WorldWideScience

Sample records for species induce protein

  1. Mercuric ions inhibit mitogen-activated protein kinase dephosphorylation by inducing reactive oxygen species

    International Nuclear Information System (INIS)

    Haase, Hajo; Engelhardt, Gabriela; Hebel, Silke; Rink, Lothar

    2011-01-01

    Mercury intoxication profoundly affects the immune system, in particular, signal transduction of immune cells. However, the mechanism of the interaction of mercury with cellular signaling pathways, such as mitogen activated protein kinases (MAPK), remains elusive. Therefore, the objective of this study is to investigate three potential ways in which Hg 2+ ions could inhibit MAPK dephosphorylation in the human T-cell line Jurkat: (1) by direct binding to phosphatases; (2) by releasing cellular zinc (Zn 2+ ); and (3) by inducing reactive oxygen species (ROS). Hg 2+ causes production of ROS, measured by dihydrorhodamine 123, and triggers ROS-mediated Zn 2+ release, detected with FluoZin-3. Yet, phosphatase-inhibition is not mediated by binding of Zn 2+ or Hg 2+ . Rather, phosphatases are inactivated by at least two forms of thiol oxidation; initial inhibition is reversible with reducing agents such as Tris(2-carboxyethyl)phosphine. Prolonged inhibition leads to non-reversible phosphatase oxidation, presumably oxidizing the cysteine thiol to sulfinic- or sulfonic acid. Notably, phosphatases are a particularly sensitive target for Hg 2+ -induced oxidation, because phosphatase activity is inhibited at concentrations of Hg 2+ that have only minor impact on over all thiol oxidation. This phosphatase inhibition results in augmented, ROS-dependent MAPK phosphorylation. MAPK are important regulators of T-cell function, and MAPK-activation by inhibition of phosphatases seems to be one of the molecular mechanisms by which mercury affects the immune system.

  2. Role of reactive oxygen species and Bcl-2 family proteins in TNF-α-induced apoptosis of lymphocytes.

    Science.gov (United States)

    Ryazanceva, N V; Novickiy, V V; Zhukova, O B; Biktasova, A K; Chechina, O E; Sazonova, E V; Belkina, M V; Chasovskih, N Yu; Khaitova, Z K

    2010-08-01

    We studied the in vitro apoptosis-inducing effect of recombinant TNF-α (rTNF-α) on blood lymphocytes from healthy donors. rTNF-α-induced apoptosis was accompanied by an increase in the number of cells with low mitochondrial transmembrane potential, increased intracellular content of reactive oxygen species, reduced content of Bcl-2, Bcl-xL, and Bax proteins, and elevated Bad content. The molecular mechanisms of these changes are discussed.

  3. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Science.gov (United States)

    Kwon, Kwang-Chul; Verma, Dheeraj; Jin, Shuangxia; Singh, Nameirakpam D; Daniell, Henry

    2013-01-01

    Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress) or paraquat (abiotic stress), GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II) made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide), which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These results suggest a

  4. Release of proteins from intact chloroplasts induced by reactive oxygen species during biotic and abiotic stress.

    Directory of Open Access Journals (Sweden)

    Kwang-Chul Kwon

    Full Text Available Plastids sustain life on this planet by providing food, feed, essential biomolecules and oxygen. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. However, specific factors, especially large molecules, released from plastids that regulate nuclear genes have not yet been fully elucidated. When tobacco and lettuce transplastomic plants expressing GFP within chloroplasts, were challenged with Erwinia carotovora (biotic stress or paraquat (abiotic stress, GFP was released into the cytoplasm. During this process GFP moves gradually towards the envelope, creating a central red zone of chlorophyll fluorescence. GFP was then gradually released from intact chloroplasts into the cytoplasm with an intact vacuole and no other visible cellular damage. Different stages of GFP release were observed inside the same cell with a few chloroplasts completely releasing GFP with detection of only red chlorophyll fluorescence or with no reduction in GFP fluorescence or transitional steps between these two phases. Time lapse imaging by confocal microscopy clearly identified sequence of these events. Intactness of chloroplasts during this process was evident from chlorophyll fluorescence emanated from thylakoid membranes and in vivo Chla fluorescence measurements (maximum quantum yield of photosystem II made before or after infection with pathogens to evaluate their photosynthetic competence. Hydrogen peroxide and superoxide anion serve as signal molecules for generation of reactive oxygen species and Tiron, scavenger of superoxide anion, blocked release of GFP from chloroplasts. Significant increase in ion leakage in the presence of paraquat and light suggests changes in the chloroplast envelope to facilitate protein release. Release of GFP-RC101 (an antimicrobial peptide, which was triggered by Erwinia infection, ceased after conferring protection, further confirming this export phenomenon. These

  5. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    International Nuclear Information System (INIS)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien; Ju, Tsai-Kai; Huang, Yuan-Li; Lee, Ming-Shyue; Chen, Jiun-Hong; Lee, Hsinyu

    2013-01-01

    Highlights: •LPA induces ROS generation through LPA 1 and LPA 3 . •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA 1 and LPA 3 siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway

  6. Lysophosphatidic acid induces reactive oxygen species generation by activating protein kinase C in PC-3 human prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chu-Cheng; Lin, Chuan-En; Lin, Yueh-Chien [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Ju, Tsai-Kai [Instrumentation Center, National Taiwan University, Taipei, Taiwan, ROC (China); Technology Commons, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Huang, Yuan-Li [Department of Biotechnology, Asia University, Taichung, Taiwan, ROC (China); Lee, Ming-Shyue [Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC (China); Chen, Jiun-Hong [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Lee, Hsinyu, E-mail: hsinyu@ntu.edu.tw [Institute of Zoology, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Department of Life Science, College of Life Science, National Taiwan University, Taipei, Taiwan, ROC (China); Center for Biotechnology, National Taiwan University, Taipei, Taiwan, ROC (China); Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan, ROC (China)

    2013-11-01

    Highlights: •LPA induces ROS generation through LPA{sub 1} and LPA{sub 3}. •LPA induces ROS generation by activating PLC. •PKCζ mediates LPA-induced ROS generation. -- Abstract: Prostate cancer is one of the most frequently diagnosed cancers in males, and PC-3 is a cell model popularly used for investigating the behavior of late stage prostate cancer. Lysophosphatidic acid (LPA) is a lysophospholipid that mediates multiple behaviors in cancer cells, such as proliferation, migration and adhesion. We have previously demonstrated that LPA enhances vascular endothelial growth factor (VEGF)-C expression in PC-3 cells by activating the generation of reactive oxygen species (ROS), which is known to be an important mediator in cancer progression. Using flow cytometry, we showed that LPA triggers ROS generation within 10 min and that the generated ROS can be suppressed by pretreatment with the NADPH oxidase (Nox) inhibitor diphenylene iodonium. In addition, transfection with LPA{sub 1} and LPA{sub 3} siRNA efficiently blocked LPA-induced ROS production, suggesting that both receptors are involved in this pathway. Using specific inhibitors and siRNA, phospholipase C (PLC) and protein kinase C (PKC) were also suggested to participate in LPA-induced ROS generation. Overall, we demonstrated that LPA induces ROS generation in PC-3 prostate cancer cells and this is mediated through the PLC/PKC/Nox pathway.

  7. Protein phosphatases 2A as well as reactive oxygen species involved in tributyltin-induced apoptosis in mouse livers.

    Science.gov (United States)

    Zhang, Yali; Chen, Yonggang; Sun, Lijun; Liang, Jing; Guo, Zonglou; Xu, Lihong

    2014-02-01

    Tributyltin (TBT), a highly toxic environmental contaminant, has been shown to induce caspase-3-dependent apoptosis in human amniotic cells through protein phosphatase 2A (PP2A) inhibition and consequent JNK activation. This in vivo study was undertaken to further verify the results derived from our previous in vitro study. Mice were orally dosed with 0, 10, 20, and 60 mg/kg of body weight TBT, and levels of PP2A, reactive oxygen species (ROS), mitogen-activated protein kinase (MAPK), Bax/Bcl-2, and caspase-3 were detected in the mouse livers. Apoptosis was also evaluated using the TUNEL assay. The results showed that PP2A activity was inhibited, ROS levels were elevated, and MAPKs including ERK, JNK, and p38 were activated in mouse livers treated with the highest dose of TBT. Additionally, the ratio of Bax/Bcl-2 was increased, caspase-3 was activated, and apoptosis in mouse livers could be detected in the highest dose group. Therefore, a possible signaling pathway in TBT-induced apoptosis in mouse livers involves PP2A inhibition and ROS elevation serving a pivotal function as upstream activators of MAPKs; activation of MAPKs in turn leads to an increase in the Bax/Bcl-2 ratio, ultimately leading to the activation of caspase-3. The results give a comprehensive and novel description of the mechanism of TBT-induced toxicity. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  8. Identification of 30 protein species involved in replicative senescence and stress-induced premature senescence

    DEFF Research Database (Denmark)

    Dierick, Jean François; Kalume, Dário E; Wenders, Frédéric

    2002-01-01

    Exposure of human proliferative cells to subcytotoxic stress triggers stress-induced premature senescence (SIPS) which is characterized by many biomarkers of replicative senescence. Proteomic comparison of replicative senescence and stress-induced premature senescence indicates that, at the level...

  9. Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs

    International Nuclear Information System (INIS)

    Gandhy, Shruti U; Kim, KyoungHyun; Larsen, Lesley; Rosengren, Rhonda J; Safe, Stephen

    2012-01-01

    Curcumin inhibits growth of several cancer cell lines, and studies in this laboratory in bladder and pancreatic cancer cells show that curcumin downregulates specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and pro-oncogenic Sp-regulated genes. In this study, we investigated the anticancer activity of curcumin and several synthetic cyclohexanone and piperidine analogs in colon cancer cells. The effects of curcumin and synthetic analogs on colon cancer cell proliferation and apoptosis were determined using standardized assays. The changes in Sp proteins and Sp-regulated gene products were analysed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a), miR-20a, miR-17-5p and ZBTB10 and ZBTB4 mRNA expression. The IC 50 (half-maximal) values for growth inhibition (24 hr) of colon cancer cells by curcumin and synthetic cyclohexanone and piperidine analogs of curcumin varied from 10 μM for curcumin to 0.7 μM for the most active synthetic piperidine analog RL197, which was used along with curcumin as model agents in this study. Curcumin and RL197 inhibited RKO and SW480 colon cancer cell growth and induced apoptosis, and this was accompanied by downregulation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and Sp-regulated genes including the epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (c-MET), survivin, bcl-2, cyclin D1 and NFκB (p65 and p50). Curcumin and RL197 also induced reactive oxygen species (ROS), and cotreatment with the antioxidant glutathione significantly attenuated curcumin- and RL197-induced growth inhibition and downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes. The mechanism of curcumin-/RL197-induced repression of Sp transcription factors was ROS-dependent and due to induction of the Sp repressors ZBTB10 and ZBTB4 and downregulation of microRNAs (miR)-27a, miR-20a and miR-17-5p that regulate these repressors. These results identify a new and highly potent

  10. Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp transcription factors by targeting microRNAs

    Directory of Open Access Journals (Sweden)

    Gandhy Shruti U

    2012-11-01

    Full Text Available Abstract Background Curcumin inhibits growth of several cancer cell lines, and studies in this laboratory in bladder and pancreatic cancer cells show that curcumin downregulates specificity protein (Sp transcription factors Sp1, Sp3 and Sp4 and pro-oncogenic Sp-regulated genes. In this study, we investigated the anticancer activity of curcumin and several synthetic cyclohexanone and piperidine analogs in colon cancer cells. Methods The effects of curcumin and synthetic analogs on colon cancer cell proliferation and apoptosis were determined using standardized assays. The changes in Sp proteins and Sp-regulated gene products were analysed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a, miR-20a, miR-17-5p and ZBTB10 and ZBTB4 mRNA expression. Results The IC50 (half-maximal values for growth inhibition (24 hr of colon cancer cells by curcumin and synthetic cyclohexanone and piperidine analogs of curcumin varied from 10 μM for curcumin to 0.7 μM for the most active synthetic piperidine analog RL197, which was used along with curcumin as model agents in this study. Curcumin and RL197 inhibited RKO and SW480 colon cancer cell growth and induced apoptosis, and this was accompanied by downregulation of specificity protein (Sp transcription factors Sp1, Sp3 and Sp4 and Sp-regulated genes including the epidermal growth factor receptor (EGFR, hepatocyte growth factor receptor (c-MET, survivin, bcl-2, cyclin D1 and NFκB (p65 and p50. Curcumin and RL197 also induced reactive oxygen species (ROS, and cotreatment with the antioxidant glutathione significantly attenuated curcumin- and RL197-induced growth inhibition and downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes. The mechanism of curcumin-/RL197-induced repression of Sp transcription factors was ROS-dependent and due to induction of the Sp repressors ZBTB10 and ZBTB4 and downregulation of microRNAs (miR-27a, miR-20a and miR-17-5p that regulate these repressors

  11. Nitric oxide-related species-induced protein oxidation: reversible, irreversible, and protective effects on enzyme function of papain.

    Science.gov (United States)

    Väänänen, Antti J; Kankuri, Esko; Rauhala, Pekka

    2005-04-15

    Protein oxidation, irreversible modification, and inactivation may play key roles in various neurodegenerative disorders. Therefore, we studied the effects of the potentially in vivo occurring nitric oxide-related species on two different markers of protein oxidation: protein carbonyl generation on bovine serum albumine (BSA) and loss of activity of a cysteine-dependent protease, papain, in vitro by using Angeli's salt, papanonoate, SIN-1, and S-nitrosoglutathione (GSNO) as donors of nitroxyl, nitric oxide, peroxynitrite, and nitrosonium ions, respectively. Angeli's salt, SIN-1, and papanonoate (0-1000 microM) all generated a concentration-dependent increase in carbonyl formation on BSA (107, 60, and 45%, respectively). GSNO did not affect carbonyl formation. Papain was inhibited by Angeli's salt, SIN-1, papanonoate, and GSNO with IC50 values of 0.62, 2.3, 54, and 80 microM, respectively. Angeli's salt (3.16 microM)-induced papain inactivation was only partially reversible, while the effects of GSNO (316 microM) and papanonoate (316 microM) were reversible upon addition of excess DTT. The Angeli's salt-mediated DTT-irreversible inhibition of papain was prevented by GSNO or papanonoate pretreatment, hypothetically through mixed disulfide formation or S-nitrosylation of the catalytically critical thiol group of papain. These results, for the first time, compare the generation of carbonyls in proteins by Angeli's salt, papanonoate, and SIN-1. Furthermore, these results suggest that S-nitrosothiols may have a novel function in protecting critical thiols from irreversible oxidative damage.

  12. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei; Li, Yong, E-mail: 11211220031@fudan.edu.cn

    2016-03-18

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels played a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.

  13. 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase.

    Directory of Open Access Journals (Sweden)

    Qilong Wang

    2011-02-01

    Full Text Available Autophagy is a cellular self-digestion process activated in response to stresses such as energy deprivation and oxidative stress. However, the mechanisms by which energy deprivation and oxidative stress trigger autophagy remain undefined. Here, we report that activation of AMP-activated protein kinase (AMPK by mitochondria-derived reactive oxygen species (ROS is required for autophagy in cultured endothelial cells. AMPK activity, ROS levels, and the markers of autophagy were monitored in confluent bovine aortic endothelial cells (BAEC treated with the glycolysis blocker 2-deoxy-D-glucose (2-DG. Treatment of BAEC with 2-DG (5 mM for 24 hours or with low concentrations of H(2O(2 (100 µM induced autophagy, including increased conversion of microtubule-associated protein light chain 3 (LC3-I to LC3-II, accumulation of GFP-tagged LC3 positive intracellular vacuoles, and increased fusion of autophagosomes with lysosomes. 2-DG-treatment also induced AMPK phosphorylation, which was blocked by either co-administration of two potent anti-oxidants (Tempol and N-Acetyl-L-cysteine or overexpression of superoxide dismutase 1 or catalase in BAEC. Further, 2-DG-induced autophagy in BAEC was blocked by overexpressing catalase or siRNA-mediated knockdown of AMPK. Finally, pretreatment of BAEC with 2-DG increased endothelial cell viability after exposure to hypoxic stress. Thus, AMPK is required for ROS-triggered autophagy in endothelial cells, which increases endothelial cell survival in response to cell stress.

  14. Moringa oleifera fruit induce apoptosis via reactive oxygen species-dependent activation of mitogen-activated protein kinases in human melanoma A2058 cells.

    Science.gov (United States)

    Guon, Tae Eun; Chung, Ha Sook

    2017-08-01

    The present study was performed to determine the effect of Moringa oleifera fruit extract on the apoptosis of human melanoma A2058 cells. A2058 cells were treated for 72 h with Moringa oleifera fruit extract at 50-100 µg/ml, and cell viability with apoptotic changes was examined. The involvement of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) was examined. It was revealed that Moringa oleifera fruit extract significantly inhibited the cell viability and promoted apoptosis of A2058 cells in a concentration-dependent manner. Moringa oleifera fruit extract-treated A2058 cells exhibited increased activities of cleaved caspase-9 and caspase-3. It also caused an enhancement of MAPK phosphorylation and ROS production. The pro-apoptotic activity of Moringa oleifera fruit extract was significantly reversed by pretreatment with the c-Jun N-terminal kinase (JNK) inhibitor SP600125, extracellular-signal-regulated kinase (ERK) inhibitor PD98058 or ROS inhibitor N-acetyl-L-cysteine. Taken together, Moringa oleifera fruit extract is effective in inducing mitochondrial apoptosis of A2058 cells, which is mediated through induction of ROS formation, and JNK and ERK activation. Moringa oleifera fruit extract may thus have therapeutic benefits for human melanoma A2058 cells.

  15. Reactive oxygen species-dependent HSP90 protein cleavage participates in arsenical As+3- and MMA+3-induced apoptosis through inhibition of telomerase activity via JNK activation

    International Nuclear Information System (INIS)

    Shen, S.-C.; Yang, L.-Y.; Lin, H.-Y.; Wu, C.-Y.; Su, T.-H.; Chen, Y.-C.

    2008-01-01

    The effects of six arsenic compounds including As +3 , MMA +3 , DMA +3 , As +5 , MMA +5 , and DMA +5 on the viability of NIH3T3 cells were examined. As +3 and MMA +3 , but not the others, exhibited significant cytotoxic effects in NIH3T3 cells through apoptosis induction. The apoptotic events such as DNA fragmentation and chromosome condensation induced by As +3 and MMA +3 were prevented by the addition of NAC and CAT, and induction of HO-1 gene expression in accordance with cleavage of the HSP90 protein, and suppression of telomerase activity were observed in NIH3T3 cells under As +3 and MMA +3 treatments. An increase in the intracellular peroxide level was examined in As +3 - and MMA +3 -treated NIH3T3 cells, and As +3 - and MMA +3 -induced apoptotic events were blocked by NAC, CAT, and DPI addition. HSP90 inhibitors, GA and RD, significantly attenuated the telomerase activity in NIH3T3 cells with an enhancement of As +3 - and MMA +3 -induced cytotoxicity. Suppression of JNKs significantly inhibited As +3 - and MMA +3 -induced apoptosis by blocking HSP90 protein cleavage and telomerase reduction in NIH3T3 cells. Furthermore, Hb, SnPP, and dexferosamine showed no effect against As +3 - and MMA +3 -induced apoptosis, and overexpression of HO-1 protein or inhibition of HO-1 protein expression did not affect the apoptosis induced by As +3 or MMA +3 . These data provide the first evidence to indicate that apoptosis induced by As +3 and MMA +3 is mediated by an ROS-dependent degradation of HSP90 protein and reduction of telomerase via JNK activation, and HO-1 induction might not be involved

  16. Diversity in protein glycosylation among insect species.

    Directory of Open Access Journals (Sweden)

    Gianni Vandenborre

    Full Text Available BACKGROUND: A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS: In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum, the silkworm (Bombyx mori, the honeybee (Apis mellifera, the fruit fly (D. melanogaster and the pea aphid (Acyrthosiphon pisum. To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans. CONCLUSIONS/SIGNIFICANCE: The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed.

  17. Dataset of protein species from human liver

    Directory of Open Access Journals (Sweden)

    Stanislav Naryzhny

    2017-06-01

    Full Text Available This article contains data related to the research article entitled “Zipf׳s law in proteomics” (Naryzhny et al., 2017 [1]. The protein composition in the human liver or hepatocarcinoma (HepG2 cells extracts was estimated using a filter-aided sample preparation (FASP protocol. The protein species/proteoform composition in the human liver was determined by two-dimensional electrophoresis (2-DE followed by Electrospray Ionization Liquid Chromatography-Tandem Mass Spectrometry (ESI LC-MS/MS. In the case of two-dimensional electrophoresis (2-DE, the gel was stained with Coomassie Brilliant Blue R350, and image analysis was performed with ImageMaster 2D Platinum software (GE Healthcare. The 96 sections in the 2D gel were selected and cut for subsequent ESI LC-MS/MS and protein identification. If the same protein was detected in different sections, it was considered to exist as different protein species/proteoforms. A list of human liver proteoforms detected in this way is presented.

  18. Myxoma Virus dsRNA Binding Protein M029  Inhibits the Type I IFN-Induced Antiviral State in a  Highly Species-Specific Fashion.

    Science.gov (United States)

    Rahman, Masmudur M; McFadden, Grant

    2017-02-02

    Myxoma virus (MYXV) is Leporipoxvirus that possesses a specific rabbit-restricted host tropism but exhibits a much broader  cellular host range in cultured cells. MYXV is able to efficiently  block all aspects of the type I interferon (IFN)-induced  antiviral  state  in rabbit cells, partially in  human  cells  and  very  poorly  in  mouse  cells.  The mechanism(s) of this species-specific inhibition of  type I IFN-induced antiviral state is not well understood. Here we demonstrate that MYXV encoded  protein  M029, a truncated relative of the vaccinia virus (VACV) E3 double-stranded RNA (dsRNA)  binding  protein  that  inhibits  protein  kinase  R (PKR),  can  also  antagonize the type I IFN-induced  antiviral state in a highly species-specific manner. In cells pre-treated with type I IFN prior to  infection,  MYXV  exploits  M029  to  overcome  the  induced  antiviral  state completely in rabbit cells,  partially  in  human  cells,  but  not at all in mouse cells. However, in cells pre-infected with MYXV,  IFN-induced  signaling  is fully  inhibited  even  in the  absence  of M029 in cells from all three species,  suggesting  that  other  MYXV  protein(s)  apart  from  M029  block  IFN  signaling  in  a  speciesindependent  manner.  We  also  show  that  the  antiviral  state  induced in rabbit, human or mouse cells  by  type  I IFN  can  inhibit M029-knockout MYXV even when PKR is genetically knocked-out, suggesting  that  M029  targets  other  host  proteins  for  this  antiviral state inhibition. Thus, the MYXV  dsRNA  binding  protein  M029  not  only  antagonizes  PKR  from  multiple  species  but  also blocks the  type I IFN antiviral state independently of PKR in a highly species-specific fashion.

  19. Inducible Clindamycin Resistance in Staphylococcus Species

    International Nuclear Information System (INIS)

    Afridi, F. I.; Zeb, M.; Farooqi, B. J.; Murtaza, G.; Hussain, A.

    2014-01-01

    Objective: To determine the frequency of inducible clindamycin resistance in clinical isolates of Staphylococcus species by phenotypic D-test. Study Design: Observational study. Place and Duration of Study: Ziauddin University Hospital, Karachi, from July to December 2011. Methodology: Consecutive clinical isolates of Staphylococcus species were collected and identified by conventional microbiological techniques. Antimicrobial susceptibility testing and inducible clindamycin resistance was carried out by performing D-test using CLSI criteria. Methicillin resistance was detected by using Cefoxitin disk as a surrogate marker. Statistical analysis was performed by SPSS version-17. Results: A total of 667 clinical isolates of Staphylococcus species were obtained during the study period. In these isolates, 177 (26.5%) were Staphylococcus aureus, and 490 (73.5%) were coagulase negative Staphylococci. The total frequency of inducible clindamycin resistance among isolates of Staphylococcus species was 120/667 (18%). Frequency of inducible clindamycin resistance among coagulase negative Staphylococci group and Staphylococcus aureus group were 18.57% and 16.38% respectively. Median age of patients in D-test positive group was 19.5 (1 - 54) years. Conclusion: The frequency of inducible clindamycin resistance among Staphylococcus species may differ in different hospital setup. Clinical microbiology laboratories should implement testing simple and effective D-test on all Staphylococcus species. D-test positive isolates should be reported clindamycin resistant to decrease treatment failure. (author)

  20. Protein-protein interaction network-based detection of functionally similar proteins within species.

    Science.gov (United States)

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  1. Evolution of vertebrate interferon inducible transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Hickford Danielle

    2012-04-01

    Full Text Available Abstract Background Interferon inducible transmembrane proteins (IFITMs have diverse roles, including the control of cell proliferation, promotion of homotypic cell adhesion, protection against viral infection, promotion of bone matrix maturation and mineralisation, and mediating germ cell development. Most IFITMs have been well characterised in human and mouse but little published data exists for other animals. This study characterised IFITMs in two distantly related marsupial species, the Australian tammar wallaby and the South American grey short-tailed opossum, and analysed the phylogeny of the IFITM family in vertebrates. Results Five IFITM paralogues were identified in both the tammar and opossum. As in eutherians, most marsupial IFITM genes exist within a cluster, contain two exons and encode proteins with two transmembrane domains. Only two IFITM genes, IFITM5 and IFITM10, have orthologues in both marsupials and eutherians. IFITM5 arose in bony fish and IFITM10 in tetrapods. The bone-specific expression of IFITM5 appears to be restricted to therian mammals, suggesting that its specialised role in bone production is a recent adaptation specific to mammals. IFITM10 is the most highly conserved IFITM, sharing at least 85% amino acid identity between birds, reptiles and mammals and suggesting an important role for this presently uncharacterised protein. Conclusions Like eutherians, marsupials also have multiple IFITM genes that exist in a gene cluster. The differing expression patterns for many of the paralogues, together with poor sequence conservation between species, suggests that IFITM genes have acquired many different roles during vertebrate evolution.

  2. Modulatory effect of curcumin on ketamine-induced toxicity in rat thymocytes: Involvement of reactive oxygen species (ROS and the phosphoinositide 3-kinase (PI3K/protein kinase B (Akt pathway

    Directory of Open Access Journals (Sweden)

    Svetlana Pavlovic

    2018-03-01

    Full Text Available Ketamine is a widely used anesthetic in pediatric clinical practice. Previous studies have demonstrated that ketamine induces neurotoxicity and has a modulatory effect on the cells of the immune system. Here, we evaluated the potential protective effect and underlying mechanisms of natural phenolic compound curcumin against ketamine-induced toxicity in rat thymocytes. Rat thymocytes were exposed to 100 µM ketamine alone or combined with increasing concentrations of curcumin (0.3, 1, and 3 μM for 24 hours. Cell viability was analyzed with CCK-8 assay kit. Apoptosis was analyzed using flow cytometry and propidium iodide as well as Z-VAD-FMK and Z-LEHD-FMK inhibitors. Reactive oxygen species (ROS production and mitochondrial membrane potential [MMP] were measured by flow cytometry. Colorimetric assay with DEVD-pNA substrate was used for assessing caspase-3 activity. Involvement of phosphoinositide 3-kinase (PI3K/protein kinase B (Akt signaling pathway was tested with Wortmannin inhibitor. Ketamine induced toxicity in cells, increased the number of hypodiploid cells, caspase-3 activity and ROS production, and inhibited the MMP. Co-incubation of higher concentrations of curcumin (1 and 3 μM with ketamine markedly decreased cytotoxicity, apoptosis rate, caspase-3 activity, and ROS production in rat thymocytes, and increased the MMP. Application of Z-VAD-FMK (a pan caspase inhibitor or Z-LEHD-FMK (caspase-9 inhibitor with ketamine effectively attenuated the ketamine-induced apoptosis in rat thymocytes. Administration of Wortmannin (a PI3K inhibitor with curcumin and ketamine significantly decreased the protective effect of curcumin on rat thymocytes. Our results indicate that ketamine-induced toxicity in rat thymocytes mainly occurs through the mitochondria-mediated apoptotic pathway and that the PI3K/Akt signaling pathway is involved in the anti-apoptotic effect of curcumin.

  3. Molecular mechanism of 'mitocan'-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins

    Czech Academy of Sciences Publication Activity Database

    Neužil, Jiří; Wang, X.F.; Dong, L.F.; Low, P.; Ralph, S.J.

    2006-01-01

    Roč. 580, č. 22 (2006), s. 5125-5129 ISSN 0014-5793 Institutional research plan: CEZ:AV0Z50520514 Keywords : mitocan * alpha -tocopheryl succinate * reactive oxygen species Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.372, year: 2006

  4. Discriminating Microbial Species Using Protein Sequence Properties and Machine Learning

    NARCIS (Netherlands)

    Shahib, Ali Al-; Gilbert, David; Breitling, Rainer

    2007-01-01

    Much work has been done to identify species-specific proteins in sequenced genomes and hence to determine their function. We assumed that such proteins have specific physico-chemical properties that will discriminate them from proteins in other species. In this paper, we examine the validity of this

  5. Glucagon-Like Peptide 1 Prevents Reactive Oxygen Species-Induced Endothelial Cell Senescence Through the Activation of Protein Kinase A

    NARCIS (Netherlands)

    Oeseburg, Hisko; de Boer, Rudolf A.; Buikema, Hendrik; van der Harst, Pim; van Gilst, Wiek H.; Sillje, Herman H. W.

    Objective-Endothelial cell senescence is an important contributor to vascular aging and is increased under diabetic conditions. Here we investigated whether the antidiabetic hormone glucagon-like peptide 1 (GLP-1) could prevent oxidative stress-induced cellular senescence in endothelial cells.

  6. Hypoxia Inducible Factor 1 (HIF1) Activation in U87 Glioma Cells Involves a Decrease in Reactive Oxygen Species Production and Protein Kinase C Activity

    Science.gov (United States)

    1998-06-29

    Curcumin DFX Desferrioxamine DNA Deoxyribonucleic Acid DPI Diphenyliodinium DPPD Diphenylphenylenediamine DTH Dithionite EMSA Electrophoretic mobility shift... neuroprotective effects (Fern et al., 1996, Morishita et al., 1 1997). The identification of a hypoxia inducible transcription factor known as HIF-1 (Semenza...derived EPO in the eNS neuroprotective response to hypoxia. Cloning of the human and murine EPO gene, the availability of a convenient EPa producing

  7. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway.

    Science.gov (United States)

    Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo

    2009-11-27

    Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.

  8. Induced mutants for cereal grain protein improvement

    International Nuclear Information System (INIS)

    1982-01-01

    Out of 17 papers and one summary presented, six dealing with the genetic improvement of seed protein using ionizing radiations fall within the INIS subject scope. Other topics discussed were non-radiation induced mutants used for cereal grain protein improvement

  9. Computational identification of strain-, species- and genus-specific proteins

    Directory of Open Access Journals (Sweden)

    Thiagarajan Rathi

    2005-11-01

    Full Text Available Abstract Background The identification of unique proteins at different taxonomic levels has both scientific and practical value. Strain-, species- and genus-specific proteins can provide insight into the criteria that define an organism and its relationship with close relatives. Such proteins can also serve as taxon-specific diagnostic targets. Description A pipeline using a combination of computational and manual analyses of BLAST results was developed to identify strain-, species-, and genus-specific proteins and to catalog the closest sequenced relative for each protein in a proteome. Proteins encoded by a given strain are preliminarily considered to be unique if BLAST, using a comprehensive protein database, fails to retrieve (with an e-value better than 0.001 any protein not encoded by the query strain, species or genus (for strain-, species- and genus-specific proteins respectively, or if BLAST, using the best hit as the query (reverse BLAST, does not retrieve the initial query protein. Results are manually inspected for homology if the initial query is retrieved in the reverse BLAST but is not the best hit. Sequences unlikely to retrieve homologs using the default BLOSUM62 matrix (usually short sequences are re-tested using the PAM30 matrix, thereby increasing the number of retrieved homologs and increasing the stringency of the search for unique proteins. The above protocol was used to examine several food- and water-borne pathogens. We find that the reverse BLAST step filters out about 22% of proteins with homologs that would otherwise be considered unique at the genus and species levels. Analysis of the annotations of unique proteins reveals that many are remnants of prophage proteins, or may be involved in virulence. The data generated from this study can be accessed and further evaluated from the CUPID (Core and Unique Protein Identification system web site (updated semi-annually at http://pir.georgetown.edu/cupid. Conclusion CUPID

  10. Extraction and characterisation of protein fractions from five insect species

    NARCIS (Netherlands)

    Yi, L.; Lakemond, C.M.M.; Sagis, L.M.C.; Eisner-Schadler, V.R.; Huis, van A.; Boekel, van M.A.J.S.

    2013-01-01

    Tenebrio molitor, Zophobas morio, Alphitobius diaperinus, Acheta domesticus and Blaptica dubia were evaluated for their potential as a future protein source. Crude protein content ranged from 19% to 22% (Dumas analysis). Essential amino acid levels in all insect species were comparable with soybean

  11. Species specificity for HBsAg binding protein endonexin II

    NARCIS (Netherlands)

    deBruin, WCC; Leenders, WPJ; Moshage, H; vanHaelst, UJGM

    Background/Aims: Hepatitis B virus displays a distinct species and tissue tropism, Previously we have demonstrated that a human liver plasma membrane protein,vith a molecular weight of approximately 34 kiloDalton specifically binds to HBsAg. This protein was identified as endonexin II, a Ca2+

  12. Protein quality of three different species of earthrvorms

    African Journals Online (AJOL)

    Keywords: Earthworm meal, nutritive value, protein source, poultry. 99 ... species on which the development of a high density production .... 116,28. Arginine. Broiler starter. 6,37. 87,61. 95,90. 116,78. 167,30. 113,50 ... Protein intake (ql7 days).

  13. Chemical score of different protein sources to four Macrobrachium species

    OpenAIRE

    Montoya-Martínez, Cynthia; Nolasco-Soria, Héctor; Carrillo-Farnés, Olimpia; Civera-Cerecedo, Roberto; Álvarez-González, Carlos; Vega-Villasante, Fernando

    2016-01-01

    Food production for aquaculture requires finding other protein sources or ingredients as potential alternatives in the formulation of aquaculture feeds, due to the shortage and high price of protein sources that are most commonly used. The aim of this analysis was to evaluate the relationship between the essential amino acids in 13 types of proteins available in the market with the essential amino acids found in the muscle of four of the most important farmed prawn species of the genus Macrob...

  14. Origins of pressure-induced protein transitions.

    Science.gov (United States)

    Chalikian, Tigran V; Macgregor, Robert B

    2009-12-18

    The molecular mechanisms underlying pressure-induced protein denaturation can be analyzed based on the pressure-dependent differences in the apparent volume occupied by amino acids inside the protein and when they are exposed to water in an unfolded conformation. We present here an analysis for the peptide group and the 20 naturally occurring amino acid side chains based on volumetric parameters for the amino acids in the interior of the native state, the micelle-like interior of the pressure-induced denatured state, and the unfolded conformation modeled by N-acetyl amino acid amides. The transfer of peptide groups from the protein interior to water becomes increasingly favorable as pressure increases. Thus, solvation of peptide groups represents a major driving force in pressure-induced protein denaturation. Polar side chains do not appear to exhibit significant pressure-dependent changes in their preference for the protein interior or solvent. The transfer of nonpolar side chains from the protein interior to water becomes more unfavorable as pressure increases. We conclude that a sizeable population of nonpolar side chains remains buried inside a solvent-inaccessible core of the pressure-induced denatured state. At elevated pressures, this core may become packed almost as tightly as the interior of the native state. The presence and partial disappearance of large intraglobular voids is another driving force facilitating pressure-induced denaturation of individual proteins. Our data also have implications for the kinetics of protein folding and shed light on the nature of the folding transition state ensemble.

  15. Variation in Protein Intake Induces Variation in Spider Silk Expression

    Science.gov (United States)

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  16. Al cation induces aggregation of serum proteins.

    Science.gov (United States)

    Chanphai, P; Kreplak, L; Tajmir-Riahi, H A

    2017-07-15

    Al cation is known to induce protein fibrillation and causes several neurodegenerative disorders. We report the spectroscopic, thermodynamic analysis and AFM imaging for the Al cation binding process with human serum albumin (HSA), bovine serum albumin (BSA) and milk beta-lactoglobulin (b-LG) in aqueous solution at physiological pH. Hydrophobicity played a major role in Al-protein interactions with more hydrophobic b-LG forming stronger Al-protein complexes. Thermodynamic parameters ΔS, ΔH and ΔG showed Al-protein bindings occur via hydrophobic and H-bonding contacts for b-LG, while van der Waals and H-bonding interactions prevail in HSA and BSA adducts. AFM clearly indicated that aluminum cations are able to force BSA and b-LG into larger or more robust aggregates than HSA, with HSA 4±0.2 (SE, n=801) proteins per aggregate, for BSA 17±2 (SE, n=148), and for b-LG 12±3 (SE, n=151). Thioflavin T test showed no major protein fibrillation in the presence of Al cation. Al complexation induced major alterations of protein conformations with the order of perturbations b-LG>BSA>HSA. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. On the mechanism of aluminum ion-induced neurotoxicity: The effects of aluminum species on G-protein-mediated processes and on drug interactions with the N-methyl-D-aspartate modulated ionophore

    International Nuclear Information System (INIS)

    Hubbard, C.M.

    1989-01-01

    To establish what effects Al 3+ may have on G-protein mediate signal transduction, the effects of Al 3+ on the signal-coupling G-protein from retinal rod outer segments (G t or transducin) have been investigated as a model for the effects of Al 3+ on signal transduction by G-proteins in general. In this investigation, we have studied the effects of Al 3+ on the isolated, light-dependent rhodopsin catalyzed GTP-GDP exchange on G t ; the light-dependent GTPase activity of G t ; the light-independent cGMP hydrolysis by PDE; and the light activated, rhodopsin catalyzed, cGMP hydrolysis by PDE in vitro. To determine the effects of two defined species of aluminum on N-methyl-D-aspartic acid (NMDA) receptor-channel modulation we utilized a specific radioligand binding assay. This allowed us to compare the effects of aluminum to other metal ions on specific [ 3 H]MK-801 binding to the NMDA receptor-channel complex. This complex is involved in long-term potentiation, which is currently being investigated as the mechanism by which learning and memory occur and has been implicated in the pathology of Alzheimer's disease. We have investigated the effects of two different species of aluminum, as well as Ca 2+ , Zn 2+ , Mg 2+ , and Li + on the specific binding of [ 3 H]MK-801 to the NMDA receptor-channel complex under depolarized conditions

  18. Protein Self-Assembly and Protein-Induced DNA Morphologies

    Science.gov (United States)

    Mawhinney, Matthew T.

    The ability of biomolecules to associate into various structural configurations has a substantial impact on human physiology. The synthesis of protein polypeptide chains using the information encoded by DNA is mediated through the use of regulatory proteins, known as transcription factors. Some transcription factors perform function by inducing local curvature in deoxyribonucleic acid (DNA) strands, the mechanisms of which are not entirely known. An important architectural protein, eleven zinc finger CTCF (11 ZF CTCF) is involved in genome organization and hypothesized to mediate DNA loop formation. Direct evidence for these CTCF-induced DNA loops has yet to be observed. In this thesis, the effect of 11 ZF CTCF on DNA morphology is examined using atomic force microscopy, a powerful technique for visualizing biomolecules with nanometer resolution. The presence of CTCF is revealed to induce a variety of morphologies deviating from the relaxed state of control DNA samples, including compact circular complexes, meshes, and networks. Images reveal quasi-circular DNA/CTCF complexes consistent with a single DNA molecule twice wrapped around the protein. The structures of DNA and proteins are highly important for operations in the cell. Structural irregularities may lead to a variety of issues, including more than twenty human pathologies resulting from aberrant protein misfolding into amyloid aggregates of elongated fibrils. Insulin deficiency and resistance characterizing type 2 diabetes often requires administration of insulin. Injectable and inhalable delivery methods have been documented to result in the deposition of amyloid fibrils. Oligomers, soluble multiprotein assemblies, are believed to play an important role in this process. Insulin aggregation under physiological conditions is not well understood and oligomers have not yet been fully characterized. In this thesis, in vitro insulin aggregation at acidic and neutral pH is explored using a variety of techniques

  19. Reproductive protein evolution in two cryptic species of marine chordate

    Science.gov (United States)

    2011-01-01

    Background Reproductive character displacement (RCD) is a common and taxonomically widespread pattern. In marine broadcast spawning organisms, behavioral and mechanical isolation are absent and prezygotic barriers between species often operate only during the fertilization process. Such barriers are usually a consequence of differences in the way in which sperm and egg proteins interact, so RCD can be manifest as faster evolution of these proteins between species in sympatry than allopatry. Rapid evolution of these proteins often appears to be a consequence of positive (directional) selection. Here, we identify a set of candidate gamete recognition proteins (GRPs) in the ascidian Ciona intestinalis and showed that these GRPs evolve more rapidly than control proteins (those not involved in gamete recognition). Choosing a subset of these gamete recognition proteins that show evidence of positive selection (CIPRO37.40.1, CIPRO60.5.1, CIPRO100.7.1), we then directly test the RCD hypothesis by comparing divergence (omega) and polymorphism (McDonald-Kreitman, Tajima's D, Fu and Li's D and F, Fay and Wu's H) statistics in sympatric and allopatric populations of two distinct forms of C. intestinalis (Types A and B) between which there are strong post-zygotic barriers. Results Candidate gamete recognition proteins from two lineages of C. intestinalis (Type A and B) are evolving more rapidly than control proteins, consistent with patterns seen in insects and mammals. However, ω (dN/dS) is not significantly different between the sympatric and allopatric populations, and none of the polymorphism statistics show significant differences between sympatric and allopatric populations. Conclusions Enhanced prezygotic isolation in sympatry has become a well-known feature of gamete recognition proteins in marine broadcast spawners. But in most cases the evolutionary process or processes responsible for this pattern have not been identified. Although gamete recognition proteins in C

  20. Reproductive protein evolution in two cryptic species of marine chordate

    Directory of Open Access Journals (Sweden)

    Harrison Richard G

    2011-01-01

    Full Text Available Abstract Background Reproductive character displacement (RCD is a common and taxonomically widespread pattern. In marine broadcast spawning organisms, behavioral and mechanical isolation are absent and prezygotic barriers between species often operate only during the fertilization process. Such barriers are usually a consequence of differences in the way in which sperm and egg proteins interact, so RCD can be manifest as faster evolution of these proteins between species in sympatry than allopatry. Rapid evolution of these proteins often appears to be a consequence of positive (directional selection. Here, we identify a set of candidate gamete recognition proteins (GRPs in the ascidian Ciona intestinalis and showed that these GRPs evolve more rapidly than control proteins (those not involved in gamete recognition. Choosing a subset of these gamete recognition proteins that show evidence of positive selection (CIPRO37.40.1, CIPRO60.5.1, CIPRO100.7.1, we then directly test the RCD hypothesis by comparing divergence (omega and polymorphism (McDonald-Kreitman, Tajima's D, Fu and Li's D and F, Fay and Wu's H statistics in sympatric and allopatric populations of two distinct forms of C. intestinalis (Types A and B between which there are strong post-zygotic barriers. Results Candidate gamete recognition proteins from two lineages of C. intestinalis (Type A and B are evolving more rapidly than control proteins, consistent with patterns seen in insects and mammals. However, ω (dN/dS is not significantly different between the sympatric and allopatric populations, and none of the polymorphism statistics show significant differences between sympatric and allopatric populations. Conclusions Enhanced prezygotic isolation in sympatry has become a well-known feature of gamete recognition proteins in marine broadcast spawners. But in most cases the evolutionary process or processes responsible for this pattern have not been identified. Although gamete

  1. Species specificity in major urinary proteins by parallel evolution.

    Directory of Open Access Journals (Sweden)

    Darren W Logan

    Full Text Available Species-specific chemosignals, pheromones, regulate social behaviors such as aggression, mating, pup-suckling, territory establishment, and dominance. The identity of these cues remains mostly undetermined and few mammalian pheromones have been identified. Genetically-encoded pheromones are expected to exhibit several different mechanisms for coding 1 diversity, to enable the signaling of multiple behaviors, 2 dynamic regulation, to indicate age and dominance, and 3 species-specificity. Recently, the major urinary proteins (Mups have been shown to function themselves as genetically-encoded pheromones to regulate species-specific behavior. Mups are multiple highly related proteins expressed in combinatorial patterns that differ between individuals, gender, and age; which are sufficient to fulfill the first two criteria. We have now characterized and fully annotated the mouse Mup gene content in detail. This has enabled us to further analyze the extent of Mup coding diversity and determine their potential to encode species-specific cues.Our results show that the mouse Mup gene cluster is composed of two subgroups: an older, more divergent class of genes and pseudogenes, and a second class with high sequence identity formed by recent sequential duplications of a single gene/pseudogene pair. Previous work suggests that truncated Mup pseudogenes may encode a family of functional hexapeptides with the potential for pheromone activity. Sequence comparison, however, reveals that they have limited coding potential. Similar analyses of nine other completed genomes find Mup gene expansions in divergent lineages, including those of rat, horse and grey mouse lemur, occurring independently from a single ancestral Mup present in other placental mammals. Our findings illustrate that increasing genomic complexity of the Mup gene family is not evolutionarily isolated, but is instead a recurring mechanism of generating coding diversity consistent with a species

  2. Anaerobiosis and ethanol effects on germination, growth, and protein synthesis of five Echinochloa species

    International Nuclear Information System (INIS)

    Dybiec, L.D.; Rumpho, M.E.; Kennedy, R.A.

    1989-01-01

    Five Echinochloa species, encompassing a spectrum from flood tolerant to flood intolerant, were studied to determine the mechanisms of anaerobic germination and growth. Seeds were germinated in air or N 2 , plus 0, 1 or 3% ethanol, and germination rates and growth measurements recorded for 7 days. In air or N 2 increasing ethanol levels did not affect total germination per se, although the rate of germination was delayed in N 2 . Shoot/root lengths in air were highest for tolerant species and increased with increasing ethanol, whereas, in intolerant species, shoot/root lengths decreased with increasing ethanol. Aerobic vs. anaerobic polypeptide profiles of each of the species were compared by SDS/PAGE. For all species, the number of polypeptides decreased under anaerobiosis and several quantitative differences were apparent relative to the aerobic profile. In addition, amino acid incorporation into protein was analyzed by [ 35 S]-Met labeling of 3 day old seedlings grown in air or N 2 . Significant protein synthesis was measured in tolerant seedlings under N 2 and several polypeptides were specifically induced. These results are being compared with labeling patterns of the other semi-tolerant and intolerant Echinochloa species to determine their importance in flooding tolerance

  3. Generation of Induced Pluripotent Stem Cells from Mammalian Endangered Species.

    Science.gov (United States)

    Ben-Nun, Inbar Friedrich; Montague, Susanne C; Houck, Marlys L; Ryder, Oliver; Loring, Jeanne F

    2015-01-01

    For some highly endangered species there are too few reproductively capable animals to maintain adequate genetic diversity, and extraordinary measures are necessary to prevent their extinction. Cellular reprogramming is a means to capture the genomes of individual animals as induced pluripotent stem cells (iPSCs), which may eventually facilitate reintroduction of genetic material into breeding populations. Here, we describe a method for generating iPSCs from fibroblasts of mammalian endangered species.

  4. Induced proteins in human melanomas by γ-ray

    International Nuclear Information System (INIS)

    Ohnishi, T.; Ihara, M.; Utsumi, H.

    1992-01-01

    When cells are exposed to environmental stresses such as heat, chemicals, radiation, the cells respond to them by synthesizing a characteristic group of proteins, called stress proteins. There are many famous stress proteins: heat shock proteins and metallothionein. Treated cells have a protective mechanism against these environmental stresses. SOS responses in Escherichia coli are most famous. As the mechanisms, when cells are exposed by many kinds of DNA damage agents, various enzymes are induced after the cleavage of repressor protein LexA by activated RecA enzyme. Thereafter, induced proteins act for DNA repair and mutagenesis. In mammalian cells there are many reports about inducible genes such as O 6 -methylguanine methyltransferase gene. This gene was also inducible by alkylating agents. The difference of radiation sensitivities may be reflected by the contents of repair enzymes(s) or the induced proteins. Therefore, this study aims on the differences in inducible proteins between radiosensitive cells and control cells. Since it was hypothesized that induced proteins concerning to DNA damage repair or the proteins to recognize the damage may exist in the nuclei, induced proteins in nuclei of γ-ray irradiated cells were analyzed. (author). 5 refs., 1 tab

  5. Competitive Protein Adsorption - Multilayer Adsorption and Surface Induced Protein Aggregation

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hou, Xiaolin

    2009-01-01

    In this study, competitive adsorption of albumin and IgG (immunoglobulin G) from human serum solutions and protein mixtures onto polymer surfaces is studied by means of radioactive labeling. By using two different radiolabels (125I and 131I), albumin and IgG adsorption to polymer surfaces...... is monitored simultaneously and the influence from the presence of other human serum proteins on albumin and IgG adsorption, as well as their mutual influence during adsorption processes, is investigated. Exploring protein adsorption by combining analysis of competitive adsorption from complex solutions...... of high concentration with investigation of single protein adsorption and interdependent adsorption between two specific proteins enables us to map protein adsorption sequences during competitive protein adsorption. Our study shows that proteins can adsorb in a multilayer fashion onto the polymer surfaces...

  6. Characterization of radiation-induced proteins in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Tanaka, A.; Watanabe, H.; Nozawa, R.; Hu, Q.; Kitayama, S.

    1992-01-01

    Induction of proteins after gamma-irradiation in Deinococcus radiodurans were investigated. 10 proteins were induced and about 15 proteins were reduced after irradiation with 6kGy. These proteins were classified to four groups by responses to gamma-rays, UV light, mitomycin C(MMC) treatment and heating. Additional studies were carried out for the characterization of two induced proteins. One protein was induced by gamma-rays, UV light as well as heating. This protein appeared to be a glycoprotein from its reaction with lectin. From the amino acid sequences of N-terminal and internal region, it was found that this protein is homologous to EF-Tu protein of E. coli. Meanwhile the other protein was induced not only by gamma-rays but also by UV light and MMC treatment. This protein seems to be a new enzyme as it has no homology to the known proteins which have ever been analyzed. No accumulations of these two proteins were observed in radiation sensitive strain of D. radiodurans and in both of E. coli and Bacillus pumilus, suggesting that induction of these two proteins would be specific for high resistant strain. (author)

  7. Streptococcus mutans Protein Synthesis during Mixed-Species Biofilm Development by High-Throughput Quantitative Proteomics

    Science.gov (United States)

    Klein, Marlise I.; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M.; Yates, John R.; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (Pmutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the presence of other

  8. Preparation of monoclonal antibodies against radiation-induced protein

    International Nuclear Information System (INIS)

    Nozawa, R.; Tanaka, A.; Watanabe, H.; Kitayama, S.

    1992-01-01

    We obtained the 6 monoclonal antibodies against gamma-induced proteins of Deinococcus radiodurans, and these antibodies were designated as Mab-3F, 4B, 4D, 4F, 4G and 12G. Using these antibodies, we investigated the relations between gamma-induced proteins and other stress protein in strain R1, and the induction of proteins were compared among strain R1, resistant mutant (rec1) and radiosensitive mutant (rec30). We found new 6 proteins recognized by these monoclonal antibodies which were induced after gamma-irradiation especially in strain R1 and rec 1, but not induced in strain rec30. We suppose that these proteins participate in repair of DNA damages including double strand breaks caused by gamma-irradiation. One of them was around 46kDa protein band recognized by Mab-12G, and this protein was so induced in a large quantity after irradiation that the protein could detect by gold staining. In addition to this observation, we found some proteins which were induced in R1 and rec 1 by gamma-irradiation and other stress, but not in strain rec30, such as 31kDa protein band recognized by Mab-3F, 4B and 4G, and other 11 proteins which were especially induced in irradiated strain R1. The latter proteins might be reinforcement factor to radioresistance such as GroE and DnaK, or participant in repair of damage by gamma-irradiation in strain R1. (author)

  9. Cross-Species Virus-Host Protein-Protein Interactions Inhibiting Innate Immunity

    Science.gov (United States)

    2016-07-01

    diseases are a regular occurrence globally (Figure 1). The Zika virus is the latest example gaining widespread attention. Many of the (re-)emerging...for establishing infection and/or modulating pathogenesis (Figures 2 and 3). 3 Figure 2. Schematic of several virus -host protein interactions within...8725 John J. Kingman Road, MS 6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-16-79 Cross-species virus -host

  10. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: A possible role in atherosclerosis

    Energy Technology Data Exchange (ETDEWEB)

    Hseu, You-Cheng [Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan (China); Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, TX 77030 (United States); Senthil Kumar, K.J. [Department of Cosmeceutics, China Medical University, Taichung 40402, Taiwan (China); Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun [Institute of Nutrition, China Medical University, Taichung 40402, Taiwan (China); Lin, Cheng-Wen [Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan (China); Lu, Fung-Jou [Institute of Medicine, Chun Shan Medical University, Taichung 40201, Taiwan (China); Yang, Hsin-Ling, E-mail: hlyang@mail.cmu.edu.tw [Institute of Nutrition, China Medical University, Taichung 40402, Taiwan (China); Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, TX 77030 (United States)

    2014-01-15

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25–200 μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE{sub 2} production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. - Highlights: • Humic acid (HA) induce pro-inflammatory cytokines and mediators in macrophages. • HA-induced inflammation is mediated by ROS and NF-κB/AP-1 signaling pathways. • The inflammatory potential of HA correlated with activation of Nrf2/HO-1 genes. • HA exposure to mice increased pro-inflammatory cytokines production in vivo. • HA may be one of the main causes of early

  11. Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: A possible role in atherosclerosis

    International Nuclear Information System (INIS)

    Hseu, You-Cheng; Senthil Kumar, K.J.; Chen, Chih-Sheng; Cho, Hsin-Ju; Lin, Shu-Wei; Shen, Pei-Chun; Lin, Cheng-Wen; Lu, Fung-Jou; Yang, Hsin-Ling

    2014-01-01

    Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25–200 μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE 2 production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease. - Highlights: • Humic acid (HA) induce pro-inflammatory cytokines and mediators in macrophages. • HA-induced inflammation is mediated by ROS and NF-κB/AP-1 signaling pathways. • The inflammatory potential of HA correlated with activation of Nrf2/HO-1 genes. • HA exposure to mice increased pro-inflammatory cytokines production in vivo. • HA may be one of the main causes of early atherogenesis

  12. Chitin and stress induced protein kinase activation

    DEFF Research Database (Denmark)

    Kenchappa, Chandra Shekar; Azevedo da Silva, Raquel; Bressendorff, Simon

    2017-01-01

    The assays described here are pertinent to protein kinase studies in any plant. They include an immunoblot phosphorylation/activation assay and an in-gel activity assay for MAP kinases (MPKs) using the general protein kinase substrate myelin basic protein. They also include a novel in-gel peptide...... substrate assay for Snf1-related kinase family 2 members (SnRK2s). This kinase family-specific assay overcomes some limitations of in-gel assays and permits the identification of different types of kinase activities in total protein extracts....

  13. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  14. Hypochlorous and peracetic acid induced oxidation of dairy proteins.

    Science.gov (United States)

    Kerkaert, Barbara; Mestdagh, Frédéric; Cucu, Tatiana; Aedo, Philip Roger; Ling, Shen Yan; De Meulenaer, Bruno

    2011-02-09

    Hypochlorous and peracetic acids, both known disinfectants in the food industry, were compared for their oxidative capacity toward dairy proteins. Whey proteins and caseins were oxidized under well controlled conditions at pH 8 as a function of the sanitizing concentration. Different markers for protein oxidation were monitored. The results established that the protein carbonyl content was a rather unspecific marker for protein oxidation, which did not allow one to differentiate the oxidant used especially at the lower concentrations. Cysteine, tryptophan, and methionine were proven to be the most vulnerable amino acids for degradation upon hypochlorous and peracetic acid treatment, while tyrosine was only prone to degradation in the presence of hypochlorous acid. Hypochlorous acid induced oxidation gave rise to protein aggregation, while during peracetic acid induced oxidation, no high molecular weight aggregates were observed. Protein aggregation upon hypochlorous acid oxidation could primarily be linked to tryptophan and tyrosine degradation.

  15. Hypochlorite-induced damage to proteins

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1998-01-01

    Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl damages proteins by reaction with amino acid side-chains or backbone cleavage. Little information is available about the mechanisms and intermediates involved...... in these reactions. EPR spin trapping has been employed to identify radicals on proteins, peptides and amino acids after treatment with HOCl. Reaction with HOCl gives both high- and low-molecular-mass nitrogen-centred, protein-derived radicals; the yield of the latter increases with both higher HOCl:protein ratios...... and enzymic digestion. These radicals, which arise from lysine side-chain amino groups, react with ascorbate, glutathione and Trolox. Reaction of HOCl-treated proteins with excess methionine eliminates radical formation, which is consistent with lysine-derived chloramines (via homolysis of N-Cl bonds) being...

  16. Pathogenic Leptospira species acquire factor H and vitronectin via the surface protein LcpA.

    Science.gov (United States)

    da Silva, Ludmila Bezerra; Miragaia, Lidia Dos Santos; Breda, Leandro Carvalho Dantas; Abe, Cecilia Mari; Schmidt, Mariana Costa Braga; Moro, Ana Maria; Monaris, Denize; Conde, Jonas Nascimento; Józsi, Mihály; Isaac, Lourdes; Abreu, Patrícia Antônia Estima; Barbosa, Angela Silva

    2015-03-01

    Upon infection, pathogenic Leptospira species bind several complement regulators in order to overcome host innate immunity. We previously characterized a 20-kDa leptospiral surface protein which interacts with C4b binding protein (C4BP): leptospiral complement regulator-acquiring protein A (LcpA). Here we show that LcpA also interacts with human factor H (FH), which remains functionally active once bound to the protein. Antibodies directed against short consensus repeat 20 (SCR20) inhibited binding of FH to LcpA by approximately 90%, thus confirming that this particular domain is involved in the interaction. We have also shown for the first time that leptospires bind human vitronectin and that the interaction is mediated by LcpA. Coincubation with heparin blocked LcpA-vitronectin interaction in a dose-dependent manner, strongly suggesting that binding may occur through the heparin binding domains of vitronectin. LcpA also bound to the terminal pathway component C9 and inhibited Zn(2+)-induced polymerization and membrane attack complex (MAC) formation. Competitive binding assays indicated that LcpA interacts with C4BP, FH, and vitronectin through distinct sites. Taken together, our findings indicate that LcpA may play a role in leptospiral immune evasion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Ligand Binding Domain Protein in Tetracycline-Inducible Expression ...

    African Journals Online (AJOL)

    binding domain proteins in E. coli using a tetracycline inducible system. To allow for ... development of molecular ligands with improved therapeutic windows. Keywords: Nuclear receptor ..... functional recombinant cannabinoid receptor CB2 in ...

  18. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  19. Rapeseed (Brassica napus L. as a protein plant species

    Directory of Open Access Journals (Sweden)

    Marinković Radovan

    2010-01-01

    Full Text Available Proteins of plant origin have a profound impact on human and animal lives. It is impossible to solve worldwide nutrition problem without taking into concern needs for proteins. Inadequate nutrition can only be improved by providing adequate proteins. Humans need c. 120g proteins daily, a third of which should come from meat and milk. Certain population categories, such as the sick, children, pregnant women and sportspeople are more sensitive to lack of protein. Oil crops synthesise oil, which is the basic reserve material in seed, but they also synthesise high levels of protein and can serve as protein source for human and animal nutrition. Generally speaking, protein content in seed of rapeseed at site R. Šančevi was from 19.60% (NS-L-74 to 25.93% JR-NS-36, and at site Sombor from 19.26% (NS-L-74 to 24.06% and 24.09% (NS-L-46 and cultivar Mira. Genotype NS-L-74 had the lowest protein content at both testing sites. Higher protein content was evident with spring genotypes than with winter gentypes. .

  20. Catching the PEG-induced attractive interaction between proteins.

    Science.gov (United States)

    Vivarès, D; Belloni, L; Tardieu, A; Bonneté, F

    2002-09-01

    We present the experimental and theoretical background of a method to characterize the protein-protein attractive potential induced by one of the mostly used crystallizing agents in the protein-field, the poly(ethylene glycol) (PEG). This attractive interaction is commonly called, in colloid physics, the depletion interaction. Small-Angle X-ray Scattering experiments and numerical treatments based on liquid-state theories were performed on urate oxidase-PEG mixtures with two different PEGs (3350 Da and 8000 Da). A "two-component" approach was used in which the polymer-polymer, the protein-polymer and the protein-protein pair potentials were determined. The resulting effective protein-protein potential was characterized. This potential is the sum of the free-polymer protein-protein potential and of the PEG-induced depletion potential. The depletion potential was found to be hardly dependent upon the protein concentration but strongly function of the polymer size and concentration. Our results were also compared with two models, which give an analytic expression for the depletion potential.

  1. Prion protein induced signaling cascades in monocytes

    International Nuclear Information System (INIS)

    Krebs, Bjarne; Dorner-Ciossek, Cornelia; Schmalzbauer, Ruediger; Vassallo, Neville; Herms, Jochen; Kretzschmar, Hans A.

    2006-01-01

    Prion proteins play a central role in transmission and pathogenesis of transmissible spongiform encephalopathies. The cellular prion protein (PrP C ), whose physiological function remains elusive, is anchored to the surface of a variety of cell types including neurons and cells of the lymphoreticular system. In this study, we investigated the response of a mouse monocyte/macrophage cell line to exposure with PrP C fusion proteins synthesized with a human Fc-tag. PrP C fusion proteins showed an attachment to the surface of monocyte/macrophages in nanomolar concentrations. This was accompanied by an increase of cellular tyrosine phosphorylation as a result of activated signaling pathways. Detailed investigations exhibited activation of downstream pathways through a stimulation with PrP fusion proteins, which include phosphorylation of ERK 1,2 and Akt kinase. Macrophages opsonize and present antigenic structures, contact lymphocytes, and deliver cytokines. The findings reported here may become the basis of understanding the molecular function of PrP C in monocytes and macrophages

  2. Identification of species- and tissue-specific proteins using proteomic strategy

    Science.gov (United States)

    Chernukha, I. M.; Vostrikova, N. L.; Kovalev, L. I.; Shishkin, S. S.; Kovaleva, M. A.; Manukhin, Y. S.

    2017-09-01

    Proteomic technologies have proven to be very effective for detecting biochemical changes in meat products, such as changes in tissue- and species-specific proteins. In the tissues of cattle, pig, horse and camel M. longissimus dorsi both tissue- and species specific proteins were detected using two dimensional electrophoresis. Species-specific isoforms of several muscle proteins were also identified. The identified and described proteins of cattle, pig, horse and camel skeletal muscles (including mass spectra of the tryptic peptides) were added to the national free access database “Muscle organ proteomics”. This research has enabled the development of new highly sensitive technologies for meat product quality control against food fraud.

  3. Nitrogen and protein contents in some aquatic plant species

    Directory of Open Access Journals (Sweden)

    Krystyna Bytniewska

    2015-01-01

    Full Text Available Nitrogen and protein contents in higher aquatic plants deriving from a natural habitat were determined. The following plants were examined: Spirodela polyrrhiza (L. Schleid., Elodea canadensis Rich., Riccia fluitans L. Total nitrogen and nitrogen of respective fractions were determined by the Kjeldahl method. Nitrogen compounds were fractionated according to Thimann et al. Protein was extracted after Fletcher and Osborne and fractionated after Osborne. It was found, that total protein content in the plants under examination constitutes 18 to 25%o of dry matter. Albumins and glutelins are the most abundant protein fractions.

  4. Pheromone Recognition and Selectivity by ComR Proteins among Streptococcus Species.

    Directory of Open Access Journals (Sweden)

    Erin Shanker

    2016-12-01

    Full Text Available Natural transformation, or competence, is an ability inherent to bacteria for the uptake of extracellular DNA. This process is central to bacterial evolution and allows for the rapid acquirement of new traits, such as antibiotic resistance in pathogenic microorganisms. For the Gram-positive bacteria genus Streptococcus, genes required for competence are under the regulation of quorum sensing (QS mediated by peptide pheromones. One such system, ComRS, consists of a peptide (ComS that is processed (XIP, secreted, and later imported into the cytoplasm, where it binds and activates the transcription factor ComR. ComR then engages in a positive feedback loop for the expression of ComS and the alternative sigma-factor SigX. Although ComRS are present in the majority of Streptococcus species, the sequence of both ComS/XIP and ComR diverge significantly, suggesting a mechanism for species-specific communication. To study possible cross-talk between streptococcal species in the regulation of competence, and to explore in detail the molecular interaction between ComR and XIP we undertook an interdisciplinary approach. We developed a 'test-bed' assay to measure the activity of different ComR proteins in response to cognate and heterologous XIP peptides in vivo, revealing distinct ComR classes of strict, intermediate, and promiscuous specificity among species. We then solved an X-ray crystal structure of ComR from S. suis to further understand the interaction with XIP and to search for structural features in ComR proteins that may explain XIP recognition. Using the structure as a guide, we probed the apo conformation of the XIP-binding pocket by site-directed mutagenesis, both in test-bed cultures and biochemically in vitro. In alignments with ComR proteins from other species, we find that the pocket is lined by a variable and a conserved face, where residues of the conserved face contribute to ligand binding and the variable face discriminate among XIP

  5. Protein malnutrition and metronidazole induced intestinal bacterial ...

    African Journals Online (AJOL)

    This study was designed to assess the effects of protein malnutrition (PM) associated with antibiotic on growth weight, cecal bacterial overgrowth and enterobacteria translocation. Eighteen Gnotobiotic young Wistar rats (135 ± 2.35 g) were treated orally with antibiotic and submitted to dietary restriction based on maize diet ...

  6. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes.

    Science.gov (United States)

    Fandy, Tamer E; Jiemjit, Anchalee; Thakar, Manjusha; Rhoden, Paulette; Suarez, Lauren; Gore, Steven D

    2014-03-01

    Azanucleoside DNA methyltransferase (DNMT) inhibitors are currently approved by the U.S. Food and Drug Administration for treatment of myelodysplastic syndrome. The relative contributions of DNMT inhibition and other off-target effects to their clinical efficacy remain unclear. Data correlating DNA methylation reversal and clinical response have been conflicting. Consequently, it is necessary to investigate so-called off-target effects and their impact on cell survival and differentiation. Flow cytometry was used for cell cycle, apoptosis, and reactive oxygen species (ROS) accumulation analysis. Gene expression analysis was performed using real-time PCR. DNA methylation was detected by methylation-specific PCR. Mitochondrial membrane potential was analyzed using JC-1 dye staining. Western blotting was used for quantitative protein expression analysis. 5-Aza-2'-deoxycytidine (DAC) induced cell-cycle arrest and apoptosis in leukemia cells. p53 expression was dispensable for DAC-induced apoptosis. DAC induced delayed ROS accumulation in leukemia cells but not in solid tumor cells and p53 expression was dispensable for ROS increase. ROS increase was deoxycytidine kinase dependent, indicating that incorporation of DAC into nuclear DNA is required for ROS generation. ROS accumulation by DAC was caspase-independent and mediated the dissipation of the mitochondrial membrane potential. Concordantly, ROS scavengers diminished DAC-induced apoptosis. DAC induced the expression of different NADPH oxidase isoforms and upregulated Nox4 protein expression in an ATM-dependent manner, indicating the involvement of DNA damage signaling in Nox4 upregulation. These data highlight the importance of mechanisms other than DNA cytosine demethylation in modulating gene expression and suggest investigating the relevance of ROS accumulation to the clinical activity of DAC. ©2014 AACR

  7. UV-induced DNA-binding proteins in human cells

    International Nuclear Information System (INIS)

    Glazer, P.M.; Greggio, N.A.; Metherall, J.E.; Summers, W.C.

    1989-01-01

    To investigate the response of human cells to DNA-damaging agents such as UV irradiation, the authors examined nuclear protein extracts of UV-irradiated HeLa cells for the presence of DNA-binding proteins. Electrophoretically separated proteins were transferred to a nitrocellulose filter that was subsequently immersed in a binding solution containing radioactively labeled DNA probes. Several DNA-binding proteins were induced in HeLa cells after UV irradiation. These included proteins that bind predominantly double-stranded DNA and proteins that bind both double-stranded and single-stranded DNA. The binding proteins were induced in a dose-dependent manner by UV light. Following a dose of 12 J/m 2 , the binding proteins in the nuclear extracts increased over time to a peak in the range of 18 hr after irradiation. Experiments with metabolic inhibitors (cycloheximide and actinomycin D) revealed that de novo synthesis of these proteins is not required for induction of the binding activities, suggesting that the induction is mediated by protein modification

  8. Induction and evaluation of mutations for improved protein production in certain species of yeasts in the Philippines

    International Nuclear Information System (INIS)

    Borromeo, J.D.

    1976-02-01

    The species of yeasts included in the studies are Saccharomyces cerevisiae, Rhodeterula rubra, Rhodeterula pilimane and those isolated from fruits such as citrus, papaya and banana. Part of the project involved induction of sporulation to obtain haploid cells for crossing to produce stable disploids exhibiting improved protein production. Although S. cerevisiae produce less protein than Rhodeterula, it produces ascesperes which are haploid cells. These haploid cells can be used to obtain stable diploids with the desirable characteristics by crossing cultures. Rhodeterula, a fungus that does not produce ascesperes will be subjected to certain adverse conditions to induce, hopefully, sperulation

  9. Evidence for the robustness of protein complexes to inter-species hybridization.

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Leducq

    Full Text Available Despite the tremendous efforts devoted to the identification of genetic incompatibilities underlying hybrid sterility and inviability, little is known about the effect of inter-species hybridization at the protein interactome level. Here, we develop a screening platform for the comparison of protein-protein interactions (PPIs among closely related species and their hybrids. We examine in vivo the architecture of protein complexes in two yeast species (Saccharomyces cerevisiae and Saccharomyces kudriavzevii that diverged 5-20 million years ago and in their F1 hybrids. We focus on 24 proteins of two large complexes: the RNA polymerase II and the nuclear pore complex (NPC, which show contrasting patterns of molecular evolution. We found that, with the exception of one PPI in the NPC sub-complex, PPIs were highly conserved between species, regardless of protein divergence. Unexpectedly, we found that the architecture of the complexes in F1 hybrids could not be distinguished from that of the parental species. Our results suggest that the conservation of PPIs in hybrids likely results from the slow evolution taking place on the very few protein residues involved in the interaction or that protein complexes are inherently robust and may accommodate protein divergence up to the level that is observed among closely related species.

  10. Trans-species Engineering of Glycosylated Therapeutic Proteins

    DEFF Research Database (Denmark)

    Yang, Zhang

    important to address. Whenever glycosylation has been found to be an important PTM for function or bioactivity, human therapeutics have generally been produced in mammalian Chinese hamster ovary (CHO) cell line. Oglycosylation is one of the most complex regulated PTMs of proteins but also one of the least...... understood. Currently, mammalian cells are required for human O-glycosylation. Increasing efforts have been devoted to engineering non-mammalian cells for production of recombinant proteins with “human-like” glycosylation. Substantial success has been achieved with designed N-glycosylation in both lower......Recombinant expression of therapeutic proteins is one of the major tasks in modern biomedicine. One of the most important factors with respect to therapeutic use in human is posttranslational modifications (PTMs) of the recombinant proteins, of which protein glycosylation is by far the most...

  11. Induced responses to herbivory and jasmonate in three milkweed species.

    Science.gov (United States)

    Rasmann, Sergio; Johnson, M Daisy; Agrawal, Anurag A

    2009-11-01

    We studied constitutive and induced defensive traits (latex exudation, cardenolides, proteases, and C/N ratio) and resistance to monarch caterpillars (Danaus plexippus) in three closely related milkweed species (Asclepias angustifolia, A. barjoniifolia and A. fascicularis). All traits showed significant induction in at least one of the species. Jasmonate application only partially mimicked the effect of monarch feeding. We found some correspondence between latex and cardenolide content and reduced larval growth. Larvae fed cut leaves of A. angustifolia grew better than larvae fed intact plants. Addition of the cardenolide digitoxin to cut leaves reduced larval growth but ouabain (at the same concentration) had no effect. We, thus, confirm that latex and cardenolides are major defenses in milkweeds, effective against a specialist herbivore. Other traits such as proteases and C/N ratio additionally may be integrated in the defense scheme of those plants. Induction seems to play an important role in plants that have an intermediate level of defense, and we advocate incorporating induction as an additional axis of the plant defense syndrome hypothesis.

  12. Alpha-synuclein induces lysosomal rupture and cathepsin dependent reactive oxygen species following endocytosis.

    Directory of Open Access Journals (Sweden)

    David Freeman

    Full Text Available α-synuclein dysregulation is a critical aspect of Parkinson's disease pathology. Recent studies have observed that α-synuclein aggregates are cytotoxic to cells in culture and that this toxicity can be spread between cells. However, the molecular mechanisms governing this cytotoxicity and spread are poorly characterized. Recent studies of viruses and bacteria, which achieve their cytoplasmic entry by rupturing intracellular vesicles, have utilized the redistribution of galectin proteins as a tool to measure vesicle rupture by these organisms. Using this approach, we demonstrate that α-synuclein aggregates can induce the rupture of lysosomes following their endocytosis in neuronal cell lines. This rupture can be induced by the addition of α-synuclein aggregates directly into cells as well as by cell-to-cell transfer of α-synuclein. We also observe that lysosomal rupture by α-synuclein induces a cathepsin B dependent increase in reactive oxygen species (ROS in target cells. Finally, we observe that α-synuclein aggregates can induce inflammasome activation in THP-1 cells. Lysosomal rupture is known to induce mitochondrial dysfunction and inflammation, both of which are well established aspects of Parkinson's disease, thus connecting these aspects of Parkinson's disease to the propagation of α-synuclein pathology in cells.

  13. DNA-protein complexes induced by chromate and other carcinogens

    International Nuclear Information System (INIS)

    Costa, M.

    1991-01-01

    DNA-protein complexes induced in intact Chinese hamster ovary cells by chromate have been isolated, analyzed, and compared with those induced by cis-platinum, ultraviolet light, and formaldehyde. Actin has been identified as one of the major proteins complexed to DNA by chromate based upon its molecular weight, isoelectric point, positive reaction with an actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of similar molecular weight and isoelectric point, positive reaction with an actin polyclonal antibody, and proteolytic mapping. Chromate and cis-platinum both complex proteins of similar molecular weight and isoelectric points, and these complexes can be disrupted by chelating agents and sulfhydryl reducing agents, suggesting that the metal itself is participating in binding rather than having a catalytic or indirect role (i.e., oxygen radicals). In contrast, formaldehyde complexed histones to the DNA, and these complexes were not disrupted by chelating or reducing agents. An antiserum raised to chromate-induced DNA-protein complexes reacted primarily with 97,000 kDa protein that did not silver stain. Slot blots, as well as Western blots, were used to detect formation of p97 DNA crosslinks. This protein was complexed to the DNA by all four agents studied

  14. Prolonged exposure of resveratrol induces reactive superoxide species-independent apoptosis in murine prostate cells.

    Science.gov (United States)

    Kumar, Sanjay; Stokes, James; Singh, Udai P; Scissum-Gunn, Karyn; Singh, Rajesh; Manne, Upender; Mishra, Manoj K

    2017-10-01

    Nitric oxide, a signaling molecule, inhibits mitochondrial respiration by binding with cytochrome c oxidase, resulting in elevated production of reactive superoxide species (reactive oxygen and nitrogen) in the mitochondria and increased susceptibility to cell death. Generation of mitochondrial superoxide species can be suppressed by natural compounds such as resveratrol, a dietary polyphenol found in the skin of red fruits. In various cancer cells, resveratrol shows anti-oxidant and cancer preventive properties. Since, the effect of resveratrol on reactive superoxide species-independent apoptosis in prostate cancer cells is not well illustrated; therefore, we investigated this phenomenon in TRAMP murine prostate cancer cells. To accomplish this, TRAMP cells were incubated with resveratrol, resveratrol + DETA-NONOate, DETA-NONOate (nitric oxide donor), resveratrol + L-NMMA, or L-NMMA (nitric oxide inhibitor) for 48 h, and reactive superoxide species in the mitochondria and culture supernatant were measured. In addition, the mitochondrial membrane potential, cell viability, expression of apoptotic markers (Bax and Bcl2), γ-H2A.x, p53, and caspase-3 was determined. We found that resveratrol suppressed reactive superoxide species such as reactive oxygen species in the mitochondria and nitric oxide in culture supernatant when compared to the DETA-NONOate treatment and disrupted the mitochondrial membrane potential. Resveratrol also reduced cell viability, altered the expression of apoptotic markers (Bax and Bcl2), and increased expression of γ-H2A.x (indicative marker of DNA fragmentation) and p53 (a critical DNA damage response protein). However, there was no appreciable modulation of the caspase-3. Therefore, our data suggest that resveratrol induces superoxide species-independent apoptosis and may act as a therapeutic agent against prostate cancer.

  15. Are stress proteins induced during PUVA therapy?

    Energy Technology Data Exchange (ETDEWEB)

    Al-Masaud, A.S. [Leeds Univ. (United Kingdom); Cunliffe, W.J.; Holland, D.B. [Leeds General Infirmary (United Kingdom)

    1996-05-01

    Heat shock or stress proteins are produced in practically all cell types when they are exposed to temperatures a few degrees above normal. Measurement of the skin temperature of patients undergoing psoralen and ultraviolet A (PUVA) cabinet treatment for psoriasis revealed that the outer layers of the skin experience a mean temperature rise of 5.3{sup o}C. However, this did not produce a detectable stress response in epidermal samples taken after PUVA treatment. In vitro exposure of epidermis from biopsies or of cultured keratinocytes to a 5-7{sup o}C temperature rise produced a heat shock response, as measured by an increase in the production of proteins of the HSP90 and HSP70 families. These results were confirmed by the use of specific monoclonal antibodies. The corresponding mRNAs were also analysed using labelled probes. In an in vitro system, following simulated PUVA treatment of cultured keratinocytes, increases in the synthesis of HSP90 and HSP70 were detected but these increases did not correlate with changes in mRNA levels. (author).

  16. Are stress proteins induced during PUVA therapy?

    International Nuclear Information System (INIS)

    Al-Masaud, A.S.; Cunliffe, W.J.; Holland, D.B.

    1996-01-01

    Heat shock or stress proteins are produced in practically all cell types when they are exposed to temperatures a few degrees above normal. Measurement of the skin temperature of patients undergoing psoralen and ultraviolet A (PUVA) cabinet treatment for psoriasis revealed that the outer layers of the skin experience a mean temperature rise of 5.3 o C. However, this did not produce a detectable stress response in epidermal samples taken after PUVA treatment. In vitro exposure of epidermis from biopsies or of cultured keratinocytes to a 5-7 o C temperature rise produced a heat shock response, as measured by an increase in the production of proteins of the HSP90 and HSP70 families. These results were confirmed by the use of specific monoclonal antibodies. The corresponding mRNAs were also analysed using labelled probes. In an in vitro system, following simulated PUVA treatment of cultured keratinocytes, increases in the synthesis of HSP90 and HSP70 were detected but these increases did not correlate with changes in mRNA levels. (author)

  17. Necrostatin-1 protects against reactive oxygen species (ROS-induced hepatotoxicity in acetaminophen-induced acute liver failure

    Directory of Open Access Journals (Sweden)

    Kenji Takemoto

    2014-01-01

    Full Text Available Excessive acetaminophen (APAP use is one of the most common causes of acute liver failure. Various types of cell death in the damaged liver are linked to APAP-induced hepatotoxicity, and, of these, necrotic cell death of hepatocytes has been shown to be involved in disease pathogenesis. Until recently, necrosis was commonly considered to be a random and unregulated form of cell death; however, recent studies have identified a previously unknown form of programmed necrosis called receptor-interacting protein kinase (RIPK-dependent necrosis (or necroptosis, which is controlled by the kinases RIPK1 and RIPK3. Although RIPK-dependent necrosis has been implicated in a variety of disease states, including atherosclerosis, myocardial organ damage, stroke, ischemia–reperfusion injury, pancreatitis, and inflammatory bowel disease. However its involvement in APAP-induced hepatocyte necrosis remains elusive. Here, we showed that RIPK1 phosphorylation, which is a hallmark of RIPK-dependent necrosis, was induced by APAP, and the expression pattern of RIPK1 and RIPK3 in the liver overlapped with that of CYP2E1, whose activity around the central vein area has been demonstrated to be critical for the development of APAP-induced hepatic injury. Moreover, a RIPK1 inhibitor ameliorated APAP-induced hepatotoxicity in an animal model, which was underscored by significant suppression of the release of hepatic enzymes and cytokine expression levels. RIPK1 inhibition decreased reactive oxygen species levels produced in APAP-injured hepatocytes, whereas CYP2E1 expression and the depletion rate of total glutathione were unaffected. Of note, RIPK1 inhibition also conferred resistance to oxidative stress in hepatocytes. These data collectively demonstrated a RIPK-dependent necrotic mechanism operates in the APAP-injured liver and inhibition of this pathway may be beneficial for APAP-induced fulminant hepatic failure.

  18. Distribution, transition and thermodynamic stability of protein conformations in the denaturant-induced unfolding of proteins.

    Science.gov (United States)

    Bian, Liujiao; Ji, Xu

    2014-01-01

    Extensive and intensive studies on the unfolding of proteins require appropriate theoretical model and parameter to clearly illustrate the feature and characteristic of the unfolding system. Over the past several decades, four approaches have been proposed to describe the interaction between proteins and denaturants, but some ambiguity and deviations usually occur in the explanation of the experimental data. In this work, a theoretical model was presented to show the dependency of the residual activity ratio of the proteins on the molar denaturant concentration. Through the characteristic unfolding parameters ki and Δmi in this model, the distribution, transition and thermodynamic stability of protein conformations during the unfolding process can be quantitatively described. This model was tested with the two-state unfolding of bovine heart cytochrome c and the three-state unfolding of hen egg white lysozyme induced by both guanidine hydrochloride and urea, the four-state unfolding of bovine carbonic anhydrase b induced by guanidine hydrochloride and the unfolding of some other proteins induced by denaturants. The results illustrated that this model could be used accurately to reveal the distribution and transition of protein conformations in the presence of different concentrations of denaturants and to evaluate the unfolding tendency and thermodynamic stability of different conformations. In most denaturant-induced unfolding of proteins, the unfolding became increasingly hard in next transition step and the proteins became more unstable as they attained next successive stable conformation. This work presents a useful method for people to study the unfolding of proteins and may be used to describe the unfolding and refolding of other biopolymers induced by denaturants, inducers, etc.

  19. Microencapsulation of single-cell protein from various microalgae species

    Directory of Open Access Journals (Sweden)

    Purnama Sukardi

    2015-10-01

    Full Text Available ABSTRACT The objective of the research was to evaluate nutritional values of microencapsulated diet made from single cell protein of microalgae. Complete randomized design was applied using three different types of microalgae for inclusion trials i.e. (A Nannochloropsis sp., (B Chlorella sp., and (C Spirulina sp. with five replications respectively. Microencapsulated diet was produced by a modification method based on thermal cross-linking with stable temperature. Phytoplankton was cultured in sea water for which fertilized by a modification of Walne and Guillard fertilizer. The results showed that the highest value of nutrition content was Spirulina sp. and the average composition of protein, crude lipid, carbohydrate, ash, nitrogen free extract, and water content was 34.80%, 0.30%, 18.53%, 20.09%, 26.29%, and 13.32%, respectively. Organoleptically, microcapsule showed that the color of capsule was dark green and smell fresh phytoplankton. Keywords: microcapsule, single-cell protein, thermal cross-linking, microalgae, phytoplankton  ABSTRAK Tujuan penelitian adalah mengevaluasi kandungan nutrisi pakan mikrokapsul protein sel tunggal (single cell protein yang berasal dari berbagai jenis mikroalga (fitoplankton. Rancangan percobaan yang digunakan adalah rancangan acak lengkap, dengan perlakuan inklusi mikrokapsul dari jenis fitoplankton (A Nannochloropsis sp., (B Chlorella sp., dan (C Spirulina sp., masing-masing diulang lima kali. Pembuatan mikrokapsul dilakukan dengan menggunakan modifikasi metode dasar thermal cross-linking, serta menerapkan teknik pengeringan suhu konstan. Proses pembuatan mikrokapsul protein diawali dengan kultur fitoplankton jenis Nannochloropsis sp., Chlorella sp., dan Spirulina sp. Kultur dilakukan di dalam laboratorium menggunakan media air laut dan modifikasi pupuk Walne dan Guillard. Hasil penelitian menunjukkan bahwa kandungan nutrisi tertinggi terdapat pada jenis mikrokapsul protein sel tunggal yang berasal dari

  20. Proteomic analysis of seed storage proteins in wild rice species of the Oryza genus.

    Science.gov (United States)

    Jiang, Chunmiao; Cheng, Zaiquan; Zhang, Cheng; Yu, Tengqiong; Zhong, Qiaofang; Shen, J Qingxi; Huang, Xingqi

    2014-01-01

    The total protein contents of rice seeds are significantly higher in the three wild rice species (Oryza rufipogon Grill., Oryza officinalis Wall. and Oryza meyeriana Baill.) than in the cultivated rice (Oryza sativa L.). However, there is still no report regarding a systematic proteomic analysis of seed proteins in the wild rice species. Also, the relationship between the contents of seed total proteins and rice nutritional quality has not been thoroughly investigated. The total seed protein contents, especially the glutelin contents, of the three wild rice species were higher than those of the two cultivated rice materials. Based on the protein banding patterns of SDS-PAGE, O. rufipogon was similar to the two cultivated rice materials, followed by O. officinalis, while O. meyeriana exhibited notable differences. Interestingly, O. meyeriana had high contents of glutelin and low contents of prolamine, and lacked 26 kDa globulin band and appeared a new 28 kDa protein band. However, for O. officinali a 16 kDa protein band was absent and a row of unique 32 kDa proteins appeared. In addition, we found that 13 kDa prolamine band disappeared while special 14 kDa and 12 kDa protein bands were present in O. officinalis. Two-dimensional gel electrophoresis (2-DE) analysis revealed remarkable differences in protein profiles of the wild rice species and the two cultivated rice materials. Also, the numbers of detected protein spots of the three wild rice species were significantly higher than those of two cultivated rice. A total of 35 differential protein spots were found for glutelin acidic subunits, glutelin precursors and glutelin basic subunits in wild rice species. Among those, 18 protein spots were specific and 17 major spots were elevated. Six differential protein spots for glutelin acidic subunits were identified, including a glutelin type-A 2 precursor and five hypothetical proteins. This was the first report on proteomic analysis of the three wild rice species

  1. Proteins induced by salt stress in tomato germinating seeds

    International Nuclear Information System (INIS)

    Torres-Shumann, S.; Godoy, J.A.; del Pozo, O.; Pintor-Toro, J.A.

    1989-01-01

    Salt effects on protein synthesis in tomato germinating seeds were investigated by two-dimensional polyacrilamide gel electrophoresis of proteins labeled in vivo with ( 35 S)-Methionine. Seeds germinating in NaCl were analyzed at three germination stages (4mm long radicals, 15mm long radicles and expanding cotyledons) and compared to those germinating in water. At the first germination stage several basic proteins of M.W. 13Kd, 16Kd, 17Kd and 18Kd were detected in only salt germinating seeds. Other basic proteins of M.W. 12Kd, 50Kd and 54Kd were salt-induced at the second and third stage of germination. One 14Kd acid protein is observed in every assayed stage and shows several phosphorylated forms. The levels of expression of these proteins are directly correlated to assayed NaCl concentrations. All of these proteins, except 17Kd, are also induced by abscisic acid (ABA) in the same germination stages. A cooperative effect on the synthesis of these proteins is observed when both ABA and NaCl are present

  2. Induced variability for protein content in bread wheat

    International Nuclear Information System (INIS)

    Singhal, N.C.; Jain, H.K.; Austin, A.

    1978-01-01

    The negative correlation observed between seed weight and percentage of protein in the seeds of bread wheat is a function of the fact that increase in seed size is commonly associated with a disproportionately large deposition of starch relative to the protein. The present study, as well as our earlier analysis, shows that exceptional genotypes of bread wheat do exist in which increase in seed weight is associated with a relatively larger synthesis of protein. In the course of the present investigation on radiation-induced variability, genotypes showing more efficient synthesis of storage proteins in their seeds have been identified in the M 2 and M 3 generations. The induced variability, thus, makes it possible to break the negative correlation between seed weight and percentage of protein in the seed. Based on these findings, it has been suggested that in a protein improvement programme on bread wheat it should be useful to select in the segregating generation plants showing increase in seed size, some of which can be expected to be relatively more efficient in protein synthesis and give higher protein yields. (author)

  3. Inducible immune proteins in the dampwood termite Zootermopsis angusticollis

    Science.gov (United States)

    Rosengaus, Rebeca B.; Cornelisse, Tara; Guschanski, Katerina; Traniello, James F. A.

    2007-01-01

    Dampwood termites, Zootermopsis angusticollis (Isoptera: Termopsidae), mount an immune response to resist microbial infection. Here we report on results of a novel analysis that allowed us to electrophoretically assess changes in hemolymph proteins in the same individual before and after exposure to a pathogen. We demonstrate that contact with a sublethal concentration of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycotina:Hypomycetes) induces the production of protective proteins in nymphs, pseudergates (false workers), and soldiers. Termites exposed to an immunizing dosage of fungal conidia consistently showed an enhancement of constitutive proteins (62-85 kDa) in the hemolymph as well as an induction of novel proteins (28-48 kDa) relative to preimmunization levels. No significant differences in protein banding patterns relative to baseline levels in control and naïve termites were observed. Incubating excised and eluted induced proteins produced by immunized pseudergates or immunized soldiers with conidia significantly reduced the germination of the fungus. The fungistatic effect of eluted proteins differed significantly among five colonies examined. Our results show that the upregulation of protective proteins in the hemolymph underscores the in vivo immune response we previously recorded in Z. angusticollis.

  4. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins

    DEFF Research Database (Denmark)

    Venturoli, M.; Smit, B.; Sperotto, Maria Maddalena

    2005-01-01

    membranes. Here we present a mesoscopic model for lipid bilayers with embedded proteins, which we have studied with the help of the dissipative particle dynamics simulation technique. Because hydrophobic matching is believed to be one of the main physical mechanisms regulating lipid-protein interactions......-induced protein tilt, with the hydrophobic mismatch ( positive and negative) between the protein hydrophobic length and the pure lipid bilayer hydrophobic thickness. The protein-induced bilayer perturbation was quantified in terms of a coherence length, xi(P), of the lipid bilayer hydrophobic thickness pro. le...... for positive values of mismatch; a dependence on the protein size appears as well. In the case of large model proteins experiencing extreme mismatch conditions, in the region next to the so-called lipid annulus, there appears an undershooting ( or overshooting) region where the bilayer hydrophobic thickness...

  5. Novel Phosphorylation and Ubiquitination Sites Regulate Reactive Oxygen Species-dependent Degradation of Anti-apoptotic c-FLIP Protein*

    Science.gov (United States)

    Wilkie-Grantham, Rachel P.; Matsuzawa, Shu-Ichi; Reed, John C.

    2013-01-01

    The cytosolic protein c-FLIP (cellular Fas-associated death domain-like interleukin 1β-converting enzyme inhibitory protein) is an inhibitor of death receptor-mediated apoptosis that is up-regulated in a variety of cancers, contributing to apoptosis resistance. Several compounds found to restore sensitivity of cancer cells to TRAIL, a TNF family death ligand with promising therapeutic potential, act by targeting c-FLIP ubiquitination and degradation by the proteasome. The generation of reactive oxygen species (ROS) has been implicated in c-FLIP protein degradation. However, the mechanism by which ROS post-transcriptionally regulate c-FLIP protein levels is not well understood. We show here that treatment of prostate cancer PPC-1 cells with the superoxide generators menadione, paraquat, or buthionine sulfoximine down-regulates c-FLIP long (c-FLIPL) protein levels, which is prevented by the proteasome inhibitor MG132. Furthermore, pretreatment of PPC-1 cells with a ROS scavenger prevented ubiquitination and loss of c-FLIPL protein induced by menadione or paraquat. We identified lysine 167 as a novel ubiquitination site of c-FLIPL important for ROS-dependent degradation. We also identified threonine 166 as a novel phosphorylation site and demonstrate that Thr-166 phosphorylation is required for ROS-induced Lys-167 ubiquitination. The mutation of either Thr-166 or Lys-167 was sufficient to stabilize c-FLIP protein levels in PPC-1, HEK293T, and HeLa cancer cells treated with menadione or paraquat. Accordingly, expression of c-FLIP T166A or K167R mutants protected cells from ROS-mediated sensitization to TRAIL-induced cell death. Our findings reveal novel ROS-dependent post-translational modifications of the c-FLIP protein that regulate its stability, thus impacting sensitivity of cancer cells to TRAIL. PMID:23519470

  6. The Escherichia coli BtuE protein functions as a resistance determinant against reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Felipe A Arenas

    2011-01-01

    Full Text Available This work shows that the recently described Escherichia coli BtuE peroxidase protects the bacterium against oxidative stress that is generated by tellurite and by other reactive oxygen species elicitors (ROS. Cells lacking btuE (ΔbtuE displayed higher sensitivity to K(2TeO(3 and other oxidative stress-generating agents than did the isogenic, parental, wild-type strain. They also exhibited increased levels of cytoplasmic reactive oxygen species, oxidized proteins, thiobarbituric acid reactive substances, and lipoperoxides. E. coli ΔbtuE that was exposed to tellurite or H(2O(2 did not show growth changes relative to wild type cells either in aerobic or anaerobic conditions. Nevertheless, the elimination of btuE from cells deficient in catalases/peroxidases (Hpx(- resulted in impaired growth and resistance to these toxicants only in aerobic conditions, suggesting that BtuE is involved in the defense against oxidative damage. Genetic complementation of E. coli ΔbtuE restored toxicant resistance to levels exhibited by the wild type strain. As expected, btuE overexpression resulted in decreased amounts of oxidative damage products as well as in lower transcriptional levels of the oxidative stress-induced genes ibpA, soxS and katG.

  7. Mitochondrial Reactive Oxygen Species Trigger Hypoxia-Induced Transcription

    Science.gov (United States)

    Chandel, N. S.; Maltepe, E.; Goldwasser, E.; Mathieu, C. E.; Simon, M. C.; Schumacker, P. T.

    1998-09-01

    Transcriptional activation of erythropoietin, glycolytic enzymes, and vascular endothelial growth factor occurs during hypoxia or in response to cobalt chloride (CoCl2) in Hep3B cells. However, neither the mechanism of cellular O2 sensing nor that of cobalt is fully understood. We tested whether mitochondria act as O2 sensors during hypoxia and whether hypoxia and cobalt activate transcription by increasing generation of reactive oxygen species (ROS). Results show (i) wild-type Hep3B cells increase ROS generation during hypoxia (1.5% O2) or CoCl2 incubation, (ii) Hep3B cells depleted of mitochondrial DNA (ρ 0 cells) fail to respire, fail to activate mRNA for erythropoietin, glycolytic enzymes, or vascular endothelial growth factor during hypoxia, and fail to increase ROS generation during hypoxia; (iii) ρ 0 cells increase ROS generation in response to CoCl2 and retain the ability to induce expression of these genes; and (iv) the antioxidants pyrrolidine dithiocarbamate and ebselen abolish transcriptional activation of these genes during hypoxia or CoCl2 in wild-type cells, and abolish the response to CoCl2 in ρ 0 cells. Thus, hypoxia activates transcription via a mitochondria-dependent signaling process involving increased ROS, whereas CoCl2 activates transcription by stimulating ROS generation via a mitochondria-independent mechanism.

  8. Class A dioscorins of various yam species suppress ovalbumin-induced allergic reactions.

    Science.gov (United States)

    Yang, Ching-Chi; Lin, Kuo-Chih

    2014-06-01

    Dioscorins, the primary storage proteins in yam tubers, of different species exhibited varying immunomodulatory activities in mice. We inferred that this might be attributed to the various isoforms in the yam tubers. We aimed to investigate the antiallergic potential of the Class A dioscorins of various yam species using the ovalbumin (OVA)-induced murine allergy model. We purified the recombinant Class A dioscorins (rDioscorins) of various yam species from Escherichia coli and evaluated their antiallergic potential by enzyme-linked immunosorbent assay. The Class A rDioscorins of various yam species suppressed allergic reactions by significantly decreasing the serum IgE and histamine levels. The serum IFN-γ and IgG2a levels significantly increased in all rDioscorin-treated mice. The splenocytes of the rDioscorin-treated mice also exhibited upregulated IFN-γ secretion in response to ConA stimulation. By contrast, the serum IL-5 levels decreased to basal levels in mice treated with Class A rDioscorins and the amount of IL-5 produced by splenocytes decreased in response to ConA stimulation. The Class A rDioscorins suppress allergic reactions, possibly through modulating an imbalanced Th1/Th2 immune response to OVA by promoting Th1 cell responses. Furthermore, the Class A rDioscorins of various yam species exhibited similar immunomodulatory activities in OVA-sensitized mice, which were different from the activities demonstrated by native dioscorins, suggesting that distinct immunomodulatory effects of native dioscorins on mice were attributed to the various isoforms in the yam tubers. The Class A dioscorins of various yam species exhibit antiallergic activity and are potential immunotherapeutic agents for treating IgE-mediated hypersensitivity.

  9. Reactive oxygen species mediates homocysteine-induced mitochondrial biogenesis in human endothelial cells: Modulation by antioxidants

    International Nuclear Information System (INIS)

    Perez-de-Arce, Karen; Foncea, Rocio; Leighton, Federico

    2005-01-01

    It has been proposed that homocysteine (Hcy)-induces endothelial dysfunction and atherosclerosis by generation of reactive oxygen species (ROS). A previous report has shown that Hcy promotes mitochondrial damage. Considering that oxidative stress can affect mitochondrial biogenesis, we hypothesized that Hcy-induced ROS in endothelial cells may lead to increased mitochondrial biogenesis. We found that Hcy-induced ROS (1.85-fold), leading to a NF-κB activation and increase the formation of 3-nitrotyrosine. Furthermore, expression of the mitochondrial biogenesis factors, nuclear respiratory factor-1 and mitochondrial transcription factor A, was significantly elevated in Hcy-treated cells. These changes were accompanied by increase in mitochondrial mass and higher mRNA and protein expression of the subunit III of cytochrome c oxidase. These effects were significantly prevented by pretreatment with the antioxidants, catechin and trolox. Taken together, our results suggest that ROS is an important mediator of mitochondrial biogenesis induced by Hcy, and that modulation of oxidative stress by antioxidants may protect against the adverse vascular effects of Hcy

  10. Prolactin-inducible proteins in human breast cancer cells

    International Nuclear Information System (INIS)

    Shiu, R.P.; Iwasiow, B.M.

    1985-01-01

    The mechanism of action of prolactin in target cells and the role of prolactin in human breast cancer are poorly understood phenomena. The present study examines the effect of human prolactin (hPRL) on the synthesis of unique proteins by a human breast cancer cell line, T-47D, in serum-free medium containing bovine serum albumin. [ 35 S]Methionine-labeled proteins were analysed by sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis and fluorography. Treatment of cells with hPRL (1-1000 ng/ml) and hydrocortisone (1 microgram/ml) for 36 h or longer resulted in the synthesis and secretion of three proteins having molecular weights of 11,000, 14,000, and 16,000. Neither hPRL nor hydrocortisone alone induced these proteins. Of several other peptide hormones tested, only human growth hormone, a hormone structurally and functionally similar to hPRL, could replace hPRL in causing protein induction. These three proteins were, therefore, referred to as prolactin-inducible proteins (PIP). Each of the three PIPs was purified to homogeneity by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and specific antibodies were generated to them in rabbits. By immunoprecipitation and immunoblotting (Western blot) of proteins secreted by T-47D cells, it was demonstrated that the three PIPs were immunologically identical to one another. In addition, the 16-kDa and 14-kDa proteins (PIP-16 and PIP-14), and not the 11-kDa protein (PIP-11), incorporated [ 3 H]glycosamine. Furthermore, 2-deoxyglucose (2 mM) and tunicamycin (0.5 micrograms/ml), two compounds known to inhibit glycosylation, blocked the production of PIP-16 and PIP-14, with a concomitant increase in the accumulation of PIP-11

  11. Asprosin, a fasting-induced glucogenic protein hormone

    Science.gov (United States)

    Hepatic glucose release into the circulation is vital for brain function and survival during periods of fasting and is modulated by an array of hormones that precisely regulate plasma glucose levels. We have identified a fasting-induced protein hormone that modulates hepatic glucose release. It is t...

  12. Protein misfolding cyclic amplification induces the conversion of recombinant prion protein to PrP oligomers causing neuronal apoptosis.

    Science.gov (United States)

    Yuan, Zhen; Yang, Lifeng; Chen, Baian; Zhu, Ting; Hassan, Mohammad Farooque; Yin, Xiaomin; Zhou, Xiangmei; Zhao, Deming

    2015-06-01

    The formation of neurotoxic prion protein (PrP) oligomers is thought to be a key step in the development of prion diseases. Recently, it was determined that the sonication and shaking of recombinant PrP can convert PrP monomers into β-state oligomers. Herein, we demonstrate that β-state oligomeric PrP can be generated through protein misfolding cyclic amplification from recombinant full-length hamster, human, rabbit, and mutated rabbit PrP, and that these oligomers can be used for subsequent research into the mechanisms of PrP-induced neurotoxicity. We have characterized protein misfolding cyclic amplification-induced monomer-to-oligomer conversion of PrP from three species using western blotting, circular dichroism, size-exclusion chromatography, and resistance to proteinase K (PK) digestion. We have further shown that all of the resulting β-oligomers are toxic to primary mouse cortical neurons independent of the presence of PrP(C) in the neurons, whereas the corresponding monomeric PrP were not toxic. In addition, we found that this toxicity is the result of oligomer-induced apoptosis via regulation of Bcl-2, Bax, and caspase-3 in both wild-type and PrP(-/-) cortical neurons. It is our hope that these results may contribute to our understanding of prion transformation within the brain. We found that β-state oligomeric PrPs can be generated through protein misfolding cyclic amplification (PMCA) from recombinant full-length hamster, human, rabbit, and mutated rabbit PrP. β-oligomers are toxic to primary mouse cortical neurons independent of the presence of PrP(C) in the neurons, while the corresponding monomeric PrPs were not toxic. This toxicity is the result of oligomers-induced apoptosis via regulation of Bcl-2, Bax, and caspase-3. These results may contribute to our understanding of prion transformation within the brain. © 2015 International Society for Neurochemistry.

  13. HCV Core Protein Uses Multiple Mechanisms to Induce Oxidative Stress in Human Hepatoma Huh7 Cells

    Science.gov (United States)

    Ivanov, Alexander V.; Smirnova, Olga A.; Petrushanko, Irina Y.; Ivanova, Olga N.; Karpenko, Inna L.; Alekseeva, Ekaterina; Sominskaya, Irina; Makarov, Alexander A.; Bartosch, Birke; Kochetkov, Sergey N.; Isaguliants, Maria G.

    2015-01-01

    Hepatitis C virus (HCV) infection is accompanied by the induction of oxidative stress, mediated by several virus proteins, the most prominent being the nucleocapsid protein (HCV core). Here, using the truncated forms of HCV core, we have delineated several mechanisms by which it induces the oxidative stress. The N-terminal 36 amino acids of HCV core induced TGFβ1-dependent expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases 1 and 4, both of which independently contributed to the production of reactive oxygen species (ROS). The same fragment also induced the expression of cyclo-oxygenase 2, which, however, made no input into ROS production. Amino acids 37–191 of HCV core up-regulated the transcription of a ROS generating enzyme cytochrome P450 2E1. Furthermore, the same fragment induced the expression of endoplasmic reticulum oxidoreductin 1α. The latter triggered efflux of Ca2+ from ER to mitochondria via mitochondrial Ca2+ uniporter, leading to generation of superoxide anions, and possibly also H2O2. Suppression of any of these pathways in cells expressing the full-length core protein led to a partial inhibition of ROS production. Thus, HCV core causes oxidative stress via several independent pathways, each mediated by a distinct region of the protein. PMID:26035647

  14. Radiation-induced paramagnetic species in natural calcite speleothems

    International Nuclear Information System (INIS)

    Rossi, A.M.; Poupeau, G.

    1989-01-01

    The ESR natural spectrum of humic-free speleothem calcite single crytals in the region of g = 2.0000 is a composite of lines from 4 radiogenic species, in addition to Mn ++ lines. Laboratory irradiation causes appearrance of three more species. Use of isotropic F species (g = 2.0003) for dating is possible if specific cautions are followed. (author) [pt

  15. Reactive species formed on proteins exposed to singlet oxygen

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2004-01-01

    Singlet oxygen ((1)O(2)) is believed to be generated in biological systems by a range of endogenous processes (e.g. enzymatic and chemical reactions) and exogenous stimuli (e.g. UV or visible light in the presence of a sensitiser). Kinetic data is consistent with proteins being a major target...... hydroperoxides, which can be reduced to the corresponding alcohols; other products arising from radical intermediates can also be generated, particularly in the presence of UV light and metal ions. With His side-chains, poorly characterised peroxides are also formed. Reaction with Met and Cys has been proposed...

  16. Reactive oxygen species contribute to arsenic-induced EZH2 phosphorylation in human bronchial epithelial cells and lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingzhi; Qiu, Ping; Chen, Bailing; Lu, Yongju; Wu, Kai; Thakur, Chitra; Chang, Qingshan; Sun, Jiaying; Chen, Fei, E-mail: fchen@wayne.edu

    2014-05-01

    Our previous studies suggested that arsenic is able to induce serine 21 phosphorylation of the EZH2 protein through activation of JNK, STAT3, and Akt signaling pathways in the bronchial epithelial cell line, BEAS-2B. In the present report, we further demonstrated that reactive oxygen species (ROS) were involved in the arsenic-induced protein kinase activation that leads to EZH2 phosphorylation. Several lines of evidence supported this notion. First, the pretreatment of the cells with N-acetyl-L-cysteine (NAC), a potent antioxidant, abolishes arsenic-induced EZH2 phosphorylation along with the inhibition of JNK, STAT3, and Akt. Second, H{sub 2}O{sub 2}, the most important form of ROS in the cells in response to extracellular stress signals, can induce phosphorylation of the EZH2 protein and the activation of JNK, STAT3, and Akt. By ectopic expression of the myc-tagged EZH2, we additionally identified direct interaction and phosphorylation of the EZH2 protein by Akt in response to arsenic and H{sub 2}O{sub 2}. Furthermore, both arsenic and H{sub 2}O{sub 2} were able to induce the translocation of ectopically expressed or endogenous EZH2 from nucleus to cytoplasm. In summary, the data presented in this report indicate that oxidative stress due to ROS generation plays an important role in the arsenic-induced EZH2 phosphorylation. - Highlights:: • Arsenic (As{sup 3+}) induces EZH phosphorylation. • JNK, STAT3, and Akt contribute to EZH2 phosphorylation. • Oxidative stress is involved in As{sup 3+}-induced EZH2 phosphorylation. • As{sup 3+} induces direct interaction of Akt and EZH2. • Phosphorylated EZH2 localized in cytoplasm.

  17. Improving N-terminal protein annotation of Plasmodium species based on signal peptide prediction of orthologous proteins

    Directory of Open Access Journals (Sweden)

    Neto Armando

    2012-11-01

    Full Text Available Abstract Background Signal peptide is one of the most important motifs involved in protein trafficking and it ultimately influences protein function. Considering the expected functional conservation among orthologs it was hypothesized that divergence in signal peptides within orthologous groups is mainly due to N-terminal protein sequence misannotation. Thus, discrepancies in signal peptide prediction of orthologous proteins were used to identify misannotated proteins in five Plasmodium species. Methods Signal peptide (SignalP and orthology (OrthoMCL were combined in an innovative strategy to identify orthologous groups showing discrepancies in signal peptide prediction among their protein members (Mixed groups. In a comparative analysis, multiple alignments for each of these groups and gene models were visually inspected in search of misannotated proteins and, whenever possible, alternative gene models were proposed. Thresholds for signal peptide prediction parameters were also modified to reduce their impact as a possible source of discrepancy among orthologs. Validation of new gene models was based on RT-PCR (few examples or on experimental evidence already published (ApiLoc. Results The rate of misannotated proteins was significantly higher in Mixed groups than in Positive or Negative groups, corroborating the proposed hypothesis. A total of 478 proteins were reannotated and change of signal peptide prediction from negative to positive was the most common. Reannotations triggered the conversion of almost 50% of all Mixed groups, which were further reduced by optimization of signal peptide prediction parameters. Conclusions The methodological novelty proposed here combining orthology and signal peptide prediction proved to be an effective strategy for the identification of proteins showing wrongly N-terminal annotated sequences, and it might have an important impact in the available data for genome-wide searching of potential vaccine and drug

  18. Limited tryptic proteolysis of the benzodiazepine binding proteins in different species reveals structural homologies.

    Science.gov (United States)

    Friedl, W; Lentes, K U; Schmitz, E; Propping, P; Hebebrand, J

    1988-12-01

    Peptide mapping can be used to elucidate further the structural similarities of the benzodiazepine binding proteins in different vertebrate species. Crude synaptic membrane preparations were photoaffinity-labeled with [3H]flunitrazepam and subsequently degraded with various concentrations of trypsin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by fluorography allowed a comparison of the molecular weights of photolabeled peptides in different species. Tryptic degradation led to a common peptide of 40K in all species investigated, a finding indicating that the benzodiazepine binding proteins are structurally homologous in higher bony fishes and tetrapods.

  19. Protein and alkaloid patterns of the floral nectar in some solanaceous species.

    Science.gov (United States)

    Kerchner, András; Darók, Judit; Bacskay, Ivett; Felinger, Attila; Jakab, Gábor; Farkas, Ágnes

    2015-09-01

    The family Solanaceae includes several melliferous plants, which tend to produce copious amounts of nectar. Floral nectar is a chemically complex aqueous solution, dominated by sugars, but minor components such as amino acids, proteins, flavonoids and alkaloids are present as well. This study aimed at analysing the protein and alkaloid profile of the nectar in seven solanaceous species. Proteins were examined with SDS-PAGE and alkaloids were analyzed with HPLC. The investigation of protein profile revealed significant differences in nectar-protein patterns not only between different plant genera, but also between the three Nicotiana species investigated. SDS-PAGE suggested the presence of several Nectarin proteins with antimicrobial activity in Nicotiana species. The nectar of all tobacco species contained the alkaloid nicotine, N. tabacum having the highest nicotine content. The nectar of Brugmansia suaveolens, Datura stramonium, Hyoscyamus niger and Lycium barbarum contained scopolamine, the highest content of which was measured in B. suaveolens. The alkaloid concentrations in the nectars of most solanaceous species investigated can cause deterrence in honeybees, and the nectar of N. rustica and N. tabacum can be considered toxic for honeybees.

  20. H ferritin silencing induces protein misfolding in K562 cells: A Raman analysis

    KAUST Repository

    Zolea, Fabiana

    2015-10-09

    The redox state of the cell is involved in the regulation of many physiological functions as well as in the pathogenesis of several diseases, and is strictly dependent on the amount of iron in its catalytically active state. Alterations of iron homeostasis determine increased steady-state concentrations of Reactive Oxygen Species (ROS) that cause lipid peroxidation, DNA damage and altered protein folding. Ferritin keeps the intracellular iron in a non-toxic and readily available form and consequently plays a central role in iron and redox homeostasis. The protein is composed by 24 subunits of the H- and L-type, coded by two different genes, with structural and functional differences. The aim of this study was to shed light on the role of the single H ferritin subunit (FHC) in keeping the native correct protein three-dimensional structure. To this, we performed Raman spectroscopy on protein extracts from K562 cells subjected to FHC silencing. The results show a significant increase in the percentage of disordered structures content at a level comparable to that induced by H2O2 treatment in control cells. ROS inhibitor and iron chelator were able to revert protein misfolding. This integrated approach, involving Raman spectroscopy and targeted-gene silencing, indicates that an imbalance of the heavy-to-light chain ratio in the ferritin composition is able to induce severe but still reversible modifications in protein folding and uncovers new potential pathogenetic mechanisms associated to intracellular iron perturbation.

  1. H ferritin silencing induces protein misfolding in K562 cells: A Raman analysis

    KAUST Repository

    Zolea, Fabiana; Biamonte, Flavia; Candeloro, Patrizio; Di Sanzo, Maddalena; Cozzi, Anna; Di Vito, Anna; Quaresima, Barbara; Lobello, Nadia; Trecroci, Francesca; Di Fabrizio, Enzo M.; Levi, Sonia; Cuda, Giovanni; Costanzo, Francesco

    2015-01-01

    The redox state of the cell is involved in the regulation of many physiological functions as well as in the pathogenesis of several diseases, and is strictly dependent on the amount of iron in its catalytically active state. Alterations of iron homeostasis determine increased steady-state concentrations of Reactive Oxygen Species (ROS) that cause lipid peroxidation, DNA damage and altered protein folding. Ferritin keeps the intracellular iron in a non-toxic and readily available form and consequently plays a central role in iron and redox homeostasis. The protein is composed by 24 subunits of the H- and L-type, coded by two different genes, with structural and functional differences. The aim of this study was to shed light on the role of the single H ferritin subunit (FHC) in keeping the native correct protein three-dimensional structure. To this, we performed Raman spectroscopy on protein extracts from K562 cells subjected to FHC silencing. The results show a significant increase in the percentage of disordered structures content at a level comparable to that induced by H2O2 treatment in control cells. ROS inhibitor and iron chelator were able to revert protein misfolding. This integrated approach, involving Raman spectroscopy and targeted-gene silencing, indicates that an imbalance of the heavy-to-light chain ratio in the ferritin composition is able to induce severe but still reversible modifications in protein folding and uncovers new potential pathogenetic mechanisms associated to intracellular iron perturbation.

  2. LC-MS/MS Identification of Species-Specific Muscle Peptides in Processed Animal Proteins.

    Science.gov (United States)

    Marchis, Daniela; Altomare, Alessandra; Gili, Marilena; Ostorero, Federica; Khadjavi, Amina; Corona, Cristiano; Ru, Giuseppe; Cappelletti, Benedetta; Gianelli, Silvia; Amadeo, Francesca; Rumio, Cristiano; Carini, Marina; Aldini, Giancarlo; Casalone, Cristina

    2017-12-06

    An innovative analytical strategy has been applied to identify signature peptides able to distinguish among processed animal proteins (PAPs) derived from bovine, pig, fish, and milk products. Proteomics was first used to elucidate the proteome of each source. Starting from the identified proteins and using a funnel based approach, a set of abundant and well characterized peptides with suitable physical-chemical properties (signature peptides) and specific for each source was selected. An on-target LC-ESI-MS/MS method (MRM mode) was set up using standard peptides and was then applied to selectively identify the PAP source and also to distinguish proteins from bovine carcass and milk proteins. We believe that the method described meets the request of the European Commission which has developed a strategy for gradually lifting the "total ban" toward "species to species ban", therefore requiring official methods for species-specific discrimination in feed.

  3. HitPredict version 4: comprehensive reliability scoring of physical protein-protein interactions from more than 100 species.

    Science.gov (United States)

    López, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein-protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein-protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of physical, genetic and predicted interactions. Automated integration of interactions is further complicated by varying levels of accuracy of database content and lack of adherence to standard formats. To address these issues, the latest version of HitPredict provides a manually curated dataset of 398 696 physical associations between 70 808 proteins from 105 species. Manual confirmation was used to resolve all issues encountered during data integration. For improved reliability assessment, this version combines a new score derived from the experimental information of the interactions with the original score based on the features of the interacting proteins. The combined interaction score performs better than either of the individual scores in HitPredict as well as the reliability score of another similar database. HitPredict provides a web interface to search proteins and visualize their interactions, and the data can be downloaded for offline analysis. Data usability has been enhanced by mapping protein identifiers across multiple reference databases. Thus, the latest version of HitPredict provides a significantly larger, more reliable and usable dataset of protein-protein interactions from several species for the study of gene groups. Database URL: http://hintdb.hgc.jp/htp. © The Author(s) 2015. Published by Oxford University Press.

  4. Two endogenous proteins that induce cell wall extension in plants

    Science.gov (United States)

    McQueen-Mason, S.; Durachko, D. M.; Cosgrove, D. J.

    1992-01-01

    Plant cell enlargement is regulated by wall relaxation and yielding, which is thought to be catalyzed by elusive "wall-loosening" enzymes. By employing a reconstitution approach, we found that a crude protein extract from the cell walls of growing cucumber seedlings possessed the ability to induce the extension of isolated cell walls. This activity was restricted to the growing region of the stem and could induce the extension of isolated cell walls from various dicot stems and the leaves of amaryllidaceous monocots, but was less effective on grass coleoptile walls. Endogenous and reconstituted wall extension activities showed similar sensitivities to pH, metal ions, thiol reducing agents, proteases, and boiling in methanol or water. Sequential HPLC fractionation of the active wall extract revealed two proteins with molecular masses of 29 and 30 kD associated with the activity. Each protein, by itself, could induce wall extension without detectable hydrolytic breakdown of the wall. These proteins appear to mediate "acid growth" responses of isolated walls and may catalyze plant cell wall extension by a novel biochemical mechanism.

  5. Prion protein inhibits microtubule assembly by inducing tubulin oligomerization

    International Nuclear Information System (INIS)

    Nieznanski, Krzysztof; Podlubnaya, Zoya A.; Nieznanska, Hanna

    2006-01-01

    A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for First time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of ∼50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers

  6. Coexistence induced by pollen limitation in flowering-plant species.

    OpenAIRE

    Ishii, R; Higashi, M

    2001-01-01

    We report a novel mechanism for species coexistence that does not invoke a trade-off relationship in the case of outbreeding flowering plants. Competition for pollination services may lead to interspecific segregation of the timing of flowering among plants. This, in turn, sets limits on the pollination services, which restrain the population growth of a competitively superior species, thereby allowing an inferior species to sustain its population in the habitat. This explains the often-obser...

  7. Light-induced protein nitration and degradation with HONO emission

    Science.gov (United States)

    Meusel, Hannah; Elshorbany, Yasin; Kuhn, Uwe; Bartels-Rausch, Thorsten; Reinmuth-Selzle, Kathrin; Kampf, Christopher J.; Li, Guo; Wang, Xiaoxiang; Lelieveld, Jos; Pöschl, Ulrich; Hoffmann, Thorsten; Su, Hang; Ammann, Markus; Cheng, Yafang

    2017-10-01

    Proteins can be nitrated by air pollutants (NO2), enhancing their allergenic potential. This work provides insight into protein nitration and subsequent decomposition in the presence of solar radiation. We also investigated light-induced formation of nitrous acid (HONO) from protein surfaces that were nitrated either online with instantaneous gas-phase exposure to NO2 or offline by an efficient nitration agent (tetranitromethane, TNM). Bovine serum albumin (BSA) and ovalbumin (OVA) were used as model substances for proteins. Nitration degrees of about 1 % were derived applying NO2 concentrations of 100 ppb under VIS/UV illuminated conditions, while simultaneous decomposition of (nitrated) proteins was also found during long-term (20 h) irradiation exposure. Measurements of gas exchange on TNM-nitrated proteins revealed that HONO can be formed and released even without contribution of instantaneous heterogeneous NO2 conversion. NO2 exposure was found to increase HONO emissions substantially. In particular, a strong dependence of HONO emissions on light intensity, relative humidity, NO2 concentrations and the applied coating thickness was found. The 20 h long-term studies revealed sustained HONO formation, even when concentrations of the intact (nitrated) proteins were too low to be detected after the gas exchange measurements. A reaction mechanism for the NO2 conversion based on the Langmuir-Hinshelwood kinetics is proposed.

  8. Detection of the Level of Reactive Oxygen Species Induced by Ionizing Radiation in Cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Chung, Dong Min; Kim, Jin-Hong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    By definition, the direct effect is referred to interaction between photon and DNA molecule, whereas the indirect effect is mediated by the reactive oxygen species (ROS) generated by radiolysis and subsequent reaction. It has been reported that ROS produced after exposure to IR can react with cellular materials such as DNA, proteins, carbohydrates and lipids. ROS is free radicals such as the superoxide anion, hydroxyl radicals and the non-radical hydrogen peroxide. Cells generate ROS during aerobic metabolism. Excessive production of ROS can lead to oxidative stress, genetic alteration and even cell death. It has been reported that ROS plays a critical role in radiation-induced cell injury. Thus, it is of great interest to determine the radiation-induced ROS level. Many kinds of methods to detect the level of ROS have been developed so far. There were random changes of fluorescence intensity in the treatment after irradiation. This result meant that this protocol was not appropriate for determination of radiation-induced ROS. On the other hand, the fluorescence intensity was increased in a dose-dependent manner when the cells were treated with the DCFH-DA solution before irradiation. Conclusions can be drawn from the experimental results of this study. In order to properly measure the ROS level in the cells exposed to ionizing radiation, the cells should be treated with the DCFH-DA solution before irradiation.

  9. Reactive oxygen species induced by Streptococcus pyogenes invasion trigger apoptotic cell death in infected epithelial cells.

    Science.gov (United States)

    Aikawa, Chihiro; Nozawa, Takashi; Maruyama, Fumito; Tsumoto, Kohei; Hamada, Shigeyuki; Nakagawa, Ichiro

    2010-06-01

    Streptococcus pyogenes (group A streptococcus, GAS), one of the most common pathogens of humans, attaches and invades into human pharyngeal or skin epithelial cells. We have previously reported that induction of apoptosis is associated with GAS invasion, which induces mitochondrial dysfunction and apoptotic cell death. We demonstrate here that GAS-induced apoptosis is mediated by reactive oxygen species (ROS) production. Both the induction of apoptosis and ROS production markedly increased upon invasion of wild-type GAS strain JRS4 into HeLa cells; however, the apoptotic response was not observed in fibronectin-binding protein F1-disrupted mutant SAM1-infected cells. In Bcl-2-overexpressing HeLa cells (HBD98-2-4), the induction of apoptosis, ROS production and mitochondrial dysfunction were significantly suppressed, whereas the numbers of invaded GAS was not different between HeLa (mock cells) and the HeLa HBD98-2-4 cells. Whereas Rac1 activation occurred during GAS invasion, ROS production in GAS-infected cells was clearly inhibited by transfection with the Rac1 mutants (L37 or V12L37), but not by the dominant active mutant (V12L61) or by the dominant negative mutant (N17). These observations indicate that GAS invasion triggers ROS production through Rac1 activation and generated ROS induced mitochondrial dysfunction leading to cellular apoptosis.

  10. Drought Stress and Its Impact on Protein in Three Species of Vitex

    Directory of Open Access Journals (Sweden)

    John A. De Britto

    2011-09-01

    Full Text Available Drought is one of the most important natural phenomenon which affects on plant growth. When drought stress is imposed different molecular and biochemical responses took place in the plants. The protein profile of three species of Vitex (Vitex trifolia L., Vitex altissima L. and Vitex negundo L. under normally irrigated condition and severe drought plants was analyzed through SDS-PAGE. Drought stress significantly affects proteins in plants when compared the normal conditioned plants. Several new protein bands were identified in the stressed plants. It seems that Vitex species can be adapted to drought stress conditions. Hence it was concluded that number of new proteins were synthesized in stressed plants for their adaptation in the stressed conditions. These proteins could be used as markers in identifying the stressed plants.

  11. Protein-induced satiation and the calcium-sensing receptor

    Directory of Open Access Journals (Sweden)

    Ojha U

    2018-03-01

    Full Text Available Utkarsh Ojha Faculty of Medicine, Imperial College School of Medicine, Imperial College London, London, UK Abstract: Obesity is a major global health issue. High-protein diets have been shown to be associated with weight loss and satiety. The precise mechanism by which protein-rich diets promote weight loss remains unclear. Evidence suggests amino acids, formed as a consequence of protein digestion, are sensed by specific receptors on L-cells in the gastrointestinal (GI tract. These L-cells respond by secreting gut hormones that subsequently induce satiety. In recent years, the calcium-sensing receptor has been identified in several cells of the GI tract, including L-cells, and suggested to sense specific amino acids. This review evaluates the evidence for protein-rich diets in inducing weight loss and how the calcium-sensing receptor may be implicated in this phenomenon. Commandeering the mechanisms by which elements of a protein-rich diet suppress appetite may provide another successful avenue for developing anti-obesity drugs. Keywords: amino acids, energy regulation, obesity therapy, glucagon-like-peptide-1, peptide YY

  12. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  13. HIV-1 Tat protein induces glial cell autophagy through enhancement of BAG3 protein levels.

    Science.gov (United States)

    Bruno, Anna Paola; De Simone, Francesca Isabella; Iorio, Vittoria; De Marco, Margot; Khalili, Kamel; Sariyer, Ilker Kudret; Capunzo, Mario; Nori, Stefania Lucia; Rosati, Alessandra

    2014-01-01

    BAG3 protein has been described as an anti-apoptotic and pro-autophagic factor in several neoplastic and normal cells. We previously demonstrated that BAG3 expression is elevated upon HIV-1 infection of glial and T lymphocyte cells. Among HIV-1 proteins, Tat is highly involved in regulating host cell response to viral infection. Therefore, we investigated the possible role of Tat protein in modulating BAG3 protein levels and the autophagic process itself. In this report, we show that transfection with Tat raises BAG3 levels in glioblastoma cells. Moreover, BAG3 silencing results in highly reducing Tat- induced levels of LC3-II and increasing the appearance of sub G0/G1 apoptotic cells, in keeping with the reported role of BAG3 in modulating the autophagy/apoptosis balance. These results demonstrate for the first time that Tat protein is able to stimulate autophagy through increasing BAG3 levels in human glial cells.

  14. Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells

    DEFF Research Database (Denmark)

    Zheng, Lin; Terman, Alexei; Hallbeck, Martin

    2011-01-01

    and accumulation of Aβ within lysosomes, induced apoptosis in differentiated SH-SY5Y neuroblastoma cells. Cells under hyperoxia showed: (1) increased numbers of autophagic vacuoles that contained amyloid precursor protein (APP) as well as Aβ monomers and oligomers, (2) increased reactive oxygen species production...... and resulting lysosomal Aβ accumulation are essential for oxidant-induced apoptosis in cultured neuroblastoma cells and provide additional support for the interactive role of oxidative stress and the lysosomal system in AD-related neurodegeneration....

  15. An integrated protein localization and interaction map for Potato yellow dwarf virus, type species of the genus Nucleorhabdovirus

    International Nuclear Information System (INIS)

    Bandyopadhyay, Anindya; Kopperud, Kristin; Anderson, Gavin; Martin, Kathleen; Goodin, Michael

    2010-01-01

    The genome of Potato yellow dwarf virus (PYDV; Nucleorhabdovirus type species) was determined to be 12,875 nucleotides (nt). The antigenome is organized into seven open reading frames (ORFs) ordered 3'-N-X-P-Y-M-G-L-5', which likely encode the nucleocapsid, phospho, movement, matrix, glyco and RNA-dependent RNA polymerase proteins, respectively, except for X, which is of unknown function. The ORFs are flanked by a 3' leader RNA of 149 nt and a 5' trailer RNA of 97 nt, and are separated by conserved intergenic junctions. Phylogenetic analyses indicated that PYDV is closely related to other leafhopper-transmitted rhabdoviruses. Functional protein assays were used to determine the subcellular localization of PYDV proteins. Surprisingly, the M protein was able to induce the intranuclear accumulation of the inner nuclear membrane in the absence of any other viral protein. Finally, bimolecular fluorescence complementation was used to generate the most comprehensive protein interaction map for a plant-adapted rhabdovirus to date.

  16. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Directory of Open Access Journals (Sweden)

    Yang Sun

    2015-01-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS. Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury.

  17. Enhancement of the acrolein-induced production of reactive oxygen species and lung injury by GADD34.

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Liu, Lintao; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS). Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury.

  18. Enhancement of the Acrolein-Induced Production of Reactive Oxygen Species and Lung Injury by GADD34

    Science.gov (United States)

    Sun, Yang; Ito, Sachiko; Nishio, Naomi; Tanaka, Yuriko; Chen, Nana; Isobe, Ken-ichi

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is characterized by lung destruction and inflammation. As a major compound of cigarette smoke, acrolein plays a critical role in the induction of respiratory diseases. GADD34 is known as a growth arrest and DNA damage-related gene, which can be overexpressed in adverse environmental conditions. Here we investigated the effects of GADD34 on acrolein-induced lung injury. The intranasal exposure of acrolein induced the expression of GADD34, developing the pulmonary damage with inflammation and increase of reactive oxygen species (ROS). Conversely, the integrality of pulmonary structure was preserved and the generation of ROS was reduced in GADD34-knockout mice. Acrolein-induced phosphorylation of eIF2α in GADD34-knockout epithelial cells by shRNA protected cell death by reducing misfolded protein-caused oxidative stress. These data indicate that GADD34 participates in the development of acrolein-induced lung injury. PMID:25821552

  19. Cyanobacterial high-light-inducible proteins - Protectors of chlorophyll-protein synthesis and assembly

    Czech Academy of Sciences Publication Activity Database

    Komenda, Josef; Sobotka, R.

    2016-01-01

    Roč. 1857, č. 3 (2016), s. 288-295 ISSN 0005-2728 R&D Projects: GA MŠk LO1416; GA ČR(CZ) GAP501/11/0377 Institutional support: RVO:61388971 Keywords : Chlorophyll * Cyanobacteria * High-light-inducible protein Subject RIV: CE - Biochemistry Impact factor: 4.932, year: 2016

  20. Depletion-induced instability in protein-DNA mixtures: Influence of protein charge and size

    NARCIS (Netherlands)

    Vries, de R.J.

    2006-01-01

    While there is abundant experimental and theoretical work on polymer-induced DNA condensation, it is still unclear whether globular proteins can condense linear DNA or not. We develop a simple analytical approximation for the depletion attraction between rodlike segments of semiflexible

  1. Protein Kinase G Induces an Immune Response in Cows Exposed to Mycobacterium avium Subsp. paratuberculosis

    Directory of Open Access Journals (Sweden)

    Horacio Bach

    2018-01-01

    Full Text Available To establish infection, pathogens secrete virulence factors, such as protein kinases and phosphatases, to modulate the signal transduction pathways used by host cells to initiate immune response. The protein MAP3893c is annotated in the genome sequence of Mycobacterium avium subspecies paratuberculosis (MAP, the causative agent of Johne’s disease, as the serine/threonine protein kinase G (PknG. In this work, we report that PknG is a functional kinase that is secreted within macrophages at early stages of infection. The antigen is able to induce an immune response from cattle exposed to MAP in the form of interferon gamma production after stimulation of whole blood with PknG. These findings suggest that PknG may contribute to the pathogenesis of MAP by phosphorylating macrophage signalling and/or adaptor molecules as observed with other pathogenic mycobacterial species.

  2. Building and analyzing protein interactome networks by cross-species comparisons

    Directory of Open Access Journals (Sweden)

    Blackman Barron

    2010-03-01

    Full Text Available Abstract Background A genomic catalogue of protein-protein interactions is a rich source of information, particularly for exploring the relationships between proteins. Numerous systems-wide and small-scale experiments have been conducted to identify interactions; however, our knowledge of all interactions for any one species is incomplete, and alternative means to expand these network maps is needed. We therefore took a comparative biology approach to predict protein-protein interactions across five species (human, mouse, fly, worm, and yeast and developed InterologFinder for research biologists to easily navigate this data. We also developed a confidence score for interactions based on available experimental evidence and conservation across species. Results The connectivity of the resultant networks was determined to have scale-free distribution, small-world properties, and increased local modularity, indicating that the added interactions do not disrupt our current understanding of protein network structures. We show examples of how these improved interactomes can be used to analyze a genome-scale dataset (RNAi screen and to assign new function to proteins. Predicted interactions within this dataset were tested by co-immunoprecipitation, resulting in a high rate of validation, suggesting the high quality of networks produced. Conclusions Protein-protein interactions were predicted in five species, based on orthology. An InteroScore, a score accounting for homology, number of orthologues with evidence of interactions, and number of unique observations of interactions, is given to each known and predicted interaction. Our website http://www.interologfinder.org provides research biologists intuitive access to this data.

  3. Glyphosate-Induced Specific and Widespread Perturbations in the Metabolome of Soil Pseudomonas Species

    Directory of Open Access Journals (Sweden)

    Ludmilla Aristilde

    2017-06-01

    Full Text Available Previous studies have reported adverse effects of glyphosate on crop-beneficial soil bacterial species, including several soil Pseudomonas species. Of particular interest is the elucidation of the metabolic consequences of glyphosate toxicity in these species. Here we investigated the growth and metabolic responses of soil Pseudomonas species grown on succinate, a common root exudate, and glyphosate at different concentrations. We conducted our experiments with one agricultural soil isolate, P. fluorescens RA12, and three model species, P. putida KT2440, P. putida S12, and P. protegens Pf-5. Our results demonstrated both species- and strain-dependent growth responses to glyphosate. Following exposure to a range of glyphosate concentrations (up to 5 mM, the growth rate of both P. protegens Pf-5 and P. fluorescens RA12 remained unchanged whereas the two P. putida strains exhibited from 0 to 100% growth inhibition. We employed a 13C-assisted metabolomics approach using liquid chromatography-mass spectrometry to monitor disruptions in metabolic homeostasis and fluxes. Profiling of the whole-cell metabolome captured deviations in metabolite levels involved in the tricarboxylic acid cycle, ribonucleotide biosynthesis, and protein biosynthesis. Altered metabolite levels specifically in the biosynthetic pathway of aromatic amino acids (AAs, the target of toxicity for glyphosate in plants, implied the same toxicity target in the soil bacterium. Kinetic flux experiments with 13C-labeled succinate revealed that biosynthetic fluxes of the aromatic AAs were not inhibited in P. fluorescens Pf-5 in the presence of low and high glyphosate doses but these fluxes were inhibited by up to 60% in P. putida KT2440, even at sub-lethal glyphosate exposure. Notably, the greatest inhibition was found for the aromatic AA tryptophan, an important precursor to secondary metabolites. When the growth medium was supplemented with aromatic AAs, P. putida S12 exposed to a lethal

  4. Ruminal and intestinal protein degradability of various seaweed species measured in situ in dairy cows

    DEFF Research Database (Denmark)

    Tayyab, Usama; Novoa-Garrido, Margarita; Roleda, Michael Y.

    2016-01-01

    , Laminaria, Mastocarpus, Palmaria, Pelvetia, Porphyra, and Ulva were sampled in spring (March) and autumn (October and November) 2014 at the coast of Bodø in Northern Norway, and were analysed for chemical composition, in situ rumen degradability and total tract crude protein (CP) digestibility. Ash content......The use of seaweeds in animal diets is not new. However, little is known about the feed value of seaweed, both in terms of chemical composition and protein digestibility, and regarding variation between species and season. In this study, eight seaweed species of the genus Acrosiphonia, Alaria....../kg CP). Digestible rumen escape protein (DEP) varied significantly between species (P Laminaria, Mastocarpus and Palmaria can supply...

  5. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    International Nuclear Information System (INIS)

    Kim, Yoon Sik; Seo, Hyun Wook; Jung, Guhung

    2015-01-01

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H 2 O 2 and GSH modulate HBV capsid assembly. • H 2 O 2 facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H 2 O 2 and GSH induce conformation change of Hsp90

  6. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  7. Heat Shock Protein 70 Neutralizes Apoptosis-Inducing Factor

    Directory of Open Access Journals (Sweden)

    Guido Kroemer

    2001-01-01

    Full Text Available Programmed cell death (apoptosis is the physiological process responsible for the demise of superfluous, aged, damaged, mutated, and ectopic cells. Its normal function is essential both for embryonic development and for maintenance of adult tissue homeostasis. Deficient apoptosis participates in cancerogenesis, whereas excessive apoptosis leads to unwarranted cell loss accounting for disparate diseases including neurodegeneration and AIDS. One critical step in the process of apoptosis consists in the permeabilization of mitochondrial membranes, leading to the release of proteins which normally are secluded behind the outer mitochondrial membrane[1]. For example, cytochrome c, which is normally confined to the mitochondrial intermembrane space, is liberated from mitochondria and interacts with a cytosolic protein, Apaf-1, causing its oligomerization and constitution of the so-called apoptosome, a protein complex which activates a specific class of cysteine proteases, the caspases[2]. Another example concerns the so-called apoptosis-inducing factor (AIF, another mitochondrial intermembrane protein which can translocate to the nucleus where it induces chromatin condensation and DNA fragmentation[3].

  8. Top predators induce the evolutionary diversification of intermediate predator species.

    Science.gov (United States)

    Zu, Jian; Yuan, Bo; Du, Jianqiang

    2015-12-21

    We analyze the evolutionary branching phenomenon of intermediate predator species in a tritrophic food chain model by using adaptive dynamics theory. Specifically, we consider the adaptive diversification of an intermediate predator species that feeds on a prey species and is fed upon by a top predator species. We assume that the intermediate predator׳s ability to forage on the prey can adaptively improve, but this comes at the cost of decreased defense ability against the top predator. First, we identify the general properties of trade-off relationships that lead to a continuously stable strategy or to evolutionary branching in the intermediate predator species. We find that if there is an accelerating cost near the singular strategy, then that strategy is continuously stable. In contrast, if there is a mildly decelerating cost near the singular strategy, then that strategy may be an evolutionary branching point. Second, we find that after branching has occurred, depending on the specific shape and strength of the trade-off relationship, the intermediate predator species may reach an evolutionarily stable dimorphism or one of the two resultant predator lineages goes extinct. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  9. Clusterin: an IR-inducible protein determining life and death

    International Nuclear Information System (INIS)

    DAVID A. BOOTHMAN

    2006-01-01

    The roles of ionizing radiation (IR)-inducible genes/proteins are now being elucidated and the research team will focus on the functions of the clusterin (CLU) proteins after low dose IR exposures. With funding from the DOE, we discovered that x-ray-inducible transcript/protein No.8 (xip8) bound to the Ku70 DNA double strand break repair protein using various molecular biology techniques. We showed that translation of the CLU/xip8 transcript was complicated, leading to two classes of proteins separated by their intracellular processing. One set of CLU proteins (a secreted and precursor protein, sCLU and psCLU, respectively) were induced by very low doses of IR (>2.0 cGy) and subsequently secreted from the cell. The functions of sCLU, particularly in bystander effects, are not known; sCLU does not bind Ku70, but can interact with the TGF-? II receptor. Another intracellular class of CLU proteins was targeted to the cytoplasm and existed in a dormant precursor nuclear form (pnCLU). After higher IR doses (>1.0 Gy), pnCLU was activated via post-translational modification, and translocated to the nucleus, where nuclear CLU (nCLU) interacted with Ku70/Ku80, and signaled cell death. The mechanism(s) of how cells die following nCLU accumulation are unknown. Recent data from our lab indicate that CLU gene transcription is also complicated. Thus far, the data suggest that: (a) p53 is a negative regulator of CLU transcription, however, the mechanisms by which it exerts this negative pressure are not known; and (b) IR induces transcription of the CLU promoter, independent of p53, at regulatory elements that lie between -1403 and -325 bps 5'-from the TATAA box. In this renewal, the research team will investigate three separate, but interrelated hypotheses: (1) p53 negatively regulates the CLU promoter via distinct head to tail p53 half sites, and induction is mediated by the combination of retinoblatoma control elements (RCEs) and NF-?B sites; (2) sCLU is cytoprotective and

  10. Clusterin: an IR-inducible protein determining life and death

    Energy Technology Data Exchange (ETDEWEB)

    DAVID A. BOOTHMAN, Ph.D.

    2006-07-11

    The roles of ionizing radiation (IR)-inducible genes/proteins are now being elucidated and the research team will focus on the functions of the clusterin (CLU) proteins after low dose IR exposures. With funding from the DOE, we discovered that x-ray-inducible transcript/protein #8 (xip8) bound to the Ku70 DNA double strand break repair protein using various molecular biology techniques. We showed that translation of the CLU/xip8 transcript was complicated, leading to two classes of proteins separated by their intracellular processing. One set of CLU proteins (a secreted and precursor protein, sCLU and psCLU, respectively) were induced by very low doses of IR (>2.0 cGy) and subsequently secreted from the cell. The functions of sCLU, particularly in bystander effects, are not known; sCLU does not bind Ku70, but can interact with the TGF-ß II receptor. Another intracellular class of CLU proteins was targeted to the cytoplasm and existed in a dormant precursor nuclear form (pnCLU). After higher IR doses (>1.0 Gy), pnCLU was activated via post-translational modification, and translocated to the nucleus, where nuclear CLU (nCLU) interacted with Ku70/Ku80, and signaled cell death. The mechanism(s) of how cells die following nCLU accumulation are unknown. Recent data from our lab indicate that CLU gene transcription is also complicated. Thus far, the data suggest that: (a) p53 is a negative regulator of CLU transcription, however, the mechanisms by which it exerts this negative pressure are not known; and (b) IR induces transcription of the CLU promoter, independent of p53, at regulatory elements that lie between -1403 and -325 bps 5'-from the TATAA box. In this renewal, the research team will investigate three separate, but interrelated hypotheses: (1) p53 negatively regulates the CLU promoter via distinct head to tail p53 half sites, and induction is mediated by the combination of retinoblatoma control elements (RCEs) and NF-∫B sites; (2) sCLU is cytoprotective

  11. Membrane alterations induced by nonstructural proteins of human norovirus.

    Directory of Open Access Journals (Sweden)

    Sylvie Y Doerflinger

    2017-10-01

    Full Text Available Human noroviruses (huNoV are the most frequent cause of non-bacterial acute gastroenteritis worldwide, particularly genogroup II genotype 4 (GII.4 variants. The viral nonstructural (NS proteins encoded by the ORF1 polyprotein induce vesical clusters harboring the viral replication sites. Little is known so far about the ultrastructure of these replication organelles or the contribution of individual NS proteins to their biogenesis. We compared the ultrastructural changes induced by expression of norovirus ORF1 polyproteins with those induced upon infection with murine norovirus (MNV. Characteristic membrane alterations induced by ORF1 expression resembled those found in MNV infected cells, consisting of vesicle accumulations likely built from the endoplasmic reticulum (ER which included single membrane vesicles (SMVs, double membrane vesicles (DMVs and multi membrane vesicles (MMVs. In-depth analysis using electron tomography suggested that MMVs originate through the enwrapping of SMVs with tubular structures similar to mechanisms reported for picornaviruses. Expression of GII.4 NS1-2, NS3 and NS4 fused to GFP revealed distinct membrane alterations when analyzed by correlative light and electron microscopy. Expression of NS1-2 induced proliferation of smooth ER membranes forming long tubular structures that were affected by mutations in the active center of the putative NS1-2 hydrolase domain. NS3 was associated with ER membranes around lipid droplets (LDs and induced the formation of convoluted membranes, which were even more pronounced in case of NS4. Interestingly, NS4 was the only GII.4 protein capable of inducing SMV and DMV formation when expressed individually. Our work provides the first ultrastructural analysis of norovirus GII.4 induced vesicle clusters and suggests that their morphology and biogenesis is most similar to picornaviruses. We further identified NS4 as a key factor in the formation of membrane alterations of huNoV and

  12. Leaf Protein Electrophoresis and Taxonomy of Species of Jatropha L. (Euphorbiaceae

    Directory of Open Access Journals (Sweden)

    Olaniran Temitope OLADIPO

    2012-08-01

    Full Text Available The systematic relationship existing among members of the all important genus Jatropha was studied using leaf protein electrophoresis. The aim was to identify possible taxonomic importance of the protein profile in the estimation and elucidation of the taxonomic affinity of the six species of Jatropha (Jatropha curcas Linn., J. podagrica Hook., J. gossypifolia Linn., J. mutifida Linn., J. tanjorensis Ellis & Saroja and J. integerrima Linn. found in Nigeria. The species were screened for total protein banding patterns using gel electrophoresis. Young leaves (0.8 g of the plants were washed with distilled water and macerated with sterile mortar and pestle in 0.8% Phosphate Buffer-Saline (PBS containing 0.4 M NaCl at pH 8.0. Results reveal that protein banding pattern was taxon specific. Generic band occurs at 8.3. The highest number of interspecific bands (4 exists between J. podagrica and J. multifida. Variations exist not only in the number of bands but also in the intensity of the bands. Sokal and Sneath coefficient of similarity ranges between 11.1-44.4 %. Single linkage Cluster Analysis (SLCA of the relative mobility values of the protein in the taxa shows partial agreement with current sub generic and sectional delimitation of the species based on morphology and anatomy of the species.

  13. Emerging roles of hypoxia-inducible factors and reactive oxygen species in cancer and pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Shigeo Saito

    2015-06-01

    Full Text Available Eukaryotic organisms require oxygen homeostasis to maintain proper cellular function for survival. During conditions of low oxygen tension (hypoxia, cells activate the transcription of genes that induce an adaptive response, which supplies oxygen to tissues. Hypoxia and hypoxia-inducible factors (HIFs may contribute to the maintenance of putative cancer stem cells, which can continue self-renewal indefinitely and express stemness genes in hypoxic stress environments (stem cell niches. Reactive oxygen species (ROS have long been recognized as toxic by-products of aerobic metabolism that are harmful to living cells, leading to DNA damage, senescence, or cell death. HIFs may promote a cancer stem cell state, whereas the loss of HIFs induces the production of cellular ROS and activation of proteins p53 and p16Ink4a, which lead to tumor cell death and senescence. ROS seem to inhibit HIF regulation in cancer cells. By contrast, controversial data have suggested that hypoxia increases the generation of ROS, which prevents hydroxylation of HIF proteins by inducing their transcription as negative feedback. Moreover, hypoxic conditions enhance the generation of induced pluripotent stem cells (iPSCs. During reprogramming of somatic cells into a PSC state, cells attain a metabolic state typically observed in embryonic stem cells (ESCs. ESCs and iPSCs share similar bioenergetic metabolisms, including decreased mitochondrial number and activity, and induced anaerobic glycolysis. This review discusses the current knowledge regarding the emerging roles of ROS homeostasis in cellular reprogramming and the implications of hypoxic regulation in cancer development.

  14. A human protein interaction network shows conservation of aging processes between human and invertebrate species.

    Directory of Open Access Journals (Sweden)

    Russell Bell

    2009-03-01

    Full Text Available We have mapped a protein interaction network of human homologs of proteins that modify longevity in invertebrate species. This network is derived from a proteome-scale human protein interaction Core Network generated through unbiased high-throughput yeast two-hybrid searches. The longevity network is composed of 175 human homologs of proteins known to confer increased longevity through loss of function in yeast, nematode, or fly, and 2,163 additional human proteins that interact with these homologs. Overall, the network consists of 3,271 binary interactions among 2,338 unique proteins. A comparison of the average node degree of the human longevity homologs with random sets of proteins in the Core Network indicates that human homologs of longevity proteins are highly connected hubs with a mean node degree of 18.8 partners. Shortest path length analysis shows that proteins in this network are significantly more connected than would be expected by chance. To examine the relationship of this network to human aging phenotypes, we compared the genes encoding longevity network proteins to genes known to be changed transcriptionally during aging in human muscle. In the case of both the longevity protein homologs and their interactors, we observed enrichments for differentially expressed genes in the network. To determine whether homologs of human longevity interacting proteins can modulate life span in invertebrates, homologs of 18 human FRAP1 interacting proteins showing significant changes in human aging muscle were tested for effects on nematode life span using RNAi. Of 18 genes tested, 33% extended life span when knocked-down in Caenorhabditis elegans. These observations indicate that a broad class of longevity genes identified in invertebrate models of aging have relevance to human aging. They also indicate that the longevity protein interaction network presented here is enriched for novel conserved longevity proteins.

  15. Degradation of protein translation machinery by amino acid starvation-induced macroautophagy

    DEFF Research Database (Denmark)

    Gretzmeier, Christine; Eiselein, Sven; Johnson, Gregory R.

    2017-01-01

    , unbiased approaches relying on quantitative mass spectrometry-based proteomics. Macroautophagy is induced by rapamycin treatment, and by amino acid and glucose starvation in differentially, metabolically labeled cells. Protein dynamics are linked to image-based models of autophagosome turnover. Depending...... on the inducing stimulus, protein as well as organelle turnover differ. Amino acid starvation-induced macroautophagy leads to selective degradation of proteins important for protein translation. Thus, protein dynamics reflect cellular conditions in the respective treatment indicating stimulus-specific pathways...

  16. Food protein induced enterocolitis syndrome caused by rice beverage.

    Science.gov (United States)

    Caminiti, Lucia; Salzano, Giuseppina; Crisafulli, Giuseppe; Porcaro, Federica; Pajno, Giovanni Battista

    2013-05-14

    Food protein-induced enterocolitis syndrome (FPIES) is an uncommon and potentially severe non IgE-mediated gastrointestinal food allergy. It is usually caused by cow's milk or soy proteins, but may also be triggered by ingestion of solid foods. The diagnosis is made on the basis of clinical history and symptoms. Management of acute phase requires fluid resuscitation and intravenous steroids administration, but avoidance of offending foods is the only effective therapeutic option.Infant with FPIES presented to our emergency department with vomiting, watery stools, hypothension and metabolic acidosis after ingestion of rice beverage. Intravenous fluids and steroids were administered with good clinical response. Subsequently, a double blind placebo control food challenge (DBPCFC) was performed using rice beverage and hydrolyzed formula (eHF) as placebo. The "rice based formula" induced emesis, diarrhoea and lethargy. Laboratory investigations reveal an increase of absolute count of neutrophils and the presence of faecal eosinophils. The patient was treated with both intravenous hydration and steroids. According to Powell criteria, oral food challenge was considered positive and diagnosis of FPIES induced by rice beverage was made. Patient was discharged at home with the indication to avoid rice and any rice beverage as well as to reintroduce hydrolyzed formula. A case of FPIES induced by rice beverage has never been reported. The present case clearly shows that also beverage containing rice proteins can be responsible of FPIES. For this reason, the use of rice beverage as cow's milk substitute for the treatment of non IgE-mediated food allergy should be avoided.

  17. Celastrol targets mitochondrial respiratory chain complex I to induce reactive oxygen species-dependent cytotoxicity in tumor cells

    Directory of Open Access Journals (Sweden)

    Xu Yuanji

    2011-05-01

    Full Text Available Abstract Background Celastrol is an active ingredient of the traditional Chinese medicinal plant Tripterygium Wilfordii, which exhibits significant antitumor activity in different cancer models in vitro and in vivo; however, the lack of information on the target and mechanism of action of this compound have impeded its clinical application. In this study, we sought to determine the mode of action of celastrol by focusing on the processes that mediate its anticancer activity. Methods The downregulation of heat shock protein 90 (HSP90 client proteins, phosphorylation of c-Jun NH2-terminal kinase (JNK, and cleavage of PARP, caspase 9 and caspase 3 were detected by western blotting. The accumulation of reactive oxygen species (ROS was analyzed by flow cytometry and fluorescence microscopy. Cell cycle progression, mitochondrial membrane potential (MMP and apoptosis were determined by flow cytometry. Absorption spectroscopy was used to determine the activity of mitochondrial respiratory chain (MRC complexes. Results Celastrol induced ROS accumulation, G2-M phase blockage, apoptosis and necrosis in H1299 and HepG2 cells in a dose-dependent manner. N-acetylcysteine (NAC, an antioxidative agent, inhibited celastrol-induced ROS accumulation and cytotoxicity. JNK phosphorylation induced by celastrol was suppressed by NAC and JNK inhibitor SP600125 (SP. Moreover, SP significantly inhibited celastrol-induced loss of MMP, cleavage of PARP, caspase 9 and caspase 3, mitochondrial translocation of Bad, cytoplasmic release of cytochrome c, and cell death. However, SP did not inhibit celastrol-induced ROS accumulation. Celastrol downregulated HSP90 client proteins but did not disrupt the interaction between HSP90 and cdc37. NAC completely inhibited celastrol-induced decrease of HSP90 client proteins, catalase and thioredoxin. The activity of MRC complex I was completely inhibited in H1299 cells treated with 6 μM celastrol in the absence and presence of NAC

  18. Different protein of Echinococcus granulosus stimulates dendritic induced immune response.

    Science.gov (United States)

    Wang, Yana; Wang, Qiang; Lv, Shiyu; Zhang, Shengxiang

    2015-06-01

    Cystic echinococcosis is a chronic infectious disease that results from a host/parasite interaction. Vaccination with ferritin derived from Echinococcus granulosus is a potential preventative treatment. To understand whether ferritin is capable of inducing a host immune response, we investigated the response of dendritic cells (DCs) to both recombinant ferritin protein and the hydatid fluid (HF) of E. granulosus. We evaluated the immunomodulatory potential of these antigens by performing, immunocytochemistry, electron microscopy and in vivo imaging of monocyte-derived murine DCs. During antigen stimulation of DCs, ferritin cause DCs maturation and induced higher levels of surface marker expression and activated T-cell proliferation and migration. On contrary, HF failed to induce surface marker expression and to stimulate T-cell proliferation. In response to HF, DCs produced interleukin-6 (IL-6), but no IL-12 and IL-10. DCs stimulated with ferritin produced high levels of cytokines. Overall, HF appears to induce host immunosuppression in order to ensure parasite survival via inhibits DC maturation and promotes Th2-dependent secretion of cytokines. Although ferritin also promoted DC maturation and cytokine release, it also activates CD4+T-cell proliferation, but regard of the mechanism of the Eg.ferritin induce host to eradicate E. granulosus were not clear.

  19. Contact Lens-Induced Discomfort and Protein Changes in Tears.

    Science.gov (United States)

    Masoudi, Simin; Stapleton, Fiona Jane; Willcox, Mark Duncan Perry

    2016-08-01

    Ocular discomfort is among the main causes of contact lens wear discontinuation. This study investigated the association between subjective ocular comfort ratings and diurnal changes in tear protein concentrations with and without contact lens wear. The study was a prospective, open-label, single-group two-staged investigation. Basal tears were collected from 30 experienced contact lens wearers twice a day (morning and evening) using a noninvasive method without lens wear (stage 1) and during wear of Etafilcon A contact lenses (stage 2) for 7 to 10 days. Subjects rated their ocular comfort on a scale of 1 to 100 (with 100 as extremely comfortable) at each time of tear collection. Tears were analyzed using liquid quadrupole mass spectrometry in conjunction with selected reaction monitoring (SRM) method. End-of-day comfort was reduced when wearing lenses (87.8 ± 14.3 AM vs. 79.2 ± 16.6 PM) compared to no lens wear (88.3 ± 12.6 AM vs. 84.7 ± 13.3 PM) (AM vs. PM, p tears (p < 0.05, r = -0.29). Only the absolute concentration of prolactin-induced protein correlated with subjective comfort ratings. Taking into consideration that prolactin-induced protein can be associated with disruption in water transport in lacrimal glands, our findings may indicate that changes to aqueous secretion are associated with contact lens discomfort.

  20. Understanding curcumin-induced modulation of protein aggregation.

    Science.gov (United States)

    Ahmad, Basir; Borana, Mohanish S; Chaudhary, Ankur P

    2017-07-01

    Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Cigarette smoke induces an unfolded protein response in the human lung: a proteomic approach.

    Science.gov (United States)

    Kelsen, Steven G; Duan, Xunbao; Ji, Rong; Perez, Oscar; Liu, Chunli; Merali, Salim

    2008-05-01

    Cigarette smoking, which exposes the lung to high concentrations of reactive oxidant species (ROS) is the major risk factor for chronic obstructive pulmonary disease (COPD). Recent studies indicate that ROS interfere with protein folding in the endoplasmic reticulum and elicit a compensatory response termed the "unfolded protein response" (UPR). The importance of the UPR lies in its ability to alter expression of a variety of genes involved in antioxidant defense, inflammation, energy metabolism, protein synthesis, apoptosis, and cell cycle regulation. The present study used comparative proteomic technology to test the hypothesis that chronic cigarette smoking induces a UPR in the human lung. Studies were performed on lung tissue samples obtained from three groups of human subjects: nonsmokers, chronic cigarette smokers, and ex-smokers. Proteomes of lung samples from chronic cigarette smokers demonstrated 26 differentially expressed proteins (20 were up-regulated, 5 were down-regulated, and 1 was detected only in the smoking group) compared with nonsmokers. Several UPR proteins were up-regulated in smokers compared with nonsmokers and ex-smokers, including the chaperones, glucose-regulated protein 78 (GRP78) and calreticulin; a foldase, protein disulfide isomerase (PDI); and enzymes involved in antioxidant defense. In cultured human airway epithelial cells, GRP78 and the UPR-regulated basic leucine zipper, transcription factors, ATF4 and Nrf2, which enhance expression of important anti-oxidant genes, increased rapidly (< 24 h) with cigarette smoke extract. These data indicate that cigarette smoke induces a UPR response in the human lung that is rapid in onset, concentration dependent, and at least partially reversible with smoking cessation. We speculate that activation of a UPR by cigarette smoke may protect the lung from oxidant injury and the development of COPD.

  2. Delayed brain ischemia tolerance induced by electroacupuncture pretreatment is mediated via MCP-induced protein 1

    Science.gov (United States)

    2013-01-01

    Background Emerging studies have demonstrated that pretreatment with electroacupuncture (EA) induces significant tolerance to focal cerebral ischemia. The present study seeks to determine the involvement of monocyte chemotactic protein-induced protein 1 (MCPIP1), a recently identified novel modulator of inflammatory reactions, in the cerebral neuroprotection conferred by EA pretreatment in the animal model of focal cerebral ischemia and to elucidate the mechanisms of EA pretreatment-induced ischemic brain tolerance. Methods Twenty-four hours after the end of the last EA pretreatment, focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) for 90 minutes in male C57BL/6 mice and MCPIP1 knockout mice. Transcription and expression of MCPIP1 gene was monitored by qRT-PCR, Western blot and immunohistochemistry. The neurobehavioral scores, infarction volumes, proinflammatory cytokines and leukocyte infiltration in brain and NF-κB signaling were evaluated after ischemia/reperfusion. Results MCPIP1 protein and mRNA levels significantly increased specifically in mouse brain undergoing EA pretreatment. EA pretreatment significantly attenuated the infarct volume, neurological deficits, upregulation of proinflammatory cytokines and leukocyte infiltration in the brain of wild-type mice after MCAO compared with that of the non-EA group. MCPIP1-deficient mice failed to evoke EA pretreatment-induced tolerance compared with that of the control MCPIP1 knockout group without EA treatment. Furthermore, the activation of NF-κB signaling was significantly reduced in EA-pretreated wild-type mice after MCAO compared to that of the non-EA control group and MCPIP1-deficient mice failed to confer the EA pretreatment-induced inhibition of NF-κB signaling after MCAO. Conclusions Our data demonstrated that MCPIP1 deficiency caused significant lack of EA pretreatment-induced cerebral protective effects after MCAO compared with the control group and that MCPIP1 is

  3. Solar light-induced production of reactive oxygen species by single walled carbon nanotubes in water

    Science.gov (United States)

    Photosensitizing processes of engineered nanomaterials (ENMs) which include photo-induced production of reactive oxygen species (ROS) convert light energy into oxidizing chemical energy that mediates transformations of nanomaterials. The oxidative stress associated with ROS may p...

  4. Proteomic analysis of rutin-induced secreted proteins from Aspergillus flavus.

    Science.gov (United States)

    Medina, Martha L; Kiernan, Urban A; Francisco, Wilson A

    2004-03-01

    Few studies have been conducted to identify the extracellular proteins and enzymes secreted by filamentous fungi, particularly with respect to dispensable metabolic pathways. Proteomic analysis has proven to be the most powerful method for identification of proteins in complex mixtures and is suitable for the study of the alteration of protein expression under different environmental conditions. The filamentous fungus Aspergillus flavus can degrade the flavonoid rutin as the only source of carbon via an extracellular enzyme system. In this study, a proteomic analysis was used to differentiate and identify the extracellular rutin-induced and non-induced proteins secreted by A. flavus. The secreted proteins were analyzed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. While 15 rutin-induced proteins and 7 non-induced proteins were identified, more than 90 protein spots remain unidentified, indicating that these proteins are either novel proteins or proteins that have not yet been sequenced.

  5. Ligand-induced dynamics of heterotrimeric G protein-coupled receptor-like kinase complexes.

    Directory of Open Access Journals (Sweden)

    Meral Tunc-Ozdemir

    Full Text Available Arabidopsis, 7-transmembrane Regulator of G signaling protein 1 (AtRGS1 modulates canonical G protein signaling by promoting the inactive state of heterotrimeric G protein complex on the plasma membrane. It is known that plant leucine-rich repeat receptor-like kinases (LRR RLKs phosphorylate AtRGS1 in vitro but little is known about the in vivo interaction, molecular dynamics, or the cellular consequences of this interaction.Therefore, a subset of the known RLKs that phosphorylate AtRGS1 were selected for elucidation, namely, BAK1, BIR1, FLS2. Several microscopies for both static and dynamic protein-protein interactions were used to follow in vivo interactions between the RLKs and AtRGS1 after the presentation of the Pathogen-associated Molecular Pattern, Flagellin 22 (Flg22. These microscopies included Förster Resonance Energy Transfer, Bimolecular Fluoresence Complementation, and Cross Number and Brightness Fluorescence Correlation Spectroscopy. In addition, reactive oxygen species and calcium changes in living cells were quantitated using luminometry and R-GECO1 microscopy.The LRR RLKs BAK1 and BIR1, interact with AtRGS1 at the plasma membrane. The RLK ligand flg22 sets BAK1 in motion toward AtRGS1 and BIR1 away, both returning to the baseline orientations by 10 minutes. The C-terminal tail of AtRGS1 is important for the interaction with BAK1 and for the tempo of the AtRGS1/BIR1 dynamics. This window of time corresponds to the flg22-induced transient production of reactive oxygen species and calcium release which are both attenuated in the rgs1 and the bak1 null mutants.A temporal model of these interactions is proposed. flg22 binding induces nearly instantaneous dimerization between FLS2 and BAK1. Phosphorylated BAK1 interacts with and enables AtRGS1 to move away from BIR1 and AtRGS1 becomes phosphorylated leading to its endocytosis thus leading to de-repression by permitting AtGPA1 to exchange GDP for GTP. Finally, the G protein complex

  6. A species-specific nucleosomal signature defines a periodic distribution of amino acids in proteins.

    Science.gov (United States)

    Quintales, Luis; Soriano, Ignacio; Vázquez, Enrique; Segurado, Mónica; Antequera, Francisco

    2015-04-01

    Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition.

  7. Ruminal and intestinal protein degradability of various seaweed species measured in situ in dairy cows

    DEFF Research Database (Denmark)

    Tayyab, Usama; Novoa-Garrido, Margarita; Roleda, Michael Y.

    2016-01-01

    The use of seaweeds in animal diets is not new. However, little is known about the feed value of seaweed, both in terms of chemical composition and protein digestibility, and regarding variation between species and season. In this study, eight seaweed species of the genus Acrosiphonia, Alaria......, Laminaria, Mastocarpus, Palmaria, Pelvetia, Porphyra, and Ulva were sampled in spring (March) and autumn (October and November) 2014 at the coast of Bodø in Northern Norway, and were analysed for chemical composition, in situ rumen degradability and total tract crude protein (CP) digestibility. Ash content...... for Pelvetia (90 g/kg DM). Spring samples were higher in CP than autumn samples. The effective degradability estimated at 5% rumen passage rate (ED5) of CP varied between species (P Ulva (240 g...

  8. Recombinant human bone morphogenetic protein induces bone formation

    International Nuclear Information System (INIS)

    Wang, E.A.; Rosen, V.; D'Alessandro, J.S.; Bauduy, M.; Cordes, P.; Harada, T.; Israel, D.I.; Hewick, R.M.; Kerns, K.M.; LaPan, P.; Luxenberg, D.P.; McQuaid, D.; Moutsatsos, I.K.; Nove, J.; Wozney, J.M.

    1990-01-01

    The authors have purified and characterized active recombinant human bone morphogenetic protein (BMP) 2A. Implantation of the recombinant protein in rats showed that a single BMP can induce bone formation in vivo. A dose-response and time-course study using the rat ectopic bone formation assay revealed that implantation of 0.5-115 μg of partially purified recombinant human BMP-2A resulted in cartilage by day 7 and bone formation by day 14. The time at which bone formation occurred was dependent on the amount of BMP-2A implanted; at high doses bone formation could be observed at 5 days. The cartilage- and bone-inductive activity of the recombinant BMP-2A is histologically indistinguishable from that of bone extracts. Thus, recombinant BMP-2A has therapeutic potential to promote de novo bone formation in humans

  9. Improving protein quality of soybean through induced mutations

    International Nuclear Information System (INIS)

    Manjaya, J.G.

    2011-01-01

    Soybean is one of the most economical and nutritious food packed with basic nutrients that combat diseases stemming from mal- and under-nutrition. Despite its rich nutritional profile, use of soybean in food has been limited because soybean proteins are often associated with compounds, which could exert a negative impact on the nutritional quality of the protein. Trypsin inhibitor (TI) is one of the important anti-nutritional factors that exert negative effect by causing growth inhibition. Soybean cultivar VLS-2 was irradiated with 250 Gy gamma rays in a gamma cell (200) with 60 Co source installed at BARC to induce mutations for low trypsin inhibitor content. Three mutants with lower levels of TI content were identified and can be utilized for developing elite varieties of soybean. (author)

  10. Enhancement of Protein and Pigment Content in Two Chlorella Species Cultivated on Industrial Process Water

    DEFF Research Database (Denmark)

    Safafar, Hamed; Uldall Nørregaard, Patrick; Ljubic, Anita

    2016-01-01

    Chlorella pyrenoidosa and Chlorella vulgaris were cultivated in pre-gasified industrial process water with high concentration of ammonia representing effluent from a local biogas plant. The study aimed to investigate the effects of growth media and cultivation duration on the nutritional...... pyrenoidosa produced the highest concentrations of protein (65.2% ± 1.30% DW) while Chlorella vulgaris accumulated extremely high concentrations of lutein and chlorophylls (7.14 ± 0.66 mg/g DW and 32.4 ± 1.77 mg/g DW, respectively). Cultivation of Chlorella species in industrial process water...... composition of biomass. Variations in proteins, lipid, fatty acid composition, amino acids, tocopherols, and pigments were studied. Both species grew well in industrial process water. The contents of proteins were affected significantly by the growth media and cultivation duration. Microalga Chlorella...

  11. In silico characterization of boron transporter (BOR1 protein sequences in Poaceae species

    Directory of Open Access Journals (Sweden)

    Ertuğrul Filiz

    2013-01-01

    Full Text Available Boron (B is essential for the plant growth and development, and its primary function is connected with formation of the cell wall. Moreover, boron toxicity is a shared problem in semiarid and arid regions. In this study, boron transporter protein (BOR1 sequences from some Poaceae species (Hordeum vulgare subsp. vulgare, Zea mays, Brachypodium distachyon, Oryza sativa subsp. japonica, Oryza sativa subsp. indica, Sorghum bicolor, Triticum aestivum were evaluated by bioinformatics tools. Physicochemical analyses revealed that most of BOR1 proteins were basic character and had generally aliphatic amino acids. Analysis of the domains showed that transmembrane domains were identified constantly and three motifs were detected with 50 amino acids length. Also, the motif SPNPWEPGSYDHWTVAKDMFNVPPAYIFGAFIPATMVAGLYYFDHSVASQ was found most frequently with 25 repeats. The phylogenetic tree showed divergence into two main clusters. B. distachyon species were clustered separately. Finally, this study contributes to the new BOR1 protein characterization in grasses and create scientific base for in silico analysis in future.

  12. Nonstructural Protein L* Species Specificity Supports a Mouse Origin for Vilyuisk Human Encephalitis Virus.

    Science.gov (United States)

    Drappier, Melissa; Opperdoes, Fred R; Michiels, Thomas

    2017-07-15

    Vilyuisk human encephalitis virus (VHEV) is a picornavirus related to Theiler's murine encephalomyelitis virus (TMEV). VHEV was isolated from human material passaged in mice. Whether this VHEV is of human or mouse origin is therefore unclear. We took advantage of the species-specific activity of the nonstructural L* protein of theiloviruses to track the origin of TMEV isolates. TMEV L* inhibits RNase L, the effector enzyme of the interferon pathway. By using coimmunoprecipitation and functional RNase L assays, the species specificity of RNase L antagonism was tested for L* from mouse (DA) and rat (RTV-1) TMEV strains as well as for VHEV. Coimmunoprecipitation and functional assay data confirmed the species specificity of L* activity and showed that L* from rat strain RTV-1 inhibited rat but not mouse or human RNase L. Next, we showed that the VHEV L* protein was phylogenetically related to L* of mouse viruses and that it failed to inhibit human RNase L but readily antagonized mouse RNase L, unambiguously showing the mouse origin of VHEV. IMPORTANCE Defining the natural host of a virus can be a thorny issue, especially when the virus was isolated only once or when the isolation story is complex. The species Theilovirus includes Theiler's murine encephalomyelitis virus (TMEV), infecting mice and rats, and Saffold virus (SAFV), infecting humans. One TMEV strain, Vilyuisk human encephalitis virus (VHEV), however, was isolated from mice that were inoculated with cerebrospinal fluid of a patient presenting with chronic encephalitis. It is therefore unclear whether VHEV was derived from the human sample or from the inoculated mouse. The L* protein encoded by TMEV inhibits RNase L, a cellular enzyme involved in innate immunity, in a species-specific manner. Using binding and functional assays, we show that this species specificity even allows discrimination between TMEV strains of mouse and of rat origins. The VHEV L* protein clearly inhibited mouse but not human RNase L

  13. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD

    DEFF Research Database (Denmark)

    Brandauer, Josef; Andersen, Marianne A; Kellezi, Holti

    2015-01-01

    , the acetylation status of SIRT3 target lysine residues on MnSOD (K122) or oligomycin-sensitivity conferring protein (OSCP; K139) was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling......The mitochondrial protein deacetylase sirtuin (SIRT) 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS) handling. We determined the requirement of AMP-activated protein kinase (AMPK) for exercise training-induced increases...... in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p

  14. Mycoplasma hyopneumoniae and Mycoplasma flocculare differential domains from orthologous surface proteins induce distinct cellular immune responses in mice.

    Science.gov (United States)

    Leal, Fernanda Munhoz Dos Anjos; Virginio, Veridiana Gomes; Martello, Carolina Lumertz; Paes, Jéssica Andrade; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Ferreira, Henrique Bunselmeyer

    2016-07-15

    Mycoplasma hyopneumoniae and Mycoplasma flocculare are two genetically close species found in the swine respiratory tract. Despite their similarities, while M. hyopneumoniae is the causative agent of porcine enzootic pneumonia, M. flocculare is a commensal bacterium. Genomic and transcriptional comparative analyses so far failed to explain the difference in pathogenicity between these two species. We then hypothesized that such difference might be, at least in part, explained by amino acid sequence and immunological or functional differences between ortholog surface proteins. In line with that, it was verified that approximately 85% of the ortholog surface proteins from M. hyopneumoniae 7448 and M. flocculare present one or more differential domains. To experimentally assess possible immunological implications of this kind of difference, the extracellular differential domains from one pair of orthologous surface proteins (MHP7448_0612, from M. hyopneumoniae, and MF_00357, from M. flocculare) were expressed in E. coli and used to immunize mice. The recombinant polypeptides (rMHP61267-169 and rMF35767-196, respectively) induced distinct cellular immune responses. While, rMHP61267-169 induced both Th1 and Th2 responses, rMF35767-196 induced just an early pro-inflammatory response. These results indicate that immunological properties determined by differential domains in orthologous surface protein might play a role in pathogenicity, contributing to elicit specific and differential immune responses against each species. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Antifungal Effect of Arabidopsis SGT1 Proteins via Mitochondrial Reactive Oxygen Species.

    Science.gov (United States)

    Park, Seong-Cheol; Cheong, Mi Sun; Kim, Eun-Ji; Kim, Jin Hyo; Chi, Yong Hun; Jang, Mi-Kyeong

    2017-09-27

    The highly conserved SGT1 (suppressor of the G2 alleles of skp1) proteins from Arabidopsis are known to contribute to plant resistance to pathogens. While SGT1 proteins respond to fungal pathogens, their antifungal activity is not reported and the mechanism for this inhibition is not well understood. Therefore, recombinant Arabidopsis SGT1 proteins were cloned, expressed, and purified to evaluate their antifungal activity, resulting in their potent inhibition of pathogen growth. Dye-labeled proteins are localized to the cytosol of Candida albicans cells without the disruption of the cell membrane. Moreover, we showed that entry of the proteins into C. albicans cells resulted in the accumulation of reactive oxygen species (ROS) and cell death via altered mitochondrial potential. Morphological changes of C. albicans cells in the presence of proteins were visualized by scanning electron microscopy. Our data suggest that AtSGT1 proteins play a critical role in plant resistance to pathogenic fungal infection and they can be classified to a new plant antifungal protein.

  16. Expression of measles virus nucleoprotein induces apoptosis and modulates diverse functional proteins in cultured mammalian cells.

    Directory of Open Access Journals (Sweden)

    Ashima Bhaskar

    Full Text Available BACKGROUND: Measles virus nucleoprotein (N encapsidates the viral RNA, protects it from endonucleases and forms a virus specific template for transcription and replication. It is the most abundant protein during viral infection. Its C-terminal domain is intrinsically disordered imparting it the flexibility to interact with several cellular and viral partners. PRINCIPAL FINDINGS: In this study, we demonstrate that expression of N within mammalian cells resulted in morphological transitions, nuclear condensation, DNA fragmentation and activation of Caspase 3 eventuating into apoptosis. The rapid generation of intracellular reactive oxygen species (ROS was involved in the mechanism of cell death. Addition of ascorbic acid (AA or inhibitor of caspase-3 in the extracellular medium partially reversed N induced apoptosis. We also studied the protein profile of cells expressing N protein. MS analysis revealed the differential expression of 25 proteins out of which 11 proteins were up regulated while 14 show signs of down regulation upon N expression. 2DE results were validated by real time and semi quantitative RT-PCR analysis. CONCLUSION: These results show the pro-apoptotic effects of N indicating its possible development as an apoptogenic tool. Our 2DE results present prima facie evidence that the MV nucleoprotein interacts with or causes differential expression of a wide range of cellular factors. At this stage it is not clear as to what the adaptive response of the host cell is and what reflects a strategic modulation exerted by the virus.

  17. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity

    International Nuclear Information System (INIS)

    Liu Yingshuai; Li Xuelian; Bao Shujuan; Lu Zhisong; Li Changming; Li Qing

    2013-01-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) (about 15 nm) were synthesized via a hydrothermal method and characterized by field emission scanning electron microscopy, transmission electron microscopy, dynamic light scattering, x-ray diffraction, and vibrating sample magnetometer. The molecular pathways of SPIONs-induced nanotoxicity was further investigated by protein microarrays on a plastic substrate from evaluation of cell viability, reactive oxygen species (ROS) generation and cell apoptosis. The experimental results reveal that 50 μg ml −1 or higher levels of SPIONs cause significant loss of cell viability, considerable generation of ROS and cell apoptosis. It is proposed that high level SPIONs could induce cell apoptosis via a mitochondria-mediated intrinsic pathway by activation of caspase 9 and caspase 3, an increase of the Bax/Bcl-2 ratio, and down-regulation of HSP70 and HSP90 survivor factors. (paper)

  18. Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity

    Science.gov (United States)

    Liu, Yingshuai; Li, Xuelian; Bao, Shujuan; Lu, Zhisong; Li, Qing; Li, Chang Ming

    2013-05-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) (about 15 nm) were synthesized via a hydrothermal method and characterized by field emission scanning electron microscopy, transmission electron microscopy, dynamic light scattering, x-ray diffraction, and vibrating sample magnetometer. The molecular pathways of SPIONs-induced nanotoxicity was further investigated by protein microarrays on a plastic substrate from evaluation of cell viability, reactive oxygen species (ROS) generation and cell apoptosis. The experimental results reveal that 50 μg ml-1 or higher levels of SPIONs cause significant loss of cell viability, considerable generation of ROS and cell apoptosis. It is proposed that high level SPIONs could induce cell apoptosis via a mitochondria-mediated intrinsic pathway by activation of caspase 9 and caspase 3, an increase of the Bax/Bcl-2 ratio, and down-regulation of HSP70 and HSP90 survivor factors.

  19. Radiation induces aerobic glycolysis through reactive oxygen species

    International Nuclear Information System (INIS)

    Zhong, Jim; Rajaram, Narasimhan; Brizel, David M.; Frees, Amy E.; Ramanujam, Nirmala; Batinic-Haberle, Ines; Dewhirst, Mark W.

    2013-01-01

    Background and purpose: Although radiation induced reoxygenation has been thought to increase radiosensitivity, we have shown that its associated oxidative stress can have radioprotective effects, including stabilization of the transcription factor hypoxia inducible factor 1 (HIF-1). HIF-1 is known to regulate many of the glycolytic enzymes, thereby promoting aerobic glycolysis, which is known to promote treatment resistance. Thus, we hypothesized that reoxygenation after radiation would increase glycolysis. We previously showed that blockade of oxidative stress using a superoxide dismutase (SOD) mimic during reoxygenation can downregulate HIF-1 activity. Here we tested whether concurrent use of this drug with radiotherapy would reduce the switch to a glycolytic phenotype. Materials and methods: 40 mice with skin fold window chambers implanted with 4T1 mammary carcinomas were randomized into (1) no treatment, (2) radiation alone, (3) SOD mimic alone, and (4) SOD mimic with concurrent radiation. All mice were imaged on the ninth day following tumor implantation (30 h following radiation treatment) following injection of a fluorescent glucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG). Hemoglobin saturation was measured by using hyperspectral imaging to quantify oxygenation state. Results: Mice treated with radiation showed significantly higher 2-NBDG fluorescence compared to controls (p = 0.007). Hemoglobin saturation analysis demonstrated reoxygenation following radiation, coinciding with the observed increase in glycolysis. The concurrent use of the SOD mimic with radiation demonstrated a significant reduction in 2-NBDG fluorescence compared to effects seen after radiation alone, while having no effect on reoxygenation. Conclusions: Radiation induces an increase in tumor glucose demand approximately 30 h following therapy during reoxygenation. The use of an SOD mimic can prevent the increase in aerobic glycolysis when used

  20. Comparison of basal and induced cytochromes P450 in 6 species of waterfowl

    Science.gov (United States)

    Melancon, M.J.; Rattner, B.A.; Hoffman, D.J.; Beeman, D.; Day, D.; Custer, T.

    1999-01-01

    Cytochrome P450-associated monooxygenase activities were measured in control and prototype inducer-treated mallard duck, black duck, wood duck, lesser scaup, Canada goose and mute swan. Ages of the birds ranged from pipping embryos (that were treated approximately 3 days before pipping) to adults. Three or more of the following hepatic microsomal monooxygenases were assayed in each species: Benzyloxyresorufin-O-dealkylase (BROD), Ethoxyresorufin-O-dealkylase (EROD), methoxyresorufin-O-dealkylase (MROD), and pentoxyresorufin-O-dealkylase (PROD). Baseline activities differed between species, but because of differences in ages, sources of the eggs or birds, and diets, these cannot be viewed as absolute differences. The cytochrome P450 inducers utilized were beta-naphthoflavone (BNF), 3-methylcholanthrene (3MC) and phenobarbital (PB). In general, there was little response to PB; only lesser scaup were induced to greater than three times control level and most species were well under this. Responses to BNF and 3MC occurred in each species studied, but differed in which of the monooxygenases was most induced (absolute values and ratios to control values) and in relative induction between species. BROD frequently had an induction ratio EROD. Overall, lesser scaup were the most responsive, canada geese the least responsive, and the other species intermediate in responsiveness to the cytochrome P450 inducers studied.

  1. The contraction induced increase in gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma coactivator 1alpha (PGC-1alpha), mitochondrial uncoupling protein 3 (UCP3) and hexokinase II (HKII) in primary rat skeletal muscle cells is dependent on reactive oxygen species

    DEFF Research Database (Denmark)

    Silveira, Leonardo R.; Pilegaard, Henriette; Kusuhara, Keiko

    2006-01-01

    We evaluated the role of reactive oxygen species (ROS) for the contraction induced increase in expression of PGC-1alpha, HKII and UCP3 mRNA. Rat skeletal muscle cells were subjected to acute or repeated electrostimulation in the presence and absence of antioxidants. Contraction of muscle cells lead...... to an increased H2O2 formation, as measured by oxidation of H2HFF. Acute contraction of the muscle cells lead to a transient increase in PGC-1alpha and UCP3 mRNA by 172 and 65%, respectively (pantioxidants. Repeated contraction sessions induced...... a sustained elevation in PGC-1alpha and UCP3 mRNA and a transient increase in HKII (pantioxidant cocktail or with GPX+GSH. Incubation of cells for 10 days with ROS produced by xanthine oxidase/xanthine increased the level of PGC-1...

  2. Altered Gene Expression in Three Plant Species in Response to Treatment with Nep1, a Fungal Protein That Causes Necrosis

    Science.gov (United States)

    Keates, Sarah E.; Kostman, Todd A.; Anderson, James D.; Bailey, Bryan A.

    2003-01-01

    Nep1 is an extracellular fungal protein that causes necrosis when applied to many dicotyledonous plants, including invasive weed species. Using transmission electron microscopy, it was determined that application of Nep1 (1.0 μg mL–1, 0.1% [v/v] Silwet-L77) to Arabidopsis and two invasive weed species, spotted knapweed (Centaurea maculosa) and dandelion (Taraxacum officinale), caused a reduction in the thickness of the cuticle and a breakdown of chloroplasts 1 to 4 h after treatment. Membrane breakdown was most severe in cells closest to the surface of application. Differential display was used to isolate cDNA clones from the three species showing differential expression in response to Nep1 treatment. Differential gene expression was observed for a putative serpin (CmSER-1) and a calmodulin-like (CmCAL-1) protein from spotted knapweed, and a putative protein phosphatase 2C (ToPP2C-1) and cytochrome P-450 (ToCYP-1) protein from dandelion. In addition, differential expression was observed for genes coding for a putative protein kinase (AtPK-1), a homolog (AtWI-12) of wound-induced WI12, a homolog (AtLEA-1) of late embryogenesis abundant LEA-5, a WRKY-18 DNA-binding protein (AtWRKY-18), and a phospholipase D (AtPLD-1) from Arabidopsis. Genes showing elevated mRNA levels in Nep1-treated (5 μg mL–1, 0.1% [v/v] Silwet-L77) leaves 15 min after Nep1 treatment included CmSER-1 and CmCAL-1 for spotted knapweed, ToCYP-1 and CmCAL-1 for dandelion, and AtPK-1, AtWRKY-18, AtWI-12, and AtLEA-1 for Arabidopsis. Levels of mRNA for AtPLD-1 (Arabidopsis) and ToPP2C-1 (dandelion) decreased rapidly in Silwet-l77-treated plants between 15 min and 4 h of treatment, but were maintained or decreased more slowly over time in Nep1-treated (5 μg mL–1, 0.1% [v/v] Silwet-L77) leaves. In general, increases in mRNA band intensities were in the range of two to five times, with only ToCYP-1 in dandelion exceeding an increase of 10 times. The identified genes have been shown to be involved

  3. Protein networks in induced sputum from smokers and COPD patients

    Directory of Open Access Journals (Sweden)

    Baraniuk JN

    2015-09-01

    Full Text Available James N Baraniuk,1 Begona Casado,1 Lewis K Pannell,2 Peter B McGarvey,3 Piera Boschetto,4 Maurizio Luisetti,5,† Paolo Iadarola6 1Division of Rheumatology, Immunology and Allergy, Georgetown University, Washington, DC, 2Proteomics and Mass Spectrometry Laboratory, Mitchell Cancer Center, University of South Alabama, Mobile, AL, 3Innovation Center for Biomedical Informatics, Georgetown University, Washington, DC, USA; 4Department of Medical Sciences, University of Ferrara, Ferrara, 5SC Pneumologia, Dipartimento Medicina Molecolare, Fondazione IRCCS Policlinico San Matteo, 6Lazzaro Spallanzani Department of Biology and Biotechnology, University of Pavia, Pavia, Italy †Maurizio Luisetti passed away on October 20, 2014 Rationale: Subtypes of cigarette smoke-induced disease affect different lung structures and may have distinct pathophysiological mechanisms. Objective: To determine if proteomic classification of the cellular and vascular origins of sputum proteins can characterize these mechanisms and phenotypes. Subjects and methods: Individual sputum specimens from lifelong nonsmokers (n=7 and smokers with normal lung function (n=13, mucous hypersecretion with normal lung function (n=11, obstructed airflow without emphysema (n=15, and obstruction plus emphysema (n=10 were assessed with mass spectrometry. Data reduction, logarithmic transformation of spectral counts, and Cytoscape network-interaction analysis were performed. The original 203 proteins were reduced to the most informative 50. Sources were secretory dimeric IgA, submucosal gland serous and mucous cells, goblet and other epithelial cells, and vascular permeability. Results: Epithelial proteins discriminated nonsmokers from smokers. Mucin 5AC was elevated in healthy smokers and chronic bronchitis, suggesting a continuum with the severity of hypersecretion determined by mechanisms of goblet-cell hyperplasia. Obstructed airflow was correlated with glandular proteins and lower levels of

  4. Porcine placenta mitigates protein-energy malnutrition-induced fatigue.

    Science.gov (United States)

    Han, Na-Ra; Kim, Kyu-Yeop; Kim, Myong-Jo; Kim, Min-Ho; Kim, Hyung-Min; Jeong, Hyun-Ja

    2013-01-01

    Fatigue can be caused by a deficiency of nutrition or immune function. The goal of this study was to identify the effects of porcine placenta extract (PPE) and its constituents, amino acids (glutamic acid, glycine, arginine, and proline), on protein-energy malnutrition (PEM)-induced fatigue. Mice were administered a PEM diet and came to immunodeficient status. Simultaneously, the mice were administered PPE or amino acids and a forced swimming test (FST) was performed. We analyzed the levels of fatigue-related factors in serum, splenocytes, and muscles. In the FST, PPE or amino acids significantly decreased immobility times compared with the PEM diet. PPE or amino acids also significantly decreased the serum levels of fatigue-related factors after the FST. Additionally, PPE significantly decreased the levels of fatigue-related muscle parameters after the FST. In this in vitro study, PPE increased the mRNA and protein expression of Ki-67 and promoted the proliferation of splenocytes. PPE or amino acids significantly increased the levels of intracellular calcium and the translocation into the nucleus of nuclear factor of activated T-cells cytoplasmic in stimulated splenocytes. PPE or amino acids significantly decreased the production of fatigue-related inflammatory cytokines in the stimulated splenocytes. Additionally, the translocated levels of nuclear factor-κB in the nucleus and the degradation of the inhibitory protein, IκBα, in the cytosol were inhibited by PPE or amino acids. These results demonstrate that PPE and its constituents regulate PEM-induced fatigue through improving levels of immunity and decreasing fatigue-related factors. PPE may be a potential agent for a recovery from fatigue. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. In silico study of protein to protein interaction analysis of AMP-activated protein kinase and mitochondrial activity in three different farm animal species

    Science.gov (United States)

    Prastowo, S.; Widyas, N.

    2018-03-01

    AMP-activated protein kinase (AMPK) is cellular energy censor which works based on ATP and AMP concentration. This protein interacts with mitochondria in determine its activity to generate energy for cell metabolism purposes. For that, this paper aims to compare the protein to protein interaction of AMPK and mitochondrial activity genes in the metabolism of known animal farm (domesticated) that are cattle (Bos taurus), pig (Sus scrofa) and chicken (Gallus gallus). In silico study was done using STRING V.10 as prominent protein interaction database, followed with biological function comparison in KEGG PATHWAY database. Set of genes (12 in total) were used as input analysis that are PRKAA1, PRKAA2, PRKAB1, PRKAB2, PRKAG1, PRKAG2, PRKAG3, PPARGC1, ACC, CPT1B, NRF2 and SOD. The first 7 genes belong to gene in AMPK family, while the last 5 belong to mitochondrial activity genes. The protein interaction result shows 11, 8 and 5 metabolism pathways in Bos taurus, Sus scrofa and Gallus gallus, respectively. The top pathway in Bos taurus is AMPK signaling pathway (10 genes), Sus scrofa is Adipocytokine signaling pathway (8 genes) and Gallus gallus is FoxO signaling pathway (5 genes). Moreover, the common pathways found in those 3 species are Adipocytokine signaling pathway, Insulin signaling pathway and FoxO signaling pathway. Genes clustered in Adipocytokine and Insulin signaling pathway are PRKAA2, PPARGC1A, PRKAB1 and PRKAG2. While, in FoxO signaling pathway are PRKAA2, PRKAB1, PRKAG2. According to that, we found PRKAA2, PRKAB1 and PRKAG2 are the common genes. Based on the bioinformatics analysis, we can demonstrate that protein to protein interaction shows distinct different of metabolism in different species. However, further validation is needed to give a clear explanation.

  6. Proteomics approach to identify unique xylem sap proteins in Pierce's disease-tolerant Vitis species.

    Science.gov (United States)

    Basha, Sheikh M; Mazhar, Hifza; Vasanthaiah, Hemanth K N

    2010-03-01

    Pierce's disease (PD) is a destructive bacterial disease of grapes caused by Xylella fastidiosa which is xylem-confined. The tolerance level to this disease varies among Vitis species. Our research was aimed at identifying unique xylem sap proteins present in PD-tolerant Vitis species. The results showed wide variation in the xylem sap protein composition, where a set of polypeptides with pI between 4.5 and 4.7 and M(r) of 31 kDa were present in abundant amount in muscadine (Vitis rotundifolia, PD-tolerant), in reduced levels in Florida hybrid bunch (Vitis spp., PD-tolerant) and absent in bunch grapes (Vitis vinifera, PD-susceptible). Liquid chromatography/mass spectrometry/mass spectrometry analysis of these proteins revealed their similarity to beta-1, 3-glucanase, peroxidase, and a subunit of oxygen-evolving enhancer protein 1, which are known to play role in defense and oxygen generation. In addition, the amount of free amino acids and soluble sugars was found to be significantly lower in xylem sap of muscadine genotypes compared to V. vinifera genotypes, indicating that the higher nutritional value of bunch grape sap may be more suitable for Xylella growth. These data suggest that the presence of these unique proteins in xylem sap is vital for PD tolerance in muscadine and Florida hybrid bunch grapes.

  7. A novel protein from edible fungi Cordyceps militaris that induces apoptosis

    Directory of Open Access Journals (Sweden)

    Ke-Chun Bai

    2018-01-01

    Full Text Available Cordyceps militaris is a dietary therapeutic fungus that is an important model species in Cordyceps research. In this study, we purified a novel protein from the fruit bodies of C. militaris and designated it as Cordyceps militaris protein (CMP. CMP has a molecular mass of 18.0 kDa and is not glycosylated. Interestingly, CMP inhibited cell viability in murine primary cells and other cell lines in a time- and dose-dependent manner. Using trypan blue staining and a lactate dehydrogenase release assay, we showed that CMP caused cell death in the murine hepatoma cell line BNL 1MEA.7R.1. Furthermore, the frequency of BNL 1MEA.7R.1 cells at the sub-G1 stage was increased by CMP. Apoptosis, as determined by Annexin V and propidium iodide analysis, indicated that CMP could mediate BNL 1MEA.7R.1 apoptosis, but not necrosis. After coincubation with CMP, a decrease in mitochondria potential was detected using 3,3′-dihexyloxacarbocyanine iodide. These results suggest that CMP is a harmful protein that induces apoptosis through a mitochondrion-dependent pathway. Stability experiments demonstrated that heat treatment and alkalization degraded CMP and further destroyed its cell-death-inducing ability, implying that cooking is necessary for food containing C. militaris.

  8. Peptidoglycan recognition proteins kill bacteria by inducing oxidative, thiol, and metal stress.

    Directory of Open Access Journals (Sweden)

    Des Raj Kashyap

    2014-07-01

    Full Text Available Mammalian Peptidoglycan Recognition Proteins (PGRPs are a family of evolutionary conserved bactericidal innate immunity proteins, but the mechanism through which they kill bacteria is unclear. We previously proposed that PGRPs are bactericidal due to induction of reactive oxygen species (ROS, a mechanism of killing that was also postulated, and later refuted, for several bactericidal antibiotics. Here, using whole genome expression arrays, qRT-PCR, and biochemical tests we show that in both Escherichia coli and Bacillus subtilis PGRPs induce a transcriptomic signature characteristic of oxidative stress, as well as correlated biochemical changes. However, induction of ROS was required, but not sufficient for PGRP killing. PGRPs also induced depletion of intracellular thiols and increased cytosolic concentrations of zinc and copper, as evidenced by transcriptome changes and supported by direct measurements. Depletion of thiols and elevated concentrations of metals were also required, but by themselves not sufficient, for bacterial killing. Chemical treatment studies demonstrated that efficient bacterial killing can be recapitulated only by the simultaneous addition of agents leading to production of ROS, depletion of thiols, and elevation of intracellular metal concentrations. These results identify a novel mechanism of bacterial killing by innate immunity proteins, which depends on synergistic effect of oxidative, thiol, and metal stress and differs from bacterial killing by antibiotics. These results offer potential targets for developing new antibacterial agents that would kill antibiotic-resistant bacteria.

  9. Piper betle Induced Cytoprotective Genes and Proteins via the Nrf2/ARE Pathway in Aging Mice.

    Science.gov (United States)

    Aliahmat, Nor Syahida; Abdul Sani, Nur Fathiah; Wan Hasan, Wan Nuraini; Makpol, Suzana; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2016-01-01

    The objective of this study was to elucidate the underlying antioxidant mechanism of aqueous extract of Piper betle (PB) in aging rats. The nuclear factor erythroid 2-related factor 2 (Nrf2)/ARE pathway involving phase II detoxifying and antioxidant enzymes plays an important role in the antioxidant system by reducing electrophiles and reactive oxygen species through induction of phase II enzymes and proteins. Genes and proteins of phase II detoxifying antioxidant enzymes were analyzed by QuantiGenePlex 2.0 Assay and Western blot analysis. PB significantly induced genes and proteins of phase II and antioxidant enzymes, NAD(P)H quinone oxidoreductase 1, and catalase in aging mice (p < 0.05). The expression of these enzymes were stimulated via translocation of Nrf2 into the nucleus, indicating the involvement of ARE, a cis-acting motif located in the promoter region of nearly all phase II genes. PB was testified for the first time to induce cytoprotective genes through the Nrf2/ARE signaling pathway, thus unraveling the antioxidant mechanism of PB during the aging process. © 2016 S. Karger AG, Basel.

  10. Differential effects of methylmercury on the synthesis of protein species in dorsal root ganglia of the rat

    International Nuclear Information System (INIS)

    Kasama, Hidetaka; Itoh, Kazuo; Omata, Saburo; Sugano, Hiroshi

    1989-01-01

    Dorsal root ganglia from control and methylmercury(MeHg)-treated rats were incubated in vitro with 35 S-methionine and the proteins synthesized were analyzed by two-dimensional electrophoresis. The double labelling method, in which proteins of control dorsal root ganglia labelled in vitro with 3 H-leucine were added to each of the two samples as an internal standard, was used to minimize unavoidable errors arising from the resolving procedure itself. The results obtained showed that the effect of MeHg on the synthesis of proteins in dorsal root ganglia was not uniform for individual protein species in the latent period of MeHg intoxication. Among 200 protein species investigated, 157 showed inhibition of synthesis close to that of the total proteins in the tissue (68% of the control). Among the remaining protein species, 20 showed real stimulation of synthesis, whereas 7 were moderately inhibited and 16 were inhibited more strongly than the total proteins in the tissue. These results suggest that the effect of MeHg on the synthetic rates for protein species in dorsal root ganglia differs with the species, and that unusual elevation or reduction of the synthesis of some protein species caused by MeHg may lead to impairment of normal nerve functions. (orig.)

  11. Induction of Heat Shock Protein 70 Ameliorates Ultraviolet-Induced Photokeratitis in Mice

    Directory of Open Access Journals (Sweden)

    Yukihiro Horie

    2013-01-01

    Full Text Available Acute ultraviolet (UV B exposure causes photokeratitis and induces apoptosis in corneal cells. Geranylgeranylacetone (GGA is an acyclic polyisoprenoid that induces expression of heat shock protein (HSP70, a soluble intracellular chaperone protein expressed in various tissues, protecting cells against stress conditions. We examined whether induction of HSP70 has therapeutic effects on UV-photokeratitis in mice. C57 BL/6 mice were divided into four groups, GGA-treated (500 mg/kg/mouse and UVB-exposed (400 mJ/cm2, GGA-untreated UVB-exposed (400 mJ/cm2, GGA-treated (500 mg/kg/mouse but not exposed and naive controls. Eyeballs were collected 24 h after irradiation, and corneas were stained with hematoxylin and eosin (H&E and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL. HSP70, reactive oxygen species (ROS production, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB and protein kinase B (Akt expression were also evaluated. Irradiated corneal epithelium was significantly thicker in the eyes of mice treated with GGA compared with those given the vehicle alone (p < 0.01. Significantly fewer TUNEL-positive cells were observed in the eyes of GGA-treated mice than controls after irradiation (p < 0.01. Corneal HSP70 levels were significantly elevated in corneas of mice treated with GGA (p < 0.05. ROS signal was not affected by GGA. NF-κB activation was reduced but phospho-(Ser/Ther Akt substrate expression was increased in corneas after irradiation when treated with GGA. GGA-treatment induced HSP70 expression and ameliorated UV-induced corneal damage through the reduced NF-κB activation and possibly increased Akt phosphorilation.

  12. Characterization of ablated species in laser-induced plasma plume

    International Nuclear Information System (INIS)

    Furusawa, Hideki; Sakka, Tetsuo; Ogata, Yukio H.

    2004-01-01

    Plasma electron density and atomic population densities in the plasma plume produced by a laser ablation of aluminum metal were determined in various ambient gases at relatively high pressures. The method is based on the fit of a spectral line profile of Al(I) 2 P (convolutionsign) - 2 S emission to the theoretical spectrum obtained by one-dimensional radiative transfer calculation. The electron density was higher for a higher ambient gas pressure, suggesting the confinement of the plume by an ambient gas. The electron density also depends on the type of ambient gases, i.e., it increased in the order He 4 2 4 , while the atomic population density is almost independent of the type of ambient species and pressure. The population densities of the upper and lower levels of the transition were compared, and the ratio between their spatial distribution widths was calculated. These results provide valuable information regarding the confinement of the plume by the ambient gas and give insight into the time evolution of the plume

  13. Distribution and biological role of the oligopeptide-binding protein (OppA) in Xanthomonas species.

    Science.gov (United States)

    Oshiro, Elisa E; Tavares, Milene B; Suzuki, Celso F; Pimenta, Daniel C; Angeli, Claudia B; de Oliveira, Julio C F; Ferro, Maria I T; Ferreira, Luis C S; Ferreira, Rita C C

    2010-04-01

    In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA) of the major bacterial oligopeptide uptake system (Opp), in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis) and Rangpur lime (Citrus limonia). Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis.

  14. Distribution and biological role of the oligopeptide-binding protein (OppA in Xanthomonas species

    Directory of Open Access Journals (Sweden)

    Elisa E. Oshiro

    2010-01-01

    Full Text Available In this study we investigated the prevalence of the oppA gene, encoding the oligopeptide binding protein (OppA of the major bacterial oligopeptide uptake system (Opp, in different species of the genus Xanthomonas. The oppA gene was detected in two Xanthomonas axonopodis strains among eight tested Xanthomonas species. The generation of an isogenic oppA-knockout derivative of the Xac 306 strain, showed that the OppA protein neither plays a relevant role in oligopeptide uptake nor contributes to the infectivity and multiplication of the bacterial strain in leaves of sweet orange (Citrus sinensis and Rangpur lime (Citrus limonia. Taken together these results suggest that the oppA gene has a recent evolutionary history in the genus and does not contribute in the physiology or pathogenesis of X. axonopodis.

  15. Comparison of proteins involved in chondroitin sulfate utilization by three colonic Bacteroides species.

    OpenAIRE

    Lipeski, L; Guthrie, E P; O'Brien, M; Kotarski, S F; Salyers, A A

    1986-01-01

    Three species of colonic bacteria can ferment the mucopolysaccharide chondroitin sulfate: Bacteroides ovatus, Bacteroides sp. strain 3452A (an unnamed DNA homology group), and B. thetaiotaomicron. Proteins associated with the utilization of chondroitin sulfate by B. thetaiotaomicron have been characterized previously. In this report we compare chondroitin lyases and chondroitin sulfate-associated outer membrane polypeptides of B. ovatus and Bacteroides sp. strain 3452A with those of B. thetai...

  16. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  17. Species and tissues specific differentiation of processed animal proteins in aquafeeds using proteomics tools.

    Science.gov (United States)

    Rasinger, J D; Marbaix, H; Dieu, M; Fumière, O; Mauro, S; Palmblad, M; Raes, M; Berntssen, M H G

    2016-09-16

    The rapidly growing aquaculture industry drives the search for sustainable protein sources in fish feed. In the European Union (EU) since 2013 non-ruminant processed animal proteins (PAP) are again permitted to be used in aquafeeds. To ensure that commercial fish feeds do not contain PAP from prohibited species, EU reference methods were established. However, due to the heterogeneous and complex nature of PAP complementary methods are required to guarantee the safe use of this fish feed ingredient. In addition, there is a need for tissue specific PAP detection to identify the sources (i.e. bovine carcass, blood, or meat) of illegal PAP use. In the present study, we investigated and compared different protein extraction, solubilisation and digestion protocols on different proteomics platforms for the detection and differentiation of prohibited PAP. In addition, we assessed if tissue specific PAP detection was feasible using proteomics tools. All work was performed independently in two different laboratories. We found that irrespective of sample preparation gel-based proteomics tools were inappropriate when working with PAP. Gel-free shotgun proteomics approaches in combination with direct spectral comparison were able to provide quality species and tissue specific data to complement and refine current methods of PAP detection and identification. To guarantee the safe use of processed animal protein (PAP) in aquafeeds efficient PAP detection and monitoring tools are required. The present study investigated and compared various proteomics workflows and shows that the application of shotgun proteomics in combination with direct comparison of spectral libraries provides for the desired species and tissue specific classification of this heat sterilized and pressure treated (≥133°C, at 3bar for 20min) protein feed ingredient. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Inter- and intra-specific differences in serum proteins of different species and subspecies of zebras.

    Science.gov (United States)

    Stratil, A; Cízová, D; Gábrisová, E; Pokorný, R

    1992-11-01

    1. Serum proteins of Equus grevyi, E. zebra hartmannae, E. burchelli boehmi, E. b. chapmanni and E. b. antiquorum were studied using starch-gel electrophoresis, 1-D polyacrylamide-gel electrophoresis, inhibitions of trypsin and chymotrypsin, immunoblotting, and specific staining for esterase. 2. Clear species-specific patterns were observed in albumin, transferrin, and for E. grevyi in protease inhibitor-1. Specific esterase was detected only in E. z. hartmannae. 3. Protein polymorphism was found in all studied species: E. grevyi--transferrin; E. z. hartmannae--protease inhibitor-1; E. b. boehmi--albumin, GC, transferrin, protease inhibitor-1, protease inhibitor-T; E. b. chapmanni--albumin, GC, transferrin, protease inhibitor-1; E. b. antiquorum--GC, transferrin, protease inhibitor-1. 4. Phenotype patterns of the polymorphic proteins were indicative of simple codominant inheritance. Further studies of polymorphism of protease inhibitor-2 and variability of protease inhibitor-X are needed. 5. alpha 1B glycoprotein in all zebra species was monomorphic. 6. The main transferrin components and alpha 1B glycoprotein of zebra (E. b. boehmi) were characterized for terminal sialic acid content.

  19. Assessing transmissible spongiform encephalopathy species barriers with an in vitro prion protein conversion assay

    Science.gov (United States)

    Johnson, Christopher J.; Carlson, Christina M.; Morawski, Aaron R.; Manthei, Alyson; Cashman, Neil R.

    2015-01-01

    Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitroprion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host’s species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host’s species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

  20. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Carolyn M

    2005-02-22

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identified and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.

  1. Enhancement of Protein and Pigment Content in Two Chlorella Species Cultivated on Industrial Process Water

    Directory of Open Access Journals (Sweden)

    Hamed Safafar

    2016-12-01

    Full Text Available Chlorella pyrenoidosa and Chlorella vulgaris were cultivated in pre-gasified industrial process water with high concentration of ammonia representing effluent from a local biogas plant. The study aimed to investigate the effects of growth media and cultivation duration on the nutritional composition of biomass. Variations in proteins, lipid, fatty acid composition, amino acids, tocopherols, and pigments were studied. Both species grew well in industrial process water. The contents of proteins were affected significantly by the growth media and cultivation duration. Microalga Chlorella pyrenoidosa produced the highest concentrations of protein (65.2% ± 1.30% DW while Chlorella vulgaris accumulated extremely high concentrations of lutein and chlorophylls (7.14 ± 0.66 mg/g DW and 32.4 ± 1.77 mg/g DW, respectively. Cultivation of Chlorella species in industrial process water is an environmentally friendly, sustainable bioremediation method with added value biomass production and resource valorization, since the resulting biomass also presented a good source of proteins, amino acids, and carotenoids for potential use in aquaculture feed industry.

  2. Biotic stress protein markers of Aquilaria sp. for gaharu species identification in Malaysia

    International Nuclear Information System (INIS)

    Azhar Mohamad; Abdul Rahim Harun

    2012-01-01

    Gaharu trees (Aquilaria) is in danger of extinction in the wild due to illegal logging. Its resin (Gaharu) is used for the production of highly valued incense throughout Asia. In Aquilaria sp. systemic induction of defense genes in response to mechanical wounding in nature is regulated by an 18-amino-acid peptide signal protein called systemin. This protein is produced in response to the natural stress at the vicinity of the wound and is also influenced by its genetic background. As the protein can be differentiated by its locality, the protein expressed is also found to be significantly different which, in turn, can be used for identification of this plant species. In this work, A. malaccensis and A. hirta were evaluated based on the targeted genes related to systemin. Targeted gene refers to specific sequence in genomic DNA. Sequence mining from public databases is part of the crucial process in getting the specific genes. The sequences will go through alignment step to identify conserved region prior to primer design. The primers were used in Polymerase Chain Reaction (PCR) techniques to amplify the conserved regions. It was found that both samples can be differentiated. This would be useful for plant breeders, trader and planter in ensuring authentic planting materials. This paper will describe the use of targeted genes primers as markers in identifying the Aquilaria species. (author)

  3. Induced oligomerization targets Golgi proteins for degradation in lysosomes.

    Science.gov (United States)

    Tewari, Ritika; Bachert, Collin; Linstedt, Adam D

    2015-12-01

    Manganese protects cells against forms of Shiga toxin by down-regulating the cycling Golgi protein GPP130. Down-regulation occurs when Mn binding causes GPP130 to oligomerize and traffic to lysosomes. To determine how GPP130 is redirected to lysosomes, we tested the role of GGA1 and clathrin, which mediate sorting in the canonical Golgi-to-lysosome pathway. GPP130 oligomerization was induced using either Mn or a self-interacting version of the FKBP domain. Inhibition of GGA1 or clathrin specifically blocked GPP130 redistribution, suggesting recognition of the aggregated GPP130 by the GGA1/clathrin-sorting complex. Unexpectedly, however, GPP130's cytoplasmic domain was not required, and redistribution also occurred after removal of GPP130 sequences needed for its normal cycling. Therefore, to test whether aggregate recognition might be a general phenomenon rather than one involving a specific GPP130 determinant, we induced homo-oligomerization of two unrelated Golgi-targeted constructs using the FKBP strategy. These were targeted to the cis- and trans-Golgi, respectively, using domains from mannosidase-1 and galactosyltransferase. Significantly, upon oligomerization, each redistributed to peripheral punctae and was degraded. This occurred in the absence of detectable UPR activation. These findings suggest the unexpected presence of quality control in the Golgi that recognizes aggregated Golgi proteins and targets them for degradation in lysosomes. © 2015 Tewari et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. γ-Tocotrienol prevents 5-FU-induced reactive oxygen species production in human oral keratinocytes through the stabilization of 5-FU-induced activation of Nrf2.

    Science.gov (United States)

    Takano, Hideyuki; Momota, Yukihiro; Kani, Kouichi; Aota, Keiko; Yamamura, Yoshiko; Yamanoi, Tomoko; Azuma, Masayuki

    2015-04-01

    Chemotherapy-induced oral mucositis is a common adverse event in patients with oral squamous cell carcinoma, and is initiated through a variety of mechanisms, including the generation of reactive oxygen species (ROS). In this study, we examined the preventive effect of γ-tocotrienol on the 5-FU-induced ROS production in human oral keratinocytes (RT7). We treated RT7 cells with 5-FU and γ-tocotrienol at concentrations of 10 µg/ml and 10 nM, respectively. When cells were treated with 5-FU alone, significant growth inhibition was observed as compared to untreated cells. This inhibition was, in part, due to the ROS gene-rated by 5-FU treatment, because N-acetyl cysteine (NAC), a ROS scavenger, significantly ameliorated the growth of RT7 cells. γ-tocotrienol showed no cytotoxic effect on the growth of RT7 cells. Simultaneous treatment of cells with these agents resulted in the significant recovery of cell growth, owing to the suppression of ROS generation by γ-tocotrienol. Whereas 5-FU stimulated the expression of NF-E2-related factor 2 (Nrf2) protein in the nucleus up to 12 h after treatment of RT7 cells, γ-tocotrienol had no obvious effect on the expression of nuclear Nrf2 protein. Of note, the combined treatment with both agents stabilized the 5-FU-induced nuclear Nrf2 protein expression until 24 h after treatment. In addition, expression of Nrf2-dependent antioxidant genes, such as heme oxygenase-1 (HO-1) and quinone oxidoreductase-1 (NQO-1), was significantly augmented by treatment of cells with both agents. These findings suggest that γ-tocotrienol could prevent 5-FU-induced ROS generation by stabilizing Nrf2 activation, thereby leading to ROS detoxification and cell survival in human oral keratinocytes.

  5. Interferon-γ-induced protein 10 in Lyme disease.

    Science.gov (United States)

    Fallahi, P; Elia, G; Bonatti, A

    2017-01-01

    Lyme disease is an infectious disease caused by bacteria of the Borrelia type, that affects about 300,000 people a year in the USA and 65,000 people a year in Europe. Borrelia infection, and Lyme disease, following occupational exposure has been frequently reported in USA, Europe and Asia. The manifestations of Lyme disease include erythema migrans (EM), arthritis, neuroborrelliosis (NB), and others. Cytokines and chemokines primarily orchestrate leukocyte recruitment to the areas of Borrelia infection, and they are critical mediators of immune and inflammatory responses, in particular of the induction of interferon (IFN)-γ and IFN-γ dependent chemokines. In EM high levels of T helper (Th) 1 cells chemoattranctants [monokine induced by IFN-γ (MIG), IFN-γ-induced protein 10 (IP- 10), and IFN-inducible T cell alpha chemoattractant (I-TAC)] have been shown. Synovial tissues and fluids of patients with Lyme Arthritis (LA) (overall with antibiotic-refractory LA) contained exceptionally high levels of Th1 chemoattractants and cytokines, particularly MIG and IFN-γ. In NB concentrations of IP-10 and I-TAC in the cerebrospinal fluid (CSF) were significantly higher, suggesting that IP-10 and I-TAC create a chemokine gradient between the CSF and serum and recruite C-X-C chemokine receptor 3-expressing memory CD4+ T-cells into the CSF of these patients. A positive association between the disseminating capacity of B. burgdorferi and early type I IFN induction has also been shown. These results suggest that IFN-γ dependent chemokines are important biomarkers to monitor the progression and diffusion of the disease in patients with Borrelia infection; further larger studies are needed.

  6. Limitations of polyethylene glycol-induced precipitation as predictive tool for protein solubility during formulation development.

    Science.gov (United States)

    Hofmann, Melanie; Winzer, Matthias; Weber, Christian; Gieseler, Henning

    2018-05-01

    Polyethylene glycol (PEG)-induced protein precipitation is often used to extrapolate apparent protein solubility at specific formulation compositions. The procedure was used for several fields of application such as protein crystal growth but also protein formulation development. Nevertheless, most studies focused on applicability in protein crystal growth. In contrast, this study focuses on applicability of PEG-induced precipitation during high-concentration protein formulation development. In this study, solubility of three different model proteins was investigated over a broad range of pH. Solubility values predicted by PEG-induced precipitation were compared to real solubility behaviour determined by either turbidity or content measurements. Predicted solubility by PEG-induced precipitation was confirmed for an Fc fusion protein and a monoclonal antibody. In contrast, PEG-induced precipitation failed to predict solubility of a single-domain antibody construct. Applicability of PEG-induced precipitation as indicator of protein solubility during formulation development was found to be not valid for one of three model molecules. Under certain conditions, PEG-induced protein precipitation is not valid for prediction of real protein solubility behaviour. The procedure should be used carefully as tool for formulation development, and the results obtained should be validated by additional investigations. © 2017 Royal Pharmaceutical Society.

  7. HEAT INDUCIBLE EXPRESSION OF ANTIFREEZE PROTEIN GENES FROM THE BEETLES Tenebrio molitor AND Microdera punctipennis.

    Science.gov (United States)

    Li, Jieqiong; Ma, Wenjing; Ma, Ji

    2016-01-01

    Antifreeze proteins (AFPs) play important roles in protecting poikilothermic organisms from cold damage. The expression of AFP genes (afps) is induced by low temperature. However, it is reported that heat can influence the expression of afps in the desert beetle Microdera punctipennis. To further detect whether heat also induce the expression of afps in other insects, and to determine the expression profiling of insect afps at different temperatures. The expression of antifreeze protein genes in the two beetles, Microdera punctipennis and Tenebrio molitor that have quite different living environment, under different temperatures were studied by using real-time quantitative PCR. Mild low temperatures (5~15 degree C), high temperature (38~47 degree C for M. punctipennis, or 37~42 degree C for T. molitor) and temperature difference (10~30 degree C) all stimulated strongly to the expression of AFP genes (Mpafps) in M. punctipennis which lives in the wild filed in desert. The mRNA level of Mpafps after M. punctipennis were exposed to these temperatures for 1h~5h was at least 30-fold of the control at 25 degree C. For T. molitor which is breeding in door with wheat bran all these temperatures stimulated significantly to the expression of Tmafps, while the extent and degree of the temperature stimulation on Tmafps expression were much lower than on Mpafps. After T. molitor were exposed to 5 degree C and 15 degree C for 1h~5h, the mRNA level of Tmafps was over 6-fold and 45-fold of the control at 25 degree C. High temperature (37~42 degree C) for 1h~3h treatments increased Tmafps mRNA level 4.8-fold of the control. Temperature difference of 10 degree C was effective in stimulating Tmafps expression. The expression of insect antifreeze protein genes both in M. punctipennis and T. molitor was induced by heat, suggesting that this phenomenon may be common in insects; the extent and degree of the influence differ in species that have different living conditions. The heat

  8. A systematic identification of species-specific protein succinylation sites using joint element features information

    Directory of Open Access Journals (Sweden)

    Hasan MM

    2017-08-01

    Full Text Available Md Mehedi Hasan,1 Mst Shamima Khatun,2 Md Nurul Haque Mollah,2 Cao Yong,3 Dianjing Guo1 1School of Life Sciences and the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, People’s Republic of China; 2Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh; 3Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen, People’s Republic of China Abstract: Lysine succinylation, an important type of protein posttranslational modification, plays significant roles in many cellular processes. Accurate identification of succinylation sites can facilitate our understanding about the molecular mechanism and potential roles of lysine succinylation. However, even in well-studied systems, a majority of the succinylation sites remain undetected because the traditional experimental approaches to succinylation site identification are often costly, time-consuming, and laborious. In silico approach, on the other hand, is potentially an alternative strategy to predict succinylation substrates. In this paper, a novel computational predictor SuccinSite2.0 was developed for predicting generic and species-specific protein succinylation sites. This predictor takes the composition of profile-based amino acid and orthogonal binary features, which were used to train a random forest classifier. We demonstrated that the proposed SuccinSite2.0 predictor outperformed other currently existing implementations on a complementarily independent dataset. Furthermore, the important features that make visible contributions to species-specific and cross-species-specific prediction of protein succinylation site were analyzed. The proposed predictor is anticipated to be a useful computational resource for lysine succinylation site prediction. The integrated species-specific online tool of SuccinSite2.0 is publicly

  9. Rapamycin-induced oligomer formation system of FRB-FKBP fusion proteins.

    Science.gov (United States)

    Inobe, Tomonao; Nukina, Nobuyuki

    2016-07-01

    Most proteins form larger protein complexes and perform multiple functions in the cell. Thus, artificial regulation of protein complex formation controls the cellular functions that involve protein complexes. Although several artificial dimerization systems have already been used for numerous applications in biomedical research, cellular protein complexes form not only simple dimers but also larger oligomers. In this study, we showed that fusion proteins comprising the induced heterodimer formation proteins FRB and FKBP formed various oligomers upon addition of rapamycin. By adjusting the configuration of fusion proteins, we succeeded in generating an inducible tetramer formation system. Proteins of interest also formed tetramers by fusing to the inducible tetramer formation system, which exhibits its utility in a broad range of biological applications. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  10. A mixture of Lactobacillus species isolated from traditional fermented foods promote recovery from antibiotic-induced intestinal disruption in mice.

    Science.gov (United States)

    Shi, Y; Zhao, X; Zhao, J; Zhang, H; Zhai, Q; Narbad, A; Chen, W

    2018-03-01

    This study evaluated the antibiotic-induced changes in microbial ecology, intestinal dysbiosis and low-grade inflammation; and the combined effect of four different Lactobacillus species on recovery of microbiota composition and improvement of gut barrier function in mice. Administration of the antibiotic ampicillin for 2 weeks decreased microbial community diversity, induced caecum tumefaction and increased gut permeability in mice. Application of a probiotic cocktail of four Lactobacillus species (JUP-Y4) modulated the microbiota community structure and promoted the abundance of potentially beneficial bacteria such as Akkermansia. Ampicillin administration led to a decline in Bacteroidetes from 46·6 ± 3·91% to 0·264 ± 0·0362%; the addition of JUP-Y4 restored this to 41·4 ± 2·87%. This probiotic supplementation was more effective than natural restoration, where the levels of Bacteroidetes were only restored to 29·3 ± 2·07%. Interestingly, JUP-Y4 treatment was more effective in the restoration of microbiota in faecal samples than in caecal samples. JUP-Y4 also significantly reduced the levels of d-lactate and endotoxin (lipopolysaccharide, LPS) in the serum of mice, and increased the expression of tight-junction proteins while reducing the production of inflammatory cytokines (TNF-α, IL-6, MCP-1, IFN-γ and IL-1β) in the ileum and the colon of antibiotic-treated mice. JUP-Y4 not only promoted recovery from antibiotic-induced gut dysbiosis, but also enhanced the function of the gut barrier, reduced inflammation and lowered levels of circulating endotoxin in mice. Consumption of a mixture of Lactobacillus species may encourage faster recovery from antibiotic-induced gut dysbiosis and gut microbiota-related immune disturbance. © 2018 The Society for Applied Microbiology.

  11. Generic amyloidogenicity of mammalian prion proteins from species susceptible and resistant to prions.

    Science.gov (United States)

    Nyström, Sofie; Hammarström, Per

    2015-05-11

    Prion diseases are lethal, infectious diseases associated with prion protein (PrP) misfolding. A large number of mammals are susceptible to both sporadic and acquired prion diseases. Although PrP is highly conserved and ubiquitously expressed in all mammals, not all species exhibit prion disease. By employing full length recombinant PrP from five known prion susceptible species (human, cattle, cat, mouse and hamster) and two species considered to be prion resistant (pig and dog) the amyloidogenicity of these PrPs has been delineated. All the mammalian PrPs, even from resistant species, were swiftly converted from the native state to amyloid-like structure when subjected to a native condition conversion assay. The PrPs displayed amyloidotypic tinctorial and ultrastructural hallmarks. Self-seeded conversion of the PrPs displayed significantly decreased lag phases demonstrating that nucleation dependent polymerization is a dominating mechanism in the fibrillation process. Fibrils from Aβ1-40, Aβ1-42, Lysozyme, Insulin and Transthyretin did not accelerate conversion of HuPrP whereas fibrils from HuPrP90-231 and HuPrP121-231 as well as full length PrPs of all PrPs efficiently seeded conversion showing specificity of the assay requiring the C-terminal PrP sequence. Our findings have implications for PrP misfolding and could have ramifications in the context of prion resistant species and silent carriers.

  12. Photosensitized UVA-Induced Cross-Linking between Human DNA Repair and Replication Proteins and DNA Revealed by Proteomic Analysis

    Science.gov (United States)

    2016-01-01

    Long wavelength ultraviolet radiation (UVA, 320–400 nm) interacts with chromophores present in human cells to induce reactive oxygen species (ROS) that damage both DNA and proteins. ROS levels are amplified, and the damaging effects of UVA are exacerbated if the cells are irradiated in the presence of UVA photosensitizers such as 6-thioguanine (6-TG), a strong UVA chromophore that is extensively incorporated into the DNA of dividing cells, or the fluoroquinolone antibiotic ciprofloxacin. Both DNA-embedded 6-TG and ciprofloxacin combine synergistically with UVA to generate high levels of ROS. Importantly, the extensive protein damage induced by these photosensitizer+UVA combinations inhibits DNA repair. DNA is maintained in intimate contact with the proteins that effect its replication, transcription, and repair, and DNA–protein cross-links (DPCs) are a recognized reaction product of ROS. Cross-linking of DNA metabolizing proteins would compromise these processes by introducing physical blocks and by depleting active proteins. We describe a sensitive and statistically rigorous method to analyze DPCs in cultured human cells. Application of this proteomics-based analysis to cells treated with 6-TG+UVA and ciprofloxacin+UVA identified proteins involved in DNA repair, replication, and gene expression among those most vulnerable to cross-linking under oxidative conditions. PMID:27654267

  13. Global Inhibition of Reactive Oxygen Species (ROS) Inhibits Paclitaxel-Induced Painful Peripheral Neuropathy

    OpenAIRE

    Fidanboylu, Mehmet; Griffiths, Lisa A.; Flatters, Sarah J. L.

    2011-01-01

    Paclitaxel (Taxol (R)) is a widely used chemotherapeutic agent that has a major dose limiting side-effect of painful peripheral neuropathy. Currently there is no effective therapy for the prevention or treatment of chemotherapy-induced painful peripheral neuropathies. Evidence for mitochondrial dysfunction during paclitaxel-induced pain was previously indicated with the presence of swollen and vacuolated neuronal mitochondria. As mitochondria are a major source of reactive oxygen species (ROS...

  14. Plasmonic photocatalyst-like fluorescent proteins for generating reactive oxygen species

    Science.gov (United States)

    Leem, Jung Woo; Kim, Seong-Ryul; Choi, Kwang-Ho; Kim, Young L.

    2018-03-01

    The recent advances in photocatalysis have opened a variety of new possibilities for energy and biomedical applications. In particular, plasmonic photocatalysis using hybridization of semiconductor materials and metal nanoparticles has recently facilitated the rapid progress in enhancing photocatalytic efficiency under visible or solar light. One critical underlying aspect of photocatalysis is that it generates and releases reactive oxygen species (ROS) as intermediate or final products upon light excitation or activation. Although plasmonic photocatalysis overcomes the limitation of UV irradiation, synthesized metal/semiconductor nanomaterial photocatalysts often bring up biohazardous and environmental issues. In this respect, this review article is centered in identifying natural photosensitizing organic materials that can generate similar types of ROS as those of plasmonic photocatalysis. In particular, we propose the idea of plasmonic photocatalyst-like fluorescent proteins for ROS generation under visible light irradiation. We recapitulate fluorescent proteins that have Type I and Type II photosensitization properties in a comparable manner to plasmonic photocatalysis. Plasmonic photocatalysis and protein photosensitization have not yet been compared systemically in terms of ROS photogeneration under visible light, although the phototoxicity and cytotoxicity of some fluorescent proteins are well recognized. A comprehensive understanding of plasmonic photocatalyst-like fluorescent proteins and their potential advantages will lead us to explore new environmental, biomedical, and defense applications.

  15. Enhanced expression of WD repeat-containing protein 35 (WDR35 stimulated by domoic acid in rat hippocampus: involvement of reactive oxygen species generation and p38 mitogen-activated protein kinase activation

    Directory of Open Access Journals (Sweden)

    Tsunekawa Koji

    2013-01-01

    Full Text Available Abstract Background Domoic acid (DA is an excitatory amino acid analogue of kainic acid (KA that acts via activation of glutamate receptors to elicit a rapid and potent excitotoxic response, resulting in neuronal cell death. Recently, DA was shown to elicit reactive oxygen species (ROS production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK in vitro. We have reported that WDR35, a WD-repeat protein, may mediate apoptosis in several animal models. In the present study, we administered DA to rats intraperitoneally, then used liquid chromatography/ion trap tandem mass spectrometry (LC-MS/MS to identify and quantify DA in the brains of the rats and performed histological examinations of the hippocampus. We further investigated the potential involvement of glutamate receptors, ROS, p38 MAPK, and WDR35 in DA-induced toxicity in vivo. Results Our results showed that intraperitoneally administered DA was present in the brain and induced neurodegenerative changes including apoptosis in the CA1 region of the hippocampus. DA also increased the expression of WDR35 mRNA and protein in a dose- and time-dependent manner in the hippocampus. In experiments using glutamate receptor antagonists, the AMPA/KA receptor antagonist NBQX significantly attenuated the DA-induced increase in WDR35 protein expression, but the NMDA receptor antagonist MK-801 did not. In addition, the radical scavenger edaravone significantly attenuated the DA-induced increase in WDR35 protein expression. Furthermore, NBQX and edaravone significantly attenuated the DA-induced increase in p38 MAPK phosphorylation. Conclusion In summary, our results indicated that DA activated AMPA/KA receptors and induced ROS production and p38 MAPK phosphorylation, resulting in an increase in the expression of WDR35 in vivo.

  16. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  17. Phytoplankton IF-FISH: Species-specific labeling of cellular proteins by immunofluorescence (IF) with simultaneous species identification by fluorescence immunohybridization (FISH).

    Science.gov (United States)

    Meek, Megan E; Van Dolah, Frances M

    2016-05-01

    Phytoplankton rarely occur as unialgal populations. Therefore, to study species-specific protein expression, indicative of physiological status in natural populations, methods are needed that will both assay for a protein of interest and identify the species expressing it. Here we describe a protocol for IF-FISH, a dual labeling procedure using immunofluorescence (IF) labeling of a protein of interest followed by fluorescence in situ hybridization (FISH) to identify the species expressing that protein. The protocol was developed to monitor expression of the cell cycle marker proliferating cell nuclear antigen (PCNA) in the red tide dinoflagellate, Karenia brevis, using a large subunit (LSU) rRNA probe to identify K. brevis in a mixed population of morphologically similar Karenia species. We present this protocol as proof of concept that IF-FISH can be successfully applied to phytoplankton cells. This method is widely applicable for the analysis of single-cell protein expression of any protein of interest within phytoplankton communities. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Temperature-induced transitions in disordered proteins probed by NMR spectroscopy

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Poulsen, Flemming Martin; Kragelund, Birthe Brandt

    2012-01-01

    Intrinsically disordered proteins are abundant in nature and perform many important physiological functions. Multidimensional NMR spectroscopy has been crucial for the understanding of the conformational properties of disordered proteins and is increasingly used to probe their conformational...... ensembles. Compared to folded proteins, disordered proteins are more malleable and more easily perturbed by environmental factors. Accordingly, the experimental conditions and especially the temperature modify the structural and functional properties of disordered proteins. NMR spectroscopy allows analysis...... of temperature-induced structural changes at residue resolution using secondary chemical shift analysis, paramagnetic relaxation enhancement, and residual dipolar couplings. This chapter discusses practical aspects of NMR studies of temperature-induced structural changes in disordered proteins....

  19. Model for Stress-induced Protein Degradation in Lemna minor1

    Science.gov (United States)

    Cooke, Robert J.; Roberts, Keith; Davies, David D.

    1980-01-01

    Transfer of Lemna minor fronds to adverse or stress conditions produces a large increase in the rate of protein degradation. Cycloheximide partially inhibits stress-induced protein degradation and also partially inhibits the protein degradation which occurs in the absence of stress. The increased protein degradation does not appear to be due to an increase in activity of soluble proteolytic enzymes. Biochemical evidence indicates that stress, perhaps acting via hormones, affects the permeability of certain membranes, particularly the tonoplast. A general model for stress-induced protein degradation is presented in which changes in membrane properties allow vacuolar proteolytic enzymes increased access to cytoplasmic proteins. PMID:16661588

  20. Stimulated synthesis of plasma protein species in Q fever and endotoxemia

    Energy Technology Data Exchange (ETDEWEB)

    Picking, W.D.; Ershadi, M.; Hackstadt, T.; Paretsky, D.

    1987-05-01

    Q fever stimulates hepatic transcription and translation. Products of stimulated transcription have been identified, but not of translation. Protein (Pr) synthesis and rPr S6 phosphorylation correlated. The authors now report stimulated synthesis of plasma Pr species in early febrile responses to Q fever and Coxiella burnetii lipopolysaccharide (LPS). Guinea pigs received 400 g LPS intraperitoneally and 7 hr later 250 Ci L-(TVS)met, then sacrificed 3 hr later. Plasma Pr sp act (cpm/mg Pr) increased 2.3X over controls (N). Exptl plasma Pr PAGE autorads showed intensified Pr bands at M/sub r/ 55K. Guinea pigs infected with C. burnetii (Inf) received 400 Ci (TVS)met 84 hr p.i. and were sacrificed 3 hr later. Inf plasma Pr 1D-PAGE showed bands at 55K similar to that found with LPS, with lower albumin concn. Coomassie stain and autorads of 2-D PAGEs showed intensified or new acidic peptide species in Inf plasma. PAGE autorads in vitro translations using liver mRNA and ribosomes showed major species in Inf systems at 49K (4+) and 62K (2+) compared to N. The data indicate acute phase protein induction by LPS or rickettsial infection.

  1. Identification of proteins involved in the adhesionof Candida species to different medical devices.

    Science.gov (United States)

    Núñez-Beltrán, Arianna; López-Romero, Everardo; Cuéllar-Cruz, Mayra

    2017-06-01

    Adhesion is the first step for Candida species to form biofilms on medical devices implanted in the human host. Both the physicochemical nature of the biomaterial and cell wall proteins (CWP) of the pathogen play a determinant role in the process. While it is true that some CWP have been identified in vitro, little is known about the CWP of pathogenic species of Candida involved in adhesion. On this background, we considered it important to investigate the potential role of CWP of C. albicans, C. glabrata, C. krusei and C. parapsilosis in adhesion to different medical devices. Our results indicate that the four species strongly adher to polyvinyl chloride (PVC) devices, followed by polyurethane and finally by silicone. It was interesting to identify fructose-bisphosphate aldolase (Fba1) and enolase 1 (Eno1) as the CWP involved in adhesion of C. albicans, C. glabrata and C. krusei to PVC devices whereas phosphoglycerate kinase (Pgk) and Eno1 allow C. parapsilosis to adher to silicone-made implants. Results presented here suggest that these CWP participate in the initial event of adhesion and are probably followed by other proteins that covalently bind to the biomaterial thus providing conditions for biofilm formation and eventually the onset of infection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Stimulated synthesis of plasma protein species in Q fever and endotoxemia

    International Nuclear Information System (INIS)

    Picking, W.D.; Ershadi, M.; Hackstadt, T.; Paretsky, D.

    1987-01-01

    Q fever stimulates hepatic transcription and translation. Products of stimulated transcription have been identified, but not of translation. Protein (Pr) synthesis and rPr S6 phosphorylation correlated. The authors now report stimulated synthesis of plasma Pr species in early febrile responses to Q fever and Coxiella burnetii lipopolysaccharide (LPS). Guinea pigs received 400 μg LPS intraperitoneally and 7 hr later 250 μCi L-[ 35 S]met, then sacrificed 3 hr later. Plasma Pr sp act (cpm/mg Pr) increased 2.3X over controls (N). Exptl plasma Pr PAGE autorads showed intensified Pr bands at M/sub r/ 55K. Guinea pigs infected with C. burnetii (Inf) received 400 μCi [ 35 S]met 84 hr p.i. and were sacrificed 3 hr later. Inf plasma Pr 1D-PAGE showed bands at 55K similar to that found with LPS, with lower albumin concn. Coomassie stain and autorads of 2-D PAGEs showed intensified or new acidic peptide species in Inf plasma. PAGE autorads in vitro translations using liver mRNA and ribosomes showed major species in Inf systems at 49K (4+) and 62K (2+) compared to N. The data indicate acute phase protein induction by LPS or rickettsial infection

  3. DNA-dependent protein kinase inhibits AID-induced antibody gene conversion.

    Directory of Open Access Journals (Sweden)

    Adam J L Cook

    2007-04-01

    Full Text Available Affinity maturation and class switching of antibodies requires activation-induced cytidine deaminase (AID-dependent hypermutation of Ig V(DJ rearrangements and Ig S regions, respectively, in activated B cells. AID deaminates deoxycytidine bases in Ig genes, converting them into deoxyuridines. In V(DJ regions, subsequent excision of the deaminated bases by uracil-DNA glycosylase, or by mismatch repair, leads to further point mutation or gene conversion, depending on the species. In Ig S regions, nicking at the abasic sites produced by AID and uracil-DNA glycosylases results in staggered double-strand breaks, whose repair by nonhomologous end joining mediates Ig class switching. We have tested whether nonhomologous end joining also plays a role in V(DJ hypermutation using chicken DT40 cells deficient for Ku70 or the DNA-dependent protein kinase catalytic subunit (DNA-PKcs. Inactivation of the Ku70 or DNA-PKcs genes in DT40 cells elevated the rate of AID-induced gene conversion as much as 5-fold. Furthermore, DNA-PKcs-deficiency appeared to reduce point mutation. The data provide strong evidence that double-strand DNA ends capable of recruiting the DNA-dependent protein kinase complex are important intermediates in Ig V gene conversion.

  4. Functional consequences of climate change-induced plant species loss in a tallgrass prairie.

    Science.gov (United States)

    Craine, Joseph M; Nippert, Jesse B; Towne, E Gene; Tucker, Sally; Kembel, Steven W; Skibbe, Adam; McLauchlan, Kendra K

    2011-04-01

    Future climate change is likely to reduce the floristic diversity of grasslands. Yet the potential consequences of climate-induced plant species losses for the functioning of these ecosystems are poorly understood. We investigated how climate change might alter the functional composition of grasslands for Konza Prairie, a diverse tallgrass prairie in central North America. With species-specific climate envelopes, we show that a reduction in mean annual precipitation would preferentially remove species that are more abundant in the more productive lowland positions at Konza. As such, decreases in precipitation could reduce productivity not only by reducing water availability but by also removing species that inhabit the most productive areas and respond the most to climate variability. In support of this prediction, data on species abundance at Konza over 16 years show that species that are more abundant in lowlands than uplands are preferentially reduced in years with low precipitation. Climate change is likely to also preferentially remove species from particular functional groups and clades. For example, warming is forecast to preferentially remove perennials over annuals as well as Cyperaceae species. Despite these predictions, climate change is unlikely to unilaterally alter the functional composition of the tallgrass prairie flora, as many functional traits such as physiological drought tolerance and maximum photosynthetic rates showed little relationship with climate envelope parameters. In all, although climatic drying would indirectly alter grassland productivity through species loss patterns, the insurance afforded by biodiversity to ecosystem function is likely to be sustained in the face of climate change.

  5. Identification of proteins whose synthesis in Saccharomyces cerevisiae is induced by DNA damage and heat shock

    International Nuclear Information System (INIS)

    Gailit, James

    1990-01-01

    Protein synthesis in Saccharomyces cerevisiae after exposure to ultraviolet light (UV) was examined by two-dimensional gel electrophoresis of pulse-labelled proteins. The synthesis of 12 distinct proteins was induced by treatment with UV doses of 10-200 J/m 2 . The induced proteins differed in minimum dose necessary for induction, maximum dose at which induction still occurred and constitutive level present in unirradiated cells. A chemical mutagen, 4-nitroquinoline-1-oxide, induced synthesis of the same proteins. Induction after UV treatment was observed in seven different yeast strains, including three mutants deficient in DNA repair. Synthesis of five of the proteins was also induced by brief heat shock treatment. These five may be members of a family of proteins whose synthesis is regulated by two different pathways responding to different types of stress. (author)

  6. Near infra-red spectroscopy quantitative modelling of bivalve protein, lipid and glycogen composition using single-species versus multi-species calibration and validation sets

    Science.gov (United States)

    Bartlett, Jill K.; Maher, William A.; Purss, Matthew B. J.

    2018-03-01

    Near infrared spectroscopy (NIRS) quantitative modelling was used to measure the protein, lipid and glycogen composition of five marine bivalve species (Saccostrea glomerata, Ostrea angasi, Crassostrea gigas, Mytilus galloprovincialis and Anadara trapezia) from multiple locations and seasons. Predictive models were produced for each component using individual species and aggregated sample populations for the three oyster species (S. glomerata, O. angasi and C. gigas) and for all five bivalve species. Whole animal tissues were freeze dried, ground to > 20 μm and scanned by NIRS. Protein, lipid and glycogen composition were determined by traditional chemical analyses and calibration models developed to allow rapid NIRS-measurement of these components in the five bivalve species. Calibration modelling was performed using wavelet selection, genetic algorithms and partial least squares analysis. Model quality was assessed using RPIQ and RMESP. For protein composition, single species model results had RPIQ values between 2.4 and 3.5 and RMSEP between 8.6 and 18%, the three oyster model had an RPIQ of 2.6 and an RMSEP of 10.8% and the five bivalve species had an RPIQ of 3.6 and RMSEP of 8.7% respectively. For lipid composition, single species models achieved RPIQ values between 2.9 and 5.3 with RMSEP between 9.1 and 11.2%, the oyster model had an RPIQ of 3.6 and RMSEP of 6.8 and the five bivalve model had an RPIQ of 5.2 and RMSEP of 6.8% respectively. For glycogen composition, the single species models had RPIQs between 3.8 and 18.9 with RMSEP between 3.5 and 9.2%, the oyster model had an RPIQ of 5.5 and RMSEP of 7.1% and the five bivalve model had an RPIQ of 4 and RMSEP of 7.6% respectively. Comparison between individual species models and aggregated models for three oyster species and five bivalve species for each component indicate that aggregating data from like species produces high quality models with robust and reliable quantitative application. The benefit of

  7. Differences in protein expression among five species of stream stonefly (Plecoptera) along a latitudinal gradient in Japan.

    Science.gov (United States)

    Gamboa, Maribet; Tsuchiya, Maria Claret; Matsumoto, Suguru; Iwata, Hisato; Watanabe, Kozo

    2017-11-01

    Proteome variation among natural populations along an environmental gradient may provide insights into how the biological functions of species are related to their local adaptation. We investigated protein expression in five stream stonefly species from four geographic regions along a latitudinal gradient in Japan with varying climatic conditions. The extracted proteins were separated by two-dimensional gel electrophoresis and identified by matrix-assisted laser desorption/ionization of time-of-flight (MALDI TOF/TOF), yielding 446 proteins. Low interspecies variation in the proteome profiles was observed among five species within geographical regions, presumably due to the co-occurring species sharing the environments. However, large spatial variations in protein expression were found among four geographic regions, suggesting strong regulation of protein expression in heterogeneous environments, where the spatial variations were positively correlated with water temperature. We identified 21 unique proteins expressed specifically in a geographical region and six common proteins expressed throughout all regions. In warmer regions, metabolic proteins were upregulated, whereas proteins related to cold stress, the photoperiod, and mating were downregulated. Oxygen-related and energy-production proteins were upregulated in colder regions with higher altitudes. Thus, our proteomic approach is useful for identifying and understanding important biological functions related to local adaptations by populations of stoneflies. © 2017 Wiley Periodicals, Inc.

  8. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    Science.gov (United States)

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 induced macrophage apoptosis in a caspase-dependent manner. The loss of mitochondrial transmembrane potential (ΔΨm), mitochondrial translocation of Bax, and release of cytochrome c from mitochondria were observed in macrophages treated with MAV2052. Further, reactive oxygen species (ROS) production was required for the apoptosis induced by MAV2052. In addition, ROS and mitogen-activated protein kinases were involved in MAV2052-mediated TNF-α and IL-6 production. ROS-mediated activation of apoptosis signal-regulating kinase 1 (ASK1)-JNK pathway was a major signaling pathway for MAV2052-induced apoptosis. Moreover, MAV2052 bound to Toll-like receptor (TLR) 4 molecule and MAV2052-induced ROS production, ΔΨm loss, and apoptosis were all significantly reduced in TLR4(-/-) macrophages. Altogether, our results suggest that MAV2052 induces apoptotic cell death through TLR4 dependent ROS production and JNK pathway in murine macrophages.

  9. Phorbol ester tumor promoter induced the synthesis of two major cytoplasmic proteins: identity with two proteins induced under heat-shocked and glucose-starved conditions

    International Nuclear Information System (INIS)

    Zhang, H.; Chen, K.Y.; Liu, A.Y.C.

    1987-01-01

    The regulation of specific protein synthesis by the phorbol ester tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), was evaluated using the L-8 and C-2 myoblast and the 3T3-L1 fibroblast cell cultures. TPA increased, by 2-4 fold, the synthesis rates of two cytoplasmic proteins with apparent molecular weights of 89,000 and 74,000 as determined by SDS-polyacrylamide gel electrophoresis and autoradiography. The concentration of TPA and the time of incubation needed to elicit this induction was determined to be 10 μg/ml and 20 hrs, respectively. Increasing the concentration of TPA to 100, 200, and 500 ng/ml did not result in a greater magnitude of induction. The possibility that these two TPA-induced proteins may be identical to proteins with similar molecular weights induced under heat-shocked or glucose-starved conditions was evaluated by 1-D and 2-D gel electrophoresis and autoradiography. Results provided evidence that the TPA-induced 89,000- and 74,000-dalton proteins were identical to hsp 89 and hsp 74, 2 out of a set of 8-9 proteins induced under heat shocked conditions. Furthermore, they are identical to two of the set of glucose-regulated proteins induced under a glucose-starved condition

  10. Low dose radiation induced protein and its experimental and ophthalmic clinical research

    International Nuclear Information System (INIS)

    Shen Wei; Su Liaoyuan; Liu Fenju; Ding Jie; Li Longbiao; Pan Chengsi

    2001-01-01

    The protective effects of low dose radiation (LDR) induced protein on cellular impairments caused by some harmful chemical and physical factors were studied. Male Kunming mice were irradiated with LDR, then the spleen cells of the mice were broken with ultrasonic energy and then ultracentrifugalized. The supernatant solution contained with LDR induced protein. The newly emerging protein was detected by gel filtration and its molecular weight was determined by gel electrophoresis. The content of newly emerging protein (LDR induced protein) was determined by Lowry's method. The method of isotope incorporation was used to observe the biological activity and its influence factors, the protective effects of LDR induced protein on the cells impaired by irradiating with ultraviolet (UV), high doses of 60 Co γ-rays and exposed to heat respectively, and the stimulative effects of LDR induced protein on human peripheral blood lymphocytes. Newly emerging protein has been observed in the experiment. The molecular weight of the protein is in the region 76.9 KD+- - 110.0 KD+-, the yield of the protein was 613.33 +- 213.42 μg per 3 x 10 7 spleen cells. DPM values (isotope were incorporated) of normal and injured mice spleen cells increased significantly after stimulating with the solution contained LDR induced protein. It is concluded that LDR induced protein could be obtained from mice spleen cells exposed to 5 - 15 cGy radiation for 2 - 16 h. The protein had biological activity and was able to stimulate the transformation of the spleen cells in vitro. It had obvious protective effects on some impaired cells caused by high dose radiation, UV radiation, heat and so on. It also had stimulative effects on the transformation of peripheral blood T and B lymphocytes of healthy individual and patients with eye diseases. It indicates that LDR induced protein increased immune function of human

  11. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  12. A reactive oxygen species activation mechanism contributes to JS-K-induced apoptosis in human bladder cancer cells.

    Science.gov (United States)

    Qiu, Mingning; Chen, Lieqian; Tan, Guobin; Ke, Longzhi; Zhang, Sai; Chen, Hege; Liu, Jianjun

    2015-10-13

    Reactive oxygen species (ROS) and cellular oxidant stress are regulators of cancer cells. The alteration of redox status, which is induced by increased generation of ROS, results in increased vulnerability to oxidative stress. The aim of this study is to investigate the influence of O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate (JS-K, C13H16N6O8) on proliferation and apoptosis in bladder cancer cells and explored possible ROS-related mechanisms. Our results indicated that JS-K could suppress bladder cancer cell proliferation in a concentration- and time-dependent manner and induce apoptosis and ROS accumulation in a concentration-dependent manner. With increasing concentrations of JS-K, expression of proteins that are involved in cell apoptosis increased in a concentration-dependent manner. Additionally, the antioxidant N-acetylcysteine (NAC) reversed JS-K-induced cell apoptosis; conversely, the prooxidant oxidized glutathione (GSSG) exacerbated JS-K-induced cell apoptosis. Furthermore, we found that nitrites, which were generated from the oxidation of JS-K-released NO, induced apoptosis in bladder cancer cells to a lower extent through the ROS-related pathway. In addition, JS-K was shown to enhance the chemo-sensitivity of doxorubicin in bladder cancer cells. Taken together, the data suggest that JS-K-released NO induces bladder cancer cell apoptosis by increasing ROS levels, and nitrites resulting from oxidation of NO have a continuous apoptosis-inducing effect.

  13. Looking for prosocial genes: ITRAQ analysis of proteins involved in MDMA-induced sociability in mice.

    Science.gov (United States)

    Kuteykin-Teplyakov, Konstantin; Maldonado, Rafael

    2014-11-01

    Social behavior plays a fundamental role in life of many animal species, allowing the interaction between individuals and sharing of experiences, needs, and goals across them. In humans, some neuropsychiatric diseases, including anxiety, posttraumatic stress disorder and autism spectrum disorders, are often characterized by impaired sociability. Here we report that N-Methyl-3,4-methylenedioxyamphetamine (MDMA, "Ecstasy") at low dose (3mg/kg) has differential effects on mouse social behavior. In some animals, MDMA promotes sociability without hyperlocomotion, whereas in other mice it elevates locomotor activity without affecting sociability. Both WAY-100635, a selective antagonist of 5-HT1A receptor, and L-368899, a selective oxytocin receptor antagonist, abolish prosocial effects of MDMA. Differential quantitative analysis of brain proteome by isobaric tag for relative and absolute quantification technology (iTRAQ) revealed 21 specific proteins that were highly correlated with sociability, and allowed to distinguish between entactogenic prosocial and hyperlocomotor effects of MDMA on proteome level. Our data suggest particular relevance of neurotransmission mediated by GABA B receptor, as well as proteins involved in energy maintenance for MDMA-induced sociability. Functional association network for differentially expressed proteins in cerebral cortex, hippocampus and amygdala were identified. These results provide new information for understanding the neurobiological substrate of sociability and may help to discover new therapeutic approaches to modulate social behavior in patients suffering from social fear and low sociability. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  14. A cell wall protein-based vaccine candidate induce protective immune response against Sporothrix schenckii infection.

    Science.gov (United States)

    Portuondo, Deivys Leandro; Batista-Duharte, Alexander; Ferreira, Lucas Souza; Martínez, Damiana Téllez; Polesi, Marisa Campos; Duarte, Roberta Aparecida; de Paula E Silva, Ana Carolina Alves; Marcos, Caroline Maria; Almeida, Ana Marisa Fusco de; Carlos, Iracilda Zeppone

    2016-02-01

    Sporotrichosis is a subcutaneous mycosis caused by several closely related thermo-dimorphic fungi of the Sporothrix schenckii species complex, affecting humans and other mammals. In the last few years, new strategies have been proposed for controlling sporotrichosis owning to concerns about its growing incidence in humans, cats, and dogs in Brazil, as well as the toxicity and limited efficacy of conventional antifungal drugs. In this study, we assessed the immunogenicity and protective properties of two aluminum hydroxide (AH)-adsorbed S. schenckii cell wall protein (ssCWP)-based vaccine formulations in a mouse model of systemic S. schenckii infection. Fractioning by SDS-PAGE revealed nine protein bands, two of which were functionally characterized: a 44kDa peptide hydrolase and a 47kDa enolase, which was predicted to be an adhesin. Sera from immunized mice recognized the 47kDa enolase and another unidentified 71kDa protein, whereas serum from S. schenckii-infected mice recognized both these proteins plus another unidentified 9.4kDa protein. Furthermore, opsonization with the anti-ssCWP sera led to markedly increased phagocytosis and was able to strongly inhibit the fungus' adhesion to fibroblasts. Immunization with the higher-dose AH-adjuvanted formulation led to increased ex vivo release of IL-12, IFN-γ, IL-4, and IL-17, whereas only IL-12 and IFN-γ were induced by the higher-dose non-adjuvanted formulation. Lastly, passive transference of the higher-dose AH-adjuvanted formulation's anti-ssCWP serum was able to afford in vivo protection in a subsequent challenge with S. schenckii, becoming a viable vaccine candidate for further testing. Copyright © 2015 Elsevier GmbH. All rights reserved.

  15. Fragile X Mental Retardation Protein Is Required to Maintain Visual Conditioning-Induced Behavioral Plasticity by Limiting Local Protein Synthesis.

    Science.gov (United States)

    Liu, Han-Hsuan; Cline, Hollis T

    2016-07-06

    Fragile X mental retardation protein (FMRP) is thought to regulate neuronal plasticity by limiting dendritic protein synthesis, but direct demonstration of a requirement for FMRP control of local protein synthesis during behavioral plasticity is lacking. Here we tested whether FMRP knockdown in Xenopus optic tectum affects local protein synthesis in vivo and whether FMRP knockdown affects protein synthesis-dependent visual avoidance behavioral plasticity. We tagged newly synthesized proteins by incorporation of the noncanonical amino acid azidohomoalanine and visualized them with fluorescent noncanonical amino acid tagging (FUNCAT). Visual conditioning and FMRP knockdown produce similar increases in FUNCAT in tectal neuropil. Induction of visual conditioning-dependent behavioral plasticity occurs normally in FMRP knockdown animals, but plasticity degrades over 24 h. These results indicate that FMRP affects visual conditioning-induced local protein synthesis and is required to maintain the visual conditioning-induced behavioral plasticity. Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Exaggerated dendritic protein synthesis resulting from loss of fragile X mental retardation protein (FMRP) is thought to underlie cognitive deficits in FXS, but no direct evidence has demonstrated that FMRP-regulated dendritic protein synthesis affects behavioral plasticity in intact animals. Xenopus tadpoles exhibit a visual avoidance behavior that improves with visual conditioning in a protein synthesis-dependent manner. We showed that FMRP knockdown and visual conditioning dramatically increase protein synthesis in neuronal processes. Furthermore, induction of visual conditioning-dependent behavioral plasticity occurs normally after FMRP knockdown, but performance rapidly deteriorated in the absence of FMRP. These studies show that FMRP negatively regulates local protein synthesis and is required to maintain visual conditioning-induced

  16. Curcumin-induced inhibition of cellular reactive oxygen species generation: novel therapeutic implications.

    Science.gov (United States)

    Balasubramanyam, M; Koteswari, A Adaikala; Kumar, R Sampath; Monickaraj, S Finny; Maheswari, J Uma; Mohan, V

    2003-12-01

    There is evidence for increased levels of circulating reactive oxygen species (ROS) in diabetics, as indirectly inferred by the findings of increased lipid peroxidation and decreased antioxidant status. Direct measurements of intracellular generation of ROS using fluorescent dyes also demonstrate an association of oxidative stress with diabetes. Although phenolic compounds attenuate oxidative stress-related tissue damage, there are concerns over toxicity of synthetic phenolic antioxidants and this has considerably stimulated interest in investigating the role of natural phenolics in medicinal applications. Curcumin (the primary active principle in turmeric, Curcuma longa Linn.) has been claimed to represent a potential antioxidant and antiinflammatory agent with phytonutrient and bioprotective properties. However there are lack of molecular studies to demonstrate its cellular action and potential molecular targets. In this study the antioxidant effect of curcumin as a function of changes in cellular ROS generation was tested. Our results clearly demonstrate that curcumin abolished both phorbol-12 myristate-13 acetate (PMA) and thapsigargin-induced ROS generation in cells from control and diabetic subjects. The pattern of these ROS inhibitory effects as a function of dose-dependency suggests that curcumin mechanistically interferes with protein kinase C (PKC) and calcium regulation. Simultaneous measurements of ROS and Ca2+ influx suggest that a rise in cytosolic Ca2+ may be a trigger for increased ROS generation. We suggest that the antioxidant and antiangeogenic actions of curcumin, as a mechanism of inhibition of Ca2+ entry and PKC activity, should be further exploited to develop suitable and novel drugs for the treatment of diabetic retinopathy and other diabetic complications.

  17. Flagella from five Cronobacter species induce pro-inflammatory cytokines in macrophage derivatives from human monocytes.

    Directory of Open Access Journals (Sweden)

    Ariadnna Cruz-Córdova

    Full Text Available Cronobacter spp. are opportunistic pathogens linked to lie-threatening infections in neonates and contaminated powdered infant formula that has been epidemiologically associated with these cases. Clinical symptoms of Cronobacter include necrotizing enterocolitis, bacteremia, and meningitis. Flagella from C. sakazakii are involved in biofilm formation and its adhesion to epithelial cells. We investigated the role of flagella from C. sakazakii ST1 and ST4, C. malonaticus, C. muytjensii, C. turicensis and C. dublinensis during the activation of cytokines (IL-8, TNF-α, and IL-10 in macrophage derivatives from human monocytes, which has not been extensively studied. The production and identity of flagella from the five Cronobacter species were visualized and recognized with anti-flagella antibodies by immunogold labeling through transmission electron microscopy. Purified flagella were dissociated into monomers in 12% SDS-PAGE Coomassie blue-stained gels showing a band of ∼28 kDa and, in addition, mass spectrometry revealed the presence of several peptides that correspond to flagellin. Flagella (100 ng induced the release of IL-8 (3314-6025 pg/ml, TNF-α (39-359 pg/ml, and IL-10 (2-96 pg/ml, in macrophage isolates from human monocytes and similar results were obtained when flagella were dissociated into monomers. Inhibition assays using three dilutions of anti-flagella antibodies (1∶10, 1∶100, and 1∶200 suppressed the secretion of IL-8, TNF-α, and IL-10 between 95-100% using 100 ng of protein. A transfection assay using 293-hTLR5 cells showed IL-8 release of 197 pg/ml and suppression in the secretion of IL-8 when anti-hTLR5-IgA antibodies were used at different concentrations. These observations suggest that flagella and flagellin are involved in an inflammatory response dependent on TLR5 recognition, which could contribute to the pathogenesis of the bacteria.

  18. Glycidamide inhibits progesterone production through reactive oxygen species-induced apoptosis in R2C Rat Leydig Cells.

    Science.gov (United States)

    Li, Mingwei; Sun, Jianxia; Zou, Feiyan; Bai, Shun; Jiang, Xinwei; Jiao, Rui; Ou, Shiyi; Zhang, Hui; Su, Zhijian; Huang, Yadong; Bai, Weibin

    2017-10-01

    The food contaminant acrylamide (AA) is usually recognized as a probable human carcinogen. In addition, AA has also been found able to induce male infertility in animals. Interestingly, resent research work revealed that the toxic effect of AA on the ability of male reproduction in vivo may due to glycidamide (GA) which is the metabolite of AA. In this study, R2C Leydig cells was used to investigate the toxic effects of GA on progesterone production. GA caused dose-dependent inhibition on the cell growth, with IC 25 , IC 50, and IC 75 values found at 0.635, 0.872, and 1.198 mM, respectively. The results of single cell gel/Comet assay showed that GA significantly induced early-phase cell apoptosis, reduced progesterone production, as well as decreasing the protein expression of steroidogenic acute regulatory (StAR) in R2C cells. Furthermore, GA induced overproduction of intracellular reactive oxygen species (ROS), upregulated Bax expression, decreased mitochondrial membrane potential, and triggered mitochondria-mediated cell apoptosis. Consequently, the downstream effector caspase-3 was activated, resulting in Leydig cells apoptosis. Overall, our results showed that GA could damage R2C Leydig cells by the lesion of the ability of progesterone genesis and inducing cells apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Mare’s milk: composition and protein fraction in comparison with different milk species

    Directory of Open Access Journals (Sweden)

    Krešimir Kuterovac

    2011-06-01

    Full Text Available The usage of the mare’s milk as functional food especial for children intolerant to cow’s milk, with neurodermitis, allergies and similar disorders desiring to improve the quality of life is fiercely debated for last decades but there were no scientific studies to suggest such use of mare’s milk based on scientific research. The objectives of this study were to determine similarities of mare’s milk in comparison with milk of ruminants (cattle, sheep and goat and human milk in terms of milk composition and protein fraction as whey proteins, caseins and micelles size. All differences were discussed regarding usage of mare’s milk in human diet and compared to milk which is usually used in human nutrition. Regarding composition, the mare’s milk is similar to human milk in of crude protein, salt and lactose content, but it has significantly lower content of fat. Fractions of main proteins are similar between human and mare’s milk, except nitrogen casein (casein N which has twice lower content in human than in mare’s milk. Content of casein N from all ruminants’ milk differ much more. Just for true whey N and non-protein nitrogen (NPN similar content as human and mare’s milk has also goat milk. The casein content is the lowest in human milk; this content is three times greater in mare’s milk and six to seven times greater in goat’s and cow’s milk, while in sheep’s milk it is more than 10 times grater. In many components and fractions mare’s milk is more similar to human milk than milk of ruminants. A detail comparison of protein fraction shows quite large differences between milk of different species. More study and clinical research are needed that can recommend usage of mare’s milk in human diet as functional food on scientific bases.

  20. Transfer of alien genes by means of induced translocation in oats and other crop species

    International Nuclear Information System (INIS)

    Thomas, H.; Taing Aung

    1977-01-01

    Some of the best sources of resistance to mildew, which is the most important disease of the oat crop in the United Kingdom, occur in related weed species. The mildew resistance found in a genotype of the tetraploid species Avena barbata has been transferred into the germ plasm of the cultivated hexaploid species A. sativa by means of an induced translocation. The procedures adopted to isolate the desirable translocation and to determine its breeding behaviour are described. A number of alien genes have been transferred into wheat by means of induced translocations and genetic induction, but their successful introduction into commercial varieties has been limited. In this paper, the use and limitations of alien transfers as breeding material are discussed. (author)

  1. Comparative genomic analyses of transport proteins encoded within the genomes of Leptospira species.

    Science.gov (United States)

    Buyuktimkin, Bora; Saier, Milton H

    2015-11-01

    Select species of the bacterial genus Leptospira are causative agents of leptospirosis, an emerging global zoonosis affecting nearly one million people worldwide annually. We examined two Leptospira pathogens, Leptospira interrogans serovar Lai str. 56601 and Leptospira borgpetersenii serovar Hardjo-bovis str. L550, as well as the free-living leptospiral saprophyte, Leptospira biflexa serovar Patoc str. 'Patoc 1 (Ames)'. The transport proteins of these leptospires were identified and compared using bioinformatics to gain an appreciation for which proteins may be related to pathogenesis and saprophytism. L. biflexa possesses a disproportionately high number of secondary carriers for metabolite uptake and environmental adaptability as well as an increased number of inorganic cation transporters providing ionic homeostasis and effective osmoregulation in a rapidly changing environment. L. interrogans and L. borgpetersenii possess far fewer transporters, but those that they have are remarkably similar, with near-equivalent representation in most transporter families. These two Leptospira pathogens also possess intact sphingomyelinases, holins, and virulence-related outer membrane porins. These virulence-related factors, in conjunction with decreased transporter substrate versatility, indicate that pathogenicity was accompanied by progressively narrowing ecological niches and the emergence of a limited set of proteins responsible for host invasion. The variability of host tropism and mortality rates by infectious leptospires suggests that small differences in individual sets of proteins play important physiological and pathological roles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Comparative analyses of transport proteins encoded within the genomes of Leptospira species.

    Science.gov (United States)

    Buyuktimkin, Bora; Saier, Milton H

    2016-09-01

    Select species of the bacterial genus Leptospira are causative agents of leptospirosis, an emerging global zoonosis affecting nearly one million people worldwide annually. We examined two Leptospira pathogens, Leptospira interrogans serovar Lai str. 56601 and Leptospira borgpetersenii serovar Hardjo-bovis str. L550, as well as the free-living leptospiral saprophyte, Leptospira biflexa serovar Patoc str. 'Patoc 1 (Ames)'. The transport proteins of these leptospires were identified and compared using bioinformatics to gain an appreciation for which proteins may be related to pathogenesis and saprophytism. L. biflexa possesses a disproportionately high number of secondary carriers for metabolite uptake and environmental adaptability as well as an increased number of inorganic cation transporters providing ionic homeostasis and effective osmoregulation in a rapidly changing environment. L. interrogans and L. borgpetersenii possess far fewer transporters, but those that they all have are remarkably similar, with near-equivalent representation in most transporter families. These two Leptospira pathogens also possess intact sphingomyelinases, holins, and virulence-related outer membrane porins. These virulence-related factors, in conjunction with decreased transporter substrate versatility, indicate that pathogenicity arose in Leptospira correlating to progressively narrowing ecological niches and the emergence of a limited set of proteins responsible for host invasion. The variability of host tropism and mortality rates by infectious leptospires suggests that small differences in individual sets of proteins play important physiological and pathological roles. Copyright © 2016. Published by Elsevier Ltd.

  3. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice.

    Science.gov (United States)

    Shen, Hai-Ying; He, Jin-Cai; Wang, Yumei; Huang, Qing-Yuan; Chen, Jiang-Fan

    2005-12-02

    As key molecular chaperone proteins, heat shock proteins (HSPs) represent an important cellular protective mechanism against neuronal cell death in various models of neurological disorders. In this study, we investigated the effect as well as the molecular mechanism of geldanamycin (GA), an inhibitor of Hsp90, on 1-methyl-4-pheny-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity, a mouse model of Parkinson disease. Neurochemical analysis showed that pretreatment with GA (via intracerebral ventricular injection 24 h prior to MPTP treatment) increased residual dopamine content and tyrosine hydroxylase immunoreactivity in the striatum 24 h after MPTP treatment. To dissect out the molecular mechanism underlying this neuroprotection, we showed that the GA-mediated protection against MPTP was associated with a reduction of cytosolic Hsp90 and an increase in Hsp70, with no significant changes in Hsp40 and Hsp25 levels. Furthermore, in parallel with the induction of Hsp70, striatal nuclear HSF1 levels and HSF1 binding to heat shock element sites in the Hsp70 promoter were significantly enhanced by the GA pretreatment. Together these results suggested that the molecular cascade leading to the induction of Hsp70 is critical to the neuroprotection afforded by GA against MPTP-induced neurotoxicity in the brain and that pharmacological inhibition of Hsp90 may represent a potential therapeutic strategy for Parkinson disease.

  4. Role of reactive nitrogen species generated via inducible nitric oxide synthase in vesicant-induced lung injury, inflammation and altered lung functioning

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilvr@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Shen, Jianliang; Patel-Vayas, Kinal; Gow, Andrew J. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy Piscataway, NJ (United States)

    2012-05-15

    Pulmonary toxicity induced by sulfur mustard and related vesicants is associated with oxidative stress. In the present studies we analyzed the role of reactive nitrogen species (RNS) generated via inducible nitric oxide synthase (iNOS) in lung injury and inflammation induced by vesicants using 2-chloroethyl ethyl sulfide (CEES) as a model. C57Bl/6 (WT) and iNOS −/− mice were sacrificed 3 days or 14 days following intratracheal administration of CEES (6 mg/kg) or control. CEES intoxication resulted in transient (3 days) increases in bronchoalveolar lavage (BAL) cell and protein content in WT, but not iNOS −/− mice. This correlated with expression of Ym1, a marker of oxidative stress in alveolar macrophages and epithelial cells. In contrast, in iNOS −/− mice, Ym1 was only observed 14 days post-exposure in enlarged alveolar macrophages, suggesting that they are alternatively activated. This is supported by findings that lung tumor necrosis factor and lipocalin Lcn2 expression, mediators involved in tissue repair were also upregulated at this time in iNOS −/− mice. Conversely, CEES-induced increases in the proinflammatory genes, monocyte chemotactic protein-1 and cyclooxygenase-2, were abrogated in iNOS −/− mice. In WT mice, CEES treatment also resulted in increases in total lung resistance and decreases in compliance in response to methacholine, effects blunted by loss of iNOS. These data demonstrate that RNS, generated via iNOS play a role in the pathogenic responses to CEES, augmenting oxidative stress and inflammation and suppressing tissue repair. Elucidating inflammatory mechanisms mediating vesicant-induced lung injury is key to the development of therapeutics to treat mustard poisoning. -- Highlights: ► Lung injury, inflammation and oxidative stress are induced by the model vesicant CEES ► RNS generated via iNOS are important in the CEES-induced pulmonary toxicity ► iNOS −/− mice are protected from CEES-induced lung toxicity and

  5. Training-induced changes in membrane transport proteins of human skeletal muscle

    DEFF Research Database (Denmark)

    Juel, C.

    2006-01-01

    Training improves human physical performance by inducing structural and cardiovascular changes, metabolic changes, and changes in the density of membrane transport proteins. This review focuses on the training-induced changes in proteins involved in sarcolemmal membrane transport. It is concluded...

  6. Proteomic profiling of human keratinocytes undergoing UVB-induced alternative differentiation reveals TRIpartite Motif Protein 29 as a survival factor.

    Directory of Open Access Journals (Sweden)

    Véronique Bertrand-Vallery

    Full Text Available BACKGROUND: Repeated exposures to UVB of human keratinocytes lacking functional p16(INK-4a and able to differentiate induce an alternative state of differentiation rather than stress-induced premature senescence. METHODOLOGY/PRINCIPAL FINDINGS: A 2D-DIGE proteomic profiling of this alternative state of differentiation was performed herein at various times after the exposures to UVB. Sixty-nine differentially abundant protein species were identified by mass spectrometry, many of which are involved in keratinocyte differentiation and survival. Among these protein species was TRIpartite Motif Protein 29 (TRIM29. Increased abundance of TRIM29 following UVB exposures was validated by Western blot using specific antibody and was also further analysed by immunochemistry and by RT-PCR. TRIM29 was found very abundant in keratinocytes and reconstructed epidermis. Knocking down the expression of TRIM29 by short-hairpin RNA interference decreased the viability of keratinocytes after UVB exposure. The abundance of involucrin mRNA, a marker of late differentiation, increased concomitantly. In TRIM29-knocked down reconstructed epidermis, the presence of picnotic cells revealed cell injury. Increased abundance of TRIM29 was also observed upon exposure to DNA damaging agents and PKC activation. The UVB-induced increase of TRIM29 abundance was dependent on a PKC signaling pathway, likely PKCdelta. CONCLUSIONS/SIGNIFICANCE: These findings suggest that TRIM29 allows keratinocytes to enter a protective alternative differentiation process rather than die massively after stress.

  7. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of homocysteine-induced endoplasmic reticulum protein

    Energy Technology Data Exchange (ETDEWEB)

    Maeda, Tomoji, E-mail: t-maeda@nichiyaku.ac.jp [Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-Cho, Shiwagun, Iwate, 028-3603 (Japan); Tanabe-Fujimura, Chiaki; Fujita, Yu; Abe, Chihiro; Nanakida, Yoshino; Zou, Kun; Liu, Junjun; Liu, Shuyu [Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-Cho, Shiwagun, Iwate, 028-3603 (Japan); Nakajima, Toshihiro [Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku, Tokyo, Tokyo, 160-8402 (Japan); Komano, Hiroto, E-mail: hkomano@iwate-med.ac.jp [Department of Neuroscience, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba-Cho, Shiwagun, Iwate, 028-3603 (Japan)

    2016-05-13

    Homocysteine-induced endoplasmic reticulum (ER) protein (Herp) is an ER stress-inducible key regulatory component of ER-associated degradation (ERAD) that has been implicated in insulin hypersecretion in diabetic mouse models. Herp expression is tightly regulated. Additionally, Herp is a highly labile protein and interacts with various proteins, which are characteristic features of ubiquitinated protein. Previously, we reported that ubiquitination is not required for Herp degradation. In addition, we found that the lysine residues of Herp (which are ubiquitinated by E3 ubiquitin ligase) are not sufficient for regulation of Herp degradation. In this study, we found that NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated targeting of Herp to the proteasome was involved in Herp degradation. In addition, we found that Herp protein levels were markedly elevated in synoviolin-null cells. The E3 ubiquitin ligase synoviolin is a central component of ERAD and is involved in the degradation of nuclear factor E2-related factor-2 (Nrf2), which regulates cellular reactive oxygen species. Additionally, NQO1 is a target of Nrf2. Thus, our findings indicated that NQO1 could stabilize Herp protein expression via indirect regulation of synoviolin. -- Highlights: •Herp interacts with NQO1. •NQO1 regulates Herp degradation.

  8. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of homocysteine-induced endoplasmic reticulum protein

    International Nuclear Information System (INIS)

    Maeda, Tomoji; Tanabe-Fujimura, Chiaki; Fujita, Yu; Abe, Chihiro; Nanakida, Yoshino; Zou, Kun; Liu, Junjun; Liu, Shuyu; Nakajima, Toshihiro; Komano, Hiroto

    2016-01-01

    Homocysteine-induced endoplasmic reticulum (ER) protein (Herp) is an ER stress-inducible key regulatory component of ER-associated degradation (ERAD) that has been implicated in insulin hypersecretion in diabetic mouse models. Herp expression is tightly regulated. Additionally, Herp is a highly labile protein and interacts with various proteins, which are characteristic features of ubiquitinated protein. Previously, we reported that ubiquitination is not required for Herp degradation. In addition, we found that the lysine residues of Herp (which are ubiquitinated by E3 ubiquitin ligase) are not sufficient for regulation of Herp degradation. In this study, we found that NAD(P)H quinone oxidoreductase 1 (NQO1)-mediated targeting of Herp to the proteasome was involved in Herp degradation. In addition, we found that Herp protein levels were markedly elevated in synoviolin-null cells. The E3 ubiquitin ligase synoviolin is a central component of ERAD and is involved in the degradation of nuclear factor E2-related factor-2 (Nrf2), which regulates cellular reactive oxygen species. Additionally, NQO1 is a target of Nrf2. Thus, our findings indicated that NQO1 could stabilize Herp protein expression via indirect regulation of synoviolin. -- Highlights: •Herp interacts with NQO1. •NQO1 regulates Herp degradation.

  9. Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

    Directory of Open Access Journals (Sweden)

    Yoon TH

    2012-03-01

    Full Text Available Ki-Chun Yoo1, Chang-Hwan Yoon1, Dongwook Kwon2, Kyung-Hwan Hyun1, Soo Jung Woo1, Rae-Kwon Kim1, Eun-Jung Lim1, Yongjoon Suh1, Min-Jung Kim1, Tae Hyun Yoon2, Su-Jae Lee11Laboratory of Molecular Biochemistry, 2Laboratory of Nanoscale Characterization and Environmental Chemistry, Department of Chemistry, Hanyang University, Seoul, Republic of KoreaBackground: Titanium dioxide (TiO2 has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined.Methods and results: In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25–70 together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25–70 and ultraviolet A irradiation.Conclusion: These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein

  10. Natural history of food protein-induced enterocolitis syndrome.

    Science.gov (United States)

    Katz, Yitzhak; Goldberg, Michael R

    2014-06-01

    Because of the paucity of reports and variability in the diagnostic criteria utilized, little is known regarding the natural outcome of patients with food protein-induced enterocolitis syndrome (FPIES). Data extracted from referenced manuscripts, as well as allergists' unpublished observations from across the globe, were used to form a cohesive opinion regarding its natural outcome. All authors concur that there is a generally high rate of recovery for FPIES. The most common foods causing FPIES are milk and soy. Depending upon which study is analyzed, by the age of 3-5 years, approximately 90% of patients recover from their disease. Recovery from FPIES to solid foods, occurs at a later age, but may reflect a later stage of introduction of the food into the diet. An important clinical outcome, although not common, is a shift from FPIES food hypersensitivity to an IgE-mediated food allergy. This necessitates a change in the oral food challenge protocol, if IgE-mediated sensitization is detected. Over the past several years, there has been an increasing awareness of FPIES. This knowledge should lead to a more timely diagnosis and should reassure parents and practitioners alike regarding its favorable course.

  11. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent: effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis.

    Science.gov (United States)

    Binet, François; Cavalli, Hélène; Moisan, Eliane; Girard, Denis

    2006-02-01

    The anti-cancer drug arsenic trioxide (AT) induces apoptosis in a variety of transformed or proliferating cells. However, little is known regarding its ability to induce apoptosis in terminally differentiated cells, such as neutrophils. Because neutropenia has been reported in some cancer patients after AT treatment, we hypothesised that AT could induce neutrophil apoptosis, an issue that has never been investigated. Herein, we found that AT-induced neutrophil apoptosis and gelsolin degradation via caspases. AT did not increase neutrophil superoxide production and did not induce mitochondrial generation of reactive oxygen species. AT-induced apoptosis in PLB-985 and X-linked chronic granulomatous disease (CGD) cells (PLB-985 cells deficient in gp91(phox) mimicking CGD) at the same potency. Addition of catalase, an inhibitor of H2O2, reversed AT-induced apoptosis and degradation of the cytoskeletal proteins gelsolin, alpha-tubulin and lamin B1. Unexpectedly, AT-induced de novo protein synthesis, which was reversed by catalase. Cycloheximide partially reversed AT-induced apoptosis. We conclude that AT induces neutrophil apoptosis by a caspase-dependent mechanism and via de novo protein synthesis. H2O2 is of major importance in AT-induced neutrophil apoptosis but its production does not originate from nicotinamide adenine dinucleotide phosphate dehydrogenase activation and mitochondria. Cytoskeletal structures other than microtubules can now be considered as novel targets of AT.

  12. Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.

    Science.gov (United States)

    Shahid, Muhammad; Pourrut, Bertrand; Dumat, Camille; Nadeem, Muhammad; Aslam, Muhammad; Pinelli, Eric

    2014-01-01

    As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and

  13. Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zheng-Hai; Cao, Wen-Xiang; Su, Min-Xia; Chen, Xiuping; Lu, Jin-Jian, E-mail: jinjianlu@umac.mo

    2017-04-15

    Osimertinib (OSI), also known as AZD9291, is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been approved for the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR T790M mutation. Herein, we indicated for the first time that OSI increased the accumulations of cytoplasmic vacuoles, the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II), and the formation of GFP-LC3 puncta in various cancer cells. The OSI-induced expression of LC3-II was further increased when combined treatment with chloroquine (CQ), an autophagy inhibitor, and the mRFP-EGFP-LC3 plasmid-transfected cells exposed to OSI led to the production of more red-fluorescent puncta than green-fluorescent puncta, indicating OSI induced autophagic flux in the NSCLC cells. Knockdown of EGFR showed no effect on the OSI-induced expression of LC3-II in NCI-H1975 cells. In addition, OSI increased reactive oxygen species (ROS) generation and scavenge of ROS via pretreatment with N-acetyl-L-cysteine (NAC), catalase (CAT), or vitamin E (Vita E) significantly inhibited OSI-induced the accumulations of cytoplasmic vacuoles, the expression of LC3-II, as well as the formation of GFP-LC3 puncta. Combinative treatment with CQ could not remarkably change the OSI-induced cell viability decrease, whereas the OSI-induced cell viability decrease and apoptosis could be reversed through pretreatment with NAC, CAT, and Vita E, respectively. Taken together, this is the first report that OSI induces an accompanied autophagy and the generation of ROS is critical for the OSI-induced autophagy, cell viability decrease, and apoptosis in NSCLC cells. - Highlights: • Osimertinib induced the expressions of cytoplasmic vacuoles and autophagic markers in different cancer cells. • Osimertinib induced autophagic flux in NSCLC NCI-H1975 and HCC827 cell lines. • ROS generation contributed to osimertinib-induced cytoplasmic

  14. Osimertinib induces autophagy and apoptosis via reactive oxygen species generation in non-small cell lung cancer cells

    International Nuclear Information System (INIS)

    Tang, Zheng-Hai; Cao, Wen-Xiang; Su, Min-Xia; Chen, Xiuping; Lu, Jin-Jian

    2017-01-01

    Osimertinib (OSI), also known as AZD9291, is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has been approved for the treatment of non-small cell lung cancer (NSCLC) patients harboring EGFR T790M mutation. Herein, we indicated for the first time that OSI increased the accumulations of cytoplasmic vacuoles, the expression of phosphatidylethanolamine-modified microtubule-associated protein light-chain 3 (LC3-II), and the formation of GFP-LC3 puncta in various cancer cells. The OSI-induced expression of LC3-II was further increased when combined treatment with chloroquine (CQ), an autophagy inhibitor, and the mRFP-EGFP-LC3 plasmid-transfected cells exposed to OSI led to the production of more red-fluorescent puncta than green-fluorescent puncta, indicating OSI induced autophagic flux in the NSCLC cells. Knockdown of EGFR showed no effect on the OSI-induced expression of LC3-II in NCI-H1975 cells. In addition, OSI increased reactive oxygen species (ROS) generation and scavenge of ROS via pretreatment with N-acetyl-L-cysteine (NAC), catalase (CAT), or vitamin E (Vita E) significantly inhibited OSI-induced the accumulations of cytoplasmic vacuoles, the expression of LC3-II, as well as the formation of GFP-LC3 puncta. Combinative treatment with CQ could not remarkably change the OSI-induced cell viability decrease, whereas the OSI-induced cell viability decrease and apoptosis could be reversed through pretreatment with NAC, CAT, and Vita E, respectively. Taken together, this is the first report that OSI induces an accompanied autophagy and the generation of ROS is critical for the OSI-induced autophagy, cell viability decrease, and apoptosis in NSCLC cells. - Highlights: • Osimertinib induced the expressions of cytoplasmic vacuoles and autophagic markers in different cancer cells. • Osimertinib induced autophagic flux in NSCLC NCI-H1975 and HCC827 cell lines. • ROS generation contributed to osimertinib-induced cytoplasmic

  15. Gross cystic disease fluid protein-15/prolactin-inducible protein as a biomarker for keratoconus disease.

    Directory of Open Access Journals (Sweden)

    Shrestha Priyadarsini

    Full Text Available Keratoconus (KC is a bilateral degenerative disease of the cornea characterized by corneal bulging, stromal thinning, and scarring. The etiology of the disease is unknown. In this study, we identified a new biomarker for KC that is present in vivo and in vitro. In vivo, tear samples were collected from age-matched controls with no eye disease (n = 36 and KC diagnosed subjects (n = 17. Samples were processed for proteomics using LC-MS/MS. In vitro, cells were isolated from controls (Human Corneal Fibroblasts-HCF and KC subjects (Human Keratoconus Cells-HKC and stimulated with a Vitamin C (VitC derivative for 4 weeks, and with one of the three transforming growth factor-beta (TGF-β isoforms. Samples were analyzed using real-time PCR and Western Blots. By using proteomics analysis, the Gross cystic disease fluid protein-15 (GCDFP-15 or prolactin-inducible protein (PIP was found to be the best independent biomarker able to discriminate between KC and controls. The intensity of GCDFP-15/PIP was significantly higher in healthy subjects compared to KC-diagnosed. Similar findings were seen in vitro, using a 3D culture model. All three TGF-β isoforms significantly down-regulated the expression of GCDFP-15/PIP. Zinc-alpha-2-glycoprotein (AZGP1, a protein that binds to PIP, was identified by proteomics and cell culture to be highly regulated. In this study by different complementary techniques we confirmed the potential role of GCDFP-15/PIP as a novel biomarker for KC disease. It is likely that exploring the GCDFP-15/PIP-AZGP1 interactions will help better understand the mechanism of KC disease.

  16. Novel roles of folic acid as redox regulator: Modulation of reactive oxygen species sinker protein expression and maintenance of mitochondrial redox homeostasis on hepatocellular carcinoma.

    Science.gov (United States)

    Lai, Kun-Goung; Chen, Chi-Fen; Ho, Chun-Te; Liu, Jun-Jen; Liu, Tsan-Zon; Chern, Chi-Liang

    2017-06-01

    We provide herein several lines of evidence to substantiate that folic acid (or folate) is a micronutrient capable of functioning as a novel redox regulator on hepatocellular carcinoma. First, we uncovered that folate deficiency could profoundly downregulate two prominent anti-apoptotic effectors including survivin and glucose-regulated protein-78. Silencing of either survivin or glucose-regulated protein-78 via small interfering RNA interfering technique established that both effectors could serve as reactive oxygen species sinker proteins. Second, folate deficiency-triggered oxidative-nitrosative stress could strongly induce endoplasmic reticulum stress that in turn could provoke cellular glutathione depletion through the modulation of the following two crucial events: (1) folate deficiency could strongly inhibit Bcl-2 expression leading to severe suppression of the mitochondrial glutathione pool and (2) folate deficiency could also profoundly inhibit two key enzymes that governing cellular glutathione redox regulation including γ-glutamylcysteinyl synthetase heavy chain, a catalytic enzyme for glutathione biosynthesis, and mitochondrial isocitrate dehydrogenase 2, an enzyme responsible for providing nicotinamide adenine dinucleotide phosphate necessary for regenerating oxidized glutathione disulfide back to glutathione via mitochondrial glutathione reductase. Collectively, we add to the literature new data to strengthen the notion that folate is an essential micronutrient that confers a novel role to combat reactive oxygen species insults and thus serves as a redox regulator via upregulating reactive oxygen species sinker proteins and averting mitochondrial glutathione depletion through proper maintenance of redox homeostasis via positively regulating glutathione biosynthesis, glutathione transporting system, and mitochondrial glutathione recycling process.

  17. The intrinsically disordered structural platform of the plant defence hub protein RPM1-interacting protein 4 provides insights into its mode of action in the host-pathogen interface and evolution of the nitrate-induced domain protein family.

    Science.gov (United States)

    Sun, Xiaolin; Greenwood, David R; Templeton, Matthew D; Libich, David S; McGhie, Tony K; Xue, Bin; Yoon, Minsoo; Cui, Wei; Kirk, Christopher A; Jones, William T; Uversky, Vladimir N; Rikkerink, Erik H A

    2014-09-01

    Arabidopsis thaliana (At) RPM1-interacting protein 4 (RIN4), targeted by many defence-suppressing bacterial type III effectors and monitored by several resistance proteins, regulates plant immune responses to pathogen-associated molecular patterns and type III effectors. Little is known about the overall protein structure of AtRIN4, especially in its unbound form, and the relevance of structure to its diverse biological functions. AtRIN4 contains two nitrate-induced (NOI) domains and is a member of the NOI family. Using experimental and bioinformatic approaches, we demonstrate that the unbound AtRIN4 is intrinsically disordered under physiological conditions. The intrinsically disordered polypeptide chain of AtRIN4 is interspersed with molecular recognition features (MoRFs) and anchor-identified long-binding regions, potentially allowing it to undergo disorder-to-order transitions upon binding to partner(s). A poly-l-proline II structure, often responsible for protein recognition, is also identified in AtRIN4. By performing bioinformatics analyses on RIN4 homologues from different plant species and the NOI proteins from Arabidopsis, we infer the conservation of intrinsic disorder, MoRFs and long-binding regions of AtRIN4 in other plant species and the NOI family. Intrinsic disorder and MoRFs could provide RIN4 proteins with the binding promiscuity and plasticity required to act as hubs in a pivotal position within plant defence signalling cascades. © 2014 FEBS.

  18. Involvement of phorbol-12-myristate-13-acetate-induced protein 1 in goniothalamin-induced TP53-dependent and -independent apoptosis in hepatocellular carcinoma-derived cells

    International Nuclear Information System (INIS)

    Kuo, Kung-Kai; Chen, Yi-Ling; Chen, Lih-Ren; Li, Chien-Feng; Lan, Yu-Hsuan; Chang, Fang-Rong; Wu, Yang-Chang; Shiue, Yow-Ling

    2011-01-01

    The objective was to investigate the upstream apoptotic mechanisms that were triggered by a styrylpyrone derivative, goniothalamin (GTN), in tumor protein p53 (TP53)-positive and -negative hepatocellular carcinoma (HCC)-derived cells. Effects of GTN were evaluated by the flow cytometry, alkaline comet assay, immunocytochemistry, small-hairpin RNA interference, mitochondria/cytosol fractionation, quantitative reverse transcription-polymerase chain reaction, immunoblotting analysis and caspase 3 activity assays in two HCC-derived cell lines. Results indicated that GTN triggered phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1, also known as NOXA)-mediated apoptosis via TP53-dependent and -independent pathways. In TP53-positive SK-Hep1 cells, GTN furthermore induced TP53 transcription-dependent and -independent apoptosis. After GTN treatment, accumulation of reactive oxygen species, formation of DNA double-strand breaks, transactivation of TP53 and/or PMAIP1 gene, translocation of TP53 and/or PMAIP1 proteins to mitochondria, release of cytochrome c from mitochondria, cleavage of caspases and induction of apoptosis in both cell lines were sustained. GTN might represent a novel class of anticancer drug that induces apoptosis in HCC-derived cells through PMAIP1 transactivation regardless of the status of TP53 gene. - Highlights: → Goniothalamin (GTN) induced apoptosis in hepatocellular carcinomas-derived cells. → The apoptosis induced by GTN is PMAIP1-dependent, regardless of TP53 status. → The apoptosis induced by GTN might be TP53 transcription-dependent or -independent. → GTN-induced apoptosis is mitochondria- and caspases-mediated.

  19. Transcriptional Regulations on the Low-Temperature-Induced Floral Transition in an Orchidaceae Species, Dendrobium nobile: An Expressed Sequence Tags Analysis

    Directory of Open Access Journals (Sweden)

    Shan Liang

    2012-01-01

    Full Text Available Vernalization-induced flowering is a cold-relevant adaptation in many species, but little is known about the genetic basis behind in Orchidaceae species. Here, we reported a collection of 15017 expressed sequence tags (ESTs from the vernalized axillary buds of an Orchidaceae species, Dendrobium nobile, which were assembled for 9616 unique gene clusters. Functional enrichment analysis showed that genes in relation to the responses to stresses, especially in the form of low temperatures, and those involving in protein biosynthesis and chromatin assembly were significantly overrepresented during 40 days of vernalization. Additionally, a total of 59 putative flowering-relevant genes were recognized, including those homologous to known key players in vernalization pathways in temperate cereals or Arabidopsis, such as cereal VRN1, FT/VRN3, and Arabidopsis AGL19. Results from this study suggest that the networks regulating vernalization-induced floral transition are conserved, but just in a part, in D. nobile, temperate cereals, and Arabidopsis.

  20. Evolution of major milk proteins in Mus musculus and Mus spretus mouse species: a genoproteomic analysis

    Directory of Open Access Journals (Sweden)

    Panthier Jean-Jacques

    2011-01-01

    Full Text Available Abstract Background Due to their high level of genotypic and phenotypic variability, Mus spretus strains were introduced in laboratories to investigate the genetic determinism of complex phenotypes including quantitative trait loci. Mus spretus diverged from Mus musculus around 2.5 million years ago and exhibits on average a single nucleotide polymorphism (SNP in every 100 base pairs when compared with any of the classical laboratory strains. A genoproteomic approach was used to assess polymorphism of the major milk proteins between SEG/Pas and C57BL/6J, two inbred strains of mice representative of Mus spretus and Mus musculus species, respectively. Results The milk protein concentration was dramatically reduced in the SEG/Pas strain by comparison with the C57BL/6J strain (34 ± 9 g/L vs. 125 ± 12 g/L, respectively. Nine major proteins were identified in both milks using RP-HPLC, bi-dimensional electrophoresis and MALDI-Tof mass spectrometry. Two caseins (β and αs1 and the whey acidic protein (WAP, showed distinct chromatographic and electrophoresis behaviours. These differences were partly explained by the occurrence of amino acid substitutions and splicing variants revealed by cDNA sequencing. A total of 34 SNPs were identified in the coding and 3'untranslated regions of the SEG/Pas Csn1s1 (11, Csn2 (7 and Wap (8 genes. In addition, a 3 nucleotide deletion leading to the loss of a serine residue at position 93 was found in the SEG/Pas Wap gene. Conclusion SNP frequencies found in three milk protein-encoding genes between Mus spretus and Mus musculus is twice the values previously reported at the whole genome level. However, the protein structure and post-translational modifications seem not to be affected by SNPs characterized in our study. Splicing mechanisms (cryptic splice site usage, exon skipping, error-prone junction sequence, already identified in casein genes from other species, likely explain the existence of multiple αs1-casein

  1. Mutant Brucella abortus membrane fusogenic protein induces protection against challenge infection in mice.

    Science.gov (United States)

    de Souza Filho, Job Alves; de Paulo Martins, Vicente; Campos, Priscila Carneiro; Alves-Silva, Juliana; Santos, Nathalia V; de Oliveira, Fernanda Souza; Menezes, Gustavo B; Azevedo, Vasco; Cravero, Silvio Lorenzo; Oliveira, Sergio Costa

    2015-04-01

    Brucella species can cause brucellosis, a zoonotic disease that causes serious livestock economic losses and represents a public health threat. The mechanism of virulence of Brucella spp. is not yet fully understood. Therefore, it is crucial to identify new molecules that serve as virulence factors to better understand this host-pathogen interplay. Here, we evaluated the role of the Brucella membrane fusogenic protein (Mfp) and outer membrane protein 19 (Omp19) in bacterial pathogenesis. In this study, we showed that B. abortus Δmfp::kan and Δomp19::kan deletion mutant strains have reduced persistence in vivo in C57BL/6 and interferon regulatory factor 1 (IRF-1) knockout (KO) mice. Additionally, 24 h after macrophage infection with a Δmfp::kan or Δomp19::kan strain expressing green fluorescent protein (GFP) approximately 80% or 65% of Brucella-containing vacuoles (BCVs) retained the late endosomal/lysosomal marker LAMP-1, respectively, whereas around 60% of BCVs containing wild-type S2308 were found in LAMP-1-negative compartments. B. abortus Δomp19::kan was attenuated in vivo but had a residual virulence in C57BL/6 and IRF-1 KO mice, whereas the Δmfp::kan strain had a lower virulence in these same mouse models. Furthermore, Δmfp::kan and Δomp19::kan strains were used as live vaccines. Challenge experiments revealed that in C57BL/6 and IRF-1 KO mice, the Δmfp::kan strain induced greater protection than the vaccine RB51 and protection similar that of vaccine S19. However, a Δomp19::kan strain induced protection similar to that of RB51. Thus, these results demonstrate that Brucella Mfp and Omp19 are critical for full bacterial virulence and that the Δmfp::kan mutant may serve as a potential vaccine candidate in future studies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species.

    Science.gov (United States)

    Zhao, Ming; Zhang, Hongxiang; Yan, Hong; Qiu, Lu; Baskin, Carol C

    2018-01-01

    Since seed reserves can influence seed germination, the quantitative and qualitative differences in seed reserves may relate to the germination characteristics of species. The purpose of our study was to evaluate the correlation between germination and seed reserves, as well as their mobilization during germination of six grassland species ( Chloris virgata , Kochia scoparia , Lespedeza hedysaroides , Astragalus adsurgens , Leonurus artemisia , and Dracocephalum moldavica ) and compare the results with domesticated species. We measured starch, protein, and fat content in dry seeds and the initial absorption of water during imbibition. Starch, soluble protein, fat, and soluble sugar content also were determined at five stages during germination. Starch, protein, and fat reserves in dry seeds were not significantly correlated with germination percentage and rate (speed), but soluble sugar and soluble protein contents at different germination stages were positively significantly correlated with germination rate for the six species. Starch was mainly used during seed imbibition, and soluble protein was used from the imbibition stage to the highest germination stage. Fat content for all species remained relatively constant throughout germination for six species, regardless of the proportion of other seed reserves in the seeds. Our results for fat utilization differ from those obtained for cultivated grasses and legumes. These results provide new insight on the role of seed reserves as energy resources in germination for wild species.

  3. Mobilization and Role of Starch, Protein, and Fat Reserves during Seed Germination of Six Wild Grassland Species

    Directory of Open Access Journals (Sweden)

    Ming Zhao

    2018-02-01

    Full Text Available Since seed reserves can influence seed germination, the quantitative and qualitative differences in seed reserves may relate to the germination characteristics of species. The purpose of our study was to evaluate the correlation between germination and seed reserves, as well as their mobilization during germination of six grassland species (Chloris virgata, Kochia scoparia, Lespedeza hedysaroides, Astragalus adsurgens, Leonurus artemisia, and Dracocephalum moldavica and compare the results with domesticated species. We measured starch, protein, and fat content in dry seeds and the initial absorption of water during imbibition. Starch, soluble protein, fat, and soluble sugar content also were determined at five stages during germination. Starch, protein, and fat reserves in dry seeds were not significantly correlated with germination percentage and rate (speed, but soluble sugar and soluble protein contents at different germination stages were positively significantly correlated with germination rate for the six species. Starch was mainly used during seed imbibition, and soluble protein was used from the imbibition stage to the highest germination stage. Fat content for all species remained relatively constant throughout germination for six species, regardless of the proportion of other seed reserves in the seeds. Our results for fat utilization differ from those obtained for cultivated grasses and legumes. These results provide new insight on the role of seed reserves as energy resources in germination for wild species.

  4. Enzyme-induced aggregation of whey proteins with Bacillus licheniformis protease

    NARCIS (Netherlands)

    Creusot, N.P.

    2006-01-01

    Whey proteins are commonly used as ingredient in food. In relation with the gelation properties of whey proteins, this thesis deals with understanding the mechanism of peptide-induced aggregation of whey protein hydrolysates made with Bacillus licheniformis protease (BLP). The results show that BLP

  5. Heat-induced whey protein isolate fibrils: Conversion, hydrolysis, and disulphide bond formation

    NARCIS (Netherlands)

    Bolder, S.G.; Vasbinder, A.; Sagis, L.M.C.; Linden, van der E.

    2007-01-01

    Fibril formation of individual pure whey proteins and whey protein isolate (WPI) was studied. The heat-induced conversion of WPI monomers into fibrils at pH 2 and low ionic strength increased with heating time and protein concentration. Previous studies, using a precipitation method, size-exclusion

  6. Microcystin-LR induced reactive oxygen species mediate cytoskeletal disruption and apoptosis of hepatocytes in Cyprinus carpio L.

    Directory of Open Access Journals (Sweden)

    Jinlin Jiang

    Full Text Available Microcystins (MCs are a group of cyclic hepatotoxic peptides produced by cyanobacteria. Microcystin-LR (MC-LR contains Leucine (L and Arginine (R in the variable positions, and is one of the most common and potently toxic peptides. MC-LR can inhibit protein phosphatase type 1 and type 2A (PP1 and PP2A activities and induce excessive production of reactive oxygen species (ROS. The underlying mechanism of the inhibition of PP1 and PP2A has been extensively studied. The over-production of ROS is considered to be another main mechanism behind MC-LR toxicity; however, the detailed toxicological mechanism involved in over-production of ROS in carp (Cyprinus carpio L. remains largely unclear. In our present study, the hydroxyl radical (•OH was significantly induced in the liver of carp after a relatively short-term exposure to MC-LR. The elevated reactive oxygen species (ROS production may play an important role in the disruption of microtubule structure. Pre-injection of the antioxidant N-acetyl-cysteine (NAC provided significant protection to the cytoskeleton, however buthionine sulfoximine (BSO exacerbated cytoskeletal destruction. In addition, the elevated ROS formation induced the expression of apoptosis-related genes, including p38, JNKa, and bcl-2. A significant increase in apoptotic cells was observed at 12-48 hours. Our study further supports evidence that ROS are involved in MC-LR induced damage to liver cells in carp, and indicates the need for further study of the molecular mechanisms behind MC-LR toxicity.

  7. Microcystin-LR Induced Reactive Oxygen Species Mediate Cytoskeletal Disruption and Apoptosis of Hepatocytes in Cyprinus carpio L.

    Science.gov (United States)

    Jiang, Jinlin; Shan, Zhengjun; Xu, Weili; Wang, Xiaorong; Zhou, Junying; Kong, Deyang; Xu, Jing

    2013-01-01

    Microcystins (MCs) are a group of cyclic hepatotoxic peptides produced by cyanobacteria. Microcystin-LR (MC-LR) contains Leucine (L) and Arginine (R) in the variable positions, and is one of the most common and potently toxic peptides. MC-LR can inhibit protein phosphatase type 1 and type 2A (PP1 and PP2A) activities and induce excessive production of reactive oxygen species (ROS). The underlying mechanism of the inhibition of PP1 and PP2A has been extensively studied. The over-production of ROS is considered to be another main mechanism behind MC-LR toxicity; however, the detailed toxicological mechanism involved in over-production of ROS in carp (Cyprinus carpio L.) remains largely unclear. In our present study, the hydroxyl radical (•OH) was significantly induced in the liver of carp after a relatively short-term exposure to MC-LR. The elevated reactive oxygen species (ROS) production may play an important role in the disruption of microtubule structure. Pre-injection of the antioxidant N-acetyl-cysteine (NAC) provided significant protection to the cytoskeleton, however buthionine sulfoximine (BSO) exacerbated cytoskeletal destruction. In addition, the elevated ROS formation induced the expression of apoptosis-related genes, including p38, JNKa, and bcl-2. A significant increase in apoptotic cells was observed at 12 - 48 hours. Our study further supports evidence that ROS are involved in MC-LR induced damage to liver cells in carp, and indicates the need for further study of the molecular mechanisms behind MC-LR toxicity. PMID:24376844

  8. Thrombin-induced rabbit platelet microbicidal protein is fungicidal in vitro.

    Science.gov (United States)

    Yeaman, M R; Ibrahim, A S; Edwards, J E; Bayer, A S; Ghannoum, M A

    1993-03-01

    Platelet microbicidal protein (PMP) is released from platelets in response to thrombin stimulation. PMP is known to possess in vitro bactericidal activity against Staphylococcus aureus and viridans group streptococci. To determine whether PMP is active against other intravascular pathogens, we evaluated its potential fungicidal activity against strains of Candida species and Cryptococcus neoformans. Anionic resin adsorption and gel electrophoresis confirmed that the fungicidal activity of PMP resided in a small (approximately 8.5-kDa), cationic protein, identical to previous studies of PMP-induced bacterial killing (M.R. Yeaman, S.M. Puentes, D.C. Norman, and A.S. Bayer, Infect. Immun. 60:1202-1209, 1992). When assayed over a 180-min period in vitro, the susceptibilities of these fungi to PMP varied considerably. Generally, Candida albicans strains (mean survival, 33.5% +/- 6.9% [n = 6]) as well as isolates of Candida glabrata (mean survival, 50.8% +/- 2.9% [n = 2]) were the most susceptible to killing by PMP, while Candida guillermondii and Candida parapsilosis were relatively resistant to PMP-induced killing. Compared with C. albicans, C. neoformans was relatively resistant to the fungicidal activity of PMP, with a mean survival among the isolates studied of 77.4% +/- 12.4% (n = 6). Against C. albicans, PMP-induced fungicidal activity was time dependent (range, 0 to 180 min), PMP concentration dependent (range, 10 to 150 U/ml), and inversely related to the fungal inoculum (range, 5 x 10(3) to 1 x 10(5) CFU/ml). Scanning electron microscopy of PMP-exposed C. albicans and C. neoformans cells revealed extensive surface damage and collapse, suggesting that the site of PMP fungicidal action may directly or indirectly involve the fungal cell envelope.

  9. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Soyeon; Shin, Soyeon; Lim, Kyu [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of); Heo, Jun Young, E-mail: junyoung3@gmail.com [Brainscience Institute, Chungnam National University, Daejeon (Korea, Republic of); Kweon, Gi Ryang, E-mail: mitochondria@cnu.ac.kr [Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Infection Signaling Network Research Center, Chungnam National University, Daejeon (Korea, Republic of)

    2015-01-30

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis.

  10. Docosahexaenoic acid prevents paraquat-induced reactive oxygen species production in dopaminergic neurons via enhancement of glutathione homeostasis

    International Nuclear Information System (INIS)

    Lee, Hyoung Jun; Han, Jeongsu; Jang, Yunseon; Kim, Soo Jeong; Park, Ji Hoon; Seo, Kang Sik; Jeong, Soyeon; Shin, Soyeon; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-01-01

    Highlights: • DHA prevents PQ-induced dopaminergic neuronal loss via decreasing of excessive ROS. • DHA increases GR and GCLm derivate GSH pool by enhancement of Nrf2 expression. • Protective mechanism is removal of PQ-induced ROS via DHA-dependent GSH pool. • DHA may be a good preventive strategy for Parkinson’s disease (PD) therapy. - Abstract: Omega-3 polyunsaturated fatty acid levels are reduced in the substantia nigra area in Parkinson’s disease patients and animal models, implicating docosahexaenoic acid (DHA) as a potential treatment for preventing Parkinson’s disease and suggesting the need for investigations into how DHA might protect against neurotoxin-induced dopaminergic neuron loss. The herbicide paraquat (PQ) induces dopaminergic neuron loss through the excessive production of reactive oxygen species (ROS). We found that treatment of dopaminergic SN4741 cells with PQ reduced cell viability in a dose-dependent manner, but pretreatment with DHA ameliorated the toxic effect of PQ. To determine the toxic mechanism of PQ, we measured intracellular ROS content in different organelles with specific dyes. As expected, all types of ROS were increased by PQ treatment, but DHA pretreatment selectively decreased cytosolic hydrogen peroxide content. Furthermore, DHA treatment-induced increases in glutathione reductase and glutamate cysteine ligase modifier subunit (GCLm) mRNA expression were positively correlated with glutathione (GSH) content. Consistent with this increase in GCLm mRNA levels, Western blot analysis revealed that DHA pretreatment increased nuclear factor-erythroid 2 related factor 2 (Nrf2) protein levels. These findings indicate that DHA prevents PQ-induced neuronal cell loss by enhancing Nrf2-regulated GSH homeostasis

  11. Intrinsic structural differences in the N-terminal segment of pulmonary surfactant protein SP-C from different species

    DEFF Research Database (Denmark)

    Plasencia, I; Rivas, L; Casals, C

    2001-01-01

    Predictive studies suggest that the known sequences of the N-terminal segment of surfactant protein SP-C from animal species have an intrinsic tendency to form beta-turns, but there are important differences on the probable location of these motifs in different SP-C species. Our hypothesis...

  12. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  13. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Henry D.; Zeppel, Melanie J. B.; Anderegg, William R. L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David J.; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucía; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David M.; Macalady, Alison K.; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O’Brien, Michael J.; O’Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer A.; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Xu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.

    2017-08-07

    Widespread tree mortality associated with drought has been observed on all forested continents, and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water, and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analyzed across species and biomes using a standardized physiological framework. Here we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or greater loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrates at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in hydraulic deterioration. The consistent Our finding that across species of hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  14. Benzo(a)pyrene induced cell cycle arrest and apoptosis in human choriocarcinoma cancer cells through reactive oxygen species-induced endoplasmic reticulum-stress pathway.

    Science.gov (United States)

    Kim, Soo-Min; Lee, Hae-Miru; Hwang, Kyung-A; Choi, Kyung-Chul

    2017-09-01

    Cigarette smoke (CS) contains over 60 well established carcinogens. In this study, we examined the effects of benzo(a)pyrene (B(a)P), a main CS component, on the viability and apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cell lines. An MTT assay confirmed that B(a)P decreased the cell viability of JEG-3 and BeWo cells in a dose-dependent manner. Additionally, Western blot (WB) assay revealed that protein expression of cyclin D and cyclin E decreased, while protein expression of p21 and p27 was increased in response to B(a)P treatment for 48 h. The changes in reactive oxygen species (ROS) levels in JEG-3 and BeWo cells exposed to B(a)P were also measured by a dichlorofluorescein diacetate (DCF-DA) assay, which revealed that ROS levels increased in response to B(a)P treatment for 48 h. WB assay also confirmed that each B(a)P treatment of JEG-3 and BeWo cells for 4 h promoted the expression of phosphorylated eukaryotic initiation factor 2 alpha protein (p-eIF2α) and C/EBP homologous protein (CHOP), which are known to be involved in ROS-mediated endoplasmic reticulum stress (ER-stress) related apoptosis. Overall, the protein expression of Bax (a pro-apoptosis marker) increased, while the expression of Bcl-xl (an anti-apoptotic marker) decreased and the number of apoptotic cells increased in response to B(a)P treatment for 48 h. Taken together, these results suggest that B(a)P has the potential to induce apoptosis of JEG-3 and BeWo human choriocarcinoma cancer cells by increasing the ROS level and simultaneously activating ER-stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparative studies of radiation-induced chromosome aberrations in several mammalian species

    International Nuclear Information System (INIS)

    Muramatsu, S.; Matsuoka, O.

    1976-01-01

    The dose-response relationship for inducing chromosome aberrations in peripheral lymphocytes of five mammalian species - man, cynomolgus monkey, rabbit, domestic cat and beagle dog - were studied comparatively by whole-blood microculture technique following in-vitro exposures at various doses with 200-kVp X rays. The yields of induced chromosome aberrations were dependent on exposure doses between 48 and 480 rads in all the species examined. The relationship between exposure dose (D in rads) and frequency of induced dicentrics per cell (Y) was expressed by: Ysub((man)) = 14.38x10 -6 Dsup(1.94); Ysub((monkey)) = 18.12x10 -6 Dsup(1.86); Ysub((rabbit)) = 1.88x10 -6 Dsup(2.06); Ysub((cat)) = 78.66x10 -6 Dsup(1.35); Ysub((dog)) = 46.13x10 -6 Dsup(1.37). Taking the frequency of dicentrics in man as 1.00, the relative frequency in each species was estimated as 0.79, 0.24, 0.22 and 0.16 in monkey, rabbit, cat and dog, respectively. From these results the consistent relationship could not be discovered between X-ray doses and the dicentric yield based on the arm number effect proposed by Brewen et al., whereas the nuclear DNA contents and the arm number in all the species used are roughly similar to those in man. The authors considered that such interspecies differences may be derived from the cellular and/or physiological features of PHA-responsible lymphocytes (T-cells) in each species, and that may be due to the level of development of each species on the phylogenetic or evolutionary scale. (author)

  16. Mitomycin C induced alterations in antioxidant enzyme levels in a model insect species, Spodoptera eridania.

    Science.gov (United States)

    Batcabe, J P; MacGill, R S; Zaman, K; Ahmad, S; Pardini, R S

    1994-05-01

    1. An insect species, the southern armyworm Spodoptera eridania, was used as an in vivo model to examine mitomycin C's (MMC) pro-oxidant effect reflected in alterations of antioxidant enzymes. 2. Following a 2-day exposure to 0.01 and 0.05% w/w dietary concentrations, MMC only induced superoxide dismutase activity. All other enzyme activities were not affected, indicating oxidative stress was mild. 3. Following a 5-day exposure to 0.05% w/w dietary MMC, the activities of superoxide dismutase, glutathione-S-transferase and its peroxidase activity and DT-diaphorase were induced. GR activity was not altered. The high constitutive catalase activity was also not affected. These responses of S. eridania's antioxidant enzymes are analogous to those of mammalian systems in alleviating MMC-induced oxidative stress. 4. S. eridania emerges as an appropriate non-mammalian model for initial and cost-effective screening of drug-induced oxidative stress.

  17. Prolamin proteins alteration in durum wheat by species of the genus Eurygaster and Aelia (Insecta, Hemiptera)

    Energy Technology Data Exchange (ETDEWEB)

    Salis, L.; Goula, M.; Valero, J.; Gordun, E.

    2010-07-01

    Wheat bugs are widely distributed in various areas of Europe, Asia and North Africa. Species belonging to the genus Eurygaster and Aelia pierce wheat kernels affecting protein quality. The effects of these insects feeding activity have been studied mainly in bread wheat (Triticum aestivum L.). This study provides information on the degradation of prolamin proteins (glutenins and gliadins) of bug-damaged durum wheat (Triticum turgidum L. var durum) in six cultivars grown in Sardinia (Italy). Samples of whole flour mixture of 70% sound wheat and 30% damaged wheat were hydrated and incubated at two temperatures (45 and 4 degree centigrade), for different periods of time (0, 1 and 3 h). Glutenin and gliadin content was analysed using free zone capillary electrophoresis. The presence of bug-damaged kernels had influence on the quality of durum wheat proteins. Glutenins were rapidly degraded independently to incubation temperature. Gliadin degradation, however, took place with dependence on temperature and incubation time. Therefore glutenin degradation was possibly not due solely to the activity of proteolytic enzymes but also to some other as yet unknown factor linked to wheat bugs feeding activity. (Author) 35 refs.

  18. Prolamin proteins alteration in durum wheat by species of the genus Eurygaster and Aelia (Insecta, Hemiptera)

    International Nuclear Information System (INIS)

    Salis, L.; Goula, M.; Valero, J.; Gordun, E.

    2010-01-01

    Wheat bugs are widely distributed in various areas of Europe, Asia and North Africa. Species belonging to the genus Eurygaster and Aelia pierce wheat kernels affecting protein quality. The effects of these insects feeding activity have been studied mainly in bread wheat (Triticum aestivum L.). This study provides information on the degradation of prolamin proteins (glutenins and gliadins) of bug-damaged durum wheat (Triticum turgidum L. var durum) in six cultivars grown in Sardinia (Italy). Samples of whole flour mixture of 70% sound wheat and 30% damaged wheat were hydrated and incubated at two temperatures (45 and 4 degree centigrade), for different periods of time (0, 1 and 3 h). Glutenin and gliadin content was analysed using free zone capillary electrophoresis. The presence of bug-damaged kernels had influence on the quality of durum wheat proteins. Glutenins were rapidly degraded independently to incubation temperature. Gliadin degradation, however, took place with dependence on temperature and incubation time. Therefore glutenin degradation was possibly not due solely to the activity of proteolytic enzymes but also to some other as yet unknown factor linked to wheat bugs feeding activity. (Author) 35 refs.

  19. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

    Science.gov (United States)

    Xie, Xiaolei; Le, Li; Fan, Yanxin; Lv, Lin; Zhang, Junjie

    2012-07-01

    Mitoribosome in mammalian cells is responsible for synthesis of 13 mtDNA-encoded proteins, which are integral parts of four mitochondrial respiratory chain complexes (I, III, IV and V). ERAL1 is a nuclear-encoded GTPase important for the formation of the 28S small mitoribosomal subunit. Here, we demonstrate that knockdown of ERAL1 by RNA interference inhibits mitochondrial protein synthesis and promotes reactive oxygen species (ROS) generation, leading to autophagic vacuolization in HeLa cells. Cells that lack ERAL1 expression showed a significant conversion of LC3-I to LC3-II and an enhanced accumulation of autophagic vacuoles carrying the LC3 marker, all of which were blocked by the autophagy inhibitor 3-MA as well as by the ROS scavenger NAC. Inhibition of mitochondrial protein synthesis either by ERAL1 siRNA or chloramphenicol (CAP), a specific inhibitor of mitoribosomes, induced autophagy in HTC-116 TP53 (+/+) cells, but not in HTC-116 TP53 (-/-) cells, indicating that tumor protein 53 (TP53) is essential for the autophagy induction. The ROS elevation resulting from mitochondrial protein synthesis inhibition induced TP53 expression at transcriptional levels by enhancing TP53 promoter activity, and increased TP53 protein stability by suppressing TP53 ubiquitination through MAPK14/p38 MAPK-mediated TP53 phosphorylation. Upregulation of TP53 and its downstream target gene DRAM1, but not CDKN1A/p21, was required for the autophagy induction in ERAL1 siRNA or CAP-treated cells. Altogether, these data indicate that autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

  20. Tannin, protein contents and fatty acid compositions of the seeds of several Vicia L. species from Turkey

    OpenAIRE

    Kökten, Kağan; Koçak, Alpaslan; Bağci, Eyüp; Akçura, Mevlüt; Çelik, Sait

    2010-01-01

    The seedoils of six Vicia species (Leguminosae) were investigated for their protein, tannin contents and fatty acid compositions. The protein contents of the seeds were found to be between 21.87%-31.33%. The tannin contents of the seeds were found to be between 0.13%-1.07%. The fatty acid compositions of these six different species were determined by the GC of the methyl esters of their fatty acids. The oilseeds of Vicia species contain palmitic and stear...

  1. Virulence test using nematodes to prescreen Nocardia species capable of inducing neurodegeneration and behavioral disorders

    Directory of Open Access Journals (Sweden)

    Claire Bernardin Souibgui

    2017-10-01

    Full Text Available Background Parkinson’s disease (PD is a disorder characterized by dopaminergic neuron programmed cell death. The etiology of PD remains uncertain—some cases are due to selected genes associated with familial heredity, others are due to environmental exposure to toxic components, but over 90% of cases have a sporadic origin. Nocardia are Actinobacteria that can cause human diseases like nocardiosis. This illness can lead to lung infection or central nervous system (CNS invasion in both immunocompromised and immunocompetent individuals. The main species involved in CNS are N. farcinica, N. nova, N. brasiliensis and N. cyriacigeorgica. Some studies have highlighted the ability of N. cyriacigeorgica to induce Parkinson’s disease-like symptoms in animals. Actinobacteria are known to produce a large variety of secondary metabolites, some of which can be neurotoxic. We hypothesized that neurotoxic secondary metabolite production and the onset of PD-like symptoms in animals could be linked. Methods Here we used a method to screen bacteria that could induce dopaminergic neurodegeneration before performing mouse experiments. Results The nematode Caenorhabditis elegans allowed us to demonstrate that Nocardia strains belonging to N. cyriacigeorgica and N. farcinica species can induce dopaminergic neurodegeneration. Strains of interest involved with the nematodes in neurodegenerative disorders were then injected in mice. Infected mice had behavioral disorders that may be related to neuronal damage, thus confirming the ability of Nocardia strains to induce neurodegeneration. These behavioral disorders were induced by N. cyriacigeorgica species (N. cyriacigeorgica GUH-2 and N. cyriacigeorgica 44484 and N. farcinica 10152. Discussion We conclude that C. elegans is a good model for detecting Nocardia strains involved in neurodegeneration. This model allowed us to detect bacteria with high neurodegenerative effects and which should be studied in mice to

  2. Mathematical modeling and comparison of protein size distribution in different plant, animal, fungal and microbial species reveals a negative correlation between protein size and protein number, thus providing insight into the evolution of proteomes

    Directory of Open Access Journals (Sweden)

    Tiessen Axel

    2012-02-01

    Full Text Available Abstract Background The sizes of proteins are relevant to their biochemical structure and for their biological function. The statistical distribution of protein lengths across a diverse set of taxa can provide hints about the evolution of proteomes. Results Using the full genomic sequences of over 1,302 prokaryotic and 140 eukaryotic species two datasets containing 1.2 and 6.1 million proteins were generated and analyzed statistically. The lengthwise distribution of proteins can be roughly described with a gamma type or log-normal model, depending on the species. However the shape parameter of the gamma model has not a fixed value of 2, as previously suggested, but varies between 1.5 and 3 in different species. A gamma model with unrestricted shape parameter described best the distributions in ~48% of the species, whereas the log-normal distribution described better the observed protein sizes in 42% of the species. The gamma restricted function and the sum of exponentials distribution had a better fitting in only ~5% of the species. Eukaryotic proteins have an average size of 472 aa, whereas bacterial (320 aa and archaeal (283 aa proteins are significantly smaller (33-40% on average. Average protein sizes in different phylogenetic groups were: Alveolata (628 aa, Amoebozoa (533 aa, Fornicata (543 aa, Placozoa (453 aa, Eumetazoa (486 aa, Fungi (487 aa, Stramenopila (486 aa, Viridiplantae (392 aa. Amino acid composition is biased according to protein size. Protein length correlated negatively with %C, %M, %K, %F, %R, %W, %Y and positively with %D, %E, %Q, %S and %T. Prokaryotic proteins had a different protein size bias for %E, %G, %K and %M as compared to eukaryotes. Conclusions Mathematical modeling of protein length empirical distributions can be used to asses the quality of small ORFs annotation in genomic releases (detection of too many false positive small ORFs. There is a negative correlation between average protein size and total number of

  3. The role of proteins in damage induced by free radicals

    International Nuclear Information System (INIS)

    Gebicki, J.M.

    1996-01-01

    The initial consequence of oxidative stress in living organisms is chemical modification of cell components. Recently increasing attention in this area has been paid to the modification of proteins. A form of protein modification which has been studied in some detail only recently is peroxidation. In the last 8 years, we and our collaborators have shown that a range of isolated proteins acquire hydroperoxide groups when exposed to a range of biologically plausible oxidants. These include HO free radicals generated by radiation or in the Fenton reaction, peroxyl radicals, oxidants released by activated neutrophils, and peroxynitrite. In more complex systems, we also found protein peroxides in the apo B component of LDL treated with 20 μM Cu ++ , and in irradiated blood serum. These observations suggest that the formation of protein peroxides is a possible consequence of oxidative stress in vivo. A remarkable feature of the process of protein peroxidation is its high efficiency. This is most easily measured with proteins oxidized by radiation-generated free radicals. It was found that, for some proteins, peroxide yields reached 40% of the numbers of HO radicals generated. Thus in effect, almost half of these radicals can be converted to the much more long-lived protein peroxide groups. If they, in turn, have the capacity to damage other molecules, the major oxidative pathway in vivo may have the sequence: free radical ? protein peroxide ? another oxidized molecule. This hypothesis was tested by studying the ability of protein peroxides to react with selected molecules and the results are briefly discussed. Clearly, these effects are specific to individual proteins. More generally, amino acid and protein peroxides were found to be a potential source of a range of free radicals when reduced by Fe ++ . If this turns out to be a common phenomenon, protein peroxides may prove to be a major source of oxidative damage

  4. The role of proteins in damage induced by free radicals

    Energy Technology Data Exchange (ETDEWEB)

    Gebicki, J.M. [Macquarie Univ., North Ryde, NSW (Australia). School of Biological Sciences

    1996-12-31

    The initial consequence of oxidative stress in living organisms is chemical modification of cell components. Recently increasing attention in this area has been paid to the modification of proteins. A form of protein modification which has been studied in some detail only recently is peroxidation. In the last 8 years, we and our collaborators have shown that a range of isolated proteins acquire hydroperoxide groups when exposed to a range of biologically plausible oxidants. These include HO free radicals generated by radiation or in the Fenton reaction, peroxyl radicals, oxidants released by activated neutrophils, and peroxynitrite. In more complex systems, we also found protein peroxides in the apo B component of LDL treated with 20 {mu}M Cu{sup ++}, and in irradiated blood serum. These observations suggest that the formation of protein peroxides is a possible consequence of oxidative stress in vivo. A remarkable feature of the process of protein peroxidation is its high efficiency. This is most easily measured with proteins oxidized by radiation-generated free radicals. It was found that, for some proteins, peroxide yields reached 40% of the numbers of HO radicals generated. Thus in effect, almost half of these radicals can be converted to the much more long-lived protein peroxide groups. If they, in turn, have the capacity to damage other molecules, the major oxidative pathway in vivo may have the sequence: free radical ? protein peroxide ? another oxidized molecule. This hypothesis was tested by studying the ability of protein peroxides to react with selected molecules and the results are briefly discussed. Clearly, these effects are specific to individual proteins. More generally, amino acid and protein peroxides were found to be a potential source of a range of free radicals when reduced by Fe{sup ++}. If this turns out to be a common phenomenon, protein peroxides may prove to be a major source of oxidative damage.

  5. CO2·- radical induced cleavage of disulfide bonds in proteins. A gamma-ray and pulse radiolysis mechanistic investigation

    International Nuclear Information System (INIS)

    Favaudon, V.; Tourbez, H.; Lhoste, J-M.; Houee-Levin, C.

    1990-01-01

    Disulfide bond reduction by the CO 2 ·- radical was investigated in aponeocarzinostatin, aporiboflavin-binding protein, and bovine immunoglobulin. Protein-bound cysteine free thiols were formed under γ-ray irradiation in the course of a pH-dependent and protein concentration dependent chain reaction. The chain efficiency increased upon acidification of the medium, with an apparent pK a around 5, and decreased abruptly below pH 3.6. It decreased also at neutral pH as cysteine accumulated. From pulse radiolysis analysis, CO 2 ·- proved able to induce rapid one-electron oxidation of thiols and of tyrosine phenolic groups in addition to one-electron donation to exposed disulfide bonds. The bulk rate constant of CO 2 ·- uptake by the native proteins was 5- to 10-fold faster at pH 3 than at pH 8, and the protonated form of the disulfide radical anion, appeared to be the major protein radical species formed under acidic conditions. Formation of the disulfide radical cation, phenoxyl radical Tyr-O · disproportionation, and phenoxyl radical induced oxidation of preformed thiol groups should also be taken into consideration to explain the fate of the oxygen-centered phenoxyl radical

  6. Low dose radiation induced protein and its effect on expression of CD25 molecule in lymphocytes

    International Nuclear Information System (INIS)

    Lu Duicai; Su Liaoyuan

    2001-01-01

    Objective: To find the substantial basis for effects of low dose radiation, on development, extraction, and the biogical activity of the low-dose radiation-induced proteins, and the effects of LDR induced proteins on CD25 molecule expression of human lymphocytes. Methods: 1. Healthy Kumning male mice exposed to radiation of 226 Ra γ-rays at 5, 10 and 15 cGy respectively. The mice were killed 2 hours after exposure, the spleen cells were broken with ultrasonic energy and then ultra-centrifugalized at low temperature (4 degree C). The LDR-induced proteins were obtained in the supernatant solution. Then the changes of CD25 molecule was measured by flow cytometry (FCM) with immunofluorescence technique, which was used to reflect the effect of LDR induced proteins on CD25 molecule expression of human lymphocytes. Results: LDR induced proteins were obtained from spleen cells in mice exposed to 5-15 cGy whole body radiation. Conclusion: The expression of CD25 molecule of lymphocytes was increased significantly after use of LDR induced proteins. LDR induced proteins can enhance expression of CD25 molecule of lymphocytes slightly

  7. Ultrastructural Comparison of Processing of Protein and Pigment in the Ink Gland of Four Species of Sea Hares

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Prince

    2015-01-01

    Full Text Available The ink glands of four sea hare species (Aplysia californica, A. parvula, A. juliana, and Dolabrifera dolabrifera were compared to determine where ink protein is synthesized, how it is incorporated into protein storage vesicles, and the degree of variation in the structure of the ink gland. Ink protein was synthesized in RER cells and stored in amber and white vesicles. Lack of competent RER cells in the ink gland of D. dolabrifera was correlated with the absence of ink protein. Ink protein had similar characteristics in all three Aplysia species but, again, it was absent in D. dolabrifera. Its uptake involved pinocytosis by protein vesicle cell membranes. Granulate cells showed little variation in structure among the four species, the opposite was the case for RER cells. The conversion of the red algal pigment, phycoerythrin, to phycoerythrobilin (PEB occurs in the digestive gland but the change of PEB to aplysioviolin (APV, the form of pigment released by the ink gland, occurs in the ink gland itself by both granulate cells and pigment vesicles. The literature describes five types of vesicles based upon color and contents in the ink gland of these four species. We report only three types of vesicle: colored (purple, protein (white and amber, and transparent (includes clear vesicles.

  8. Phylogeny and molecular signatures (conserved proteins and indels that are specific for the Bacteroidetes and Chlorobi species

    Directory of Open Access Journals (Sweden)

    Lorenzini Emily

    2007-05-01

    Full Text Available Abstract Background The Bacteroidetes and Chlorobi species constitute two main groups of the Bacteria that are closely related in phylogenetic trees. The Bacteroidetes species are widely distributed and include many important periodontal pathogens. In contrast, all Chlorobi are anoxygenic obligate photoautotrophs. Very few (or no biochemical or molecular characteristics are known that are distinctive characteristics of these bacteria, or are commonly shared by them. Results Systematic blast searches were performed on each open reading frame in the genomes of Porphyromonas gingivalis W83, Bacteroides fragilis YCH46, B. thetaiotaomicron VPI-5482, Gramella forsetii KT0803, Chlorobium luteolum (formerly Pelodictyon luteolum DSM 273 and Chlorobaculum tepidum (formerly Chlorobium tepidum TLS to search for proteins that are uniquely present in either all or certain subgroups of Bacteroidetes and Chlorobi. These studies have identified > 600 proteins for which homologues are not found in other organisms. This includes 27 and 51 proteins that are specific for most of the sequenced Bacteroidetes and Chlorobi genomes, respectively; 52 and 38 proteins that are limited to species from the Bacteroidales and Flavobacteriales orders, respectively, and 5 proteins that are common to species from these two orders; 185 proteins that are specific for the Bacteroides genus. Additionally, 6 proteins that are uniquely shared by species from the Bacteroidetes and Chlorobi phyla (one of them also present in the Fibrobacteres have also been identified. This work also describes two large conserved inserts in DNA polymerase III (DnaE and alanyl-tRNA synthetase that are distinctive characteristics of the Chlorobi species and a 3 aa deletion in ClpB chaperone that is mainly found in various Bacteroidales, Flavobacteriales and Flexebacteraceae, but generally not found in the homologs from other organisms. Phylogenetic analyses of the Bacteroidetes and Chlorobi species is also

  9. Lipid-protein interaction induced domains: Kinetics and conformational changes in multicomponent vesicles

    Science.gov (United States)

    Sreeja, K. K.; Sunil Kumar, P. B.

    2018-04-01

    The spatio-temporal organization of proteins and the associated morphological changes in membranes are of importance in cell signaling. Several mechanisms that promote the aggregation of proteins at low cell surface concentrations have been investigated in the past. We show, using Monte Carlo simulations, that the affinity of proteins for specific lipids can hasten their aggregation kinetics. The lipid membrane is modeled as a dynamically triangulated surface with the proteins defined as in-plane fields at the vertices. We show that, even at low protein concentrations, strong lipid-protein interactions can result in large protein clusters indicating a route to lipid mediated signal amplification. At high protein concentrations, the domains form buds similar to that seen in lipid-lipid interaction induced phase separation. Protein interaction induced domain budding is suppressed when proteins act as anisotropic inclusions and exhibit nematic orientational order. The kinetics of protein clustering and resulting conformational changes are shown to be significantly different for the isotropic and anisotropic curvature inducing proteins.

  10. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    International Nuclear Information System (INIS)

    Xiong, Rui; Siegel, David; Ross, David

    2014-01-01

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity

  11. Quinone-induced protein handling changes: Implications for major protein handling systems in quinone-mediated toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Rui; Siegel, David; Ross, David, E-mail: david.ross@ucdenver.edu

    2014-10-15

    Para-quinones such as 1,4-Benzoquinone (BQ) and menadione (MD) and ortho-quinones including the oxidation products of catecholamines, are derived from xenobiotics as well as endogenous molecules. The effects of quinones on major protein handling systems in cells; the 20/26S proteasome, the ER stress response, autophagy, chaperone proteins and aggresome formation, have not been investigated in a systematic manner. Both BQ and aminochrome (AC) inhibited proteasomal activity and activated the ER stress response and autophagy in rat dopaminergic N27 cells. AC also induced aggresome formation while MD had little effect on any protein handling systems in N27 cells. The effect of NQO1 on quinone induced protein handling changes and toxicity was examined using N27 cells stably transfected with NQO1 to generate an isogenic NQO1-overexpressing line. NQO1 protected against BQ–induced apoptosis but led to a potentiation of AC- and MD-induced apoptosis. Modulation of quinone-induced apoptosis in N27 and NQO1-overexpressing cells correlated only with changes in the ER stress response and not with changes in other protein handling systems. These data suggested that NQO1 modulated the ER stress response to potentiate toxicity of AC and MD, but protected against BQ toxicity. We further demonstrated that NQO1 mediated reduction to unstable hydroquinones and subsequent redox cycling was important for the activation of the ER stress response and toxicity for both AC and MD. In summary, our data demonstrate that quinone-specific changes in protein handling are evident in N27 cells and the induction of the ER stress response is associated with quinone-mediated toxicity. - Highlights: • Unstable hydroquinones contributed to quinone-induced ER stress and toxicity.

  12. Deorphanization and target validation of cross-tick species conserved novel Amblyomma americanum tick saliva protein.

    Science.gov (United States)

    Mulenga, Albert; Kim, Tae Kwon; Ibelli, Adriana Mércia Guaratini

    2013-05-01

    We previously identified a cross-tick species conserved tick feeding stimuli responsive Amblyomma americanum (Aam) AV422 gene. This study demonstrates that AamAV422 belongs to a novel group of arthropod proteins that is characterized by 14 cysteine amino acid residues: C(23)-X7/9-C(33)-X23/24-C(58)-X8-C(67)-X7-C(75)-X23-C(99)-X15-C(115)-X10-C(126)-X24/25/33-C(150)C(151)-X7-C(159)-X8-C(168)-X23/24-C(192)-X9/10-C(202) predicted to form seven disulfide bonds. We show that AamAV422 protein is a ubiquitously expressed protein that is injected into the host within the first 24h of the tick attaching onto the host as revealed by Western blotting analyses of recombinant (r)AamAV422, tick saliva and dissected tick organ protein extracts using antibodies to 24 and 48 h tick saliva proteins. Native AamAV422 is apparently involved with mediating tick anti-hemostasis and anti-complement functions in that rAamAV422 delayed plasma clotting time in a dose responsive manner by up to ≈ 160 s, prevented platelet aggregation by up to ≈ 16% and caused ≈ 24% reduction in production of terminal complement complexes. Target validation analysis revealed that rAamAV422 is a potential candidate for a cocktail or multivalent tick vaccine preparation in that RNA interference (RNAi)-mediated silencing of AamAV422 mRNA caused a statistically significant (≈ 44%) reduction in tick engorgement weights, which is proxy for amounts of ingested blood. We speculate that AamAV422 is a potential target antigen for development of the highly desired universal tick vaccine in that consistent with high conservation among ticks, antibodies to 24h Ixodes scapularis tick saliva proteins specifically bound rAamAV422. We discuss data in this study in the context of advancing the biology of tick feeding physiology and discovery of potential target antigens for tick vaccine development. Copyright © 2013 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  13. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins.

    Science.gov (United States)

    Singh, Tanoj K; Øiseth, Sofia K; Lundin, Leif; Day, Li

    2014-11-01

    Protein intake is essential for growth and repair of body cells, the normal functioning of muscles, and health related immune functions. Most food proteins are consumed after undergoing various degrees of processing. Changes in protein structure and assembly as a result of processing impact the digestibility of proteins. Research in understanding to what extent the protein structure impacts the rate of proteolysis under human physiological conditions has gained considerable interest. In this work, four whey protein gels were prepared using heat processing at two different pH values, 6.8 and 4.6, with and without applied shear. The gels showed different protein network microstructures due to heat induced unfolding (at pH 6.8) or lack of unfolding, thus resulting in fine stranded protein networks. When shear was applied during heating, particulate protein networks were formed. The differences in the gel microstructures resulted in considerable differences in their rheological properties. An in vitro gastric and intestinal model was used to investigate the resulting effects of these different gel structures on whey protein digestion. In addition, the rate of digestion was monitored by taking samples at various time points throughout the in vitro digestion process. The peptides in the digesta were profiled using SDS-polyacrylamide gel electrophoresis, reversed-phase-HPLC and LC-MS. Under simulated gastric conditions, whey proteins in structured gels were hydrolysed faster than native proteins in solution. The rate of peptides released during in vitro digestion differed depending on the structure of the gels and extent of protein aggregation. The outcomes of this work highlighted that changes in the network structure of the protein can influence the rate and pattern of its proteolysis under gastrointestinal conditions. Such knowledge could assist the food industry in designing novel food formulations to control the digestion kinetics and the release of biologically

  14. Protein-induced satiation and the calcium-sensing receptor

    OpenAIRE

    Ojha,Utkarsh

    2018-01-01

    Utkarsh Ojha Faculty of Medicine, Imperial College School of Medicine, Imperial College London, London, UK Abstract: Obesity is a major global health issue. High-protein diets have been shown to be associated with weight loss and satiety. The precise mechanism by which protein-rich diets promote weight loss remains unclear. Evidence suggests amino acids, formed as a consequence of protein digestion, are sensed by specific receptors on L-cells in the gastrointestinal (GI) tract. These L-cells ...

  15. Hydraulic Function in Australian Tree Species during Drought-Induced Mortality

    Science.gov (United States)

    Tissue, D.; Maier, C.; Creek, D.; Choat, B.

    2016-12-01

    Drought induced tree mortality and decline are key issues facing forest ecology and management. Here, we primarily investigated the hydraulic limitations underpinning drought-induced mortality in three Australian tree species. Using field-based large rainout shelters, three angiosperm species (Casuarina cunninghamiana, Eucalyptus sideroxylon, Eucalyptus tereticornis) were subjected to two successive drought and recovery cycles, prior to a subsequent long and extreme drought to mortality; total duration of experiment was 2.5 years. Leaf gas exchange, leaf and stem hydraulics, and carbon reserves were monitored during the experiment. Trees died as a result of failure in the hydraulic transport system, primarily related to water stress induced embolism. Stomatal closure occurred prior to the induction of significant embolism in the stem xylem of all species. Nonetheless, trees suffered a rapid decline in xylem water potential and increase in embolism during the severe drought treatment. Trees died at water potentials causing greater than 90% loss of hydraulic conductivity in the stem, providing support for the theory that lethal water potential is correlated with complete loss of hydraulic function in the stem xylem of angiosperms.

  16. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality.

    Science.gov (United States)

    Adams, Henry D; Zeppel, Melanie J B; Anderegg, William R L; Hartmann, Henrik; Landhäusser, Simon M; Tissue, David T; Huxman, Travis E; Hudson, Patrick J; Franz, Trenton E; Allen, Craig D; Anderegg, Leander D L; Barron-Gafford, Greg A; Beerling, David J; Breshears, David D; Brodribb, Timothy J; Bugmann, Harald; Cobb, Richard C; Collins, Adam D; Dickman, L Turin; Duan, Honglang; Ewers, Brent E; Galiano, Lucía; Galvez, David A; Garcia-Forner, Núria; Gaylord, Monica L; Germino, Matthew J; Gessler, Arthur; Hacke, Uwe G; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W; Kane, Jeffrey M; Kolb, Thomas E; Law, Darin J; Lewis, James D; Limousin, Jean-Marc; Love, David M; Macalady, Alison K; Martínez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J; Muss, Jordan D; O'Brien, Michael J; O'Grady, Anthony P; Pangle, Robert E; Pinkard, Elizabeth A; Piper, Frida I; Plaut, Jennifer A; Pockman, William T; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G; Sala, Anna; Sevanto, Sanna; Sperry, John S; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A; Xu, Chonggang; Yepez, Enrico A; McDowell, Nate G

    2017-09-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  17. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality

    Science.gov (United States)

    Adams, Henry D.; Zeppel, Melanie; Anderegg, William R.L.; Hartmann, Henrik; Landhäusser, Simon M.; Tissue, David T.; Huxman, Travis E.; Hudson, Patrick J.; Franz, Trenton E.; Allen, Craig D.; Anderegg, Leander D. L.; Barron-Gafford, Greg A.; Beerling, David; Breshears, David D.; Brodribb, Timothy J.; Bugmann, Harald; Cobb, Richard C.; Collins, Adam D.; Dickman, L. Turin; Duan, Honglang; Ewers, Brent E.; Galiano, Lucia; Galvez, David A.; Garcia-Forner, Núria; Gaylord, Monica L.; Germino, Matthew J.; Gessler, Arthur; Hacke, Uwe G.; Hakamada, Rodrigo; Hector, Andy; Jenkins, Michael W.; Kane, Jeffrey M.; Kolb, Thomas E.; Law, Darin J.; Lewis, James D.; Limousin, Jean-Marc; Love, David; Macalady, Alison K.; Martinez-Vilalta, Jordi; Mencuccini, Maurizio; Mitchell, Patrick J.; Muss, Jordan D.; O'Brien, Michael J.; O'Grady, Anthony P.; Pangle, Robert E.; Pinkard, Elizabeth A.; Piper, Frida I.; Plaut, Jennifer; Pockman, William T.; Quirk, Joe; Reinhardt, Keith; Ripullone, Francesco; Ryan, Michael G.; Sala, Anna; Sevanto, Sanna; Sperry, John S.; Vargas, Rodrigo; Vennetier, Michel; Way, Danielle A.; Wu, Chonggang; Yepez, Enrico A.; McDowell, Nate G.

    2017-01-01

    Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere–atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.

  18. Determination of dose ranges of gamma rays to induce specific changes in three ornamental species

    International Nuclear Information System (INIS)

    Gonzalez J, J.

    2011-11-01

    In order to confirming the possibility of to settle a dose range that takes place directly and not at random, a specific effect independently of the species that is were produced several similar organisms to three ornamental species took place via meristems cultivation: Petunia hybrid, Impatiens walleriana and Sprekelia formosissima, same that were irradiated in an irradiator Gamma cell 220, to different dose: 0, 3.5, 5.0, 7.5, 10, 12.5, 15, 17.5 and 20 Gy. Later on, of the plants treated via in vitro the subsequent generations were obtained until the M 4 . To determine the DL 50 and the possible good doses, the survival parameters, development, morphogenesis and height were evaluated during 8 weeks, interpreting based on them, the possible physiologic and genetic alterations induced by the radiation. The established DL 50 were: 7.5 Gy (Petunia), 19.0 Gy (Impatiens) and 12.0 Gy (Sprekelia). Based on the DL 50 of each species, a range of coincident dose settled down that produces a similar effect in the three species: a range of DL 23 to the DL 50 induces and alteration in the cytokinins production affecting directly in the leaves number, buds and plants taken place by meristem, also a range of DL 32 - DL 50 impacts in the auxins production altering to the radicule system. However, when being superimposed the dose is considered that the investigation should continue. (Author)

  19. In vivo synthesized 34S enriched amino acid standards for species specific isotope dilution of proteins

    DEFF Research Database (Denmark)

    Hermann, Gerrit; Moller, Laura Hyrup; Gammelgaard, Bente

    2016-01-01

    (ICP-MS) combined to anion exchange showed that very high concentrated spike material could be produced with [small mu ]mol amounts of proteinogenic sulfur containing amino acids per g cell dry weight. An enrichment of 34S to 96.3 +/- 0.4% (n = 3) and 98.5 +/- 0.4% (n = 3) for cysteic acid...... with the concept of species specific isotope dilution analysis (IDA). The method relies on the determination of the two sulfur containing amino acids, cysteine and methionine by sulfur speciation analysis and is hence applicable to any protein containing sulfur. In vivo synthesis using 34S as sulfur source...... and methionine sulfone, respectively, was assessed. The established IDA method was validated for the absolute quantification of commercially available lysozyme and ceruloplasmin standards including the calculation of a total combined uncertainty budget....

  20. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis.

    Science.gov (United States)

    Disson, Olivier; Grayo, Solène; Huillet, Eugénie; Nikitas, Georgios; Langa-Vives, Francina; Dussurget, Olivier; Ragon, Marie; Le Monnier, Alban; Babinet, Charles; Cossart, Pascale; Lecuit, Marc

    2008-10-23

    The ability to cross host barriers is an essential virulence determinant of invasive microbial pathogens. Listeria monocytogenes is a model microorganism that crosses human intestinal and placental barriers, and causes severe maternofetal infections by an unknown mechanism. Several studies have helped to characterize the bacterial invasion proteins InlA and InlB. However, their respective species specificity has complicated investigations on their in vivo role. Here we describe two novel and complementary animal models for human listeriosis: the gerbil, a natural host for L. monocytogenes, and a knock-in mouse line ubiquitously expressing humanized E-cadherin. Using these two models, we uncover the essential and interdependent roles of InlA and InlB in fetoplacental listeriosis, and thereby decipher the molecular mechanism underlying the ability of a microbe to target and cross the placental barrier.

  1. Jasmonate ZIM-domain (JAZ protein regulates host and nonhost pathogen-induced cell death in tomato and Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Ishiga

    Full Text Available The nonhost-specific phytotoxin coronatine (COR produced by several pathovars of Pseudomonas syringae functions as a jasmonic acid-isoleucine (JA-Ile mimic and contributes to disease development by suppressing plant defense responses and inducing reactive oxygen species in chloroplast. It has been shown that the F-box protein CORONATINE INSENSITIVE 1 (COI1 is the receptor for COR and JA-Ile. JASMONATE ZIM DOMAIN (JAZ proteins act as negative regulators for JA signaling in Arabidopsis. However, the physiological significance of JAZ proteins in P. syringae disease development and nonhost pathogen-induced hypersensitive response (HR cell death is not completely understood. In this study, we identified JAZ genes from tomato, a host plant for P. syringae pv. tomato DC3000 (Pst DC3000, and examined their expression profiles in response to COR and pathogens. Most JAZ genes were induced by COR treatment or inoculation with COR-producing Pst DC3000, but not by the COR-defective mutant DB29. Tomato SlJAZ2, SlJAZ6 and SlJAZ7 interacted with SlCOI1 in a COR-dependent manner. Using virus-induced gene silencing (VIGS, we demonstrated that SlJAZ2, SlJAZ6 and SlJAZ7 have no effect on COR-induced chlorosis in tomato and Nicotiana benthamiana. However, SlJAZ2-, SlJAZ6- and SlJAZ7-silenced tomato plants showed enhanced disease-associated cell death to Pst DC3000. Furthermore, we found delayed HR cell death in response to the nonhost pathogen Pst T1 or a pathogen-associated molecular pattern (PAMP, INF1, in SlJAZ2- and SlJAZ6-silenced N. benthamiana. These results suggest that tomato JAZ proteins regulate the progression of cell death during host and nonhost interactions.

  2. Global inhibition of reactive oxygen species (ROS inhibits paclitaxel-induced painful peripheral neuropathy.

    Directory of Open Access Journals (Sweden)

    Mehmet Fidanboylu

    Full Text Available Paclitaxel (Taxol® is a widely used chemotherapeutic agent that has a major dose limiting side-effect of painful peripheral neuropathy. Currently there is no effective therapy for the prevention or treatment of chemotherapy-induced painful peripheral neuropathies. Evidence for mitochondrial dysfunction during paclitaxel-induced pain was previously indicated with the presence of swollen and vacuolated neuronal mitochondria. As mitochondria are a major source of reactive oxygen species (ROS, the aim of this study was to examine whether pharmacological inhibition of ROS could reverse established paclitaxel-induced pain or prevent the development of paclitaxel-induced pain. Using a rat model of paclitaxel-induced pain (intraperitoneal 2 mg/kg paclitaxel on days 0, 2, 4 & 6, the effects of a non-specific ROS scavenger, N-tert-Butyl-α-phenylnitrone (PBN and a superoxide selective scavenger, 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL were compared. Systemic 100 mg/kg PBN administration markedly inhibited established paclitaxel-induced mechanical hypersensitivity to von Frey 8 g and 15 g stimulation and cold hypersensitivity to plantar acetone application. Daily systemic administration of 50 mg/kg PBN (days -1 to 13 completely prevented mechanical hypersensitivity to von Frey 4 g and 8 g stimulation and significantly attenuated mechanical hypersensitivity to von Frey 15 g. Systemic 100 mg/kg TEMPOL had no effect on established paclitaxel-induced mechanical or cold hypersensitivity. High dose (250 mg/kg systemic TEMPOL significantly inhibited mechanical hypersensitivity to von Frey 8 g & 15 g, but to a lesser extent than PBN. Daily systemic administration of 100 mg/kg TEMPOL (day -1 to 12 did not affect the development of paclitaxel-induced mechanical hypersensitivity. These data suggest that ROS play a causal role in the development and maintenance of paclitaxel-induced pain, but such effects cannot be attributed to superoxide radicals

  3. The Number, Organization, and Size of Polymorphic Membrane Protein Coding Sequences as well as the Most Conserved Pmp Protein Differ within and across Chlamydia Species.

    Science.gov (United States)

    Van Lent, Sarah; Creasy, Heather Huot; Myers, Garry S A; Vanrompay, Daisy

    2016-01-01

    Variation is a central trait of the polymorphic membrane protein (Pmp) family. The number of pmp coding sequences differs between Chlamydia species, but it is unknown whether the number of pmp coding sequences is constant within a Chlamydia species. The level of conservation of the Pmp proteins has previously only been determined for Chlamydia trachomatis. As different Pmp proteins might be indispensible for the pathogenesis of different Chlamydia species, this study investigated the conservation of Pmp proteins both within and across C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci. The pmp coding sequences were annotated in 16 C. trachomatis, 6 C. pneumoniae, 2 C. abortus, and 16 C. psittaci genomes. The number and organization of polymorphic membrane coding sequences differed within and across the analyzed Chlamydia species. The length of coding sequences of pmpA,pmpB, and pmpH was conserved among all analyzed genomes, while the length of pmpE/F and pmpG, and remarkably also of the subtype pmpD, differed among the analyzed genomes. PmpD, PmpA, PmpH, and PmpA were the most conserved Pmp in C. trachomatis,C. pneumoniae,C. abortus, and C. psittaci, respectively. PmpB was the most conserved Pmp across the 4 analyzed Chlamydia species. © 2016 S. Karger AG, Basel.

  4. Contribution of gastroenteropancreatic appetite hormones to protein-induced satiety

    DEFF Research Database (Denmark)

    Sparre, Anita Belza; Ritz, Christian; Sørensen, Mejse Q

    2013-01-01

    BACKGROUND: Effects of protein intake on appetite-regulating hormones and their dynamics are unclear. OBJECTIVES: We investigated the satiating effects of meals with varying protein contents and whether there was an effect of dose on appetite-regulating hormones and appetite ratings.Design: Twenty...

  5. Hypochlorite-induced oxidation of amino acids, peptides and proteins

    DEFF Research Database (Denmark)

    Hawkins, C L; Pattison, D I; Davies, Michael Jonathan

    2003-01-01

    Activated phagocytes generate the potent oxidant hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is known to react with a number of biological targets including proteins, DNA, lipids and cholesterol. Proteins are likely to be major targets for reactio...

  6. Hydroxysafflor yellow A suppress oleic acid-induced acute lung injury via protein kinase A

    International Nuclear Information System (INIS)

    Wang, Chaoyun; Huang, Qingxian; Wang, Chunhua; Zhu, Xiaoxi; Duan, Yunfeng; Yuan, Shuai; Bai, Xianyong

    2013-01-01

    Inflammation response and oxidative stress play important roles in acute lung injury (ALI). Activation of the cAMP/protein kinase A (PKA) signaling pathway may attenuate ALI by suppressing immune responses and inhibiting the generation of reactive oxygen species (ROS). Hydroxysafflor yellow A (HSYA) is a natural flavonoid compound that reduces oxidative stress and inflammatory cytokine-mediated damage. In this study, we examined whether HSYA could protect the lungs from oleic acid (OA)-induced injury, which was used to mimic ALI, and determined the role of the cAMP/PKA signaling pathway in this process. Arterial oxygen tension (PaO 2 ), carbon dioxide tension, pH, and the PaO 2 /fraction of inspired oxygen ratio in the blood were detected using a blood gas analyzer. We measured wet/dry lung weight ratio and evaluated tissue morphology. The protein and inflammatory cytokine levels in the bronchoalveolar lavage fluid and serum were determined using enzyme-linked immunoassay. The activities of superoxide dismutase, glutathione peroxidase, PKA, and nicotinamide adenine dinucleotide phosphate oxidase, and the concentrations of cAMP and malondialdehyde in the lung tissue were detected using assay kits. Bcl-2, Bax, caspase 3, and p22 phox levels in the lung tissue were analyzed using Western blotting. OA increased the inflammatory cytokine and ROS levels and caused lung dysfunction by decreasing cAMP synthesis, inhibiting PKA activity, stimulating caspase 3, and reducing the Bcl-2/Bax ratio. H-89 increased these effects. HSYA significantly increased the activities of antioxidant enzymes, inhibited the inflammatory response via cAMP/PKA pathway activation, and attenuated OA-induced lung injury. Our results show that the cAMP/PKA signaling pathway is required for the protective effect of HSYA against ALI. - Highlights: • Oleic acid (OA) cause acute lung injury (ALI) via inhibiting cAMP/PKA signal pathway. • Blocking protein kinase A (PKA) activation may enhance Cytokine

  7. Effect of fullerenol surface chemistry on nanoparticle binding-induced protein misfolding

    Science.gov (United States)

    Radic, Slaven; Nedumpully-Govindan, Praveen; Chen, Ran; Salonen, Emppu; Brown, Jared M.; Ke, Pu Chun; Ding, Feng

    2014-06-01

    Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and dynamics of ubiquitin. We found that all derivatives bound to the model protein. Specifically, the more hydrophilic nanoparticles with a higher number of hydroxyl groups bound to the surface of the protein via hydrogen bonds, which stabilized the protein without inducing large conformational changes in the protein structure. In contrast, fullerene derivatives with a smaller number of hydroxyl groups buried their hydrophobic surface inside the protein, thereby causing protein denaturation. Overall, our results revealed a distinct role of surface chemistry on nanoparticle-protein binding and binding-induced protein misfolding.Fullerene and its derivatives with different surface chemistry have great potential in biomedical applications. Accordingly, it is important to delineate the impact of these carbon-based nanoparticles on protein structure, dynamics, and subsequently function. Here, we focused on the effect of hydroxylation -- a common strategy for solubilizing and functionalizing fullerene -- on protein-nanoparticle interactions using a model protein, ubiquitin. We applied a set of complementary computational modeling methods, including docking and molecular dynamics simulations with both explicit and implicit solvent, to illustrate the impact of hydroxylated fullerenes on the structure and

  8. Characterization of canine mitochondrial protein expression in natural and induced forms of idiopathic dilated cardiomyopathy.

    Science.gov (United States)

    Lopes, Rosana; Solter, Philip F; Sisson, D David; Oyama, Mark A; Prosek, Robert

    2006-06-01

    To map canine mitochondrial proteins and identify qualitative and quantitative differences in heart mitochondrial protein expression between healthy dogs and dogs with naturally occurring and induced dilated cardiomyopathy (DCM). Left ventricle samples were obtained from 7 healthy dogs, 7 Doberman Pinschers with naturally occurring DCM, and 7 dogs with induced DCM. Fresh and frozen mitochondrial fractions were isolated from the left ventricular free wall and analyzed by 2-dimensional electrophoresis. Protein spots that increased or decreased in density by >or= 2-fold between groups were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry or quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometry. Within narrow pH gradients of control canine heart mitochondrial samples, a total of 1,528 protein spots were revealed. Forty subunits of heart mitochondrial proteins that differ significantly from control tissues were altered in tissue specimens from dogs with naturally occurring and induced forms of DCM. The most affected heart mitochondrial proteins in both groups were those of oxidative phosphorylation (55%). Upregulation of manganese superoxide dismutase was suggestive of heart oxidative injury in tissue specimens from dogs with both forms of DCM. Evidence of apoptosis was associated with overexpression of the heart mitochondrial voltage-dependent anion channel-2 protein and endonuclease G in tissue specimens from dogs with induced DCM. Alterations of heart mitochondrial proteins related to oxidative phosphorylation dysfunction were more prevalent in tissue specimens from dogs with induced or naturally occurring DCM, compared with those of control dogs.

  9. Eimeria Species and Genetic Background Influence the Serum Protein Profile of Broilers with Coccidiosis

    Science.gov (United States)

    Gilbert, Elizabeth R.; Cox, Chasity M.; Williams, Patricia M.; McElroy, Audrey P.; Dalloul, Rami A.; Ray, W. Keith; Barri, Adriana; Emmerson, Derek A.; Wong, Eric A.; Webb, Kenneth E.

    2011-01-01

    Background Coccidiosis is an intestinal disease caused by protozoal parasites of the genus Eimeria. Despite the advent of anti-coccidial drugs and vaccines, the disease continues to result in substantial annual economic losses to the poultry industry. There is still much unknown about the host response to infection and to date there are no reports of protein profiles in the blood of Eimeria-infected animals. The objective of this study was to evaluate the serum proteome of two genetic lines of broiler chickens after infection with one of three species of Eimeria. Methodology/Principal Findings Birds from lines A and B were either not infected or inoculated with sporulated oocysts from one of the three Eimeria strains at 15 d post-hatch. At 21 d (6 d post-infection), whole blood was collected and lesion scoring was performed. Serum was harvested and used for 2-dimensional gel electrophoresis. A total of 1,266 spots were quantitatively assessed by densitometry. Protein spots showing a significant effect of coccidia strain and/or broiler genetic line on density at PEimeria infection and in identifying molecular targets for diagnostic screening and development of alternative preventative and therapeutic methods. PMID:21297942

  10. Cardiovascular Small Heat Shock Protein HSPB7 Is a Kinetically Privileged Reactive Electrophilic Species (RES) Sensor.

    Science.gov (United States)

    Surya, Sanjna L; Long, Marcus J C; Urul, Daniel A; Zhao, Yi; Mercer, Emily J; EIsaid, Islam M; Evans, Todd; Aye, Yimon

    2018-02-08

    Small heat shock protein (sHSP)-B7 (HSPB7) is a muscle-specific member of the non-ATP-dependent sHSPs. The precise role of HSPB7 is enigmatic. Here, we disclose that zebrafish Hspb7 is a kinetically privileged sensor that is able to react rapidly with native reactive electrophilic species (RES), when only substoichiometric amounts of RES are available in proximity to Hspb7 expressed in living cells. Among the two Hspb7-cysteines, this RES sensing is fulfilled by a single cysteine (C117). Purification and characterizations in vitro reveal that the rate for RES adduction is among the most efficient reported for protein-cysteines with native carbonyl-based RES. Covalent-ligand binding is accompanied by structural changes (increase in β-sheet-content), based on circular dichroism analysis. Among the two cysteines, only C117 is conserved across vertebrates; we show that the human ortholog is also capable of RES sensing in cells. Furthermore, a cancer-relevant missense mutation reduces this RES-sensing property. This evolutionarily conserved cysteine-biosensor may play a redox-regulatory role in cardioprotection.

  11. The roles of phosphorylation and SHAGGY-like protein kinases in geminivirus C4 protein induced hyperplasia.

    Directory of Open Access Journals (Sweden)

    Katherine Mills-Lujan

    Full Text Available Even though plant cells are highly plastic, plants only develop hyperplasia under very specific abiotic and biotic stresses, such as when exposed to pathogens like Beet curly top virus (BCTV. The C4 protein of BCTV is sufficient to induce hyperplasia and alter Arabidopsis development. It was previously shown that C4 interacts with two Arabidopsis Shaggy-like protein kinases, AtSK21 and 23, which are negative regulators of brassinosteroid (BR hormone signaling. Here we show that the C4 protein interacts with five additional AtSK family members. Bikinin, a competitive inhibitor of the seven AtSK family members that interact with C4, induced hyperplasia similar to that induced by the C4 protein. The Ser49 residue of C4 was found to be critical for C4 function, since: 1 mutagenesis of Ser49 to Ala abolished the C4-induced phenotype, abolished C4/AtSK interactions, and resulted in a mutant protein that failed to induce changes in the BR signaling pathway; 2 Ser49 is phosphorylated in planta; and 3 plant-encoded AtSKs must be catalytically active to interact with C4. A C4 N-myristoylation site mutant that does not localize to the plasma membrane and does not induce a phenotype, retained the ability to bind AtSKs. Taken together, these results suggest that plasma membrane associated C4 interacts with and co-opts multiple AtSKs to promote its own phosphorylation and activation to subsequently compromise cell cycle control.

  12. Secretome Analysis of Metarhizium anisopliae Under Submerged Conditions Using Bombyx mori Chrysalis to Induce Expression of Virulence-Related Proteins.

    Science.gov (United States)

    Rustiguel, Cynthia Barbosa; Rosa, José Cesar; Jorge, João Atílio; de Oliveira, Arthur Henrique Cavalcanti; Guimarães, Luis Henrique Souza

    2016-02-01

    The entomopathogenic fungus Metarhizium anisopliae is used to control insect pests. This species is specialized for the secretion of an enzymatic complex consisting of proteases, lipases, and chitinases related to pathogenicity and virulence. In this context, the secretomes of strains IBCB 167 and IBCB 384 of M. anisopliae var. anisopliae, grown under submerged fermentation in the presence of chrysalis as an inducer, were analyzed. Analysis of two-dimensional gels showed qualitative and quantitative differences between secreted proteins in both isolates. Around 102 protein spots were analyzed, and 76 % of the corresponding proteins identified by mass spectrometry were grouped into different classes (hydrolases, oxidases, reductases, isomerases, kinases, WSC domains, and hypothetical proteins). Thirty-three per cent of all the proteins analyzed were found to be common in both strains. Several virulence-related proteins were identified as proteases and mannosidases. Endo-N-acetyl-β-D-glucosaminidase expression was observed to be 10.14-fold higher for strain IBCB 384 than for strain IBCB 167, which may be an important contributor to the high virulence of IBCB 384 in Diatraea ssaccharalis. These results are important for elucidation of the host-pathogen relationship and the differences in virulence observed between the two strains.

  13. Hydraulic and carbohydrate changes in experimental drought-induced mortality of saplings in two conifer species.

    Science.gov (United States)

    Anderegg, William R L; Anderegg, Leander D L

    2013-03-01

    Global patterns of drought-induced forest die-off indicate that many forests may be sensitive to climate-driven mortality, but the lack of understanding of how trees and saplings die during drought hinders the projections of die-off, demographic bottlenecks and ecosystem trajectories. In this study, we performed a severe controlled drought experiment on saplings of Pinus edulis Engelm. and Juniperus osteosperma (Torr.) Little, two species that both experienced die-off in a recent 'climate change-type' drought. We examined the roles of carbohydrate and hydraulic changes in multiple tissues as the saplings died. We found that saplings of both species exhibited large degrees of loss of hydraulic conductivity prior to death. Neither species exhibited significant changes in carbohydrate concentrations in any tissue during the relatively short and severe imposed drought. Native hydraulic conductivity successfully predicted the degree of canopy mortality in both species, highlighting the importance of drought characteristics and tree attributes in influencing physiological pathways to mortality. The relationships elucidated here, as well as the differences between our results and previous findings in adult trees, can help inform mortality mechanisms in climate-vegetation models, especially for young trees, and to understand species response to severe drought across ontogeny.

  14. Demodex-associated bacterial proteins induce neutrophil activation.

    LENUS (Irish Health Repository)

    2012-02-01

    Background: Patients with rosacea demonstrate a higher density of Demodex mites in their skin than controls. A bacterium isolated from a Demodex mite from a patient with papulopustular rosacea (PPR) was previously shown to provoke an immune response in patients with PPR or ocular rosacea thus suggesting a possible role for bacterial proteins in the etiology of this condition. Objectives: To examine the response of neutrophils to proteins derived from a bacterium isolated from a Demodex mite. Methods: Bacterial cells were lysed and proteins were partially purified by AKTA-FPLC. Isolated neutrophils were exposed to bacterial proteins and monitored for alterations in migration, degranulation and cytokine production. Results: Neutrophils exposed to proteins from Bacillus cells demonstrated increased levels of migration and elevated release of MMP-9, an enzyme known to degrade collagen and cathelicidin, an antimicrobial peptide. In addition neutrophils exposed to the bacterial proteins demonstrated elevated rates of Il-8 and TNF-alpha production. Conclusions: Proteins produced by a bacterium isolated from a Demodex mite have the ability to increase the migration, degranulation and cytokine production abilities of neutrophils. These results suggest that bacteria may play a role in the inflammatory erythema associated with rosacea.

  15. HitPredict version 4: comprehensive reliability scoring of physical protein?protein interactions from more than 100 species

    OpenAIRE

    L?pez, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein?protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein?protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of p...

  16. Neutrophils and the calcium-binding protein MRP-14 mediate carrageenan-induced antinociception in mice

    Directory of Open Access Journals (Sweden)

    Rosana L. Pagano

    2002-01-01

    Full Text Available Background: We have previously shown that the calcium-binding protein MRP-14 secreted by neutrophils mediates the antinociceptive response in an acute inflammatory model induced by the intraperitoneal injection of glycogen in mice.

  17. Contrasting evolutionary patterns of spore coat proteins in two Bacillus species groups are linked to a difference in cellular structure

    Science.gov (United States)

    2013-01-01

    Background The Bacillus subtilis-group and the Bacillus cereus-group are two well-studied groups of species in the genus Bacillus. Bacteria in this genus can produce a highly resistant cell type, the spore, which is encased in a complex protective protein shell called the coat. Spores in the B. cereus-group contain an additional outer layer, the exosporium, which encircles the coat. The coat in B. subtilis spores possesses inner and outer layers. The aim of this study is to investigate whether differences in the spore structures influenced the divergence of the coat protein genes during the evolution of these two Bacillus species groups. Results We designed and implemented a computational framework to compare the evolutionary histories of coat proteins. We curated a list of B. subtilis coat proteins and identified their orthologs in 11 Bacillus species based on phylogenetic congruence. Phylogenetic profiles of these coat proteins show that they can be divided into conserved and labile ones. Coat proteins comprising the B. subtilis inner coat are significantly more conserved than those comprising the outer coat. We then performed genome-wide comparisons of the nonsynonymous/synonymous substitution rate ratio, dN/dS, and found contrasting patterns: Coat proteins have significantly higher dN/dS in the B. subtilis-group genomes, but not in the B. cereus-group genomes. We further corroborated this contrast by examining changes of dN/dS within gene trees, and found that some coat protein gene trees have significantly different dN/dS between the B subtilis-clade and the B. cereus-clade. Conclusions Coat proteins in the B. subtilis- and B. cereus-group species are under contrasting selective pressures. We speculate that the absence of the exosporium in the B. subtilis spore coat effectively lifted a structural constraint that has led to relaxed negative selection pressure on the outer coat. PMID:24283940

  18. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland.

    Directory of Open Access Journals (Sweden)

    Nico Eisenhauer

    Full Text Available Changes in plant diversity may induce distinct changes in soil food web structure and accompanying soil feedbacks to plants. However, knowledge of the long-term consequences of plant community simplification for soil animal food webs and functioning is scarce. Nematodes, the most abundant and diverse soil Metazoa, represent the complexity of soil food webs as they comprise all major trophic groups and allow calculation of a number of functional indices.We studied the functional composition of nematode communities three and five years after establishment of a grassland plant diversity experiment (Jena Experiment. In response to plant community simplification common nematode species disappeared and pronounced functional shifts in community structure occurred. The relevance of the fungal energy channel was higher in spring 2007 than in autumn 2005, particularly in species-rich plant assemblages. This resulted in a significant positive relationship between plant species richness and the ratio of fungal-to-bacterial feeders. Moreover, the density of predators increased significantly with plant diversity after five years, pointing to increased soil food web complexity in species-rich plant assemblages. Remarkably, in complex plant communities the nematode community shifted in favour of microbivores and predators, thereby reducing the relative abundance of plant feeders after five years.The results suggest that species-poor plant assemblages may suffer from nematode communities detrimental to plants, whereas species-rich plant assemblages support a higher proportion of microbivorous nematodes stimulating nutrient cycling and hence plant performance; i.e. effects of nematodes on plants may switch from negative to positive. Overall, food web complexity is likely to decrease in response to plant community simplification and results of this study suggest that this results mainly from the loss of common species which likely alter plant-nematode interactions.

  19. Utilising cardiopulmonary bypass for cancer surgery. Malignancy-induced protein C deficiency and thrombophilia.

    LENUS (Irish Health Repository)

    Marshall, C

    2012-02-03

    Cardiopulmonary bypass has evolved over the last 30 years. It is an important tool for the cardiac surgeon today and also has applications in non-cardiac operations such as surgery to extract tumours. Such patients undergoing surgery for cancer may be at an increased risk of a thromboembolic event post surgery, due to disturbances in the normal clotting pathway leading to hypercoagulability. One such disturbance is malignancy-induced Protein C deficiency. A deficiency of Protein C can cause hypercoagulabitity. Recent studies have examined cardiopulmonary bypass and inherited Protein C deficiency. However, surgery for cancer patients with a malignancy-induced Protein C deficiency involving cardiopulmonary bypass has not been reported. Surgery using CPB in these patients may result in increased morbidity and mortality. The objective of this article is to review the literature in order to discuss the occurrence, the aetiology and possible management of cancer patients with malignancy-induced Protein C deficiencies that require cardiopulmonary bypass for their surgery.

  20. Tumor-associated proteins in rat submandibular gland induced by DMBA and irradiation

    International Nuclear Information System (INIS)

    Oh, Sung Ook; Choi, Soon Chul; Park, Tae Won; You, Dong Soo

    1997-01-01

    This study was performed in order to identify changes of the plasma membrane proteins in rat submandibular gland tumors induced by 7,12-dimethylbenz[a]anthracene [DMBA] and X-irradiation. Two kinds of tumor associated membrane proteins (protein A and B) were isolated with 3 M KCl extraction from rat submandibular gland tumors induced by DMBA and X-irradiation. To identify their antigenicities, immunoelectrophoresis and double immunodiffusion was carried out with various proteins extracted from liver, heart, skin and pancreas of adult rats and from embryonic liver, heart and skin. The rabbit antisera against the protein A did not cross-react with any of the proteins extracted from the above mentioned tissues, suggesting that protein A might be tumor specific antigen. However, the rabbit antisera against protein B was precipitated with proteins extracted from the liver of adult and embryonic rats. Polyacrylamide gel electrophoresis of these two proteins (A and B) showed that protein A was a dimer with molecular weights of 69,000 and 35,000 dalton, whereas protein B was a monomer with molecular weight of 50,000 dalton.

  1. Arterial Blood Pressure Induces Transient C4b-Binding Protein in Human Saphenous Vein Grafts.

    Science.gov (United States)

    Kupreishvili, Koba; Meischl, Christof; Vonk, Alexander B A; Stooker, Wim; Eijsman, Leon; Blom, Anna M; Quax, Paul H A; van Hinsbergh, Victor W M; Niessen, Hans W M; Krijnen, Paul A J

    2017-05-01

    Complement is an important mediator in arterial blood pressure-induced vein graft failure. Previously, we noted activation of cell protective mechanisms in human saphenous veins too. Here we have analyzed whether C4b-binding protein (C4bp), an endogenous complement inhibitor, is present in the vein wall. Human saphenous vein segments obtained from patients undergoing coronary artery bypass grafting (n = 55) were perfused in vitro at arterial blood pressure with either autologous blood for 1, 2, 4, or 6 hr or with autologous blood supplemented with reactive oxygen species scavenger N-acetylcysteine. The segments were subsequently analyzed quantitatively for presence of C4bp and complement activation product C3d using immunohistochemistry. Perfusion induced deposition of C3d and C4bp within the media of the vessel wall, which increased reproducibly and significantly over a period of 4 hr up to 3.8% for C3d and 81% for C4bp of the total vessel area. Remarkably after 6 hr of perfusion, the C3d-positive area decreased significantly to 1.3% and the C4bp-positive area to 19% of the total area of the vein. The areas positive for both C4bp and C3d were increased in the presence of N-acetylcysteine. Exposure to arterial blood pressure leads to a transient presence of C4bp in the vein wall. This may be part of a cell-protective mechanism to counteract arterial blood pressure-induced cellular stress and inflammation in grafted veins. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. TGEV nucleocapsid protein induces cell cycle arrest and apoptosis through activation of p53 signaling

    International Nuclear Information System (INIS)

    Ding, Li; Huang, Yong; Du, Qian; Dong, Feng; Zhao, Xiaomin; Zhang, Wenlong; Xu, Xingang; Tong, Dewen

    2014-01-01

    Highlights: • TGEV N protein reduces cell viability by inducing cell cycle arrest and apoptosis. • TGEV N protein induces cell cycle arrest and apoptosis by regulating p53 signaling. • TGEV N protein plays important roles in TGEV-induced cell cycle arrest and apoptosis. - Abstract: Our previous studies showed that TGEV infection could induce cell cycle arrest and apoptosis via activation of p53 signaling in cultured host cells. However, it is unclear which viral gene causes these effects. In this study, we investigated the effects of TGEV nucleocapsid (N) protein on PK-15 cells. We found that TGEV N protein suppressed cell proliferation by causing cell cycle arrest at the S and G2/M phases and apoptosis. Characterization of various cellular proteins that are involved in regulating cell cycle progression demonstrated that the expression of N gene resulted in an accumulation of p53 and p21, which suppressed cyclin B1, cdc2 and cdk2 expression. Moreover, the expression of TGEV N gene promoted translocation of Bax to mitochondria, which in turn caused the release of cytochrome c, followed by activation of caspase-3, resulting in cell apoptosis in the transfected PK-15 cells following cell cycle arrest. Further studies showed that p53 inhibitor attenuated TGEV N protein induced cell cycle arrest at S and G2/M phases and apoptosis through reversing the expression changes of cdc2, cdk2 and cyclin B1 and the translocation changes of Bax and cytochrome c induced by TGEV N protein. Taken together, these results demonstrated that TGEV N protein might play an important role in TGEV infection-induced p53 activation and cell cycle arrest at the S and G2/M phases and apoptosis occurrence

  3. Oviduct Binding and Elevated Environmental pH Induce Protein Tyrosine Phosphorylation in Stallion Spermatozoa

    NARCIS (Netherlands)

    Leemans, B.; Gadella, B.M.; Sostaric, E.; Nelis, H.; Stout, T.A.E.; Hoogewijs, M.; van Soom, A.

    2014-01-01

    Sperm-oviduct binding is an essential step in the capacitation process preparing the sperm for fertilization in several mammalian species. In many species, capacitation can be induced in vitro by exposing spermatozoa to bicarbonate, Ca2+, and albumin; however, these conditions are insufficient in

  4. [125I]2-iodo-3,7,8-trichlorodibenzo-p-dioxin-binding species in mouse liver induced by agonists for the Ah receptor: Characterization and identification

    International Nuclear Information System (INIS)

    Poland, A.; Teitelbaum, P.; Glover, E.

    1989-01-01

    The admininistration of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to C57BL/6J mice produces a dose-related increase in the hepatic uptake of [ 125 I]2-iodo-3,7,8-trichlorodibenzo-p-dioxin ([ 125 I]Cl3DpD) in vivo and the binding of the radioligand to liver homogenate in vitro. The TCDD-induced hepatic binding species was found to be predominantly in the microsomal fraction and was inactivated by heating at 60 degree, trypsin, and mercurials. The TCDD-induced binding species was found to have an apparent equilibrium dissociation constant, KD, ([ 125 I]Cl3DpD) of 56 +/- 16 nM and a pool size, Bmax, of 22 +/- 5 nmol/g of liver. A number of halogenated dibenzo-p-dioxins, biphenyls, and polycyclic aromatic hydrocarbons compete with [ 125 I]Cl3DpD binding to this species; all are aromatic and planar. The distinctive profile of this binding species, a protein of large pool size induced in the microsomal fraction of liver but not other tissues and induced by agonists for the Ah receptor, suggested that this moiety might be cytochrome P3-450. The coincidence of the major microsomal species covalently labeled with the photoaffinity ligand [ 125 I]2-iodo-3-azido-7,8-dibromodibenzo-p-dioxin and that immunochemically stained with polyclonal antiserum that binds to cytochrome P3-450 confirms this hypothesis. This is a novel role for a cytochrome P-450 isozyme, as an induced sequestration site that enhances the hepatic localization of the agonist drug

  5. Soybean hull induced production of carbohydrases and protease among Aspergillus and their effectiveness in soy flour carbohydrate and protein separation.

    Science.gov (United States)

    Li, Qian; Loman, Abdullah Al; Coffman, Anthony M; Ju, Lu-Kwang

    2017-04-20

    Soybean hull consists mainly of three major plant carbohydrates, i.e., cellulose, hemicellulose and pectin. It is inexpensive and a good potential substrate for carbohydrase production because it is capable of inducing a complete spectrum of activities to hydrolyze complex biomass. Aspergillus is known for carbohydrase production but no studies have evaluated and compared, among Aspergillus species and strains, the soybean hull induced production of various carbohydrases. In this study, A. aculeatus, A. cinnamomeus, A. foetidus, A. phoenicis and 11 A. niger strains were examined together with T. reesei Rut C30, another known carbohydrase producer. The carbohydrases evaluated included pectinase, polygalacturonase, xylanase, cellulase, α-galactosidase and sucrase. Growth morphology and pH profiles were also followed. Among Aspergillus strains, morphology was found to correlate with both carbohydrase production and pH decrease profile. Filamentous strains gave higher carbohydrase production while causing slower pH decrease. The enzyme broths produced were also tested for separation of soy flour carbohydrate and protein. Defatted soy flour contains about 53% protein and 32% carbohydrate. The enzymatic treatment can increase protein content and remove indigestible oligo-/poly-saccharides, and improve use of soy flour in feed and food. Protease production by different strains was therefore also compared for minimizing protein degradation. A. niger NRRL 322 and A. foetidus NRRL 341 were found to be the most potent strains that produced maximal carbohydrases and minimal protease under soybean hull induction. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Reactive Oxygen Species-Induced TXNIP Drives Fructose-Mediated Hepatic Inflammation and Lipid Accumulation Through NLRP3 Inflammasome Activation

    Science.gov (United States)

    Zhang, Xian; Zhang, Jian-Hua; Chen, Xu-Yang; Hu, Qing-Hua; Wang, Ming-Xing; Jin, Rui; Zhang, Qing-Yu; Wang, Wei; Wang, Rong; Kang, Lin-Lin; Li, Jin-Sheng; Li, Meng

    2015-01-01

    Abstract Aims: Increased fructose consumption predisposes the liver to nonalcoholic fatty liver disease (NAFLD), but the mechanisms are elusive. Thioredoxin-interacting protein (TXNIP) links oxidative stress to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and this signaling axis may be involved in fructose-induced NAFLD. Here, we explore the role of reactive oxygen species (ROS)-induced TXNIP overexpression in fructose-mediated hepatic NLRP3 inflammasome activation, inflammation, and lipid accumulation. Results: Rats were fed a 10% fructose diet for 8 weeks and treated with allopurinol and quercetin during the last 4 weeks. Five millimolars of fructose-exposed hepatocytes (primary rat hepatocytes, rat hepatic parenchymal cells [RHPCs], HLO2, HepG2) were co-incubated with antioxidants or caspase-1 inhibitor or subjected to TXNIP or NLRP3 siRNA interference. Fructose induced NLRP3 inflammasome activation and pro-inflammatory cytokine secretion, janus-activated kinase 2/signal transducers and activators of transcription 3-mediated inflammatory signaling, and expression alteration of lipid metabolism-related genes in cultured hepatocytes and rat livers. NLRP3 silencing and caspase-1 suppression blocked these effects in primary rat hepatocytes and RHPCs, confirming that inflammasome activation alters hepatocyte lipid metabolism. Hepatocellular ROS and TXNIP were increased in animal and cell models. TXNIP silencing blocked NLRP3 inflammasome activation, inflammation, and lipid metabolism perturbations but not ROS induction in fructose-exposed hepatocytes, whereas antioxidants addition abrogated TXNIP induction and diminished the detrimental effects in fructose-exposed hepatocytes and rat livers. Innovation and Conclusions: This study provides a novel mechanism for fructose-induced NAFLD pathogenesis by which the ROS-TXNIP pathway mediates hepatocellular NLRP3 inflammasome activation, inflammation and lipid accumulation. Antioxidant

  7. Zinc Oxide Nanoparticle Induces Microglial Death by NADPH-Oxidase-Independent Reactive Oxygen Species as well as Energy Depletion.

    Science.gov (United States)

    Sharma, Anuj Kumar; Singh, Vikas; Gera, Ruchi; Purohit, Mahaveer Prasad; Ghosh, Debabrata

    2017-10-01

    Zinc oxide nanoparticle (ZnO-NP) is one of the most widely used engineered nanoparticles. Upon exposure, nanoparticle can eventually reach the brain through various routes, interact with different brain cells, and alter their activity. Microglia is the fastest glial cell to respond to any toxic insult. Nanoparticle exposure can activate microglia and induce neuroinflammation. Simultaneous to activation, microglial death can exacerbate the scenario. Therefore, we focused on studying the effect of ZnO-NP on microglia and finding out the pathway involved in the microglial death. The present study showed that the 24 h inhibitory concentration 50 (IC 50 ) of ZnO-NP for microglia is 6.6 μg/ml. Early events following ZnO-NP exposure involved increase in intracellular calcium level as well as reactive oxygen species (ROS). Neither of NADPH oxidase inhibitors, apocynin, (APO) and diphenyleneiodonium chloride (DPIC) were able to reduce the ROS level and rescue microglia from ZnO-NP toxicity. In contrary, N-acetyl cysteine (NAC) showed opposite effect. Exogenous supplementation of superoxide dismutase (SOD) reduced ROS significantly even beyond control level but partially rescued microglial viability. Interestingly, pyruvate supplementation rescued microglia near to control level. Following 10 h of ZnO-NP exposure, intracellular ATP level was measured to be almost 50 % to the control. ZnO-NP-induced ROS as well as ATP depletion both disturbed mitochondrial membrane potential and subsequently triggered the apoptotic pathway. The level of apoptosis-inducing proteins was measured by western blot analysis and found to be upregulated. Taken together, we have deciphered that ZnO-NP induced microglial apoptosis by NADPH oxidase-independent ROS as well as ATP depletion.

  8. Protein-induced bilayer Perturbations: Lipid ordering and hydrophobic coupling

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Laursen, Ib; Bohr, Henrik

    2009-01-01

    The host lipid bilayer is increasingly being recognized as an important non-specific regulator of membrane protein function. Despite considerable progress the interplay between hydrophobic coupling and lipid ordering is still elusive. We use electron spin resonance (ESR) to study the interaction...... between the model protein gramicidin and lipid bilayers of varying thickness. The free energy of the interaction is up to −6 kJ/mol; thus not strongly favored over lipid–lipid interactions. Incorporation of gramicidin results in increased order parameters with increased protein concentration...... and hydrophobic mismatch. Our findings also show that at high protein:lipid ratios the lipids are motionally restricted but not completely immobilized. Both exchange on and off rate values for the lipid ↔ gramicidin interaction are lowest at optimal hydrophobic matching. Hydrophobic mismatch of few Å results...

  9. Albumin induces upregulation of matrix metalloproteinase-9 in astrocytes via MAPK and reactive oxygen species-dependent pathways

    Directory of Open Access Journals (Sweden)

    Ranaivo Hantamalala

    2012-04-01

    Full Text Available Abstract Background Astrocytes are an integral component of the blood–brain barrier (BBB which may be compromised by ischemic or traumatic brain injury. In response to trauma, astrocytes increase expression of the endopeptidase matrix metalloproteinase (MMP-9. Compromise of the BBB leads to the infiltration of fluid and blood-derived proteins including albumin into the brain parenchyma. Albumin has been previously shown to activate astrocytes and induce the production of inflammatory mediators. The effect of albumin on MMP-9 activation in astrocytes is not known. We investigated the molecular mechanisms underlying the production of MMP-9 by albumin in astrocytes. Methods Primary enriched astrocyte cultures were used to investigate the effects of exposure to albumin on the release of MMP-9. MMP-9 expression was analyzed by zymography. The involvement of mitogen-activated protein kinase (MAPK, reactive oxygen species (ROS and the TGF-β receptor-dependent pathways were investigated using pharmacological inhibitors. The production of ROS was observed by dichlorodihydrofluorescein diacetate fluorescence. The level of the MMP-9 inhibitor tissue inhibitor of metalloproteinase (TIMP-1 produced by astrocytes was measured by ELISA. Results We found that albumin induces a time-dependent release of MMP-9 via the activation of p38 MAPK and extracellular signal regulated kinase, but not Jun kinase. Albumin-induced MMP-9 production also involves ROS production upstream of the MAPK pathways. However, albumin-induced increase in MMP-9 is independent of the TGF-β receptor, previously described as a receptor for albumin. Albumin also induces an increase in TIMP-1 via an undetermined mechanism. Conclusions These results link albumin (acting through ROS and the p38 MAPK to the activation of MMP-9 in astrocytes. Numerous studies identify a role for MMP-9 in the mechanisms of compromise of the BBB, epileptogenesis, or synaptic remodeling after ischemia or

  10. PhosphOrtholog: a web-based tool for cross-species mapping of orthologous protein post-translational modifications.

    Science.gov (United States)

    Chaudhuri, Rima; Sadrieh, Arash; Hoffman, Nolan J; Parker, Benjamin L; Humphrey, Sean J; Stöckli, Jacqueline; Hill, Adam P; James, David E; Yang, Jean Yee Hwa

    2015-08-19

    Most biological processes are influenced by protein post-translational modifications (PTMs). Identifying novel PTM sites in different organisms, including humans and model organisms, has expedited our understanding of key signal transduction mechanisms. However, with increasing availability of deep, quantitative datasets in diverse species, there is a growing need for tools to facilitate cross-species comparison of PTM data. This is particularly important because functionally important modification sites are more likely to be evolutionarily conserved; yet cross-species comparison of PTMs is difficult since they often lie in structurally disordered protein domains. Current tools that address this can only map known PTMs between species based on known orthologous phosphosites, and do not enable the cross-species mapping of newly identified modification sites. Here, we addressed this by developing a web-based software tool, PhosphOrtholog ( www.phosphortholog.com ) that accurately maps protein modification sites between different species. This facilitates the comparison of datasets derived from multiple species, and should be a valuable tool for the proteomics community. Here we describe PhosphOrtholog, a web-based application for mapping known and novel orthologous PTM sites from experimental data obtained from different species. PhosphOrtholog is the only generic and automated tool that enables cross-species comparison of large-scale PTM datasets without relying on existing PTM databases. This is achieved through pairwise sequence alignment of orthologous protein residues. To demonstrate its utility we apply it to two sets of human and rat muscle phosphoproteomes generated following insulin and exercise stimulation, respectively, and one publicly available mouse phosphoproteome following cellular stress revealing high mapping and coverage efficiency. Although coverage statistics are dataset dependent, PhosphOrtholog increased the number of cross-species mapped sites

  11. Heat shock induced change in protein ubiquitination in Chlamydomonas

    International Nuclear Information System (INIS)

    Shimogawara, K.; Muto, S.

    1989-01-01

    Ubiquitin was purified from pea (Pisum sativum L.) and its antibody was produced. Western blot analysis showed that the antibody cross-reacted with ubiquitins from a green alga Chlamydomonas reinhardtii, a brown alga Laminaria angustata and a red alga Porphyridium cruentum but not with ubiquitin from a blue-green alga Synechococcus sp. In Chlamydomonas, the antibody also reacted with some ubiquitinated proteins including 28- and 31-kDa polypeptides. The isoelectric points of Chlamydomonas ubiquitin and the 28- and 31-kDa ubiquitinated proteins were 8.0, 8.9 and 10.3, respectively. The ubiquitinated proteins, including the 28- and 31-kDa polypeptides were detected after in vitro ATP-dependent ubiquitination of Chlamydomonas cell extract with l25 I-labeled bovine ubiquitin. Heat treatment of Chlamydomonas cells (>40°C) caused drastic increase of ubiquitinated proteins with high mol wt (>60kDa), and coordinated redistribution or decrease of other ubiquitinated proteins and free ubiquitin. Quantitative analysis revealed that the 28- and 31-kDa ubiquitinated proteins showed different responses against heat stress, i.e. the former being more sensitive than the latter. (author)

  12. Hypochlorite-induced oxidation of proteins in plasma

    DEFF Research Database (Denmark)

    Hawkins, C L; Davies, Michael Jonathan

    1999-01-01

    Activated phagocyte cells generate hypochlorite (HOCl) via the release of H2O2 and the enzyme myeloperoxidase. Plasma proteins are major targets for HOCl, although little information is available about the mechanism(s) of oxidation. In this study the reaction of HOCl (at least 50 microM) with dil......Activated phagocyte cells generate hypochlorite (HOCl) via the release of H2O2 and the enzyme myeloperoxidase. Plasma proteins are major targets for HOCl, although little information is available about the mechanism(s) of oxidation. In this study the reaction of HOCl (at least 50 micro......M) with diluted fresh human plasma has been shown to generate material that oxidizes 5-thio-2-nitrobenzoic acid; these oxidants are believed to be chloramines formed from the reaction of HOCl with protein amine groups. Chloramines have also been detected with isolated plasma proteins treated with HOCl. In both...... more efficient. The reaction of fresh diluted plasma with HOCl also gives rise to protein-derived nitrogen-centred radicals in a time- and HOCl-concentration-dependent manner; these have been detected by EPR spin trapping. Identical radicals have been detected with isolated HOCl-treated plasma proteins...

  13. Chemical modifications of therapeutic proteins induced by residual ethylene oxide.

    Science.gov (United States)

    Chen, Louise; Sloey, Christopher; Zhang, Zhongqi; Bondarenko, Pavel V; Kim, Hyojin; Ren, Da; Kanapuram, Sekhar

    2015-02-01

    Ethylene oxide (EtO) is widely used in sterilization of drug product primary containers and medical devices. The impact of residual EtO on protein therapeutics is of significant interest in the biopharmaceutical industry. The potential for EtO to modify individual amino acids in proteins has been previously reported. However, specific identification of EtO adducts in proteins and the effect of residual EtO on the stability of therapeutic proteins has not been reported to date. This paper describes studies of residual EtO with two therapeutic proteins, a PEGylated form of the recombinant human granulocyte colony-stimulating factor (Peg-GCSF) and recombinant human erythropoietin (EPO) formulated with human serum albumin (HSA). Peg-GCSF was filled in an EtO sterilized delivery device and incubated at accelerated stress conditions. Glu-C peptide mapping and LC-MS analyses revealed residual EtO reacted with Peg-GCSF and resulted in EtO modifications at two methionine residues (Met-127 and Met-138). In addition, tryptic peptide mapping and LC-MS analyses revealed residual EtO in plastic vials reacted with HSA in EPO formulation at Met-328 and Cys-34. This paper details the work conducted to understand the effects of residual EtO on the chemical stability of protein therapeutics. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. Can early protein restriction induce the development of binge eating?

    Science.gov (United States)

    Fechine, Madge Farias; Borba, Tássia Karin; Cabral-Filho, José Eulálio; Bolaños-Jiménez, Francisco; Lopes-de-Souza, Sandra; Manhães-de-Castro, Raul

    2016-04-01

    We tested the hypothesis that perinatal undernourishment is a factor for binge eating. At 52 days rats born from dams fed on 17% protein (Control) or 8% protein (Undernourished) were distributed into four groups, two of which continued to be fed ad libitum chow and two were submitted to three consecutive Restricted/Refeeding (R/R) cycles. According to the following schedule: Control Naïve (from mothers fed 17% protein/no restriction phase); Control Restricted (from mothers fed 17% protein/restriction phase); Undernourished Naïve (from mothers fed 8% protein/no restriction phase); and Undernourished Restricted (from mothers fed 8% protein/restriction phase). Each cycle consisted of a restriction phase (in the first four days 40% of the mean daily individual chow intake was offered for consumption), followed by a refeeding phase (4 days of chow ad libitum). After the three cycles, all animals were subjected to a feeding test (chow diet and palatable food ad libitum for 24h). During the feeding test, the Undernourished Restricted demonstrated rebound hyperphagia during 2, 4 and 6h. These results suggest the perinatal undernourishment cannot contribute to a binge eating phenotype. Copyright © 2016. Published by Elsevier B.V.

  15. Regulation of radiation protective agents on cell damage induced by reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Hee; Lee, Si Eun; Ju, Eun Mi; Gao, Eu Feng [Kyung Hee University, Seoul (Korea)

    2002-04-01

    In this study, we developed candidates of new radio-protective agents and elucidated the regulation mechanism of these candidates on cell damage induced by reactive oxygen species. The methanol extracts and ethylacetate fractions of NP-1, NP-5, NP-7, NP-11, NP-12 and NP-14 showed higher radical scavenging activity. The extracts of NP-7, NP-12 and NP-14 showed strong protective effect against oxidative damage induced by UV and H{sub 2}O{sub 2}. The most of samples enhanced SOD, CAT and GPX activity in V79-4 cells. The protective effect of samples on H{sub 2}O{sub 2}-induced apoptosis was observed with microscope and flow cytometer. Cells exposed to H{sub 2}O{sub 2} exhibit distinct morphological features of programmed cell death, such as nuclear fragmentation and increase in the percentage of cells with a sub-G1 DNA content. However, cells which was pretreated with samples significantly reduced the characteristics of apoptotic cells. Their morphological observation and DNA profiles were similar to those of the control cells. NP-14 which had excellent antioxidant activity restored G2/M arrest induced by oxidative stress. These data suggested that natural medicinal plants protected H{sub 2}O{sub 2}-induced apoptosis. 42 refs., 29 figs., 11 tabs. (Author)

  16. Nicorandil prevents sirolimus-induced production of reactive oxygen species, endothelial dysfunction, and thrombus formation

    Directory of Open Access Journals (Sweden)

    Ken Aizawa

    2015-03-01

    Full Text Available Sirolimus (SRL is widely used to prevent restenosis after percutaneous coronary intervention. However, its beneficial effect is hampered by complications of thrombosis. Several studies imply that reactive oxygen species (ROS play a critical role in endothelial dysfunction and thrombus formation. The present study investigated the protective effect of nicorandil (NIC, an anti-angina agent, on SRL-associated thrombosis. In human coronary artery endothelial cells (HCAECs, SRL stimulated ROS production, which was prevented by co-treatment with NIC. The preventive effect of NIC on ROS was abolished by 5-hydroxydecanoate but not by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. NIC also inhibited SRL-induced up-regulation of NADPH oxidase subunit p22phox mRNA. Co-treatment with NIC and SRL significantly up-regulated superoxide dismutase 2. NIC treatment significantly improved SRL-induced decrease in viability of HCAECs. The functional relevance of the preventive effects of NIC on SRL-induced ROS production and impairment of endothelial viability was investigated in a mouse model of thrombosis. Pretreatment with NIC inhibited the SRL-induced acceleration of FeCl3-initiated thrombus formation and ROS production in the testicular arteries of mice. In conclusion, NIC prevented SRL-induced thrombus formation, presumably due to the reduction of ROS and to endothelial protection. The therapeutic efficacy of NIC could represent an additional option in the prevention of SRL-related thrombosis.

  17. Dietary Protein in the Prevention of Diet-Induced Obesity and Co-Morbidities

    DEFF Research Database (Denmark)

    Tastesen, Hanne Sørup

    mice were fed obesity‐promoting diets with protein from different sources, in different forms and at different levels to evaluate the affect on development of obesity, glucose intolerance and dyslipidemia. Results: In the present study the dietary level of protein, 16 versus 32 percent energy from...... protein, was found to be negligible in development of obesity and co‐morbidities in mice. Seafood protein with high endogenous taurine and glycine contents was found to prevent diet‐induced adiposity and dyslipidemia, both in ad libitum and pair‐fed settings. The ability of seafood proteins to prevent...... that the source and form of protein has great impact on development and prevention of diet‐induced adiposity, dyslipidemia, hyperinsulinemia and impairment of glucose tolerance through modulations of voluntary locomotor activity, energy expenditure and energy substrate metabolism in mice...

  18. Tumor protein 53-induced nuclear protein 1 (TP53INP1 enhances p53 function and represses tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jeyran eShahbazi

    2013-05-01

    Full Text Available Tumor protein 53-induced nuclear protein 1 (TP53INP1 is a stress-induced p53 target gene whose expression is modulated by transcription factors such as p53, p73 and E2F1. TP53INP1 gene encodes two isoforms of TP53INP1 proteins, TP53INP1α and TP53INP1β, both of which appear to be key elements in p53 function. When associated with homeodomain-interacting protein kinase-2 (HIPK2, TP53INP1 phosphorylates p53 protein at Serine 46, enhances p53 protein stability and its transcriptional activity, leading to transcriptional activation of p53 target genes such as p21, PIG-3 and MDM2, cell growth arrest and apoptosis upon DNA damage stress. The anti-proliferative and pro-apoptotic activities of TP53INP1 indicate that TP53INP1 has an important role in cellular homeostasis and DNA damage response. Deficiency in TP53INP1 expression results in increased tumorigenesis; while TP53INP1 expression is repressed during early stages of cancer by factors such as miR-155. This review aims to summarize the roles of TP53INP1 in blocking tumor progression through p53-dependant and p53-independent pathways, as well as the elements which repress TP53INP1 expression, hence highlighting its potential as a therapeutic target in cancer treatment.

  19. Improving heterologous protein secretion at aerobic conditions by activating hypoxia-induced genes in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Lifang; Zhang, Yiming; Liu, Zihe

    2015-01-01

    Oxygen is important for normal aerobic metabolism, as well as for protein production where it is needed for oxidative protein folding. However, several studies have reported that anaerobic conditions seem to be more favorable in terms of recombinant protein production. We were interested in incre......Oxygen is important for normal aerobic metabolism, as well as for protein production where it is needed for oxidative protein folding. However, several studies have reported that anaerobic conditions seem to be more favorable in terms of recombinant protein production. We were interested...... in increasing recombinant protein production under aerobic conditions so we focused on Rox1p regulation. Rox1p is a transcriptional regulator, which in oxidative conditions represses genes induced in hypoxia. We deleted ROX1 and studied the effects on the production of recombinant proteins in Saccharomyces...

  20. Distinct responses of protein turnover regulatory pathways in hypoxia- and semistarvation-induced muscle atrophy

    NARCIS (Netherlands)

    de Theije, Chiel C.; Langen, Ramon C. J.; Lamers, Wouter H.; Schols, Annemie M. W. J.; Köhler, S. Eleonore

    2013-01-01

    The balance of muscle protein synthesis and degradation determines skeletal muscle mass. We hypothesized that hypoxia-induced muscle atrophy and alterations in the regulation of muscle protein turnover include a hypoxia-specific component, in addition to the observed effects of reduction in food

  1. Serum Protein Profile Study of Clinical Samples Using High Performance Liquid Chromatography-Laser Induced Fluorescence

    DEFF Research Database (Denmark)

    Karemore, Gopal Raghunath; Ukendt, Sujatha; Rai, Lavanya

    2009-01-01

    The serum protein profiles of normal subjects, patients diagnosed with cervical cancer, and oral cancer were recorded using High Performance Liquid Chromatography combined with Laser Induced Fluorescence detection (HPLC-LIF). Serum protein profiles of the above three classes were tested for estab...

  2. CELLS OVEREXPRESSING HSP27 SHOW ACCELERATED RECOVERY FROM HEAT-INDUCED NUCLEAR-PROTEIN AGGREGATION

    NARCIS (Netherlands)

    KAMPINGA, HH; BRUNSTING, JF; STEGE, GJJ; KONINGS, AWT; LANDRY, J

    1994-01-01

    Protein denaturation/aggregation upon cell exposure to heat shock is a likely cause of cell death. in the nucleus, protein aggregation has often been correlated to inhibition of nuclear located processes and heat-induced cell killing. in Chinese hamster 023 cells made thermotolerant by a prior

  3. Fasting-induced adipose factor/angiopoietin-like protein 4: a potential target for dyslipidemia?

    NARCIS (Netherlands)

    Zandbergen, F.J.; Dijk, van S.; Müller, M.R.; Kersten, A.H.

    2006-01-01

    Recently, several proteins with homology to angiopoietins have been discovered. Three members of this new group, designated angiopoietin-like proteins (ANGPTLs), have been linked to regulation of energy metabolism. This review will focus on the fasting-induced adipose factor (FIAF)/ANGPTL4 as an

  4. Ca2+-Induced Cold Set Gelation of Whey Protein Isolate Fibrils

    NARCIS (Netherlands)

    Bolder, S.G.; Hendrickx, H.; Sagis, L.M.C.; Linden, van der E.

    2006-01-01

    In this paper we describe the rheological behaviour of Ca2+-induced cold-set gels of whey protein mixtures. Coldset gels are important applications for products with a low thermal stability. In previous work [1], we determined the state diagram for whey protein mixtures that were heated for 10 h at

  5. Antimony trichloride induces a loss of cell viability via reactive oxygen species-dependent autophagy in A549 cells.

    Science.gov (United States)

    Zhao, Xinyuan; Xing, Fengjun; Cong, Yewen; Zhuang, Yin; Han, Muxi; Wu, Zhiqiang; Yu, Shali; Wei, Haiyan; Wang, Xiaoke; Chen, Gang

    2017-12-01

    Antimony (Sb) is one of the most prevalent heavy metals and frequently leads to biological toxicity. Although autophagy is believed to be involved in metal-associated cytotoxicity, there is no evidence of its involvement following exposure. Moreover, the underlying mechanism of autophagy remains unclear. In this study, treatment with antimony trichloride caused autophagy in a dose- and time-dependent manner in A549 cells but did not affect the level of Atg5 or Atg7 mRNA expression. Furthermore, Sb enhanced autophagic flux while upregulating p62 gene and protein levels. The classic mechanistic target of rapamycin (mTOR) pathway is not involved in Sb-induced autophagy. However, Sb-induced autophagy and the upregulation of p62 were inhibited by treatment with the antioxidant N-acetylcysteine (NAC). Subsequent analyses demonstrated that the inhibition of autophagy protected A549 cells from a loss of cell viability, while the activation of autophagy by rapamycin had the opposite effect. These data suggest that reactive oxygen species-dependent autophagy mediates Sb-stimulated cell viability loss in A549 cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Protein synthesis and degradation during starvation-induced cardiac atrophy in rabbits

    International Nuclear Information System (INIS)

    Samarel, A.M.; Parmacek, M.S.; Magid, N.M.; Decker, R.S.; Lesch, M.

    1987-01-01

    To determine the relative importance of protein degradation in the development of starvation-induced cardiac atrophy, in vivo fractional synthetic rates of total cardiac protein, myosin heavy chain, actin, light chain 1, and light chain 2 were measured in fed and fasted rabbits by continuous infusion of [ 3 H] leucine. In addition, the rate of left ventricular protein accumulation and loss were assessed in weight-matched control and fasted rabbits. Rates of total cardiac protein degradation were then estimated as the difference between rates of synthesis and growth. Fasting produced left ventricular atrophy by decreasing the rate of left ventricular protein synthesis (34.8 +/- 1.4, 27.3 +/- 3.0, and 19.3 +/- 1.2 mg/day of left ventricular protein synthesized for 0-, 3-, and 7-day fasted rabbits, respectively). Inhibition of contractile protein synthesis was evident by significant reductions in the fractional synthetic rates of all myofibrillar protein subunits. Although fractional rates of protein degradation increased significantly within 7 days of fasting, actual amounts of left ventricular protein degraded per day were unaffected. Thus, prolonged fasting profoundly inhibits the synthesis of new cardiac protein, including the major protein constituents of the myofibril. Both this inhibition in new protein synthesis as well as a smaller but significant reduction in the average half-lives of cardiac proteins are responsible for atrophy of the heart in response to fasting

  7. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chun-Ru [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Liao, Wei-Siang [Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Wu, Ya-Hui [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Murugan, Kaliyappan [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China); Chen, Chinpiao, E-mail: chinpiao@mail.ndhu.edu.tw [Department of Chemistry, National Dong Hwa University, Hualien 974, Taiwan (China); Chao, Jui-I, E-mail: jichao@faculty.nctu.edu.tw [Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu 30068, Taiwan (China)

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy.

  8. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction

    International Nuclear Information System (INIS)

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-01-01

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. - Highlights: • CR108 is more effective on the cell death than other vitamin K3 derivatives. • CR108 induces apoptosis and tumor inhibition by ROS and mitochondrial dysfunction. • CR108 induces apoptosis by p38 kinase activation and survivin inhibition. • CR108 is a potent vitamin K3 analog that can develop for breast cancer therapy

  9. Involvement of TRPV3 and TRPM8 ion channel proteins in induction of mammalian cold-inducible proteins.

    Science.gov (United States)

    Fujita, Takanori; Liu, Yu; Higashitsuji, Hiroaki; Itoh, Katsuhiko; Shibasaki, Koji; Fujita, Jun; Nishiyama, Hiroyuki

    2018-01-01

    Cold-inducible RNA-binding protein (CIRP), RNA-binding motif protein 3 (RBM3) and serine and arginine rich splicing factor 5 (SRSF5) are RNA-binding proteins that are transcriptionally upregulated in response to moderately low temperatures and a variety of cellular stresses in mammalian cells. Induction of these cold-inducible proteins (CIPs) is dependent on transient receptor potential (TRP) V4 channel protein, but seems independent of its ion channel activity. We herein report that in addition to TRPV4, TRPV3 and TRPM8 are necessary for the induction of CIPs. We established cell lines from the lung of TRPV4-knockout (KO) mouse, and observed induction of CIPs in them by western blot analysis. A TRPV4 antagonist RN1734 suppressed the induction in wild-type mouse cells, but not in TRPV4-KO cells. A TRPV3 channel blocker S408271 and a TRPM8 channel blocker AMTB as well as siRNAs against TRPV3 and TRPM8 suppressed the CIP induction in mouse TRPV4-KO cells and human U-2 OS cells. A TRPV3 channel agonist 2-APB induced CIP expression, but camphor did not. Neither did a TRPM8 channel agonist WS-12. These results suggest that TRPV4, TRPV3 and TRPM8 proteins, but not their ion channel activities are necessary for the induction of CIPs at 32 °C. Identification of proteins that differentially interact with these TRP channels at 37 °C and 32 °C would help elucidate the underlying mechanisms of CIP induction by hypothermia. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  10. A new tool for exploring climate change induced range shifts of conifer species in China.

    Science.gov (United States)

    Kou, Xiaojun; Li, Qin; Beierkuhnlein, Carl; Zhao, Yiheng; Liu, Shirong

    2014-01-01

    It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs) are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I), overlapping (O), and range center movement in three dimensions (Dx, Dy, Dz), based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index). A graphical tool (PRS_Chart) was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement) than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management.

  11. A new tool for exploring climate change induced range shifts of conifer species in China.

    Directory of Open Access Journals (Sweden)

    Xiaojun Kou

    Full Text Available It is inevitable that tree species will undergo considerable range shifts in response to anthropogenic induced climate change, even in the near future. Species Distribution Models (SDMs are valuable tools in exploring general temporal trends and spatial patterns of potential range shifts. Understanding projections to future climate for tree species will facilitate policy making in forestry. Comparative studies for a large number of tree species require the availability of suitable and standardized indices. A crucial limitation when deriving such indices is the threshold problem in defining ranges, which has made interspecies comparison problematic until now. Here we propose a set of threshold-free indices, which measure range explosion (I, overlapping (O, and range center movement in three dimensions (Dx, Dy, Dz, based on fuzzy set theory (Fuzzy Set based Potential Range Shift Index, F-PRS Index. A graphical tool (PRS_Chart was developed to visualize these indices. This technique was then applied to 46 Pinaceae species that are widely distributed and partly common in China. The spatial patterns of the modeling results were then statistically tested for significance. Results showed that range overlap was generally low; no trends in range size changes and longitudinal movements could be found, but northward and poleward movement trends were highly significant. Although range shifts seemed to exhibit huge interspecies variation, they were very consistent for certain climate change scenarios. Comparing the IPCC scenarios, we found that scenario A1B would lead to a larger extent of range shifts (less overlapping and more latitudinal movement than the A2 and the B1 scenarios. It is expected that the newly developed standardized indices and the respective graphical tool will facilitate studies on PRS's for other tree species groups that are important in forestry as well, and thus support climate adaptive forest management.

  12. Conditionally controlling nuclear trafficking in yeast by chemical-induced protein dimerization.

    Science.gov (United States)

    Xu, Tao; Johnson, Cole A; Gestwicki, Jason E; Kumar, Anuj

    2010-11-01

    We present here a protocol to conditionally control the nuclear trafficking of target proteins in yeast. In this system, rapamycin is used to heterodimerize two chimeric proteins. One chimera consists of a FK506-binding protein (FKBP12) fused to a cellular 'address' (nuclear localization signal or nuclear export sequence). The second chimera consists of a target protein fused to a fluorescent protein and the FKBP12-rapamycin-binding (FRB) domain from FKBP-12-rapamycin associated protein 1 (FRAP1, also known as mTor). Rapamycin induces dimerization of the FKBP12- and FRB-containing chimeras; these interactions selectively place the target protein under control of the cell address, thereby directing the protein into or out of the nucleus. By chemical-induced dimerization, protein mislocalization is reversible and enables the identification of conditional loss-of-function and gain-of-function phenotypes, in contrast to other systems that require permanent modification of the targeted protein. Yeast strains for this analysis can be constructed in 1 week, and the technique allows protein mislocalization within 15 min after drug treatment.

  13. High protein diet maintains glucose production during exercise-induced energy deficit: a controlled trial

    Science.gov (United States)

    Inadequate energy intake induces changes in endogenous glucose production (GP) to preserve muscle mass. Whether addition provision of dietary protein modulates GP response to energy deficit is unclear. The objective was to determine whether exercise-induced energy deficit effects on glucose metaboli...

  14. Light-induced protein degradation in human-derived cells.

    Science.gov (United States)

    Sun, Wansheng; Zhang, Wenyao; Zhang, Chao; Mao, Miaowei; Zhao, Yuzheng; Chen, Xianjun; Yang, Yi

    2017-05-27

    Controlling protein degradation can be a valuable tool for posttranslational regulation of protein abundance to study complex biological systems. In the present study, we designed a light-switchable degron consisting of a light oxygen voltage (LOV) domain of Avena sativa phototropin 1 (AsLOV2) and a C-terminal degron. Our results showed that the light-switchable degron could be used for rapid and specific induction of protein degradation in HEK293 cells by light in a proteasome-dependent manner. Further studies showed that the light-switchable degron could also be utilized to mediate the degradation of secreted Gaussia princeps luciferase (GLuc), demonstrating the adaptability of the light-switchable degron in different types of protein. We suggest that the light-switchable degron offers a robust tool to control protein levels and may serves as a new and significant method for gene- and cell-based therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Analyzing the structural aspects of Isoprenoid biosynthesis pathway proteins in Ocimum species

    Directory of Open Access Journals (Sweden)

    Muktesh Chandra

    2017-10-01

    Full Text Available Generally thought that the extremely diverse array of secondary metabolites observed within Ocimum species defends against a comparable diverse array of biotic pests, pathogens and herbivores encountered around its natural range. Along with defense the diverse array of secondary metabolite also leads to the therapeutic and remedial property which justifies Ocimum as natural medicinal and aromatic casket. Many of the defense compounds, aroma compounds and medicinal derivatives are secondary metabolites isolated from trichome glands, mainly consist of terpenoids as well as phenylpropanoids. Various pathways fabricating these compounds are known viz. mevalonate pathway (MVA, phenylpropanoid pathway and MEP pathways. The enzyme cascade responsible for various secondary metabolites, need to be explored in various aspects. Here we had studied the MVA pathway enzymes in O. basilicum and O. gratissimum to figure out variations in enzyme structures due to speciation. Hence, in depth analysis of the transcriptome of O. basilicum and O. gratissimum, varrying in qualitative and quantitative aspects of essential oil were carried out. The transcriptome data from NCBI server was assembled using bioinformatic approaches. nr database at NCBI repository used for annotation, which assigned 60% contigs to known functions. Contigs corresponding to Mevalonate pathway enzymes are isolated using perl pipelines developed in our lab, which were further assembled using CLC workbench to remove redundancy and make larger stretch of sequence. Blastx of these larger sequences assigned them function and they are mapped to validated sequences to make full length. Data from both species led us to overall seven enzymes (total 14 of MVA pathway. These enzymes are studied in detail for various physio-chemical properties, steriochemical properties and motif/domain for protein-protein interaction (PPI study. Homolog models of all enzymes were predicted, against templates from RCSB

  16. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease.

    Science.gov (United States)

    Sverdlov, Aaron L; Elezaby, Aly; Qin, Fuzhong; Behring, Jessica B; Luptak, Ivan; Calamaras, Timothy D; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Bachschmid, Markus M; Colucci, Wilson S

    2016-01-11

    Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  17. HIV antiretroviral drug combination induces endothelial mitochondrial dysfunction and reactive oxygen species production, but not apoptosis

    International Nuclear Information System (INIS)

    Jiang Bo; Hebert, Valeria Y.; Li, Yuchi; Mathis, J. Michael; Alexander, J. Steven; Dugas, Tammy R.

    2007-01-01

    Numerous reports now indicate that HIV patients administered long-term antiretroviral therapy (ART) are at a greater risk for developing cardiovascular diseases. Endothelial dysfunction is an initiating event in atherogenesis and may contribute to HIV-associated atherosclerosis. We previously reported that ART induces direct endothelial dysfunction in rodents. In vitro treatment of human umbilical vein endothelial cells (HUVEC) with ART indicated endothelial mitochondrial dysfunction and a significant increase in the production of reactive oxygen species (ROS). In this study, we determined whether ART-induced endothelial dysfunction is mediated via mitochondria-derived ROS and whether this mitochondrial injury culminates in endothelial cell apoptosis. Two major components of ART combination therapy, a nucleoside reverse transcriptase inhibitor and a protease inhibitor, were tested, using AZT and indinavir as representatives for each. Microscopy utilizing fluorescent indicators of ROS and mitochondria demonstrated the mitochondrial localization of ART-induced ROS. MnTBAP, a cell-permeable metalloporphyrin antioxidant, abolished ART-induced ROS production. As a final step in confirming the mitochondrial origin of the ART-induced ROS, HUVEC were transduced with a cytosolic- compared to a mitochondria-targeted catalase. Transduction with the mitochondria-targeted catalase was more effective than cytoplasmic catalase in inhibiting the ROS and 8-isoprostane (8-iso-PGF 2α ) produced after treatment with either AZT or indinavir. However, both mitochondrial and cytoplasmic catalase attenuated ROS and 8-iso-PGF 2α production induced by the combination treatment, suggesting that in this case, the formation of cytoplasmic ROS may also occur, and thus, that the mechanism of toxicity in the combination treatment group may be different compared to treatment with AZT or indinavir alone. Finally, to determine whether ART-induced mitochondrial dysfunction and ROS production

  18. Involvement of MAPK proteins in bystander effects induced by chemicals and ionizing radiation

    International Nuclear Information System (INIS)

    Asur, Rajalakshmi; Balasubramaniam, Mamtha; Marples, Brian; Thomas, Robert A.; Tucker, James D.

    2010-01-01

    Many studies have examined bystander effects induced by ionizing radiation, however few have evaluated the ability of chemicals to induce similar effects. We previously reported the ability of two chemicals, mitomycin C (MMC) and phleomycin (PHL) to induce bystander effects in normal human lymphoblastoid cell lines. The focus of the current study was to determine the involvement of the MAPK proteins in bystander effects induced by physical and chemical DNA damaging agents and to evaluate the effects of MAPK inhibition on bystander-induced caspase 3/7 activation. The phosphorylation levels of the MAPK proteins ERK1/2, JNK, and p38, were measured from 1 to 24 h following direct or bystander exposure to MMC, PHL or radiation. We observed transient phosphorylation, at early time points, of all 3 proteins in bystander cells. We also evaluated the effect of MAPK inhibition on bystander-induced caspase 3/7 activity to determine the role of MAPK proteins in bystander-induced apoptosis. We observed bystander-induced activation of caspase 3/7 in bystander cells. Inhibition of MAPK proteins resulted in a decrease in caspase 3/7 activity at the early time points, and the caspase activity increased (in the case of ERK inhibition) or returned to basal levels (in the case of JNK or p38 inhibition) between 12 and 24 h. PHL is considered to be a radiomimetic agent, however in the present study PHL behaved more like a chemical and not like radiation in terms of MAPK phosphorylation. These results point to the involvement of MAPK proteins in the bystander effect induced by radiation and chemicals and provide additional evidence that this response is not limited to radiation but is a generalized stress response in cells.

  19. Identification and comparison of macrophage-induced proteins and proteins induced under various stress conditions in Brucella abortus.

    OpenAIRE

    Rafie-Kolpin, M; Essenberg, R C; Wyckoff, J H

    1996-01-01

    Brucella abortus is a facultative intracellular pathogen of cattle and humans that is capable of survival inside macrophages. In order to understand how B. abortus copes with the conditions during intracellular growth in macrophages, the protein synthesis pattern of the bacteria grown inside bovine macrophages has been compared with that of bacteria grown in the cell culture medium by two-dimensional polyacrylamide gel electrophoresis. Approximately 24 new proteins that are not detected in th...

  20. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  1. MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.

    Science.gov (United States)

    Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

  2. RNA-induced silencing complex (RISC) Proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators.

    Science.gov (United States)

    Redfern, Andrew D; Colley, Shane M; Beveridge, Dianne J; Ikeda, Naoya; Epis, Michael R; Li, Xia; Foulds, Charles E; Stuart, Lisa M; Barker, Andrew; Russell, Victoria J; Ramsay, Kerry; Kobelke, Simon J; Li, Xiaotao; Hatchell, Esme C; Payne, Christine; Giles, Keith M; Messineo, Adriana; Gatignol, Anne; Lanz, Rainer B; O'Malley, Bert W; Leedman, Peter J

    2013-04-16

    The cytoplasmic RNA-induced silencing complex (RISC) contains dsRNA binding proteins, including protein kinase RNA activator (PACT), transactivation response RNA binding protein (TRBP), and Dicer, that process pre-microRNAs into mature microRNAs (miRNAs) that target specific mRNA species for regulation. There is increasing evidence for important functional interactions between the miRNA and nuclear receptor (NR) signaling networks, with recent data showing that estrogen, acting through the estrogen receptor, can modulate initial aspects of nuclear miRNA processing. Here, we show that the cytoplasmic RISC proteins PACT, TRBP, and Dicer are steroid receptor RNA activator (SRA) binding NR coregulators that target steroid-responsive promoters and regulate NR activity and downstream gene expression. Furthermore, each of the RISC proteins, together with Argonaute 2, associates with SRA and specific pre-microRNAs in both the nucleus and cytoplasm, providing evidence for links between NR-mediated transcription and some of the factors involved in miRNA processing.

  3. Inhibition of Cartilage Acidic Protein 1 Reduces Ultraviolet B Irradiation Induced-Apoptosis through P38 Mitogen-Activated Protein Kinase and Jun Amino-Terminal Kinase Pathways

    Directory of Open Access Journals (Sweden)

    Yinghong Ji

    2016-11-01

    Full Text Available Background/Aims: Ultraviolet B (UVB irradiation can easily induce apoptosis in human lens epithelial cells (HLECs and further lead to various eye diseases including cataract. Here for the first time, we investigated the role of cartilage acidic protein 1 (CRTAC1 gene in UVB irradiation induced-apoptosis in HLECs. Methods: Three groups of HLECs were employed including model group, empty vector group, and CRTAC1 interference group. Results: After UVB irradiation, the percentage of primary apoptotic cells was obviously fewer in CRTAC1 interference group. Meanwhile, inhibition of CRTAC1 also reduced both reactive oxygen species (ROS production and intracellular Ca2+ concentration, but the level of mitochondrial membrane potential (Δψm was increased in HLECs. Further studies indicated that superoxide dismutase (SOD activity and total antioxidative (T-AOC level were significantly increased in CRTAC1-inhibited cells, while the levels of malondialdehyde (MDA and lactate dehydrogenase (LDH were significantly decreased. ELISA analysis of CRTAC1-inhibited cells showed that the concentrations of tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 were significantly decreased, but the concentration of interleukin-10 (IL-10 was significantly increased. Western blot analyses of eight apoptosis-associated proteins including Bax, Bcl-2, p38, phospho-p38 (p-p38, Jun amino-terminal kinases (JNK1/2, phospho-JNK1/2 (p-JNK1/2, calcium-sensing receptor (CasR, and Ca2+/calmodulin-dependent protein kinase II (CaMKII indicated that the inhibition of CRTAC1 alleviated oxidative stress and inflammation response, inactivated calcium-signaling pathway, p38 and JNK1/2 signal pathways, and eventually reduced UVB irradiation induced-apoptosis in HLECs. Conclusion: These results provided new insights into the mechanism of cataract development, and demonstrated that CRTAC1 could be a potentially novel target for cataract treatment.

  4. Inhibition of Cartilage Acidic Protein 1 Reduces Ultraviolet B Irradiation Induced-Apoptosis through P38 Mitogen-Activated Protein Kinase and Jun Amino-Terminal Kinase Pathways.

    Science.gov (United States)

    Ji, Yinghong; Rong, Xianfang; Li, Dan; Cai, Lei; Rao, Jun; Lu, Yi

    2016-01-01

    Ultraviolet B (UVB) irradiation can easily induce apoptosis in human lens epithelial cells (HLECs) and further lead to various eye diseases including cataract. Here for the first time, we investigated the role of cartilage acidic protein 1 (CRTAC1) gene in UVB irradiation induced-apoptosis in HLECs. Three groups of HLECs were employed including model group, empty vector group, and CRTAC1 interference group. After UVB irradiation, the percentage of primary apoptotic cells was obviously fewer in CRTAC1 interference group. Meanwhile, inhibition of CRTAC1 also reduced both reactive oxygen species (ROS) production and intracellular Ca2+ concentration, but the level of mitochondrial membrane potential (Δψm) was increased in HLECs. Further studies indicated that superoxide dismutase (SOD) activity and total antioxidative (T-AOC) level were significantly increased in CRTAC1-inhibited cells, while the levels of malondialdehyde (MDA) and lactate dehydrogenase (LDH) were significantly decreased. ELISA analysis of CRTAC1-inhibited cells showed that the concentrations of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were significantly decreased, but the concentration of interleukin-10 (IL-10) was significantly increased. Western blot analyses of eight apoptosis-associated proteins including Bax, Bcl-2, p38, phospho-p38 (p-p38), Jun amino-terminal kinases (JNK1/2), phospho-JNK1/2 (p-JNK1/2), calcium-sensing receptor (CasR), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) indicated that the inhibition of CRTAC1 alleviated oxidative stress and inflammation response, inactivated calcium-signaling pathway, p38 and JNK1/2 signal pathways, and eventually reduced UVB irradiation induced-apoptosis in HLECs. These results provided new insights into the mechanism of cataract development, and demonstrated that CRTAC1 could be a potentially novel target for cataract treatment. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. TNF-induced necroptosis requires the plasma membrane localization of the MLKL protein | Center for Cancer Research

    Science.gov (United States)

    The cell signaling protein tumor necrosis factor (TNF), produced by white blood cells, promotes inflammation and immunity processes such as fever and is involved in tumorigenesis and apoptosis (programmed cell death). However, dysregulation of TNF can also lead to another form of programmed cell death called necroptosis, which is characterized by a rise in intracellular Ca2+, generation of reactive oxygen species (ROS), intracellular acidity, depletion of ATP, and, eventually, plasma membrane rupture. TNF-induced necroptosis has been associated with a wide variety of diseases including neurodegenerative diseases, major depression, rheumatoid arthritis, and cancer. Whereas the signaling mechanisms underlying TNF-induced apoptosis have largely been determined, the events precipitating in TNF-initiated necroptosis are still unknown.

  6. Aniline-induced nitrosative stress in rat spleen: Proteomic identification of nitrated proteins

    International Nuclear Information System (INIS)

    Fan Xiuzhen; Wang Jianling; Soman, Kizhake V.; Ansari, G.A.S.; Khan, M. Firoze

    2011-01-01

    Aniline exposure is associated with toxicity to the spleen which is characterized by splenomegaly, hyperplasia, fibrosis, and a variety of sarcomas on chronic exposure in rats. However, mechanisms by which aniline elicits splenotoxic responses are not well understood. Earlier we have shown that aniline exposure leads to increased nitration of proteins in the spleen. However, nitrated proteins remain to be characterized. Therefore, in the current study using proteomic approaches, we focused on characterizing the nitrated proteins in the spleen of aniline-exposed rats. Aniline exposure led to increased tyrosine nitration of proteins, as determined by 2D Western blotting with anti-3-nitrotyrosine specific antibody, compared to the controls. The analyzed nitrated proteins were found in the molecular weight range of 27.7 to 123.6 kDa. A total of 37 nitrated proteins were identified in aniline-treated and control spleens. Among them, 25 were found only in aniline-treated rats, 11 were present in both aniline-treated and control rats, while one was found in controls only. The nitrated proteins identified mainly represent skeletal proteins, chaperones, ferric iron transporter, enzymes, nucleic acids binding protein, and signaling and protein synthesis pathways. Furthermore, aniline exposure led to significantly increased iNOS mRNA and protein expression in the spleen, suggesting its role in increased reactive nitrogen species formation and contribution to increased nitrated proteins. The identified nitrated proteins provide a global map to further investigate alterations in their structural and functional properties, which will lead to a better understanding of the role of protein nitration in aniline-mediated splenic toxicity. - Highlights: → Proteomic approaches are used to identify nitrated proteins in the spleen. → Twenty five nitrated proteins were found only in the spleen of aniline-treated rats. → Aniline exposure led to increased iNOS mRNA and protein

  7. Detection of proteins induced in the haemolymph of Biomphalaria ...

    African Journals Online (AJOL)

    SARAH

    2015-04-30

    Apr 30, 2015 ... Separation of haemolymph proteins by 2D electrophoresis analysis revealed a ... Schistosomiasis remains a public health problem in several parts of ... for drug and vaccine design. Manipulation ... urine jars was sprayed with water thoroughly using a wash bottle ... The plasma was stored at -200C for use.

  8. Cholesterol-induced protein sorting: an analysis of energetic feasibility

    DEFF Research Database (Denmark)

    Lundbaek, J A; Andersen, O S; Werge, T

    2003-01-01

    thickness. In this model, Golgi proteins with short TMDs would be excluded from cholesterol-enriched domains (lipid rafts) that are incorporated into transport vesicles destined for the plasma membrane. Although attractive, this model remains unproven. We therefore evaluated the energetic feasibility...

  9. Glucohexaose-induced protein phosphatase 2C regulates cell redox ...

    Indian Academy of Sciences (India)

    Q M Chen

    2018-02-13

    Feb 13, 2018 ... glucohexaose, CsPP2C80s play a positive regulatory role in process of ABA combined with ABA receptors ..... protein kinases (SnRKs) involve in the stress responses .... In this work, the endogenous ABA content increased.

  10. Flow-induced structuring of dense protein dispersions

    NARCIS (Netherlands)

    Manski, J.M.

    2007-01-01

    Both health and sustainability are drivers for the increased interest in the creation of novel foods comprising a high protein content. The key challenge is the formation of an attractive, stable and palatable food texture, which is mainly determined by the food structure. In this research, new

  11. PPARγ Ligand-Induced Unfolded Protein Responses in Monocytes

    African Journals Online (AJOL)

    High levels of oxLDL lead to cell dysfunction and apoptosis, a phenomenon known as lipotoxicity. Disturbing endoplasmic reticulum (ER) function results in ER stress and unfolded protein response (UPR), which tends to restore ER homeostasis but switches to apoptosis when ER stress is prolonged. In the present study the ...

  12. PPARγ Ligand-Induced Unfolded Protein Responses in Monocytes ...

    African Journals Online (AJOL)

    acer

    Disturbing endoplasmic reticulum (ER) function results in ER stress and unfolded protein response. (UPR), which tends to ... in mnocyte/macrophage cell lines as evident of the activation/up-regulation of ER stress/UPR genes. Cholesterol does not seem to exert ... inflammation (Tiwari et al., 2008). One prominent feature of ...

  13. Salinity induced changes in cell membrane stability, protein and ...

    African Journals Online (AJOL)

    control), 4.7, 9.4 and 14.1 dS m-1 to determine the effect of salt on vegetative growth, relative water content, cell membrane stability, protein and RNA contents in sand culture experiment. Fresh and dry weights of plants, shoots and roots decreased ...

  14. Do prion protein gene polymorphisms induce apoptosis in non ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Genetic variations such as single nucleotide polymorphisms (SNPs) in prion protein coding gene, Prnp, greatly affect susceptibility to prion diseases in mammals. Here, the coding region of Prnp was screened for polymorphisms in redeared turtle, Trachemys scripta. Four polymorphisms, L203V, N205I, ...

  15. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Science.gov (United States)

    Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter

    2015-01-01

    The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  16. Analysis of putative apoplastic effectors from the nematode, Globodera rostochiensis, and identification of an expansin-like protein that can induce and suppress host defenses.

    Directory of Open Access Journals (Sweden)

    Shawkat Ali

    Full Text Available The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12 and an expansin-like protein (GrEXPB2, suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.

  17. Small molecule CP-31398 induces reactive oxygen species-dependent apoptosis in human multiple myeloma.

    Science.gov (United States)

    Arihara, Yohei; Takada, Kohichi; Kamihara, Yusuke; Hayasaka, Naotaka; Nakamura, Hajime; Murase, Kazuyuki; Ikeda, Hiroshi; Iyama, Satoshi; Sato, Tsutomu; Miyanishi, Koji; Kobune, Masayoshi; Kato, Junji

    2017-09-12

    Reactive oxygen species (ROS) are normal byproducts of a wide variety of cellular processes. ROS have dual functional roles in cancer cell pathophysiology. At low to moderate levels, ROS act as signaling transducers to activate cell proliferation, migration, invasion, and angiogenesis. In contrast, high levels of ROS induce cell death. In multiple myeloma (MM), ROS overproduction is the trigger for apoptosis induced by several anticancer compounds, including proteasome inhibitors. However, no drugs for which oxidative stress is the main mechanism of action are currently used for treatment of MM in clinical situations. In this study, we demonstrate that the p53-activating small molecule CP-31398 (CP) effectively inhibits the growth of MM cell lines and primary MM isolates from patients. CP also suppresses the growth of MM xenografts in mice. Mechanistically, CP was found to induce intrinsic apoptosis in MM cells via increasing ROS production. Interestingly, CP-induced apoptosis occurs regardless of the p53 status, suggesting that CP has additional mechanisms of action. Our findings thus indicate that CP could be an attractive candidate for treatment of MM patients harboring p53 abnormalities; this satisfies an unmet clinical need, as such individuals currently have a poor prognosis.

  18. TrxR2 deficiencies promote chondrogenic differentiation and induce apoptosis of chondrocytes through mitochondrial reactive oxygen species

    International Nuclear Information System (INIS)

    Yan, Jidong; Xu, Jing; Fei, Yao; Jiang, Congshan; Zhu, Wenhua; Han, Yan; Lu, Shemin

    2016-01-01

    Thioredoxin reductase 2 (TrxR2) is a selenium (Se) containing protein. Se deficiency is associated with an endemic osteoarthropathy characterized by impaired cartilage formation. It is unclear whether TrxR2 have roles in cartilage function. We examined the effects of TrxR2 on chondrogenic ATDC5 cells through shRNA-mediated gene silencing of TrxR2. We demonstrated TrxR2 deficiencies could enhance chondrogenic differentiation and apoptosis of ATDC5 cells. TrxR2 deficiencies increased accumulation of cartilage glycosaminoglycans (GAGs) and mineralization. TrxR2 deficiencies also stimulated expression of extracellular (ECM) gene including Collagen II and Aggrecan. The enhanced chondrogenic properties were further confirmed by activation of Akt signaling which are required for chondrogenesis. In addition, TrxR2 deficiencies promoted chondrocyte proliferation through acceleration of cell cycle progression by increase in both S and G2/M phase cell distribution accompanied with induction of parathyroid hormone-related protein (PTHrP). Moreover, TrxR2 deficiencies induced chondrocyte death via apoptosis and increased cell sensitivity to exogenous oxidative stress. Furthermore, TrxR2 deficiencies induced emission of mitochondrial reactive oxygen species (ROS) without alteration of mitochondrial membrane potential and intracellular ATP content. Finally, treatment of TrxR2 deficiency cells with N-acetylcysteine (NAC) inhibited mitochondrial ROS production and chondrocyte apoptosis. NAC also prevented chondrogenic differentiation of TrxR2 deficiency cells by suppression of ECM gene expression, GAGs accumulation and mineralization, as well as attenuation of Akt signaling. Thus, TrxR2-mediated mitochondrial integrity is indispensable for chondrogenic differentiation of ATDC5 cells. TrxR2 deficiency-induced impaired proliferation and death of chondrocytes may be the pathological mechanism of the osteoarthropathy due to Se deficiency. Notably, this study also uncover the roles of

  19. TrxR2 deficiencies promote chondrogenic differentiation and induce apoptosis of chondrocytes through mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Jidong [Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061 (China); Xu, Jing [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061 (China); Fei, Yao [College of Life Sciences, Northwest University, Xi’an, Shaanxi Province 710069 (China); Jiang, Congshan; Zhu, Wenhua; Han, Yan [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061 (China); Lu, Shemin, E-mail: lushemin@xjtu.edu.cn [Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi 710061 (China); Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China (China)

    2016-05-15

    Thioredoxin reductase 2 (TrxR2) is a selenium (Se) containing protein. Se deficiency is associated with an endemic osteoarthropathy characterized by impaired cartilage formation. It is unclear whether TrxR2 have roles in cartilage function. We examined the effects of TrxR2 on chondrogenic ATDC5 cells through shRNA-mediated gene silencing of TrxR2. We demonstrated TrxR2 deficiencies could enhance chondrogenic differentiation and apoptosis of ATDC5 cells. TrxR2 deficiencies increased accumulation of cartilage glycosaminoglycans (GAGs) and mineralization. TrxR2 deficiencies also stimulated expression of extracellular (ECM) gene including Collagen II and Aggrecan. The enhanced chondrogenic properties were further confirmed by activation of Akt signaling which are required for chondrogenesis. In addition, TrxR2 deficiencies promoted chondrocyte proliferation through acceleration of cell cycle progression by increase in both S and G2/M phase cell distribution accompanied with induction of parathyroid hormone-related protein (PTHrP). Moreover, TrxR2 deficiencies induced chondrocyte death via apoptosis and increased cell sensitivity to exogenous oxidative stress. Furthermore, TrxR2 deficiencies induced emission of mitochondrial reactive oxygen species (ROS) without alteration of mitochondrial membrane potential and intracellular ATP content. Finally, treatment of TrxR2 deficiency cells with N-acetylcysteine (NAC) inhibited mitochondrial ROS production and chondrocyte apoptosis. NAC also prevented chondrogenic differentiation of TrxR2 deficiency cells by suppression of ECM gene expression, GAGs accumulation and mineralization, as well as attenuation of Akt signaling. Thus, TrxR2-mediated mitochondrial integrity is indispensable for chondrogenic differentiation of ATDC5 cells. TrxR2 deficiency-induced impaired proliferation and death of chondrocytes may be the pathological mechanism of the osteoarthropathy due to Se deficiency. Notably, this study also uncover the roles of

  20. Cyanobacteria blooms induce embryonic heart failure in an endangered fish species.

    Science.gov (United States)

    Zi, Jinmei; Pan, Xiaofu; MacIsaac, Hugh J; Yang, Junxing; Xu, Runbing; Chen, Shanyuan; Chang, Xuexiu

    2018-01-01

    Cyanobacterial blooms drive water-quality and aquatic-ecosystem deterioration in eutrophic lakes worldwide, mainly owing to their harmful, secondary metabolites. The response of fish exposed to these cyanobacterial chemicals, however, remains largely unknown. In this paper, we employed an endangered fish species (Sinocyclocheilus grahami) in Dianchi Lake, China to evaluate the risks of cell-free exudates (MaE) produced by a dominant cyanobacterium (Microcystis aeruginosa) on embryo development, as well as the molecular mechanisms responsible. MaE (3d cultured) caused a reduction of fertilization (35.4%) and hatching (15.5%) rates, and increased mortality rates (≤90.0%) and malformation rate (27.6%), typically accompanied by heart failure. Proteomics analysis revealed that two greatest changed proteins - protein S100A1 (over-expressed 26 times compared with control) and myosin light chain (under-expressed 25 fold) - are closely associated with heart function. Further study revealed that heart failure was due to calcium ion imbalance and malformed cardiac structure. We conclude that harmful secondary metabolites from cyanobacteria may adversely affect embryo development in this endangered fish, and possibly contribute to its disappearance and unsuccessful recovery in Dianchi Lake. Hazardous consequences of substances released by cyanobacteria should raise concerns for managers addressing recovery of this and other imperiled species in affected lakes. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Protein regulation of induced pluripotent stem cells by transplanting in a Huntington's animal model.

    Science.gov (United States)

    Mu, S; Han, L; Zhou, G; Mo, C; Duan, J; He, Z; Wang, Z; Ren, L; Zhang, J

    2016-10-01

    The purpose of this study was to determine the functional recovery and protein regulation by transplanted induced pluripotent stem cells in a rat model of Huntington's disease (HD). In a quinolinic acid-induced rat model of striatal degeneration, induced pluripotent stem cells were transplanted into the ipsilateral lateral ventricle 10 days after the quinolinic acid injection. At 8 weeks after transplantation, fluorodeoxyglucose-PET/CT scan and balance-beam test were performed to evaluate the functional recovery of experimental rats. In addition, immunofluorescence and protein array analysis were used to investigate the regulation of stimulated protein expression in the striatum. At 8 weeks after induced pluripotent stem cell transplantation, motor function was improved in comparison with the quinolinic acid-treated rats. High fluorodeoxyglucose accumulation in the injured striatum was also observed by PET/CT scans. In addition, immunofluorescence analysis demonstrated that implanted cells migrated from the lateral ventricle into the lesioned striatum and differentiated into striatal projection neurons. Array analysis showed a significant upregulation of GFR (Glial cell line-derived neurotrophic factor receptor) alpha-1, Adiponectin/Acrp30, basic-fibroblast growth factors, MIP-1 (Macrophage-inflammatory protein) alpha and leptin, as well as downregulation of cytokine-induced neutrophil chemoattractant-3 in striatum after transplantatation of induced pluripotent stem cells in comparison with the quinolinic acid -treated rats. The findings in this work indicate that transplantation of induced pluripotent stem cells is a promising therapeutic candidate for HD. © 2016 British Neuropathological Society.

  2. Detection of eight different tospovirus species by a monoclonal antibody against the common epitope of NSs protein

    NARCIS (Netherlands)

    Chen, T.C.; Lu, Y.Y.; Kang, Y.C.; Li, J.T.; Yeh, Y.C.; Kormelink, R.J.M.; Yeh, S.D.

    2008-01-01

    Rabbit antisera against the nucleocapsid protein (NP) have been commonly used for detection of tospoviruses and classification into serogroups or serotypes. Mouse monoclonal antibodies (MAbs) with high specificity to the NPs have also been widely used to identify tospovirus species. Recently, a

  3. Effect of seed treatments on the chemical composition and properties of two amaranth species: starch and protein

    NARCIS (Netherlands)

    Gamel, T.H.; Linssen, J.P.H.; Mesallem, A.S.; Damir, A.A.; Shekib, L.A.

    2005-01-01

    The seeds of two Amaranth species were studied. The starch contents were 543 and 623 g kg-1 while crude protein contents were 154 and 169 g kg-1 for Amaranthus caudatus and Amaranthus cruentus seeds, respectively. The effect of several treatments, including cooking, popping and germination and flour

  4. Ileal and faecal protein digestibility measurement in humans and other non-ruminants - a comparative species view

    NARCIS (Netherlands)

    Hendriks, W.H.; Baal, van J.; Bosch, G.

    2012-01-01

    A comparative non-ruminant species view of the contribution of the large intestinal metabolism to inaccuracies in nitrogen and amino acid absorption measurements is provided to assess potential implications for the determination of crude protein/amino acid digestibility in adult humans consuming

  5. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway.

    Directory of Open Access Journals (Sweden)

    Harry F Heijnen

    Full Text Available Mutations affecting the ribosome lead to several diseases known as ribosomopathies, with phenotypes that include growth defects, cytopenia, and bone marrow failure. Diamond-Blackfan anemia (DBA, for example, is a pure red cell aplasia linked to the mutation of ribosomal protein (RP genes. Here we show the knock-down of the DBA-linked RPS19 gene induces the cellular self-digestion process of autophagy, a pathway critical for proper hematopoiesis. We also observe an increase of autophagy in cells derived from DBA patients, in CD34+ erythrocyte progenitor cells with RPS19 knock down, in the red blood cells of zebrafish embryos with RP-deficiency, and in cells from patients with Shwachman-Diamond syndrome (SDS. The loss of RPs in all these models results in a marked increase in S6 kinase phosphorylation that we find is triggered by an increase in reactive oxygen species (ROS. We show that this increase in S6 kinase phosphorylation inhibits the insulin pathway and AKT phosphorylation activity through a mechanism reminiscent of insulin resistance. While stimulating RP-deficient cells with insulin reduces autophagy, antioxidant treatment reduces S6 kinase phosphorylation, autophagy, and stabilization of the p53 tumor suppressor. Our data suggest that RP loss promotes the aberrant activation of both S6 kinase and p53 by increasing intracellular ROS levels. The deregulation of these signaling pathways is likely playing a major role in the pathophysiology of ribosomopathies.

  6. Proteins Related to the Type I Secretion System Are Associated with Secondary SecA_DEAD Domain Proteins in Some Species of Planctomycetes, Verrucomicrobia, Proteobacteria, Nitrospirae and Chlorobi.

    Directory of Open Access Journals (Sweden)

    Olga K Kamneva

    Full Text Available A number of bacteria belonging to the PVC (Planctomycetes-Verrucomicrobia-Chlamydiae super-phylum contain unusual ribosome-bearing intracellular membranes. The evolutionary origins and functions of these membranes are unknown. Some proteins putatively associated with the presence of intracellular membranes in PVC bacteria contain signal peptides. Signal peptides mark proteins for translocation across the cytoplasmic membrane in prokaryotes, and the membrane of the endoplasmic reticulum in eukaryotes, by highly conserved Sec machinery. This suggests that proteins might be targeted to intracellular membranes in PVC bacteria via the Sec pathway. Here, we show that canonical signal peptides are significantly over-represented in proteins preferentially present in PVC bacteria possessing intracellular membranes, indicating involvement of Sec translocase in their cellular targeting. We also characterized Sec proteins using comparative genomics approaches, focusing on the PVC super-phylum. While we were unable to detect unique changes in Sec proteins conserved among membrane-bearing PVC species, we identified (1 SecA ATPase domain re-arrangements in some Planctomycetes, and (2 secondary SecA_DEAD domain proteins in the genomes of some Planctomycetes, Verrucomicrobia, Proteobacteria, Nitrospirae and Chlorobi. This is the first report of potentially duplicated SecA in Gram-negative bacteria. The phylogenetic distribution of secondary SecA_DEAD domain proteins suggests that the presence of these proteins is not related to the occurrence of PVC endomembranes. Further genomic analysis showed that secondary SecA_DEAD domain proteins are located within genomic neighborhoods that also encode three proteins possessing domains specific for the Type I secretion system.

  7. TPA-inducible proteins may account for sensitivity to promotion of transformation

    International Nuclear Information System (INIS)

    Hirano, K.; Smith, B.; Colburn, N.H.

    1986-01-01

    The preneoplastic JB6 mouse epidermal cell system includes cell lines sensitive (P + ) or resistant (P - ) to tumor promoter induced neoplastic transformation. The authors investigated whether a difference in TPA-inducible proteins may explain this differential sensitivity. The synthesis of a 39 Kd cytoplasmic protein (Major Excreted Protein) was TPA-inducible, but to a similar extent in both P + and P - cells. TPA stimulated phosphorylation but not synthesis of the previously described stress protein pp80 in both P + and P - cells from 1 to 5 hr after treatment. Pulse labelling of P + and P - cells with 35 S-methionine revealed a TPA dependent P + specific transient increase in the synthesis of 58Kd protein. Induction was observed at 1 hr, and returned to basal levels by 4 hr and 20 hr, in nuclear and cytoplasmic fractions, respectively. This protein is not phosphorylated in response to TPA treatment. P + cells differ from P - cells in one or more genes that specify sensitivity to promotion of transformation, designated pro genes. Antibodies to three peptides representing the pro-1 open reading frame were used in immunoprecipitation and Western blotting to isolate the pro-1 gene product. A 43 Kd protein was immunologically responsive to the pro-1 peptide antibodies, and showed an increased signal 40 min after TPA treatment. Since the predicted molecular weight of a pro-1 gene product is only 7 Kd, the possibility of a modification of the protein by poly(ADP-ribosylation) or glycosylation is being investigated

  8. Ethylene-induced senescence-related gene expression requires protein synthesis

    International Nuclear Information System (INIS)

    Lawton, K.A.; Raghothama, K.G.; Woodson, W.R.

    1990-01-01

    We have investigated the effects of inhibiting protein synthesis on the ethylene-induced expression of 3 carnation senescence-related genes, pSR5, pSR8, and pSR12. Treatment of preclimacteric carnation petal discs with 1μg/ml of cycloheximide, a cytoplasmic protein synthesis inhibitor, for 3h inhibited protein synthesis by >80% as quantitated by the incorporation of [35S]methionine into protein. Pre-treatment of petal discs with cycloheximide prevented ethylene-induced SR transcript accumulation. Cycloheximide treatment of petal discs held in air did not result in increased levels of SR mRNA. These results indicate that ethylene does not interact with pre-formed factors but rather that the activation of SR gene expression by ethylene is mediated by labile protein factor(s) synthesized on cytoplasmic ribosomes. Experiments are currently underway to determine if cycloheximide exerts its effect at the transcriptional or post-transcriptional level

  9. Glycation inhibits trichloroacetic acid (TCA)-induced whey protein precipitation

    Science.gov (United States)

    Four different WPI saccharide conjugates were successfully prepared to test whether glycation could inhibit WPI precipitation induced by trichloroacetic acid (TCA). Conjugates molecular weights after glycation were analyzed with SDS-PAGE. No significant secondary structure change due to glycation wa...

  10. Ampelopsin-induced reactive oxygen species enhance the apoptosis of colon cancer cells by activating endoplasmic reticulum stress-mediated AMPK/MAPK/XAF1 signaling

    Science.gov (United States)

    Park, Ga Bin; Jeong, Jee-Yeong; Kim, Daejin

    2017-01-01

    Ampelopsin (Amp) is bioactive natural product and exerts anti-cancer effects against several cancer types. The present study investigated the anti-colon cancer activity of Amp and explored its mechanism of action. The treatment of colon cancer cells with Amp resulted in the dose- and time-dependent induction of apoptosis via the activation of endoplasmic reticulum (ER) stress, 5′ adenosine monophosphate-activated protein kinase (AMPK), and c-Jun N-terminal protein kinase (JNK)/p38 mitogen-activated protein kinases (MAPKs). Salubrinal, an ER stress inhibitor, prevented the upregulation of ER stress-associated proteins, including phosphorylated protein kinase RNA-like ER kinase, phosphorylated eukaryotic translation initiation factor 2α, glucose-regulated protein 78, and CCAAT/enhancer-binding protein homologous protein, as well as suppressing AMPK activation and the MAPK signaling pathway. Knockdown of AMPK by RNA interference failed to block ER stress. Additionally, SP600125 (a JNK inhibitor) and SB203580 (a p38-MAPK inhibitor) effectively inhibited apoptosis and attenuated the expression of X-linked IAP-associated factor 1 (XAF1) and apoptotic Bcl-2 family proteins (BCL2 antagonist/killer 1 and BCL2-associated X protein) in Amp-treated colon cancer cells. Furthermore, reactive oxygen species (ROS)-mediated ER stress/AMPK apoptotic signaling pathway in Amp-treated colon cancer cells were markedly inhibited by treatment with N-acetyl-L-cysteine, a ROS scavenger. These results demonstrate that treatment with Amp induces the apoptotic death of colon cancer cells through ER stress-initiated AMPK/MAPK/XAF1 signaling. These results also provide experimental information for developing Amp as therapeutic drug against colon cancer. PMID:29250183

  11. A rapid method for selecting suitable animal species for studying pathogen interactions with plasma protein ligands in vivo.

    Science.gov (United States)

    Naudin, Clément; Schumski, Ariane; Salo-Ahen, Outi M H; Herwald, Heiko; Smeds, Emanuel

    2017-05-01

    Species tropism constitutes a serious problem for developing relevant animal models of infection. Human pathogens can express virulence factors that show specific selectivity to human proteins, while their affinity for orthologs from other species can vary significantly. Suitable animal species must be used to analyse whether virulence factors are potential targets for drug development. We developed an assay that rapidly predicts applicable animal species for studying virulence factors binding plasma proteins. We used two well-characterized Staphylococcus aureus proteins, SSL7 and Efb, to develop an ELISA-based inhibition assay using plasma from different animal species. The interaction between SSL7 and human C5 and the binding of Efb to human fibrinogen and human C3 was studied. Affinity experiments and Western blot analyses were used to validate the assay. Human, monkey and cat plasma interfered with binding of SSL7 to human C5. Binding of Efb to human fibrinogen was blocked in human, monkey, gerbil and pig plasma, while human, monkey, gerbil, rabbit, cat and guinea pig plasma inhibited the binding of Efb to human C3. These results emphasize the importance of choosing correct animal models, and thus, our approach is a rapid and cost-effective method that can be used to prevent unnecessary animal experiments. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  12. AMP-activated protein kinase controls exercise training- and AICAR-induced increases in SIRT3 and MnSOD

    Directory of Open Access Journals (Sweden)

    Josef eBrandauer

    2015-03-01

    Full Text Available The mitochondrial protein deacetylase sirtuin (SIRT 3 may mediate exercise training-induced increases in mitochondrial biogenesis and improvements in reactive oxygen species (ROS handling. We determined the requirement of AMP-activated protein kinase (AMPK for exercise training-induced increases in skeletal muscle abundance of SIRT3 and other mitochondrial proteins. Exercise training for 6.5 weeks increased SIRT3 (p<0.01 and superoxide dismutase 2 (MnSOD; p<0.05 protein abundance in quadriceps muscle of wild-type (WT; n=13-15, but not AMPK α2 kinase dead (KD; n=12-13 mice. We also observed a strong trend for increased MnSOD abundance in exercise-trained skeletal muscle of healthy humans (p=0.051; n=6. To further elucidate a role for AMPK in mediating these effects, we treated WT (n=7-8 and AMPK α2 KD (n=7-9 mice with 5-amino-1-β-D-ribofuranosyl-imidazole-4-carboxamide (AICAR. Four weeks of daily AICAR injections (500 mg/kg resulted in AMPK-dependent increases in SIRT3 (p<0.05 and MnSOD (p<0.01 in WT, but not AMPK α2 KD mice. We also tested the effect of repeated AICAR treatment on mitochondrial protein levels in mice lacking the transcriptional coactivator peroxisome proliferator-activated receptor γ-coactivator 1α (PGC-1α KO; n=9-10. Skeletal muscle SIRT3 and MnSOD protein abundance was reduced in sedentary PGC-1α KO mice (p<0.01 and AICAR-induced increases in SIRT3 and MnSOD protein abundance was only observed in WT mice (p<0.05. Finally, the acetylation status of SIRT3 target lysine residues on MnSOD (K122 or oligomycin-sensitivity conferring protein (OSCP; K139 was not altered in either mouse or human skeletal muscle in response to acute exercise. We propose an important role for AMPK in regulating mitochondrial function and ROS handling in skeletal muscle in response to exercise training.

  13. The kinetics of removal of heat-induced excess nuclear protein

    International Nuclear Information System (INIS)

    Roti, J.L.R.; Uygur, N.; Higashikubo, R.

    1984-01-01

    To investigate the role of protein content, temperature and heating time in the removal of heat-induced excess protein associated with the isolated nucleus, the kinetics of protein removal was monitored for 6 to 8 hours following exposure to 7 hyperthermic protocols. Four of these (47 0 C-7.5 min., 46 0 C-15 min., 45 0 C-30 min., and 44 0 C-60 min.) resulted in a nuclear protein content approximately twice that of nuclei from unheated cells (2.05 +- .14) following heat exposure. Three protocols (45 0 C-15 min., 44 0 C-30 min. and 43 0 C-60 min.) resulted in a nuclear protein content approximately 1.6 times normal (1.63 +- .12). If nuclear protein content were the only determinant in the recovery rate, then the same half time for nuclear protein removal would be expected within each group of protocols. Rate constants for nuclear protein removal were obtained by regression analysis. The half-time for nuclear protein removal increased with decreasing temperature and increasing heating time for the same nuclear protein content. This result suggests that the heating time and temperature are more of a determinant in the removal kinetics than protein content alone. Extended kinetics of recovery (to 36 hours) showed incomplete recovery and a secondary increase in protein associated with the isolated nucleus. These results were due to cell-cycle rearrangement (G/sub 2/ block) and unbalanced growth

  14. Ubiquilin overexpression reduces GFP-polyalanine-induced protein aggregates and toxicity

    International Nuclear Information System (INIS)

    Wang Hongmin; Monteiro, Mervyn J.

    2007-01-01

    Several human disorders are associated with an increase in a continuous stretch of alanine amino acids in proteins. These so-called polyalanine expansion diseases share many similarities with polyglutamine-related disorders, including a length-dependent reiteration of amino acid induction of protein aggregation and cytotoxicity. We previously reported that overexpression of ubiquilin reduces protein aggregates and toxicity of expanded polyglutamine proteins. Here, we demonstrate a similar role for ubiquilin toward expanded polyalanine proteins. Overexpression of ubiquilin-1 in HeLa cells reduced protein aggregates and the cytotoxicity associated with expression of a transfected nuclear-targeted GFP-fusion protein containing 37-alanine repeats (GFP-A37), in a dose dependent manner. Ubiquilin coimmunoprecipitated more with GFP proteins containing a 37-polyalanine tract compared to either 7 (GFP-A7), or no alanine tract (GFP). Moreover, overexpression of ubiquilin suppressed the increased vulnerability of HeLa cell lines stably expressing the GFP-A37 fusion protein to oxidative stress-induced cell death compared to cell lines expressing GFP or GFP-A7 proteins. By contrast, siRNA knockdown of ubiquilin expression in the GFP-A37 cell line was associated with decreased cellular proliferation, and increases in GFP protein aggregates, nuclear fragmentation, and cell death. Our results suggest that boosting ubiquilin levels in cells might provide a universal and attractive strategy to prevent toxicity of proteins containing reiterative expansions of amino acids involved in many human diseases

  15. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine

    International Nuclear Information System (INIS)

    Zhao Ping; Cao Jie; Zhao Lanjuan; Qin Zhaolin; Ke Jinshan; Pan Wei; Ren Hao; Yu Jianguo; Qi Zhongtian

    2005-01-01

    The nucleocapsid (N) protein of SARS-coronavirus (SARS-CoV) is the key protein for the formation of the helical nucleocapsid during virion assembly. This protein is believed to be more conserved than other proteins of the virus, such as spike and membrane glycoprotein. In this study, the N protein of SARS-CoV was expressed in Escherichia coli DH5α and identified with pooled sera from patients in the convalescence phase of SARS. A plasmid pCI-N, encoding the full-length N gene of SARS-CoV, was constructed. Expression of the N protein was observed in COS1 cells following transfection with pCI-N. The immune responses induced by intramuscular immunization with pCI-N were evaluated in a murine model. Serum anti-N immunoglobulins and splenocytes proliferative responses against N protein were observed in immunized BALB/c mice. The major immunoglobulin G subclass recognizing N protein was immunoglobulin G2a, and stimulated splenocytes secreted high levels of gamma interferon and IL-2 in response to N protein. More importantly, the immunized mice produced strong delayed-type hypersensitivity (DTH) and CD8 + CTL responses to N protein. The study shows that N protein of SARS-CoV not only is an important B cell immunogen, but also can elicit broad-based cellular immune responses. The results indicate that the N protein may be of potential value in vaccine development for specific prophylaxis and treatment against SARS

  16. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress

    KAUST Repository

    Turek, Ilona; Marondedze, Claudius; Wheeler, Janet I.; Gehring, Christoph A; Irving, Helen R.

    2014-01-01

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms “oxidation-reduction process,” “translation” and “response to salt stress” and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions.

  17. Plant natriuretic peptides induce proteins diagnostic for an adaptive response to stress

    KAUST Repository

    Turek, Ilona

    2014-11-26

    In plants, structural and physiological evidence has suggested the presence of biologically active natriuretic peptides (PNPs). PNPs are secreted into the apoplast, are systemically mobile and elicit a range of responses signaling via cGMP. The PNP-dependent responses include tissue specific modifications of cation transport and changes in stomatal conductance and the photosynthetic rate. PNP also has a critical role in host defense responses. Surprisingly, PNP-homologs are produced by several plant pathogens during host colonization suppressing host defense responses. Here we show that a synthetic peptide representing the biologically active fragment of the Arabidopsis thaliana PNP (AtPNP-A) induces the production of reactive oxygen species in suspension-cultured A. thaliana (Col-0) cells. To identify proteins whose expression changes in an AtPNP-A dependent manner, we undertook a quantitative proteomic approach, employing tandem mass tag (TMT) labeling, to reveal temporal responses of suspension-cultured cells to 1 nM and 10 pM PNP at two different time-points post-treatment. Both concentrations yield a distinct differential proteome signature. Since only the higher (1 nM) concentration induces a ROS response, we conclude that the proteome response at the lower concentration reflects a ROS independent response. Furthermore, treatment with 1 nM PNP results in an over-representation of the gene ontology (GO) terms “oxidation-reduction process,” “translation” and “response to salt stress” and this is consistent with a role of AtPNP-A in the adaptation to environmental stress conditions.

  18. Molecular analysis of an odorant-binding protein gene in two sympatric species of Lutzomyia longipalpis s.l.

    Directory of Open Access Journals (Sweden)

    Ana Karina Kerche Dias

    2013-01-01

    Full Text Available Lutzomyia longipalpis s.l. is the main vector of American visceral leishmaniasis (AVL and occurs as a species complex. DNA samples from two Brazilian sympatric species that differ in pheromone and courtship song production were used to analyse molecular polymorphisms in an odorant-binding protein ( obp29 gene. OBPs are proteins related to olfaction and are involved in activities fundamental to survival, such as foraging, mating and choice of oviposition site. In this study, the marker obp29 was found to be highly polymorphic in Lu. longipalpis s.l. , with no fixed differences observed between the two species. A pairwise fixation index test indicated a moderate level of genetic differentiation between the samples analysed.

  19. Dichlone-induced oxidative stress in a model insect species, Spodoptera eridania.

    Science.gov (United States)

    Ahmad, S; Zaman, K; MacGill, R S; Batcabe, J P; Pardini, R S

    1995-11-01

    Southern armyworm, Spodoptera eridania, larvae were provided ad libitum 0.002-0.25% w/w dichlone, 2,3-dichloro-1,4-naphthoquinone (CNQ). Larval mortality occurred in a time-and-dose dependent manner, with an LC17 of 0.01% and an LC50 of 0.26% CNQ at day-5. Extracts of larvae fed control, 0.01, and 0.25% CNQ diets for 5 days were assayed for antioxidant enzymes. While 0.01% CNQ had a mild effect, 0.25% CNQ profoundly increased levels of all antioxidant enzymes that were examined. The increases as compared to control were: 5.3-, 1.9-, 3.2-, 2.6-, 2.8-, and 3.5-fold higher for superoxide dismutase, catalase, glutathione transferase and its peroxidase activity, glutathione reductase and DT-diaphorase, respectively. At 0.01% CNQ, the thiobarbituric acid reactive substances (TBARS) were similar to the control group. However, despite the induction from 0.25% CNQ of all enzymes examined, the lipid peroxidation was not attenuated; the TBARS were 29.7% over the control value. High mortalities and CNQ-induced pathologies reflected in retarded growth, wasting syndrome, and diuresis clearly indicated that the insect sustained severe oxidant-induced injuries before appropriate defenses were fully mobilized. Thus, this quinone causes an oxidative stress in a model insect species analogous to that observed in mammalian species.

  20. Cold-inducible RNA-binding protein through TLR4 signaling induces mitochondrial DNA fragmentation and regulates macrophage cell death after trauma.

    Science.gov (United States)

    Li, Zhigang; Fan, Erica K; Liu, Jinghua; Scott, Melanie J; Li, Yuehua; Li, Song; Xie, Wen; Billiar, Timothy R; Wilson, Mark A; Jiang, Yong; Wang, Ping; Fan, Jie

    2017-05-11

    Trauma is a major cause of systemic inflammatory response syndrome and multiple organ dysfunction syndrome. Macrophages (Mφ) direct trauma-induced inflammation, and Mφ death critically influences the progression of the inflammatory response. In the current study, we explored an important role of trauma in inducing mitochondrial DNA (mtDNA) damage in Mφ and the subsequent regulation of Mφ death. Using an animal pseudo-fracture trauma model, we demonstrated that tissue damage induced NADPH oxidase activation and increased the release of reactive oxygen species via cold-inducible RNA-binding protein (CIRP)-TLR4-MyD88 signaling. This in turn, activates endonuclease G, which serves as an executor for the fragmentation of mtDNA in Mφ. We further showed that fragmented mtDNA triggered both p62-related autophagy and necroptosis in Mφ. However, autophagy activation also suppressed Mφ necroptosis and pro-inflammatory responses. This study demonstrates a previously unidentified intracellular regulation of Mφ homeostasis in response to trauma.

  1. Expression profiling and cross-species RNA interference (RNAi of desiccation-induced transcripts in the anhydrobiotic nematode Aphelenchus avenae

    Directory of Open Access Journals (Sweden)

    Culleton Bridget A

    2010-01-01

    Full Text Available Abstract Background Some organisms can survive extreme desiccation by entering a state of suspended animation known as anhydrobiosis. The free-living mycophagous nematode Aphelenchus avenae can be induced to enter anhydrobiosis by pre-exposure to moderate reductions in relative humidity (RH prior to extreme desiccation. This preconditioning phase is thought to allow modification of the transcriptome by activation of genes required for desiccation tolerance. Results To identify such genes, a panel of expressed sequence tags (ESTs enriched for sequences upregulated in A. avenae during preconditioning was created. A subset of 30 genes with significant matches in databases, together with a number of apparently novel sequences, were chosen for further study. Several of the recognisable genes are associated with water stress, encoding, for example, two new hydrophilic proteins related to the late embryogenesis abundant (LEA protein family. Expression studies confirmed EST panel members to be upregulated by evaporative water loss, and the majority of genes was also induced by osmotic stress and cold, but rather fewer by heat. We attempted to use RNA interference (RNAi to demonstrate the importance of this gene set for anhydrobiosis, but found A. avenae to be recalcitrant with the techniques used. Instead, therefore, we developed a cross-species RNAi procedure using A. avenae sequences in another anhydrobiotic nematode, Panagrolaimus superbus, which is amenable to gene silencing. Of 20 A. avenae ESTs screened, a significant reduction in survival of desiccation in treated P. superbus populations was observed with two sequences, one of which was novel, while the other encoded a glutathione peroxidase. To confirm a role for glutathione peroxidases in anhydrobiosis, RNAi with cognate sequences from P. superbus was performed and was also shown to reduce desiccation tolerance in this species. Conclusions This study has identified and characterised the

  2. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-06-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  3. The catechin flavonoid reduces proliferation and induces apoptosis of murine lymphoma cells LB02 through modulation of antiapoptotic proteins

    Directory of Open Access Journals (Sweden)

    Daniela Laura Papademetrio

    2013-03-01

    Full Text Available Flavonoids are products of secondary metabolism of plants. They are present in herbs and trees and also act as natural chemopreventives and anticancer agents. Ligaria cuneifolia (Ruiz & Pav. Tiegh., Loranthaceae, is a hemiparasite species that belongs to Argentine flora. Phytochemical studies have disclosed the presence of quercetin, catechin-4β-ol and pro-anthocyanidine as polyphenolic compounds in the active extracts. We previously demonstrated that ethyl acetate extract was capable of reducing cell proliferation and inducing apoptotic death of lymphoid tumor cells. The aim of the current study is to determine whether or not catechin, isolated from L. cuneifolia extracts can induce leukemia cell death and to determine its effect on the cytoplasmatic proteins that modulate cell survival. Our results show that catechin can reduce proliferation of murine lymphoma cell line LB02. The effect is mediated by apoptosis at concentrations upper to 100 µg/mL. Cell death is related to the loss of mitochondrial membrane potential (ΔΨm and a down regulation of survivin and Bcl-2 together with the increase of pro-apoptotic protein Bax. In summary, the current study indicates that catechin present in the extract of L. cuneifolia is in part, responsible for the anti-proliferative activity of whole extracts by induction of ΔΨm disruption and modulation of the anti-apoptotic proteins over expressed in tumor cells. These results give new findings into the potential anticancer and chemopreventive activities of L. cuneifolia.

  4. Protective Immunity and Reduced Renal Colonization Induced by Vaccines Containing Recombinant Leptospira interrogans Outer Membrane Proteins and Flagellin Adjuvant

    Science.gov (United States)

    Monaris, D.; Sbrogio-Almeida, M. E.; Dib, C. C.; Canhamero, T. A.; Souza, G. O.; Vasconcellos, S. A.; Ferreira, L. C. S.

    2015-01-01

    Leptospirosis is a global zoonotic disease caused by different Leptospira species, such as Leptospira interrogans, that colonize the renal tubules of wild and domestic animals. Thus far, attempts to develop effective leptospirosis vaccines, both for humans and animals, have failed to induce immune responses capable of conferring protection and simultaneously preventing renal colonization. In this study, we evaluated the protective immunity induced by subunit vaccines containing seven different recombinant Leptospira interrogans outer membrane proteins, including the carboxy-terminal portion of the immunoglobulinlike protein A (LigAC) and six novel antigens, combined with aluminum hydroxide (alum) or Salmonella flagellin (FliC) as adjuvants. Hamsters vaccinated with the different formulations elicited high antigen-specific antibody titers. Immunization with LigAC, either with alum or flagellin, conferred protective immunity but did not prevent renal colonization. Similarly, animals immunized with LigAC or LigAC coadministered with six leptospiral proteins with alum adjuvant conferred protection but did not reduce renal colonization. In contrast, immunizing animals with the pool of seven antigens in combination with flagellin conferred protection and significantly reduced renal colonization by the pathogen. The present study emphasizes the relevance of antigen composition and added adjuvant in the efficacy of antileptospirosis subunit vaccines and shows the complex relationship between immune responses and renal colonization by the pathogen. PMID:26108285

  5. Exercise-induced phospho-proteins in skeletal muscle

    DEFF Research Database (Denmark)

    Deshmukh, A S; Hawley, J A; Zierath, J R

    2008-01-01

    Efforts to identify exercise-induced signaling events in skeletal muscle have been influenced by ground-breaking discoveries in the insulin action field. Initial discoveries demonstrating that exercise enhances insulin sensitivity raised the possibility that contraction directly modulates insulin...... receptor signaling events. Although the acute effects of exercise on glucose metabolism are clearly insulin-independent, the canonical insulin signaling cascade has been used as a framework by investigators in an attempt to resolve the mechanisms by which muscle contraction governs glucose metabolism....... This review focuses on recent advances in our understanding of exercise-induced signaling pathways governing glucose metabolism in skeletal muscle. Particular emphasis will be placed on the characterization of AS160, a novel Akt substrate that plays a role in the regulation of glucose transport....

  6. Prostaglandins with antiproliferative activity induce the synthesis of a heat shock protein in human cells

    International Nuclear Information System (INIS)

    Santoro, M.G.; Garaci, E.; Amici, C.

    1989-01-01

    Prostaglandins (PGs)A 1 and J 2 were found to potently suppress the proliferation of human K562 erythroleukemia cells and to induce the synthesis of a 74-kDa protein (p74) that was identified as a heat shock protein related to the major 70-kDa heat shock protein group. p74 synthesis was stimulated at doses of PGA 1 and PGJ 2 that inhibited cell replication, and its accumulation ceased upon removal of the PG-induced proliferation block. PGs that did not affect K562 cell replication did not induce p74 synthesis. p74 was found to be localized mainly in the cytoplasm of PG-treated cells, but moderate amounts were found also in dense areas of the nucleus after PGJ 2 treatment. p74 was not necessarily associated with cytotoxicity or with inhibition of cell protein synthesis. The results described support the hypothesis that synthesis of the 70-kDa heat shock proteins is associated with changes in cell proliferation. The observation that PGs can induce the synthesis of heat shock proteins expands our understanding of the mechanism of action of these compounds whose regulatory role is well known in many physiological phenomena, including the control of fever production

  7. Gamma-ray-induced changes in the synthesis of tomato pericarp protein

    International Nuclear Information System (INIS)

    Ferullo, J.M.; Nespoulous, L.; Triantaphylides, C.

    1994-01-01

    The application of massive doses of gamma rays (1–8 kGy) to mature green cherry-tomato fruits led to a transient fall in pericarp tissue protein metabolism within 6h. A separate 3 kGy treatment resulted in the appearance of certain transcripts and proteins, and a reduction in the abundance of others. At the same dose, protein synthesis regained the control level within 24 h, and in addition a new set of proteins was induced. Gamma-induced proteins (referred to as GIPs) were divided into three groups, depending on the time-course of their induction. Group 1 GIPs were synthesized only during the first few hours following treatment, whereas group 2 GIPs were synthesized for at least 48 h. Group 3 GIPs were progressively induced when the control level of synthesis was restored. These results demonstrated that, despite its deleterious effects on DNA and cell structures, irradiation induced an active response in plant tissue. Comparative experiments suggest that the majority of group 1 GIPs might belong to the heat shock protein family. GIPs might play a role in the protection and repair of cellular structures, or may be implicated in physiological disorders triggered by irradiation. (author)

  8. Lewis lung carcinoma regulation of mechanical stretch-induced protein synthesis in cultured myotubes.

    Science.gov (United States)

    Gao, Song; Carson, James A

    2016-01-01

    Mechanical stretch can activate muscle and myotube protein synthesis through mammalian target of rapamycin complex 1 (mTORC1) signaling. While it has been established that tumor-derived cachectic factors can induce myotube wasting, the effect of this catabolic environment on myotube mechanical signaling has not been determined. We investigated whether media containing cachectic factors derived from Lewis lung carcinoma (LLC) can regulate the stretch induction of myotube protein synthesis. C2C12 myotubes preincubated in control or LLC-derived media were chronically stretched. Protein synthesis regulation by anabolic and catabolic signaling was then examined. In the control condition, stretch increased mTORC1 activity and protein synthesis. The LLC treatment decreased basal mTORC1 activity and protein synthesis and attenuated the stretch induction of protein synthesis. LLC media increased STAT3 and AMP-activated protein kinase phosphorylation in myotubes, independent of stretch. Both stretch and LLC independently increased ERK1/2, p38, and NF-κB phosphorylation. In LLC-treated myotubes, the inhibition of ERK1/2 and p38 rescued the stretch induction of protein synthesis. Interestingly, either leukemia inhibitory factor or glycoprotein 130 antibody administration caused further inhibition of mTORC1 signaling and protein synthesis in stretched myotubes. AMP-activated protein kinase inhibition increased basal mTORC1 signaling activity and protein synthesis in LLC-treated myotubes, but did not restore the stretch induction of protein synthesis. These results demonstrate that LLC-derived cachectic factors can dissociate stretch-induced signaling from protein synthesis through ERK1/2 and p38 signaling, and that glycoprotein 130 signaling is associated with the basal stretch response in myotubes. Copyright © 2016 the American Physiological Society.

  9. Involvement of Reactive Oxygen Species in Sonodynamically Induced Apoptosis Using a Novel Porphyrin Derivative

    Directory of Open Access Journals (Sweden)

    Nagahiko Yumita, Yumiko Iwase, Koji Nishi, Hajime Komatsu, Kazuyoshi Takeda, Kenji Onodera, Toshio Fukai, Toshihiko Ikeda, Shin-ichiro Umemura, Kazuho Okudaira, Yasunori Momose

    2012-01-01

    Full Text Available In this study, we investigated the induction of apoptosis by ultrasound in the presence of the novel porphyrin derivative DCPH-P-Na(I. HL-60 cells were exposed to ultrasound for up to 3 min in the presence and absence of DCPH-P-Na(I, and the induction of apoptosis was examined by analyzing cell morphology, DNA fragmentation, and caspase-3 activity. Reactive oxygen species were measured by means of ESR and spin trapping technique. Cells treated with 8 μM DCPH-P-Na(I and ultrasound clearly showed membrane blebbing and cell shrinkage, whereas significant morphologic changes were not observed in cells exposed to either ultrasound or DCPH-P-Na(I alone. Also, DNA ladder formation and caspase-3 activation were observed in cells treated with both ultrasound and DCPH-P-Na(I but not in cells treated with ultrasound or DCPH-P-Na(I alone. In addition, the combination of DCPH-P-Na(I and the same acoustical arrangement of ultrasound substantially enhanced nitroxide generation by the cells. Sonodynamically induced apoptosis, caspase-3 activation, and nitroxide generation were significantly suppressed by histidine. These results indicate that the combination of ultrasound and DCPH-P-Na(I induced apoptosis in HL-60 cells. The significant reduction in sonodynamically induced apoptosis, nitroxide generation, and caspase-3 activation by histidine suggests active species such as singlet oxygen are important in the sonodynamic induction of apoptosis. These experimental results support the possibility of sonodynamic treatment for cancer using the induction of apoptosis.

  10. Neuronal Orphan G-Protein Coupled Receptor Proteins Mediate Plasmalogens-Induced Activation of ERK and Akt Signaling.

    Directory of Open Access Journals (Sweden)

    Md Shamim Hossain

    Full Text Available The special glycerophospholipids plasmalogens (Pls are enriched in the brain and reported to prevent neuronal cell death by enhancing phosphorylation of Akt and ERK signaling in neuronal cells. Though the activation of Akt and ERK was found to be necessary for the neuronal cells survival, it was not known how Pls enhanced cellular signaling. To answer this question, we searched for neuronal specific orphan GPCR (G-protein coupled receptor proteins, since these proteins were believed to play a role in cellular signal transduction through the lipid rafts, where both Pls and some GPCRs were found to be enriched. In the present study, pan GPCR inhibitor significantly reduced Pls-induced ERK signaling in neuronal cells, suggesting that Pls could activate GPCRs to induce signaling. We then checked mRNA expression of 19 orphan GPCRs and 10 of them were found to be highly expressed in neuronal cells. The knockdown of these 10 neuronal specific GPCRs by short hairpin (sh-RNA lentiviral particles revealed that the Pls-mediated phosphorylation of ERK was inhibited in GPR1, GPR19, GPR21, GPR27 and GPR61 knockdown cells. We further found that the overexpression of these GPCRs enhanced Pls-mediated phosphorylation of ERK and Akt in cells. Most interestingly, the GPCRs-mediated cellular signaling was reduced significantly when the endogenous Pls were reduced. Our cumulative data, for the first time, suggest a possible mechanism for Pls-induced cellular signaling in the nervous system.

  11. Statins inhibit protein lipidation and induce the unfolded protein response in the non-sterol producing nematode Caenorhabditis elegans

    DEFF Research Database (Denmark)

    Mörck, Catarina; Elmelund-Præstekær, Louise Cathrine Braun; Kurth, Caroline

    2009-01-01

    of lipid moieties for protein prenylation. The nematode Caenorhabditis elegans possesses a mevalonate pathway that lacks the branch leading to cholesterol synthesis, and thus represents an ideal organism to specifically study the noncholesterol roles of the pathway. Inhibiting HMG-CoA reductase in C....... elegans using statins or RNAi leads to developmental arrest and loss of membrane association of a GFP-based prenylation reporter. The unfolded protein response (UPR) is also strongly activated, suggesting that impaired prenylation of small GTPases leads to the accumulation of unfolded proteins and ER...... and fatty acid composition were unaffected in statin-treated worms, even though they showed reduced staining with Nile red. We conclude that inhibitors of HMG-CoA reductase or of farnesyl transferases induce the UPR by inhibiting the prenylation of M57.2 substrates, resulting in developmental arrest in C...

  12. Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose.

    Science.gov (United States)

    Blumer-Schuette, Sara E; Alahuhta, Markus; Conway, Jonathan M; Lee, Laura L; Zurawski, Jeffrey V; Giannone, Richard J; Hettich, Robert L; Lunin, Vladimir V; Himmel, Michael E; Kelly, Robert M

    2015-04-24

    A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins ("tāpirins," origin from Māori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tāpirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tāpirins are specific to these extreme thermophiles. Tāpirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tāpirins for cellulose. Crystallization of a cellulose-binding truncation from one tāpirin indicated that these proteins form a long β-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tāpirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.

  13. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes.

    Science.gov (United States)

    Liebel, Frank; Kaur, Simarna; Ruvolo, Eduardo; Kollias, Nikiforos; Southall, Michael D

    2012-07-01

    Daily skin exposure to solar radiation causes cells to produce reactive oxygen species (ROS), which are a primary factor in skin damage. Although the contribution of the UV component to skin damage has been established, few studies have examined the effects of non-UV solar radiation on skin physiology. Solar radiation comprises UV, and thus the purpose of this study was to examine the physiological response of skin to visible light (400-700 nm). Irradiation of human skin equivalents with visible light induced production of ROS, proinflammatory cytokines, and matrix metalloproteinase (MMP)-1 expression. Commercially available sunscreens were found to have minimal effects on reducing visible light-induced ROS, suggesting that UVA/UVB sunscreens do not protect the skin from visible light-induced responses. Using clinical models to assess the generation of free radicals from oxidative stress, higher levels of free radical activity were found after visible light exposure. Pretreatment with a photostable UVA/UVB sunscreen containing an antioxidant combination significantly reduced the production of ROS, cytokines, and MMP expression in vitro, and decreased oxidative stress in human subjects after visible light irradiation. Taken together, these findings suggest that other portions of the solar spectrum aside from UV, particularly visible light, may also contribute to signs of premature photoaging in skin.

  14. Quercetin suppresses hypoxia-induced accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) through inhibiting protein synthesis.

    Science.gov (United States)

    Lee, Dae-Hee; Lee, Yong J

    2008-10-01

    Quercetin, a ubiquitous bioactive plant flavonoid, has been shown to inhibit the proliferation of cancer cells and induce the accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha) in normoxia. In this study, under hypoxic conditions (1% O(2)), we examined the effect of quercetin on the intracellular level of HIF-1alpha and extracellular level of vascular endothelial growth factor (VEGF) in a variety of human cancer cell lines. Surprisingly, we observed that quercetin suppressed the HIF-1alpha accumulation during hypoxia in human prostate cancer LNCaP, colon cancer CX-1, and breast cancer SkBr3 cells. Quercetin treatment also significantly reduced hypoxia-induced secretion of VEGF. Suppression of HIF-1alpha accumulation during treatment with quercetin in hypoxia was not prevented by treatment with 26S proteasome inhibitor MG132 or PI3K inhibitor LY294002. Interestingly, hypoxia (1% O(2)) in the presence of 100 microM quercetin inhibited protein synthesis by 94% during incubation for 8 h. Significant quercetin concentration-dependent inhibition of protein synthesis and suppression of HIF-1alpha accumulation were observed under hypoxic conditions. Treatment with 100 microM cycloheximide, a protein synthesis inhibitor, replicated the effect of quercetin by inhibiting HIF-1alpha accumulation during hypoxia. These results suggest that suppression of HIF-1alpha accumulation during treatment with quercetin under hypoxic conditions is due to inhibition of protein synthesis. (c) 2008 Wiley-Liss, Inc.

  15. Interleukin-1beta induced changes in the protein expression of rat islets: a computerized database

    DEFF Research Database (Denmark)

    Andersen, H U; Fey, S J; Larsen, Peter Mose

    1997-01-01

    as well as the intracellular mechanisms of action of interleukin 1-mediated beta-cell cytotoxicity are unknown. However, previous studies have found an association of beta-cell destruction with alterations in protein synthesis. Thus, two-dimensional (2-D) gel electrophoresis of pancreatic islet proteins...... may be an important tool facilitating studies of the molecular pathogenesis of insulin-dependent diabetes mellitus. 2-D gel electrophoresis of islet proteins may lead to (i) the determination of qualitative and quantitative changes in specific islet proteins induced by cytokines, (ii......) the determination of the effects of agents modulating cytokine action, and (iii) the identification of primary islet protein antigen(s) initiating the immune destruction of the beta-cells. Therefore, the aim of this study was to create databases (DB) of all reproducibly detectable protein spots on 10% and 15...

  16. Proteomic Analysis of Responsive Proteins Induced in Japanese Birch Plantlet Treated with Salicylic Acid

    Directory of Open Access Journals (Sweden)

    Hiromu Suzuki

    2014-07-01

    Full Text Available The present study was performed to unravel the mechanisms of systemic acquired resistance (SAR establishment and resistance signaling pathways against the canker-rot fungus (Inonotus obliquus strain IO-U1 infection in Japanese birch plantlet No.8. Modulation of protein-profile induced by salicylic acid (SA-administration was analyzed, and SA-responsive proteins were identified. In total, 5 specifically expressed, 3 significantly increased, and 3 significantly decreased protein spots were identified using liquid chromatography/tandem mass spectrometry (LC/MS/MS and the sequence tag method. These proteins were malate dehydrogenase, succinate dehydrogenase, phosphoglycerate kinase, diaminopimalate decarboxylase, arginase, chorismate mutase, cyclophilin, aminopeptidase, and unknown function proteins. These proteins are considered to be involved in SAR-establishment mechanisms in the Japanese birch plantlet No 8.

  17. Altered protein phosphorylation in sciatic nerve from rats with streptozocin-induced diabetes

    International Nuclear Information System (INIS)

    Schrama, L.H.; Berti-Mattera, L.N.; Eichberg, J.

    1987-01-01

    The effect of experimental diabetes on the phosphorylation of proteins in the rat sciatic nerve was studied. Nerves from animals made diabetic with streptozocin were incubated in vitro with [ 32 P]orthophosphate and divided into segments from the proximal to the distal end, and proteins from each segment were then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The principal labeled species were the major myelin proteins, P0, and the basic proteins. After 6 wk of diabetes, the incorporation of isotope into these proteins rose as a function of distance along the nerve in a proximal to distal direction and was significantly higher at the distal end compared with incorporation into nerves from age-matched controls. The overall level of isotope uptake was similar in nerves from diabetic animals and weight-matched controls. The distribution of 32 P among proteins also differed in diabetic nerve compared with both control groups in that P0 and the small basic protein accounted for a greater proportion of total label incorporated along the entire length of nerve. In contrast to intact nerve, there was no significant difference in protein phosphorylation when homogenates from normal and diabetic nerve were incubated with [ 32 P]-gamma-ATP. The results suggest that abnormal protein phosphorylation, particularly of myelin proteins, is a feature of experimental diabetic neuropathy and that the changes are most pronounced in the distal portion of the nerve

  18. Soluble polymorphic bank vole prion proteins induced by co-expression of quiescin sulfhydryl oxidase in E. coli and their aggregation behaviors.

    Science.gov (United States)

    Abskharon, Romany; Dang, Johnny; Elfarash, Ameer; Wang, Zerui; Shen, Pingping; Zou, Lewis S; Hassan, Sedky; Wang, Fei; Fujioka, Hisashi; Steyaert, Jan; Mulaj, Mentor; Surewicz, Witold K; Castilla, Joaquín; Wohlkonig, Alexandre; Zou, Wen-Quan

    2017-10-04

    The infectious prion protein (PrP Sc or prion) is derived from its cellular form (PrP C ) through a conformational transition in animal and human prion diseases. Studies have shown that the interspecies conversion of PrP C to PrP Sc is largely swayed by species barriers, which is mainly deciphered by the sequence and conformation of the proteins among species. However, the bank vole PrP C (BVPrP) is highly susceptible to PrP Sc from different species. Transgenic mice expressing BVPrP with the polymorphic isoleucine (109I) but methionine (109M) at residue 109 spontaneously develop prion disease. To explore the mechanism underlying the unique susceptibility and convertibility, we generated soluble BVPrP by co-expression of BVPrP with Quiescin sulfhydryl oxidase (QSOX) in Escherichia coli. Interestingly, rBVPrP-109M and rBVPrP-109I exhibited distinct seeded aggregation pathways and aggregate morphologies upon seeding of mouse recombinant PrP fibrils, as monitored by thioflavin T fluorescence and electron microscopy. Moreover, they displayed different aggregation behaviors induced by seeding of hamster and mouse prion strains under real-time quaking-induced conversion. Our results suggest that QSOX facilitates the formation of soluble prion protein and provide further evidence that the polymorphism at residue 109 of QSOX-induced BVPrP may be a determinant in mediating its distinct convertibility and susceptibility.

  19. Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: Relevance to etiopathogenesis of Parkinson's disease

    International Nuclear Information System (INIS)

    Afeseh Ngwa, Hilary; Kanthasamy, Arthi; Anantharam, Vellareddy; Song, Chunjuan; Witte, Travis; Houk, Robert; Kanthasamy, Anumantha G.

    2009-01-01

    Environmental exposure to neurotoxic metals through various sources including exposure to welding fumes has been linked to an increased incidence of Parkinson's disease (PD). Welding fumes contain many different metals including vanadium typically present as particulates containing vanadium pentoxide (V 2 O 5 ). However, possible neurotoxic effects of this metal oxide on dopaminergic neuronal cells are not well studied. In the present study, we characterized vanadium-induced oxidative stress-dependent cellular events in cell culture models of PD. V 2 O 5 was neurotoxic to dopaminergic neuronal cells including primary nigral dopaminergic neurons and the EC 50 was determined to be 37 μM in N27 dopaminergic neuronal cell model. The neurotoxic effect was accompanied by a time-dependent uptake of vanadium and upregulation of metal transporter proteins Tf and DMT1 in N27 cells. Additionally, vanadium resulted in a threefold increase in reactive oxygen species generation, followed by release of mitochondrial cytochrome c into cytoplasm and subsequent activation of caspase-9 (> fourfold) and caspase-3 (> ninefold). Interestingly, vanadium exposure induced proteolytic cleavage of native protein kinase Cdelta (PKCδ, 72-74 kDa) to yield a 41 kDa catalytically active fragment resulting in a persistent increase in PKCδ kinase activity. Co-treatment with pan-caspase inhibitor Z-VAD-FMK significantly blocked vanadium-induced PKCδ proteolytic activation, indicating that caspases mediate PKCδ cleavage. Also, co-treatment with Z-VAD-FMK almost completely inhibited V 2 O 5 -induced DNA fragmentation. Furthermore, PKCδ knockdown using siRNA protected N27 cells from V 2 O 5 -induced apoptotic cell death. Collectively, these results demonstrate that vanadium can exert neurotoxic effects in dopaminergic neuronal cells via caspase-3-dependent PKCδ cleavage, suggesting that metal exposure may promote nigral dopaminergic degeneration.

  20. Deproteinization assessment using isotopically enriched compounds to trace the coprecipitation of low-molecular-weight selenium species with proteins.

    Science.gov (United States)

    Godin, Simon; Bouzas-Ramos, Diego; Fontagné-Dicharry, Stéphanie; Bouyssière, Brice; Bueno, Maïté

    2017-08-01

    Studies have shown that information related to the presence of low-molecular-weight metabolites is frequently lost after deproteinization of complex matrices, such as blood and plasma, during sample preparation. Therefore, the effect of several deproteinization reagents on low-molecular-weight selenium species has been compared by species-specific isotope labeling. Two isotopically enriched selenium tracers were used to mimic models of small inorganic anionic ( 77 Se-selenite) and organic zwitterionic ( 76 Se-selenomethionine) species. The results presented here show that the use of a methanol-acetonitrile-acetone (1:1:1 v/v/v) mixture provided approximately two times less tracer loss from plasma samples in comparison with the classic procedure using acetonitrile, which may not be optimal as it leads to important losses of low-molecular-weight selenium species. In addition, the possible interactions between selenium tracers and proteins were investigated, revealing that both coprecipitation phenomena and association with proteins were potentially responsible for selenite tracer losses during protein precipitation in blood samples. However, coprecipitation phenomena were found to be fully responsible for losses of both tracers observed in plasma samples and of the selenomethionine tracer in blood samples. This successfully applied strategy is anticipated to be useful for more extensive future studies in selenometabolomics. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Similar rates of protein adaptation in Drosophila miranda and D. melanogaster, two species with different current effective population sizes

    Directory of Open Access Journals (Sweden)

    Bachtrog Doris

    2008-12-01

    Full Text Available Abstract Background Adaptive protein evolution is common in several Drosophila species investigated. Some studies point to very weak selection operating on amino-acid mutations, with average selection intensities on the order of Nes ~ 5 in D. melanogaster and D. simulans. Species with lower effective population sizes should undergo less adaptation since they generate fewer mutations and selection is ineffective on a greater proportion of beneficial mutations. Results Here I study patterns of polymorphism and divergence at 91 X-linked loci in D. miranda, a species with a roughly 5-fold smaller effective population size than D. melanogaster. Surprisingly, I find a similar fraction of amino-acid mutations being driven to fixation by positive selection in D. miranda and D. melanogaster. Genes with higher rates of amino-acid evolution show lower levels of neutral diversity, a pattern predicted by recurrent adaptive protein evolution. I fit a hitchhiking model to patterns of polymorphism in D. miranda and D. melanogaster and estimate an order of magnitude higher selection coefficients for beneficial mutations in D. miranda. Conclusion This analysis suggests that effective population size may not be a major determinant in rates of protein adaptation. Instead, adaptation may not be mutation-limited, or the distribution of fitness effects for beneficial mutations might differ vastly between different species or populations. Alternative explanation such as biases in estimating the fraction of beneficial mutations or slightly deleterious mutation models are also discussed.

  2. Developmental changes in translatable RNA species and protein synthesis during sporulation in the aquatic fungus Blastocladiella emersonii

    International Nuclear Information System (INIS)

    Silva, A.M. da; Costa Maia, J.C. da; Juliani, M.H.

    1986-01-01

    Protein synthesis during sporulation in Blastocladiella emersonii is developmentally regulated as revealed using ( 35 S)methionine pulse labeling and two-dimensional gel electrophoresis. A large increase in the synthesis of several proteins is associated with particular stages. A large number of basic proteins are synthesized exclusively during late sporulation. Changes in translatable mRNA species were also detected by two-dimensional gel electrophoresis of the polypeptides produced in a cell-free rabbit reticulocyte lysate primed with RNA prepared at different stages of sporulation. The synthesis of several proteins during sporulation seems to be transcriptionally controlled. Most of the sporulation-specific messages are not present in the mature zoospores. (Author)

  3. Ameliorating reactive oxygen species-induced in vitro lipid peroxidation in brain, liver, mitochondria and DNA damage by Zingiber officinale Roscoe.

    Science.gov (United States)

    Ajith, T A

    2010-01-01

    Iron is an essential nutrient for a number of cellular activities. However, excess cellular iron can be toxic by producing reactive oxygen species (ROS) such as superoxide anion (O(2) (-)) and hydroxyl radical (HO(·)) that damage proteins, lipids and DNA. Mutagenic and genotoxic end products of lipid peroxidation can induce the decline of mitochondrial respiration and are associated with various human ailments including aging, neurodegenerative disorders, cancer etc. Zingiber officinale Roscoe (ginger) is a widely used spice around the world. The protective effect of aqueous ethanol extract of Z. officinale against ROS-induced in vitro lipid peroxidation and DNA damage was evaluated in this study. The lipid peroxidation was induced by hydroxyl radical generated from Fenton's reaction in rat liver and brain homogenates and mitochondrial fraction (isolated from rat liver). The DNA protection was evaluated using H(2)O(2)-induced changes in pBR-322 plasmid and Fenton reaction-induced DNA fragmentation in rat liver. The results indicated that Z. officinale significantly (Pofficinale in the liver homogenate was 94 %. However, the extract could partially alleviate the DNA damage. The protective mechanism can be correlated to the radical scavenging property of Z. officinale. The results of the study suggest the possible nutraceutical role of Z. officinale against the oxidative stress induced human ailments.

  4. Radiation-induced cleavage of disulfide bonds in proteins. Clivage radiolytique des ponts disulfure des proteines

    Energy Technology Data Exchange (ETDEWEB)

    Favaudon, V; Tourbez, H; Lhoste, J M [Paris-11 Univ., 91 - Orsay (FR); Houee-Levin, C [Paris-5 Univ., 75 (FR)

    1991-06-01

    The reduction of the disulfide bonds in apo-Riboflavin-Binding Protein (apoRBP) by the CO{sub 2}{sup -}{center dot} radical occurred under {gamma}-ray irradiation as a chain reaction whose efficiency increased upon acidification of the medium. Pulse-radiolysis analysis showed a rapid one-electron oxidation of the disulfide bonds yielding the anionic or protonated form of the disulfide radical. The main decay path of this radical under acidic conditions consisted of the rapid formation of a thiyl radical intermediate in equilibrium with the closed, cyclic form. At pH 8 the disulfide radical anion decayed via intramolecular and/or intermolecular routes including disproportionation, protein-protein crosslinking, non-dismutative recombination processes, and reaction with sulfhydryl groups in pre-reduced systems.

  5. Determination and application of immunodominant regions of SARS coronavirus spike and nucleocapsid proteins recognized by sera from different animal species.

    Science.gov (United States)

    Yu, Meng; Stevens, Vicky; Berry, Jody D; Crameri, Gary; McEachern, Jennifer; Tu, Changchun; Shi, Zhengli; Liang, Guodong; Weingartl, Hana; Cardosa, Jane; Eaton, Bryan T; Wang, Lin-Fa

    2008-02-29

    Knowledge of immunodominant regions in major viral antigens is important for rational design of effective vaccines and diagnostic tests. Although there have been many reports of such work done for SARS-CoV, these were mainly focused on the immune responses of humans and mice. In this study, we aim to search for and compare immunodominant regions of the spike (S) and nucleocapsid (N) proteins which are recognized by sera from different animal species, including mouse, rat, rabbit, civet, pig and horse. Twelve overlapping recombinant protein fragments were produced in Escherichia coli, six each for the S and N proteins, which covered the entire coding region of the two proteins. Using a membrane-strip based Western blot approach, the reactivity of each antigen fragment against a panel of animal sera was determined. Immunodominant regions containing linear epitopes, which reacted with sera from all the species tested, were identified for both proteins. The S3 fragment (aa 402-622) and the N4 fragment (aa 220-336) were the most immunodominant among the six S and N fragments, respectively. Antibodies raised against the S3 fragment were able to block the binding of a panel of S-specific monoclonal antibodies (mAb) to SARS-CoV in ELISA, further demonstrating the immunodominance of this region. Based on these findings, one-step competition ELISAs were established which were able to detect SARS-CoV antibodies from human and at least seven different animal species. Considering that a large number of animal species are known to be susceptible to SARS-CoV, these assays will be a useful tool to trace the origin and transmission of SARS-CoV and to minimise the risk of animal-to-human transmission.

  6. Protein expression parallels thermal tolerance and ecologic changes in the diversification of a diving beetle species complex.

    Science.gov (United States)

    Hidalgo-Galiana, A; Monge, M; Biron, D G; Canals, F; Ribera, I; Cieslak, A

    2016-01-01

    Physiological changes associated with evolutionary and ecological processes such as diversification, range expansion or speciation are still incompletely understood, especially for non-model species. Here we study differences in protein expression in response to temperature in a western Mediterranean diving beetle species complex, using two-dimensional differential gel electrophoresis with one Moroccan and one Iberian population each of Agabus ramblae and Agabus brunneus. We identified proteins with significant expression differences after thermal treatments comparing them with a reference EST library generated from one of the species of the complex (A. ramblae). The colonisation during the Middle Pleistocene of the Iberian peninsula by A. ramblae, where maximum temperatures and seasonality are lower than in the ancestral north African range, was associated with changes in the response to 27 °C in proteins related to energy metabolism. The subsequent speciation of A. brunneus from within populations of Iberian A. ramblae was associated with changes in the expression of several stress-related proteins (mostly chaperons) when exposed to 4 °C. These changes are in agreement with the known tolerance to lower temperatures of A. brunneus, which occupies a larger geographical area with a wider range of climatic conditions. In both cases, protein expression changes paralleled the evolution of thermal tolerance and the climatic conditions experienced by the species. However, although the colonisation of the Iberian peninsula did not result in morphological change, the speciation process of A. brunneus within Iberia involved genetic isolation and substantial differences in male genitalia and body size and shape.

  7. Secreted Immunomodulatory Proteins of Staphylococcus aureus Activate Platelets and Induce Platelet Aggregation.

    Science.gov (United States)

    Binsker, Ulrike; Palankar, Raghavendra; Wesche, Jan; Kohler, Thomas P; Prucha, Josephine; Burchhardt, Gerhard; Rohde, Manfred; Schmidt, Frank; Bröker, Barbara M; Mamat, Uwe; Pané-Farré, Jan; Graf, Anica; Ebner, Patrick; Greinacher, Andreas; Hammerschmidt, Sven

    2018-04-01

    Staphylococcus aureus can cause bloodstream infections associated with infective endocarditis (IE) and disseminated intravascular coagulopathy (DIC). Both complications involve platelets. In view of an increasing number of antibiotic-resistant strains, new approaches to control systemic S. aureus infection are gaining importance. Using a repertoire of 52 recombinant S. aureus proteins in flow cytometry-based platelet activation and aggregation assays, we identified, in addition to the extracellular adherence protein Eap, three secreted staphylococcal proteins as novel platelet activating proteins. Eap and the chemotaxis inhibitory protein of S. aureus (CHIPS), the formyl peptide receptor-like 1 inhibitory protein (FLIPr) and the major autolysin Atl induced P-selectin expression in washed platelets and platelet-rich plasma. Similarly, AtlA, CHIPS and Eap induced platelet aggregation in whole blood. Fluorescence microscopy illustrated that P-selectin expression is associated with calcium mobilization and re-organization of the platelet actin cytoskeleton. Characterization of the functionally active domains of the major autolysin AtlA and Eap indicates that the amidase domain of Atl and the tandem repeats 3 and 4 of Eap are crucial for platelet activation. These results provide new insights in S. aureus protein interactions with platelets and identify secreted proteins as potential treatment targets in case of antibiotic-resistant S. aureus infection. Schattauer GmbH Stuttgart.

  8. Characterization of Silk Fibroin Modified Surface: A Proteomic View of Cellular Response Proteins Induced by Biomaterials

    Directory of Open Access Journals (Sweden)

    Ming-Hui Yang

    2014-01-01

    Full Text Available The purpose of this study was to develop the pathway of silk fibroin (SF biopolymer surface induced cell membrane protein activation. Fibroblasts were used as an experimental model to evaluate the responses of cellular proteins induced by biopolymer material using a mass spectrometry-based profiling system. The surface was covered by multiwalled carbon nanotubes (CNTs and SF to increase the surface area, enhance the adhesion of biopolymer, and promote the rate of cell proliferation. The amount of adhered fibroblasts on CNTs/SF electrodes of quartz crystal microbalance (QCM greatly exceeded those on other surfaces. Moreover, analyzing differential protein expressions of adhered fibroblasts on the biopolymer surface by proteomic approaches indicated that CD44 may be a key protein. Through this study, utilization of mass spectrometry-based proteomics in evaluation of cell adhesion on biopolymer was proposed.

  9. Amyloid-β Peptide Induces Prion Protein Amyloid Formation: Evidence for Its Widespread Amyloidogenic Effect.

    Science.gov (United States)

    Honda, Ryo

    2018-04-12

    Transmissible spongiform encephalopathy is associated with misfolding of prion protein (PrP) into an amyloid β-rich aggregate. Previous studies have indicated that PrP interacts with Alzheimer's disease amyloid-β peptide (Aβ), but it remains elusive how this interaction impacts on the misfolding of PrP. This study presents the first in vitro evidence that Aβ induces PrP-amyloid formation at submicromolar concentrations. Interestingly, systematic mutagenesis of PrP revealed that Aβ requires no specific amino acid sequences in PrP, and induces the misfolding of other unrelated proteins (insulin and lysozyme) into amyloid fibrils in a manner analogous to PrP. This unanticipated nonspecific amyloidogenic effect of Aβ indicates that this peptide might be involved in widespread protein aggregation, regardless of the amino acid sequences of target proteins, and exacerbate the pathology of many neurodegenerative diseases. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Study on the DNA-protein crosslinks induced by chromium (VI) in SPC-A1

    Science.gov (United States)

    Liu, Yanqun; Ding, Jianjun; Lu, Xiongbing; You, Hao

    2018-01-01

    Objective: This study was designed to investigate the effect of chromium (VI) on DNA-protein crosslinks (DPC) of SPC-A1 cells. Methods: We exposed SPC-A1 cells were cultured in 1640 medium and treated with the SPC-A1 cells in vitro to different concentrations of Hexavalent chromium Cr(VI) for 2h, the KC1-SDS precipitation assay were used to measure the DNA-protein cross-linking effect. Results: All the different concentrations of Cr(VI) could cause the increase of DPC coefficient in SPC-A1 cells. But this effect was not significant (P>0.05) at low concentrations; while in high concentration Cr(VI) induced SPC-A1 cells could produce DNA-protein cross-linking effect significantly (P<0.05). Conclusions: chromium (VI) could induce DNA-protein crosslink.

  11. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    Energy Technology Data Exchange (ETDEWEB)

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C., E-mail: prabhat-goswami@uiowa.edu

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  12. Rac1 modulates G-protein-coupled receptor-induced bronchial smooth muscle contraction.

    Science.gov (United States)

    Sakai, Hiroyasu; Kai, Yuki; Sato, Ken; Ikebe, Mitsuo; Chiba, Yohihiko

    2018-01-05

    Increasing evidence suggests a functional role of RhoA/Rho-kinase signalling as a mechanism for smooth muscle contraction; however, little is known regarding the roles of Rac1 and other members of the Rho protein family. This study aimed to examine whether Rac1 modulates bronchial smooth muscle contraction. Ring preparations of bronchi isolated from rats were suspended in an organ bath, and isometric contraction of circular smooth muscle was measured. Immunoblotting was used to examine myosin light chain phosphorylation in bronchial smooth muscle. Our results demonstrated that muscle contractions induced by carbachol (CCh) and endothelin-1 (ET-1) were inhibited by EHT1864, a selective Rac1 inhibitor, and NSC23766, a selective inhibitor of Rac1-specific guanine nucleotide exchange factors. Similarly, myosin light chain and myosin phosphatase target subunit 1 (MYPT1) at Thr853 phosphorylation induced by contractile agonist were inhibited with Rac1 inhibition. However, contractions induced by high K + , calyculin A (a potent protein phosphatase inhibitor) and K + /PDBu were not inhibited by these Rac1 inhibitors. Interestingly, NaF (a G-protein activator)-induced contractions were inhibited by EHT1864 but not by NSC23766. We next examined the effects of a trans-acting activator of transcription protein transduction domain (PTD) fusion protein with Rac1 (PTD-Rac1) on muscle contraction. The constitutively active form of PTD-Rac1 directly induced force development and contractions were abolished by EHT1864. These results suggest that Rac1, activated by G protein-coupled receptor agonists, such as CCh and ET-1, may induce myosin light chain and MYPT phosphorylation and modulate the contraction of bronchial smooth muscle. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. CR108, a novel vitamin K3 derivative induces apoptosis and breast tumor inhibition by reactive oxygen species and mitochondrial dysfunction.

    Science.gov (United States)

    Yang, Chun-Ru; Liao, Wei-Siang; Wu, Ya-Hui; Murugan, Kaliyappan; Chen, Chinpiao; Chao, Jui-I

    2013-12-15

    Vitamin K3 derivatives have been shown to exert anticancer activities. Here we show a novel vitamin K3 derivative (S)-2-(2-hydroxy-3-methylbutylthio)naphthalene-1,4-dione, which is named as CR108 that induces apoptosis and tumor inhibition through reactive oxygen species (ROS) and mitochondrial dysfunction in human breast cancer. CR108 is more effective on the breast cancer cell death than other vitamin K3 derivatives. Moreover, CR108 induced apoptosis in both the non-HER-2-overexpressed MCF-7 and HER-2-overexpressed BT-474 breast cancer cells. CR108 caused the loss of mitochondrial membrane potential, cytochrome c released from mitochondria to cytosol, and cleaved PARP proteins for apoptosis induction. CR108 markedly increased ROS levels in breast cancer cells. N-acetylcysteine (NAC), a general ROS scavenger, completely blocked the CR108-induced ROS levels, mitochondrial dysfunction and apoptosis. Interestingly, CR108 increased the phosphorylation of p38 MAP kinase but conversely inhibited the survivin protein expression. NAC treatment prevented the activation of p38 MAP kinase and rescued the survivin protein levels. SB202190, a specific p38 MAP kinase inhibitor, recovered the survivin protein levels and attenuated the cytotoxicity of CR108-treated cells. Furthermore, CR108 inhibited the xenografted human breast tumor growth in nude mice. Together, we demonstrate that CR108 is a novel vitamin K3 derivative that induces apoptosis and tumor inhibition by ROS production and mitochondrial dysfunction and associates with the phosphorylation of p38 MAP kinase and the inhibition of survivin in the human breast cancer. © 2013.

  14. The Synergistic Effect of Proteins and Reactive Oxygen Species on Electrochemical Behaviour of 316L Stainless Steel for Biomedical Applications

    Science.gov (United States)

    Simionescu, N.; Benea, L.; Dumitrascu, V. M.

    2018-06-01

    The stainless steels, especially 316L type is the most used metallic biomaterials for biomedical applications due to their good biocompatibility, low price, excellent corrosion resistance, availability, easy processing and high strength. Due to these favorable properties 316L stainless steel has become the most attractive biomaterial for dental implants, stents and orthopedic implants. However an implant material in the human body is exposed to an action effect of other molecules, including proteins (such as albumin) and reactive oxygen species (such as hydrogen peroxide - H2O2 ) produced by bacteria and immune cells. In the literature there are few studies to follow the effect of proteins and reactive oxygen species on 316L stainless steel used as implant material and are still unclear. The degree of corrosion resistance is the first criterion in the use of a metallic biomaterial in the oral or body environment. The aim of this research work is to investigate the influence of proteins (albumin) and reactive oxygen species (H2O2 ) in combination, taking into account the synergistic effect of these two factors on 316L stainless steel. Albumin is present in the body near implants and reactive oxygen species could appear in inflammatory processes as well. The study shows that the presence of albumin and reactive species influences the corrosion resistance of 316L stainless steel in biological solutions. In this research work the corrosion behavior of 316L stainless steel is analyzed by electrochemical methods such as: open circuit potential (OCP), Electrochemical Impedance Spectroscopy (EIS). It was found that, the electrochemical results are in a good agreement with micro photographs taken before and after corrosion assays. The albumin and reactive oxygen species have influence on 316L stainless steel behavior.

  15. PTEN gene and phosphorylation of Akt protein expression in the LPS-induced lung fibroblast

    Directory of Open Access Journals (Sweden)

    Mao-lin HUANG

    2014-09-01

    Full Text Available Objective: To investigate PTEN gene expression and the Akt phosphorylation of protein expression in the LPS-induced lung fibroblast, to initially reveal the relation between PTEN gene and the Akt phosphorylated proteins to LPS-induced lung fibroblast proliferation mechanism. Methods: BrdU experiments was performed to evaluate the LPS-induced lung fibroblast proliferation,  RT-PCR and Western Blot analysis were used to analyze the PTEN gene expression and Western blot was performed to analyze Akt phosphorylated protein expression. Results: PTEN mRNA level of the experimental group were significantly lower than the control group (P<0.05 with LPS simulation for 24h and 72h , and there were no significant difference between the experimental group and control group the experimental group and control group (P>0.05 . PTEN protein expression levels of the experimental group were significantly lower than the control group (P<0.05 , at 72h, and PTEN mRNA levels had no significant differences between these of the experimental and control group at 6h,12h and 24h(p>0.05. Phosphorylation Akt protein level (relative to total Akt protein was significantly higer than the control group (P<0.05 at 24h and 72h, and phosphorylation Akt protein levels had no significant differences between these of the experimental and control group at 6h and 12h (P>0.05 .Conclusion: PTEN gene and phosphorylation Akt protein involve in LPS-induced lung fibroblast proliferation signal transduction pathway.

  16. Gamma Interferon-Induced Guanylate Binding Protein 1 Is a Novel Actin Cytoskeleton Remodeling Factor

    OpenAIRE

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J. K.; Schubert, Dirk W.; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin a...

  17. Azoxystrobin-induced excessive reactive oxygen species (ROS) production and inhibition of photosynthesis in the unicellular green algae Chlorella vulgaris.

    Science.gov (United States)

    Liu, Lei; Zhu, Bin; Wang, Gao-Xue

    2015-05-01

    This study investigated the short-term toxicity of azoxystrobin (AZ), one of strobilurins used as an effective fungicidal agent to control the Asian soybean rust, on aquatic unicellular algae Chlorella vulgaris. The median percentile inhibition concentration (IC₅₀) of AZ for C. vulgaris was found to be 510 μg L(-1). We showed that the algal cells were obviously depressed or shrunk in 300 and 600 μg L(-1) AZ treatments by using the electron microscopy. Furthermore, 19, 75, and 300 μg L(-1) AZ treatments decreased the soluble protein content and chlorophyll concentrations in C. vulgaris and altered the energy-photosynthesis-related mRNA expression levels in 48- and 96-h exposure periods. Simultaneously, our results showed that AZ could increase the total antioxidant capacity (T-AOC) level and compromise superoxide dismutase (SOD), peroxidase (POD), glutathione S transferase (GST), glutathione peroxidase (GPx) activities, and glutathione (GSH) content. These situations might render C. vulgaris more vulnerable to oxidative damage. Overall, the present study indicated that AZ might be toxic to the growth of C. vulgaris, affect energy-photosynthesis-related mRNA expressions, and induce reactive oxygen species (ROS) overproduction in C. vulgaris.

  18. Dietary soy and meat proteins induce distinct physiological and gene expression changes in rats

    Science.gov (United States)

    Song, Shangxin; Hooiveld, Guido J.; Li, Mengjie; Zhao, Fan; Zhang, Wei; Xu, Xinglian; Muller, Michael; Li, Chunbao; Zhou, Guanghong

    2016-01-01

    This study reports on a comprehensive comparison of the effects of soy and meat proteins given at the recommended level on physiological markers of metabolic syndrome and the hepatic transcriptome. Male rats were fed semi-synthetic diets for 1 wk that differed only regarding protein source, with casein serving as reference. Body weight gain and adipose tissue mass were significantly reduced by soy but not meat proteins. The insulin resistance index was improved by soy, and to a lesser extent by meat proteins. Liver triacylglycerol contents were reduced by both protein sources, which coincided with increased plasma triacylglycerol concentrations. Both soy and meat proteins changed plasma amino acid patterns. The expression of 1571 and 1369 genes were altered by soy and meat proteins respectively. Functional classification revealed that lipid, energy and amino acid metabolic pathways, as well as insulin signaling pathways were regulated differently by soy and meat proteins. Several transcriptional regulators, including NFE2L2, ATF4, Srebf1 and Rictor were identified as potential key upstream regulators. These results suggest that soy and meat proteins induce distinct physiological and gene expression responses in rats and provide novel evidence and suggestions for the health effects of different protein sources in human diets. PMID:26857845

  19. Hepatoprotective and nephroprotective effects of Cnidoscolus aconitifolius in protein energy malnutrition induced liver and kidney damage.

    Science.gov (United States)

    Oyagbemi, Ademola A; Odetola, Adebimpe A

    2013-10-01

    This study was designed to evaluate the ameliorative and hypocholesterolemic effects of dietary supplementation of Cnidoscolus aconitifolius leaf meal (CALM) on hepatic injury and kidney injury associated with protein energy malnutrition (PEM). In this study, PEM was induced in weaning male Wistar albino rats by feeding them with low protein diet for 2 weeks. The effects of several recovery diets containing 20% soya protein or 20% C. aconitifolius in place of soya protein or 10% soya proteins with 10% C. aconitifolius or commercial rat feed were assessed in PEM rats. Plasma biochemical parameters were assessed as well. After the induction of PEM, results obtained showed significant increase in alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), total proteins (T.P), total bilirubin (T.Bil), triglycerides, total cholesterol, low density lipoproteins (LDL), blood urea nitrogen (BUN), and creatinine with significant reduction in plasma high density lipoproteins (HDL), albumin, sodium (Na(+)), potassium (K(+)), chloride (Cl(-)), bicarbonate (HC03(-)), and phosphate (P04(2-)) in PEM rats. Upon introduction of recovery diets containing 20% soya protein or 20% C. aconitifolius in place of soya protein or 10% soya proteins with 10% C. aconitifolius or commercial rat feed for 4 weeks caused significant (P protein deficient diets has a protective role against hepatic injury and renal damage associated with PEM.

  20. [Suppressive Effects of Extract of Cedar Wood on Heat-induced Expression of Cellular Heat Shock Protein].

    Science.gov (United States)

    Miyakoshi, Junji; Matsubara, Eri; Narita, Eijiro; Koyama, Shin; Shimizu, Yoko; Kawai, Shuichi

    2018-01-01

     In recent years, highly antimicrobial properties of cedar heartwood essential oil against the wood-rotting fungi and pathogenic fungi have been reported in several papers. Antimicrobial properties against oral bacteria by hinokitiol contained in Thujopsis have been also extensively studied. The relation of naturally derived components and human immune system has been studied in some previous papers. In the present study, we focused on Japanese cedar, which has the widest artificial afforestation site in the country among various tree species. Extract oil was obtained from mixture of sapwood and heartwood of about 40-year cedar grown in Oguni, Kumamoto, Japan. We examined the influence of extract components from Japanese cedar woods on the expression of heat shock protein 70 (Hsp70) during heating, and on the micronucleus formation induced by the treatment of bleomycin as a DNA damaging agent. Cell lines used in this study were human fetal glial cells (SVGp12) and human glioma cells (MO54). Remarkable suppression of the Hsp70 expression induced by heating at 43°C was detected by the treatment of cedar extract in both SVGp12 and MO54 cells. We also found that cedar extract had an inhibitory tendency to reduce the micronucleus formation induced by bleomycin. From these results, the extract components from Japanese cedar woods would have an inhibitory effect of the stress response as a suppression of the heat-induced Hsp70 expression, and might have a reductive effect on carcinogenicity.

  1. Glutamate Induced Thermal Equilibrium Intermediate and Counteracting Effect on Chemical Denaturation of Proteins.

    Science.gov (United States)

    Anumalla, Bramhini; Prabhu, N Prakash

    2018-01-25

    When organisms are subjected to stress conditions, one of their adaptive responses is accumulation of small organic molecules called osmolytes. These osmolytes affect the structure and stability of the biological macromolecules including proteins. The present study examines the effect of a negatively charged amino acid osmolyte, glutamate (Glu), on two model proteins, ribonuclease A (RNase A) and α-lactalbumin (α-LA), which have positive and negative surface charges at pH 7, respectively. These proteins follow two-state unfolding transitions during both heat and chemical induced denaturation processes. The addition of Glu stabilizes the proteins against temperature and induces an early equilibrium intermediate during unfolding. The stability is found to be enthalpy-driven, and the free energy of stabilization is more for α-LA compared to RNase A. The decrease in the partial molar volume and compressibility of both of the proteins in the presence of Glu suggests that the proteins attain a more compact state through surface hydration which could provide a more stable conformation. This is also supported by molecule dynamic simulation studies which demonstrate that the water density around the proteins is increased upon the addition of Glu. Further, the intermediates could be completely destabilized by lower concentrations (∼0.5 M) of guanidinium chloride and salt. However, urea subverts the Glu-induced intermediate formed by α-LA, whereas it only slightly destabilizes in the case of RNase A which has a positive surface charge and could possess charge-charge interactions with Glu. This suggests that, apart from hydration, columbic interactions might also contribute to the stability of the intermediate. Gdm-induced denaturation of RNase A and α-LA in the absence and the presence of Glu at different temperatures was carried out. These results also show the Glu-induced stabilization of both of the proteins; however, all of the unfolding transitions followed two

  2. Improving analytical methods for protein-protein interaction through implementation of chemically inducible dimerization

    DEFF Research Database (Denmark)

    Andersen, Tonni Grube; Nintemann, Sebastian; Marek, Magdalena

    2016-01-01

    When investigating interactions between two proteins with complementary reporter tags in yeast two-hybrid or split GFP assays, it remains troublesome to discriminate true-from false-negative results and challenging to compare the level of interaction across experiments. This leads to decreased se...

  3. Cluster based on sequence comparison of homologous proteins of 95 organism species - Gclust Server | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Gclust Server Cluster based on sequence comparison of homologous proteins of 95 organism spe...cies Data detail Data name Cluster based on sequence comparison of homologous proteins of 95 organism specie...istory of This Database Site Policy | Contact Us Cluster based on sequence compariso

  4. A first-principles model of early evolution: emergence of gene families, species, and preferred protein folds.

    Directory of Open Access Journals (Sweden)

    Konstantin B Zeldovich

    2007-07-01

    Full Text Available In this work we develop a microscopic physical model of early evolution where phenotype--organism life expectancy--is directly related to genotype--the stability of its proteins in their native conformations-which can be determined exactly in the model. Simulating the model on a computer, we consistently observe the "Big Bang" scenario whereby exponential population growth ensues as soon as favorable sequence-structure combinations (precursors of stable proteins are discovered. Upon that, random diversity of the structural space abruptly collapses into a small set of preferred proteins. We observe that protein folds remain stable and abundant in the population at timescales much greater than mutation or organism lifetime, and the distribution of the lifetimes of dominant folds in a population approximately follows a power law. The separation of evolutionary timescales between discovery of new folds and generation of new sequences gives rise to emergence of protein families and superfamilies whose sizes are power-law distributed, closely matching the same distributions for real proteins. On the population level we observe emergence of species--subpopulations that carry similar genomes. Further, we present a simple theory that relates stability of evolving proteins to the sizes of emerging genomes. Together, these results provide a microscopic first-principles picture of how first-gene families developed in the course of early evolution.

  5. Induced spawning of the endangered Neotropical species Steindachneridion parahybae (Siluriformes: Pimelodidae

    Directory of Open Access Journals (Sweden)

    Danilo Caneppele

    Full Text Available The "surubim do Paraíba" (Steindachneridion parahybae is a freshwater catfish endemic to the Paraíba do Sul River basin, Brazil. This species has been seriously threatened by environmental disturbances in the last several decades. Wild Steindachneridion parahybae males and females were collected in 2003 and taken to the hatchery of a power plant of the Companhia Energética de São Paulo (CESP. Steindachneridion parahybae broodstocks were artificially induced to reproduce in December 2003 using a combination of carp pituitary extract (CPE and human chorionic gonadotropin (hCG. Oocytes and milt were stripped; the fertilized eggs were transferred to 60-liter conical incubators and hatched larvae distributed in nine horizontal trays. Exogenous feed was started just after yolk sac absorption. A high rate of cannibalism and photophobia were observed during the larval period, resulting in a 26% survival rate from larvae to fingerlings.

  6. On some paramagnetic species induced in natural calcites by β and γ-rays irradiations

    International Nuclear Information System (INIS)

    Rossi, A.; Danon, J.

    1985-01-01

    The ESR absorption lines of calcite speleothems are studied both as monocrystals and powders, after energetic β-rays or γ-rays irradiation. Both Kinds of irradiation produce same lines. Angular variation studies of monocrystals revealed four induced paramagnetic species stable at room temperature. Three of these were attributed to CO 3 sup(---) group, CO 2 sup(-) groups with axial and orthorhombic symetry and a fourth one could be due to the CO 3 sup(-) group. Powder spectra show that these lines, are activated by irradiation in all speleothems we studied and can be present either in natural ESR spectra. Their relationships to the lines usually considered for ESR dating are discussed. (Author) [pt

  7. The use of radiolabelled milk proteins to study thermally-induced interactions in milk systems

    International Nuclear Information System (INIS)

    Noh, B.

    1988-01-01

    Heat induced complexes between milk proteins are of considerable importance in determining the heat stability and rennin clottability of milk products. Thiol-disulfide interchange reactions have been suggested as the principal reaction mechanism for complex formation. Studies to data have not adequately established the mechanism and stoichiometry of complex formation in situ in total milk system. Tracer amounts of 14 C-β-lactoglobulin and α-lactalbumin were heated under various conditions. After clotting with rennet, radioactivity retained in the curd was counted to estimate extent of interaction of β-lactoglobulin with casein. 14 C- and 3 H-Methyl labelled proteins were used for the preparation of radiolabelled artificial casein micelles. These micelles with radiolabelled whey proteins were heated and heat-induced complexes were separated on Sephacryl S-300 eluting with 6 M guanidine hydrochloride to break all non-covalent bonds. Further separation of the protein complexes was obtained using CPG-10 or Sephacryl S-1000. The ratios of 3 H to 14 C labelled proteins in the protein complexes suggested that the stoichiometries of k-, α s2 -casein, β-lactoglobulin and α-lactalbumin in the heat-induced complexes varied as a function of the heat treatment

  8. Induced protein polymorphisms and nutritional quality of gamma irradiation mutants of sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Mehlo, Luke, E-mail: LMehlo@csir.co.za [CSIR Biosciences, Meiring Naude Road, P.O. Box 395, Pretoria 0001 (South Africa); Mbambo, Zodwa [CSIR Biosciences, Meiring Naude Road, P.O. Box 395, Pretoria 0001 (South Africa); Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000 (South Africa); Bado, Souleymane [Plant Breeding and Genetics Laboratory – Joint FAO/IAEA Agriculture and Biotechnology Laboratory, International Atomic Energy Agency Laboratories, A-2444 Seibersdorf (Austria); Lin, Johnson [Microbiology Discipline, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000 (South Africa); Moagi, Sydwell M.; Buthelezi, Sindisiwe; Stoychev, Stoyan; Chikwamba, Rachel [CSIR Biosciences, Meiring Naude Road, P.O. Box 395, Pretoria 0001 (South Africa)

    2013-09-15

    Highlights: • We analyse kafirin protein polymorphisms induced by gamma irradiation in sorghum. • One mutant with suppressed kafirins in the endosperm accumulated them in the germ. • Kafirin polymorphisms were associated with high levels of free amino acids. • Nutritional value of sorghum can be improved significantly by induced mutations. - Abstract: Physical and biochemical analysis of protein polymorphisms in seed storage proteins of a mutant population of sorghum revealed a mutant with redirected accumulation of kafirin proteins in the germ. The change in storage proteins was accompanied by an unusually high level accumulation of free lysine and other essential amino acids in the endosperm. This mutant further displayed a significant suppression in the synthesis and accumulation of the 27 kDa γ-, 24 kDa α-A1 and the 22 kDa α-A2 kafirins in the endosperm. The suppression of kafirins was counteracted by an upsurge in the synthesis and accumulation of albumins, globulins and other proteins. The data collectively suggest that sorghum has huge genetic potential for nutritional biofortification and that induced mutations can be used as an effective tool in achieving premium nutrition in staple cereals.

  9. Induced protein polymorphisms and nutritional quality of gamma irradiation mutants of sorghum

    International Nuclear Information System (INIS)

    Mehlo, Luke; Mbambo, Zodwa; Bado, Souleymane; Lin, Johnson; Moagi, Sydwell M.; Buthelezi, Sindisiwe; Stoychev, Stoyan; Chikwamba, Rachel

    2013-01-01

    Highlights: • We analyse kafirin protein polymorphisms induced by gamma irradiation in sorghum. • One mutant with suppressed kafirins in the endosperm accumulated them in the germ. • Kafirin polymorphisms were associated with high levels of free amino acids. • Nutritional value of sorghum can be improved significantly by induced mutations. - Abstract: Physical and biochemical analysis of protein polymorphisms in seed storage proteins of a mutant population of sorghum revealed a mutant with redirected accumulation of kafirin proteins in the germ. The change in storage proteins was accompanied by an unusually high level accumulation of free lysine and other essential amino acids in the endosperm. This mutant further displayed a significant suppression in the synthesis and accumulation of the 27 kDa γ-, 24 kDa α-A1 and the 22 kDa α-A2 kafirins in the endosperm. The suppression of kafirins was counteracted by an upsurge in the synthesis and accumulation of albumins, globulins and other proteins. The data collectively suggest that sorghum has huge genetic potential for nutritional biofortification and that induced mutations can be used as an effective tool in achieving premium nutrition in staple cereals

  10. MOLECULAR MODELING INDICATES THAT HOMOCYSTEINE INDUCES CONFORMATIONAL CHANGES IN THE STRUCTURE OF PUTATIVE TARGET PROTEINS

    Directory of Open Access Journals (Sweden)

    Yumnam Silla

    2015-09-01

    Full Text Available An elevated level of homocysteine, a reactive thiol containing amino acid is associated with a multitude of complex diseases. A majority (>80% of homocysteine in circulation is bound to protein cysteine residues. Although, till date only 21 proteins have been experimentally shown to bind with homocysteine, using an insilico approach we had earlier identified several potential target proteins that could bind with homocysteine. Shomocysteinylation of proteins could potentially alter the structure and/or function of the protein. Earlier studies have shown that binding of homocysteine to protein alters its function. However, the effect of homocysteine on the target protein structure has not yet been documented. In the present work, we assess conformational or structural changes if any due to protein homocysteinylation using two proteins, granzyme B (GRAB and junctional adhesion molecule 1 (JAM1, which could potentially bind to homocysteine. We, for the first time, constructed computational models of homocysteine bound to target proteins and monitored their structural changes using explicit solvent molecular dynamic (MD simulation. Analysis of homocysteine bound trajectories revealed higher flexibility of the active site residues and local structural perturbations compared to the unbound native structure’s simulation, which could affect the stability of the protein. In addition, secondary structure analysis of homocysteine bound trajectories also revealed disappearance of â-helix within the G-helix and linker region that connects between the domain regions (as defined in the crystal structure. Our study thus captures the conformational transitions induced by homocysteine and we suggest these structural alterations might have implications for hyperhomocysteinemia induced pathologies.

  11. Unfolded Protein Response Signaling and MAP Kinase Pathways Underlie Pathogenesis of Arsenic-induced Cutaneous Inflammation

    OpenAIRE

    Li, Changzhao; Xu, Jianmin; Li, Fugui; Chaudhary, Sandeep C.; Weng, Zhiping; Wen, Jianming; Elmets, Craig A.; Ahsan, Habibul; Athar, Mohammad

    2011-01-01

    Arsenic exposure through drinking water is a major global public health problem and is associated with an enhanced risk of various cancers including skin cancer. In human skin, arsenic induces precancerous melanosis and keratosis, which may progress to basal cell and squamous cell carcinoma. However, the mechanism by which these pathophysiological alterations occur remains elusive. In this study, we showed that sub-chronic arsenic exposure to SKH-1 mice induced unfolded protein response (UPR)...

  12. Role of oxidative stress in methamphetamine-induced dopaminergic toxicity mediated by protein kinase Cδ.

    Science.gov (United States)

    Shin, Eun-Joo; Duong, Chu Xuan; Nguyen, Xuan-Khanh Thi; Li, Zhengyi; Bing, Guoying; Bach, Jae-Hyung; Park, Dae Hun; Nakayama, Keiichi; Ali, Syed F; Kanthasamy, Anumantha G; Cadet, Jean Lud; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2012-06-15

    This study examined the role of protein kinase C (PKC) isozymes in methamphetamine (MA)-induced dopaminergic toxicity. Multiple-dose administration of MA did not significantly alter PKCα, PKCβI, PKCβII, or PKCζ expression in the striatum, but did significantly increase PKCδ expression. Gö6976 (a co-inhibitor of PKCα and -β), hispidin (PKCβ inhibitor), and PKCζ pseudosubstrate inhibitor (PKCζ inhibitor) did not significantly alter MA-induced behavioral impairments. However, rottlerin (PKCδ inhibitor) significantly attenuated behavioral impairments in a dose-dependent manner. In addition, MA-induced behavioral impairments were not apparent in PKCδ knockout (-/-) mice. MA-induced oxidative stress (i.e., lipid peroxidation and protein oxidation) was significantly attenuated in rottlerin-treated mice and was not apparent in PKCδ (-/-) mice. Consistent with this, MA-induced apoptosis (i.e., terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive apoptotic cells) was significantly attenuated in rottlerin-treated mice. Furthermore, MA-induced increases in the dopamine (DA) turnover rate and decreases in tyrosine hydroxylase (TH) activity and the expression of TH, dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT2) were not significantly observed in rottlerin-treated or PKCδ (-/-) mice. Our results suggest that PKCδ gene expression is a key mediator of oxidative stress and dopaminergic damage induced by MA. Thus, inhibition of PKCδ may be a useful target for protection against MA-induced neurotoxicity. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Alkane inducible proteins in Geobacillus thermoleovorans B23

    Directory of Open Access Journals (Sweden)

    Kato Tomohisa

    2009-03-01

    Full Text Available Abstract Background Initial step of β-oxidation is catalyzed by acyl-CoA dehydrogenase in prokaryotes and mitochondria, while acyl-CoA oxidase primarily functions in the peroxisomes of eukaryotes. Oxidase reaction accompanies emission of toxic by-product reactive oxygen molecules including superoxide anion, and superoxide dismutase and catalase activities are essential to detoxify them in the peroxisomes. Although there is an argument about whether primitive life was born and evolved under high temperature conditions, thermophilic archaea apparently share living systems with both bacteria and eukaryotes. We hypothesized that alkane degradation pathways in thermophilic microorganisms could be premature and useful to understand their evolution. Results An extremely thermophilic and alkane degrading Geobacillus thermoleovorans B23 was previously isolated from a deep subsurface oil reservoir in Japan. In the present study, we identified novel membrane proteins (P16, P21 and superoxide dismutase (P24 whose production levels were significantly increased upon alkane degradation. Unlike other bacteria acyl-CoA oxidase and catalase activities were also increased in strain B23 by addition of alkane. Conclusion We first suggested that peroxisomal β-oxidation system exists in bacteria. This eukaryotic-type alkane degradation pathway in thermophilic bacterial cells might be a vestige of primitive living cell systems that had evolved into eukaryotes.

  14. BDNF-induced local protein synthesis and synaptic plasticity.

    Science.gov (United States)

    Leal, Graciano; Comprido, Diogo; Duarte, Carlos B

    2014-01-01

    Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptic transmission and long-term potentiation (LTP) in the hippocampus and in other brain regions, playing a role in the formation of certain forms of memory. The effects of BDNF in LTP are mediated by TrkB (tropomyosin-related kinase B) receptors, which are known to be coupled to the activation of the Ras/ERK, phosphatidylinositol 3-kinase/Akt and phospholipase C-γ (PLC-γ) pathways. The role of BDNF in LTP is best studied in the hippocampus, where the neurotrophin acts at pre- and post-synaptic levels. Recent studies have shown that BDNF regulates the transport of mRNAs along dendrites and their translation at the synapse, by modulating the initiation and elongation phases of protein synthesis, and by acting on specific miRNAs. Furthermore, the effect of BDNF on transcription regulation may further contribute to long-term changes in the synaptic proteome. In this review we discuss the recent progress in understanding the mechanisms contributing to the short- and long-term regulation of the synaptic proteome by BDNF, and the role in synaptic plasticity, which is likely to influence learning and memory formation. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Amino acid sequences of predicted proteins and their annotation for 95 organism species. - Gclust Server | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Gclust Server Amino acid sequences of predicted proteins and their annotation for 95 organis...m species. Data detail Data name Amino acid sequences of predicted proteins and their annotation for 95 orga...nism species. DOI 10.18908/lsdba.nbdc00464-001 Description of data contents Amino acid sequences of predicted proteins...Database Description Download License Update History of This Database Site Policy | Contact Us Amino acid sequences of predicted prot...eins and their annotation for 95 organism species. - Gclust Server | LSDB Archive ...

  16. Delay-induced wave instabilities in single-species reaction-diffusion systems

    Science.gov (United States)

    Otto, Andereas; Wang, Jian; Radons, Günter

    2017-11-01

    The Turing (wave) instability is only possible in reaction-diffusion systems with more than one (two) components. Motivated by the fact that a time delay increases the dimension of a system, we investigate the presence of diffusion-driven instabilities in single-species reaction-diffusion systems with delay. The stability of arbitrary one-component systems with a single discrete delay, with distributed delay, or with a variable delay is systematically analyzed. We show that a wave instability can appear from an equilibrium of single-species reaction-diffusion systems with fluctuating or distributed delay, which is not possible in similar systems with constant discrete delay or without delay. More precisely, we show by basic analytic arguments and by numerical simulations that fast asymmetric delay fluctuations or asymmetrically distributed delays can lead to wave instabilities in these systems. Examples, for the resulting traveling waves are shown for a Fisher-KPP equation with distributed delay in the reaction term. In addition, we have studied diffusion-induced instabilities from homogeneous periodic orbits in the same systems with variable delay, where the homogeneous periodic orbits are attracting resonant periodic solutions of the system without diffusion, i.e., periodic orbits of the Hutchinson equation with time-varying delay. If diffusion is introduced, standing waves can emerge whose temporal period is equal to the period of the variable delay.

  17. Epidemiology of asexuality induced by the endosymbiotic Wolbachia across phytophagous wasp species: host plant specialization matters.

    Science.gov (United States)

    Boivin, T; Henri, H; Vavre, F; Gidoin, C; Veber, P; Candau, J-N; Magnoux, E; Roques, A; Auger-Rozenberg, M-A

    2014-05-01

    Among eukaryotes, sexual reproduction is by far the most predominant mode of reproduction. However, some systems maintaining sexuality appear particularly labile and raise intriguing questions on the evolutionary routes to asexuality. Thelytokous parthenogenesis is a form of spontaneous loss of sexuality leading to strong distortion of sex ratio towards females and resulting from mutation, hybridization or infection by bacterial endosymbionts. We investigated whether ecological specialization is a likely mechanism of spread of thelytoky within insect communities. Focusing on the highly specialized genus Megastigmus (Hymenoptera: Torymidae), we first performed a large literature survey to examine the distribution of thelytoky in these wasps across their respective obligate host plant families. Second, we tested for thelytoky caused by endosymbionts by screening in 15 arrhenotokous and 10 thelytokous species for Wolbachia, Cardinium, Arsenophonus and Rickettsia endosymbionts and by performing antibiotic treatments. Finally, we performed phylogenetic reconstructions using multilocus sequence typing (MLST) to examine the evolution of endosymbiont-mediated thelytoky in Megastigmus and its possible connections to host plant specialization. We demonstrate that thelytoky evolved from ancestral arrhenotoky through the horizontal transmission and the fixation of the parthenogenesis-inducing Wolbachia. We find that ecological specialization in Wolbachia's hosts was probably a critical driving force for Wolbachia infection and spread of thelytoky, but also a constraint. Our work further reinforces the hypothesis that community structure of insects is a major driver of the epidemiology of endosymbionts and that competitive interactions among closely related species may facilitate their horizontal transmission. © 2014 John Wiley & Sons Ltd.

  18. UV induced DNA-protein cross links in vitro and in vivo

    International Nuclear Information System (INIS)

    Kornhauser, A.

    1976-01-01

    The review was not intended to cover all the past year's literature in this field; only selective material published in 1974 and 1975 has been surveyed. Covalent linkage of DNA and RNA to proteins induced by UV is considered, but DNA-membrade attachment, amino acids covalently bound to DNA as functions of growth conditions and protein non-covalently bound to DNA involved in cell regulation are excluded. Studies of DNA-protein cross-links upon UV irradiation in chemical model systems, bacteria and tissue culture systems, and an in vivo mammalian system are all surveyed. (U.K.)

  19. Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis

    Science.gov (United States)

    Stadler, Krisztian; Bonini, Marcelo G.; Dallas, Shannon; Duma, Danielle; Mason, Ronald P.; Kadiiska, Maria B.

    2008-01-01

    Diabetic patients frequently encounter ketosis that is characterized by the breakdown of lipids with the consequent accumulation of ketone bodies. Several studies have demonstrated that reactive species are likely to induce tissue damage in diabetes, but the role of the ketone bodies in the process has not been fully investigated. In this study, electron paramagnetic resonance (EPR) spectroscopy combined with novel spin-trapping and immunological techniques has been used to investigate in vivo free radical formation in a murine model of acetone-induced ketosis. A six-line EPR spectrum consistent with the α-(4-pyridyl-1-oxide)-N-t-butylnitrone radical adduct of a carbon-centered lipid-derived radical was detected in the liver extracts. To investigate the possible enzymatic source of these radicals, inducible nitric oxide synthase (iNOS) and NADPH oxidase knockout mice were used. Free radical production was unchanged in the NADPH oxidase knockout but much decreased in the iNOS knockout mice, suggesting a role for iNOS in free radical production. Longer-term exposure to acetone revealed iNOS overexpression in the liver together with protein radical formation, which was detected by confocal microscopy and a novel immunospin-trapping method. Immunohistochemical analysis revealed enhanced lipid peroxidation and protein oxidation as a consequence of persistent free radical generation after 21 days of acetone treatment in control and NADPH oxidase knockout but not in iNOS knockout mice. Taken together, our data demonstrate that acetone administration, a model of ketosis, can lead to protein oxidation and lipid peroxidation through a free radical-dependent mechanism driven mainly by iNOS overexpression. PMID:18559982

  20. Protein S-glutathionylation induced by hypoxia increases hypoxia-inducible factor-1α in human colon cancer cells.

    Science.gov (United States)

    Jeon, Daun; Park, Heon Joo; Kim, Hong Seok

    2018-01-01

    Hypoxia is a common characteristic of many types of solid tumors. Intratumoral hypoxia selects for tumor cells that survive in a low oxygen environment, undergo epithelial-mesenchymal transition, are more motile and invasive, and show gene expression changes driven by hypoxia-inducible factor-1α (HIF-1α) activation. Therefore, targeting HIF-1α is an attractive strategy for disrupting multiple pathways crucial for tumor growth. In the present study, we demonstrated that hypoxia increases the S-glutathionylation of HIF-1α and its protein levels in colon cancer cells. This effect is significantly prevented by decreasing oxidized glutathione as well as glutathione depletion, indicating that S-glutathionylation and the formation of protein-glutathione mixed disulfides is related to HIF-1α protein levels. Moreover, colon cancer cells expressing glutaredoxin 1 are resistant to inducing HIF-1α and expressing hypoxia-responsive genes under hypoxic conditions. Therefore, S-glutathionylation of HIF-1α induced by tumor hypoxia may be a novel therapeutic target for the development of new drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Turunen, S; Kaepylae, E; Kellomaeki, M [Tampere University of Technology, Department of Biomedical Engineering, PO Box 692, 33101 Tampere (Finland); Terzaki, K; Fotakis, C; Farsari, M [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology Hellas (FORTH), N. Plastira 100, 70013, Heraklion, Crete (Greece); Viitanen, J, E-mail: elli.kapyla@tut.fi [VTT Technical Research Centre of Finland, PO Box 1300, 33101 Tampere (Finland)

    2011-12-15

    This study reports the pico- and femtosecond laser-induced photocrosslinking of protein microstructures. The capabilities of a picosecond Nd:YAG laser to promote multiphoton excited crosslinking of proteins were evaluated by fabricating 2D and 3D microstructures of avidin, bovine serum albumin (BSA) and biotinylated bovine serum albumin (bBSA). The multiphoton absorption-induced photocrosslinking of proteins was demonstrated here for the first time with a non-toxic biomolecule flavin mononucleotide (FMN) as the photosensitizer. Sub-micrometer and micrometer scale structures were fabricated from several different compositions of protein and photosensitizer by varying the average laser power and scanning speed in order to determine the optimal process parameters for efficient photocrosslinking. In addition, the retention of ligand-binding ability of the crosslinked protein structures was shown by fluorescence imaging of immobilized biotin or streptavidin conjugated fluorescence labels. The surface topography and the resolution of the protein patterns fabricated with the Nd:YAG laser were compared to the results obtained with a femtosecond Ti:Sapphire laser. Quite similar grain characteristics and comparable feature sizes were achieved with both laser sources, which demonstrates the utility of the low-cost Nd:YAG microlaser for direct laser writing of protein microstructures.

  2. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity

    International Nuclear Information System (INIS)

    Turunen, S; Kaepylae, E; Kellomaeki, M; Terzaki, K; Fotakis, C; Farsari, M; Viitanen, J

    2011-01-01

    This study reports the pico- and femtosecond laser-induced photocrosslinking of protein microstructures. The capabilities of a picosecond Nd:YAG laser to promote multiphoton excited crosslinking of proteins were evaluated by fabricating 2D and 3D microstructures of avidin, bovine serum albumin (BSA) and biotinylated bovine serum albumin (bBSA). The multiphoton absorption-induced photocrosslinking of proteins was demonstrated here for the first time with a non-toxic biomolecule flavin mononucleotide (FMN) as the photosensitizer. Sub-micrometer and micrometer scale structures were fabricated from several different compositions of protein and photosensitizer by varying the average laser power and scanning speed in order to determine the optimal process parameters for efficient photocrosslinking. In addition, the retention of ligand-binding ability of the crosslinked protein structures was shown by fluorescence imaging of immobilized biotin or streptavidin conjugated fluorescence labels. The surface topography and the resolution of the protein patterns fabricated with the Nd:YAG laser were compared to the results obtained with a femtosecond Ti:Sapphire laser. Quite similar grain characteristics and comparable feature sizes were achieved with both laser sources, which demonstrates the utility of the low-cost Nd:YAG microlaser for direct laser writing of protein microstructures.

  3. Presynaptic protein synthesis required for NT-3-induced long-term synaptic mo