims to explain the value of mangrove resources through the study of the financial analysis of some mangrove land use patterns. Data were collected through in-depth interviews, participant observation, and document analysis. The results showed that some landuse patterns of mangrove in Pesawaran Regency are intensive shrimp farming, mangrove nursery, and ecotourism that financially feasible to be developed. The high value of landuse patterns for intensive shrimp ponds created a high interest on the bussinesmen to own the mangrove. When intensive shrimp farms have a negative impact to the environment and its surrounding communities, also the constrain of mangrove nursery by market, then ecotourism gives great potential to mangrove protection and its biodiversity along the empowerment of local communities.

  16. The flight of the Passenger Pigeon: phylogenetics and biogeographic history of an extinct species.

    Science.gov (United States)

    Johnson, Kevin P; Clayton, Dale H; Dumbacher, John P; Fleischer, Robert C

    2010-10-01

    The human-caused extinction of the Passenger Pigeon (Ectopistes migratorius) is one of the best known and documented of any bird. This event was particularly alarming because the Passenger Pigeon went from being one of the most numerous avian species in the world to extinct in a period of decades, when the last individual died in captivity in a Cincinnati Zoo in 1914. While a great deal of information exists on the likely direct and indirect causes of its demise, as well as information on life-history, the phylogenetic relationships of this species have been subject to considerable speculation. Here we use DNA sequences obtained from museum specimens to resolve the phylogenetic position of this species with respect to other pigeons and doves (Columbiformes). We show that the Passenger Pigeon is not related to the New World mourning doves (Zenaida) as many authors have suggested, but is the sister taxon of all other New World pigeons (Patagioenas). Biogeographic analysis suggests the Passenger Pigeon lineage may have colonized North America from Asia, and subsequently dispersed into South America, leading to a more extensive radiation of New World pigeons. Copyright 2010. Published by Elsevier Inc.

  17. Inferring about the extinction of a species using certain and uncertain sightings.

    Science.gov (United States)

    Kodikara, Saritha; Demirhan, Haydar; Stone, Lewi

    2018-04-07

    The sighting record of threatened species is often used to infer the possibility of extinction. Most of these sightings have uncertain validity. Solow and Beet(2014) developed two models using a Bayesian approach which allowed for uncertainty in the sighting record by formally incorporating both certain and uncertain sightings, but in different ways. Interestingly, the two methods give completely different conclusions concerning the extinction of the Ivory-billed Woodpecker. We further examined these two methods to provide a mathematical explanation, and to explore in more depth, as to why the results differed from one another. It was found that the first model was more sensitive to the last uncertain sighting, while the second was more sensitive to the last certain sighting. The difficulties in choosing the appropriate model are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. TINGKAT KEPEKAAN MANGROVE INDONESIA TERHADAP TUMPAHAN MINYAK (The Sensitivity Levels of Indonesian Mangrove to Oil Spills

    Directory of Open Access Journals (Sweden)

    Muarif Muarif

    2016-09-01

    Full Text Available ABSTRAK Kepekaan mangrove merupakan komponen penting dalam menentukan tingkat kepekaan ekosistem mangrove terhadap tumpahan minyak. Mangrove Indonesia dapat dikelompokkan dalam 5 tingkat kepekaan terhadap tumpahan minyak, yaitu tidak peka (Acanthus, Nypa, Inocarpus, Acrostichum, kurang peka (Aegiceras, Excoecaria, Hibiscus, Lumnitzera, Ficus, Scyphiphora, Thespasia, Merope, Osbornea, Pandanus, cukup peka (Bruguiera, Ceriops, Xylocarpus, Heritiera, peka (Rhizophora, dan sangat peka (Avicennia, dan Sonneratia. Penilaian terhadap komunitas mangrove di Indonesia menunjukkan sebagian besar tergolong ke dalam katagori sangat peka dan peka apabila komunitas mangrove tersebut terkena tumpahan minyak.   ABSTRACT The sensitivity of mangrove is an important component to determine the sensitivity of mangrove ecosystem to oil spills. The Indonesian mangrove can be grouped into five levels of sensitivity to the oil spill, include not sensitive (Acanthus, Nypa, Inocarpus, and Acrostichum, low sensitive (Aegiceras, Excoecaria, Hibiscus, Lumnitzera, Ficus, Scyphiphora, Thespasia, Merope, Osbornea, and Pandanus, intermediate sensitive (Bruguiera, Ceriops, Xylocarpus, and Heritiera, sensitive (Rhizophora, and very sensitive (Avicennia, and Sonneratia. Assessment of mangrove communities in Indonesia showed mostly belong to the category of very sensitive and sensitive if the mangrove communities injured by the oil spill.

  19. Using Landsat 5 TM Data to Identify and Map Areas of Mangrove in Tulum, Quintana Roo, Mexico

    Science.gov (United States)

    Meachum, Samuel Standish

    Mangroves are recognized worldwide as a major ecosystem that provides significant ecosystem services. They are threatened due to rising pressures from human overpopulation and economic development. The Caribbean Coast of Mexico's Yucatan Peninsula contains mangrove habitat that have been negatively impacted by the development of the region's tourist industry. However, little research has been done to map and quantify the extent of mangrove in the region. This study used remote sensing techniques to identify mangrove in the Municipality of Tulum located in Quintana Roo, and to produce an accurate vector based thematic map that inventories these areas. Anatomical differences were analyzed and related to high-resolution field spectral data for each mangrove species. A vector map of mangrove habitat, including areas of inland mangrove, was produced with an overall accuracy of 88%. The 19,262 ha. of mangrove identified by this study represents a 140% increase in area over previous studies.

  20. Infectious Disease, Endangerment, and Extinction

    Science.gov (United States)

    MacPhee, Ross D. E.; Greenwood, Alex D.

    2013-01-01

    Infectious disease, especially virulent infectious disease, is commonly regarded as a cause of fluctuation or decline in biological populations. However, it is not generally considered as a primary factor in causing the actual endangerment or extinction of species. We review here the known historical examples in which disease has, or has been assumed to have had, a major deleterious impact on animal species, including extinction, and highlight some recent cases in which disease is the chief suspect in causing the outright endangerment of particular species. We conclude that the role of disease in historical extinctions at the population or species level may have been underestimated. Recent methodological breakthroughs may lead to a better understanding of the past and present roles of infectious disease in influencing population fitness and other parameters. PMID:23401844

  1. Mangrove vulnerability index using GIS

    Science.gov (United States)

    Yunus, Mohd Zulkifli Mohd; Ahmad, Fatimah Shafinaz; Ibrahim, Nuremira

    2018-02-01

    Climate change, particularly its associated sea level rise, is major threat to mangrove coastal areas, and it is essential to develop ways to reduce vulnerability through strategic management planning. Environmental vulnerability can be understood as a function of exposure to impacts and the sensitivity and adaptive capacity of ecological systems towards environmental tensors. Mangrove vulnerability ranking using up to 14 parameters found in study area, which is in Pulau Kukup and Sg Pulai, where 1 is low vulnerability and 5 is very high vulnerability. Mangrove Vulnerability Index (MVI) is divided into 3 main categories Physical Mangrove Index (PMI), Biological Mangrove Index (BMI) and Hazard Mangrove Index (HMI).

  2. Methyl halide emissions from greenhouse-grown mangroves

    Science.gov (United States)

    Manley, Steven L.; Wang, Nun-Yii; Walser, Maggie L.; Cicerone, Ralph J.

    2007-01-01

    Two mangrove species, Avicennia germinans and Rhizophora mangle, were greenhouse grown for nearly 1.5 years from saplings. A single individual of each species was monitored for the emission of methyl halides from aerial tissue. During the first 240 days, salinity was incrementally increased with the addition of seawater, and was maintained between 18 and 28‰ for the duration of the study. Exponential growth occurred after 180 days. Methyl halide emissions normalized to leaf area were measured throughout the study and varied dramatically. Emission rates normalized to land area (mg m-2 y-1), assuming a LAI = 5, yielded 82 and 29 for CH3Cl, 10 and 1.6 for CH3Br, and 26 and 11 for CH3I, for A. germinans and R. mangle, respectively. From these preliminary determinations, only CH3I emissions emerge as being of possible global atmospheric significance. This study emphasizes the need for field studies of methyl halide emissions from mangrove forests.

  3. Accelerated modern human?induced species losses: Entering the sixth mass extinction

    OpenAIRE

    Ceballos, Gerardo; Ehrlich, Paul R.; Barnosky, Anthony D.; Garc?a, Andr?s; Pringle, Robert M.; Palmer, Todd M.

    2015-01-01

    The oft-repeated claim that Earth?s biota is entering a sixth ?mass extinction? depends on clearly demonstrating that current extinction rates are far above the ?background? rates prevailing between the five previous mass extinctions. Earlier estimates of extinction rates have been criticized for using assumptions that might overestimate the severity of the extinction crisis. We assess, using extremely conservative assumptions, whether human activities are causing a mass extinction. First, we...

  4. Pollen analysis of honey and beebread derived from Brazilian mangroves

    OpenAIRE

    Luz, Cynthia Fernandes Pinto da; Barth, Ortrud Monika

    2012-01-01

    Pollen analyses were performed on honey and beebread from hives in apiaries located in two distinct mangrove areas dominated by Laguncularia racemosa (L.) C.F. Gaernt. One apiary was located at the edge of Guanabara Bay, Rio de Janeiro State, and the other near Maranguá Bay, Bahia State, Brazil. We investigated the contribution of nectar and pollen from mangrove vegetation to Apis mellifera L. honey and beebread stocks. Intensive visitation to this plant species by honeybees and the presence ...

  5. DNA from the past informs ex situ conservation for the future: an "extinct" species of Galápagos tortoise identified in captivity.

    Directory of Open Access Journals (Sweden)

    Michael A Russello

    2010-01-01

    Full Text Available Although not unusual to find captive relicts of species lost in the wild, rarely are presumed extinct species rediscovered outside of their native range. A recent study detected living descendents of an extinct Galápagos tortoise species (Chelonoidis elephantopus once endemic to Floreana Island on the neighboring island of Isabela. This finding adds to the growing cryptic diversity detected among these species in the wild. There also exists a large number of Galápagos tortoises in captivity of ambiguous origin. The recently accumulated population-level haplotypic and genotypic data now available for C. elephantopus add a critical reference population to the existing database of 11 extant species for investigating the origin of captive individuals of unknown ancestry.We reanalyzed mitochondrial DNA control region haplotypes and microsatellite genotypes of 156 captive individuals using an expanded reference database that included all extant Galápagos tortoise species as well as the extinct species from Floreana. Nine individuals (six females and three males exhibited strong signatures of Floreana ancestry and a high probability of assignment to C. elephantopus as detected by Bayesian assignment and clustering analyses of empirical and simulated data. One male with high assignment probability to C. elephantopus based on microsatellite genotypic data also possessed a "Floreana-like" mitochondrial DNA haplotype.Historical DNA analysis of museum specimens has provided critical spatial and temporal components to ecological, evolutionary, taxonomic and conservation-related research, but rarely has it informed ex situ species recovery efforts. Here, the availability of population-level genotypic data from the extinct C. elephantopus enabled the identification of nine Galápagos tortoise individuals of substantial conservation value that were previously misassigned to extant species of varying conservation status. As all captive individuals of C

  6. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    International Nuclear Information System (INIS)

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes

    2013-01-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (α ETR ). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination

  7. Photosynthetic performance of restored and natural mangroves under different environmental constraints

    Energy Technology Data Exchange (ETDEWEB)

    Rovai, André Scarlate, E-mail: rovaias@hotmail.com [Universidade Federal de Santa Catarina, Departamento de Ecologia e Zoologia, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Barufi, José Bonomi, E-mail: jose.bonomi@gmail.com [Universidade Federal de Santa Catarina, Departamento de Botânica, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Pagliosa, Paulo Roberto, E-mail: paulo.pagliosa@ufsc.br [Universidade Federal de Santa Catarina, Departamento de Geociências, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); Scherner, Fernando [Universidade Federal Rural de Pernambuco, Laboratório de Ficologia, Campus Universitário, Dois Irmãos, 52171-900 Recife, PE (Brazil); Torres, Moacir Aluísio, E-mail: moatorres@cav.udesc.br [Universidade do Estado de Santa Catarina, Departamento de Engenharia Ambiental, Centro de Ciências Agroveterinárias, Av Luiz de Camões 2090, Conta Dinheiro, 88520-000 Lages, SC (Brazil); Horta, Paulo Antunes, E-mail: pahorta@ccb.ufsc.br [Universidade Federal de Santa Catarina, Departamento de Botânica, Campus Universitário, Trindade, 88040-900 Florianópolis, SC (Brazil); others, and

    2013-10-15

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (α{sub ETR}). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. -- Highlights: •Photosynthetic efficiency of natural and restored mangroves are compared. •Natural stands present higher photosynthetic performance. •Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination. •Chlorophyll a fluorescence is a useful indicator to assess short-term restoration. -- Photosynthetic performance of mangroves is reduced due to Cu and Pb contamination.

  8. Soil-plant nutrient interactions in two mangrove areas at Southern Brazil

    Directory of Open Access Journals (Sweden)

    Ana Paula Lang Martins Madi

    2016-01-01

    The results exposed that the nutritional state of the mangrove species is different and independent form the soil attributes in which they grow. Few correlations were found among leaf nutrient concentrations and soil attributes, suggesting differential selective nutrient uptake among species.

  9. Early growth interactions between a mangrove and an herbaceous salt marsh species are not affected by elevated CO2 or drought

    Science.gov (United States)

    Howard, Rebecca J.; Stagg, Camille L.; Utomo, Herry S.

    2018-01-01

    Increasing atmospheric carbon dioxide (CO2) concentrations are likely to influence future distributions of plants and plant community structure in many regions of the world through effects on photosynthetic rates. In recent decades the encroachment of woody mangrove species into herbaceous marshes has been documented along the U.S. northern Gulf of Mexico coast. These species shifts have been attributed primarily to rising sea levels and warming winter temperatures, but the role of elevated CO2 and water availability may become more prominent drivers of species interactions under future climate conditions. Drought has been implicated as a major factor contributing to salt marsh vegetation dieback in this region. In this greenhouse study we examined the effects of CO2 concentration (∼380 ppm, ∼700 ppm) and water regime (drought, saturated, flooded) on early growth of Avicennia germinans, a C3 mangrove species, and Spartina alterniflora, a C4 grass. Plants were grown in monocultures and in a mixed-species assemblage. We found that neither species responded to elevated CO2 over the 10-month duration of the experiment, and there were few interactions between experimental factors. Two effects of water regime were documented: lower A. germinanspneumatophore biomass under drought conditions, and lower belowground biomass under flooded conditions regardless of planting assemblage. Evidence of interspecific interactions was noted. Competition for aboveground resources (e.g., light) was indicated by lower S. alterniflora stem biomass in mixed-species assemblage compared to biomass in S. alterniflora monocultures. Pneumatophore biomass of A. germinans was reduced when grown in monoculture compared to the mixed-species assemblage, indicating competition for belowground resources. These interactions provide insight into how these species may respond following major disturbance events that lead to vegetation dieback. Site variation in propagule availability

  10. Persistence and extinction of a stochastic single-species population model in a polluted environment with impulsive toxicant input

    Directory of Open Access Journals (Sweden)

    Meng Liu

    2013-10-01

    Full Text Available A stochastic single-species population system in a polluted environment with impulsive toxicant input is proposed and studied. Sufficient conditions for extinction, non-persistence in the mean, strong persistence in the mean and stochastic permanence of the population are established. The threshold between strong persistence in the mean and extinction is obtained. Some simulation figures are introduced to illustrate the main results.

  11. Aboveground allometric models for freeze-affected black mangroves (Avicennia germinans: equations for a climate sensitive mangrove-marsh ecotone.

    Directory of Open Access Journals (Sweden)

    Michael J Osland

    Full Text Available Across the globe, species distributions are changing in response to climate change and land use change. In parts of the southeastern United States, climate change is expected to result in the poleward range expansion of black mangroves (Avicennia germinans at the expense of some salt marsh vegetation. The morphology of A. germinans at its northern range limit is more shrub-like than in tropical climes in part due to the aboveground structural damage and vigorous multi-stem regrowth triggered by extreme winter temperatures. In this study, we developed aboveground allometric equations for freeze-affected black mangroves which can be used to quantify: (1 total aboveground biomass; (2 leaf biomass; (3 stem plus branch biomass; and (4 leaf area. Plant volume (i.e., a combination of crown area and plant height was selected as the optimal predictor of the four response variables. We expect that our simple measurements and equations can be adapted for use in other mangrove ecosystems located in abiotic settings that result in mangrove individuals with dwarf or shrub-like morphologies including oligotrophic and arid environments. Many important ecological functions and services are affected by changes in coastal wetland plant community structure and productivity including carbon storage, nutrient cycling, coastal protection, recreation, fish and avian habitat, and ecosystem response to sea level rise and extreme climatic events. Coastal scientists in the southeastern United States can use the identified allometric equations, in combination with easily obtained and non-destructive plant volume measurements, to better quantify and monitor ecological change within the dynamic, climate sensitive, and highly-productive mangrove-marsh ecotone.

  12. Testing decision rules for categorizing species' extinction risk to help develop quantitative listing criteria for the U.S. Endangered Species Act.

    Science.gov (United States)

    Regan, Tracey J; Taylor, Barbara L; Thompson, Grant G; Cochrane, Jean Fitts; Ralls, Katherine; Runge, Michael C; Merrick, Richard

    2013-08-01

    Lack of guidance for interpreting the definitions of endangered and threatened in the U.S. Endangered Species Act (ESA) has resulted in case-by-case decision making leaving the process vulnerable to being considered arbitrary or capricious. Adopting quantitative decision rules would remedy this but requires the agency to specify the relative urgency concerning extinction events over time, cutoff risk values corresponding to different levels of protection, and the importance given to different types of listing errors. We tested the performance of 3 sets of decision rules that use alternative functions for weighting the relative urgency of future extinction events: a threshold rule set, which uses a decision rule of x% probability of extinction over y years; a concave rule set, where the relative importance of future extinction events declines exponentially over time; and a shoulder rule set that uses a sigmoid shape function, where relative importance declines slowly at first and then more rapidly. We obtained decision cutoffs by interviewing several biologists and then emulated the listing process with simulations that covered a range of extinction risks typical of ESA listing decisions. We evaluated performance of the decision rules under different data quantities and qualities on the basis of the relative importance of misclassification errors. Although there was little difference between the performance of alternative decision rules for correct listings, the distribution of misclassifications differed depending on the function used. Misclassifications for the threshold and concave listing criteria resulted in more overprotection errors, particularly as uncertainty increased, whereas errors for the shoulder listing criteria were more symmetrical. We developed and tested the framework for quantitative decision rules for listing species under the U.S. ESA. If policy values can be agreed on, use of this framework would improve the implementation of the ESA by

  13. A Review on Biodiversity, Ecosystem Services, and Perceptions of New Zealand’s Mangroves: Can We Make Informed Decisions about Their Removal?

    Directory of Open Access Journals (Sweden)

    Amrit Melissa Dencer-Brown

    2018-03-01

    Full Text Available Mangrove cover is increasing in estuaries and harbours in many areas on North Island, New Zealand. The expansion of mangroves has been attributed to anthropogenic land-use change, including urbanisation and conversion of land to agriculture. Rapid expansion of mangroves in the coastal landscape has created discord in local communities over their importance in terms of the services they deliver to both wildlife and people. Some community groups have been advocates for the large-scale removal of mangrove habitat, whilst other local residents oppose this removal. This review paper investigated and discussed pertinent biodiversity and ecosystem services studies based in New Zealand mangroves from 1950 to 2017. Results showed that the majority of biodiversity studies have targeted particular species or groups of organisms, with a focus on benthic invertebrate communities. Deficits remain in our knowledge of this expanding forest and shrub ecosystem, notably the terrestrial component of biodiversity, species community-shifts with landscape fragmentation, and associated cultural values. It is recommended that broader species assessments and a longer-term approach be applied to biodiversity monitoring in mangroves, coupled with Mātauranga Māori (Māori knowledge and western science for holistic management of this coastal ecosystem.

  14. Decline and local extinction of Fucales in French Riviera: the harbinger of future extinctions?

    Directory of Open Access Journals (Sweden)

    T. THIBAUT

    2014-03-01

    Full Text Available The French Riviera is one of the Mediterranean areas that has been longest and most thoroughly impacted by human activities. Fucales are long-lived, large-sized brown algae that constitute a good model for studying human impact on species diversity. We gathered all historical data (literature and herbarium vouchers, since the early 19th century, to reconstruct their distribution. The current distribution was established from a 7-year (2007-2013 survey of the 212-km shoreline (1/2 500 map, by means of boating, snorkelling and scuba diving. Overall, 18 taxa of Cystoseira and Sargassum have been reported. Upon comparison with historical data, 5 taxa were no longer observed (C. elegans, C. foeniculacea f. latiramosa, C. squarrosa, C. spinosa var. spinosa and S. hornschuchii while C. jabukae, previously unrecorded, was observed. In addition to these  taxa, probably extinct at a local scale, some taxa had suffered a dramatic decline (C. barbata f. barbata, C. crinita, C. spinosa var. compressa and S. acinarium or become nearly extinct (C. foeniculacea f. tenuiramosa. Three of them, which played in the past significant functional roles in coastal communities, can be considered as functionally extinct. Possible causes of decline and local extinction are discussed. A similar situation has already been reported, although at a much more local scale, in a variety of Mediterranean localities. The question therefore arises about the status of Fucales species in the Mediterranean: are some species on the brink of extinction? Is their extinction at the scale of the French Riviera the harbinger of their extinction Mediterranean–wide?

  15. Interference competition as a key determinant for spatial distribution of mangrove crabs

    KAUST Repository

    Cannicci, Stefano

    2018-02-15

    The spatial distribution of mangrove crabs has been commonly associated with tree zonation and abiotic factors such as ground temperature and soil granulometry. Conversely, no studies were designed to investigate the role of competition for resources and predation in shaping crab distribution in mangroves, despite these biotic factors are recognised as key determinants for spatial patterns observed in the communities colonising rocky and sandy intertidal habitats.We studied floral and faunal assemblages in two zones of a Sri Lankan mangrove, a man-made upper intertidal level and a natural eulittoral, mid-shore one. Leaf choice experiments were designed to study both feeding rate and intra and inter-specific interactions for food of sesarmid crabs in the two habitats in order to better understand crab spatial distribution.The two intertidal belts differed in terms of floral composition and crab species abundance. The eulittoral zone was strongly dominated by Neosarmatium smithi, while within the elevated littoral fringe four sesarmids (N. smithi, N. asiaticum, N. malabaricum and Muradium tetragonum) were more evenly distributed. At both levels, all sesarmids showed to collect significantly more Bruguiera spp. and Rhizophora apiculata leaves than Excoecaria agallocha ones. There was no temporal segregation in feeding activity among the four species, resulting in a high interference competition for leaves. Regardless of the habitat, N. smithi was always successful in winning inter-specific fights.Our results showed that the elevated littoral fringe was more crowded with crabs, but was less favourable in terms of food availability and environmental conditions. The dominance of N. smithi in gathering mangrove leaves suggests that this species may segregate the other sesarmids into less favourable habitats. The present data strongly suggest for the first time that interference competition for food can contribute to shape mangrove crab spatial distribution.

  16. Interference competition as a key determinant for spatial distribution of mangrove crabs

    KAUST Repository

    Cannicci, Stefano; Fusi, Marco; Cimó , Filippo; Dahdouh-Guebas, Farid; Fratini, Sara

    2018-01-01

    The spatial distribution of mangrove crabs has been commonly associated with tree zonation and abiotic factors such as ground temperature and soil granulometry. Conversely, no studies were designed to investigate the role of competition for resources and predation in shaping crab distribution in mangroves, despite these biotic factors are recognised as key determinants for spatial patterns observed in the communities colonising rocky and sandy intertidal habitats.We studied floral and faunal assemblages in two zones of a Sri Lankan mangrove, a man-made upper intertidal level and a natural eulittoral, mid-shore one. Leaf choice experiments were designed to study both feeding rate and intra and inter-specific interactions for food of sesarmid crabs in the two habitats in order to better understand crab spatial distribution.The two intertidal belts differed in terms of floral composition and crab species abundance. The eulittoral zone was strongly dominated by Neosarmatium smithi, while within the elevated littoral fringe four sesarmids (N. smithi, N. asiaticum, N. malabaricum and Muradium tetragonum) were more evenly distributed. At both levels, all sesarmids showed to collect significantly more Bruguiera spp. and Rhizophora apiculata leaves than Excoecaria agallocha ones. There was no temporal segregation in feeding activity among the four species, resulting in a high interference competition for leaves. Regardless of the habitat, N. smithi was always successful in winning inter-specific fights.Our results showed that the elevated littoral fringe was more crowded with crabs, but was less favourable in terms of food availability and environmental conditions. The dominance of N. smithi in gathering mangrove leaves suggests that this species may segregate the other sesarmids into less favourable habitats. The present data strongly suggest for the first time that interference competition for food can contribute to shape mangrove crab spatial distribution.

  17. Antioxidant and antifungal activities of two spices of mangrove plant extract

    Directory of Open Access Journals (Sweden)

    Somayeh Rastegar

    2016-10-01

    Full Text Available Objective: To evaluate the antifungal and the radical scavenging capacity related to antioxidant potential of ethanol and water extracts of leaves of Rhizophora mucronata (R. mucronata and Avicennia marina (A. marina mangrove plant species against five postharvest pathogenic bacteria. Methods: In vitro assessment of antioxidant and antifungal activities was evaluated in this present study for both aqueous and ethanol extracts prepared from leaves of A. marina and R. mucronata. The antioxidant activities of these mangroves were evaluated by using reducing power and 1,1-diphenyl-2-picrylhydrazyl assays with butylated hydroxytoluene and L-(+- ascorbic acid as standards. Results: The result showed that the antioxidant activities of all extracts increased with increasing concentration of extracts. However, the ethanol extracts of both species showed the highest antioxidant activities. Antimicrobial tests were then carried out by the disk diffusion method. The ethanol extracts of both species showed antifungal activities on Penicillium purpurogenum, Penicillium chrysogenum, Penicillium notatum, Aspergillus niger, Alternaria alternata and Penicillium italicum. However, none of the water extracts exhibited antifungal activity on the studied fungi. Among all the pathogens, tested Aspergillus flavus was the most resistant fungi. Different concentrations of extracts from A. marina and R. mucronata showed different amounts of control against tested fungal strains. Conclusions: This study indicated that mangrove species has natural antioxidant and antifungal properties.

  18. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    Energy Technology Data Exchange (ETDEWEB)

    Agoramoorthy, Govindasamy; Chen, F.-A. [Department of Pharmacy, Tajen University, Yanpu, Pingtung 907, Taiwan (China); Hsu, Minna J. [Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan (China)], E-mail: hsumin@mail.nsysu.edu.tw

    2008-09-15

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 {+-} 0.37 {mu}g/g) was seven times higher than mangrove plants (0.06 {+-} 0.03 {mu}g/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem.

  19. Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India

    International Nuclear Information System (INIS)

    Agoramoorthy, Govindasamy; Chen, F.-A.; Hsu, Minna J.

    2008-01-01

    Mangrove and halophytic plants occur along the coastal areas of Tamil Nadu, south India and these plants have been used in traditional medicine for centuries. Heavy metals are known to pose a potential threat to terrestrial and aquatic biota. However, little is known on the toxic levels of heavy metals found in mangrove and halophytic plants that are used in traditional medicine in India. To understand heavy metal toxicity, we investigated the bioconcentration factors (BCF) of heavy metals in leaves collected from eight mangroves and five halophytes in the protected Pichavaram mangrove forest reserve in Tamil Nadu State, south India. Data presented in this paper describe the impact of essential (Cu, Fe, Mg, Mn and Zn) and non-essential/environmentally toxic trace metals (Hg, Pb and Sn) in mangrove and halophytic medicinal plants. The concentrations of Pb among 13 plant species were higher than the normal range of contamination reported for plants. The average concentration of Hg in the halophytic plants (0.43 ± 0.37 μg/g) was seven times higher than mangrove plants (0.06 ± 0.03 μg/g) and it indicated pollutants from industrial sources affecting halophytes more than mangroves. - Metal effects occur in India's mangrove ecosystem

  20. [Tree above-ground biomass allometries for carbon stocks estimation in the Caribbean mangroves in Colombia].

    Science.gov (United States)

    Yepes, Adriana; Zapata, Mauricio; Bolivar, Jhoanata; Monsalve, Alejandra; Espinosa, Sandra Milena; Sierra-Correa, Paula Cristina; Sierra, Andrés

    2016-06-01

    The distribution of carbon in “Blue Carbon” ecosystems such as mangroves is little known, when compared with the highly known terrestrial forests, despite its particular and recognized high productivity and carbon storage capacity. The objective of this study was to analyze the above ground biomass (AGB) of the species Rhizophora mangle and Avicennia germinans from the Marine Protected Area of Distrito de Manejo Integrado (DMI), Cispatá-Tinajones-La Balsa, Caribbean Colombian coast. With official authorization, we harvested and studied 30 individuals of each species, and built allometric models in order to estimate AGB. Our AGB results indicated that the studied mangrove forests of the DMI Colombian Caribbean was of 129.69 ± 20.24 Mg/ha, equivalent to 64.85 ± 10.12 MgC/ha. The DMI has an area of 8 570.9 ha in mangrove forests, and we estimated that the total carbon potential stored was about 555 795.93 Mg C. The equations generated in this study can be considered as an alternative for the assessment of carbon stocks in AGB of mangrove forests in Colombia; as other available AGB allometric models do not discriminate mangrove forests, despite being particular ecosystems. They can be used for analysis at a more detailed scale and are considered useful to determine the carbon storage potential of mangrove forests, as a country alternative to support forest conservation and emission reduction strategies. In general, the potential of carbon storage from Colombian Caribbean mangrove forests is important and could promote the country leadership of the “blue carbon” stored.

  1. Pharmaceutically active compounds and endocrine disrupting chemicals in water, sediments and mollusks in mangrove ecosystems from Singapore.

    Science.gov (United States)

    Bayen, Stéphane; Estrada, Elvagris Segovia; Juhel, Guillaume; Kit, Lee Wei; Kelly, Barry C

    2016-08-30

    This study investigated the occurrence of bisphenol A (BPA), atrazine and selected pharmaceutically active compounds (PhACs) in mangrove habitats in Singapore in 2012-2013, using multiple tools (sediment sampling, POCIS and filter feeder molluscs). Using POCIS, the same suite of contaminants (atrazine, BPA and eleven PhACs) was detected in mangrove waters in 28-days deployments in both 2012 and 2013. POCIS concentrations ranged from pg/L to μg/L. Caffeine, BPA, carbamazepine, E1, triclosan, sulfamerazine, sulfamethazine, and lincomycin were also detected in mangrove sediments from the low pg/g dw (e.g. carbamazepine) to ng/g dw (e.g. BPA). The detection of caffeine, carbamazepine, BPA, sulfamethoxazole or lincomycin in bivalve tissues also showed that these chemicals are bioavailable in the mangrove habitat. Since there are some indications that some pharmaceutically active substances may be biologically active in the low ppb range in marine species, further assessment should be completed based on ecotoxicological data specific to mangrove species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Structure and Composition of Mangrove Associations in Tubli Bay of Bahrain as Affected by Municipal Wastewater Discharge and Anthropogenic Sedimentation

    Directory of Open Access Journals (Sweden)

    Kholoud Abou Seedo

    2017-01-01

    Full Text Available The effects of municipal wastewater discharge and anthropogenic sedimentation on the structure and composition of gray mangrove (Avicennia marina (Forsk. Vierh. communities along Tubli Bay coastlines in Bahrain were investigated. Growth and regeneration of mangrove were measured, and its community was characterized. Sediment profile was analyzed for texture, pH, and salinity. Mangrove area covered by sand depositions was measured using Google Earth Pro. ANOVA and regression tests were employed in the analysis of the data. Results indicated that mangrove overwhelmingly dominated plant community in the study area, which was zoned by a community of other salt-tolerant species. Three main habitats exist in the study area with high similarity in their floristic composition. Species richness and the number of habitats were low due to the aridity and high sediment salinity. The dilution effect of the secondary treated wastewater had a favorable effect on height and diameters of mangrove trees. However, no differences were observed in leaf area index, basal area, and density of mangrove. The long-term accumulation of anthropogenic sedimentation had a detrimental effect on the mangrove community, expressed in swath death of mangrove trees due to root burials and formation of high topography within the community boundaries.

  3. Evaluation of Rehabilitation Strategies and Management Schemes for the Improvement of Mangrove Management Programs in Lingayen Gulf

    OpenAIRE

    Severino Salmo III; Dante Torio; Janalezza Morvenna Esteban

    2007-01-01

    We evaluated the mangrove rehabilitation strategies and management schemes in five municipalities in Lingayen Gulf (Bolinao, Anda, Bani, Alaminos and San Fernando). Mangrove planting appears to be the first and only option used in the area, ignoring other recommended management strategies, e.g. conservation, landscaping, and sustainable production. All planting sites were located in coastal fringes and are mostly monospeficic stands of the species Rhizophora mucronata. The planted mangroves w...

  4. Mass extinctions vs. uniformitarianism in biological evolution

    Energy Technology Data Exchange (ETDEWEB)

    Bak, P.; Paczuski, M.

    1995-12-31

    It is usually believed that Darwin`s theory leads to a smooth gradual evolution, so that mass extinctions must be caused by external shocks. However, it has recently been argued that mass extinctions arise from the intrinsic dynamics of Darwinian evolution. Species become extinct when swept by intermittent avalanches propagating through the global ecology. These ideas are made concrete through studies of simple mathematical models of co-evolving species. The models exhibit self-organized criticality and describe some general features of the extinction pattern in the fossil record.

  5. Seasonal variation in heavy metal concentration in mangrove foliage

    Digital Repository Service at National Institute of Oceanography (India)

    Untawale, A.G.; Wafar, S.; Bhosle, N.B.

    Seasonal variation in the concentration of some heavy metals in the leaves of seven species of mangrove vegetation from Goa, revealed that maximum concentration of iron and manganese occurs during the monsoon season without any significant toxic...

  6. Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments

    Science.gov (United States)

    Sweetman, A.K.; Middelburg, J.J.; Berle, A.M.; Bernardino, A.F.; Schander, C.; Demopoulos, A.W.J.; Smith, C.R.

    2010-01-01

    To evaluate how mangrove invasion and removal can modify benthic carbon cycling processes and ecosystem functioning, we used stable-isotopically labelled algae as a deliberate tracer to quantify benthic respiration and C-flow through macrofauna and bacteria in sediments collected from (1) an invasive mangrove forest, (2) deforested mangrove sites 2 and 6 years after removal of above-sediment mangrove biomass, and (3) two mangrove-free, control sites in the Hawaiian coastal zone. Sediment oxygen consumption (SOC) rates were significantly greater in the mangrove and mangrove removal site experiments than in controls and were significantly correlated with total benthic (macrofauna and bacteria) biomass and sedimentary mangrove biomass (SMB). Bacteria dominated short-term C-processing of added microalgal-C and benthic biomass in sediments from the invasive mangrove forest habitat. In contrast, macrofauna were the most important agents in the short-term processing of microalgal-C in sediments from the mangrove removal and control sites. Mean faunal abundance and short term C-uptake rates in sediments from both removal sites were significantly higher than in control cores, which collectively suggest that community structure and short-term C-cycling dynamics in habitats where mangroves have been cleared can remain fundamentally different from un-invaded mudflat sediments for at least 6-yrs following above-sediment mangrove removal. In summary, invasion by mangroves can lead to large shifts in benthic ecosystem function, with sediment metabolism, benthic community structure and short-term C-remineralization dynamics being affected for years following invader removal. ?? 2010 Author(s).

  7. The impact of shrimp farming effluent on bacterial communities in mangrove waters, Ceará, Brazil.

    Science.gov (United States)

    Sousa, O V; Macrae, A; Menezes, F G R; Gomes, N C M; Vieira, R H S F; Mendonça-Hagler, L C S

    2006-12-01

    The effects of shrimp farm effluents on bacterial communities in mangroves have been infrequently reported. Classic and molecular biology methods were used to survey bacterial communities from four mangroves systems. Water temperature, salinity, pH, total heterotrophic bacteria and maximum probable numbers of Vibrio spp. were investigated. Genetic profiles of bacterial communities were also characterized by polymerase chain reaction (PCR) amplification of eubacterial and Vibrio 16S rDNA using denaturing gradient gel electrophoresis (DGGE). Highest heterotrophic counts were registered in the mangrove not directly polluted by shrimp farming. The Enterobacteriaceae and Chryseomonas luteola dominated the heterotrophic isolates. Vibrio spp. pathogenic to humans and shrimps were identified. Eubacterial genetic profiles suggest a shared community structure independent of mangrove system. Vibrio genetic profiles were mangrove specific. Neither microbial counts nor genetic profiling revealed a significant decrease in species richness associated with shrimp farm effluent. The complex nature of mangrove ecosystems and their microbial communities is discussed.

  8. Soil Respiration of Three Mangrove Forests on Sanibel Island, Florida

    Science.gov (United States)

    Cartwright, F.; Bovard, B. D.

    2011-12-01

    Carbon cycling studies conducted in mangrove forests have typically focused on aboveground processes. Our understanding of carbon storage in these systems is therefore limited by the lack information on belowground processes such as fine root production and soil respiration. To our knowledge there exist no studies investigating temporal patterns in and environmental controls on soil respiration in multiple types of mangrove ecosystems concurrently. This study is part of a larger study on carbon storage in three mangrove forests on Sanibel Island, Florida. Here we report on eight months of soil respiration data within these forests that will ultimately be incorporated into an annual carbon budget for each habitat type. Soil respiration was monitored in the following three mangrove habitat types: a fringe mangrove forest dominated by Rhizophora mangle, a basin mangrove forest dominated by Avicennia germinans, and a higher elevation forest comprised of a mix of Avicennia germinans and Laguncularia racemosa, and non-woody salt marsh species. Beginning in June of 2010, we measured soil emissions of carbon dioxide at 5 random locations within three-100 m2 plots within each habitat type. Sampling was performed at monthly intervals and conducted over the course of three days. For each day, one plot from each habitat type was measured. In addition to soil respiration, soil temperature, salinity and gravimetric moisture content were also measured. Our data indicate the Black mangrove forest, dominated by Avicennia germinans, experiences the highest rates of soil respiration with a mean rate of 4.61 ± 0.60 μmol CO2 m-2 s-1. The mixed mangrove and salt marsh habitat has the lowest soil carbon emission rates with a mean of 2.78 ± 0.40 μmol CO2 m-2 s-1. Soil carbon effluxes appear to peak in the early part of the wet season around May to June and are lower and relatively constant the remainder of the year. Our data also suggest there are important but brief periods where

  9. Mangroves Response to Climate Change: A Review of Recent Findings on Mangrove Extension and Distribution

    Directory of Open Access Journals (Sweden)

    Mario D.P. Godoy

    2015-06-01

    Full Text Available Mangroves function as a natural coastline protection for erosion and inundation, providing important environmental services. Due to their geographical distribution at the continent-ocean interface, the mangrove habitat may suffer heavy impacts from global climate change, maximized by local human activities occurring in a given coastal region. This review analyzed the literature published over the last 25 years, on the documented response of mangroves to environmental change caused by global climate change, taking into consideration 104 case studies and predictive modeling, worldwide. Most studies appeared after the year 2000, as a response to the 1997 IPCC report. Although many reports showed that the world's mangrove area is decreasing due to direct anthropogenic pressure, several others, however, showed that in a variety of habitats mangroves are expanding as a response to global climate change. Worldwide, pole ward migration is extending the latitudinal limits of mangroves due to warmer winters and decreasing the frequency of extreme low temperatures, whereas in low-lying coastal plains, mangroves are migrating landward due to sea level rise, as demonstrated for the NE Brazilian coast. Taking into consideration climate change alone, mangroves in most areas will display a positive response. In some areas however, such as low-lying oceanic islands, such as in the Pacific and the Caribbean, and constrained coastlines, such as the SE Brazilian coast, mangroves will most probably not survive.

  10. Tracking a genetic signal of extinction-recolonization events in a neotropical tree species: Vouacapoua americana Aublet in French Guiana.

    Science.gov (United States)

    Dutech, Cyril; Maggia, Laurent; Tardy, Christophe; Joly, Hélène I; Jarne, Philippe

    2003-12-01

    Drier periods from the late Pleistocene and early Holocene have been hypothesized to have caused the disappearance of various rainforest species over large geographical areas in South America and restricted the extant populations to mesic sites. Subsequent improvement in climatic conditions has been associated with recolonization. Changes in population size associated with these extinction-recolonization events should have affected genetic diversity within species. However, these historical hypotheses and their genetic consequences have rarely been tested in South America. Here, we examine the diversity of the chloroplast and nuclear genomes in a Neotropical rainforest tree species, Vouacapoua americana (Leguminosae, Caesalpinioideae) in French Guiana. The chloroplast diversity was analyzed using a polymerase chain reaction-restriction fragment length polymorphism method (six pairs of primers) in 29 populations distributed over most of French Guiana, and a subset of 17 populations was also analyzed at nine polymorphic microsatellite loci. To determine whether this species has experienced extinction-recolonization, we sampled populations in areas supposedly not or only slightly affected by climatic changes, where the populations would not have experienced frequent extinction, and in areas that appear to have been recently recolonized. In the putatively recolonized areas, we found patches of several thousands of hectares homogeneous for chloroplast variation that can be interpreted as the effect of recolonization processes from several geographical origins. In addition, we observed that, for both chloroplast and nuclear genomes, the populations in newly recolonized areas exhibited a significantly smaller allelic richness than others. Controlling for geographic distance, we also detected a significant correlation between chloroplast and nuclear population differentiation. This result indicates a cytonuclear disequilibrium that can be interpreted as a historical signal

  11. Evaluating the relationship between the photochemical reflectance index and the light use efficiency in a mangrove forest with Spartina alterniflora invasion

    Science.gov (United States)

    Shi, C.; Wang, L.; Yang, S.

    2017-12-01

    Mangrove forest is an important component of wetland ecosystems, which has high productivity, strong carbon sequestration capacity and great ecological values. The light use efficiency (LUE) of photosynthesis is a major parameter for estimating plant productivity. Recent studies have shown that the photochemical reflectance index (PRI) has a strong relationship with LUE and the relationship is significantly influenced by plant species and environmental factors. In this paper, we evaluated the relationship between PRI and LUE for different mangrove species (Avicennia marina and Aegiceras corniculatum) and the effects of Spartina alterniflora invasion on the PRI-LUE relationship. The results showed that the LUE of mangroves had a good correlation with PRI, and the correlation of Avicennia marina was stronger than that of Aegiceras corniculatum. In addition, the invasion of Spartina alterniflora impaired the PRI-LUE relationship for both mangrove species.

  12. Hyperspectral band selection and classification of Hyperion image of Bhitarkanika mangrove ecosystem, eastern India

    Science.gov (United States)

    Ashokkumar, L.; Shanmugam, S.

    2014-10-01

    Tropical mangrove forests along the coast evolve dynamically due to constant changes in the natural ecosystem and ecological cycle. Remote sensing has paved the way for periodic monitoring and conservation of such floristic resources, compared to labour intensive in-situ observations. With the laboratory quality image spectra obtained from hyperspectral image data, species level discrimination in habitats and ecosystems is attainable. One of the essential steps before classification of hyperspectral image data is band selection. It is important to eliminate the redundant bands to mitigate the problems of Hughes effect that are likely to affect further image analysis and classification accuracy. This paper presents a methodology for the selection of appropriate hyperspectral bands from the EO-1 Hyperion image for the identification and mapping of mangrove species and coastal landcover types in the Bhitarkanika coastal forest region, eastern India. Band selection procedure follows class based elimination procedure and the separability of the classes are tested in the band selection process. Individual bands are de-correlated and redundant bands are removed from the bandwise correlation matrix. The percent contribution of class variance in each band is analysed from the factors of PCA component ranking. Spectral bands are selected from the wavelength groups and statistically tested. Further, the band selection procedure is compared with similar techniques (Band Index and Mutual information) for validation. The number of bands in the Hyperion image was reduced from 196 to 88 by the Factor-based ranking approach. Classification was performed by Support Vector Machine approach. It is observed that the proposed Factor-based ranking approach performed well in discriminating the mangrove species and other landcover units compared to the other statistical approaches. The predominant mangrove species Heritiera fomes, Excoecaria agallocha and Cynometra ramiflora are spectral

  13. Occurrence of potential pathogenic Aeromonas species in tropical seafood, aquafarms and mangroves off Cochin coast in South India

    Directory of Open Access Journals (Sweden)

    Alphonsa Vijaya Joseph

    2013-12-01

    Full Text Available Background: The genus Aeromonas include gram-negative, motile, facultative anaerobic, rod shaped and oxidase positive bacteria comprising several species, associated with the aquatic environment. Aeromonas species have been implicated in human pathogenesis and are linked with gastroenteritis, muscle infections, septicemia, and skin diseases. In fish they are renowned as enteric pathogens causing haemorrhagic septicemia, fin rot, soft tissue rot and furunculosis resulting in major die-offs and fish kills. Aim: This study reports the occurrence of potential pathogenic Aeromonas sp. in tropical seafood (Squids, Prawns and Mussels, aquafarms and mangroves of Cochin, Kerala, South India. Materials and Methods :Tropical seafood (Squid, Prawn and Mussel, sediment and water samples from aquafarms and associated mangroves were screened for Aeromonas contamination. The isolates were identified by 16S rDNA sequence analysis and subjected to morphological and biochemical characterization. Haemolytic assay was used for determining pathogenicity of the organisms. Antibiotic susceptibility against 12 antibiotics were performed and the MAR index was calculated. Results: A total of 134 isolates were recovered from the samples of which 15 were identified as Aeromonas species by 16S rDNA sequence analysis and were assigned to 5 species namely, A. hydrophila, A. enteropelogenes, A. caviae, A. punctataand A. aquarorium. Morphological, biochemical and phylogenetic analyses revealed relatedness and variability among the strains. All the isolates were haemolytic on blood agar indicating their pathogenicity. The isolates exhibited varying degrees of resistance to vancomycin (86.66%, ampicillin (46.66%, nalidixic acid (20%, tetracycline (6.66%, co-trimaxozole (6.66% and rifampicin (6.66% and were susceptible to antibiotics like gentamycin, streptomycin, trimethoprim, azithromycin, cefixime and chloramphenicol. 20% of Aeromonas sp. showed MAR index > 0.2 indicative of the

  14. Distribution and diversity of airborne microflora under mangrove forest at sandspit area karachi, pakistan

    International Nuclear Information System (INIS)

    Nazim, K.; Khan, M.U.; Ali, Q.M.; Ahmed, M.; Shaukat, S.S.; Sherwani, S.K.

    2012-01-01

    Fungi and bacteria are heterotrophic decomposers that grow on organic matter and occupy various habitats in mangrove forests. This paper deals with the distribution and diversity of air-borne microbiota (fungi and bacteria) under a mangrove forest at Sandspit, Pakistan. A permanent stand was set up at Sandspit to observe the qualitative and quantitative variations throughout the year, using petri plate techniques. During the study, a total of 16 fungal species, viz., Aspergillus niger, A. fumigatus, A. sulphureus, A. terreus, A. wentii, A. flavus, Alternaria alternata, A. maritima, A. porri, Alternaria sp., Rhizopus varians, Mucormucedo, Penicillium sp., P. notatum, Dreshellera biseptata, Exosporiella fungorum, Cladosporium oxysporum and 14420 +- 267 bacterial colonies were recorded from the selected site. The study revealed that the fungi were the major component of airborne microflora in mangrove environment. It was observed that both fungal species and number of bacterial colonies were higher in summer than in winter. It is anticipated that the temperature and salinity of sea-water directly affect the diversity of fungi and bacteria in mangroves environment. The maximum diversity H' (1.906) was recorded in August whereas the minimum H' (1.053) was recorded in March. It is hoped that this research will add to our knowledge pertaining to the distribution and diversity of the airborne microbiota (bacteria and fungi) in mangrove ecosystem. (author)

  15. Global patterns of extinction risk in marine and non-marine systems.

    Science.gov (United States)

    Webb, Thomas J; Mindel, Beth L

    2015-02-16

    Despite increasing concern over the effects of human activities on marine ecosystems, extinction in the sea remains scarce: 19-24 out of a total of >850 recorded extinctions implies a 9-fold lower marine extinction rate compared to non-marine systems. The extent of threats faced by marine systems, and their resilience to them, receive considerable attention, but the detectability of marine extinctions is less well understood. Before its extinction or threat status is recorded, a species must be both taxonomically described and then formally assessed; lower rates of either process for marine species could thus impact patterns of extinction risk, especially as species missing from taxonomic inventories may often be more vulnerable than described species. We combine data on taxonomic description with conservation assessments from the International Union for Conservation of Nature (IUCN) to test these possibilities across almost all marine and non-marine eukaryotes. We find that the 9-fold lower rate of recorded extinctions and 4-fold lower rate of ongoing extinction risk across marine species can be explained in part by differences in the proportion of species assessed by the IUCN (3% cf. 4% of non-marine species). Furthermore, once taxonomic knowledge and conservation assessments pass a threshold level, differences in extinction risk between marine and non-marine groups largely disappear. Indeed, across the best-studied taxonomic groups, there is no difference between marine and non-marine systems, with on average between 20% and 25% of species being threatened with extinction, regardless of realm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Geography of current and future global mammal extinction risk.

    Directory of Open Access Journals (Sweden)

    Ana D Davidson

    Full Text Available Identifying which species are at greatest risk, what makes them vulnerable, and where they are distributed are central goals for conservation science. While knowledge of which factors influence extinction risk is increasingly available for some taxonomic groups, a deeper understanding of extinction correlates and the geography of risk remains lacking. Here, we develop a predictive random forest model using both geospatial and mammalian species' trait data to uncover the statistical and geographic distributions of extinction correlates. We also explore how this geography of risk may change under a rapidly warming climate. We found distinctive macroecological relationships between species-level risk and extinction correlates, including the intrinsic biological traits of geographic range size, body size and taxonomy, and extrinsic geographic settings such as seasonality, habitat type, land use and human population density. Each extinction correlate exhibited ranges of values that were especially associated with risk, and the importance of different risk factors was not geographically uniform across the globe. We also found that about 10% of mammals not currently recognized as at-risk have biological traits and occur in environments that predispose them towards extinction. Southeast Asia had the most actually and potentially threatened species, underscoring the urgent need for conservation in this region. Additionally, nearly 40% of currently threatened species were predicted to experience rapid climate change at 0.5 km/year or more. Biological and environmental correlates of mammalian extinction risk exhibit distinct statistical and geographic distributions. These results provide insight into species-level patterns and processes underlying geographic variation in extinction risk. They also offer guidance for future conservation research focused on specific geographic regions, or evaluating the degree to which species-level patterns mirror spatial

  17. Geography of current and future global mammal extinction risk.

    Science.gov (United States)

    Davidson, Ana D; Shoemaker, Kevin T; Weinstein, Ben; Costa, Gabriel C; Brooks, Thomas M; Ceballos, Gerardo; Radeloff, Volker C; Rondinini, Carlo; Graham, Catherine H

    2017-01-01

    Identifying which species are at greatest risk, what makes them vulnerable, and where they are distributed are central goals for conservation science. While knowledge of which factors influence extinction risk is increasingly available for some taxonomic groups, a deeper understanding of extinction correlates and the geography of risk remains lacking. Here, we develop a predictive random forest model using both geospatial and mammalian species' trait data to uncover the statistical and geographic distributions of extinction correlates. We also explore how this geography of risk may change under a rapidly warming climate. We found distinctive macroecological relationships between species-level risk and extinction correlates, including the intrinsic biological traits of geographic range size, body size and taxonomy, and extrinsic geographic settings such as seasonality, habitat type, land use and human population density. Each extinction correlate exhibited ranges of values that were especially associated with risk, and the importance of different risk factors was not geographically uniform across the globe. We also found that about 10% of mammals not currently recognized as at-risk have biological traits and occur in environments that predispose them towards extinction. Southeast Asia had the most actually and potentially threatened species, underscoring the urgent need for conservation in this region. Additionally, nearly 40% of currently threatened species were predicted to experience rapid climate change at 0.5 km/year or more. Biological and environmental correlates of mammalian extinction risk exhibit distinct statistical and geographic distributions. These results provide insight into species-level patterns and processes underlying geographic variation in extinction risk. They also offer guidance for future conservation research focused on specific geographic regions, or evaluating the degree to which species-level patterns mirror spatial variation in the

  18. Mangrove sediment core analysis of foraminiferal assemblages - a study at two sites along the western coast of India

    Directory of Open Access Journals (Sweden)

    P. Vidya

    2014-02-01

    Full Text Available Mangroves are an unique habitat and are largely influenced by sea level changes and wave energy. Foraminifera (Protista preserved in mangrove sediments provide an excellent proxy for deducing past conditions. One meter deep mangrove core samples at two sites on the western coast of India were collected. The foraminiferal assemblages at various depths showed significant changes in the abundance and diversity down the cores. A total of 59 species belonging to 32 genera, 24 families and five suborders were identified from the cores of these two sites. The cores showed an abundance of genus Rotalidium particularly the species Rotalidium annectans. Other species identified include Ammonia, Elphidium, Nonion, Spiroloculina, Quinqueloculina, Globigerinoides, etc. The pH, organic matter and CaCO3 also showed variations down the cores. There was a lack of correlation between sediment characteristics and the abundance of foraminifera in the cores. The low diversity and differences in distribution of foraminifera compared to surface intertidal samples may be due to intense post depositional changes or anthropogenic disturbances. The mangrove ecology thus appears disturbed by various factors.

  19. Climate predictors of late quaternary extinctions

    DEFF Research Database (Denmark)

    Nogués-Bravo, David; Ohlemüller, Ralf; Batra, Persaram

    2010-01-01

    Between 50,000 and 3,000 years before present (BP) 65% of mammal genera weighing over 44 kg went extinct, together with a lower proportion of small mammals. Why species went extinct in such large numbers is hotly debated. One of the arguments proposes that climate changes underlie Late Quaternary...... extinctions, but global quantitative evidence for this hypothesis is still lacking. We test the potential role of global climate change on the extinction of mammals during the Late Quaternary. Our results suggest that continents with the highest climate footprint values, in other words, with climate changes...... of greater magnitudes during the Late Quaternary, witnessed more extinctions than continents with lower climate footprint values, with the exception of South America. Our results are consistent across species with different body masses, reinforcing the view that past climate changes contributed to global...

  20. How does climate change cause extinction?

    Science.gov (United States)

    Cahill, Abigail E; Aiello-Lammens, Matthew E; Fisher-Reid, M Caitlin; Hua, Xia; Karanewsky, Caitlin J; Ryu, Hae Yeong; Sbeglia, Gena C; Spagnolo, Fabrizio; Waldron, John B; Warsi, Omar; Wiens, John J

    2013-01-07

    Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

  1. Review: Mangrove ecosystem in Java: 2. Restoration

    Directory of Open Access Journals (Sweden)

    PURIN CANDRA PURNAMA

    2004-07-01

    Full Text Available R E V I E W:Ekosistem Mangrove di Jawa: 2. RestorasiThe restoration of mangroves has received a lot of attentions world wide for several reasons. Mangrove ecosystem is very important in term of socio-economic and ecology functions. Because of its functions, wide range of people paid attention whenever mangrove restoration taken place. Mangrove restoration potentially increases mangrove resource value, protect the coastal area from destruction, conserve biodiversity, fish production and both of directly and indirectly support the life of surrounding people. This paper outlines the activities of mangrove restoration on Java island. The extensive research has been carried out on the ecology, structure and functioning of the mangrove ecosystem. However, the findings have not been interpreted in a management framework, thus mangrove forests around the world continue to be over-exploited, converted to aquaculture ponds, and polluted. We strongly argue that links between research and sustainable management of mangrove ecosystem should be established.

  2. Anatomical explanations for acute depressions in radial pattern of axial sap flow in two diffuse-porous mangrove species: implications for water use.

    Science.gov (United States)

    Zhao, Hewei; Yang, Shengchang; Guo, Xudong; Peng, Congjiao; Gu, Xiaoxuan; Deng, Chuanyuan; Chen, Luzhen

    2018-02-01

    Mangrove species have developed uniquely efficient water-use strategies in order to survive in highly saline and anaerobic environments. Herein, we estimated the stand water use of two diffuse-porous mangrove species of the same age, Sonneratia apetala Buch. Ham and Sonneratia caseolaris (L.) Engl., growing in a similar intertidal environment. Specifically, to investigate the radial patterns of axial sap flow density (Js) and understand the anatomical traits associated with them, we measured axial sap flow density in situ together with micromorphological observations. A significant decrease of Js was observed for both species. This result was accompanied by the corresponding observations of wood structure and blockages in xylem sapwood, which appeared to influence and, hence, explained the acute radial reductions of axial sap flow in the stems of both species. However, higher radial resistance in sapwood of S. caseolaris caused a steeper decline of Js radially when compared with S. apetala, thus explaining the latter's more efficient use of water. Without first considering acute reductions in Js into the sapwood from the outer bark, a total of ~55% and 51% of water use would have been overestimated, corresponding to average discrepancies in stand water use of 5.6 mm day-1 for S. apetala trees and 2.5 mm day-1 for S. caseolaris trees. This suggests that measuring radial pattern of Js is a critical factor in determining whole-tree or stand water use. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. From dinosaurs to dodos: who could and should we de-extinct?

    Directory of Open Access Journals (Sweden)

    Kate Elizabeth Jones

    2014-03-01

    Full Text Available Reviving extinct species with new synthetic biology tools is as exciting an idea as it is controversial. Genomic manipulation of extinct species’ close relatives and/or cloning suitably preserved cells are the two main ways synthetic biology could be used to revive species. Discussions of where to target initial revival efforts have focused on species’ charisma (e.g. Woolly mammoth, Passenger pigeon with less emphasis on feasibility or the ecological, ethical and legal considerations. Here I discuss who we could and should de-extinct, focussing on these latter criteria. Given the current devastating anthropogenic pressures on biodiversity, I suggest that a better use of de-extinction technologies would be to focus them on preventing species extinctions by restoring populations of critically endangered species. For example, this could be through increasing population numbers through cloning or genomic manipulation to better enable susceptible species to adapt to global change or by restoring genetic diversity by reviving extinct sub-species (e.g. Quagga, Barbary lion. This idea circumvents many of the criticisms of de-extinction from conservationists, whilst retaining public interest in de-extinction.

  4. A laboratory approach for determining the effect of oils and dispersants on mangroves

    Energy Technology Data Exchange (ETDEWEB)

    Baca, B.J.

    1982-10-01

    An experimental approach was developed and applied to testing the effects of oil and dispersant combinations on the growth of mangrove seedlings (trees of the intertidal tropics). A controlled growth chamber was employed to test the effects of different oils and dispersed oils in an array of dosages applied to different parts of the plants. Preliminary test results are reported for two species of mangroves collected from five localities, including both oiled and unoiled estuaries. Differences occurred between species, substances, dosages, the part of the plant dosed, and the presence of chronic oil pollution at localities from which the stocks were collected. Avicennia germinans (L.) L. (black mangrove) was more sensitive than Rhizophora mangle L. (red mangrove) when exposed to almost all substances tested. Light Arabian crude oil (LA) and light Arabian crude oil dispersed (LAD) were the most toxic substances tested. No. 2 fuel oil (N2) and No. 2 fuel oil dispersed (N2D) were as toxic as LA and LAD, except for an increase (an enhancement effect) in foliage and stem growth in Avicennia at lower dosages. Bunker C oil (BC) was the least toxic of the oils tested, resulting in the reduction of foliage and stem growth only at the highest dosage tested in Avicennia. Bunker C oil dispersed (BCD) failed to show effects in either species at any dosage tested. The leaves of Rhizophora were the most sensitive part of the plant tested.

  5. Assessing Genetic Diversity after Mangrove Restoration in Brazil: Why Is It So Important?

    Directory of Open Access Journals (Sweden)

    Renan Granado

    2018-04-01

    Full Text Available Vital for many marine and terrestrial species, and several other environmental services, such as carbon sink areas, the mangrove ecosystem is highly threatened due to the proximity of large urban centers and climate change. The forced fragmentation of this ecosystem affects the genetic diversity distribution among natural populations. Moreover, while restoration efforts have increased, few studies have analyzed how recently-planted areas impact the original mangrove genetic diversity. We analyzed the genetic diversity of two mangroves species (Laguncularia racemosa and Avicennia schaueriana in three areas in Brazil, using inter-simple sequence repeat (ISSR markers. Using the local approach, we identified the genetic diversity pool of a restored area compared to nearby areas, including the remnant plants inside the restored area, one well-conserved population at the shore of Guanabara Bay, and one impacted population in Araçá Bay. The results for L. racemosa showed that the introduced population has lost genetic diversity by drift, but remnant plants with high genetic diversity or incoming propagules could help improve overall genetic diversity. Avicennia schaueriana showed similar genetic diversity, indicating an efficient gene flow. The principal component analysis showing different connections between both species indicate differences in gene flow and dispersal efficiencies, highlighting the needed for further studies. Our results emphasize that genetic diversity knowledge and monitoring associated with restoration actions can help avoid bottlenecks and other pitfalls, especially for the mangrove ecosystem.

  6. Current extinction rates of reptiles and amphibians.

    Science.gov (United States)

    Alroy, John

    2015-10-20

    There is broad concern that a mass extinction of amphibians and reptiles is now underway. Here I apply an extremely conservative Bayesian method to estimate the number of recent amphibian and squamate extinctions in nine important tropical and subtropical regions. The data stem from a combination of museum collection databases and published site surveys. The method computes an extinction probability for each species by considering its sighting frequency and last sighting date. It infers hardly any extinction when collection dates are randomized and it provides underestimates when artificial extinction events are imposed. The method also appears to be insensitive to trends in sampling; therefore, the counts it provides are absolute minimums. Extinctions or severe population crashes have accumulated steadily since the 1970s and 1980s, and at least 3.1% of frog species have already disappeared. Based on these data and this conservative method, the best estimate of the global grand total is roughly 200 extinctions. Consistent with previous results, frog losses are heavy in Latin America, which has been greatly affected by the pathogenic chytrid fungus Batrachochytrium dendrobatidis. Extinction rates are now four orders-of-magnitude higher than background, and at least another 6.9% of all frog species may be lost within the next century, even if there is no acceleration in the growth of environmental threats.

  7. Massarina armatispora sp. nov., a new intertidal ascomycete from mangroves

    Digital Repository Service at National Institute of Oceanography (India)

    Hyde, K.D.; Vrijmoed, L.L.P.; Chinnaraj, S.; Jones, E.B.G.

    Massarina armatispora sp. nov. is described from dead intertidal mangrove wood collected in India and Hong Kong. The new taxon is compared with other M. species, and its placement in the genus Massarina is discussed...

  8. The Effect of Mangrove Leaf Litter Enrichment on Macrobenthic Colonization of Defaunated Sandy Substrates

    Science.gov (United States)

    Lee, S. Y.

    1999-11-01

    The importance of exported mangrove materials to nearshore macrobenthos has largely been predicted based upon decomposition and utilization studies conducted within the mangrove environment, and from quantitative measurements of export. The present study evaluated the impact of mangrove leaf litter enrichment on non-mangrove substrates in a high-salinity microcosm experiment. Fortnightly addition of Kandelia candel leaf detritus at levels equivalent to 0·66 and 0·33 mg cm -2day -1in defaunated sand in microcosms maintained under high salinity conditions and on a sandy substrate resulted in no significant differences from the control in total faunal dry biomass or ash-free dry weight (AFDW) after 28, 73, 137 and 217 days of experiment. Duration of experiment was significant in determining the biomass (both dry weight and AFDW) of the macrofaunal assemblage in the microcosms, but neither enrichment nor its interaction with time had an effect. Species richness, Shannon diversity and evenness, and the total number of individuals, however, decreased in the order control>low enrichment>high enrichment for almost all sampling dates. By contrast, soluble tannins in the microcosm sediment demonstrated the reverse pattern. Both duration of experiment and enrichment were significant in determining species richness and the total number of individuals. The interaction between time and enrichment level was significant in the former but not the latter case. Discriminant analysis performed on the species abundance data indicated distinct animal assemblages characteristic of the three enrichment levels. These findings suggest that mangrove organic matter may not necessarily result in enhancement effects on marine benthos but high concentrations of tannins may hamper colonization by the macrobenthos.

  9. Trends in the extinction of carnivores in Madagascar

    Directory of Open Access Journals (Sweden)

    Cartagena–Matos, B.

    2017-02-01

    Full Text Available The extinction of top predators, such as mammalian carnivores can lead to dramatic changes in foodweb structure and ecosystem dynamics. Since all native Malagasy terrestrial mammalian carnivores are endemic, their extinction implies a significant loss of biodiversity in Madagascar. Here we review the literature on Madagascar’s mammalian carnivores, aiming to determine which species are most likely to become extinct in the near future in view of the factors threatening their survival. We scored each factor according to its impact on the species. According to our results, the giant–striped mongoose, Galidictis grandidieri, is the most likely species to next become extinct. This is no surprise because this species is considered one of the rarest carnivores in the world, inhabiting only a small, threatened forest ecosystem. Our results emphasize the need for robust data about each species to help and support decision–makers implement conservation measures.

  10. Tide as steering factor in structuring archaeal and bacterial ammonia-oxidizing communities in mangrove forest soils dominated by Avicennia germinans and Rhizophora mangle

    NARCIS (Netherlands)

    Marcos, Magali S.; Barboza, A.D.H.; Keijzer, R.M.; Laanbroek, H.J.

    2018-01-01

    Mangrove species are adapted to grow at specific zones in a tidal gradient. Here we tested the hypothesis that the archaeal and bacterial ammonia-oxidizing microbial communities differ in soils dominated by the mangrove species Avicennia germinans and Rhizophora mangle. Two of the sampling locations

  11. An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme.

    Science.gov (United States)

    Valderrama-Landeros, L; Flores-de-Santiago, F; Kovacs, J M; Flores-Verdugo, F

    2017-12-14

    Optimizing the classification accuracy of a mangrove forest is of utmost importance for conservation practitioners. Mangrove forest mapping using satellite-based remote sensing techniques is by far the most common method of classification currently used given the logistical difficulties of field endeavors in these forested wetlands. However, there is now an abundance of options from which to choose in regards to satellite sensors, which has led to substantially different estimations of mangrove forest location and extent with particular concern for degraded systems. The objective of this study was to assess the accuracy of mangrove forest classification using different remotely sensed data sources (i.e., Landsat-8, SPOT-5, Sentinel-2, and WorldView-2) for a system located along the Pacific coast of Mexico. Specifically, we examined a stressed semiarid mangrove forest which offers a variety of conditions such as dead areas, degraded stands, healthy mangroves, and very dense mangrove island formations. The results indicated that Landsat-8 (30 m per pixel) had  the lowest overall accuracy at 64% and that WorldView-2 (1.6 m per pixel) had the highest at 93%. Moreover, the SPOT-5 and the Sentinel-2 classifications (10 m per pixel) were very similar having accuracies of 75 and 78%, respectively. In comparison to WorldView-2, the other sensors overestimated the extent of Laguncularia racemosa and underestimated the extent of Rhizophora mangle. When considering such type of sensors, the higher spatial resolution can be particularly important in mapping small mangrove islands that often occur in degraded mangrove systems.

  12. Interspecific variation of the bacterial community structure in the phyllosphere of the three major plant components of mangrove forests

    Directory of Open Access Journals (Sweden)

    Armando Cavalcante Franco Dias

    2012-06-01

    Full Text Available Mangrove forests encompass a group of trees species that inhabit the intertidal zones, where soil is characterized by the high salinity and low availability of oxygen. The phyllosphere of these trees represent the habitat provided on the aboveground parts of plants, supporting in a global scale, a large and complex microbial community. The structure of phyllosphere communities reflects immigration, survival and growth of microbial colonizers, which is influenced by numerous environmental factors in addition to leaf physical and chemical properties. Here, a combination of culture-base methods with PCR-DGGE was applied to test whether local or plant specific factors shape the bacterial community of the phyllosphere from three plant species (Avicenia shaueriana, Laguncularia racemosa and Rhizophora mangle, found in two mangroves. The number of bacteria in the phyllosphere of these plants varied between 3.62 x 10(4 in A. schaeriana and 6.26 x 10³ in R. mangle. The results obtained by PCR-DGGE and isolation approaches were congruent and demonstrated that each plant species harbor specific bacterial communities in their leaves surfaces. Moreover, the ordination of environmental factors (mangrove and plant species, by redundancy analysis (RDA, also indicated that the selection exerted by plant species is higher than mangrove location on bacterial communities at phyllosphere.

  13. Coastal sediment elevation change following anthropogenic mangrove clearing

    Science.gov (United States)

    Hayden, Heather L.; Granek, Elise F.

    2015-11-01

    Coastal mangrove forests along tropical shorelines serve as an important interface between land and sea. They provide a physical buffer protecting the coastline from erosion and act as sediment "traps" catching terrestrial sediment, thus preventing smothering of subtidal coral reefs. Coastal development that removes mangrove habitat may impact adjacent nearshore coral reefs through sedimentation and nutrient loading. We examined differences in sediment elevation change between patches of open-coast intact and anthropogenically cleared red mangroves (Rhizophora mangle) on the east side of Turneffe Atoll, Belize, to quantify changes following mangrove clearing. Samples were collected over a 24 month period at five study sites, each containing paired intact (+mangrove) and cleared (-mangrove) plots. Five sediment elevation pins were deployed in each plot: behind areas cleared of mangroves (-mangrove) and behind adjacent intact mangroves (+mangrove). Sediment elevation increased at intact mangrove sites (M = +3.83 mm, SE = 0.95) whereas cleared mangrove areas suffered elevation loss (M = -7.30 mm, SE = 3.38). Mangroves inshore of partial or continuous gaps in the adjacent fringing reefs had higher rates of elevation loss (M = -15.05 mm) than mangroves inshore of continuous fringing reefs (M = -1.90 mm). Our findings provide information on potential effects of mangrove clearing and the role of offshore habitat characteristics on coastal sediment trapping and maintenance of sediment elevation by mangroves. With implications for coastline capacity to adjust to sea level rise, these findings are relevant to management of coastal fringing mangrove forests across the Caribbean.

  14. Extinction and ecological retreat in a community of primates

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, B. E.; Godfrey, L. R.; Guilderson, T. P.; Zermeno, P.; Koch, P. L.; Dominy, N. J.

    2012-05-23

    The lemurs of Madagascar represent a prodigious adaptive radiation. At least 17 species ranging from 11 to 160 kg have become extinct during the past 2000 years. The effect of this loss on contemporary lemurs is unknown. The concept of competitive release favours the expansion of living species into vacant niches. Alternatively, factors that triggered the extinction of some species could have also reduced community-wide niche breadth. Here, we use radiocarbon and stable isotope data to examine temporal shifts in the niches of extant lemur species following the extinction of eight large-bodied species. We focus on southwestern Madagascar and report profound isotopic shifts, both from the time when now-extinct lemurs abounded and from the time immediately following their decline to the present. Unexpectedly, the past environments exploited by lemurs were drier than the protected (albeit often degraded) riparian habitats assumed to be ideal for lemurs today. Neither competitive release nor niche contraction can explain these observed trends. We develop an alternative hypothesis: ecological retreat, which suggests that factors surrounding extinction may force surviving species into marginal or previously unfilled niches.

  15. Floods and mangrove forests, friends or foes? Perceptions of relationships and risks in Cameroon coastal mangroves

    Science.gov (United States)

    Munji, Cecilia A.; Bele, Mekou Y.; Idinoba, Monica E.; Sonwa, Denis J.

    2014-03-01

    Faced with the growing influence of climate change on climate driven perturbations such as flooding and biodiversity loss, managing the relationship between mangroves and their environment has become imperative for their protection. Hampering this is the fact that the full scope of the threats faced by specific mangrove forests is not yet well documented. Amongst some uncertainties is the nature of the relationship/interaction of mangroves with climate driven perturbations prevalent in their habitat such as coastal floods. We investigated the relationship between coastal flooding and mangrove forest stabilization, identify perceptions of flood risk and responses to offset identified effects. Random household surveys were carried out within four communities purposively sampled within the Cap Cameroon. Coastal changes were investigated over a period of 43 years (1965-2008). Seasonal flooding improved access to mangrove forests and hence promoted their exploitation for non-timber forest products (NTFPs) such as fuel wood and mangrove poles. 989 ha of mangrove forests were estimated to be lost over a period of 43 years in Cap Cameroon with implications on forest resources base, ecosystem stability, and livelihoods. Alternative livelihood activities were found to be carried out to moderate interruptions in fishing, with associated implications for mangrove forest dynamics. Respondents were of the opinion that risks associated with floods and mangrove deforestation will pose a major challenge for sustainable management of mangroves. These locally relevant perceptions and responses should however enable the identification of pertinent needs, challenges and opportunities to inform and orient effective decision-making, and to facilitate the development and participation in adaptive management strategies.

  16. Mangrove diversity in the Serewe Gulf of Lombok Island West Nusa Tenggara

    Science.gov (United States)

    Irwansah, Sugiyarto, Mahajoeno, Edwi

    2017-08-01

    Mangrove forests are a valuable economic resource as important breeding grounds and nursery sites for various animal species, stabilizing coastal lands and offering protection against storms, tsunamis, and sea level rise. Mangrove forest growing along the coastline of Serewe Gulf. The Serewe Gulf has great potential in tourism and sea cultivation sector. The research was conducted in the Serewe Gulf of Lombok Island, West Nusa Tenggara for 2 months (November up to December 2016). The objective of this research is to determine the diversity of mangrove in the Serewe Gulf, Lombok Island, West Nusa Tenggara using belt transect method. The identification result shows that there are 9 families with 9 types such as Rhizophoraceae (Rhizophora mucronata), Avicenniaceae (Avicennia officinalis), Sonneratiaceae (Sonneratia alba), Casuarinaceae (Casuarina equisetifolia), Bignoniaceae (Dilochnadrone sthaceae), Malvaceae (Hibiscus tiliaceus), Lythraceae (Pemphis adicula), Aizoaceae (Sesivium portulacastrum), and Euphorbiaceae (Ricinus communis). The diversity of mangrove types in the research area is in medium rate with H' index of 1.668.

  17. Extinction vulnerability of coral reef fishes.

    Science.gov (United States)

    Graham, Nicholas A J; Chabanet, Pascale; Evans, Richard D; Jennings, Simon; Letourneur, Yves; Aaron Macneil, M; McClanahan, Tim R; Ohman, Marcus C; Polunin, Nicholas V C; Wilson, Shaun K

    2011-04-01

    With rapidly increasing rates of contemporary extinction, predicting extinction vulnerability and identifying how multiple stressors drive non-random species loss have become key challenges in ecology. These assessments are crucial for avoiding the loss of key functional groups that sustain ecosystem processes and services. We developed a novel predictive framework of species extinction vulnerability and applied it to coral reef fishes. Although relatively few coral reef fishes are at risk of global extinction from climate disturbances, a negative convex relationship between fish species locally vulnerable to climate change vs. fisheries exploitation indicates that the entire community is vulnerable on the many reefs where both stressors co-occur. Fishes involved in maintaining key ecosystem functions are more at risk from fishing than climate disturbances. This finding is encouraging as local and regional commitment to fisheries management action can maintain reef ecosystem functions pending progress towards the more complex global problem of stabilizing the climate. © 2011 Blackwell Publishing Ltd/CNRS.

  18. Advanced Land Observing Satellite Phased Array Type L-Band SAR (ALOS PALSAR to Inform the Conservation of Mangroves: Sundarbans as a Case Study

    Directory of Open Access Journals (Sweden)

    Nathalie Pettorelli

    2013-01-01

    Full Text Available Mangroves are an important bulkhead against climate change: they afford protection for coastal areas from tidal waves and cyclones, and are among the most carbon-rich forests in the tropics. As such, protection of mangroves is an urgent priority. This work provides some new information on patterns of degradation in the Sundarbans, the largest contiguous mangrove forest in the world, which are home to more than 35 reptile species, 120 commercial fish species, 300 bird species and 32 mammal species. Using radar imagery, we contrast and quantify the recent impacts of cyclone Sidr and anthropogenic degradation on this ecosystem. Our results, inferred from changes in radar backscatter, confirm already reported trends in coastline retreat for this region, with areas losing as much as 200 m of coast per year. They also suggest rapid changes in mangrove dynamics for Bangladesh and India, highlighting an overall decrease in mangrove health in the east side of the Sundarbans, and an overall increase in this parameter for the west side of the Sundarbans. As global environmental change takes its toll in this part of the world, more detailed, regular information on mangroves’ distribution and health is required: our study illustrates how different threats experienced by mangroves can be detected and mapped using radar-based information, to guide management action.

  19. Extinction of an introduced warm-climate alien species, Xenopus laevis, by extreme weather events.

    Science.gov (United States)

    Tinsley, Richard C; Stott, Lucy C; Viney, Mark E; Mable, Barbara K; Tinsley, Matthew C

    Invasive, non-native species represent a major threat to biodiversity worldwide. The African amphibian Xenopus laevis is widely regarded as an invasive species and a threat to local faunas. Populations originating at the Western Cape, South Africa, have been introduced on four continents, mostly in areas with a similar Mediterranean climate. Some introduced populations are also established in cooler environments where persistence for many decades suggests a capacity for long-term adaptation. In these cases, recent climate warming might enhance invasion ability, favouring range expansion, population growth and negative effects on native faunas. In the cool temperate UK, populations have been established for about 50 years in Wales and for an unknown period, probably >20 years, in England (Lincolnshire). Our field studies over 30 and 10 years, respectively, show that in favourable conditions there may be good recruitment, fast individual growth rates and large body size; maximum longevity exceeds 23 years. Nevertheless, areas of distribution remained limited, with numbers extinct. The winters of 2009-2010 and 2010-2011 experienced extreme cold and drought (December 2010 was the coldest in 120 years and the third driest in 100 years). The extinction of X. laevis in these areas indicates that even relatively long-established alien species remain vulnerable to rare extreme weather conditions.

  20. Crab and shellfish occurrences in the newly-grown mangrove habitats in southern Thailand

    Science.gov (United States)

    Yeesin, P.; Bautip, S.; Chesoh, S.

    2018-04-01

    Mangrove crabs and shellfish populating in Prince of Songkla University’s new grown mangrove forest were investigated from January 2011 to December 2011 and then repeated annually. A total of 12 species under 6 families of crab and 11 species under 5 families of shellfish were recorded. The most abundant family of crab was Sesarmidae (64.18 %), followed by Ocypodidae, Varunidae, Macrophthalmidae, Portunidae and Dotillidae. Episesarma mederi ( H. Milne Edwards, 1853) showed highest dominant species. In addition, the most dominant family of shellfish was Potamididae (13.79 %), followed by Melampidae, Assimineidae, Onchidiidae and Littorinidae. Sea snail (Cerithidae quadrata; Sowerby, 1866) presented the most dominant coastal mollusc species. Abundance and diversification crabs and mollusks show important component of food web of this type ecosystem. However, only trapped hold samples during low tide were collected but this preliminary finding enables reasonable specified regulation measures.

  1. Biological extinction in earth history

    Science.gov (United States)

    Raup, D. M.

    1986-01-01

    Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.

  2. Biological Extinction in Earth History

    Science.gov (United States)

    Raup, David M.

    1986-03-01

    Virtually all plant and animal species that have ever lived on the earth are extinct. For this reason alone, extinction must play an important role in the evolution of life. The five largest mass extinctions of the past 600 million years are of greatest interest, but there is also a spectrum of smaller events, many of which indicate biological systems in profound stress. Extinction may be episodic at all scales, with relatively long periods of stability alternating with short-lived extinction events. Most extinction episodes are biologically selective, and further analysis of the victims and survivors offers the greatest chance of deducing the proximal causes of extinction. A drop in sea level and climatic change are most frequently invoked to explain mass extinctions, but new theories of collisions with extraterrestrial bodies are gaining favor. Extinction may be constructive in a Darwinian sense or it may only perturb the system by eliminating those organisms that happen to be susceptible to geologically rare stresses.

  3. Fatty acids in an estuarine mangrove ecosystem

    Directory of Open Access Journals (Sweden)

    Nabeel M Alikunhi

    2010-06-01

    Full Text Available Los ácidos grasos se han utilizado con éxito para estudiar la transferencia de materia orgánica en las redes alimentarias costeras y estuarinas. Para delinear las interacciones tróficas en las redes, se analizaron perfiles de ácidos grasos en las especies de microbios (Azotobacter vinelandii y Lactobacillus xylosus, camarones (Metapenaeus monoceros y Macrobrachium rosenbergii y peces (Mugil cephalus, que están asociadas con la descomposición de las hojas de dos especies de mangle, Rhizophora apiculata y Avicennia marina. Los ácidos grasos, con excepción de los de cadena larga, exhiben cambios durante la descomposición de las hojas de mangle, con una reducción de los ácidos grasos saturados y un aumento de los monoinsaturados. Los ácidos grasos ramificados están ausentes en las hojas de mangle sin descomponer, pero presentes de manera significativa en las hojas descompuestas, en camarones y peces, representando una fuente importante para ellos. Esto revela que los microbios son productores dominantes que contribuyen significativamente con los peces y camarones en el ecosistema de manglar. Este trabajo demuestra que los marcadores biológicos de los ácidos grasos son una herramienta eficaz para la identificación de las interacciones tróficas entre los productores dominantes y consumidores en este manglar.Fatty acids have been successfully used to trace the transfer of organic matter in coastal and estuarine food webs. To delineate these web connections, fatty acid profiles were analyzed in species of microbes (Azotobacter vinelandii, and Lactobacillus xylosus, prawns (Metapenaeus monoceros and Macrobrachium rosenbergii and finfish (Mugil cephalus, that are associated with decomposing leaves of two mangrove species, Rhizophora apiculata and Avicennia marina. The fatty acids, except long chain fatty acids, exhibit changes during decomposition of mangrove leaves with a reduction of saturated fatty acids and an increase of

  4. Southern limit of the Western South Atlantic mangroves: Assessment of the potential effects of global warming from a biogeographical perspective

    Science.gov (United States)

    Soares, Mário Luiz Gomes; Estrada, Gustavo Calderucio Duque; Fernandez, Viviane; Tognella, Mônica Maria Pereira

    2012-04-01

    The objective of the present study was to determine the exact location of the latitudinal limit of western South Atlantic mangroves, and to describe how these forests develop at this limit; as well as to analyze the potential responses of these communities to global warming. The study was carried out along the coast of Santa Catarina, Brazil. Specific studies on mangrove structure were carried out in the Santo Antônio Lagoon (28°28'34″S; 48°51'40″W). The coastline of Santa Catarina was surveyed for the occurrence of mangrove species. In the mangrove located at the southernmost distributional limit, the forest structure was characterized. Mean height and diameter, trunks density and basal area were calculated. Climatic and oceanographic factors controlling the occurrence and development of the mangrove forests at their latitudinal limit were analyzed, as well as the possible changes of this limit based on global warming scenarios. The results confirmed that the Santo Antônio Lagoon is the southern limit of the western South Atlantic mangroves. At this limit, the mangrove forests show a low degree of development, defined by low mean diameter and height, and high trunks density and trunks/tree ratio. The observed structural pattern and the local alternation of these forests with salt marsh species are typical of mangrove forests at their latitudinal limits. The absence of mangroves south of Laguna and forest structure at the latitudinal limit are controlled by rigorous climate and oceanographic characteristics. In response to the planetary warming process, we expect that mangroves will expand southward, as a consequence of an increase in air and ocean surface temperatures, a reduction in the incidence of frosts, an increased influence of the Brazil Current and a decreased influence of the Falkland Current, and the availability of sheltered estuarine systems for the establishment of new mangroves.

  5. Response and adaptability of mangrove habitats from the Indian subcontinent to changing climate

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Nagle, V.L.

    ). General Circulation Models (GCM) based on data of 1990 ? 2000 projected 9-88 cm rise in sea level, increased extreme weather events and precipitation over Asian region (16,19,22), which may be attributed to the thermal expansion and melting of ice... fixation of individual mangrove species -Change in forest structure such as density, biomass, annual growth, litter production, phenological pattern, gene regulation and manipulation of mangrove and dependent biota, organic carbon and sediment...

  6. Carbon Stocks in the Small Estuarine Mangroves of Geza and Mtimbwani, Tanga, Tanzania

    Directory of Open Access Journals (Sweden)

    Edmond Alavaisha

    2016-01-01

    Full Text Available Mangrove forests offer important ecosystem services, including their high capacity for carbon sequestration and stocking. However, they face rapid degradation and loss of ecological resilience particularly at local scales due to human pressure. We conducted inventory of mangrove forests to characterise forest stand structure and estimate carbon stocks in the small estuarine mangroves of Geza and Mtimbwani in Tanga, Tanzania. Forest structure, above-ground carbon (AGC, and below-ground carbon (BGC were characterised. Soil carbon was estimated to 1 m depth using loss on ignition procedure. Six common mangrove species were identified dominated by Avicennia marina (Forsk. Vierh. and Rhizophora mucronata Lamarck. Forest stand density and basal area were 1740 stems ha−1 and 17.2 m2 ha−1 for Geza and 2334 stems ha−1 and 30.3 m2 ha−1 for Mtimbwani. Total ecosystem carbon stocks were 414.6 Mg C ha−1 for Geza and 684.9 Mg C ha−1 for Mtimbwani. Soil carbon contributed over 65% of these stocks, decreasing with depth. Mid zones of the mangrove stands had highest carbon stocks. These data demonstrate that studied mangroves are potential for carbon projects and provide the baseline for monitoring, reporting, and verification (MRV to support the projects.

  7. THE STATUS OF MOLLUSK DIVERSITY AND PHYSICAL SETTING OF THE MANGROVE ZONES IN CATANDUANES ISLAND, LUZON, PHILIPPINES

    Directory of Open Access Journals (Sweden)

    JIMMY T. MASAGCA

    2010-09-01

    Full Text Available The status of mollusk diversity and physical setting of mangrove areas in Catanduanes island, Luzon (Philippines are described. A total of 57 species of mollusks, consisting of 27 gastropods and 30 bivalves were recorded in the island. Registering higher values of species diversity indices (Margalef and species richness (Menhinick are the prosobranch, Terebralia sulcata; corbiculid bivalve, Geloina coaxans; potamidiids, Cerithidea cingulata and Cerithidea rhizophorarum; and two other species of the genus Littorina (Littorinopsis. Using the physiographic model, majority of the mangrove areas under study follow the composite river and wave-dominated setting with some few areas having the wave-dominated, tide-dominated allochthonous setting.

  8. The role of wind in hydrochorous mangrove propagule dispersal

    NARCIS (Netherlands)

    Van der Stocken, T.; De Ryck, D.J.R.; Balke, T.; Bouma, T.J.; Dahdouh-Guebas, F.; Koedam, N.

    2013-01-01

    Although wind has been recognized to be an important factor in the dispersal of hydrochorous mangrove propagules, and hence in the quantification of (meta)population dynamics, the species-specific sensitivity to wind effects has not been studied. We combined observations from a controlled experiment

  9. Effect of Depuration on Microbial Content of Mangrove Oyster ...

    African Journals Online (AJOL)

    Mangrove oysters and water samples collected from Benya lagoon, located at Elmina in the Central Region of Ghana were investigated for microbial contamination. A total of nine fungal isolates were identified. These were Aspergilus niger, A. sulphurus, species of Penicillium, Rhizopus, Trichoderma, Fusarium, ...

  10. Interspecific variations in mangrove leaf litter decomposition are related to labile nitrogenous compounds

    Science.gov (United States)

    Nordhaus, Inga; Salewski, Tabea; Jennerjahn, Tim C.

    2017-06-01

    Mangrove leaves form a large pool of carbon, nitrogen and energy that is a major driver of element cycles and detrital food webs inside mangrove forests as well as in adjacent coastal waters. However, there are large gaps in knowledge on the transformation pathways and ultimate fate of leaf nitrogen. Therefore, the main objective of this study was to determine the amount and composition of nitrogenous organic matter and possible species-specific differences during the decomposition of mangrove leaf litter. For that purpose a three month decomposition experiment with litterbags was conducted using leaves of Aegiceras corniculatum, Avicennia alba, Ceriops decandra, Rhizophora apiculata, and Sonneratia caseolaris in the mangrove forest of the Segara Anakan Lagoon, Java, Indonesia. Detrital leaves were analyzed for bulk carbon and total nitrogen (N), stable carbon and nitrogen isotope composition (δ13C, δ15N), total hydrolyzable amino acids (THAA) and total hydrolyzable hexosamines (THHA). Decomposition rates (k d-1) were highest and tM50 values (when 50% of the original mass had been degraded) lowest in S. caseolaris (k = 0.0382 d-1; tM50 = 18 days), followed by A. alba, C. decandra, A. corniculatum, and R. apiculata (k = 0.0098 d-1; tM50 = 71 days). The biochemical composition of detrital leaves differed significantly among species and over time. S. caseolaris and A. alba had higher concentrations of N, THAA and THHA and a lower C/N ratio than the other three species. For most of the species concentrations of N, THAA and THHA increased during decomposition. The hexosamine galactosamine, indicative of bacterial cell walls, was first found in leaves after 5-7 days of decomposition and increased afterwards. Our findings suggest an increasing, but species-specific varying, portion of labile nitrogenous OM and total N in decomposing leaves over time that is partly related to the activity of leaf-colonizing bacteria. Despite a higher relative nitrogen content in the

  11. Radiocarbon dating and wood density chronologies of mangrove trees in arid Western Australia.

    Directory of Open Access Journals (Sweden)

    Nadia S Santini

    Full Text Available Mangrove trees tend to be larger and mangrove communities more diverse in tropical latitudes, particularly where there is high rainfall. Variation in the structure, growth and productivity of mangrove forests over climatic gradients suggests they are sensitive to variations in climate, but evidence of changes in the structure and growth of mangrove trees in response to climatic variation is scarce. Bomb-pulse radiocarbon dating provides accurate dates of recent wood formation and tree age of tropical and subtropical tree species. Here, we used radiocarbon techniques combined with X-ray densitometry to develop a wood density chronology for the mangrove Avicennia marina in the Exmouth Gulf, Western Australia (WA. We tested whether wood density chronologies of A. marina were sensitive to variation in the Pacific Decadal Oscillation Index, which reflects temperature fluctuations in the Pacific Ocean and is linked to the instrumental rainfall record in north WA. We also determined growth rates in mangrove trees from the Exmouth Gulf, WA. We found that seaward fringing A. marina trees (~10 cm diameter were 48 ± 1 to 89 ± 23 years old (mean ± 1 σ and that their growth rates ranged from 4.08 ± 2.36 to 5.30 ± 3.33 mm/yr (mean ± 1 σ. The wood density of our studied mangrove trees decreased with increases in the Pacific Decadal Oscillation Index. Future predicted drying of the region will likely lead to further reductions in wood density and their associated growth rates in mangrove forests in the region.

  12. Artificial neural networks can learn to estimate extinction rates from molecular phylogenies

    NARCIS (Netherlands)

    Bokma, Folmer

    2006-01-01

    Molecular phylogenies typically consist of only extant species, yet they allow inference of past rates of extinction, because. recently originated species are less likely to be extinct than ancient species. Despite the simple structure of the assumed underlying speciation-extinction process,

  13. Maximum sustainable yield and species extinction in a prey-predator system: some new results.

    Science.gov (United States)

    Ghosh, Bapan; Kar, T K

    2013-06-01

    Though the maximum sustainable yield (MSY) approach has been legally adopted for the management of world fisheries, it does not provide any guarantee against from species extinction in multispecies communities. In the present article, we describe the appropriateness of the MSY policy in a Holling-Tanner prey-predator system with different types of functional responses. It is observed that for both type I and type II functional responses, harvesting of either prey or predator species at the MSY level is a sustainable fishing policy. In the case of combined harvesting, both the species coexist at the maximum sustainable total yield (MSTY) level if the biotic potential of the prey species is greater than a threshold value. Further, increase of the biotic potential beyond the threshold value affects the persistence of the system.

  14. POTENSI FAUNA AKUATIK EKOSISTEM HUTAN MANGROVE DI KAWASAN TELUK PANGPANG KABUPATEN BANYUWANGI

    Directory of Open Access Journals (Sweden)

    Yanuar Rustrianto Buwono

    2016-01-01

    Full Text Available Mangrove ecosystem located between terrestrial and marine coastal areas are changing constantly due to human activities that affect the aquatic fauna several species of fish and non-fish. The aim of research to determine the level of importance and biodiversity index value of mangrove, analyze abundance, biomass, diversity and equity, as well as the spread of aquatic fauna mangrove forest ecosystem. Results of the study showed an index of biodiversity of mangrove flora in the medium category with a relative importance value index Rhizophoraceae and Sonneratiaceae dominate in all phases. Economically valuable aquatic fauna found amounted to 21 species of 15 families. Groups of fish fauna found bedul fish (A. caninus have abundance and biomass as much as 975 ind at 18,299.56 gr, meanwhile the non fish fauna found werus shrimp (Metapenaeus sp. has an abundance of as much as 1,936 ind and biomass crabs (P. pelagicus have amounted to 13,609.38 gr associated in mangrove areas Pangpang Bay. Fauna biodiversity index included in the medium category, meanwhile the index of evenness fauna belonging in the high category. Dispersal patterns at the mouth of the bay with the mouth of the river flow Wagut fauna found in the form of pelagic and demersal fish such as family Mugilidae, Clupediae, Leiognatidae, Psettodidae. At the center of the edge of the bay in the form of aquaculture ponds found that pelagic fish group Centropomidae, Polynemidae, Sillagidae family. Meanwhile, at the end of the bay with the river flow Setail found the group that demersal fish Platycephalidae and Gobidae family.

  15. Aquatic food webs in mangrove and seagrass habitats of Centla Wetland, a Biosphere Reserve in Southeastern Mexico

    Directory of Open Access Journals (Sweden)

    Manuel Mendoza-Carranza

    Full Text Available Mangrove and seagrass habitats are important components of tropical coastal zones worldwide, and are conspicuous habitats of Centla Wetland Biosphere Reserve (CWBR in Tabasco, Mexico. In this study, we examine food webs in mangrove- and seagrass-dominated habitats of CWBR using stable isotope ratios of carbon and nitrogen. Our objective was to identify the importance of carbon derived from mangroves and seagrasses to secondary production of aquatic consumers in this poorly studied conservation area. Carbon and nitrogen isotope ratios of basal sources and aquatic consumers indicated that the species-rich food webs of both habitats are dependent on riparian production sources. The abundant Red mangrove Rhizophora mangle appears to be a primary source of carbon for the mangrove creek food web. Even though dense seagrass beds were ubiquitous, most consumers in the lagoon food web appeared to rely on carbon derived from riparian vegetation (e.g. Phragmites australis. The introduced Amazon sailfin catfish Pterygoplichthys pardalis had isotope signatures overlapping with native species (including high-value fisheries species, suggesting potential competition for resources. Future research should examine the role played by terrestrial insects in linking riparian and aquatic food webs, and impacts of the expanding P. pardalis population on ecosystem function and fisheries in CWBR. Our findings can be used as a baseline to reinforce the conservation and management of this important reserve in the face of diverse external and internal human impacts.

  16. Saltmarsh boundary modulates dispersal of mangrove propagules: implications for mangrove migration with sea-level rise.

    Science.gov (United States)

    Peterson, Jennifer M; Bell, Susan S

    2015-01-01

    Few studies have empirically examined the suite of mechanisms that underlie the distributional shifts displayed by organisms in response to changing climatic condition. Mangrove forests are expected to move inland as sea-level rises, encroaching on saltmarsh plants inhabiting higher elevations. Mangrove propagules are transported by tidal waters and propagule dispersal is likely modified upon encountering the mangrove-saltmarsh ecotone, the implications of which are poorly known. Here, using an experimental approach, we record landward and seaward dispersal and subsequent establishment of mangrove propagules that encounter biotic boundaries composed of two types of saltmarsh taxa: succulents and grasses. Our findings revealed that propagules emplaced within saltmarsh vegetation immediately landward of the extant mangrove fringe boundary frequently dispersed in the seaward direction. However, propagules moved seaward less frequently and over shorter distances upon encountering boundaries composed of saltmarsh grasses versus succulents. We uniquely confirmed that the small subset of propagules dispersing landward displayed proportionately higher establishment success than those transported seaward. Although impacts of ecotones on plant dispersal have rarely been investigated in situ, our experimental results indicate that the interplay between tidal transport and physical attributes of saltmarsh vegetation influence boundary permeability to propagules, thereby directing the initial phase of shifting mangrove distributions. The incorporation of tidal inundation information and detailed data on landscape features, such as the structure of saltmarsh vegetation at mangrove boundaries, should improve the accuracy of models that are being developed to forecast mangrove distributional shifts in response to sea-level rise.

  17. Degradation of mangrove tissues and implications for peat formation in Belizean island forests

    Science.gov (United States)

    Middleton, B.A.; McKee, K.L.

    2001-01-01

    1. Macrofaunal leaf consumption and degradation of leaves, woody twigs and roots were studied in mangrove island forests on a Belizean island. Factors influencing accumulation of organic matter deposited both above and below ground in this oligotrophic, autochothonous system were assessed. 2. Leaf degradation rates of Rhizophora mangle (red mangrove), Avicennia germinans (black mangrove) and Laguncularia racemosa (white mangrove) measured in mesh bags, were much faster in the lower than the upper intertidal zone. Mass loss was most rapid in A. germinans but zonal effects were much larger than species differences. 3. Exposure to invertebrates such as crabs and amphipods tripled overall rates of leaf litter breakdown. In the lower intertidal, crabs completely consumed some unbagged leaves within 23 days. Crabs also had an effect on some upper intertidal sites, where degradation of leaves placed in artificial burrows was 2.4 times faster than when placed on the soil surface. 4. In contrast to leaves (27??5% remaining after 230 days), roots and woody twigs were highly refractory (40??2% and 51??6% remaining after 584 and 540 days, respectively). Root degradation did not vary by soil depth, zone or species. Twigs of R. mangle and A. germinans degraded faster on the ground than in the canopy, whereas those of L. racemosa were highly resistant to decay regardless of position. 5. Peat formation at Twin Cays has occurred primarily through deposition and slow turnover of mangrove roots, rather than above-ground tissues that are either less abundant (woody twigs) or more readily removed (leaves).

  18. Estimating rates of local species extinction, colonization and turnover in animal communities

    Science.gov (United States)

    Nichols, James D.; Boulinier, T.; Hines, J.E.; Pollock, K.H.; Sauer, J.R.

    1998-01-01

    Species richness has been identified as a useful state variable for conservation and management purposes. Changes in richness over time provide a basis for predicting and evaluating community responses to management, to natural disturbance, and to changes in factors such as community composition (e.g., the removal of a keystone species). Probabilistic capture-recapture models have been used recently to estimate species richness from species count and presence-absence data. These models do not require the common assumption that all species are detected in sampling efforts. We extend this approach to the development of estimators useful for studying the vital rates responsible for changes in animal communities over time; rates of local species extinction, turnover, and colonization. Our approach to estimation is based on capture-recapture models for closed animal populations that permit heterogeneity in detection probabilities among the different species in the sampled community. We have developed a computer program, COMDYN, to compute many of these estimators and associated bootstrap variances. Analyses using data from the North American Breeding Bird Survey (BBS) suggested that the estimators performed reasonably well. We recommend estimators based on probabilistic modeling for future work on community responses to management efforts as well as on basic questions about community dynamics.

  19. Further studies in using mangrove foliage as a prawn feed

    Digital Repository Service at National Institute of Oceanography (India)

    Sumitra-Vijayaraghavan; Wafar, S.

    Changes in biochemical composition and energy content of foliage of eight mangrove species at various phases of life and during decay were studied. Decomposition resulted in loss of organic contents, carbon and C:N ratio and increase in calorific...

  20. Quantitative inferences on the locomotor behaviour of extinct species applied to Simocyon batalleri (Ailuridae, Late Miocene, Spain)

    Science.gov (United States)

    Fabre, Anne-Claire; Salesa, Manuel J.; Cornette, Raphael; Antón, Mauricio; Morales, Jorge; Peigné, Stéphane

    2015-06-01

    Inferences of function and ecology in extinct taxa have long been a subject of interest because it is fundamental to understand the evolutionary history of species. In this study, we use a quantitative approach to investigate the locomotor behaviour of Simocyon batalleri, a key taxon related to the ailurid family. To do so, we use 3D surface geometric morphometric approaches on the three long bones of the forelimb of an extant reference sample. Next, we test the locomotor strategy of S. batalleri using a leave-one-out cross-validated linear discriminant analysis. Our results show that S. batalleri is included in the morphospace of the living species of musteloids. However, each bone of the forelimb appears to show a different functional signal suggesting that inferring the lifestyle or locomotor behaviour of fossils can be difficult and dependent on the bone investigated. This highlights the importance of studying, where possible, a maximum of skeletal elements to be able to make robust inferences on the lifestyle of extinct species. Finally, our results suggest that S. batalleri may be more arboreal than previously suggested.

  1. Mass extinctions and supernova explosions

    OpenAIRE

    Korschinek, Gunther

    2016-01-01

    A nearby supernova (SN) explosion could have negatively influenced life on Earth, maybe even been responsible for mass extinctions. Mass extinction poses a significant extinction of numerous species on Earth, as recorded in the paleontologic, paleoclimatic, and geological record of our planet. Depending on the distance between the Sun and the SN, different types of threats have to be considered, such as ozone depletion on Earth, causing increased exposure to the Sun's ultraviolet radiation, o...

  2. Kerapatan Hutan Mangrove Berbasis Data Penginderaan Jauh di Estuari Perancak Kabupaten Jembrana-Bali

    Directory of Open Access Journals (Sweden)

    I Made Putra Kresnabayu

    2017-08-01

    Full Text Available The mangrove ecosystem is one of the objects that can be identified by using remote sensing technology. The geographical location of the mangrove ecosystem located in the land and sea transition areas provides a distinctive recording effect when compared to other land vegetation objects. Remote sensing information about vegetation density is useful for various needs such as estimation of the availability of wood fuel biomass, succession stages, forest degradation and so on. This study aims to map the mangrove density using NDVI mangrove vegetation index from Landsat 8 image in Estuari Perancak, Jembrana, Bali. The study was conducted on August 20, 2016 until August 25, 2016. The analysis used is correlation analysis and t-Test analysis. Based on the results of the study, it was found that the density class was rare, medium and tight. The density class rarely has a pixel value range from 0.4765 to 0.6128, the medium density class has a pixel value range of 0.6128 to 0.7093, and the dense or dense density has a pixel value range of 0.7093 to 0.7947. The dominant mangrove species is Rhizopora sp. The linear regression equation in the above figure shows y = 0.679x + 0.438 and with the correlation (r of 0.9642. This means that the density of mangroves and NDVI is directly proportional. Where the higher the value of mangrove density, the higher the value of NDVI and reserve.

  3. Primary carbon sources for juvenile penaeid shrimps in a mangrove ...

    African Journals Online (AJOL)

    Carbon and nitrogen stable isotope ratios were determined in a variety of primary producers (mangroves, epiphytes, phytoplankton and seagrasses), sediments and in five penaeid shrimp species (Penaeus (Fenneropenaeus) indicus, P. japonicus, P. semisulcatus, Metapenaeus monoceros and M. stebbingi), collected ...

  4. An allometric approach to quantify the extinction vulnerability of birds and mammals.

    Science.gov (United States)

    Hilbers, J P; Schipper, A M; Hendriks, A J; Verones, F; Pereira, H M; Huijbregts, M A J

    2016-03-01

    Methods to quantify the vulnerability of species to extinction are typically limited by the availability of species-specific input data pertaining to life-history characteristics and population dynamics. This lack of data hampers global biodiversity assessments and conservation planning. Here, we developed a new framework that systematically quantifies extinction risk based on allometric relationships between various wildlife demographic parameters and body size. These allometric relationships have a solid theoretical and ecological foundation. Extinction risk indicators included are (1) the probability of extinction, (2) the mean time to extinction, and (3) the critical patch size. We applied our framework to assess the global extinction vulnerability of terrestrial carnivorous and non-carnivorous birds and mammals. Irrespective of the indicator used, large-bodied species were found to be more vulnerable to extinction than their smaller counterparts. The patterns with body size were confirmed for all species groups by a comparison with IUCN data on the proportion of extant threatened species: the models correctly predicted a multimodal distribution with body size for carnivorous birds and a monotonic distribution for mammals and non-carnivorous birds. Carnivorous mammals were found to have higher extinction risks than non-carnivores, while birds were more prone to extinction than mammals. These results are explained by the allometric relationships, predicting the vulnerable species groups to have lower intrinsic population growth rates, smaller population sizes, lower carrying capacities, or larger dispersal distances, which, in turn, increase the importance of losses due to environmental stochastic effects and dispersal activities. Our study is the first to integrate population viability analysis and allometry into a novel, process-based framework that is able to quantify extinction risk of a large number of species without requiring data-intensive, species

  5. Multi-level biological responses in Ucides cordatus (Linnaeus, 1763) (Brachyura, Ucididae) as indicators of conservation status in mangrove areas from the western atlantic.

    Science.gov (United States)

    Duarte, Luis Felipe de Almeida; Souza, Caroline Araújo de; Nobre, Caio Rodrigues; Pereira, Camilo Dias Seabra; Pinheiro, Marcelo Antonio Amaro

    2016-11-01

    There is a global lack of knowledge on tropical ecotoxicology, particularly in terms of mangrove areas. These areas often serve as nurseries or homes for several animal species, including Ucides cordatus (the uçá crab). This species is widely distributed, is part of the diet of human coastal communities, and is considered to be a sentinel species due to its sensitivity to toxic xenobiotics in natural environments. Sublethal damages to benthic populations reveal pre-pathological conditions, but discussions of the implications are scarce in the literature. In Brazil, the state of São Paulo offers an interesting scenario for ecotoxicology and population studies: it is easy to distinguish between mangroves that are well preserved and those which are significantly impacted by human activity. The objectives of this study were to provide the normal baseline values for the frequency of Micronucleated cells (MN‰) and for neutral red retention time (NRRT) in U. cordatus at pristine locations, as well to indicate the conservation status of different mangrove areas using a multi-level biological response approach in which these biomarkers and population indicators (condition factor and crab density) are applied in relation to environmental quality indicators (determined via information in the literature and solid waste volume). A mangrove area with no effects of impact (areas of reference or pristine areas) presented a mean value of MN‰120min, values which were assumed as baseline values representing genetic and physiological normality. A significant correlation was found between NRRT and MN, with both showing similar and effective results for distinguishing between different mangrove areas according to conservation status. Furthermore, crab density was lower in more impacted mangrove areas, a finding which also reflects the effects of sublethal damage; this finding was not determined by condition factor measurements. Multi-level biological responses were able to

  6. KEANEKARAGAMAN JENIS KRUSTASEA DI KAWASAN MANGROVE KABUPATEN PURWOREJO, JAWA TENGAH (Biodiversity of Crustacea in Mangrove Area, Purworejo Regency, Central Java

    Directory of Open Access Journals (Sweden)

    Slamet Mardiyanto Rahayu

    2017-05-01

    Full Text Available dan pendidikan. Luas kawasan mangrove di Kabupaten Purworejo semakin berkurang akibat adanya penebangan, pemukiman, tambak, dan pertanian. Ada tiga stasiun, yaitu mangrove lebat (Desa Gedangan, mangrove sedang (Desa Jatikontal, dan mangrove jarang (Desa Ngentak. Ditemukan 19 jenis dari 6 famili krustasea yaitu Ocypodidae, Sesarmidae, Portunidae,Alpheidae, Palaemonidae, dan Penaeidae. Terdapat empat jenis krustasea bernilai ekonomi tinggi. Kepadatan krustasea tertinggi di stasiun I, terendah di stasiun III. Indeks keanekaragaman (H’ krustasea di seluruh stasiun termasuk kategori sedang dengan. Indeks keseragaman (E krustasea di seluruh stasiun termasuk kategori sedang. Indeks  dominansi (C krustasea di seluruh stasiun termasuk kategori rendah. Vegetasi mangrove pada stasiun I adalah Rhizophora mucronata, Nypa fruticans, Sonneratia alba, dan Hibiscus tiliaceus. Vegetasi mangrove pada stasiun II adalah Sonneratia caseolaris, Rhizophora stylosa, N.fruticans, H.tiliaceus, dan Morinda citrifolia.Vegetasi mangrove pada stasiun III adalah S.alba, S.caseolaris, N.fruticans, dan R.mucronata. Kondisi faktor lingkungan di seluruh stasiun relatif baik untuk kehidupan mangrove dan krustasea.   Kata Kunci: krustasea, mangrove, Purworejo, keanekaragaman   Kata Kunci: krustasea, mangrove, Purworejo, keanekaragaman

  7. Drivers of cyanobacterial diversity and community composition in mangrove soils in south-east Brazil.

    Science.gov (United States)

    Rigonato, Janaina; Kent, Angela D; Alvarenga, Danillo O; Andreote, Fernando D; Beirigo, Raphael M; Vidal-Torrado, Pablo; Fiore, Marli F

    2013-04-01

    Cyanobacteria act as primary producers of carbon and nitrogen in nutrient-poor ecosystems such as mangroves. This important group of microorganisms plays a critical role in sustaining the productivity of mangrove ecosystems, but the structure and function of cyanobacteria assemblages can be perturbed by anthropogenic influences. The aim of this work was to assess the community structure and ecological drivers that influence the cyanobacterial community harboured in two Brazilian mangrove soils, and examine the long-term effects of oil contamination on these keystone species. Community fingerprinting results showed that, although cyanobacterial communities are distinct between the two mangroves, the structure and diversity of the assemblages exhibit similar responses to environmental gradients. In each ecosystem, cyanobacteria occupying near-shore areas were similar in composition, indicating importance of marine influences for structuring the community. Analysis of 16S rRNA sequences revealed the presence of diverse cyanobacterial communities in mangrove sediments, with clear differences among mangrove habitats along a transect from shore to forest. While near-shore sites in both mangroves were mainly occupied by Prochlorococcus and Synechococcus genera, sequences retrieved from other mangrove niches were mainly affiliated with uncultured cyanobacterial 16S rRNA. The most intriguing finding was the large number of potentially novel cyanobacteria 16S rRNA sequences obtained from a previously oil-contaminated site. The abundance of cyanobacterial 16S rRNA sequences observed in sites with a history of oil contamination was significantly lower than in the unimpacted areas. This study emphasized the role of environmental drivers in determining the structure of cyanobacterial communities in mangrove soils, and suggests that anthropogenic impacts may also act as ecological filters that select cyanobacterial taxa. These results are an important contribution to our

  8. Human demography and reserve size predict wildlife extinction in West Africa.

    Science.gov (United States)

    Brashares, J S; Arcese, P; Sam, M K

    2001-12-07

    Species-area models have become the primary tool used to predict baseline extinction rates for species in isolated habitats, and have influenced conservation and land-use planning worldwide. In particular, these models have been used to predict extinction rates following the loss or fragmentation of natural habitats in the absence of direct human influence on species persistence. Thus, where direct human influences, such as hunting, put added pressure on species in remnant habitat patches, we should expect to observe extinction rates higher than those predicted by simple species-area models. Here, we show that extinction rates for 41 species of large mammals in six nature reserves in West Africa are 14-307 times higher than those predicted by models based on reserve size alone. Human population and reserve size accounted for 98% of the observed variation in extinction rates between reserves. Extinction occurred at higher rates than predicted by species-area models for carnivores, primates and ungulates, and at the highest rates overall near reserve borders. Our results indicate that, where the harvest of wildlife is common, conservation plans should focus on increasing the size of reserves and reducing the rate of hunting.

  9. The fossil record of the sixth extinction.

    Science.gov (United States)

    Plotnick, Roy E; Smith, Felisa A; Lyons, S Kathleen

    2016-05-01

    Comparing the magnitude of the current biodiversity crisis with those in the fossil record is difficult without an understanding of differential preservation. Integrating data from palaeontological databases with information on IUCN status, ecology and life history characteristics of contemporary mammals, we demonstrate that only a small and biased fraction of threatened species (fossil record, compared with 20% of non-threatened species. We find strong taphonomic biases related to body size and geographic range. Modern species with a fossil record tend to be large and widespread and were described in the 19(th) century. The expected magnitude of the current extinction based only on species with a fossil record is about half of that of one based on all modern species; values for genera are similar. The record of ancient extinctions may be similarly biased, with many species having originated and gone extinct without leaving a tangible record. © 2016 John Wiley & Sons Ltd/CNRS.

  10. Saltmarsh boundary modulates dispersal of mangrove propagules: implications for mangrove migration with sea-level rise.

    Directory of Open Access Journals (Sweden)

    Jennifer M Peterson

    Full Text Available Few studies have empirically examined the suite of mechanisms that underlie the distributional shifts displayed by organisms in response to changing climatic condition. Mangrove forests are expected to move inland as sea-level rises, encroaching on saltmarsh plants inhabiting higher elevations. Mangrove propagules are transported by tidal waters and propagule dispersal is likely modified upon encountering the mangrove-saltmarsh ecotone, the implications of which are poorly known. Here, using an experimental approach, we record landward and seaward dispersal and subsequent establishment of mangrove propagules that encounter biotic boundaries composed of two types of saltmarsh taxa: succulents and grasses. Our findings revealed that propagules emplaced within saltmarsh vegetation immediately landward of the extant mangrove fringe boundary frequently dispersed in the seaward direction. However, propagules moved seaward less frequently and over shorter distances upon encountering boundaries composed of saltmarsh grasses versus succulents. We uniquely confirmed that the small subset of propagules dispersing landward displayed proportionately higher establishment success than those transported seaward. Although impacts of ecotones on plant dispersal have rarely been investigated in situ, our experimental results indicate that the interplay between tidal transport and physical attributes of saltmarsh vegetation influence boundary permeability to propagules, thereby directing the initial phase of shifting mangrove distributions. The incorporation of tidal inundation information and detailed data on landscape features, such as the structure of saltmarsh vegetation at mangrove boundaries, should improve the accuracy of models that are being developed to forecast mangrove distributional shifts in response to sea-level rise.

  11. Bos primigenius in Ancient Egyptian art – historical evidence for the continuity of occurrence and ecology of an extinct key species

    Directory of Open Access Journals (Sweden)

    Carl Beierkuhnlein

    2015-11-01

    Full Text Available Knowledge of the habitat requirements and temporal stability of populations of extinct aurochs (Bos primigenius is surprisingly scarce. Reliable reports of this species, which by its domestication remains tremendously important for humans, are rare. As the species became extinct about 400 years ago and regionally disappeared much earlier, its behaviour and morphology are also under debate. Aurochs is also a crucial component of the mega-herbivore theory in nature conservation, but in fact its natural habitat and behaviour are unknown. Here, I report records of aurochs for the time period of Ancient Egypt. They are found in archaeological sites and literature, and in collections. Records of the species continue through all the periods of Ancient Egypt. In particular, hunting scenes illustrating the merits of high-ranking persons, in their graves (mastabas and temples, provide insights into the behaviour and ecology of the depicted game. Here, special attention is given to one outstanding hunting scene that is documented in a relief at the mortuary temple of Ramesses III (1175 BC, Medinet Habu, Egypt. Assisted by a group of hunters, the pharaoh kills three specimens of aurochs. The whole scene is stunningly realistic.  The adult specimen is fleeing towards the reed belt of the River Nile, suggesting that the species’ habitat was probably in large valley bottoms, where open grassland is regularly created by flooding. Endemic species of fish and game confirm that this scene took place in Lower Egypt. The regional populations of the North-African subspecies of aurochs probably went extinct shortly after this piece of art was produced. Records of species in ancient art can be very informative in terms of ecology and behaviour of species, especially when extinct species are addressed. In addition, the dating of old pieces of art containing biological information can be very precise, for instance when these refer to a historic personage. 

  12. The mangrove nursery paradigm revisited: otolith stable isotopes support nursery-to-reef movements by Indo-Pacific fishes.

    Science.gov (United States)

    Kimirei, Ismael A; Nagelkerken, Ivan; Mgaya, Yunus D; Huijbers, Chantal M

    2013-01-01

    Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania). Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma) were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ(13)C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29%) or seagrass (53%) or reef (18%) habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65-72%) as opposed to inshore vegetated habitats (28-35%). This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.

  13. The mangrove nursery paradigm revisited: otolith stable isotopes support nursery-to-reef movements by Indo-Pacific fishes.

    Directory of Open Access Journals (Sweden)

    Ismael A Kimirei

    Full Text Available Mangroves and seagrass beds have long been perceived as important nurseries for many fish species. While there is growing evidence from the Western Atlantic that mangrove habitats are intricately connected to coral reefs through ontogenetic fish migrations, there is an ongoing debate of the value of these coastal ecosystems in the Indo-Pacific. The present study used natural tags, viz. otolith stable carbon and oxygen isotopes, to investigate for the first time the degree to which multiple tropical juvenile habitats subsidize coral reef fish populations in the Indo Pacific (Tanzania. Otoliths of three reef fish species (Lethrinus harak, L. lentjan and Lutjanus fulviflamma were collected in mangrove, seagrass and coral reef habitats and analyzed for stable isotope ratios in the juvenile and adult otolith zones. δ(13C signatures were significantly depleted in the juvenile compared to the adult zones, indicative of different habitat use through ontogeny. Maximum likelihood analysis identified that 82% of adult reef L. harak had resided in either mangrove (29% or seagrass (53% or reef (18% habitats as juveniles. Of adult L. fulviflamma caught from offshore reefs, 99% had passed through mangroves habitats as juveniles. In contrast, L. lentjan adults originated predominantly from coral reefs (65-72% as opposed to inshore vegetated habitats (28-35%. This study presents conclusive evidence for a nursery role of Indo-Pacific mangrove habitats for reef fish populations. It shows that intertidal habitats that are only temporarily available can form an important juvenile habitat for some species, and that reef fish populations are often replenished by multiple coastal habitats. Maintaining connectivity between inshore vegetated habitats and coral reefs, and conserving habitat mosaics rather than single nursery habitats, is a major priority for the sustainability of various Indo Pacific fish populations.

  14. Invasive rats on tropical islands: Their population biology and impacts on native species

    Directory of Open Access Journals (Sweden)

    Grant A. Harper

    2015-01-01

    Full Text Available The three most invasive rat species, black or ship rat Rattus rattus, brown or Norway rats, R. norvegicus and Pacific rat, R. exulans have been incrementally introduced to islands as humans have explored the world’s oceans. They have caused serious deleterious effects through predation and competition, and extinction of many species on tropical islands, many of which are biodiversity hotspots. All three rat species are found in virtually all habitat types, including mangrove and arid shrub land. Black rats tend to dominate the literature but despite this the population biology of invasive rats, particularly Norway rats, is poorly researched on tropical islands. Pacific rats can often exceed population densities of well over 100 rats ha−1 and black rats can attain densities of 119 rats ha−1, which is much higher than recorded on most temperate islands. High densities are possibly due to high recruitment of young although the data to support this are limited. The generally aseasonally warm climate can lead to year-round breeding but can be restricted by either density-dependent effects interacting with resource constraints often due to aridity. Apparent adverse impacts on birds have been well recorded and almost all tropical seabirds and land birds can be affected by rats. On the Pacific islands, black rats have added to declines and extinctions of land birds caused initially by Pacific rats. Rats have likely caused unrecorded extinctions of native species on tropical islands. Further research required on invasive rats on tropical islands includes the drivers of population growth and carrying capacities that result in high densities and how these differ to temperate islands, habitat use of rats in tropical vegetation types and interactions with other tropical species, particularly the reptiles and invertebrates, including crustaceans.

  15. Frozen gene pools - A future for species otherwise destined for extinction

    Science.gov (United States)

    Gee, G.F.

    1986-01-01

    Conclusion: Semen banks and ova and embryo banks can be practical methods to maintain gene pools. Gene pool preservation is desperately needed today due to the rapid decline in number of species and their habitat, a matter that is of concern to.biologists, economists, and politicians worldwide. Techniques are available for the cryopreservation of semen from many animals (and embryos from a few mammals) and adaptations of these techniques to other animals should be possible. A frozen gene pool in conjunction with existing programs makes it possible to preserve gene pools at less cost or in.some cases where no other alternative to extinction existed.

  16. Variation in extinction risk among birds: chance or evolutionary predisposition?

    Science.gov (United States)

    Bennett, P. M.; Owens, I. P. F.

    1997-01-01

    Collar et al. (1994) estimate that of the 9,672 extant species of bird, 1,111 are threatened by extinction. Here, we test whether these threatened species are simply a random sample of birds, or whether there is something about their biology that predisposes them to extinction. We ask three specific questions. First, is extinction risk randomly distributed among families? Second, which families, if any, contain more, or less, threatened species than would be expected by chance? Third, is variation between taxa in extinction risk associated with variation in either body size or fecundity? Extinction risk is not randomly distributed among families. The families which contain significantly more threatened species than expected are the parrots (Psittacidae), pheasants and allies (Phasianidae), albatrosses and allies (Procellariidae), rails (Rallidae), cranes (Gruidae), cracids (Cracidae), megapodes (Megapodidae) and pigeons (Columbidae). The only family which contains significantly fewer threatened species than expected is the woodpeckers (Picidae). Extinction risk is also not distributed randomly with respect to fecundity or body size. Once phylogeny has been controlled for, increases in extinction risk are independently associated with increases in body size and decreases in fecundity. We suggest that this is because low rates of fecundity, which evolved many tens of millions of years ago, predisposed certain lineages to extinction. Low-fecundity populations take longer to recover if they are reduced to small sizes and are, therefore, more likely to go extinct if an external force causes an increase in the rate of mortality, thereby perturbing the natural balance between fecundity and mortality.

  17. Alien plant invasions and native plant extinctions: a six-threshold framework

    Science.gov (United States)

    Downey, Paul O.; Richardson, David M.

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat—in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the ‘extinction trajectory’, global extinction being the final threshold. Although there are no documented examples of either ‘in the wild’ (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1–3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader

  18. Mangrove Conservation in East Java: The Ecotourism Development Perspectives

    Directory of Open Access Journals (Sweden)

    Luchman Hakim

    2017-09-01

    Full Text Available An analysis of the role of mangrove ecosystems in tourism was undertaken in order to build a strategy for mangrove conservation and conceptualize sustainable mangrove-based tourism development in East Java, Indonesia. The results of the present study suggest that mangroves could be used as nature-based tourism destinations. While tourism in mangrove areas in East Java clearly contributes to mangrove conservation, it still lacks a mangrove tour program, in which it is important to deliver the objectives of ecotourism. For the sustainable use of mangrove biodiversity as a tourist attraction, it is essential to know the basic characteristics of mangroves and establish mangrove tourism programs which are able to support a conservation program. It is also crucial to involve and strengthen the participation of local communities surrounding mangrove areas. The involvement of local wisdom could increase the sustainability of mangrove ecosystems.

  19. Natural Products from Mangrove Actinomycetes

    Science.gov (United States)

    Xu, Dong-Bo; Ye, Wan-Wan; Han, Ying; Deng, Zi-Xin; Hong, Kui

    2014-01-01

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery. PMID:24798926

  20. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chandra Giri

    2016-09-01

    Full Text Available Mangrove forests, distributed in the tropical and subtropical regions of the world, are in a constant flux. They provide important ecosystem goods and services to nature and society. In recent years, the carbon sequestration potential and protective role of mangrove forests from natural disasters is being highlighted as an effective option for climate change adaptation and mitigation. The forests are under threat from both natural and anthropogenic forces. However, accurate, reliable, and timely information of the distribution and dynamics of mangrove forests of the world is not readily available. Recent developments in the availability and accessibility of remotely sensed data, advancement in image pre-processing and classification algorithms, significant improvement in computing, availability of expertise in handling remotely sensed data, and an increasing awareness of the applicability of remote sensing products has greatly improved our scientific understanding of changing mangrove forest cover attributes. As reported in this special issue, the use of both optical and radar satellite data at various spatial resolutions (i.e., 1 m to 30 m to derive meaningful forest cover attributes (e.g., species discrimination, above ground biomass is on the rise. This multi-sensor trend is likely to continue into the future providing a more complete inventory of global mangrove forest distributions and attribute inventories at enhanced temporal frequency. The papers presented in this “Special Issue” provide important remote sensing monitoring advancements needed to meet future scientific objectives for global mangrove forest monitoring from local to global scales.

  1. Tidally driven export of dissolved organic carbon, total mercury, and methylmercury from a mangrove-dominated estuary

    Science.gov (United States)

    Bergamaschi, B.A.; Krabbenhoft, D.P.; Aiken, G.R.; Patino, E.; Rumbold, D.G.; Orem, W.H.

    2012-01-01

    The flux of dissolved organic carbon (DOC) from mangrove swamps accounts for 10% of the global terrestrial flux of DOC to coastal oceans. Recent findings of high concentrations of mercury (Hg) and methylmercury (MeHg) in mangroves, in conjunction with the common co-occurrence of DOC and Hg species, have raised concerns that mercury fluxes may also be large. We used a novel approach to estimate export of DOC, Hg, and MeHg to coastal waters from a mangrove-dominated estuary in Everglades National Park (Florida, USA). Using in situ measurements of fluorescent dissolved organic matter as a proxy for DOC, filtered total Hg, and filtered MeHg, we estimated the DOC yield to be 180 (??12.6) g C m -2 yr -1, which is in the range of previously reported values. Although Hg and MeHg yields from tidal mangrove swamps have not been previously measured, our estimated yields of Hg species (28 ?? 4.5 ??g total Hg m -2 yr -1 and 3.1 ?? 0.4 ??g methyl Hg m -2 yr -1) were five times greater than is typically reported for terrestrial wetlands. These results indicate that in addition to the well documented contributions of DOC, tidally driven export from mangroves represents a significant potential source of Hg and MeHg to nearby coastal waters. ?? 2011 American Chemical Society.

  2. The Butterflies of Barro Colorado Island, Panama: Local Extinction since the 1930s.

    Directory of Open Access Journals (Sweden)

    Yves Basset

    Full Text Available Few data are available about the regional or local extinction of tropical butterfly species. When confirmed, local extinction was often due to the loss of host-plant species. We used published lists and recent monitoring programs to evaluate changes in butterfly composition on Barro Colorado Island (BCI, Panama between an old (1923-1943 and a recent (1993-2013 period. Although 601 butterfly species have been recorded from BCI during the 1923-2013 period, we estimate that 390 species are currently breeding on the island, including 34 cryptic species, currently only known by their DNA Barcode Index Number. Twenty-three butterfly species that were considered abundant during the old period could not be collected during the recent period, despite a much higher sampling effort in recent times. We consider these species locally extinct from BCI and they conservatively represent 6% of the estimated local pool of resident species. Extinct species represent distant phylogenetic branches and several families. The butterfly traits most likely to influence the probability of extinction were host growth form, wing size and host specificity, independently of the phylogenetic relationships among butterfly species. On BCI, most likely candidates for extinction were small hesperiids feeding on herbs (35% of extinct species. However, contrary to our working hypothesis, extinction of these species on BCI cannot be attributed to loss of host plants. In most cases these host plants remain extant, but they probably subsist at lower or more fragmented densities. Coupled with low dispersal power, this reduced availability of host plants has probably caused the local extinction of some butterfly species. Many more bird than butterfly species have been lost from BCI recently, confirming that small preserves may be far more effective at conserving invertebrates than vertebrates and, therefore, should not necessarily be neglected from a conservation viewpoint.

  3. The Butterflies of Barro Colorado Island, Panama: Local Extinction since the 1930s.

    Science.gov (United States)

    Basset, Yves; Barrios, Héctor; Segar, Simon; Srygley, Robert B; Aiello, Annette; Warren, Andrew D; Delgado, Francisco; Coronado, James; Lezcano, Jorge; Arizala, Stephany; Rivera, Marleny; Perez, Filonila; Bobadilla, Ricardo; Lopez, Yacksecari; Ramirez, José Alejandro

    2015-01-01

    Few data are available about the regional or local extinction of tropical butterfly species. When confirmed, local extinction was often due to the loss of host-plant species. We used published lists and recent monitoring programs to evaluate changes in butterfly composition on Barro Colorado Island (BCI, Panama) between an old (1923-1943) and a recent (1993-2013) period. Although 601 butterfly species have been recorded from BCI during the 1923-2013 period, we estimate that 390 species are currently breeding on the island, including 34 cryptic species, currently only known by their DNA Barcode Index Number. Twenty-three butterfly species that were considered abundant during the old period could not be collected during the recent period, despite a much higher sampling effort in recent times. We consider these species locally extinct from BCI and they conservatively represent 6% of the estimated local pool of resident species. Extinct species represent distant phylogenetic branches and several families. The butterfly traits most likely to influence the probability of extinction were host growth form, wing size and host specificity, independently of the phylogenetic relationships among butterfly species. On BCI, most likely candidates for extinction were small hesperiids feeding on herbs (35% of extinct species). However, contrary to our working hypothesis, extinction of these species on BCI cannot be attributed to loss of host plants. In most cases these host plants remain extant, but they probably subsist at lower or more fragmented densities. Coupled with low dispersal power, this reduced availability of host plants has probably caused the local extinction of some butterfly species. Many more bird than butterfly species have been lost from BCI recently, confirming that small preserves may be far more effective at conserving invertebrates than vertebrates and, therefore, should not necessarily be neglected from a conservation viewpoint.

  4. Study of mangrove environment of Maharashtra coast using remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    Jagtap, T.G.; Untawale, A.G.; Inamdar, S.N.

    Analysis of remote sensing data indicate approximately 210 km super(2) of the mangrove area along the Maharashtra coast in India. The dominant species along the coast are Rhizophora mucronata, Avicennia officinalis, A. marina, Sonneratia alba, S...

  5. Strategi Pengembangan Wista Mangrove Di “Blok Bedul” Taman Nasional Alas Purwo Kabupaten Banyuwangi Jawa Timur

    Directory of Open Access Journals (Sweden)

    Saifullah Saifullah

    2013-09-01

    Full Text Available Ekowisata dapat dilihat sebagai suatu konsep pengembangan pariwisata berkelanjutan yang bertujuan untuk mendukung upaya-upaya pelestarian lingkungan dan meningkatkan partisipasi masyarakat dalam pengelolaannya. Oleh karena itu diperlukan penelitian tentang strategi pengembangan ekowisata kawasan mangrove untuk mendukung pelestarian lingkungan pesisir yang berkelanjutan. Hasil penelitian menujukan Potensi mangrove yang terdapat di kawasan ini 4 species dari 2 famili yaitu : Rhizophora mucronata, Rhizophora apiculata, Sonneratia alba dan Cariop tagal, selain itu dari hasil studi literatur diketahui bahwa terdapat 24 species dari 12 famili di sepanjang kawasan segara anakan Taman Nasional Alas Purwo. Untuk inventarisasi satwa, dari hasil studi literatur dan pengamatan dilapang terdapat jenis burung air, burung darat, burung pemangsa, mamalia, reptile, pisces dan crustacea. Untuk potensi budaya terdapat upacara petik laut dan sumber air randu telu yang dipercaya dapat menyembuhkan penyakit. Dari hasil analisa kuisioner 47% dari jumlah pengunjung mengetahui tentang ekosistem mangrove. Dan 47% dari responden yang memahami tentang fungsi ekosistem mangrove. Dari pengenalan tentang ekowisata mempunyai nilai-nilai konservasi atau perlindungan, 85% responden memahami hal tersebut. Untuk pemberdayaan masyarakat, 67% memahami ekowisata harus disertai dengan pemberdayaan dan partisipasi masyarakat. Dan 50% responden menyetujui bahwa ekowisata harus memberikan nilai ekonomi kepada masyarakat. Dan untuk persepsi bahwa ekowisata harus dapat memberikan nilai pendidikan kepada pengunjung, 73% responden mengetahuinya. Dari hasil perhitungan menggunakan konsep surplus konsumen didapat total valuasi ekonomi kawasan ekowisata mangrove blok bedul adalah Rp. 88.606.183,00. Nilai ini untuk per 1000 orang dalam kunjungan pertahun. Arahan strategi kebijakan pengembangan antara lain: (a Kelembagaan pengelola ekowisata harus dapat meningkatkan pelayanannya, (b Pengembangan

  6. Microspatial ecotone dynamics at a shifting range limit: plant-soil variation across salt marsh-mangrove interfaces.

    Science.gov (United States)

    Yando, E S; Osland, M J; Hester, M W

    2018-05-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh-mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant-soil dynamics across the salt marsh-mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  7. Microspatial ecotone dynamics at a shifting range limit: plant–soil variation across salt marsh–mangrove interfaces

    Science.gov (United States)

    Yando, Erik S.; Osland, Michael J.; Hester, Mark H.

    2018-01-01

    Ecotone dynamics and shifting range limits can be used to advance our understanding of the ecological implications of future range expansions in response to climate change. In the northern Gulf of Mexico, the salt marsh–mangrove ecotone is an area where range limits and ecotone dynamics can be studied in tandem as recent decreases in winter temperature extremes have allowed for mangrove expansion at the expense of salt marsh. In this study, we assessed aboveground and belowground plant–soil dynamics across the salt marsh–mangrove ecotone quantifying micro-spatial patterns in horizontal extent. Specifically, we studied vegetation and rooting dynamics of large and small trees, the impact of salt marshes (e.g. species and structure) on mangroves, and the influence of vegetation on soil properties along transects from underneath the mangrove canopy into the surrounding salt marsh. Vegetation and rooting dynamics differed in horizontal reach, and there was a positive relationship between mangrove tree height and rooting extent. We found that the horizontal expansion of mangrove roots into salt marsh extended up to eight meters beyond the aboveground boundary. Variation in vegetation structure and local hydrology appear to control mangrove seedling dynamics. Finally, soil carbon density and organic matter did not differ within locations across the salt marsh-mangrove interface. By studying aboveground and belowground variation across the ecotone, we can better predict the ecological effects of continued range expansion in response to climate change.

  8. Blue carbon content of mangrove vegetation in Subang district

    Science.gov (United States)

    Nurruhwati, I.; Purwita, S. D.; Sunarto; Zahidah

    2018-04-01

    The purpose of this research was to know the carbon content of mangrove parts such as leave, stems and roots and to know its ability to absorb carbondioxide (CO2). The research was conducted in 27th April until 16th May 2017 in Blanakan Village, Langensari Village and Jayamukti Village. The samples are dried at Pilotplane Laboratory Faculty of Industrial Engineering Padjadjaran University. The method in this research is explorative survey method. The results showed that there were two dominant mangroves species in three research stations, they are Avicennia marina and Rhizophora mucronata. Index of Important value of each mangrove type on the three stations in the medium criterion with a range of values is 106,86 %- 193,13 %. The highest carbon content was found in Rhizophora mucronata at station 1 (93,43 %) which was equivalent with 342,87 % absorption of CO2 which was The lowest carbon content was in Avicennia marina at station 1 (67,49 %) which was equivalent with 247,70 % absorption of CO2.

  9. Denaturing gradient gel electrophoresis and barcoded pyrosequencing reveal unprecedented archaeal diversity in mangrove sediment and rhizosphere samples.

    Science.gov (United States)

    Pires, Ana C C; Cleary, Daniel F R; Almeida, Adelaide; Cunha, Angela; Dealtry, Simone; Mendonça-Hagler, Leda C S; Smalla, Kornelia; Gomes, Newton C M

    2012-08-01

    Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages.

  10. Sexual selection affects local extinction and turnover in bird communities

    Science.gov (United States)

    Doherty, P.F.; Sorci, G.; Royle, J. Andrew; Hines, J.E.; Nichols, J.D.; Boulinier, T.

    2003-01-01

    Predicting extinction risks has become a central goal for conservation and evolutionary biologists interested in population and community dynamics. Several factors have been put forward to explain risks of extinction, including ecological and life history characteristics of individuals. For instance, factors that affect the balance between natality and mortality can have profound effects on population persistence. Sexual selection has been identified as one such factor. Populations under strong sexual selection experience a number of costs ranging from increased predation and parasitism to enhanced sensitivity to environmental and demographic stochasticity. These findings have led to the prediction that local extinction rates should be higher for species/populations with intense sexual selection. We tested this prediction by analyzing the dynamics of natural bird communities at a continental scale over a period of 21 years (1975-1996), using relevant statistical tools. In agreement with the theoretical prediction, we found that sexual selection increased risks of local extinction (dichromatic birds had on average a 23% higher local extinction rate than monochromatic species). However, despite higher local extinction probabilities, the number of dichromatic species did not decrease over the period considered in this study. This pattern was caused by higher local turnover rates of dichromatic species, resulting in relatively stable communities for both groups of species. Our results suggest that these communities function as metacommunities, with frequent local extinctions followed by colonization. Anthropogenic factors impeding dispersal might therefore have a significant impact on the global persistence of sexually selected species.

  11. Environmental Policy of Mangroves Management in Rembang Regency

    Science.gov (United States)

    Roziqin, Ali

    2018-02-01

    Mangrove area is an area overgrown mangrove in a natural or artificial, to maintain the environmental sustainability of coastal areas. In addition to maintaining the ecosystem of biodiversity, the mangrove area also has a role to social-economic, and socio-cultural. Rembang regency is one of the districts on the north coast of Java which has a large mangrove area. However, due to the high economic activity in the region of Rembang Regency, the mangrove area becomes less and damaged. This research to describe how environmental policy to manage mangrove area in Rembang regency with qualitative descriptive approach. The result is the role of government and society gradually able to restore mangrove ecosystem. Moreover the district government through Environmental Agency has made a masterplan for the development of mangrove ecotourism in Pasarbanggi Village. The existence of sustainable mangrove conservation has a positive impact on the environment and society.

  12. Potency of Mangrove Apple (Sonneratia alba as Mercury Bioindicator

    Directory of Open Access Journals (Sweden)

    Muhammad Reza Cordova

    2017-12-01

    Full Text Available The anthropogenic provide a negative impact on the surrounding environment. Mangrove species, such as Sonneratia alba would get the impact of anthropogenic activities, to accumulate the pollution of heavy metals. The aim of this study were to evaluate mercury accumulation in Mangrove Apple (S. alba and to analyze mangrove apple potency as mercury bioindicator. Samples were taken in April 2016 at Pari Island, Seribu Islands by purposive sampling. The results showed that the highest concentration of Hg in the Northern of Pari Island was found in the leaves and the lowest was in the fruit. The highest concentration of Hg in the Eastern of Pari Island was found in the leaves and lowest was in the fruit. The concentrations of Hg in the Eastern area higher the Northern area (significantly different. The accumulation of Hg mainly collected on the leaves with TF> 1, but the ability of S. alba trees absorb Hg in the environment showed a small value, namely BCF <1. The ability of S. alba in sediments, contaminated with mercury showed a high value of the leaves in the East Pari Island, but the fruit of S. alba both in the North and East of the Pari Island showed a small value.  Mangrove Apple leaves has a potency as mercury bioindicator organ.

  13. Mass Extinction and the Disappearance of Unknown Mammal Species: Scenario and Perspectives of a Biodiversity Hotspot's Hotspot.

    Directory of Open Access Journals (Sweden)

    Antonio Rossano Mendes Pontes

    Full Text Available We aimed to determine the conservation status of medium- and large-sized mammals and evaluate the impact of 500 years of forest fragmentation on this group of animals in the Pernambuco Endemism Center, in the biogeographical zone of the Atlantic forest north of the São Francisco River in northeastern Brazil. Line transect surveys were performed in 21 forest fragments, resulting in a checklist of the mammals of the entire Pernambuco Endemism Center area. We ran a generalized linear model (Factorial ANCOVA to analyze to what extent the vegetation type, fragment area, isolation, sampling effort (as total kilometers walked, or higher-order interactions predicted (a richness and (b sighting rates. To determine if the distribution of the species within the forest fragments exhibited a nested pattern, we used the NODF metric. Subsequently, we performed a Binomial Logistic Regression to predict the probability of encountering each species according to fragment size. Out of 38 medium- and large-sized mammal species formerly occurring in the study area, only 53.8% (n = 21 were sighted. No fragment hosted the entire remaining mammal community, and only four species (19% occurred in very small fragments (73.3% of the remaining forest fragments, with a mean size of 2.8 ha. The mammalian community was highly simplified, with all large mammals being regionally extinct. Neither the species richness nor sighting rate was controlled by the vegetation type, the area of the forest fragments, isolation or any higher-order interaction. Although a highly significant nested subset pattern was detected, it was not related to the ranking of the area of forest fragments or isolation. The probability of the occurrence of a mammal species in a given forest patch varied unpredictably, and the probability of detecting larger species was even observed to decrease with increasing patch size. In an ongoing process of mass extinction, half of the studied mammals have gone

  14. Trophic discrimination factor and the significance of mangrove litter to benthic detritivorous gastropod, Ellobium aurisjudae (Linnaeus)

    Science.gov (United States)

    Teoh, Hong Wooi; Sasekumar, A.; Ismail, Mohamad Hanif; Chong, Ving Ching

    2018-01-01

    In stable isotope analysis, the estimation of proportional contribution of carbon and nitrogen from mangrove to benthic invertebrates requires knowledge of the food-consumer trophic discrimination factor (Δ δ13C and Δ δ15N). This study tested the hypothesis that the mangrove gastropod Ellobium aurisjudae can assimilate low quality refractory mangrove litter and aimed to determine the trophic discrimination values (TDV) of C and N isotopes between gastropod and the mangrove producer. The mean Δ δ13C for gastropods fed senescent leaves of the mangrove Bruguiera parviflora (Roxb) Wight & Arn and decomposing mangrove (unknown species from the same site) wood were estimated at 5.3 ± 0.3‰ and 3.2 ± 0.5‰ respectively, whereas for Δ δ15N, these values were 4.2 ± 0.2‰ and 6.0 ± 0.2‰ respectively. The gastropod assimilated refractory carbon from mangrove leaf and wood litter with 49% and 18% efficiency respectively. Rearing experiment of gastropods (n = 25) fed only mangrove wood litter over 5months in the laboratory, showed mean weight increments of 14.8-74.4% depending on the initial animal weight. Significant deviation of the TDVs for E. aurisjudae from the generalized discrimination values for herbivory underscores the need to use specific TDV for the detritivory link.

  15. Has the Earth's sixth mass extinction already arrived?

    Science.gov (United States)

    Barnosky, Anthony D; Matzke, Nicholas; Tomiya, Susumu; Wogan, Guinevere O U; Swartz, Brian; Quental, Tiago B; Marshall, Charles; McGuire, Jenny L; Lindsey, Emily L; Maguire, Kaitlin C; Mersey, Ben; Ferrer, Elizabeth A

    2011-03-03

    Palaeontologists characterize mass extinctions as times when the Earth loses more than three-quarters of its species in a geologically short interval, as has happened only five times in the past 540 million years or so. Biologists now suggest that a sixth mass extinction may be under way, given the known species losses over the past few centuries and millennia. Here we review how differences between fossil and modern data and the addition of recently available palaeontological information influence our understanding of the current extinction crisis. Our results confirm that current extinction rates are higher than would be expected from the fossil record, highlighting the need for effective conservation measures.

  16. Patterns, drivers and implications of dissolved oxygen dynamics in tropical mangrove forests

    Science.gov (United States)

    Mattone, Carlo; Sheaves, Marcus

    2017-10-01

    Estuarine mangrove forests regulate and facilitate many ecological processes, and provide nursery ground for many commercially important species. However, mangroves grow in sediments with high carbon loading and high respiration rates which can potentially influencing the dissolved oxygen (DO) dynamics of tidal water flowing into mangrove forests, as bacteria strip DO from the incoming water to carry out metabolic functions. In turn this is likely to influence the way nekton and other aquatic organisms utilize mangrove forests. Despite these possibilities, previous work has focused on looking at DO dynamics within mangrove creeks, with little research focusing on understanding DO dynamics within the mangrove forests themselves during tidal inundation or of DO levels of pools within the forest remaining once the tide has ebbed. The present study investigates the pattern in DO at various distances within an estuarine Rhizophora stylosa forest in tropical north Queensland. DO levels were recorded at 5 min interval over 2 days and multiple tidal cycles, data were collected between 2013 and 2014 for a total of 32 tidal cycles encompassing multiples seasons and tidal amplitudes. There were substantial fluctuations in DO, often varying from normoxic to hypoxic within the same tidal cycle. A range of factors influenced DO dynamics, in particular: tidal height, amount of sunlight, tidal phase, and distance from the outer edge of the mangrove forest. In fact, spring tides tend to have high DO saturation, particularly during the flooding phase, however as the tide starts ebbing, DO depletes rapidly especially in areas further inside the forest. Moreover during tidal disconnection the remnant pools within the forest quickly became anoxic. These variations in DO suggest that the use of mangrove forests by animals is likely to be constrained by their ability to withstand low DO levels, and provides a plausible explanation for the apparent paucity of benthic organism observed

  17. Natural Products from Mangrove Actinomycetes

    Directory of Open Access Journals (Sweden)

    Dong-Bo Xu

    2014-05-01

    Full Text Available Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. The mangrove ecosystem is becoming a hot spot for natural product discovery and bioactivity survey. Diverse mangrove actinomycetes as promising and productive sources are worth being explored and uncovered. At the time of writing, we report 73 novel compounds and 49 known compounds isolated from mangrove actinomycetes including alkaloids, benzene derivatives, cyclopentenone derivatives, dilactones, macrolides, 2-pyranones and sesquiterpenes. Attractive structures such as salinosporamides, xiamycins and novel indolocarbazoles are highlighted. Many exciting compounds have been proven as potential new antibiotics, antitumor and antiviral agents, anti-fibrotic agents and antioxidants. Furthermore, some of their biosynthetic pathways have also been revealed. This review is an attempt to consolidate and summarize the past and the latest studies on mangrove actinomycetes natural product discovery and to draw attention to their immense potential as novel and bioactive compounds for marine drugs discovery.

  18. Nitrate ammonification in mangrove soils: A hidden source of nitrite?

    Directory of Open Access Journals (Sweden)

    Melike eBalk

    2015-03-01

    Full Text Available Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests.The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden under the nitrate-limited conditions of most mangrove forest soils.

  19. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike; Laverman, Anniet M; Keuskamp, Joost A; Laanbroek, Hendrikus J

    2015-01-01

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  20. Nitrate ammonification in mangrove soils: a hidden source of nitrite?

    KAUST Repository

    Balk, Melike

    2015-03-02

    Nitrate reduction is considered to be a minor microbial pathway in the oxidation of mangrove-derived organic matter due to a limited supply of nitrate in mangrove soils. At a limited availability of this electron acceptor compared to the supply of degradable carbon, nitrate ammonification is thought to be the preferential pathway of nitrate reduction. Mangrove forest mutually differ in their productivity, which may lead to different available carbon to nitrate ratios in their soil. Hence, nitrate ammonification is expected to be of more importance in high- compared to low-productive forests. The hypothesis was tested in flow-through reactors that contain undisturbed mangrove soils from high-productive Avicennia germinans and Rhizophora mangle forests in Florida and low-productive Avicennia marina forests in Saudi Arabia. Nitrate was undetectable in the soils from both regions. It was assumed that a legacy of nitrate ammonification would be reflected by a higher ammonium production from these soils upon the addition of nitrate. Unexpectedly, the soils from the low-productive forests in Saudi Arabia produced considerably more ammonium than the soils from the high-productive forests in Florida. Hence, other environmental factors than productivity must govern the selection of nitrate ammonification or denitrification. A rather intriguing observation was the 1:1 production of nitrite and ammonium during the consumption of nitrate, more or less independent from sampling region, location, sampling depth, mangrove species and from the absence or presence of additional degradable carbon. This 1:1 ratio points to a coupled production of ammonium and nitrite by one group of nitrate-reducing microorganisms. Such a production of nitrite will be hidden by the presence of active nitrite-reducing microorganisms under the nitrate-limited conditions of most mangrove forest soils.

  1. Separating sensitivity from exposure in assessing extinction risk from climate change.

    Science.gov (United States)

    Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M

    2014-11-04

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.

  2. The extinction of the West African lion: whose responsibility?

    NARCIS (Netherlands)

    Nollkaemper, A.

    2014-01-01

    A recently published study showed that the lion in West Africa is now critically endangered and faces extinction. From one angle, this would be just one of the large (though unknown) number of species that has previously faced extinction or has even become extinct. But the risk of extinction of some

  3. Relating plant height to demographic rates and extinction vulnerability

    NARCIS (Netherlands)

    Jonge, de Melinda M.J.; Hilbers, Jelle P.; Jongejans, Eelke; Ozinga, Wim A.; Hendriks, A.J.; Huijbregts, Mark A.J.

    2018-01-01

    To prioritize conservation efforts, it is important to know which plant species are most vulnerable to extinction. Intrinsic extinction vulnerabilities depend on demographic parameters, but for many species these demographic parameters are lacking. Body size has been successfully used as proxy of

  4. Two new species of Rhombognathus (Halacaridae, Trombidiformes) from a Mangrove in the northern littoral zone of São Paulo State (Brazil).

    Science.gov (United States)

    Pepato, Almir R; Da Silveira, Paulo Sergio Amorim

    2015-01-14

    Two species belonging to the algivorous genus Rhombognathus are described from algae associated to mangrove trees. Rhombognathus aribus sp. nov. is similar to R. major Bartsch, 2005, but may be set apart by the lacking of the third pair of dorsal setae on Ocular plates, adjunct setae on Posterior Epimeral plates, absence of ventral setae on basifemura III-IV and presence of ventromedial bipectinate setae on tibiae II of all individuals and on tibiae III of most of them. Rhombognathus picinguabensis sp. nov. shares the leg chaetotaxy and shape of the lateral claws with R. parvulus Viets, 1939. The latter species, however, can be easily separated from the former due the fusion of all dorsal plates in a single dorsal shield. 

  5. A model for evolution and extinction

    OpenAIRE

    Roberts, Bruce W.; Newman, M. E. J.

    1995-01-01

    We present a model for evolution and extinction in large ecosystems. The model incorporates the effects of interactions between species and the influences of abiotic environmental factors. We study the properties of the model by approximate analytic solution and also by numerical simulation, and use it to make predictions about the distribution of extinctions and species lifetimes that we would expect to see in real ecosystems. It should be possible to test these predictions against the fossi...

  6. Geographies of Conservation I: De-extinction and Precision Conservation

    OpenAIRE

    Adams, William Mark

    2016-01-01

    Extinction has long been a central concern in biodiversity conservation. Today, de-extinction offers interesting possibilities of restoring charismatic species and ecosystem function, but also risks and costs. Most de-extinction depends on genetic engineering and synthetic biology. These technologies are also proposed for use in ‘gene tweaking’ in wild species to enhance their chance of survival. Within conservation, the resulting debates pit an optimistic world of high-tech ‘precision con...

  7. Mangrove forest composition and structure in Las Perlas Archipelago, Pacific Panama

    Directory of Open Access Journals (Sweden)

    Tom McGowan

    2010-09-01

    Full Text Available Mangrove forest is an important ecosystem that provides many services, but in Panama, as in other countries, they are under threat due to a variety of human activities. Nowadays, large areas of mangroves continue to be lost without been described and lack of management strategies. This study focused on the mangrove structure in the two largest islands, Isla del Rey and Isla San Jose, of Las Perlas Archipelago (LPA, Pacific Panama. Assessment of Landsat satellite imagery revealed loss of mangroves in the LPA of 965ha in the period 1974-1986, and 248ha in the period 1986-2000. The majority of the loss (>77% from the two study islands was due to timber extraction and agricultural development. In May 2006, permanent plots following the CARICOMP protocol were established at two sites on Isla del Rey (R1 and R2 and one site on Isla San Jose (SJ where standardized metrics such as species, height and diameter at breast height of adult trees and seedlings were recorded. Forest structure differed at the three sites, although R1 and R2 were most similar. At R1, Laguncularia racemosa was the important species and R2 was dominated by Pelliciera rhizophorae. Examination of the forest structure and classified imagery indicated that these sites are spatially dynamic and appear to be rejuvenating. The forest structure would indicate that the sites have been growth-limited previously by human activities and possibly by other factors. SJ was dominated by Rhizophora mangle and appears to have a mature forest with large adult trees and few seedlings. It does not appear to have shown the same extent of spatial regrowth as the other two sites between 1986 and 2000 and is relatively static. The establishment of permanent plots and monitoring will be useful as part of the management plan, as the LPA shows a variety of mangrove structures and could be subject to further coastal development. Rev. Biol. Trop. 58 (3: 857-869. Epub 2010 September 01.

  8. Mangrove forest composition and structure in Las Perlas Archipelago, Pacific Panama.

    Science.gov (United States)

    McGowan, Tom; Cunningham, Sarah L; Guzmán, Héctor M; Mair, James M; Guevara, José M; Betts, Tanja

    2010-09-01

    Mangrove forest is an important ecosystem that provides many services, but in Panama, as in other countries, they are under threat due to a variety of human activities. Nowadays, large areas of mangroves continue to be lost without been described and lack of management strategies. This study focused on the mangrove structure in the two largest islands, Isla del Rey and Isla San Jose, of Las Perlas Archipelago (LPA), Pacific Panama. Assessment of Landsat satellite imagery revealed loss of mangroves in the LPA of 965ha in the period 1974-1986, and 248ha in the period 1986-2000. The majority of the loss (>77%) from the two study islands was due to timber extraction and agricultural development. In May 2006, permanent plots following the CARICOMP protocol were established at two sites on Isla del Rey (R1 and R2) and one site on Isla San Jose (SJ) where standardized metrics such as species, height and diameter at breast height of adult trees and seedlings were recorded. Forest structure differed at the three sites, although R1 and R2 were most similar. At R1, Laguncularia racemosa was the important species and R2 was dominated by Pelliciera rhizophorae. Examination of the forest structure and classified imagery indicated that these sites are spatially dynamic and appear to be rejuvenating. The forest structure would indicate that the sites have been growth-limited previously by human activities and possibly by other factors. SJ was dominated by Rhizophora mangle and appears to have a mature forest with large adult trees and few seedlings. It does not appear to have shown the same extent of spatial regrowth as the other two sites between 1986 and 2000 and is relatively static. The establishment of permanent plots and monitoring will be useful as part of the management plan, as the LPA shows a variety of mangrove structures and could be subject to further coastal development.

  9. Is the Geographic Range of Mangrove Forests in the Conterminous United States Really Expanding?

    Science.gov (United States)

    Giri, Chandra; Long, Jordan

    2016-11-28

    Changes in the distribution and abundance of mangrove species within and outside of their historic geographic range can have profound consequences in the provision of ecosystem goods and services they provide. Mangroves in the conterminous United States (CONUS) are believed to be expanding poleward (north) due to decreases in the frequency and severity of extreme cold events, while sea level rise is a factor often implicated in the landward expansion of mangroves locally. We used ~35 years of satellite imagery and in situ observations for CONUS and report that: (i) poleward expansion of mangrove forest is inconclusive, and may have stalled for now, and (ii) landward expansion is actively occurring within the historical northernmost limit. We revealed that the northernmost latitudinal limit of mangrove forests along the east and west coasts of Florida, in addition to Louisiana and Texas has not systematically expanded toward the pole. Mangrove area, however, expanded by 4.3% from 1980 to 2015 within the historic northernmost boundary, with the highest percentage of change in Texas and southern Florida. Several confounding factors such as sea level rise, absence or presence of sub-freezing temperatures, land use change, impoundment/dredging, changing hydrology, fire, storm, sedimentation and erosion, and mangrove planting are responsible for the change. Besides, sea level rise, relatively milder winters and the absence of sub-freezing temperatures in recent decades may be enabling the expansion locally. The results highlight the complex set of forcings acting on the northerly extent of mangroves and emphasize the need for long-term monitoring as this system increases in importance as a means to adapt to rising oceans and mitigate the effects of increased atmospheric CO₂.

  10. Progress to extinction: increased specialisation causes the demise of animal clades.

    Science.gov (United States)

    Raia, P; Carotenuto, F; Mondanaro, A; Castiglione, S; Passaro, F; Saggese, F; Melchionna, M; Serio, C; Alessio, L; Silvestro, D; Fortelius, M

    2016-08-10

    Animal clades tend to follow a predictable path of waxing and waning during their existence, regardless of their total species richness or geographic coverage. Clades begin small and undifferentiated, then expand to a peak in diversity and range, only to shift into a rarely broken decline towards extinction. While this trajectory is now well documented and broadly recognised, the reasons underlying it remain obscure. In particular, it is unknown why clade extinction is universal and occurs with such surprising regularity. Current explanations for paleontological extinctions call on the growing costs of biological interactions, geological accidents, evolutionary traps, and mass extinctions. While these are effective causes of extinction, they mainly apply to species, not clades. Although mass extinctions is the undeniable cause for the demise of a sizeable number of major taxa, we show here that clades escaping them go extinct because of the widespread tendency of evolution to produce increasingly specialised, sympatric, and geographically restricted species over time.

  11. Progress to extinction: increased specialisation causes the demise of animal clades

    Science.gov (United States)

    Raia, P.; Carotenuto, F.; Mondanaro, A.; Castiglione, S.; Passaro, F.; Saggese, F.; Melchionna, M.; Serio, C.; Alessio, L.; Silvestro, D.; Fortelius, M.

    2016-08-01

    Animal clades tend to follow a predictable path of waxing and waning during their existence, regardless of their total species richness or geographic coverage. Clades begin small and undifferentiated, then expand to a peak in diversity and range, only to shift into a rarely broken decline towards extinction. While this trajectory is now well documented and broadly recognised, the reasons underlying it remain obscure. In particular, it is unknown why clade extinction is universal and occurs with such surprising regularity. Current explanations for paleontological extinctions call on the growing costs of biological interactions, geological accidents, evolutionary traps, and mass extinctions. While these are effective causes of extinction, they mainly apply to species, not clades. Although mass extinctions is the undeniable cause for the demise of a sizeable number of major taxa, we show here that clades escaping them go extinct because of the widespread tendency of evolution to produce increasingly specialised, sympatric, and geographically restricted species over time.

  12. Alien plant invasions and native plant extinctions: a six-threshold framework.

    Science.gov (United States)

    Downey, Paul O; Richardson, David M

    2016-01-01

    Biological invasions are widely acknowledged as a major threat to global biodiversity. Species from all major taxonomic groups have become invasive. The range of impacts of invasive taxa and the overall magnitude of the threat is increasing. Plants comprise the biggest and best-studied group of invasive species. There is a growing debate; however, regarding the nature of the alien plant threat-in particular whether the outcome is likely to be the widespread extinction of native plant species. The debate has raised questions on whether the threat posed by invasive plants to native plants has been overstated. We provide a conceptual framework to guide discussion on this topic, in which the threat posed by invasive plants is considered in the context of a progression from no impact through to extinction. We define six thresholds along the 'extinction trajectory', global extinction being the final threshold. Although there are no documented examples of either 'in the wild' (Threshold 5) or global extinctions (Threshold 6) of native plants that are attributable solely to plant invasions, there is evidence that native plants have crossed or breached other thresholds along the extinction trajectory due to the impacts associated with plant invasions. Several factors may be masking where native species are on the trajectory; these include a lack of appropriate data to accurately map the position of species on the trajectory, the timeframe required to definitively state that extinctions have occurred and management interventions. Such interventions, focussing mainly on Thresholds 1-3 (a declining population through to the local extinction of a population), are likely to alter the extinction trajectory of some species. The critical issue for conservation managers is the trend, because interventions must be implemented before extinctions occur. Thus the lack of evidence for extinctions attributable to plant invasions does not mean we should disregard the broader threat

  13. Integrated mangrove-shrimp cultivation: Potential for blue carbon sequestration.

    Science.gov (United States)

    Ahmed, Nesar; Thompson, Shirley; Glaser, Marion

    2018-05-01

    Globally, shrimp farming has had devastating effects on mangrove forests. However, mangroves are the most carbon-rich forests, with blue carbon (i.e., carbon in coastal and marine ecosystems) emissions seriously augmented due to devastating effects on mangrove forests. Nevertheless, integrated mangrove-shrimp cultivation has emerged as a part of the potential solution to blue carbon emissions. Integrated mangrove-shrimp farming is also known as organic aquaculture if deforested mangrove area does not exceed 50% of the total farm area. Mangrove destruction is not permitted in organic aquaculture and the former mangrove area in parts of the shrimp farm shall be reforested to at least 50% during a period of maximum 5 years according to Naturland organic aquaculture standards. This article reviews integrated mangrove-shrimp cultivation that can help to sequester blue carbon through mangrove restoration, which can be an option for climate change mitigation. However, the adoption of integrated mangrove-shrimp cultivation could face several challenges that need to be addressed in order to realize substantial benefits from blue carbon sequestration.

  14. Can contrasting environmental conditions of mangroves induce morphological variability in Aratus pisonii (Crustacea: Brachyura: Sesarmidae?

    Directory of Open Access Journals (Sweden)

    Beatriz López-Sánchez

    2016-09-01

    Full Text Available Aratus pisonii is one of the most common crab species in Neotropical mangroves. It shows great plasticity in its life history traits, which makes it an interesting subject for comparative studies. This study evaluated the morphometric variability in five populations of A. pisonii inhabiting mangroves with different degrees of structural development under contrasting environmental conditions. Mangrove forests located on the northwest coast of Venezuela were studied during the rainy season in 2006. The results showed morphometric differences and interaction between sampling sites and sex (PERMANOVA, P=0.0001, as well as the presence of five morphological groups in males and four in females. The findings support the existence of sexual dimorphism. Females from the dwarf hypersaline mangrove showed a wide variability associated with the chelipeds. The differences in crab morphology between sites seem to be related to a combination of environmental factors that is unique for each habitat, leading to the formation of different morphological groups, in which the mangrove structural development (resource availability and salinity (which compromises the energy budget play an important role. The presence of more robust chelipeds in females from the dwarf hypersaline mangrove seems to reflect an adaptation to the biomechanical properties of the leaves (sclerophylly.

  15. Accumulation of six metals in the mangrove crab Ucides cordatus (Crustacea: Ucididae) and its food source, the red mangrove Rhizophora mangle (Angiosperma: Rhizophoraceae).

    Science.gov (United States)

    Pinheiro, Marcelo Antonio Amaro; Silva, Pablo Pena Gandara E; Duarte, Luis Felipe de Almeida; Almeida, Alaor Aparecido; Zanotto, Flavia Pinheiro

    2012-07-01

    The crab Ucides cordatus and the red mangrove Rhizophora mangle are endemic mangrove species and potential bio-accumulators of metals. This study quantified the accumulation of six metals (Cd, Cr, Cu, Hg, Mn and Pb) in different organs (claw muscle, hepatopancreas and gills) of U. cordatus, as well as in different maturation stages of the leaves (buds, green mature, and pre-abscission senescent) of R. mangle. Samples were collected from mangrove areas in Cubatão, state of São Paulo, a heavily polluted region in Brazil. Data for metal contents in leaves were evaluated by one-way ANOVA; while for crabs a factorial ANOVA was used to investigate the effect of different tissues, animal size and the interactions between them. Means were compared by Tukey test at five percent, and the association between the metal concentrations in each crab organ, depending on the size, was evaluated by Pearson's linear correlation coefficient (r). Concentrations of Pb and Hg were undetectable for the different leaf stages and crab tissues, while Cd concentrations were undetectable in the leaf stages. In general, the highest accumulation of metals in R. mangle leaves occurred in pre-abscission senescent and green mature leaves, except for Cu, which was found in the highest concentrations in buds and green mature leaves. For the crab, Cd, Cu, Cr and Mn were present in concentrations above the detection limit, with the highest accumulation in the hepatopancreas, followed by the gills. Cu was accumulated mostly in the gills. Patterns of bioaccumulation between the crab and the mangrove tree differed for each metal, probably due to the specific requirements of each organism for essential metals. However, there was a close and direct relationship between metal accumulation in the mangrove trees and in the crabs feeding on them. Tissues of R. mangle leaves and U. cordatus proved effective for monitoring metals, acting as important bioindicators of mangrove areas contaminated by various

  16. EKSPLORASI AKTINOMISET SEBAGAI PENGHASIL ANTIBIOTIKA DARI TANAH MANGROVE Sonneratia caseolaris DI TANJUNG API API

    Directory of Open Access Journals (Sweden)

    Awalul Fatiqin

    2015-08-01

    Full Text Available Actinomycetes are soil organisms that have traits that are common to bacteria and fungi but also have quite different characteristics that limit into one group which is distinctly different. Study aimed to explore the mangrove actinomycetes from soil and tested the antibacterial potency. Soil samples taken from the mangrove land at Tanjung Api-api mangrove species Sonneratia caseolaris. Activity test antibacterial using a method modified disk a test bacterium Escherichia coli. Identification isolates of actinomycetes by observing the character of macroscopic colonies, microscopic conidia. The results showed that the obtained three different actinomycetes isolates, 1 isolate has the most potential ability to inhibit bacterial growth test with an average value of 1:13 cm in inhibiting the bacteria Escherichia coli.

  17. Interrogating pollution sources in a mangrove food web using multiple stable isotopes.

    Science.gov (United States)

    Souza, Iara da C; Arrivabene, Hiulana P; Craig, Carol-Ann; Midwood, Andrew J; Thornton, Barry; Matsumoto, Silvia T; Elliott, Michael; Wunderlin, Daniel A; Monferrán, Magdalena V; Fernandes, Marisa N

    2018-06-01

    Anthropogenic activities including metal contamination create well-known problems in coastal mangrove ecosystems but understanding and linking specific pollution sources to distinct trophic levels within these environments is challenging. This study evaluated anthropogenic impacts on two contrasting mangrove food webs, by using stable isotopes (δ 13 C, δ 15 N, 87 Sr/ 86 Sr, 206 Pb/ 207 Pb and 208 Pb/ 207 Pb) measured in sediments, mangrove trees (Rhizophora mangle, Laguncularia racemosa, Avicennia schaueriana), plankton, shrimps (Macrobranchium sp.), crabs (Aratus sp.), oysters (Crassostrea rhizophorae) and fish (Centropomus parallelus) from both areas. Strontium and Pb isotopes were also analysed in water and atmospheric particulate matter (PM). δ 15 N indicated that crab, shrimp and oyster are at intermediate levels within the local food web and fish, in this case C. parallelus, was confirmed at the highest trophic level. δ 15 N also indicates different anthropogenic pressures between both estuaries; Vitória Bay, close to intensive human activities, showed higher δ 15 N across the food web, apparently influenced by sewage. The ratio 87 Sr/ 86 Sr showed the primary influence of marine water throughout the entire food web. Pb isotope ratios suggest that PM is primarily influenced by metallurgical activities, with some secondary influence on mangrove plants and crabs sampled in the area adjacent to the smelting works. To our knowledge, this is the first demonstration of the effect of anthropogenic pollution (probable sewage pollution) on the isotopic fingerprint of estuarine-mangrove systems located close to a city compared to less impacted estuarine mangroves. The influence of industrial metallurgical activity detected using Pb isotopic analysis of PM and mangrove plants close to such an impacted area is also notable and illustrates the value of isotopic analysis in tracing the impact and species affected by atmospheric pollution. Copyright © 2018 Elsevier B

  18. Late Pleistocene and Holocene mammal extinctions on continental Africa

    Science.gov (United States)

    Faith, J. Tyler

    2014-01-01

    Understanding the cause of late Quaternary mammal extinctions is the subject of intense debate spanning the fields of archeology and paleontology. In the global context, the losses on continental Africa have received little attention and are poorly understood. This study aims to inspire new discussion of African extinctions through a review of the extinct species and the chronology and possible causes of those extinctions. There are at least 24 large mammal (> 5 kg) species known to have disappeared from continental Africa during the late Pleistocene or Holocene, indicating a much greater taxonomic breadth than previously recognized. Among the better sampled taxa, these losses are restricted to the terminal Pleistocene and early Holocene, between 13,000 and 6000 yrs ago. The African extinctions preferentially affected species that are grazers or prefer grasslands. Where good terrestrial paleoenvironmental records are present, extinctions are associated with changes in the availability, productivity, or structure of grassland habitats, suggesting that environmental changes played a decisive role in the losses. In the broader evolutionary context, these extinctions represent recent examples of selective taxonomic winnowing characterized by the loss of grassland specialists and the establishment of large mammal communities composed of more ecologically flexible taxa over the last million years. There is little reason to believe that humans played an important role in African extinctions.

  19. Dispersion and establishment of the species of mangrove of the Rancheria River in the period of maximum fructification

    International Nuclear Information System (INIS)

    Lema Velez, Luisa Fernanda; Polania, Jaime; Urrego Giraldo, Ligia Estela

    2003-01-01

    Dispersion and establishment patterns of Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa, at the Rancheria River were studied using marked propagules. These mangroves are small, and surrounded by subtropical dry forest, subtropical thorn forest and the city of Riohacha. Significant relationships were found between the number of propagules retained and species, time, distance to release site, and retention structure. Avicennia germinans and L. racemosa propagules left the ecosystem within two weeks while a portion of R. mangle propagules remained during the two months study and were able to settle. Goat predation affected mainly the propagules, especially of A. germinans and L. racemosa. Predation did not follow the current dominance-predation model. A pre-dispersion consumption of 30% of A. germinans propagules by Pyralidae larvae was also documented. Batis maritima plants were the most effective structures that retain propagules of the three species and R. mangle propagules remained in greater quantities and for longer periods in the ecosystem

  20. Developing Integrated Remote Sensing and Geographical Information Sciences Procedures to Assess Impacts of Climate Variations on Spatio-Temporal Distribution of Mangroves

    Science.gov (United States)

    Qaisar, Maha

    2016-07-01

    Pakistan's periled treasures of mangroves require protection from devastating anthropogenic activities, which can only be achieved through the identification and management of this habitat. The primary objective of this study is to identify the potential habitat of mangroves along the coastline of Pakistan with the help of Remote Sensing (RS) and Geographical Information System (GIS) techniques. Once the mangroves were identified, species of mangroves need to be separated through Object Based Image Analysis (OBIA) which gave the area of mangroves and non mangroves sites. Later other parameters of Sea Surface Temperature, Sea Surface Salinity, chlorophyll-a along with altimetry data were used to assess the climatic variations on the spatio-temporal distribution of mangroves. Since mangroves provide economical, ecological, biological indication of Coastal Change or Sea Level Rise. Therefore, this provides a strong platform to assess the climatic variations which are posing negative impacts on the mangroves ecosystem. The results indicate that mangroves are present throughout along the coastline, proving that Pakistan is rich in these diverse ecosystems. Pakistan being at important geo strategic position can also benefit from its vast mangroves and other coastal resources such as coral reefs and fish varieties. Moreover, coastal zone management through involvement of the local community and establishment of Marine Protected Area (MPA) is the need of the hour to avoid deforestation of mangroves, which can prove to be deadly damaging for the fish populace since it provides habitats to various marine animals. However, the established relationship among SST, SSS, chlorophyll-a and altimetry data assisted to know the suitable sites for mangroves. But due to enhanced climatic impacts these relationships are distorted which has posed devastating effects on the growth and distribution of mangroves. Study area was Karachi Coast, Pakistan. The total area of Karachi is about 70

  1. Photosynthetic performance of restored and natural mangroves under different environmental constraints.

    Science.gov (United States)

    Rovai, André Scarlate; Barufi, José Bonomi; Pagliosa, Paulo Roberto; Scherner, Fernando; Torres, Moacir Aluísio; Horta, Paulo Antunes; Simonassi, José Carlos; Quadros, Daiane Paula Cunha; Borges, Daniel Lázaro Gallindo; Soriano-Sierra, Eduardo Juan

    2013-10-01

    We hypothesized that the photosynthetic performance of mangrove stands restored by the single planting of mangroves species would be lowered due to residual stressors. The photosynthetic parameters of the vegetation of three planted mangrove stands, each with a different disturbance history, were compared to reference sites and correlated with edaphic environmental variables. A permutational analysis of variance showed significant interaction when the factors were compared, indicating that the photosynthetic parameters of the restoration areas differed from the reference sites. A univariate analysis of variance showed that all the photosynthetic parameters differed between sites and treatments, except for photosynthetic efficiency (αETR). The combination of environmental variables that best explained the variations observed in the photosynthetic performance indicators were Cu, Pb and elevation disruptions. Fluorescence techniques proved efficient in revealing important physiological differences, representing a powerful tool for rapid analysis of the effectiveness of initiatives aimed at restoring coastal environments. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. In vitro establishment of Eugenia squarrose: an endemic species in danger of extinction from Santa Clara (Cuba

    Directory of Open Access Journals (Sweden)

    Elisa Quiala

    2004-01-01

    Full Text Available The tissue culture techniques can be supplemented with others that are carried out in the cultivation in situ and being applied in combined way to give solution to the extinction of different species. Eugenia squarrosa (Ekman & Urban it is an endemic species of Cuba in extinction danger due to the urbanization of their natural habitat, which have been reduced to a few hectares. The aim of this work was to achieve the establishment in vitro of this species. Seeds and young branches were collected starting from plants in its natural habitat. The effect of three concentrations of NaOCl (2.0, 2.5, 3.0% during 20 minutes in the disinfection of the seeds was studied. For the disinfection of the buds a treatment with alcohol to 70% was used during two minutes previously to the disinfection with NaOCl. The effect of three concentrations of this NaOCl was studied (1.0, 2.0, 3.0% during 10 minutes. The present microbiota was characterized in the contaminated branch. The 100% of disinfection of the seeds was achieved in all the treatments studied. The bigger explants percentage free of contaminant (88.6% was obtained in the treatment with 3% of NaOCl. However the biggest percentage of survival (45.7% was obtained when 2.0% of NaOCl was used. The establishment in vitro of the species was achieved starting from seeds and buds collected of field plants. Key Words: biodiversity, micropropagation, threatened species

  3. Mangrove bird community of Paranaguá Bay - Paraná, Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Macedo Mestre

    2007-01-01

    Full Text Available This study describes the mangrove bird community of Paranaguá Bay in Paraná - South Brazil. Seasonal surveys were conducted during September 1997 to September 1998 at three sites in Paranaguá Bay. Frequencies and abundances of birds were registered in 200m transects and one hour point counts. A total of 81 bird species were observed in the three sampling sites. Most of the bird species in Paranaguá mangroves are fruits, seeds and arthropods consumers, and predators of flying insects. The most frequent and abundant species were Egretta caerulea, Ceryle torquata, Chloroceryle amazona, Pitangus sulphuratus, Turdus amaurochalinus and Parula pitiayumi. The bird community of these three sites is composed mainly by forest bird species. The mangroves of Paranaguá Bay shelter one of the richest avifauna of Brazilian mangroves. Differences between sampling sites could be related to the proximity of the Paranaguá city and human impacts in the areas. Only in the most disturbed site were observed Passer domesticus and large flocks of Coragyps atratus. This study contributed to the knowledge of mangrove communities, and could be an important basis to fluvial-marine conservation plans in Paraná- Brazil.Este estudo teve como objetivos caracterizar a comunidade de aves de manguezais na baía de Paranaguá e comparar descritivamente a comunidade das três áreas amostradas, diferentes em relação à proximidade de centros urbanos. Foram amostradas sazonalmente, entre setembro de 1997 a setembro 1998, três áreas de manguezais a diferentes distâncias da cidade e do porto de Paranaguá. A avifauna foi registrada em transectos de 200m no interior dos manguezais e em observações de 1 hora em pontos fixos. Foram determinadas freqüência, abundancia relativa e densidade de espécies em cada área. Foram observadas 81 espécies de aves nas três áreas de manguezais. As guildas mais significativas foram das espécies consumidoras de frutos, sementes e artr

  4. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China

    International Nuclear Information System (INIS)

    Qiu Yaowen; Yu Kefu; Zhang Gan; Wang Wenxiong

    2011-01-01

    Trace metals in mangrove tissues (leaf, branch, root and fruit) of nine species and sediments of ten cores collected in 2008 from Dongzhai Harbor, Sanya Bay and Yalong Bay, Hainan Island, were analyzed. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg and As in surface sediments were 14.8, 24.1, 57.9, 0.17, 29.6, 0.08 and 9.7 μg g -1 , whereas those in mangrove tissues were 2.8, 1.4, 8.7, 0.03, 1.1, 0.03, and 0.2 μg g -1 , respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Hainan were at low- to median-levels, which is consistent with the fact that Hainan Island is still in low exploitation and its mangroves suffer little impact from human activities. Metal concentrations among different tissues of mangroves were different. In general, Zn and Cu were enriched in fruit, Hg was enriched in leaf, Pb, Cd and Cr were enriched in branch, and As was enriched in root. The cycle of trace metals in mangrove species were estimated. The biota-sediment accumulation factors (BSAFs) followed the sequence of Hg (0.43) > Cu (0.27) > Cd (0.22) > Zn (0.17) > Pb (0.07) > Cr (0.06) > As (0.02).

  5. Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China

    Energy Technology Data Exchange (ETDEWEB)

    Qiu Yaowen, E-mail: yqiu@scsio.ac.cn [State Key Laboratory of Tropic Marine Environment, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301 (China); Yu Kefu [State Key Laboratory of Tropic Marine Environment, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301 (China); Zhang Gan [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Wang Wenxiong [Section of Marine Ecology and Biotechnology, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (Hong Kong)

    2011-06-15

    Trace metals in mangrove tissues (leaf, branch, root and fruit) of nine species and sediments of ten cores collected in 2008 from Dongzhai Harbor, Sanya Bay and Yalong Bay, Hainan Island, were analyzed. The average concentrations of Cu, Pb, Zn, Cd, Cr, Hg and As in surface sediments were 14.8, 24.1, 57.9, 0.17, 29.6, 0.08 and 9.7 {mu}g g{sup -1}, whereas those in mangrove tissues were 2.8, 1.4, 8.7, 0.03, 1.1, 0.03, and 0.2 {mu}g g{sup -1}, respectively. Compared to those from other typical mangrove wetlands of the world, the metal levels in Hainan were at low- to median-levels, which is consistent with the fact that Hainan Island is still in low exploitation and its mangroves suffer little impact from human activities. Metal concentrations among different tissues of mangroves were different. In general, Zn and Cu were enriched in fruit, Hg was enriched in leaf, Pb, Cd and Cr were enriched in branch, and As was enriched in root. The cycle of trace metals in mangrove species were estimated. The biota-sediment accumulation factors (BSAFs) followed the sequence of Hg (0.43) > Cu (0.27) > Cd (0.22) > Zn (0.17) > Pb (0.07) > Cr (0.06) > As (0.02).

  6. Management Mangrove Experiences Form Coastal People

    Science.gov (United States)

    Indah, P. N.; Radianto, I.; Abidin, Z.; Amir, I. T.; Pribadi, D. U.

    2018-01-01

    The mangrove area has an important meaning in beach ecosystem, both from ecological and economical aspects. For this, the rehabilitation of mangrove forest is done as one effort that aims to maintain and return the mangrove forest function as one of life system supporters, especially in beach area. The most respondent ages of coast people of Gending, Pajarakan, dan Kraksaan districts, Probolinggo Regency are between 30 to 59 years old, i.e. as 86 people or 95.55% indicates that coast people are productive ages so they can be hoped very potential for having role in supporting mangrove ecosystem management of Probolinggo Regency coast. The average respondent educational rates are mostly Elementary School to Senior High School, i.e. as 76 people. Generally, human resources of coast people have relatively good education level. Thereby, it can be hoped to have positive potencies for the role of coast people themselves toward the mangrove ecosystem management support of Probolinggo Regency coast. The average most respondents have family burdens two and three people as six people or 6.67 percent. But, there are still three respondents who have not have family burdens. Generally, more and more members help in respondent’s jobs. The mangrove ecosystem management strategy of Probolinggo Regency coast is by involving people role (people and people figures) and governmental supports through the models of mangrove forest management strategy, the model of embankment cultivation management by entering mangrove as input resources of production facilities, and ecotourism management by the purpose of improving people income.

  7. Interaction between water and wind as a driver of passive dispersal in mangroves.

    Directory of Open Access Journals (Sweden)

    Tom Van der Stocken

    Full Text Available Although knowledge on dispersal patterns is essential for predicting long-term population dynamics, critical information on the modalities of passive dispersal and potential interactions between vectors is often missing. Here, we use mangrove propagules with a wide variety of morphologies to investigate the interaction between water and wind as a driver of passive dispersal. We imposed 16 combinations of wind and hydrodynamic conditions in a flume tank, using propagules of six important mangrove species (and genera, resulting in a set of dispersal morphologies that covers most variation present in mangrove propagules worldwide. Additionally, we discussed the broader implications of the outcome of this flume study on the potential of long distance dispersal for mangrove propagules in nature, applying a conceptual model to a natural mangrove system in Gazi Bay (Kenya. Overall, the effect of wind on dispersal depended on propagule density (g l(-1. The low-density Heritiera littoralis propagules were most affected by wind, while the high-density vertically floating propagules of Ceriops tagal and Bruguiera gymnorrhiza were least affected. Avicennia marina, and horizontally floating Rhizophora mucronata and C. tagal propagules behaved similarly. Morphological propagule traits, such as the dorsal sail of H. littoralis, explained another part of the interspecific differences. Within species, differences in dispersal velocities can be explained by differences in density and for H. littoralis also by variations in the shape of the dorsal sail. Our conceptual model illustrates that different propagule types have a different likelihood of reaching the open ocean depending on prevailing water and wind currents. Results suggest that in open water, propagule traits (density, morphology, and floating orientation appear to determine the effect of water and wind currents on dispersal dynamics. This has important implications for inter- and intraspecific

  8. Examining the relationship between local extinction risk and position in range.

    Science.gov (United States)

    Boakes, Elizabeth H; Isaac, Nicholas J B; Fuller, Richard A; Mace, Georgina M; McGowan, Philip J K

    2018-02-01

    Over half of globally threatened animal species have experienced rapid geographic range loss. Identifying the parts of species' distributions most vulnerable to local extinction would benefit conservation planning. However, previous studies give little consensus on whether ranges decline to the core or edge. We built on previous work by using empirical data to examine the position of recent local extinctions within species' geographic ranges, address range position as a continuum, and explore the influence of environmental factors. We aggregated point-locality data for 125 Galliform species from across the Palearctic and Indo-Malaya into equal-area half-degree grid cells and used a multispecies dynamic Bayesian occupancy model to estimate rates of local extinctions. Our model provides a novel approach to identify loss of populations from within species ranges. We investigated the relationship between extinction rates and distance from range edge by examining whether patterns were consistent across biogeographic realm and different categories of land use. In the Palearctic, local extinctions occurred closer to the range edge than range core in both unconverted and human-dominated landscapes. In Indo-Malaya, no pattern was found for unconverted landscapes, but in human-dominated landscapes extinctions tended to occur closer to the core than the edge. Our results suggest that local and regional factors override general spatial patterns of recent local extinction within species' ranges and highlight the difficulty of predicting the parts of a species' distribution most vulnerable to threat. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  9. Opportunities and costs for preventing vertebrate extinctions.

    Science.gov (United States)

    Conde, Dalia A; Colchero, Fernando; Güneralp, Burak; Gusset, Markus; Skolnik, Ben; Parr, Michael; Byers, Onnie; Johnson, Kevin; Young, Glyn; Flesness, Nate; Possingham, Hugh; Fa, John E

    2015-03-16

    Despite an increase in policy and management responses to the global biodiversity crisis, implementation of the 20 Aichi Biodiversity Targets still shows insufficient progress [1]. These targets, strategic goals defined by the United Nations Convention on Biological Diversity (CBD), address major causes of biodiversity loss in part by establishing protected areas (Target 11) and preventing species extinctions (Target 12). To achieve this, increased interventions will be required for a large number of sites and species. The Alliance for Zero Extinction (AZE) [2], a consortium of conservation-oriented organisations that aims to protect Critically Endangered and Endangered species restricted to single sites, has identified 920 species of mammals, birds, amphibians, reptiles, conifers and reef-building corals in 588 'trigger' sites [3]. These are arguably the most irreplaceable category of important biodiversity conservation sites. Protected area coverage of AZE sites is a key indicator of progress towards Target 11 [1]. Moreover, effective conservation of AZE sites is essential to achieve Target 12, as the loss of any of these sites would certainly result in the global extinction of at least one species [2]. However, averting human-induced species extinctions within AZE sites requires enhanced planning tools to increase the chances of success [3]. Here, we assess the potential for ensuring the long-term conservation of AZE vertebrate species (157 mammals, 165 birds, 17 reptiles and 502 amphibians) by calculating a conservation opportunity index (COI) for each species. The COI encompasses a set of measurable indicators that quantify the possibility of achieving successful conservation of a species in its natural habitat (COIh) and by establishing insurance populations in zoos (COIc). Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Long-term growth and succession in restored and natural mangrove forests in southwestern Florida

    Science.gov (United States)

    Proffitt, C.E.; Devlin, D.J.

    2005-01-01

    We compared colonization, growth and succession from 1989 to 2000 in a restored mangrove site and in gap and closed canopy sites in a natural mangrove forest. The restored site was created in 1982 and planted with Rhizophora mangle (???2 m-2) propagules. By 1989, Laguncularia racemosa, with densities up to 12.9 tree m-2, was a dominant in all plots, although densities were greater at edge plots relative to inner plots, and near open water (west plots) relative to further inland (east plots), and in tall mangrove plots relative to scrub plots. Rhizophora mangle (1989 tree densities about 2 m-2) was a codominant in inner and scrub plots, while Avicennia germinans had the lowest densities (mangle and L. racemosa, rapid growth in height of all species (1989-1996), followed by a dieoff of L. racemosa in later years (1997-2000) as the canopy came to resemble that of tall mangrove plots. Colonization and growth rates were lower in gap and closed canopy regions of the natural forest relative to rates in the restored site. After 11 years, densities of L. racemosa were 10-20x lower and R. mangle slightly less in the gap relative to densities in tall mangrove plots in the restored site at the same age. Although the restored stand had converged with the natural forest by 2000 in terms of some factors such as species richness, vegetation cover, litterfall, and light penetration, trees were still much smaller and stem densities much higher. Full development of mature structure and ecological function will likely require decades more development. ?? Springer 2005.

  11. Global Mangrove Forests Distribution, 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Mangrove Forests Distribution, 2000 data set is a compilation of the extent of mangroves forests from the Global Land Survey and the Landsat archive with...

  12. Microbial flora associated with submerged mangrove leaf litter in India

    Directory of Open Access Journals (Sweden)

    Narayanasamy Rajendran

    2007-06-01

    Full Text Available We studied the microbial flora in decomposing mangrove leaves in relation to changes in nitrogen and tannin levels, and in penaeid prawn assemblages. Senescent leaves of two mangrove species (Rhizophora apiculata and Avicennia marina kept in nylon bags, were separately immersed for 80 days in five tanks full of mangrove water. A known amount of decomposing leaves was collected every ten days from each tank for microorganism counts, total nitrogen and tannin measurement, and juvenile penaeid prawn counts. Five genera of total heterotrophic bacteria (THB, three species of azotobacters and 19 species of fungi were identified. The azotobacters showed a significant peak around 40-50 days after the beginning of of decomposition, similar to the trend for total nitrogen and for prawn assemblages. Rev. Biol. Trop. 55 (2: 393-400. Epub 2007 June, 29.Se estudió la flora microbiana en hojas en descomposición de mangles, considerando nitrógeno, taninos y camarones peneidos jóvenes. Colocamos hojas viejas de dos especies de mangle (Rhizophora apiculata y Avicennia marina en bolsas de nylon y las sumergimos en agua de manglar durante 80 días usando cinco tanques separados. Cada diez días extrajimos una cantidad conocida de hojas en descomposición de cada tanque. Hallamos cinco géneros de bacterias heterotróficas totales (THB, tres especies de azotobacterias y 19 especies de hongos. Las azotobacterias presentaron un pico significativo de abundancia alrededor de los 40-50 días de descomposición, un patrón similar a los del nitrógeno total y los camarones.

  13. Between Land and Sea: Mangroves and Mollusks along Brazil’s Mangal Coast

    Directory of Open Access Journals (Sweden)

    Judith A. Carney

    2016-12-01

    Full Text Available Westerners have long viewed mangroves as forbidding, pestilential landscapes. While modern medicine transformed their deadly reputation, the perception lingered of an environment that was little more than a tropical wasteland. The 1992 Earth Summit in Rio de Janeiro profoundly changed this view by drawing attention to the ecosystem as a habitat crucial to the life cycles of many species and endangered fauna yet increasingly at risk from deforestation. Conservation initiatives in the years since the Rio Summit, however, seldom recognize mangroves as a habitat that has also long supported human life. This is evident in the shell middens found along mangrove coasts and in the historical record of shellfish harvested for dietary protein. With a focus on Brazil, this article examines the shellfish that sustained Amerindians, enslaved Africans, and their descendants along the mangal coast since pre-Columbian times. The discussion contends that Brazil’s mangrove forests cannot be separated from the history of the tropical peoples who have successively lived in and managed this ecosystem from ancient times to the present. Finally, the article concludes that a research focus on shellfish suggests broader linkages to South Atlantic history.

  14. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals

    Science.gov (United States)

    Crooks, Kevin R.; Burdett, Christopher L.; Theobald, David M.; King, Sarah R. B.; Rondinini, Carlo; Boitani, Luigi

    2017-01-01

    Although habitat fragmentation is often assumed to be a primary driver of extinction, global patterns of fragmentation and its relationship to extinction risk have not been consistently quantified for any major animal taxon. We developed high-resolution habitat fragmentation models and used phylogenetic comparative methods to quantify the effects of habitat fragmentation on the world’s terrestrial mammals, including 4,018 species across 26 taxonomic Orders. Results demonstrate that species with more fragmentation are at greater risk of extinction, even after accounting for the effects of key macroecological predictors, such as body size and geographic range size. Species with higher fragmentation had smaller ranges and a lower proportion of high-suitability habitat within their range, and most high-suitability habitat occurred outside of protected areas, further elevating extinction risk. Our models provide a quantitative evaluation of extinction risk assessments for species, allow for identification of emerging threats in species not classified as threatened, and provide maps of global hotspots of fragmentation for the world’s terrestrial mammals. Quantification of habitat fragmentation will help guide threat assessment and strategic priorities for global mammal conservation. PMID:28673992

  15. Genomic markers reveal introgressive hybridization in the Indo-West Pacific mangroves: a case study.

    Directory of Open Access Journals (Sweden)

    Mei Sun

    2011-05-01

    Full Text Available Biodiversity of mangrove ecosystems is difficult to assess, at least partly due to lack of genetic verification of morphology-based documentation of species. Natural hybridization, on the one hand, plays an important role in evolution as a source of novel gene combinations and a mechanism of speciation. However, on the other hand, recurrent introgression allows gene flow between species and could reverse the process of genetic differentiation among populations required for speciation. To understand the dynamic evolutionary consequences of hybridization, this study examines genomic structure of hybrids and parental species at the population level. In the Indo-West Pacific, Bruguiera is one of the dominant mangrove genera and species ranges overlap extensively with one another. Morphological intermediates between sympatric Bruguiera gymnorrhiza and Bruguiera sexangula have been reported as a variety of B. sexangula or a new hybrid species, B. × rhynchopetala. However, the direction of hybridization and extent of introgression are unclear. A large number of species-specific inter-simple sequence repeat (ISSR markers were found in B. gymnorrhiza and B. sexangula, and the additive ISSR profiling of B. × rhynchopetala ascertained its hybrid status and identified its parental origin. The varying degree of scatterness among hybrid individuals in Principal Coordinate Analysis and results from NewHybrids analysis indicate that B. × rhynchopetala comprises different generations of introgressants in addition to F(1s. High genetic relatedness between B. × rhynchopetala and B. gymnorrhiza based on nuclear and chloroplast sequences suggests preferential hybrid backcrosses to B. gymnorrhiza. We conclude that B. × rhynchopetala has not evolved into an incipient hybrid species, and its persistence can be explained by recurrent hybridization and introgression. Genomic data provide insights into the hybridization dynamics of mangrove plants. Such information

  16. Mangroves

    Indian Academy of Sciences (India)

    Proper stress management is the only survival strategy of man- grove plants facing extreme ... Distribution and Indian Perspective. Mangroves occur in ..... and economic concern to many developing countries including. India. Indiscriminate ...

  17. Endo- and exoglucanase activities in bacteria from mangrove sediment.

    Science.gov (United States)

    Soares Júnior, Fábio Lino; Dias, Armando Cavalcante Franco; Fasanella, Cristiane Cipola; Taketani, Rodrigo Gouvêa; de Souza Lima, André Oliveira; Melo, Itamar Soares; Andreote, Fernando Dini

    2013-01-01

    The mangrove ecosystem is an unexplored source for biotechnological applications. In this unique environment, endemic bacteria have the ability to thrive in the harsh environmental conditions (salinity and anaerobiosis), and act in the degradation of organic matter, promoting nutrient cycles. Thus, this study aimed to assess the cellulolytic activities of bacterial groups present in the sediment from a mangrove located in Ilha do Cardoso (SP, Brazil). To optimize the isolation of cellulolytic bacteria, enrichments in two types of culture media (tryptone broth and minimum salt medium), both supplemented with 5% NaCl and 1% of cellulose, were performed. Tests conducted with the obtained colonies showed a higher occurrence of endoglycolytic activity (33 isolates) than exoglycolytic (19 isolates), and the degradation activity was shown to be modulated by the presence of NaCl. The isolated bacteria were clustered by BOX-PCR and further classified on the basis of partial 16S rRNA sequences as Alphaproteobacteria, Gammaproteobacteria, Actinobacteria, Firmicutes or Bacteroidetes. Therefore, this study highlights the importance of studies focusing on the endemic species found in mangroves to exploit them as novel biotechnological tools for the degradation of cellulose.

  18. Revival of extinct species using nuclear transfer: hope for the mammoth, true for the Pyrenean ibex, but is it time for "conservation cloning"?

    Science.gov (United States)

    Piña-Aguilar, Raul E; Lopez-Saucedo, Janet; Sheffield, Richard; Ruiz-Galaz, Lilia I; Barroso-Padilla, Jose de J; Gutiérrez-Gutiérrez, Antonio

    2009-09-01

    Recent accomplishments in the fields of nuclear transfer and genomics, such as the cloned offspring production from frozen mouse cells, cryopreserved at not too low temperatures without cryoprotectors; or the sequencing of wooly mammoth genome, have opened the opportunity for the revival of extinct species. As expected, they are receiving a lot of publicity in the media and also scientific attention. Furthermore, it was recently published the "revival" of the first extinct subspecie: the Pyrenean ibex (Capra pyrenaica pyrenaica), a wild goat extinct in 2000. This strengthens the field of cloning as it had been tarnished by induced pluripotent stem cells (iPS) and other methods of reprogramming. However, for biological conservation purposes, cloning is not generally accepted as an alternative for animal conservation, and there is an ongoing debate between reproductive scientists and conservation specialists. Although we believe that nuclear transfer technologies have an opportunity in conservation efforts for some species that are on the brink of extinction and that population status, geographical isolation, reproductive characteristics, and human pressure create a situation that is almost unsustainable. In this article we discuss the barriers in cloning mammoths and cloning controversies in conservation from a zoological perspective, citing the species that might benefit from nuclear transfer techniques in the arduous journey so as not to disappear forever from this, our world.

  19. Elevational distribution and extinction risk in birds.

    Directory of Open Access Journals (Sweden)

    Rachel L White

    Full Text Available Mountainous regions are hotspots of terrestrial biodiversity. Unlike islands, which have been the focus of extensive research on extinction dynamics, fewer studies have examined mountain ranges even though they face increasing threats from human pressures - notably habitat conversion and climate change. Limits to the taxonomic and geographical extent and resolution of previously available information have precluded an explicit assessment of the relative role of elevational distribution in determining extinction risk. We use a new global species-level avian database to quantify the influence of elevational distribution (range, maximum and midpoint on extinction risk in birds at the global scale. We also tested this relationship within biogeographic realms, higher taxonomic levels, and across phylogenetic contrasts. Potential confounding variables (i.e. phylogenetic, distributional, morphological, life history and niche breadth were also tested and controlled for. We show that the three measures of elevational distribution are strong negative predictors of avian extinction risk, with elevational range comparable and complementary to that of geographical range size. Extinction risk was also found to be positively associated with body weight, development and adult survival, but negatively associated with reproduction and niche breadth. The robust and consistent findings from this study demonstrate the importance of elevational distribution as a key driver of variation in extinction dynamics in birds. Our results also highlight elevational distribution as a missing criterion in current schemes for quantifying extinction risk and setting species conservation priorities in birds. Further research is recommended to test for generality across non-avian taxa, which will require an advance in our knowledge of species' current elevational ranges and increased efforts to digitise and centralise such data.

  20. Oil spillage and its impact on the edible mangrove periwinkle ...

    African Journals Online (AJOL)

    Oil spills are a regular occurrence in the oil industry in Nigeria, a process that results in the release of excess hydrocarbons into the environment, negatively impacting plant and animal species. Laboratory and field experiments were conducted on refined oil impacted and fire ravaged mangrove ecosystem to determine the ...

  1. Persistence and extinction of a single-species population system in a polluted environment with random perturbations and impulsive toxicant input

    International Nuclear Information System (INIS)

    Liu Meng; Wang Ke

    2012-01-01

    Highlights: ► Random population model with pulse toxicant input in polluted environments. ► Threshold between persistence and extinction is obtained. ► Different random noises have different effects on the persistence of the population. ► Impulsive period plays a key role in determining persistence of the population. ► Simulation figures support the analytical findings. - Abstract: Taking both white noises and colored noises into account, a stochastic single-species model with Markov switching and impulsive toxicant input in a polluted environment is proposed and investigated. Sufficient conditions for extinction, non-persistence in the mean, weak persistence and stochastic permanence are established. The threshold between weak persistence and extinction is obtained. Some simulation figures are introduced to illustrate the main results.

  2. Monitoring mangrove forests after aquaculture abandonment using time series of very high spatial resolution satellite images: A case study from the Perancak estuary, Bali, Indonesia.

    Science.gov (United States)

    Proisy, Christophe; Viennois, Gaëlle; Sidik, Frida; Andayani, Ariani; Enright, James Anthony; Guitet, Stéphane; Gusmawati, Niken; Lemonnier, Hugues; Muthusankar, Gowrappan; Olagoke, Adewole; Prosperi, Juliana; Rahmania, Rinny; Ricout, Anaïs; Soulard, Benoit; Suhardjono

    2018-06-01

    Revegetation of abandoned aquaculture regions should be a priority for any integrated coastal zone management (ICZM). This paper examines the potential of a matchless time series of 20 very high spatial resolution (VHSR) optical satellite images acquired for mapping trends in the evolution of mangrove forests from 2001 to 2015 in an estuary fragmented into aquaculture ponds. Evolution of mangrove extent was quantified through robust multitemporal analysis based on supervised image classification. Results indicated that mangroves are expanding inside and outside ponds and over pond dykes. However, the yearly expansion rate of vegetation cover greatly varied between replanted ponds. Ground truthing showed that only Rhizophora species had been planted, whereas natural mangroves consist of Avicennia and Sonneratia species. In addition, the dense Rhizophora plantations present very low regeneration capabilities compared with natural mangroves. Time series of VHSR images provide comprehensive and intuitive level of information for the support of ICZM. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Paleoenvironment interpretation of a 1760 years B.P. old sediment in a mangrove area of the Bay of Guanabara, using pollen analysis

    Directory of Open Access Journals (Sweden)

    Barth Ortrud M.

    2006-01-01

    Full Text Available A sediment sample was obtained at 122 cm from the top of a drilling core in the Guapimirim mangrove, Bay of Guanabara, and analyzed using pollen analysis. This muddy core reached a sandy ground at 133 cm. 14C datation got the age of 1760 ? 50 years B.P. The most frequent pollen grains were mangrove species of Rhizophora mangle, Laguncularia racemosa and Avicennia schaueriana. "Restinga" and tropical rain forest vegetation was recognized behind the mangrove. After the last sea transgression at 2500 years B.P., the water level lowered to its actual size, allowing the installation of this mangrove.

  4. Strategi Pengembangan Ekowisata Mangrove Wonorejo Surabaya

    Directory of Open Access Journals (Sweden)

    Khoirul Umam

    2016-03-01

    Full Text Available The aim of the research are to describe the potential of ecotourism development in mangrove forest, to describe the benefits that can be gained by the community, to analyze the internal and external environment in the development of Mangrove Ecotourism Surabaya, and to formulate development strategiy of Mangrove Ecotourism Wonorejo Surabaya based on internal and external environment. The first and second objectives were answered using descrip­tive analysis, while the third objective was answered using IFAS (Internal Factors Analysis Strategy and EFAS (External Factors Analysis. The result showed that the Mangrove Ecotourism Wonorejo Surabaya has potential aspects to develop in referring to the ecology places/sutainability places, the natural resources including flora and fauna, the government support, the organizational, and the community of Wonorejo support for facilities and infrastructure. There are three aspects in terms of the benefit that owned by Mangrove Ecotourism Wonorejo Surabaya includ­ing social, economic and agribusiness aspects. Based on internal factors analysis (IFAS and external factors analysis (EFAS, it was suggested that the aggressive strategy (growth, It can uses to get the opportunity strengthly, must be taken to develop mangrove ecotourism potential in Wonorejo, Surabaya.

  5. Is the Geographic Range of Mangrove Forests in the Conterminous United States Really Expanding?

    Directory of Open Access Journals (Sweden)

    Chandra Giri

    2016-11-01

    Full Text Available Changes in the distribution and abundance of mangrove species within and outside of their historic geographic range can have profound consequences in the provision of ecosystem goods and services they provide. Mangroves in the conterminous United States (CONUS are believed to be expanding poleward (north due to decreases in the frequency and severity of extreme cold events, while sea level rise is a factor often implicated in the landward expansion of mangroves locally. We used ~35 years of satellite imagery and in situ observations for CONUS and report that: (i poleward expansion of mangrove forest is inconclusive, and may have stalled for now, and (ii landward expansion is actively occurring within the historical northernmost limit. We revealed that the northernmost latitudinal limit of mangrove forests along the east and west coasts of Florida, in addition to Louisiana and Texas has not systematically expanded toward the pole. Mangrove area, however, expanded by 4.3% from 1980 to 2015 within the historic northernmost boundary, with the highest percentage of change in Texas and southern Florida. Several confounding factors such as sea level rise, absence or presence of sub-freezing temperatures, land use change, impoundment/dredging, changing hydrology, fire, storm, sedimentation and erosion, and mangrove planting are responsible for the change. Besides, sea level rise, relatively milder winters and the absence of sub-freezing temperatures in recent decades may be enabling the expansion locally. The results highlight the complex set of forcings acting on the northerly extent of mangroves and emphasize the need for long-term monitoring as this system increases in importance as a means to adapt to rising oceans and mitigate the effects of increased atmospheric CO2.

  6. Local extinction of a coral reef fish explained by inflexible prey choice

    Science.gov (United States)

    Brooker, R. M.; Munday, P. L.; Brandl, S. J.; Jones, G. P.

    2014-12-01

    While global extinctions of marine species are infrequent, local extinctions are becoming common. However, the role of habitat degradation and resource specialisation in explaining local extinction is unknown. On coral reefs, coral bleaching is an increasingly frequent cause of coral mortality that can result in dramatic changes to coral community composition. Coral-associated fishes are often specialised on a limited suite of coral species and are therefore sensitive to these changes. This study documents the local extinction of a corallivorous reef fish, Oxymonacanthus longirostris, following a mass bleaching event that altered the species composition of associated coral communities. Local extinction only occurred on reefs that also completely lost a key prey species, Acropora millepora, even though coral cover remained high. In an experimental test, fish continued to select bleached A. millepora over the healthy, but less-preferred prey species that resisted bleaching. These results suggest that behavioural inflexibility may limit the ability of specialists to cope with even subtle changes to resource availability.

  7. Utilizing NASA Earth Observations to Monitor, Map, and Forecast Mangrove Extent and Deforestation in Myanmar for Enhanced Conservation

    Science.gov (United States)

    Ferraro, C. P.; Jensen, D.; Disla, C.

    2013-12-01

    Mangrove ecosystems offer several significant services including providing habitat and spawning grounds for a diverse range of species, protecting coastal communities from storms and other natural disasters, and contributing resources and income for local residents. Currently, Myanmar is undergoing a period of rapid economic development which has led to increased pressure on the extensive mangrove habitat in the Ayeyarwady River Delta in southern Myanmar. In this study, we partnered with the Smithsonian Conservation Biology Institute to examine changes to mangrove extent between 1989 and 2013 using Landsat 4, 7, and 8 imagery in combination with a Digital Elevation Model (DEM) generated from ASTER stereoscopic imagery. Classification was performed using a Random Forests model and accuracy was assessed using higher resolution ASTER imagery and local expertise on mangrove distribution. Results show a large and consistent decline in mangrove cover during the study period. The data provided by this assessment was subsequently used to forecast potential vulnerability and changes to mangrove habitat up to 2030. A multi-layered perceptron was used to model transition potentials for vulnerability forecasting. Forest managers in Myanmar will be able to use the mangrove change maps and forecasts to evaluate current policies and focus future ones to maximize effectiveness. Data and methodology resulting from this project will be useful for future mangrove and land-cover mapping projects in this region.

  8. Human influence on distribution and extinctions of the late Pleistocene Eurasian megafauna.

    Science.gov (United States)

    Pushkina, Diana; Raia, Pasquale

    2008-06-01

    Late Pleistocene extinctions are of interest to paleontological and anthropological research. In North America and Australia, human occupation occurred during a short period of time and overexploitation may have led to the extinction of mammalian megafauna. In northern Eurasia megafaunal extinctions are believed to have occurred over a relatively longer period of time, perhaps as a result of changing environmental conditions, but the picture is much less clear. To consider megafaunal extinction in Eurasia, we compare differences in the geographical distribution and commonness of extinct and extant species between paleontological and archaeological localities from the late middle Pleistocene to Holocene. Purely paleontological localities, as well as most extinct species, were distributed north of archaeological sites and of the extant species, suggesting that apart from possible differences in adaptations between humans and other species, humans could also have a detrimental effect on large mammal distribution. However, evidence for human overexploitation applies only to the extinct steppe bison Bison priscus. Other human-preferred species survive into the Holocene, including Rangifer tarandus, Equus ferus, Capreolus capreolus, Cervus elaphus, Equus hemionus, Saiga tatarica, and Sus scrofa. Mammuthus primigenius and Megaloceros giganteus were rare in archaeological sites. Carnivores appear little influenced by human presence, although they become rarer in Holocene archaeological sites. Overall, the data are consistent with the conclusion that humans acted as efficient hunters selecting for the most abundant species. Our study supports the idea that the late Pleistocene extinctions were environmentally driven by climatic changes that triggered habitat fragmentation, species range reduction, and population decrease, after which human interference either by direct hunting or via indirect activities probably became critical.

  9. Review of the ecosystem service implications of mangrove encroachment into salt marshes.

    Science.gov (United States)

    Kelleway, Jeffrey J; Cavanaugh, Kyle; Rogers, Kerrylee; Feller, Ilka C; Ens, Emilie; Doughty, Cheryl; Saintilan, Neil

    2017-10-01

    Salt marsh and mangrove have been recognized as being among the most valuable ecosystem types globally in terms of their supply of ecosystem services and support for human livelihoods. These coastal ecosystems are also susceptible to the impacts of climate change and rising sea levels, with evidence of global shifts in the distribution of mangroves, including encroachment into salt marshes. The encroachment of woody mangrove shrubs and trees into herbaceous salt marshes may represent a substantial change in ecosystem structure, although resulting impacts on ecosystem functions and service provisions are largely unknown. In this review, we assess changes in ecosystem services associated with mangrove encroachment. While there is quantitative evidence to suggest that mangrove encroachment may enhance carbon storage and the capacity of a wetland to increase surface elevation in response to sea-level rise, for most services there has been no direct assessment of encroachment impact. On the basis of current understanding of ecosystem structure and function, we theorize that mangrove encroachment may increase nutrient storage and improve storm protection, but cause declines in habitat availability for fauna requiring open vegetation structure (such as migratory birds and foraging bats) as well as the recreational and cultural activities associated with this fauna (e.g., birdwatching and/or hunting). Changes to provisional services such as fisheries productivity and cultural services are likely to be site specific and dependent on the species involved. We discuss the need for explicit experimental testing of the effects of encroachment on ecosystem services in order to address key knowledge gaps, and present an overview of the options available to coastal resource managers during a time of environmental change. © 2017 John Wiley & Sons Ltd.

  10. A checklist of malacofauna of the Vellar Estuarine Mangroves, India

    Directory of Open Access Journals (Sweden)

    K. Kesavan

    2009-07-01

    Full Text Available A survey conducted to know the diversity of malacofauna in Vellar estuarine mangroves (southeast coast of India. In this study, 13 species of molluscs (10 species of gastropods - Melampus ceylonicus, Cerithidea cingulata, Cassidula nucleus, Pythia plicata, Neritina (Dostia violacea, Littorina scabra, Littorina melanostoma, Ellobium aurisjudae, C. obtusa T. telescopium and Assiminea nitida and 3 species of bivalves - Perna viridis, Crassostrea madrasensis and Modiolus metcalfei were recorded. M. pulchella, C. obtusa, L. scabra and N. violacea were found arboreal. T. telescopium, C. cingulata and E. aurisjudae were found crawling on the intertidal mud.

  11. The use of mangroves in coastal protection

    NARCIS (Netherlands)

    Loi, T.T.; Verhagen, H.J.

    2012-01-01

    Apart from many ecological advantages, mangroves in front of a coastal defence may lower the construction and maintenance costs of the defence. Although mangroves have hardly any reducing effect on water levels (and on tsunami impact) mangroves may significantly reduce wave attack on a coastal dike,

  12. Aspects of productivity of mangroves

    Digital Repository Service at National Institute of Oceanography (India)

    Wafar, S.

    The term 'mangroves' refers to an assemblage of different flowering plants which can grow in saline brackish water areas like creeks, backwaters, estuaries and deltas. Mangrove forest cover in the tropical area is about 0.5 million km sup(2...

  13. Akumulasi dan Distribusi Logam Berat pada Vegetasi Mangrove di Pesisir Sulawesi Selatan

    Directory of Open Access Journals (Sweden)

    Heru Setiawan

    2013-01-01

    Full Text Available Mangroves have ecological functions to absorb, transport and stockpile toxic materials, e.g., heavy metal from surrounding environment. This research aimed to know the accumulation and distribution of heavy metals, i.e. Lead (Pb, Cuprum (Cu and Cadmium (Cd in mangrove vegetation of South Sulawesi. Vegetation samples were collected from four research location, which were Tanjung Bunga Makassar, Tallo River Makassar, Pare-Pare Bay and Bone Bay. Distribution of heavy metals in mangrove tissues was devided into five areas: pneumatophora, cable root, young leaves, old leaves and twig. Heavy metal content in the samples was measured using Atomic Absorption Spectrophotometric (AAS. The results showed that the highest accumulation of Pb was derived from the sample in Tallo River with 36.1 ppm. The highest accumulation of Cu was derived from Tanjung Bunga Makassar with 42.8 ppm. The highest accumulation of Cd was derived from Tallo River with 29.3 ppm. The distribution of heavy metals in mangrove showed that the highest accumulation of Pb was found in the cable roots with 9.5 ppm. The highest concentration of Cd was found in the young leaf with 3.1 ppm. The highest concentration of Cu was found in the cable roots with 10.1 ppm. Generally, Avicennia marina is mangrove species that has the highest concentration of heavy metals with Pb 24.2 ppm, Cd 30.9 ppm and Cu 71.2 ppm.

  14. Mangroves and Their Response to a Heavy Metal Polluted Wetland in The North Coast of Puerto Rico

    Directory of Open Access Journals (Sweden)

    Marixa Maldonado-Román

    2016-11-01

    Full Text Available Peninsula La Esperanza is part of the San Juan Bay Estuary and located in the north coast of Puerto Rico. Mangroves are the predominant type of vegetation; that can exhibit diverse external and internal mechanisms allowing them to tolerate and to act as phytoremediators of heavy metals (HM in surrounding soils. This study was focused in three mangrove species that can be found in La Esperanza: Rhizophora mangle (RM, Laguncularia racemosa (LR and Avicennia germinans (AG. Arsenic (As, cadmium (Cd, chromium (Cr, copper (Cu, mercury (Hg, lead (Pb, and zinc (Zn were selected to be identified, measure concentrations in sediments, in green (GL and senescent (SL leaves, and study phytoremediation potential as a mitigation alternative calculating bioconcentration afctors (BCFs and retranslocation percents (RT%. For this, Peninsula La Esperanza was divided in three main research sites. Our results show a significant difference among all heavy metals and their distribution in each site. Moreover, the mangrove species, A. germinans, showed lower RT% for Hg in all three sites, which could be considered the best species for phytoextraction of this heavy metal. The results suggest that the three species have a synergistic effect in the way they manage the heavy metal in surrounding polluted soils, although each species have a different capacity to manage each heavy metal.

  15. Analysing ethnobotanical and fishery-related importance of mangroves of the East-Godavari Delta (Andhra Pradesh, India for conservation and management purposes

    Directory of Open Access Journals (Sweden)

    Ravishankar T

    2006-05-01

    Full Text Available Abstract Mangrove forests, though essentially common and wide-spread, are highly threatened. Local societies along with their knowledge about the mangrove also are endangered, while they are still underrepresented as scientific research topics. With the present study we document local utilization patterns, and perception of ecosystem change. We illustrate how information generated by ethnobiological research can be used to strengthen the management of the ecosystem. This study was conducted in the Godavari mangrove forest located in the East-Godavari District of the state Andhra Pradesh in India, where mangroves have been degrading due to over-exploitation, extensive development of aquaculture, and pollution from rural and urbanized areas (Kakinada. One hundred interviews were carried out among the fisherfolk population present in two mangrove zones in the study area, a wildlife sanctuary with strong conservation status and an adjacent zone. Results from the interviews indicated that Avicennia marina (Forsk. Vierh., a dominant species in the Godavari mangroves, is used most frequently as firewood and for construction. Multiple products of the mangrove included the bark of Ceriops decandra (Griff. Ding Hou to dye the fishing nets and improve their durability, the bark of Aegiceras corniculatum (L. Blanco to poison and catch fish, and the leaves of Avicennia spp. and Excoecaria agallocha L. as fodder for cattle. No medicinal uses of true mangrove species were reported, but there were a few traditional uses for mangrove associates. Utilization patterns varied in the two zones that we investigated, most likely due to differences in their ecology and legal status. The findings are discussed in relation with the demographic and socio-economic traits of the fisherfolk communities of the Godavari mangroves and indicate a clear dependency of their livelihood on the mangrove forest. Reported changes in the Godavari mangrove cover also differed in the two

  16. A global predictive model of carbon in mangrove soils

    Science.gov (United States)

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  17. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    Science.gov (United States)

    Crase, Beth; Liedloff, Adam; Vesk, Peter A; Fukuda, Yusuke; Wintle, Brendan A

    2014-08-01

    Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment-only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment-only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate

  18. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh)

    International Nuclear Information System (INIS)

    Borrell, Asunción; Tornero, Victoria; Bhattacharjee, Dola; Aguilar, Alex

    2016-01-01

    The Sundarbans forest is the largest and one of the most diverse and productive mangrove ecosystems in the world. Located at the northern shoreline of the Bay of Bengal in the Indian Ocean and straddling India and Bangladesh, the mangrove forest is the result of three primary river systems that originate further north and northwest. During recent decades, the Sundarbans have been subject to increasing pollution by trace elements caused by the progressive industrialization and urbanization of the basins of these three rivers. As a consequence, animals and plants dwelling downstream in the mangroves are exposed to these pollutants in varying degrees, and may potentially affect human health when consumed. The aim of the present study was to analyse the concentrations of seven trace elements (Zn, Cu, Cr, Hg, Pb, Cd and As) in 14 different animal and plant species collected in the Sundarbans in Bangladesh to study their transfer through the food web and to determine whether their levels in edible species are acceptable for human consumption. δ"1"5N values were used as a proxy of the trophic level. A decrease in Zn, Cu, Pb and Cd levels was observed with increasing trophic position. Trace element concentrations measured in all organisms were, in general, lower than the concentrations obtained in other field studies conducted in the same region. When examined with respect to accepted international standards, the concentrations observed in fish and crustaceans were generally found to be safe for human consumption. However, the levels of Zn in Scylla serrata and Cr and Cd in Harpadon nehereus exceeded the proposed health advisory levels and may be of concern for human health. - Highlights: • Trace elements were determined in organisms from the Sundarbans mangrove. • The levels found were similar to those determined in wildlife from other mangroves. • Levels in three edible species were close to threshold limits for human consumption. • Except for Cr, As and Hg

  19. Trace element accumulation and trophic relationships in aquatic organisms of the Sundarbans mangrove ecosystem (Bangladesh)

    Energy Technology Data Exchange (ETDEWEB)

    Borrell, Asunción, E-mail: xonborrell@ub.edu [Department of Animal Biology, Institute of Biodiversity (IRBIO), University of Barcelona, Av. Diagonal, 643, Barcelona (Spain); Tornero, Victoria [Department of Animal Biology, Institute of Biodiversity (IRBIO), University of Barcelona, Av. Diagonal, 643, Barcelona (Spain); Bhattacharjee, Dola [Indian Institute of Science Education & Research — Kolkata, Department of Biological Sciences, Mohanpur Campus, Nadia, West Bengal (India); Aguilar, Alex [Department of Animal Biology, Institute of Biodiversity (IRBIO), University of Barcelona, Av. Diagonal, 643, Barcelona (Spain)

    2016-03-01

    The Sundarbans forest is the largest and one of the most diverse and productive mangrove ecosystems in the world. Located at the northern shoreline of the Bay of Bengal in the Indian Ocean and straddling India and Bangladesh, the mangrove forest is the result of three primary river systems that originate further north and northwest. During recent decades, the Sundarbans have been subject to increasing pollution by trace elements caused by the progressive industrialization and urbanization of the basins of these three rivers. As a consequence, animals and plants dwelling downstream in the mangroves are exposed to these pollutants in varying degrees, and may potentially affect human health when consumed. The aim of the present study was to analyse the concentrations of seven trace elements (Zn, Cu, Cr, Hg, Pb, Cd and As) in 14 different animal and plant species collected in the Sundarbans in Bangladesh to study their transfer through the food web and to determine whether their levels in edible species are acceptable for human consumption. δ{sup 15}N values were used as a proxy of the trophic level. A decrease in Zn, Cu, Pb and Cd levels was observed with increasing trophic position. Trace element concentrations measured in all organisms were, in general, lower than the concentrations obtained in other field studies conducted in the same region. When examined with respect to accepted international standards, the concentrations observed in fish and crustaceans were generally found to be safe for human consumption. However, the levels of Zn in Scylla serrata and Cr and Cd in Harpadon nehereus exceeded the proposed health advisory levels and may be of concern for human health. - Highlights: • Trace elements were determined in organisms from the Sundarbans mangrove. • The levels found were similar to those determined in wildlife from other mangroves. • Levels in three edible species were close to threshold limits for human consumption. • Except for Cr, As and Hg

  20. Habitat creation and biodiversity maintenance in mangrove forests: teredinid bivalves as ecosystem engineers

    Directory of Open Access Journals (Sweden)

    Ian W. Hendy

    2014-09-01

    Full Text Available Substantial amounts of dead wood in the intertidal zone of mature mangrove forests are tunnelled by teredinid bivalves. When the tunnels are exposed, animals are able to use tunnels as refuges. In this study, the effect of teredinid tunnelling upon mangrove forest faunal diversity was investigated. Mangrove forests exposed to long emersion times had fewer teredinid tunnels in wood and wood not containing teredinid tunnels had very few species and abundance of animals. However, with a greater cross-sectional percentage surface area of teredinid tunnels, the numbers of species and abundance of animals was significantly higher. Temperatures within teredinid-attacked wood were significantly cooler compared with air temperatures, and animal abundance was greater in wood with cooler temperatures. Animals inside the tunnels within the wood may avoid desiccation by escaping the higher temperatures. Animals co-existing in teredinid tunnelled wood ranged from animals found in terrestrial ecosystems including centipedes, crickets and spiders, and animals found in subtidal marine ecosystems such as fish, octopods and polychaetes. There was also evidence of breeding within teredinid-attacked wood, as many juvenile individuals were found, and they may also benefit from the cooler wood temperatures. Teredinid tunnelled wood is a key low-tide refuge for cryptic animals, which would otherwise be exposed to fishes and birds, and higher external temperatures. This study provides evidence that teredinids are ecosystem engineers and also provides an example of a mechanism whereby mangrove forests support intertidal biodiversity and nurseries through the wood-boring activity of teredinids.

  1. Overlap of eastern and western mangroves in the South-western Pacific: hybridization of all three Rhizophora (Rhizophoraceae) combinations in New Caledonia

    NARCIS (Netherlands)

    Duke, N.C.

    2010-01-01

    A recent survey of mangroves in New Caledonia located 7 taxa of the genus Rhizophora – with 6 coexisting in one estuary. This is arguably the greatest concentration of co-occurring Rhizophora taxa anywhere. Two are well-known mangrove species of the Indo West Pacific, R. stylosa and R. apiculata,

  2. Co-extinction in a host-parasite network: identifying key hosts for network stability.

    Science.gov (United States)

    Dallas, Tad; Cornelius, Emily

    2015-08-17

    Parasites comprise a substantial portion of total biodiversity. Ultimately, this means that host extinction could result in many secondary extinctions of obligate parasites and potentially alter host-parasite network structure. Here, we examined a highly resolved fish-parasite network to determine key hosts responsible for maintaining parasite diversity and network structure (quantified here as nestedness and modularity). We evaluated four possible host extinction orders and compared the resulting co-extinction dynamics to random extinction simulations; including host removal based on estimated extinction risk, parasite species richness and host level contributions to nestedness and modularity. We found that all extinction orders, except the one based on realistic extinction risk, resulted in faster declines in parasite diversity and network structure relative to random biodiversity loss. Further, we determined species-level contributions to network structure were best predicted by parasite species richness and host family. Taken together, we demonstrate that a small proportion of hosts contribute substantially to network structure and that removal of these hosts results in rapid declines in parasite diversity and network structure. As network stability can potentially be inferred through measures of network structure, our findings may provide insight into species traits that confer stability.

  3. Estimating Age-Dependent Extinction: Contrasting Evidence from Fossils and Phylogenies.

    Science.gov (United States)

    Hagen, Oskar; Andermann, Tobias; Quental, Tiago B; Antonelli, Alexandre; Silvestro, Daniele

    2018-05-01

    The estimation of diversification rates is one of the most vividly debated topics in modern systematics, with considerable controversy surrounding the power of phylogenetic and fossil-based approaches in estimating extinction. Van Valen's seminal work from 1973 proposed the "Law of constant extinction," which states that the probability of extinction of taxa is not dependent on their age. This assumption of age-independent extinction has prevailed for decades with its assessment based on survivorship curves, which, however, do not directly account for the incompleteness of the fossil record, and have rarely been applied at the species level. Here, we present a Bayesian framework to estimate extinction rates from the fossil record accounting for age-dependent extinction (ADE). Our approach, unlike previous implementations, explicitly models unobserved species and accounts for the effects of fossil preservation on the observed longevity of sampled lineages. We assess the performance and robustness of our method through extensive simulations and apply it to a fossil data set of terrestrial Carnivora spanning the past 40 myr. We find strong evidence of ADE, as we detect the extinction rate to be highest in young species and declining with increasing species age. For comparison, we apply a recently developed analogous ADE model to a dated phylogeny of extant Carnivora. Although the phylogeny-based analysis also infers ADE, it indicates that the extinction rate, instead, increases with increasing taxon age. The estimated mean species longevity also differs substantially, with the fossil-based analyses estimating 2.0 myr, in contrast to 9.8 myr derived from the phylogeny-based inference. Scrutinizing these discrepancies, we find that both fossil and phylogeny-based ADE models are prone to high error rates when speciation and extinction rates increase or decrease through time. However, analyses of simulated and empirical data show that fossil-based inferences are more

  4. Salinity Alters the Polyisoprenoid Alcohol Content and Composition of Both Salt-Secreting and Non–Salt-Secreting Mangrove Seedlings

    Directory of Open Access Journals (Sweden)

    Mohammad Basyuni

    2017-10-01

    Full Text Available The effects of salinity on the polyisoprenoid alcohol content and composition of the salt-secreting mangrove species Avicennia marina and Sonneratia alba and the non–salt-secreting species Bruguiera gymnorrhiza and Kandelia obovata were studied. The seedlings of mangroves were grown for 5 months under 0% and 3% salt concentrations. The occurrence, content, and distribution of four mangrove seedlings were analyzed by two-dimensional thin layer chromatography. The structural groups of the polyprenols and dolichols in the leaves and roots were classified into two types (I and II. In type I, dolichols predominated over polyprenols (more than 90%, whereas in type II, the occurrence of both polyprenols and dolichols was observed. Polyprenols were not detected in the leaves of A. marina and B. gymnorrhiza under 0% salt (control, but were detected in small amounts in K. obovata leaves; however, significant amounts were found in the 3% salinity group. This finding in A. marina, B. gymnorrhiza, and K. obovata leaves implies a change to the structural group: under 0% salt concentrations, the groups are classified as type I, but become type II under 3% salt concentrations. The occurrence of ficaprenol (C50–55 was found only in the leaves of the non–salt-secreting species B. gymnorrhiza and K. obovata under 3% salinity and not in the salt-secreting species A. marina or S. alba. It is noteworthy that the polyisoprenoid type in the roots of the four species showed no change under salinity; the two salt-secreting species A. marina and S. alba contained type I under 0% and 3% salt concentrations. On the other hand, type II polyisoprenoids were identified in the non–salt-secreting species B. gymnorrhiza and K. obovata under 0% and 3% salinity conditions. This finding suggested that polyisoprenoids play a protective role against salinity in the mangrove leaves of both salt-secreting and non–salt-secreting species.

  5. The zooplankton of Mgazana, a mangrove estuary in Transkei

    African Journals Online (AJOL)

    continent. The estuary is in an excellent state of preservation and all three species of mangrove trees which occur south of K.osi Bay (260 54' S) are recorded here (Avicennia marina, Bruguieria gymnorhiza .... of Heron Island a shallow ford or drift occurs where depth may be less than 0,25 m at low tide. Above the island the ...

  6. Theory of invasion extinction dynamics in minimal food webs

    Science.gov (United States)

    Haerter, Jan O.; Mitarai, Namiko; Sneppen, Kim

    2018-02-01

    When food webs are exposed to species invasion, secondary extinction cascades may be set off. Although much work has gone into characterizing the structure of food webs, systematic predictions on their evolutionary dynamics are still scarce. Here we present a theoretical framework that predicts extinctions in terms of an alternating sequence of two basic processes: resource depletion by or competitive exclusion between consumers. We first propose a conceptual invasion extinction model (IEM) involving random fitness coefficients. We bolster this IEM by an analytical, recursive procedure for calculating idealized extinction cascades after any species addition and simulate the long-time evolution. Our procedure describes minimal food webs where each species interacts with only a single resource through the generalized Lotka-Volterra equations. For such food webs ex- tinction cascades are determined uniquely and the system always relaxes to a stable steady state. The dynamics and scale invariant species life time resemble the behavior of the IEM, and correctly predict an upper limit for trophic levels as observed in the field.

  7. The silent mass extinction of insect herbivores in biodiversity hotspots.

    Science.gov (United States)

    Fonseca, Carlos Roberto

    2009-12-01

    Habitat loss is silently leading numerous insects to extinction. Conservation efforts, however, have not been designed specifically to protect these organisms, despite their ecological and evolutionary significance. On the basis of species-host area equations, parameterized with data from the literature and interviews with botanical experts, I estimated the number of specialized plant-feeding insects (i.e., monophages) that live in 34 biodiversity hotspots and the number committed to extinction because of habitat loss. I estimated that 795,971-1,602,423 monophagous insect species live in biodiversity hotspots on 150,371 endemic plant species, which is 5.3-10.6 monophages per plant species. I calculated that 213,830-547,500 monophagous species are committed to extinction in biodiversity hotspots because of reduction of the geographic range size of their endemic hosts. I provided rankings of biodiversity hotspots on the basis of estimated richness of monophagous insects and on estimated number of extinctions of monophagous species. Extinction rates were predicted to be higher in biodiversity hotspots located along strong environmental gradients and on archipelagos, where high spatial turnover of monophagous species along the geographic distribution of their endemic plants is likely. The results strongly support the overall strategy of selecting priority conservation areas worldwide primarily on the basis of richness of endemic plants. To face the global decline of insect herbivores, one must expand the coverage of the network of protected areas and improve the richness of native plants on private lands.

  8. A mangrove creek restoration plan utilizing hydraulic modeling.

    Science.gov (United States)

    Marois, Darryl E; Mitsch, William J

    2017-11-01

    Despite the valuable ecosystem services provided by mangrove ecosystems they remain threatened around the globe. Urban development has been a primary cause for mangrove destruction and deterioration in south Florida USA for the last several decades. As a result, the restoration of mangrove forests has become an important topic of research. Using field sampling and remote-sensing we assessed the past and present hydrologic conditions of a mangrove creek and its connected mangrove forest and brackish marsh systems located on the coast of Naples Bay in southwest Florida. We concluded that the hydrology of these connected systems had been significantly altered from its natural state due to urban development. We propose here a mangrove creek restoration plan that would extend the existing creek channel 1.1 km inland through the adjacent mangrove forest and up to an adjacent brackish marsh. We then tested the hydrologic implications using a hydraulic model of the mangrove creek calibrated with tidal data from Naples Bay and water levels measured within the creek. The calibrated model was then used to simulate the resulting hydrology of our proposed restoration plan. Simulation results showed that the proposed creek extension would restore a twice-daily flooding regime to a majority of the adjacent mangrove forest and that there would still be minimal tidal influence on the brackish marsh area, keeping its salinity at an acceptable level. This study demonstrates the utility of combining field data and hydraulic modeling to aid in the design of mangrove restoration plans.

  9. Hierarchical spatial structure of stream fish colonization and extinction

    Science.gov (United States)

    Hitt, N.P.; Roberts, J.H.

    2012-01-01

    Spatial variation in extinction and colonization is expected to influence community composition over time. In stream fish communities, local species richness (alpha diversity) and species turnover (beta diversity) are thought to be regulated by high extinction rates in headwater streams and high colonization rates in downstream areas. We evaluated the spatiotemporal structure of fish communities in streams originally surveyed by Burton and Odum 1945 (Ecology 26: 182-194) in Virginia, USA and explored the effects of species traits on extinction and colonization dynamics. We documented dramatic changes in fish community structure at both the site and stream scales. Of the 34 fish species observed, 20 (59%) were present in both time periods, but 11 (32%) colonized the study area and three (9%) were extirpated over time. Within streams, alpha diversity increased in two of three streams but beta diversity decreased dramatically in all streams due to fish community homogenization caused by colonization of common species and extirpation of rare species. Among streams, however, fish communities differentiated over time. Regression trees indicated that reproductive life-history traits such as spawning mound construction, associations with mound-building species, and high fecundity were important predictors of species persistence or colonization. Conversely, native fishes not associated with mound-building exhibited the highest rates of extirpation from streams. Our results demonstrate that stream fish colonization and extinction dynamics exhibit hierarchical spatial structure and suggest that mound-building fishes serve as keystone species for colonization of headwater streams.

  10. Habitat availability and heterogeneity and the indo-pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific.

    Science.gov (United States)

    Sanciangco, Jonnell C; Carpenter, Kent E; Etnoyer, Peter J; Moretzsohn, Fabio

    2013-01-01

    Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km(2) with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region.

  11. Habitat availability and heterogeneity and the indo-pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific.

    Directory of Open Access Journals (Sweden)

    Jonnell C Sanciangco

    Full Text Available Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs, 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km(2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region.

  12. Ecological Values of Mangrove Forest Ecosystem

    OpenAIRE

    Kusmana, Cecep

    1996-01-01

    Research on quantification of ecological values of mangrove forest ecosystem are urgently needed, due to its importance as the basics for utilization and management of resources. From the ecological point of vlew, the main prohlem of mangrove ecosystem is rarity and inconsistency of data and limited accurate methods inquantifying ecological values of that ecosystem. Results show that mangrove has the significant ecological values on coastal ecosystem. However, there must be further research t...

  13. Strategi Pengembangan Ekowisata Mangrove Wonorejo Surabaya

    OpenAIRE

    Umam, Khoirul; Sudiyarto, Sudiyarto; Winarno, Sri Tjondro

    2015-01-01

    The aim of the research are to describe the potential of ecotourism development in mangrove forest, to describe the benefits that can be gained by the community, to analyze the internal and external environment in the development of Mangrove Ecotourism Surabaya, and to formulate development strategiy of Mangrove Ecotourism Wonorejo Surabaya based on internal and external environment. The first and second objectives were answered using descrip­tive analysis, while the third objective was answe...

  14. Vulnerability Assessment of Mangrove Habitat to the Variables of the Oceanography Using CVI Method (Coastal Vulnerability Index) in Trimulyo Mangrove Area, Genuk District, Semarang

    Science.gov (United States)

    Ahmad, Rifandi Raditya; Fuad, Muhammad

    2018-02-01

    Some functions of mangrove areas in coastal ecosystems as a green belt, because mangrove serves as a protector of the beach from the sea waves, as a good habitat for coastal biota and for nutrition supply. Decreased condition or degradation of mangrove habitat caused by several oceanographic factors. Mangrove habitats have some specific characteristics such as salinity, tides, and muddy substrates. Considering the role of mangrove area is very important, it is necessary to study about the potential of mangrove habitat so that the habitat level of mangrove habitat in the east coast of Semarang city is known. The purpose of this research is to obtain an index and condition of habitat of mangrove habitat at location of research based on tidal, salinity, substrate type, coastline change. Observation by using purposive method and calculation of habitat index value of mangrove habitat using CVI (Coastal Vulnerability Index) method with scores divided into 3 groups namely low, medium and high. The results showed that there is a zone of research belonging to the medium vulnerability category with the most influential variables is because there is abrasion that sweeps the mangrove substrate. Trimulyo mangrove habitat has high vulnerable variable of tidal frequency, then based on value variable Salinity is categorized as low vulnerability, whereas for mangrove habitat vulnerability based on variable type of substrate belong to low and medium vulnerability category. The CVI values of mangrove habitats divided into zones 1; 2; and 3 were found to varying values of 1.54; 3.79; 1.09, it indicates that there is a zone with the vulnerability of mangrove habitat at the study site belonging to low and medium vulnerability category.

  15. Biodiversity, extinctions, and evolution of ecosystems with shared resources

    Science.gov (United States)

    Kozlov, Vladimir; Vakulenko, Sergey; Wennergren, Uno

    2017-03-01

    We investigate the formation of stable ecological networks where many species share the same resource. We show that such a stable ecosystem naturally occurs as a result of extinctions. We obtain an analytical relation for the number of coexisting species, and we find a relation describing how many species that may become extinct as a result of a sharp environmental change. We introduce a special parameter that is a combination of species traits and resource characteristics used in the model formulation. This parameter describes the pressure on the system to converge, by extinctions. When that stress parameter is large, we obtain that the species traits are concentrated at certain values. This stress parameter is thereby a parameter that determines the level of final biodiversity of the system. Moreover, we show that the dynamics of this limit system can be described by simple differential equations.

  16. Rediscovery of Aquilaria rostrata (Thymelaeaceae), a species thought to be extinct, and notes on Aquilaria conservation in Peninsular Malaysia

    NARCIS (Netherlands)

    Lee, S.Y.; Mohamed, R.

    2016-01-01

    After more than 100 years since the first discovery, Aquilaria rostrata, a critically endangered species listed in the IUCN Red List and presumably extinct, has been rediscovered in Terengganu State of Peninsular Malaysia. Here, we describe the history, taxonomy, ecology and conservation status of

  17. Global patterns in mangrove soil carbon stocks and losses

    KAUST Repository

    Atwood, Trisha B.

    2017-06-26

    Mangrove soils represent a large sink for otherwise rapidly recycled carbon (C). However, widespread deforestation threatens the preservation of this important C stock. It is therefore imperative that global patterns in mangrove soil C stocks and their susceptibility to remineralization are understood. Here, we present patterns in mangrove soil C stocks across hemispheres, latitudes, countries and mangrove community compositions, and estimate potential annual CO2 emissions for countries where mangroves occur. Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns described serve as a baseline by which countries can assess their mangrove soil C stocks and potential emissions from mangrove deforestation.

  18. Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential

    International Nuclear Information System (INIS)

    Alongi, Daniel M.

    2011-01-01

    Natural ecosystem change over time is an often unconsidered issue for PES and REDD+ schemes, and a lack of consideration of thermodynamic limitations has led to misconceptions and oversimplifications regarding ecosystem services, especially for tropical mangrove forests. Mangroves are non-linear, non-equilibrium systems uniquely adapted to a highly dynamic boundary where shorelines are continually evolving and sea-level ever changing, and rarely conform to classical concepts of forest development and succession. Not all mangroves accumulate carbon and rates of forest floor accretion are directly linked to the frequency of tidal inundation. Carbon payments in either a PES or REDD+ scheme are dependent on the rate of carbon sequestration, not the size of C stocks, so site selection must be ordinarily confined to the sea edge. Gas emissions and net ecosystem production (NEP) are linked to forest age, particularly for monospecific plantations. Planting of mixed-species forests is recommended to maximize biodiversity, food web connectivity and NEP. Old-growth forests are the prime ecosystems for carbon sequestration, and policy must give priority to schemes to maintain their existence. Large uncertainties exist in carbon sequestration potential of mangroves, and such limitations must be factored into the design, timeframe and execution of PES and REDD+ schemes.

  19. Mammal extinctions, body size, and paleotemperature.

    Science.gov (United States)

    Bown, T M; Holroyd, P A; Rose, K D

    1994-10-25

    There is a general inverse relationship between the natural logarithm of tooth area (a body size indicator) of some fossil mammals and paleotemperature during approximately 2.9 million years of the early Eocene in the Bighorn Basin of northwest Wyoming. When mean temperatures became warmer, tooth areas tended to become smaller. During colder times, larger species predominated; these generally became larger or remained the same size. Paleotemperature trends also markedly affected patterns of local (and, perhaps, regional) extinction and immigration. New species appeared as immigrants during or near the hottest (smaller forms) and coldest (larger forms) intervals. Paleotemperature trend reversals commonly resulted in the ultimate extinction of both small forms (during cooling intervals) and larger forms (during warming intervals). These immigrations and extinctions mark faunal turnovers that were also modulated by sharp increases in sediment accumulation rate.

  20. Ecosystem carbon stocks of micronesian mangrove forests

    Science.gov (United States)

    J. Boone Kauffman; Chris Heider; Thomas G. Cole; Kathleen A. Dwire; Daniel C. Donato

    2011-01-01

    Among the least studied ecosystem services of mangroves is their value as global carbon (C) stocks. This is significant as mangroves are subject to rapid rates of deforestation and therefore could be significant sources of atmospheric emissions. Mangroves could be key ecosystems in strategies addressing the mitigation of climate change though reduced deforestation. We...

  1. Economic Valuation of Mangrove Restoration in Indonesia

    Directory of Open Access Journals (Sweden)

    Djoko Suprapto

    2015-12-01

    Full Text Available Mangrove forest is one of the important ecosystems in Karimunjawa, Indonesia. It provides a variety of services both ecologically and economically. However, over-exploited activity, such as timber theft, can be threatening the sustainability of mangrove forest in Karimunjawa now and in the future. Thus, the improved management for mangrove forest is necessary to ensure its sustainability, and it is depending on how people value the conservation from economic and environment consideration. This study examines the factors influencing on the willingness to pay (WTP of respondents for mangrove restoration in Karimunjawa. A total of 502 respondents were interviewed using census method. The method employed is Contingent Valuation Method (CVMSingle Bounded. In CVM, the logit model was defined based on dichotomous choice method to estimate the willingness-to-pay (WTP randomly with three different starting bid value. Findings showed that local awareness of the importance of the values given by mangroves was popularized among local communities. The findings also indicated that respondents who are higher education and have more income were more likely to pay for the mangrove restoration.

  2. Transcriptome Characterization and Sequencing-Based Identification of Salt-Responsive Genes in Millettia pinnata, a Semi-Mangrove Plant

    OpenAIRE

    Huang, Jianzi; Lu, Xiang; Yan, Hao; Chen, Shouyi; Zhang, Wanke; Huang, Rongfeng; Zheng, Yizhi

    2012-01-01

    Semi-mangroves form a group of transitional species between glycophytes and halophytes, and hold unique potential for learning molecular mechanisms underlying plant salt tolerance. Millettia pinnata is a semi-mangrove plant that can survive a wide range of saline conditions in the absence of specialized morphological and physiological traits. By employing the Illumina sequencing platform, we generated ∼192 million short reads from four cDNA libraries of M. pinnata and processed them into 108 ...

  3. Criterion 1: Conservation of biological diversity - Indicator 7: The status (threatened, rare, vulnerable, endangered, or extinct) of forest dependent species at risk of not maintaining viable breeding populations, as determined by legislation or scientific assessment

    Science.gov (United States)

    Curtis H. Flather; Taylor H. Ricketts; Carolyn Hull Sieg; Michael S. Knowles; John P. Fay; Jason McNees

    2003-01-01

    As the number of species classified as rare increases, the likelihood of species extinction also increases. This indicator focuses on species that have the greatest chance of being lost from the biotic community and therefore presages potential declines in species richness. The trend in species extinction since the turn of the 20th century varies by taxonomic group....

  4. Paleoenvironment interpretation of a 1760 years B.P. old sediment in a mangrove area of the Bay of Guanabara, using pollen analysis

    OpenAIRE

    Barth, Ortrud M.; São-Thiago, Luiz E.U.; Barros, Marcia A.

    2006-01-01

    A sediment sample was obtained at 122 cm from the top of a drilling core in the Guapimirim mangrove, Bay of Guanabara, and analyzed using pollen analysis. This muddy core reached a sandy ground at 133 cm. 14C datation got the age of 1760 ± 50 years B.P. The most frequent pollen grains were mangrove species of Rhizophora mangle, Laguncularia racemosa and Avicennia schaueriana. "Restinga" and tropical rain forest vegetation was recognized behind the mangrove. After the last sea transgression at...

  5. A global predictive model of carbon in mangrove soils

    International Nuclear Information System (INIS)

    Jardine, Sunny L; Siikamäki, Juha V

    2014-01-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO 2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO 2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha −1 ) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha −1 ). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological

  6. Population characteristics of the mangrove clam Polymesoda (geloina) erosa (solander, 1786) in the Chorao mangrove, Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Ingole, B.S.; Naik, S.; Furtado, R.; Ansari, Z.A.; Chatterji, A.

    Mangroves are the tropical and sub tropical coastal and/or estuarine intertidal or island plant communities. Since the early history of mankind, mangrove ecosystems have played important role in the socio-economic development of coastal people...

  7. Deposition gradients across mangrove fringes

    NARCIS (Netherlands)

    Horstman, Erik Martijn; Mullarney, Julia C.; Bryan, K.R.; Sandwell, Dean R.; Aagaard, Troels; Deigaard, Rolf; Fuhrman, David

    2017-01-01

    Observations in a mangrove in the Whangapoua Harbour, New Zealand, have shown that deposition rates are greatest in the fringing zone between the tidal flats and the mangrove forest, where the vegetation is dominated by a cover of pneumatophores (i.e. pencil roots). Current speeds and suspended

  8. Modelling the extinction of Steller's sea cow

    OpenAIRE

    Turvey, S.T; Risley, C.L

    2005-01-01

    Steller's sea cow, a giant sirenian discovered in 1741 and extinct by 1768, is one of the few megafaunal mammal species to have died out during the historical period. The species is traditionally considered to have been exterminated by ‘blitzkrieg’-style direct overharvesting for food, but it has also been proposed that its extinction resulted from a sea urchin population explosion triggered by extirpation of local sea otter populations that eliminated the shallow-water kelps on which sea cow...

  9. Significance of Mangrove Biodiversity Conservation in Fishery Production and Living Conditions of Coastal Communities in Sri Lanka

    Directory of Open Access Journals (Sweden)

    Chaya Sarathchandra

    2018-03-01

    Full Text Available Sri Lanka is an island nation where ~59% of the population live in coastal regions. The main income source in these areas is fishing, which contributes to ~44% of the national GDP. Fishery resources depend on mangroves, especially in estuaries and lagoons, as mangroves provide the best nursery grounds for both brackish and marine species that are significant for the island’s fishing industry. However, growing pressures from an increasing population and development are causing substantial damage to mangroves resulting in loss of mangrove diversity. We analyzed whether variation in mangrove diversity within a lagoon system affects fishery production and livelihoods. Along the lagoon we selected three sites, which were 5 km apart from each other, for the survey. We used three 50 m long transects at each site for faunal and floral diversity assessments. The fishery catch was recorded from three crafts in each side. The socio-economic survey was conducted in 30 households per site using a standard questionnaire. In the site with the highest floral and faunal diversity, we also recorded the highest fish catch, but not the highest crab or shrimp catches. Our results confirm that higher mangrove diversity—and not just area—supports higher income generation. Thus, future development should prioritize biodiversity conservation in coastal regions.

  10. Penaeid prawns and their culture in mangrove areas

    Digital Repository Service at National Institute of Oceanography (India)

    Achuthankutty, C.T.

    Culture of penaeid prawns in mangrove areas has been described. Mangrove ecosystem is rich in particulate organic matter or detritus. Detritus is nutritionally very rich and is the major source of food for the juvenile prawns. The mangrove...

  11. An extinct vertebrate preserved by its living hybridogenetic descendant.

    Science.gov (United States)

    Dubey, Sylvain; Dufresnes, Christophe

    2017-10-06

    Hybridogenesis is a special mode of hybrid reproduction where one parental genome is eliminated and the other is transmitted clonally. We propose that this mechanism can perpetuate the genome of extinct species, based on new genetic data from Pelophylax water frogs. We characterized the genetic makeup of Italian hybridogenetic hybrids (P. kl. hispanicus and esculentus) and identified a new endemic lineage of Eastern-Mediterranean origin as one parental ancestor of P. kl. hispanicus. This taxon is nowadays extinct in the wild but its germline subsists through its hybridogenetic descendant, which can thus be considered as a "semi living fossil". Such rare situation calls for realistic efforts of de-extinction through selective breeding without genetic engineering, and fuels the topical controversy of reviving long extinct species. "Ghost" species hidden by taxa of hybrid origin may be more frequent than suspected in vertebrate groups that experienced a strong history of hybridization and semi-sexual reproduction.

  12. Enteric viruses in a mangrove lagoon, survival and shellfish incidence

    Energy Technology Data Exchange (ETDEWEB)

    Lopez de Cardona, I.; Bermudez, M.; Billmire, E.; Hazen, T.C. [Univ. of Puerto Rico, Rio Piedras (Puerto Rico)

    1988-12-31

    Mangrove oysters (Crassostrea rhizophorae) were screened for enteric viruses. For 18 months oysters were collected from Cano Boqueron, a tropical mangrove lagoon on the southwest coast of Puerto Rico. This popular tourist resort has two primary sewage treatment plants which service 158 single family cabanas. In spite of the heavy seasonal input of sewage to Cano Boqueron and high densities of fecal coliform bacteria, enteric viruses were not detected in shellfish meat. Because no viruses were detected in the oysters, a virus survival study was performed. Poliovirus type 1 was placed in diffusion chambers in situ at two sites in Cano Boqueron. More than 95% of the poliovirus inactivation occurred within 24 h. Virus inactivation was significantly different by site, indicating different inactivation rates within the lagoon. Chamber studies done simultaneously with Escherichia coli did not reveal differences between sites. It is suggested that the sewage effluent had an antiviral effect in the absence of an antibacterial effect. This study demonstrates the importance for establishing microbial contamination standards for shellfish growing waters in the tropics based upon in situ studies with tropical species, e.g. mangrove oyster.

  13. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S.; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings. PMID:26347734

  14. Mangrove rare actinobacteria: taxonomy, natural compound, and discovery of bioactivity.

    Science.gov (United States)

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Velu, Saraswati S; Chan, Kok-Gan; Lee, Learn-Han

    2015-01-01

    Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer, and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  15. Mangrove rare actinobacteria: Taxonomy, natural compound and discovery of bioactivity

    Directory of Open Access Journals (Sweden)

    Adzzie-Shazleen eAzman

    2015-08-01

    Full Text Available Actinobacteria are one of the most important and efficient groups of natural metabolite producers. The genus Streptomyces have been recognized as prolific producers of useful natural compounds as they produced more than half of the naturally-occurring antibiotics isolated to-date and continue as the primary source of new bioactive compounds. Lately, Streptomyces groups isolated from different environments produced the same types of compound, possibly due to frequent genetic exchanges between species. As a result, there is a dramatic increase in demand to look for new compounds which have pharmacological properties from another group of Actinobacteria, known as rare actinobacteria; which is isolated from special environments such as mangrove. Recently, mangrove ecosystem is becoming a hot spot for studies of bioactivities and the discovery of natural products. Many novel compounds discovered from the novel rare actinobacteria have been proven as potential new drugs in medical and pharmaceutical industries such as antibiotics, antimicrobials, antibacterials, anticancer and antifungals. This review article highlights the latest studies on the discovery of natural compounds from the novel mangrove rare actinobacteria and provides insight on the impact of these findings.

  16. Efecto de la conversión del manglar a potrero sobre la densidad y tallas de dos gasterópodos en el delta del río Turbo (golfo de Urabá, Caribe colombiano Effects mangrove conversion to pasture on density and shell size of two gastropods in the Turbo River Delta (Urabá Gulf, Caribbean coast of Colombia

    Directory of Open Access Journals (Sweden)

    Juan F. Blanco

    2012-12-01

    , Colombia. Mangrove types were polygon-delimited with satellite images and color aerial photographs were taken in 2009. various (n<5 polygons per mangrove type were sampled in January, July and December 2009, and a total (n<20 0.025m²-quadrats were randomly placed along each polygon. Forest structure variables, pore-water physico-chemical variables and sediment-grain metrics were measured in the four mangrove types. Mean density and size of both gastropod species were measured. The results showed that the mean density and size of both species were significantly greater in R. mangle-fringing mangroves. N. virginea density decreased gradually towards the A. germinans-basin mangroves seemly related to the diadromous life-history. This species nearly disappeared in the neighboring pastures because individuals were constrained to a few remaining flooded areas. In the pastures, M. coffeus individuals were clumped in the remaining A. germinans trees due to its climbing behavior as a pulmonate. We hypothesize that the decline of these two gastropods was related to physical microhabitat (e.g. trees, prop roots, and seedlings degradation, and alteration of soil properties (e.g. temperature, pH, organic matter content. Finally, we also hypothesize that the local extinction of N. virginea due to clear-cutting may exert strong negative effects on the ecosystem function because it is a dominant omnivore.

  17. Organic carbon dynamics in mangrove ecosystems: a review

    NARCIS (Netherlands)

    Kristensen, E.; Bouillon, S.; Dittmar, T.; Marchand, C.

    2008-01-01

    Our current knowledge on production, composition, transport, pathways and transformations of organic carbon in tropical mangrove environments is reviewed and discussed. Organic carbon entering mangrove foodwebs is either produced autochthonously or imported by tides and/or rivers. Mangrove litter

  18. Allometric models for estimating the aboveground biomass of the mangrove Rhizophora mangle

    Directory of Open Access Journals (Sweden)

    Heide Vanessa Souza Santos

    Full Text Available Abstract The development of species-specific allometric models is critical to the improvement of aboveground biomass estimates, as well as to the estimation of carbon stock and sequestration in mangrove forests. This study developed allometric equations for estimating aboveground biomass of Rhizophora mangle in the mangroves of the estuary of the São Francisco River, in northeastern Brazil. Using a sample of 74 trees, simple linear regression analysis was used to test the dependence of biomass (total and per plant part on size, considering both transformed (ln and not-transformed data. Best equations were considered as those with the lowest standard error of estimation (SEE and highest adjusted coefficient of determination (R2a. The ln-transformed equations showed better results, with R2a near 0.99 in most cases. The equations for reproductive parts presented low R2a values, probably attributed to the seasonal nature of this compartment. "Basal Area2 × Height" showed to be the best predictor, present in most of the best-fitted equations. The models presented here can be considered reliable predictors of the aboveground biomass of R. mangle in the NE-Brazilian mangroves as well as in any site were this widely distributed species present similar architecture to the trees used in the present study.

  19. Status and trends of amphibian declines and extinctions worldwide.

    Science.gov (United States)

    Stuart, Simon N; Chanson, Janice S; Cox, Neil A; Young, Bruce E; Rodrigues, Ana S L; Fischman, Debra L; Waller, Robert W

    2004-12-03

    The first global assessment of amphibians provides new context for the well-publicized phenomenon of amphibian declines. Amphibians are more threatened and are declining more rapidly than either birds or mammals. Although many declines are due to habitat loss and overutilization, other, unidentified processes threaten 48% of rapidly declining species and are driving species most quickly to extinction. Declines are nonrandom in terms of species' ecological preferences, geographic ranges, and taxonomic associations and are most prevalent among Neotropical montane, stream-associated species. The lack of conservation remedies for these poorly understood declines means that hundreds of amphibian species now face extinction.

  20. Chronic warming stimulates growth of marsh grasses more than mangroves in a coastal wetland ecotone.

    Science.gov (United States)

    Coldren, G A; Barreto, C R; Wykoff, D D; Morrissey, E M; Langley, J A; Feller, I C; Chapman, S K

    2016-11-01

    Increasing temperatures and a reduction in the frequency and severity of freezing events have been linked to species distribution shifts. Across the globe, mangrove ranges are expanding toward higher latitudes, likely due to diminishing frequency of freezing events associated with climate change. Continued warming will alter coastal wetland plant dynamics both above- and belowground, potentially altering plant capacity to keep up with sea level rise. We conducted an in situ warming experiment, in northeast Florida, to determine how increased temperature (+2°C) influences co-occurring mangrove and salt marsh plants. Warming was achieved using passive warming with three treatment levels (ambient, shade control, warmed). Avicennia germinans, the black mangrove, exhibited no differences in growth or height due to experimental warming, but displayed a warming-induced increase in leaf production (48%). Surprisingly, Distichlis spicata, the dominant salt marsh grass, increased in biomass (53% in 2013 and 70% in 2014), density (41%) and height (18%) with warming during summer months. Warming decreased plant root mass at depth and changed abundances of anaerobic bacterial taxa. Even while the poleward shift of mangroves is clearly controlled by the occurrences of severe freezes, chronic warming between these freeze events may slow the progression of mangrove dominance within ecotones. © 2016 by the Ecological Society of America.