WorldWideScience

Sample records for species dominance antimicrobial

  1. antimicrobial susceptibility pattern of Salmonella species

    African Journals Online (AJOL)

    user

    ABSTRACT. Treatment of enteric fever is increasingly becoming very challenging due to the increasing wave of antibiotic resistance. This study is a review of the contemporary antimicrobial susceptibility pattern of. Salmonella species. The antimicrobial susceptibility pattern of Salmonella species to a wide range of.

  2. Antimicrobial Activity of Various Plant Extracts on Pseudomonas Species Associated with Spoilage of Chilled Fish

    Directory of Open Access Journals (Sweden)

    Osan Bahurmiz

    2016-11-01

    Full Text Available The antimicrobial activity of various plant extracts on Pseudomonas bacteria isolated from spoiled chilled tilapia (Oreochromis sp. was evaluated in this study. In the first stage of this study, red tilapia was subjected to chilled storage (4°C for 3 weeks, and spoilage bacteria were isolated and identified from the spoiled fish. Pseudomonas was the dominant bacteria isolated from the spoiled fish and further identification revealed that P. putida, P. fluorescens and Pseudomonas spp. were the main species of this group. In the second stage, methanolic extracts of 15 selected plant species were screened for their antimicrobial activity, by agar disc diffusion method, against the Pseudomonas isolates. Results indicated that most of the extracts had different degrees of activity against the bacterial isolates. The strongest activity was exhibited by bottlebrush flower (Callistemon viminalis extract. This was followed by extracts from guava bark (Psidium guajava and henna leaf (Lawsonia inermis. Moderate antimicrobial activities were observed in extracts of clove (Syzygium aromaticum, leaf and peel of tamarind (Tamarindus indica, cinnamon bark (Cinnamomum zeylanicum, wild betel leaf (Piper sarmentosum and fresh thyme (Thymus spp.. Weak or no antimicrobial activity was observed from the remaining extracts. The potential antimicrobial activity shown by some plant extracts in this study could significantly contribute to the fish preservation.

  3. antimicrobial susceptibility pattern of Salmonella species

    African Journals Online (AJOL)

    user

    GLOBAL JOURNAL OF COMMUNITY MEDICINE VOL. 2 NO. 1 & 2 2009: 5 - ... This study is a review of the contemporary antimicrobial susceptibility pattern of. Salmonella species. ... south-east Asia, parts of Latin America, the. Caribbean, and ...

  4. A 9-year study of shigellosis in Northeast Malaysia: Antimicrobial susceptibility and shifting species dominance.

    Science.gov (United States)

    Banga Singh, Kirnpal-Kaur; Ojha, Suvash Chandra; Deris, Zakuan Zainy; Rahman, Rosliza Abdul

    2011-06-01

    AIMS: In Malaysia, Shigella spp. is the third most common bacterial agent responsible for childhood diarrhoea. This study was conducted to determine the prevalence and antimicrobial susceptibility patterns of Shigella spp. isolated from patients admitted to the Hospital Universiti Sains Malaysia from January 2001 to December 2009. SUBJECTS AND METHODS: A hospital-based retrospective study was used. Stool samples from patients were cultured using a standard culture method. Shigella spp. isolates were identified by biochemical and serological methods, and the antimicrobial susceptibility pattern was evaluated using the Kirby-Bauer disc-diffusion method. RESULTS: A total of 138 Shigella spp. were isolated from a total of 14,830 routine stool specimens, yielding an isolation rate of 0.93% that corresponded to 9.99% of the 1,381 bacterial pathogens isolated. Of these isolates, S. sonnei was the predominant species, followed by S. flexneri and S. boydii. Seasonal variation was noticed, and no significant differences were detected in the demographic data for S. flexneri and S. sonnei. The susceptibility of all isolated Shigella strains was tested against seven antibiotics. Ceftriaxone (99.1%), ciprofloxacin (98.4%), and nalidixic acid (93.8%) were effective against the Shigella strains, whereas tetracycline and trimethoprim-sulfamethoxazole exhibited high frequencies of resistance (58.4% and 53.8%, respectively). CONCLUSION: This study is important for public health education aimed at reducing the morbidity and mortality associated with Shigella spp. infection. Our results also will be helpful for paediatricians and microbiologists in the selection of appropriate antibiotics for the management of diarrhoea.

  5. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    Directory of Open Access Journals (Sweden)

    Snežana Marković

    2011-08-01

    Full Text Available The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+ bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells.

  6. Antioxidant, Antimicrobial and Antiproliferative Activities of Five Lichen Species

    Science.gov (United States)

    Mitrović, Tatjana; Stamenković, Slaviša; Cvetković, Vladimir; Tošić, Svetlana; Stanković, Milan; Radojević, Ivana; Stefanović, Olgica; Čomić, Ljiljana; Đačić, Dragana; Ćurčić, Milena; Marković, Snežana

    2011-01-01

    The antioxidative, antimicrobial and antiproliferative potentials of the methanol extracts of the lichen species Parmelia sulcata, Flavoparmelia caperata, Evernia prunastri, Hypogymnia physodes and Cladonia foliacea were evaluated. The total phenolic content of the tested extracts varied from 78.12 to 141.59 mg of gallic acid equivalent (GA)/g of extract and the total flavonoid content from 20.14 to 44.43 mg of rutin equivalent (Ru)/g of extract. The antioxidant capacities of the lichen extracts were determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging. Hypogymnia physodes with the highest phenolic content showed the strongest DPPH radical scavenging effect. Further, the antimicrobial potential of the lichen extracts was determined by a microdilution method on 29 microorganisms, including 15 strains of bacteria, 10 species of filamentous fungi and 4 yeast species. A high antimicrobial activity of all the tested extracts was observed with more potent inhibitory effects on the growth of Gram (+) bacteria. The highest antimicrobial activity among lichens was demonstrated by Hypogymnia physodes and Cladonia foliacea. Finally, the antiproliferative activity of the lichen extracts was explored on the colon cancer adenocarcinoma cell line HCT-116 by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) viability assay and acridine orange/ethidium bromide staining. The methanol extracts of Hypogymnia physodes and Cladonia foliacea showed a better cytotoxic activity than the other extracts. All lichen species showed the ability to induce apoptosis of HCT-116 cells. PMID:21954369

  7. Genetic sorting of subordinate species in grassland modulated by intraspecific variation in dominant species.

    Directory of Open Access Journals (Sweden)

    Danny J Gustafson

    Full Text Available Genetic variation in a single species can have predictable and heritable effects on associated communities and ecosystem processes, however little is known about how genetic variation of a dominant species affects plant community assembly. We characterized the genetic structure of a dominant grass (Sorghastrum nutans and two subordinate species (Chamaecrista fasciculata, Silphium integrifolium, during the third growing season in grassland communities established with genetically distinct (cultivated varieties or local ecotypes seed sources of the dominant grasses. There were genetic differences between subordinate species growing in the cultivar versus local ecotype communities, indicating that intraspecific genetic variation in the dominant grasses affected the genetic composition of subordinate species during community assembly. A positive association between genetic diversity of S. nutans, C. fasciculata, and S. integrifolium and species diversity established the role of an intraspecific biotic filter during community assembly. Our results show that intraspecific variation in dominant species can significantly modulate the genetic composition of subordinate species.

  8. Antimicrobial effect of probiotics on bacterial species from dental plaque.

    Science.gov (United States)

    Zambori, Csilla; Morvay, Attila Alexandru; Sala, Claudia; Licker, Monica; Gurban, Camelia; Tanasie, Gabriela; Tirziu, Emil

    2016-03-31

    The antimicrobial role of probiotic Lactobacillus casei subspecies casei DG (L. casei DG) and of the mix culture of probiotic Lactobacillus acidophilus LA-5 and Bifidobacterium BB-12 was tested on species of Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera from supragingival sites from dogs with dental disease of different breed, age, sex, weight, and diet. The research was conducted on these four genera because of their importance in zoonotic infections after dog bites. Species from Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera were isolated and identified. To test the antimicrobial efficacy of L. casei DG and the mixed culture of probiotic L. acidophilus LA-5 and Bifidobacterium bifidum BB-12 on the pathogenic species, the agar overlay method was used. L. casei DG had a bactericidal effect on all analyzed species isolated from Staphylococcus, Streptococcus, Pasteurella, and Neisseria genera after 24 hours of incubation. The mixed probiotic culture made up of L. acidophilus LA-5 and Bifidobacterium BB-12 species had no bactericidal effect on the species of Staphylococcus and Streptococcus genera, which were resistant. However, it had a bacteriostatic effect on several species of Pasteurella and Neisseria genera. This work highlights the antimicrobial potential of probiotics in vitro, demonstrating that the probiotic L. casei DG has a bactericidal effect on all analyzed species isolated from dental plaque and that the mix culture of probiotic L. acidophilus LA-5 and Bifidobacterium BB-12 has only a bacteriostatic effect.

  9. Antimicrobial properties of poriferan species from Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    Mokashe, S.S.; Tulaskar, A.S.; Venkat, K.; Wagh, A.B.

    Poriferan species belonging to Class Demospongiae were collected from the rocky intertidal pools of Ratnagiri (Maharashtra, India) and extracted with methanol. The methanol extracts were tested for antimicrobial activity against six fouling...

  10. Prevalence and Antimicrobial Resistance of Enterococcus Species: A Hospital-Based Study in China

    Directory of Open Access Journals (Sweden)

    Wei Jia

    2014-03-01

    Full Text Available Objective: to investigate the prevalence and antimicrobial resistance of Enterococcus species isolated from a university hospital, and explore the mechanisms underlying the antimicrobial resistance, so as to provide clinical evidence for the inappropriate clinical use of antimicrobial agents and the control and prevention of enterococcal infections. Methods: a total of 1,157 enterococcal strains isolated from various clinical specimens from January 2010 to December 2012 in the General Hospital of Ningxia Medical University were identified to species level with a VITEK-2 COMPACT fully automated microbiological system, and the antimicrobial susceptibility of Enterococcus species was determined using the Kirby-Bauer disc diffusion method. The multiple-drug resistant enterococcal isolates were screened from the clinical isolates of Enterococcus species from the burns department. The minimal inhibitory concentration (MIC of Enterococcus species to the three fluoroquinolones, including ciprofloxacin, gatifloxacin and levofloxacin was determined with the agar dilution method, and the changes in the MIC of Enterococcus species to the three fluoroquinolones following reserpine treatment were evaluated. The β-lactam, aminoglycoside, tetracycline, macrolide, glycopeptide resistance genes and the efflux pump emeA genes were detected in the enterococcal isolates using a polymerase chain reaction (PCR assay. Results: the 1,157 clinical isolates of Enterococcus species included 679 E. faecium isolates (58.7%, 382 E. faecalis isolates (33%, 26 E. casseliflavus isolates (2.2%, 24 E. avium isolates (2.1%, and 46 isolates of other Enterococcus species (4%. The prevalence of antimicrobial resistance varied significantly between E. faecium and E. faecalis, and ≤1.1% of these two Enterococcus species were found to be resistant to vancomycin, teicoplanin or linezolid. In addition, the Enterococcus species isolated from different departments of the hospital

  11. An eight-year study of Shigella species in Beijing, China: serodiversity, virulence genes, and antimicrobial resistance.

    Science.gov (United States)

    Qu, Mei; Zhang, Xin; Liu, Guirong; Huang, Ying; Jia, Lei; Liang, Weili; Li, Xitai; Wu, Xiaona; Li, Jie; Yan, Hanqiu; Kan, Biao; Wang, Quanyi

    2014-07-14

    This study was conducted to determine the prevalence of serotypes, virulence factors, and antimicrobial resistance patterns of Shigella spp. in Beijing, China, from 2004 to 2011. Real-time PCR assays were used to detect virulent genes, and the Kirby-Bauer disk diffusion method was used to evaluate antimicrobial resistance. Among the total of 1,652 Shigella isolates, S. sonnei (57.1%) was the predominant species, followed by S. flexneri (42.3%), S. dysenteriae (0.4%), and S. boydii (0.2%). Nineteen serotypes were discovered among S. flexneri strains. The virulence gene ipaH was the most frequent, followed by sen and set. The presence of set showed significant difference in two dominant serogroups, S. flexneri and S. sonnei. Over 90% of Shigella isolates showed resistance to at least three drugs with widened spectrum. High-level antimicrobial resistance to single and multiple antibiotics was more common among S. sonnei than S. flexneri. There was an obvious serotype change and a dramatic increase of antibiotic resistance in Shigella prevalence in Beijing.

  12. Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated from Swine Herds in the United States

    Science.gov (United States)

    Mirajkar, Nandita S.; Davies, Peter R.

    2016-01-01

    Outbreaks of swine dysentery, caused by Brachyspira hyodysenteriae and the recently discovered “Brachyspira hampsonii,” have reoccurred in North American swine herds since the late 2000s. Additionally, multiple Brachyspira species have been increasingly isolated by North American diagnostic laboratories. In Europe, the reliance on antimicrobial therapy for control of swine dysentery has been followed by reports of antimicrobial resistance over time. The objectives of our study were to determine the antimicrobial susceptibility trends of four Brachyspira species originating from U.S. swine herds and to investigate their associations with the bacterial species, genotypes, and epidemiological origins of the isolates. We evaluated the susceptibility of B. hyodysenteriae, B. hampsonii, Brachyspira pilosicoli, and Brachyspira murdochii to tiamulin, valnemulin, doxycycline, lincomycin, and tylosin by broth microdilution and that to carbadox by agar dilution. In general, Brachyspira species showed high susceptibility to tiamulin, valnemulin, and carbadox, heterogeneous susceptibility to doxycycline, and low susceptibility to lincomycin and tylosin. A trend of decreasing antimicrobial susceptibility by species was observed (B. hampsonii > B. hyodysenteriae > B. murdochii > B. pilosicoli). In general, Brachyspira isolates from the United States were more susceptible to these antimicrobials than were isolates from other countries. Decreased antimicrobial susceptibility was associated with the genotype, stage of production, and production system from which the isolate originated, which highlights the roles of biosecurity and husbandry in disease prevention and control. Finally, this study also highlights the urgent need for Clinical and Laboratory Standards Institute-approved clinical breakpoints for Brachyspira species, to facilitate informed therapeutic and control strategies. PMID:27252458

  13. Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated from Swine Herds in the United States.

    Science.gov (United States)

    Mirajkar, Nandita S; Davies, Peter R; Gebhart, Connie J

    2016-08-01

    Outbreaks of swine dysentery, caused by Brachyspira hyodysenteriae and the recently discovered "Brachyspira hampsonii," have reoccurred in North American swine herds since the late 2000s. Additionally, multiple Brachyspira species have been increasingly isolated by North American diagnostic laboratories. In Europe, the reliance on antimicrobial therapy for control of swine dysentery has been followed by reports of antimicrobial resistance over time. The objectives of our study were to determine the antimicrobial susceptibility trends of four Brachyspira species originating from U.S. swine herds and to investigate their associations with the bacterial species, genotypes, and epidemiological origins of the isolates. We evaluated the susceptibility of B. hyodysenteriae, B. hampsonii, Brachyspira pilosicoli, and Brachyspira murdochii to tiamulin, valnemulin, doxycycline, lincomycin, and tylosin by broth microdilution and that to carbadox by agar dilution. In general, Brachyspira species showed high susceptibility to tiamulin, valnemulin, and carbadox, heterogeneous susceptibility to doxycycline, and low susceptibility to lincomycin and tylosin. A trend of decreasing antimicrobial susceptibility by species was observed (B. hampsonii > B. hyodysenteriae > B. murdochii > B. pilosicoli). In general, Brachyspira isolates from the United States were more susceptible to these antimicrobials than were isolates from other countries. Decreased antimicrobial susceptibility was associated with the genotype, stage of production, and production system from which the isolate originated, which highlights the roles of biosecurity and husbandry in disease prevention and control. Finally, this study also highlights the urgent need for Clinical and Laboratory Standards Institute-approved clinical breakpoints for Brachyspira species, to facilitate informed therapeutic and control strategies. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Investigating the Phytochemicals and Antimicrobial Properties of Three Sedge (Cyperaceae Species

    Directory of Open Access Journals (Sweden)

    Tiwalade Adeyemi ADENIYI

    2014-09-01

    Full Text Available In order to evaluate the medicinal value of notorious sedge weeds, three species:Cyperus esculentus, Cyperus rotundus and Mariscus alternifolius were investigated for their phytochemical constituents and antimicrobial properties. Preliminary qualitative phytochemical constituents and in vitro antimicrobial activities were evaluated against four fungi species: Aspergillus niger, Aspergillus fumigatus, Penicillium chrysogenum and Candida albicans, and three bacteria species: Escherichia coli,Salmonella typhi and Staphylococcus aureus. Two solvents, water and ethanol, were used to produce the extracts and were screened for their antimicrobial activity. Antimicrobial activity evaluation of the extracts against pathogens was carried out at 100 mg/ml concentration by Disc Diffusion method for fungi, Disc Diffusion and Agar Well Diffusion methods for bacteria. Observed activities were related to standard antibiotics, antifungal and antibacterial, which served as controls. Phytochemically, the plant extracts showed the presence of carbohydrates, flavonoids, ketose sugars, steroids, reducing sugars and tannins. The ethanolic extract of C. rotundus exhibited the highest activity against A. niger, E. coli and S. aureus. No extract was active against C. albicans. From these findings, it was concluded that C. rotundus is a potential source of bioactive compounds for new drugs upon isolation and purification for treating infections caused by these pathogens.

  15. Approaches for quantifying antimicrobial consumption per animal species based on national sales data: a Swiss example, 2006 to 2013.

    Science.gov (United States)

    Carmo, Luís P; Schüpbach-Regula, Gertraud; Müntener, Cedric; Chevance, Anne; Moulin, Gérard; Magouras, Ioannis

    2017-02-09

    Antimicrobial use in animals is known to contribute to the global burden of antimicrobial resistance. Therefore, it is critical to monitor antimicrobial sales for livestock and pets. Despite the availability of veterinary antimicrobial sales data in most European countries, surveillance currently lacks consumption monitoring at the animal species level. In this study, alternative methods were investigated for stratifying antimicrobial sales per species using Swiss data (2006-2013). Three approaches were considered: (i) Equal Distribution (ED) allocated antimicrobial sales evenly across all species each product was licensed for; (ii) Biomass Distribution (BMD) stratified antimicrobial consumption, weighting the representativeness of each species' total biomass; and (iii) Longitudinal Study Extrapolation (LSE) assigned antimicrobial sales per species based on a field study describing prescription patterns in Switzerland. LSE is expected to provide the best estimates because it relies on field data. Given the Swiss example, BMD appears to be a reliable method when prescription data are not available, whereas ED seems to underestimate consumption in species with larger populations and higher treatment intensity. These methods represent a valuable tool for improving the monitoring systems of veterinary antimicrobial consumption across Europe. This article is copyright of The Authors, 2017.

  16. Antimicrobial susceptibility profile of Listeria species isolated from ...

    African Journals Online (AJOL)

    The antimicrobial susceptibility profile of L. monocytogenes and other Listeria species isolated from some ready-to-eat (RTE) foods sold in Kano metropolis, north-western Nigeria was carried out using disc-diffusion method. The results obtained showed that L. monocytogenes was moderately susceptible to all the ...

  17. Antimicrobial susceptibility among clinical Nocardia species identified by multilocus sequence analysis.

    Science.gov (United States)

    McTaggart, Lisa R; Doucet, Jennifer; Witkowska, Maria; Richardson, Susan E

    2015-01-01

    Antimicrobial susceptibility patterns of 112 clinical isolates, 28 type strains, and 9 reference strains of Nocardia were determined using the Sensititre Rapmyco microdilution panel (Thermo Fisher, Inc.). Isolates were identified by highly discriminatory multilocus sequence analysis and were chosen to represent the diversity of species recovered from clinical specimens in Ontario, Canada. Susceptibility to the most commonly used drug, trimethoprim-sulfamethoxazole, was observed in 97% of isolates. Linezolid and amikacin were also highly effective; 100% and 99% of all isolates demonstrated a susceptible phenotype. For the remaining antimicrobials, resistance was species specific with isolates of Nocardia otitidiscaviarum, N. brasiliensis, N. abscessus complex, N. nova complex, N. transvalensis complex, N. farcinica, and N. cyriacigeorgica displaying the traditional characteristic drug pattern types. In addition, the antimicrobial susceptibility profiles of a variety of rarely encountered species isolated from clinical specimens are reported for the first time and were categorized into four additional drug pattern types. Finally, MICs for the control strains N. nova ATCC BAA-2227, N. asteroides ATCC 19247(T), and N. farcinica ATCC 23826 were robustly determined to demonstrate method reproducibility and suitability of the commercial Sensititre Rapmyco panel for antimicrobial susceptibility testing of Nocardia spp. isolated from clinical specimens. The reported values will facilitate quality control and standardization among laboratories. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Frequency and antimicrobial susceptibility of acinetobacter species isolated from blood samples of paediatric patients

    International Nuclear Information System (INIS)

    Javed, A.; Zafar, A.; Ejaz, H.; Zubair, M.

    2012-01-01

    Objective: Acinetobacter species is a major nosocomial pathogen causing serious infections in immuno-compromised and hospitalized patients. The aim of this study was to determine the frequency and antimicrobial susceptibility pattern of Acinetobacter species in blood samples of paediatric patients. Methodology: This cross sectional observational study was conducted during January to October, 2011 at The Children's Hospital and Institute of Child Health, Lahore. A total number of 12,032 blood samples were analysed during the study period. Acinetobacter species were Bauer disc diffusion method. Results: The blood cultures showed growth in 1,141 cultures out of which 46 (4.0%) were Acinetobacter species. The gender distribution of Acinetobacter species was 29 (63.0%) in males and 17 (37.0%) in females. A good antimicrobial susceptibility pattern of Acinetobacter species was seen with sulbactam-cefoperazone (93.0%), imepenem and meropenem (82.6% (30.4%) was poor. Conclusion: The results of the present study shows high rate of resistance of Acinetobacter species with cephalosporins in nosocomial infections. The sulbactam-cefoperazone, carbapenems and piperacillin-tazobactam showed effective antimicrobial susceptibility against Acinetobacter species. (author)

  19. Antimicrobial activity of some Ganoderma species from Nigeria.

    Science.gov (United States)

    Ofodile, L N; Uma, N U; Kokubun, T; Grayer, R J; Ogundipe, O T; Simmonds, M S J

    2005-04-01

    The crude n-hexane:diethyl ether, chloroform:acetone and methanol extracts of four species of Ganoderma (Ganoderma colossum (Fr.) C. F. Baker, G. resinaceum Boud., G. lucidum (cf.) (Curtis) P. Karst. and G. boninense (cf.) Pat.), from Nigeria, were tested for antimicrobial activity. The three solvent extracts of all the species of Ganoderma were active against Pseudomonas syringae and Bacillus subtilis, whereas none of the extracts were active against Cladosporium herbarum. Preliminary thin layer chromatography chemical tests on these extracts of Ganoderma showed that they contained compounds that stained blue-violet and blue or green when sprayed with anisaldehyde-sulphuric acid or Dragendorff, respectively. The profile of compounds in the extracts showed some variation among the four species. (c) 2005 John Wiley & Sons, Ltd.

  20. Changing drivers of species dominance during tropical forest succession

    NARCIS (Netherlands)

    Lohbeck, M.W.M.; Poorter, L.; Martinez-Ramos, M.; Rodriguez-Valázquez, J.; Breugel, van M.; Bongers, F.

    2014-01-01

    1. Deterministic theories predict that local communities assemble from a regional species pool based on niche differences, thus by plant functional adaptations. We tested whether functional traits can also explain patterns in species dominance among the suite of co-occurring species. 2. We predicted

  1. Chemical Composition and Antimicrobial Activity of Echinophora spinosa L. (Apiaceae Essential Oil

    Directory of Open Access Journals (Sweden)

    Jasmina M. Glamočlija

    2011-01-01

    Full Text Available The present study was undertaken to investigate the chemical composition and effectiveness of the essential oil isolated from Echinophora spinosa on different bacterial and fungal species. Chemical analysis (GC/MS showed that δ³-carene (60,86 %, α-phellandrene (7,12%, p-cymene (6,22 %, myrcene (4,82 % and β-phellandrene (2,73 % were dominant components in this oil. Essential oil tested showed good antimicrobial activity. Antimicrobial potential of this oil was higher than potential of commercial antimicrobial drugs tested, streptomycin, bifonozole and ketoconazole.

  2. Antimicrobial Screening of Some Exotic Tree Species of Rajasthan Desert

    OpenAIRE

    B.B.S. Kapoor* and Shelja Pandita

    2013-01-01

    Antimicrobial screening of ethyl ether and alcoholic extracts of leaves of four selected exotic tree species growing inRajasthan Desert was carried out. Colophospermum mopane, Holoptelea integrifolia, Kigelia pinnata andPutranjiva roxburghii showed positive reactions against bacterial pathogens i.e. Staphylococcus aureus, Escherichiacoli and a fungal pathogen Candida albicans.

  3. Antimicrobial susceptibility patterns of Ureaplasma species and Mycoplasma hominis in pregnant women.

    Science.gov (United States)

    Redelinghuys, Mathys J; Ehlers, Marthie M; Dreyer, Andries W; Lombaard, Hennie A; Kock, Marleen M

    2014-03-28

    Genital mycoplasmas colonise up to 80% of sexually mature women and may invade the amniotic cavity during pregnancy and cause complications. Tetracyclines and fluoroquinolones are contraindicated in pregnancy and erythromycin is often used to treat patients. However, increasing resistance to common antimicrobial agents is widely reported. The purpose of this study was to investigate antimicrobial susceptibility patterns of genital mycoplasmas in pregnant women. Self-collected vaginal swabs were obtained from 96 pregnant women attending an antenatal clinic in Gauteng, South Africa. Specimens were screened with the Mycofast Revolution assay for the presence of Ureaplasma species and Mycoplasma hominis. The antimicrobial susceptibility to levofloxacin, moxifloxacin, erythromycin, clindamycin and tetracycline were determined at various breakpoints. A multiplex polymerase chain reaction assay was used to speciate Ureaplasma positive specimens as either U. parvum or U. urealyticum. Seventy-six percent (73/96) of specimens contained Ureaplasma spp., while 39.7% (29/73) of Ureaplasma positive specimens were also positive for M. hominis. Susceptibilities of Ureaplasma spp. to levofloxacin and moxifloxacin were 59% (26/44) and 98% (43/44) respectively. Mixed isolates (Ureaplasma species and M. hominis) were highly resistant to erythromycin and tetracycline (both 97% resistance). Resistance of Ureaplasma spp. to erythromycin was 80% (35/44) and tetracycline resistance was detected in 73% (32/44) of Ureaplasma spp. Speciation indicated that U. parvum was the predominant Ureaplasma spp. conferring antimicrobial resistance. Treatment options for genital mycoplasma infections are becoming limited. More elaborative studies are needed to elucidate the diverse antimicrobial susceptibility patterns found in this study when compared to similar studies. To prevent complications in pregnant women, the foetus and the neonate, routine screening for the presence of genital mycoplasmas is

  4. Antimicrobial Activity and Chemical Composition of Essential Oils from Verbenaceae Species Growing in South America

    Directory of Open Access Journals (Sweden)

    Cristina M. Pérez Zamora

    2018-03-01

    Full Text Available The Verbenaceae family includes 2600 species grouped into 100 genera with a pantropical distribution. Many of them are important elements of the floras of warm-temperature and tropical regions of America. This family is known in folk medicine, and its species are used as digestive, carminative, antipyretic, antitussive, antiseptic, and healing agents. This review aims to collect information about the essential oils from the most reported species of the Verbenaceae family growing in South America, focusing on their chemical composition, antimicrobial activity, and synergism with commercial antimicrobials. The information gathered comprises the last twenty years of research within the South American region and is summarized taking into consideration the most representative species in terms of their essential oils. These species belong to Aloysia, Lantana, Lippia, Phyla, and Stachytarpheta genera, and the main essential oils they contain are monoterpenes and sesquiterpenes, such as β-caryophyllene, thymol, citral, 1,8-cineole, carvone, and limonene. These compounds have been found to possess antimicrobial activities. The synergism of these essential oils with antibiotics is being studied by several research groups. It constitutes a resource of interest for the potential use of combinations of essential oils and antibiotics in infection treatments.

  5. Frequency and Antimicrobial Susceptibility Pattern of Acinetobacter Species Isolated from Pus and Pus Swab Specimens

    International Nuclear Information System (INIS)

    Fayyaz, M.; Akbar, N.; Khan, I. U.; Hussain, A.; Ali, S.; Mirza, I. A.

    2015-01-01

    Objective: To evaluate the frequency and antimicrobial susceptibility pattern of Acinetobacter species isolated from pus and pus swab specimens at a tertiary care setting. Study Design: Cross-sectional observational study. Place and Duration of Study: Department of Microbiology, Armed Forces Institute of Pathology, Rawalpindi, from July 2008 to July 2012. Methodology: Data regarding positive culture and antimicrobial sensitivity pattern was retrieved from the pus and pus swab culture records of the Microbiology Department, AFIP, Rawalpindi. Only those pus and pus swab specimens which yielded the growth of Acinetobacter species were included in the study. Results:Out of 2781, 1848 were of pure pus while 933 were pus swab specimens. Out of 2538 culture positive isolates, 276 (10.9 percentage) were identified as Acinetobacterspecies. Among 276 Acinetobacter species, 245 (88.8 percentage) were Acinetobacter baumannii and 31 (11.2 percentage) were Acinetobacter johnsonii. Male/female ratio of the affected patients was 5.6:1. Doxycycline was the most sensitive antibiotic to which 45 percentage of the tested isolates were sensitive. Sensitivity to all other antimicrobials was 15 percentage or less. Conclusion: About 11 percentage of soft tissue and wound infections are caused by Acinetobacter species in our set up particularly in male. Doxycycline was the most sensitive antibiotic. Sensitivity to all other antimicrobials was 15 percentage or less. In vitro sensitivity to carbapenems is very low. (author)

  6. Differential activity of innate defense antimicrobial peptides against Nocardia species.

    Science.gov (United States)

    Rieg, Siegbert; Meier, Benjamin; Fähnrich, Eva; Huth, Anja; Wagner, Dirk; Kern, Winfried V; Kalbacher, Hubert

    2010-02-23

    Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs) in innate defense against Nocardia, the activity of human alpha-defensins human neutrophil peptides (HNPs) 1-3, human beta-defensin (hBD)-3 and cathelicidin LL-37 as well as bovine beta-defensins lingual and tracheal antimicrobial peptides (LAP, TAP) and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human alpha-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  7. Differential activity of innate defense antimicrobial peptides against Nocardia species

    Directory of Open Access Journals (Sweden)

    Wagner Dirk

    2010-02-01

    Full Text Available Abstract Background Members of the genus Nocardia are ubiquitous environmental saprophytes capable to cause human pulmonary, disseminated and cutaneous nocardiosis or bovine mastitis. Innate immunity appears to play an important role in early defense against Nocardia species. To elucidate the contribution of antimicrobial peptides (AMPs in innate defense against Nocardia, the activity of human α-defensins human neutrophil peptides (HNPs 1-3, human β-defensin (hBD-3 and cathelicidin LL-37 as well as bovine β-defensins lingual and tracheal antimicrobial peptides (LAP, TAP and bovine neutrophil-derived indolicidin against four important Nocardia species was investigated. Results Whereas N. farcinica ATCC 3318 and N. nova ATCC 33726 were found to be susceptible to all investigated human and bovine AMPs, N. asteroides ATCC 19247 was killed exclusively by neutrophil-derived human α-defensins HNP 1-3 and bovine indolicidin. N. brasiliensis ATCC 19296 was found to exhibit complete resistance to investigated human AMPs and to be susceptible only to bovine indolicidin. Conclusion Selected AMPs are capable to contribute to the first line of defense against Nocardia, yet, susceptibility appears to vary across different Nocardia species. Obtained results of neutrophil-derived AMPs to possess the broadest antinocardial spectrum are remarkable, since nocardiosis is characterized by a neutrophil-rich infiltrate in vivo.

  8. Epidemiology and susceptibility to antimicrobial agents of the main Nocardia species in Spain.

    Science.gov (United States)

    Valdezate, Sylvia; Garrido, Noelia; Carrasco, Gema; Medina-Pascual, María J; Villalón, Pilar; Navarro, Ana M; Saéz-Nieto, Juan A

    2017-03-01

    The aims of this study were to explore the clinical distribution, by species, of the genus Nocardia and to assess the antimicrobial susceptibilities of the 10 most prevalent species identified in Spain. Over a 10 year period (2005-14), 1119 Nocardia strains were molecularly identified and subjected to the Etest. The distribution and resistance trends over the sub-periods 2005-09 and 2010-14 were also examined. Of the strains examined, 82.9% belonged to the following species: Nocardia cyriacigeorgica (25.3%), Nocardia nova (15.0%), Nocardia abscessus (12.7%), Nocardia farcinica (11.4%), Nocardia carnea (4.3%), Nocardia brasiliensis (3.5%), Nocardia otitidiscaviarum (3.1%), Nocardia flavorosea (2.6%), Nocardia rhamnosiphila (2.6%) and Nocardia transvalensis (2.4%). Their prevalence values were similar during 2005-09 and 2010-14, except for those of N. abscessus , N. farcinica and N. transvalensis , which fell significantly in the second sub-period ( P ≤  0.05). The major location of isolation was the respiratory tract (∼86%). Half (13/27) of all strains from the CNS were N. farcinica . Significant differences in MIC results were recorded for some species between the two sub-periods. According to the CLSI's breakpoints, low resistance rates (≤15%) were recorded for seven species with respect to cefotaxime, imipenem and tobramycin; five species showed similar rates with respect to trimethoprim/sulfamethoxazole. Linezolid and amikacin were the most frequently active agents. The accurate identification of the infecting species and the determination of its susceptibility to antimicrobial agents, given the large number of strains with atypical patterns, are crucial if patients with nocardiosis are to be successfully treated. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Antimicrobial potential of two traditional herbometallic drugs against certain pathogenic microbial species.

    Science.gov (United States)

    Wijenayake, A U; Abayasekara, C L; Pitawala, H M T G A; Bandara, B M R

    2016-09-15

    Mineral based preparations are widely used for centuries as antimicrobial agents. However, the efficacy and the mode of action of mineral based preparations are uncertain due to the insufficient antimicrobial studies. Arogyawardhana Vati (AV) and Manikya Rasa (MR) are such two Rasashastra herbo-minerallic drugs commonly in India and other countries in South Asia. Despite of their well known traditional use of skin diseases, reported antimicrobial and mineralogical studies are limited. Therefore, in this study antimicrobial activities of the drugs and their organic, inorganic fractions were evaluated against Pseudomonas aeruginosa, Escherischia coli, Staphylococcus aureus, Methecilline Resistance Staphylococcus aureus - MRSA and Candida albicans. Antimicrobial activity of the drugs, their inorganic residues and organic extracts were determined using four assay techniques viz agar well diffusion, modified well diffusion, Miles and Misra viable cell counting and broth turbidity measurements. Mineralogical constituents of the drugs were determined using X-ray diffraction, while total cation constituents and water soluble cation constituents were determined using inductively coupled plasma-mass spectrometer and the atomic absorption spectrophotometer respectively. Thermogravimetric analysis was used to determine the weight percentages of organic and inorganic fraction of the drugs. Particle sizes of the drugs were determined using the particle size analyzer. AV and MR drugs showed antibacterial activity against both gram positive and gram negative bacterial species when analyzed separately. Inorganic residues of the drugs and organic extracts showed activity at least against two or more bacterial species tested. All tested components were inactive against C. albicans. Common mineral constituents of drugs are cinnabar, biotite and Fe-rich phases. Drugs were rich in essential elements such as Na, K, Ca, Mg and Fe and toxic elements such as Zn, Cu and As. However, the

  10. Traditional medicine in Sakarya province (Turkey) and antimicrobial activities of selected species.

    Science.gov (United States)

    Uzun, Ergin; Sariyar, Günay; Adsersen, Anne; Karakoc, Berna; Otük, Gülten; Oktayoglu, Ercan; Pirildar, Sevda

    2004-12-01

    Traditional medicine in North-West of Turkey (Sakarya province) were studied during a 2 months field study by interviewing local informants from several villages. Plant species used to treat infections were tested for antimicrobial activity. Information was collected for 46 plant species from 30 families and for 5 animal species. Twenty four of the plant species were cultivated. Most used families were Asteraceae, Cucurbitaceae, Lamiaceae and Rosaceae and the most used plants were Artemisia absinthium, Equisetum telmateia, Lavandula stoechas, Melissa officinalis, Tussilago farfara and Urtica dioica. A total of 139 medicinal uses were obtained. Plants are used mainly for infectious diseases (18%), for neurological and psychological disorders (13.7%), cardiovascular disorders (13%), skin disorders (12.2%) and respiratory disorders (10.1%). Extracts were tested in vitro for antimicrobial activity against Staphylococcus aureus ATCC 65538, Staphylococcus epidermidis ATCC 12228, Escherichia coli ATCC 8739, Klebsiella pneumonia ATCC 4352, Pseudomonas aeruginosa ATCC 1539, Salmonella typhi, Shigella flexneri, Proteus mirabilis and Candida albicans ATCC 10231, using microbroth dilution technique according to National Committee for Clinical Laboratory Standards (NCCLS). This research showed that Arum maculatum, Datura stramonium, Geranium asphodeloides and Equisetum telmateia petroleum ether extracts had MIC values of 39.1 microg/ml, 78.1 microg/ml, 78.1 microg/ml and 39.1 microg/ml, respectively against Staphylococcus epidermidis. Datura stramonium petroleum ether extract had a MIC value of 39.1 microg/ml against Escherichia coli and Trachystemon orientalis ethanol extract had a MIC value of 39.1 microg/ml against Escherichia coli. The antimicrobial activity of Arum maculatum, Equisetum telmateia, Geranium asphodeloides, Plantago intermedia, Senecio vulgaris and Trachystemon orientalis has been reported here for the first time.

  11. Antimicrobial and Antiradical Activity of Extracts Obtained from Leaves of Five Species of the Genus Bergenia: Identification of Antimicrobial Compounds.

    Science.gov (United States)

    Żbikowska, Beata; Franiczek, Roman; Sowa, Alina; Połukord, Grażyna; Krzyżanowska, Barbara; Sroka, Zbigniew

    2017-09-01

    An important focus of modern medicine is the search for new substances and strategies to combat infectious diseases, which present an increasing threat due to the growth of bacterial resistance to antibiotics. Another problem concerns free radicals, which in excess can cause several serious diseases. An alternative to chemical synthesis of antimicrobial and antiradical compounds is to find active substances in plant raw materials. We prepared extracts from leaves of five species of the genus Bergenia: B. purpurascens, B. cordifolia, B. ligulata, B. crassifolia, and B. ciliata. Antimicrobial and antiradical features of extracts and raw materials were assessed, and the quantities of phenolic compounds were determined. We also evaluated, using high-performance liquid chromatography, the amounts of arbutin and hydroquinone, compounds related to antimicrobial activity of these raw materials. The strongest antiradical properties were shown by leaves of B. crassifolia and B. cordifolia, the lowest by leaves of B. ciliata. The antiradical activity of extracts showed a strong positive correlation with the amount of phenols. All raw materials have significant antimicrobial properties. Among them, the ethyl acetate extracts were the most active. Antimicrobial activity very weakly correlated with the amount of arbutin, but correlated very strongly with the contents of both hydroquinone and phenolic compounds. Additional experiments using artificially prepared mixtures of phenolic compounds and hydroquinone allowed us to conclude that the most active antimicrobial substance is hydroquinone.

  12. MORPHO-CHEMICAL DESCRIPTION AND ANTIMICROBIAL ACTIVITY OF DIFFERENT OCIMUM SPECIES

    Directory of Open Access Journals (Sweden)

    KAKARAPARTHI PANDU SASTRY

    2012-12-01

    Full Text Available Basil is a popular medicinal and culinary herb, and its essential oils have been used extensively for many years in food products, perfumery, dental and oral products. Basil essential oils and their principal constituents were found to exhibit antimicrobial activity against a wide range of Gram-negative and Gram-positive bacteria, yeast, and mould. The essential oils obtained from aerial parts of three different species of Ocimum comprising twenty one germplasm lines were investigated for their essential oil composition and antimicrobial activity during 2010. Essential oils from seventeen germplasm lines in Ocimum basilicum and two each in Ocimum tenuiflorum and Ocimum gratissimum were investigated for anti-microbial activity against four bacterial strains (Staphylococcus aureus, Bacillus sps., Escherichia coli and Pseudomonas aeruginosa. The morpho-chemotypes exhibited wide variability for morphological and chemical traits. Anti-bacterial activity was found to be high for Staphylococcus aureus, moderate for Escherichia coli, low for Bacillus and Pseudomonas aeruginosa was highly resistant. The essential oils of Pale Green-Broad Leaves (O. basilicum and CIM Ayu (O. gratissimum exhibited significant antibacterial activity against both S. aureus and E. coli signifying them promising for anti-bacterial activity. No relationship was observed between chemotype specificity and anti-bacterial activity, indicating that apart from major components of essential oil, minor components and other factors may be responsible for anti-microbial activities.

  13. Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated from Swine Herds in the United States

    OpenAIRE

    Mirajkar, Nandita S.; Davies, Peter R.; Gebhart, Connie J.

    2016-01-01

    Outbreaks of swine dysentery, caused by Brachyspira hyodysenteriae and the recently discovered “Brachyspira hampsonii,” have reoccurred in North American swine herds since the late 2000s. Additionally, multiple Brachyspira species have been increasingly isolated by North American diagnostic laboratories. In Europe, the reliance on antimicrobial therapy for control of swine dysentery has been followed by reports of antimicrobial resistance over time. The objectives of our study were to determi...

  14. Species dominance and equitability: patterns in Cenozoic foraminifera of eastern North America

    Science.gov (United States)

    Gibson, T.G.; Hill, E.E.

    1992-01-01

    Species dominance in benthonic foraminifera, represented by percent of the assemblage composed of the single most abundant species, shows little change in observed range of values from shallow into deep-marine waters in 1005 samples from the Gulf of Mexico, Atlantic, and Arctic margins of North America. This finding contrasts with the model that species dominance is highest in shallow-marine environments and decreases offshore into deeper marine waters. Equitability, the relation of all species abundances within an assemblage, also shows little change between the values found in shallow-marine assemblages and those found in assemblages from deeper water environments. Equitability and dominance values found in 421 assemblages from Palaeocene, Eocene, Miocene, and Pleistocene strata of the Atlantic and E Gulf of Mexico coastal plains are similar to the modern values. -from Authors

  15. Evaluation of antimicrobial and anti-inflammatory activities of seed extracts from six Nigella species.

    Science.gov (United States)

    Landa, Premysl; Marsik, Petr; Havlik, Jaroslav; Kloucek, Pavel; Vanek, Tomas; Kokoska, Ladislav

    2009-04-01

    Seed extracts from six species of the genus Nigella (Family Ranunculaceae)-Nigella arvensis, Nigella damascena, Nigella hispanica, Nigella nigellastrum, Nigella orientalis, and Nigella sativa-obtained by successive extraction with n-hexane, chloroform, and methanol, were tested for their antimicrobial activity against 10 strains of pathogenic bacteria and yeast using the microdilution method as well as for anti-inflammatory properties by in vitro cyclooxygenase (COX)-1 and COX-2 assay. Chemical characterization of active extracts was carried out including free and fixed fatty acid analysis. Comparison of antimicrobial activity showed that N. arvensis chloroform extract was the most potent among all species tested, inhibiting Gram-positive bacterial and yeast strains with minimum inhibitory concentration (MIC) values ranging from 0.25 to 1 mg/mL. With the exception of selective inhibitory action of n-hexane extract of N. orientalis on growth of Bacteroides fragilis (MIC = 0.5 mg/mL), we observed no antimicrobial activity for other Nigella species. Anti-inflammatory screening revealed that N. sativa, N. orientalis, N. hispanica, N. arvensis n-hexane, and N. hispanica chloroform extracts had strong inhibitory activity (more than 80%) on COX-1 and N. orientalis, N. arvensis, and N. hispanica n-hexane extracts were most effective against COX-2, when the concentration of extracts was 100 microg/mL in both COX assays. In conclusion, N. arvensis, N. orientalis, and N. hispanica seeds, for the first time examined for antimicrobial and anti-inflammatory effects, revealed their significant activity in one or both assays.

  16. ANTIMICROBIAL ACTIVITY OF NONTRADITIONAL PLANT POLLEN AGAINST DIFFERENT SPECIES OF MICROORGANISMS

    Directory of Open Access Journals (Sweden)

    Miroslava Kačániová

    2014-08-01

    Full Text Available The aim of this study was to detect the antimicrobial activity of four plant pollen samples to pathogenic bacteria, microscopic fungi and yeasts. Pollens of dogwood common (Cornus mas, ray mountain (Secale strictum spp. strictum, pumpkin rape (Cucurbita pepo var. styriaca and grape vine (Vitis vinifera were collected in 2010 in Slovakia. The antimicrobial effects of the four nontraditional plant pollens were tested using the agar well diffusion method. For extraction, 70% ethanol (aqueous, v/v was applied. Antimicrobial susceptibility of five different strains of bacteria - three gram positive (Listeria monocytogenes CCM 4699, Pseudomonas aeruginosa CCM 1960, Staphylococcus aureus CCM 3953 and gram negative (Salmonella enterica CCM 4420, Escherichia coli CCM 3988, as well as three different strains of microscopic fungi, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, and three different strains of yeasts Candida albicans, Geotrichum candidum and Rhodotorula mucilaginosa, were examinated. L. monocytogenes was the most sensitive among bacteria to the three ethanol extracts of plant pollen after 24 hours of inoculation, A. flavus and C. albicans were the most sensitive microscopic fungi and yeast species, respectively.

  17. Suppression of antimicrobial peptide expression by ureaplasma species.

    Science.gov (United States)

    Xiao, Li; Crabb, Donna M; Dai, Yuling; Chen, Yuying; Waites, Ken B; Atkinson, T Prescott

    2014-04-01

    Ureaplasma species commonly colonize the adult urogenital tract and are implicated in invasive diseases of adults and neonates. Factors that permit the organisms to cause chronic colonization or infection are poorly understood. We sought to investigate whether host innate immune responses, specifically, antimicrobial peptides (AMPs), are involved in determining the outcome of Ureaplasma infections. THP-1 cells, a human monocytoid tumor line, were cocultured with Ureaplasma parvum and U. urealyticum. Gene expression levels of a variety of host defense genes were quantified by real-time PCR. In vitro antimicrobial activities of synthetic AMPs against Ureaplasma spp. were determined using a flow cytometry-based assay. Chromosomal histone modifications in host defense gene promoters were tested by chromatin immunoprecipitation (ChIP). DNA methylation status in the AMP promoter regions was also investigated. After stimulation with U. parvum and U. urealyticum, the expression of cell defense genes, including the AMP genes (DEFB1, DEFA5, DEFA6, and CAMP), was significantly downregulated compared to that of TNFA and IL-8, which were upregulated. In vitro flow cytometry-based antimicrobial assay revealed that synthetic peptides LL-37, hBD-3, and hBD-1 had activity against Ureaplasma spp. Downregulation of the AMP genes was associated with chromatin modification alterations, including the significantly decreased histone H3K9 acetylation with U. parvum infection. No DNA methylation status changes were detected upon Ureaplasma infection. In conclusion, AMPs have in vitro activity against Ureaplasma spp., and suppression of AMP expression might be important for the organisms to avoid this aspect of the host innate immune response and to establish chronic infection and colonization.

  18. The diet and consumption of dominant fish species in the upper Scheldt estuary, Belgium

    DEFF Research Database (Denmark)

    Maes, J.; De Brabandere, Loreto; Ollevier, F.

    2003-01-01

    Seasonal changes in the diet composition and trophic niche overlap were examined for the dominant members of the fish assemblage of the turbid low-salinity zone of the Scheldt estuary (Belgium). Samples of fish were taken in the cooling water of a power plant. Juveniles of eight species dominated...... of trophic niche overlap showed that, in general, niche overlap between individuals of the same species was significantly higher than overlap between individuals from different species, suggesting that the available food resources were partitioned. The total annual prey consumption by the dominant fish...

  19. Urban Bird Feeders Dominated by a Few Species and Individuals

    Directory of Open Access Journals (Sweden)

    Josie A. Galbraith

    2017-08-01

    Full Text Available The practice of garden bird feeding is a global phenomenon, involving millions of people and vast quantities of food annually. Many people engage in the practice of feeding assuming that birds gain some benefit from the food they provide, yet recent studies have revealed the potential for detrimental impacts as well. However, there is still a paucity of information on the impacts of feeding, including the ubiquity of these impacts among and within feeder-visiting species. Consistency in feeder use among birds is likely an important determinant of this. Individual birds and species that make frequent use of feeders are more likely to experience both the benefits and detrimental impacts of supplementary food. We investigated patterns of feeder use by garden birds visiting experimental feeding stations in Auckland, New Zealand, with the specific aim of determining whether use of supplementary food was consistent or variable among individuals and species. We used camera traps as well as Radio Frequency Identification (RFID technology to examine intra- and interspecific feeder visitation patterns and to discern species associations. Eleven bird species were detected using feeding stations, however, two introduced species (house sparrow Passer domesticus and spotted dove Streptopelia chinensis dominated visitation events. These species were present at feeders most frequently, with the largest conspecific group sizes. Significant associations were detected among a number of species, suggesting interspecific interactions are important in determining feeder use. We also found within-species differences in feeder use for all focal species, with individual variation greatest in house sparrows. Furthermore, season had an important influence on most visitation parameters. The observed individual and species-specific differences in supplementary food resource use imply that the impacts of garden bird feeding are not universal. Crucially, particularly given

  20. Plant species' origin predicts dominance and response to nutrient enrichment and herbivores in global grasslands

    Science.gov (United States)

    Seabloom, Eric W.; Borer, Elizabeth T.; Buckley, Yvonne M.; Cleland, Elsa E.; Davies, Kendi F.; Firn, Jennifer; Harpole, W. Stanley; Hautier, Yann; Lind, Eric M.; MacDougall, Andrew S.; Orrock, John L.; Prober, Suzanne M.; Adler, Peter B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Blumenthal, Dana M.; Brown, Cynthia S.; Brudvig, Lars A.; Cadotte, Marc; Chu, Chengjin; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen I.; Dantonio, Carla M.; DeCrappeo, Nicole M.; Du, Guozhen; Fay, Philip A.; Frater, Paul; Gruner, Daniel S.; Hagenah, Nicole; Hector, Andy; Hillebrand, Helmut; Hofmockel, Kirsten S.; Humphries, Hope C.; Jin, Virginia L.; Kay, Adam; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M. H.; La Pierre, Kimberly J.; Ladwig, Laura; Lambrinos, John G.; Li, Qi; Li, Wei; Marushia, Robin; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John; Mortensen, Brent; O'Halloran, Lydia R.; Pyke, David A.; Risch, Anita C.; Sankaran, Mahesh; Schuetz, Martin; Simonsen, Anna; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren; Wolkovich, Elizabeth; Wragg, Peter D.; Wright, Justin; Yang, Louie

    2015-01-01

    Exotic species dominate many communities; however the functional significance of species' biogeographic origin remains highly contentious. This debate is fuelled in part by the lack of globally replicated, systematic data assessing the relationship between species provenance, function and response to perturbations. We examined the abundance of native and exotic plant species at 64 grasslands in 13 countries, and at a subset of the sites we experimentally tested native and exotic species responses to two fundamental drivers of invasion, mineral nutrient supplies and vertebrate herbivory. Exotic species are six times more likely to dominate communities than native species. Furthermore, while experimental nutrient addition increases the cover and richness of exotic species, nutrients decrease native diversity and cover. Native and exotic species also differ in their response to vertebrate consumer exclusion. These results suggest that species origin has functional significance, and that eutrophication will lead to increased exotic dominance in grasslands. PMID:26173623

  1. No change in subordinate butterflyfish diets following removal of behaviourally dominant species

    Science.gov (United States)

    Blowes, Shane A.; Pratchett, Morgan S.; Connolly, Sean R.

    2017-03-01

    Direct interference interactions between species are often mediated by aggression and related to resource use. Interference interactions are frequently asymmetric, whereby one species wins the majority of interactions; however, the effect of this asymmetry on the diet of subordinate species has not received the same attention as the impact of interference on habitat use. Here we experimentally evaluated whether release from asymmetric interference led to increased use of a preferred dietary resource by subordinate species, using coral-feeding butterflyfishes as a model system. Following experimental removal of the behaviourally dominant species, we found no change in diet breadth or foraging on the preferred resource by subordinate species. Our results suggest that release from asymmetric interspecific interference does not necessarily result in changes to subordinate species' diets, at least not over the course of our study. Rather, consistently asymmetric interactions may contribute to behavioural conditioning of subordinate species, meaning that even in the absence of dominants, subordinate individuals maintain established feeding patterns. Additionally, our results suggest that antagonistic interactions between butterflyfishes may have contributed to niche partitioning and conservatism over evolutionary time scales.

  2. The Freshwater Sponge Ephydatia fluviatilis Harbours Diverse Pseudomonas Species (Gammaproteobacteria, Pseudomonadales) with Broad-Spectrum Antimicrobial Activity

    Science.gov (United States)

    Keller-Costa, Tina; Jousset, Alexandre; van Overbeek, Leo; van Elsas, Jan Dirk; Costa, Rodrigo

    2014-01-01

    Bacteria are believed to play an important role in the fitness and biochemistry of sponges (Porifera). Pseudomonas species (Gammaproteobacteria, Pseudomonadales) are capable of colonizing a broad range of eukaryotic hosts, but knowledge of their diversity and function in freshwater invertebrates is rudimentary. We assessed the diversity, structure and antimicrobial activities of Pseudomonas spp. in the freshwater sponge Ephydatia fluviatilis. Polymerase Chain Reaction – Denaturing Gradient Gel Electrophoresis (PCR-DGGE) fingerprints of the global regulator gene gacA revealed distinct structures between sponge-associated and free-living Pseudomonas communities, unveiling previously unsuspected diversity of these assemblages in freshwater. Community structures varied across E. fluviatilis specimens, yet specific gacA phylotypes could be detected by PCR-DGGE in almost all sponge individuals sampled over two consecutive years. By means of whole-genome fingerprinting, 39 distinct genotypes were found within 90 fluorescent Pseudomonas isolates retrieved from E. fluviatilis. High frequency of in vitro antibacterial (49%), antiprotozoan (35%) and anti-oomycetal (32%) activities was found among these isolates, contrasting less-pronounced basidiomycetal (17%) and ascomycetal (8%) antagonism. Culture extracts of highly predation-resistant isolates rapidly caused complete immobility or lysis of cells of the protozoan Colpoda steinii. Isolates tentatively identified as P. jessenii, P. protegens and P. oryzihabitans showed conspicuous inhibitory traits and correspondence with dominant sponge-associated phylotypes registered by cultivation-independent analysis. Our findings suggest that E. fluviatilis hosts both transient and persistent Pseudomonas symbionts displaying antimicrobial activities of potential ecological and biotechnological value. PMID:24533086

  3. Inactivation of Candida glabrata by a humid DC argon discharge afterglow: dominant contributions of short-lived aqueous active species

    Science.gov (United States)

    Xiong, Qing; Liu, Hongbin; Lu, Weiping; Chen, Qiang; Xu, Le; Wang, Xia; Zhu, Qunlin; Zeng, Xue; Yi, Ping

    2017-05-01

    Plasma medicine applications are currently attracting significant interest all over the world. Bactericidal treatments of Candida glabrata cultured in saline suspension are performed in this study by a room-temperature reactive afterglow of a DC-driven argon discharge. Water vapor was added to the discharge to study the inactivation contributions of reactive hydrolytic species including OH and H2O2 transporting along the gas flow to the treated solutions. The inactivation results indicate that the dominant roles in the bactericidal treatments are played by the short-lived aqueous active species, but not the stable species like H2O2aq (aq indicates an aqueous species). Further analysis shows that the ·OHaq radicals play an important role in the inactivation process. The ·OHaq radicals in the suspension are mostly produced from the direct dissolution of the OH species in the reactive afterglow. With the increase of added water vapor content, the ·OHaq production increases and enhances the inactivation efficiency of C. glabrata. Furthermore, it is found that the ambient air diffusion shows essential effects on the bactericidal activity of the remote humid argon discharge. Higher bactericidal effects can be obtained in open-space treatments compared to in a controlled Ar + H2O gas atmosphere. Key active air-byproduct species are believed to be generated in the suspension during the treatments and contributing to the inactivation process. Based on chemical analysis, the peroxynitrous acid ONOOHaq is considered as the key antimicrobial air-byproduct species. These results indicate the important dependence of plasma biomedical effects on the processing environment, which finally relates to the critical contributions of the key reactive species formed therein.

  4. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils.

    Science.gov (United States)

    Khoury, Madona; Stien, Didier; Eparvier, Véronique; Ouaini, Naïm; El Beyrouthy, Marc

    2016-01-01

    Many Lamiaceae species are consumed in the Lebanese cuisine as food or condiment and are largely used in the traditional medicine of Lebanon to treat various diseases, including microbial infections. In this article we report the traditional medicinal uses of eleven Lamiaceae species: Coridothymus capitatus L., Lavandula stoechas L., Lavandula angustifolia Mill., Mentha spicata L. subsp. condensata , Origanum syriacum L., Rosmarinus officinalis , Salvia fruticosa Miller., Satureja cuneifolia Ten., Satureja thymbra L., Thymbra spicata L., and Vitex agnus-castus L. and study the chemical composition and antimicrobial activity of their essential oils (EOs). Our survey showed that Lamiaceae species are mainly used against gastrointestinal disorders and microbial infections. Chemical analysis of the EOs obtained from these plants allowed us to identify seventy-five compounds describing more than 90% of the relative composition of each EO. Essential oils with high amounts of thymol and carvacrol possessed the strongest antimicrobial activity. As expected, these two compounds demonstrated an interesting antifungal efficacy against the filamentous fungus T. rubrum . Our results confirmed that some of the Lamiaceae species used in Lebanon ethnopharmacological practices as antimicrobial agents do possess antibacterial and antifungal potential consistent with their use in alternative or complementary medicine.

  5. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils

    Directory of Open Access Journals (Sweden)

    Madona Khoury

    2016-01-01

    Full Text Available Many Lamiaceae species are consumed in the Lebanese cuisine as food or condiment and are largely used in the traditional medicine of Lebanon to treat various diseases, including microbial infections. In this article we report the traditional medicinal uses of eleven Lamiaceae species: Coridothymus capitatus L., Lavandula stoechas L., Lavandula angustifolia Mill., Mentha spicata L. subsp. condensata, Origanum syriacum L., Rosmarinus officinalis, Salvia fruticosa Miller., Satureja cuneifolia Ten., Satureja thymbra L., Thymbra spicata L., and Vitex agnus-castus L. and study the chemical composition and antimicrobial activity of their essential oils (EOs. Our survey showed that Lamiaceae species are mainly used against gastrointestinal disorders and microbial infections. Chemical analysis of the EOs obtained from these plants allowed us to identify seventy-five compounds describing more than 90% of the relative composition of each EO. Essential oils with high amounts of thymol and carvacrol possessed the strongest antimicrobial activity. As expected, these two compounds demonstrated an interesting antifungal efficacy against the filamentous fungus T. rubrum. Our results confirmed that some of the Lamiaceae species used in Lebanon ethnopharmacological practices as antimicrobial agents do possess antibacterial and antifungal potential consistent with their use in alternative or complementary medicine.

  6. Report on the Medicinal Use of Eleven Lamiaceae Species in Lebanon and Rationalization of Their Antimicrobial Potential by Examination of the Chemical Composition and Antimicrobial Activity of Their Essential Oils

    Science.gov (United States)

    Khoury, Madona; Eparvier, Véronique; Ouaini, Naïm

    2016-01-01

    Many Lamiaceae species are consumed in the Lebanese cuisine as food or condiment and are largely used in the traditional medicine of Lebanon to treat various diseases, including microbial infections. In this article we report the traditional medicinal uses of eleven Lamiaceae species: Coridothymus capitatus L., Lavandula stoechas L., Lavandula angustifolia Mill., Mentha spicata L. subsp. condensata, Origanum syriacum L., Rosmarinus officinalis, Salvia fruticosa Miller., Satureja cuneifolia Ten., Satureja thymbra L., Thymbra spicata L., and Vitex agnus-castus L. and study the chemical composition and antimicrobial activity of their essential oils (EOs). Our survey showed that Lamiaceae species are mainly used against gastrointestinal disorders and microbial infections. Chemical analysis of the EOs obtained from these plants allowed us to identify seventy-five compounds describing more than 90% of the relative composition of each EO. Essential oils with high amounts of thymol and carvacrol possessed the strongest antimicrobial activity. As expected, these two compounds demonstrated an interesting antifungal efficacy against the filamentous fungus T. rubrum. Our results confirmed that some of the Lamiaceae species used in Lebanon ethnopharmacological practices as antimicrobial agents do possess antibacterial and antifungal potential consistent with their use in alternative or complementary medicine. PMID:28053641

  7. Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change.

    Science.gov (United States)

    Crase, Beth; Vesk, Peter A; Liedloff, Adam; Wintle, Brendan A

    2015-08-01

    Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied ), the instability of suitable area (Einstability ) and the overlap between the current and future spatial distribution (Eoverlap ). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and

  8. Tree species diversity promotes aboveground carbon storage through functional diversity and functional dominance.

    Science.gov (United States)

    Mensah, Sylvanus; Veldtman, Ruan; Assogbadjo, Achille E; Glèlè Kakaï, Romain; Seifert, Thomas

    2016-10-01

    The relationship between biodiversity and ecosystem function has increasingly been debated as the cornerstone of the processes behind ecosystem services delivery. Experimental and natural field-based studies have come up with nonconsistent patterns of biodiversity-ecosystem function, supporting either niche complementarity or selection effects hypothesis. Here, we used aboveground carbon (AGC) storage as proxy for ecosystem function in a South African mistbelt forest, and analyzed its relationship with species diversity, through functional diversity and functional dominance. We hypothesized that (1) diversity influences AGC through functional diversity and functional dominance effects; and (2) effects of diversity on AGC would be greater for functional dominance than for functional diversity. Community weight mean (CWM) of functional traits (wood density, specific leaf area, and maximum plant height) were calculated to assess functional dominance (selection effects). As for functional diversity (complementarity effects), multitrait functional diversity indices were computed. The first hypothesis was tested using structural equation modeling. For the second hypothesis, effects of environmental variables such as slope and altitude were tested first, and separate linear mixed-effects models were fitted afterward for functional diversity, functional dominance, and both. Results showed that AGC varied significantly along the slope gradient, with lower values at steeper sites. Species diversity (richness) had positive relationship with AGC, even when slope effects were considered. As predicted, diversity effects on AGC were mediated through functional diversity and functional dominance, suggesting that both the niche complementarity and the selection effects are not exclusively affecting carbon storage. However, the effects were greater for functional diversity than for functional dominance. Furthermore, functional dominance effects were strongly transmitted by CWM of

  9. Salmonella Species' Persistence and Their High Level of Antimicrobial Resistance in Flooded Man-Made Rivers in China.

    Science.gov (United States)

    Song, Qifa; Zhang, Danyang; Gao, Hong; Wu, Junhua

    2018-05-11

    Man-made rivers, owing to proximity to human habitats, facilitate transmission of salmonellosis to humans. To determine the contamination situation by Salmonella in flooded man-made rivers and thereafter the exposure risk to public health, we investigated the prevalence of Salmonella species and their antimicrobial resistance in such rivers, as well as the relationship between the incidence of local infectious diarrhea cases and the number of Salmonella isolates from patients. After a heavy flood, 95 isolates of 13 Salmonella serotypes were isolated from 80 river water samples. The two most prevalent serotypes were Typhimurium and Derby. Eight Salmonella serotypes were newly detected after the flood. Overall, 50 isolates were resistant to ampicillin and/or cefotaxime and carried at least bla TEM . Twelve isolates of serotypes Typhimurium, Derby, Rissen, and Indiana were extended-spectrum β-lactamase (ESBL) producing and carried at least one of bla OXA and bla CTX-M-like genes. Twelve isolates of serotypes Typhimurium, Derby, Agona, Rissen, and Indiana were resistant to ciprofloxacin and had gyrA mutations. Isolates of Typhimurium, Derby, and Indiana were concurrently ciprofloxacin resistant and ESBL producing. Pulsed-field gel electrophoresis illustrates the circulation of two dominant clones of Salmonella Typhimurium isolates among patients, river, and food. High prevalence of various highly pathogenic and antimicrobial-resistant Salmonella serotypes shows that man-made rivers are prone to heavy contamination with Salmonella, and as a result put public health at greater risk.

  10. Inactivation of Candida glabrata by a humid DC argon discharge afterglow: dominant contributions of short-lived aqueous active species

    International Nuclear Information System (INIS)

    Xiong, Qing; Liu, Hongbin; Xu, Le; Wang, Xia; Zhu, Qunlin; Lu, Weiping; Chen, Qiang; Zeng, Xue; Yi, Ping

    2017-01-01

    Plasma medicine applications are currently attracting significant interest all over the world. Bactericidal treatments of Candida glabrata cultured in saline suspension are performed in this study by a room-temperature reactive afterglow of a DC-driven argon discharge. Water vapor was added to the discharge to study the inactivation contributions of reactive hydrolytic species including OH and H 2 O 2 transporting along the gas flow to the treated solutions. The inactivation results indicate that the dominant roles in the bactericidal treatments are played by the short-lived aqueous active species, but not the stable species like H 2 O 2aq (aq indicates an aqueous species). Further analysis shows that the ·OH aq radicals play an important role in the inactivation process. The ·OH aq radicals in the suspension are mostly produced from the direct dissolution of the OH species in the reactive afterglow. With the increase of added water vapor content, the ·OH aq production increases and enhances the inactivation efficiency of C. glabrata . Furthermore, it is found that the ambient air diffusion shows essential effects on the bactericidal activity of the remote humid argon discharge. Higher bactericidal effects can be obtained in open-space treatments compared to in a controlled Ar + H 2 O gas atmosphere. Key active air-byproduct species are believed to be generated in the suspension during the treatments and contributing to the inactivation process. Based on chemical analysis, the peroxynitrous acid ONOOH aq is considered as the key antimicrobial air-byproduct species. These results indicate the important dependence of plasma biomedical effects on the processing environment, which finally relates to the critical contributions of the key reactive species formed therein. (paper)

  11. Long term prevention of disturbance induces the collapse of a dominant species without altering ecosystem function.

    Science.gov (United States)

    Yu, Qiang; Wu, Honghui; Wang, Zhengwen; Flynn, Dan F B; Yang, Hao; Lü, Fumei; Smith, Melinda; Han, Xingguo

    2015-09-21

    Limitation of disturbances, such as grazing and fire, is a key tool for nature reserve management and ecological restoration. While the role of these disturbances in shaping ecosystem structure and functioning has been intensively studied, less is known about the consequences of long-term prevention of grazing and fire. Based on a 31-year study, we show that relative biomass of the dominant grass, Leymus chinensis, of grasslands in northern China declined dramatically, but only after 21 years of exclusion of fire and grazing. However, aboveground net primary productivity (ANPP) did not decline accordingly due to compensatory responses of several subdominant grass species. The decline in dominance of L. chinensis was not related to gradually changing climate during the same period, whereas experimentally imposed litter removal (simulating fire), mowing (simulating grazing), fire and moderate grazing enhanced dominance of L. chinensis significantly. Thus, our findings show that disturbances can be critical to maintain the dominance of key grass species in semiarid grassland, but that the collapse of a dominant species does not necessarily result in significant change in ANPP if there are species in the community capable of compensating for loss of a dominant.

  12. Genetic diversity within a dominant plant outweighs plant species diversity in structuring an arthropod community.

    Science.gov (United States)

    Crawford, Kerri M; Rudgers, Jennifer A

    2013-05-01

    Plant biodiversity is being lost at a rapid rate. This has spurred much interest in elucidating the consequences of this loss for higher trophic levels. Experimental tests have shown that both plant species diversity and genetic diversity within a plant species can influence arthropod community structure. However, the majority of these studies have been conducted in separate systems, so their relative importance is currently unresolved. Furthermore, potential interactions between the two levels of diversity, which likely occur in natural systems, have not been investigated. To clarify these issues, we conducted three experiments in a freshwater sand dune ecosystem. We (1) independently manipulated plant species diversity, (2) independently manipulated genetic diversity within the dominant plant species, Ammophila breviligulata, and (3) jointly manipulated genetic diversity within the dominant plant and species diversity. We found that genetic diversity within the dominant plant species, Ammophila breviligulata, more strongly influenced arthropod communities than plant species diversity, but this effect was dependent on the presence of other species. In species mixtures, A. breviligulata genetic diversity altered overall arthropod community composition, and arthropod richness and abundance peaked at the highest level of genetic diversity. Positive nonadditive effects of diversity were detected, suggesting that arthropods respond to emergent properties of diverse plant communities. However, in the independent manipulations where A. breviligulata was alone, effects of genetic diversity were weaker, with only arthropod richness responding. In contrast, plant species diversity only influenced arthropods when A. breviligulata was absent, and then only influenced herbivore abundance. In addition to showing that genetic diversity within a dominant plant species can have large effects on arthropod community composition, these results suggest that understanding how species

  13. Leaf economics spectrum-productivity relationships in intensively grazed pastures depend on dominant species identity.

    Science.gov (United States)

    Mason, Norman W H; Orwin, Kate; Lambie, Suzanne; Woodward, Sharon L; McCready, Tiffany; Mudge, Paul

    2016-05-01

    Plant functional traits are thought to drive variation in primary productivity. However, there is a lack of work examining how dominant species identity affects trait-productivity relationships. The productivity of 12 pasture mixtures was determined in a 3-year field experiment. The mixtures were based on either the winter-active ryegrass (Lolium perenne) or winter-dormant tall fescue (Festuca arundinacea). Different mixtures were obtained by adding forb, legume, and grass species that differ in key leaf economics spectrum (LES) traits to the basic two-species dominant grass-white clover (Trifolium repens) mixtures. We tested for correlations between community-weighted mean (CWM) trait values, functional diversity, and productivity across all plots and within those based on either ryegrass or tall fescue. The winter-dormant forb species (chicory and plantain) had leaf traits consistent with high relative growth rates both per unit leaf area (high leaf thickness) and per unit leaf dry weight (low leaf dry matter content). Together, the two forb species achieved reasonable abundance when grown with either base grass (means of 36% and 53% of total biomass, respectively, with ryegrass tall fescue), but they competed much more strongly with tall fescue than with ryegrass. Consequently, they had a net negative impact on productivity when grown with tall fescue, and a net positive effect when grown with ryegrass. Strongly significant relationships between productivity and CWM values for LES traits were observed across ryegrass-based mixtures, but not across tall fescue-based mixtures. Functional diversity did not have a significant positive effect on productivity for any of the traits. The results show dominant species identity can strongly modify trait-productivity relationships in intensively grazed pastures. This was due to differences in the intensity of competition between dominant species and additional species, suggesting that resource-use complementarity is a

  14. Identification of Thrips Species on Garlic Fields in Hamedan Province and Determination of Dominant Species

    Directory of Open Access Journals (Sweden)

    Majid Mirab-balou

    2016-09-01

    Full Text Available Introduction: Garlic (Allium sativum (family Amaryllidaceae are one of important crops in Hamedan province. There are several insects and mites that by feeding on this plant cause to damage garlic yield. Among the insect pests, the most dangerous pests of garlic are thrips species (Insecta: Thysanoptera. In this group, onion thrips, Thrips tabaci Lindeman is widely distributed and is a dominant species. Its sap sucking causes tiny and silvery spots on the leaves that may spread all over the leaf surface with an unfavorable effect on yield production. In addition, imagoes and larvae living and feeding on this plant cause more serious damages. Due to serious damage of thrips in garlic fields of Hamedan province, it is necessary to identify thripsspecies for pest control programs. Materials and Methods: Thrips specimens were collected on leaves of garlic in Hamedan province (Maryanaj and Heydareh situated in the west of Iran, during 2012–2013. Herein, specimens were collected by shaking plants to white dish and specimens were kept in 70 % ethanol and transferred to the laboratory. All collected material was macerated in 5% KOH and subjected to dehydration in an ethanol series before being mounted onto glass slides. Subsequently, thrips specimens mounted onto slides in Hoyer’s medium form of the protocol given in Mirab-balou and Chen (2010. All descriptions, measurements and photos were made with a Leica DM IRB microscope, with a Leica Image 1000 system. Thrips specimens were identified by author in species level. Specimens are deposited in the collection of Department of Plant Protection, College of Agriculture, Ilam University, Iran (ILAMU. In addition, dominant thrips species were also determined. For this purpose, regular samplings were done in fields of two regions of Hamedan province every two weeks, and totally, 2040 specimens (adult were collected. Results and Discussion: The world fauna of Thysanoptera, are presently known to be

  15. Plant functional traits of dominant native and invasive species in mediterranean-climate ecosystems.

    Science.gov (United States)

    Funk, Jennifer L; Standish, Rachel J; Stock, William D; Valladares, Fernando

    2016-01-01

    The idea that dominant invasive plant species outperform neighboring native species through higher rates of carbon assimilation and growth is supported by several analyses of global data sets. However, theory suggests that native and invasive species occurring in low-resource environments will be functionally similar, as environmental factors restrict the range of observed physiological and morphological trait values. We measured resource-use traits in native and invasive plant species across eight diverse vegetation communities distributed throughout the five mediterranean-climate regions, which are drought prone and increasingly threatened by human activities, including the introduction of exotic species. Traits differed strongly across the five regions. In regions with functional differences between native and invasive species groups, invasive species displayed traits consistent with high resource acquisition; however, these patterns were largely attributable to differences in life form. We found that species invading mediterranean-climate regions were more likely to be annual than perennial: three of the five regions were dominated by native woody species and invasive annuals. These results suggest that trait differences between native and invasive species are context dependent and will vary across vegetation communities. Native and invasive species within annual and perennial groups had similar patterns of carbon assimilation and resource use, which contradicts the widespread idea that invasive species optimize resource acquisition rather than resource conservation. .

  16. Antimicrobial susceptibility of coagulase-negative Staphylococcus species isolated from bovine milk.

    Science.gov (United States)

    Sawant, A A; Gillespie, B E; Oliver, S P

    2009-02-16

    Coagulase-negative Staphylococcus (CNS) isolates (n=168) obtained from milk from heifers and dairy cows were screened for minimum inhibitory concentration (MIC) to antimicrobials used commonly for mastitis therapy. Of the 10 CNS species included in the study, the predominant species were Staphylococcus chromogenes (n=61), Staphylococcus epidermidis (n=37), Staphylococcus hyicus (n=37), and Staphylococcus simulans (n=16). The majority of CNS was susceptible to ampicillin, oxacillin, cephalothin, and ceftiofur. Erythromycin and pirlimycin were also very effective in vitro inhibitors of CNS. The only exception was observed with S. epidermidis. Of 37 S. epidermidis evaluated, 13 (35%) exhibited efflux-based resistance to erythromycin (> or =16 microg/ml) encoded by msrA and one isolate carried ermC encoding ribosomal methylase-based resistance to both erythromycin (> or =64 microg/ml) and pirlimycin (> or =64 microg/ml). A total of 17 S. epidermidis, 11 S. chromogenes, and one S. hyicus exhibited phenotypic resistance to ampicillin (> or =0.5 microg/ml). Constitutive beta-lactamase production was observed in all ampicillin resistant isolates except 4 S. epidermidis that exhibited inducible beta-lactamase production. Induced beta-lactamase production was also observed in 13 S. epidermidis that were phenotypically susceptible to the entire MIC panel. All isolates that produced beta-lactamase either constitutively or by induction carried blaZ. S. epidermidis (n=12, 32%) that were resistant to methicillin (oxacillin > or =0.5 microg/ml) carried low affinity penicillin-binding protein encoded by mecA. Most multi-drug resistant (MDR) S. epidermidis (> or =2 resistance genes) were resistant to ampicillin, erythromycin and methicillin. All except one MDR S. epidermidis had icaAB, which encodes for polysaccharide intercellular adhesion. Based on pulsed field gel electrophoresis, MDR S. epidermidis were closely related genotypically, and were isolated from different cows on the

  17. Prediction of Dominant Forest Tree Species Using QuickBird and Environmental Data

    Directory of Open Access Journals (Sweden)

    Azadeh Abdollahnejad

    2017-02-01

    Full Text Available Modelling the spatial distribution of plants is one of the indirect methods for predicting the properties of plants and can be defined based on the relationship between the spatial distribution of vegetation and environmental variables. In this article, we introduce a new method for the spatial prediction of the dominant trees and species, through a combination of environmental and satellite data. Based on the basal area factor (BAF frequency for each tree species in a total of 518 sample plots, the dominant tree species were determined for each plot. Also, topographical maps of primary and secondary properties were prepared using the digital elevation model (DEM. Categories of soil and the climate maps database of the Doctor Bahramnia Forestry Plan were extracted as well. After pre-processing and processing of spectral data, the pixel values at the sample locations in all the independent factors such as spectral and non-spectral data, were extracted. The modelling rates of tree and shrub species diversity using data mining algorithms of 80% of the sampling plots were taken. Assessment of model accuracy was conducted using 20% of samples and evaluation criteria. Random forest (RF, support vector machine (SVM and k-nearest neighbor (k-NN algorithms were used for spatial distribution modelling of dominant species groups using environmental and spectral variables from 80% of the sample plots. Results showed physiographic factors, especially altitude in combination with soil and climate factors as the most important variables in the distribution of species, while the best model was created by the integration of physiographic factors (in combination with soil and climate with an overall accuracy of 63.85%. In addition, the results of the comparison between the algorithms, showed that the RF algorithm was the most accurate in modelling the diversity.

  18. Reactive oxygen species play no role in the candidacidal activity of the salivary antimicrobial peptide histatin 5

    OpenAIRE

    Veerman, Enno C. I.; Nazmi, Kamran; van '​t HOF, Wim; Bolscher, Jan G. M.; den Hertog, Alice L.; Nieuw Amerongen, Arie V.

    2004-01-01

    The mechanism of action of antimicrobial peptides is still a matter of debate. The formation of ROS (reactive oxygen species) has been suggested to be the crucial step in the fungicidal mechanism of a number of antimicrobial peptides, including histatin 5 and lactoferrin-derived peptides. In the present study we have investigated the effects of histatin 5 and of a more amphipathic synthetic derivative, dhvar4, on the generation of ROS in the yeast Candida albicans, using dihydroethidium as an...

  19. Current Advances in the Antimicrobial Potential of Species of Genus Ganoderma (Higher Basidiomycetes) against Human Pathogenic Microorganisms (Review).

    Science.gov (United States)

    Rai, Mahendra K; Gaikwad, Swapnil; Nagaonkar, Dipali; dos Santos, Carolina Alves

    2015-01-01

    Ganoderma spp. are very important therapeutic mushrooms and have been used traditionally for 4000 years in the treatment of various human disorders. Different species of Ganoderma possess bioactive compounds, which have already demonstrated antiviral, antibacterial, and antifungal activities. Various bioactive compounds such as triterpenoids, colossolactones, and polysaccharides, which are responsible for the antimicrobial potential of the genus, are discussed here in detail. Some Ganoderma spp. have been reported to be potential agents for the synthesis of metal nanoparticles. These nanoparticles have demonstrated antimicrobial activity and also are reviewed herein. The main aim of this review is to discuss the possible use of Ganoderma extracts and their active principles in antimicrobial therapy.

  20. Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens

    NARCIS (Netherlands)

    Olff, H.; Hoorens, B.; De Goede, R.G.M.; Van der Putten, W.H.; Gleichman, J.M.

    2000-01-01

    We analyzed the dynamics of dominant plant species in a grazed grassland over 17 years, and investigated whether local shifts in these dominant species, leading to vegetation mosaics, could be attributed to interactions between plants and soil-borne pathogens. We found that Festuca rubra and Carer

  1. Small-scale shifting mosaics of two dominant grassland species : the possible role of soil-borne pathogens

    NARCIS (Netherlands)

    Olff, H.; Hoorens, B.; Goede, R.G.M. de; Putten, W.H. van der; Gleichman, J.M.

    2000-01-01

    We analyzed the dynamics of dominant plant species in a grazed grassland over 17 years, and investigated whether local shifts in these dominant species, leading to vegetation mosaics, could be attributed to interactions between plants and soil-borne pathogens. We found that Festuca rubra and Carex

  2. Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Hasman, Henrik

    2004-01-01

    that Danish bacterial isolates from livestock so far have not or have only to a limited degree developed resistance to antimicrobial compounds commonly used for disinfection. Acquired copper resistance was only found in enterococci. There were large differences in the intrinsic susceptibility of the different...... of susceptibilities to the different antimicrobial agents. Large variations were observed in the susceptibility of the different bacterial species to the different compounds. Staphylococci were in general very susceptible to all antimicrobial compounds tested. The Salmonella isolates were in general less susceptible...

  3. Integrating human and environmental health in antibiotic risk assessment: A critical analysis of protection goals, species sensitivity and antimicrobial resistance.

    Science.gov (United States)

    Le Page, Gareth; Gunnarsson, Lina; Snape, Jason; Tyler, Charles R

    2017-12-01

    Antibiotics are vital in the treatment of bacterial infectious diseases but when released into the environment they may impact non-target organisms that perform vital ecosystem services and enhance antimicrobial resistance development with significant consequences for human health. We evaluate whether the current environmental risk assessment regulatory guidance is protective of antibiotic impacts on the environment, protective of antimicrobial resistance, and propose science-based protection goals for antibiotic manufacturing discharges. A review and meta-analysis was conducted of aquatic ecotoxicity data for antibiotics and for minimum selective concentration data derived from clinically relevant bacteria. Relative species sensitivity was investigated applying general linear models, and predicted no effect concentrations were generated for toxicity to aquatic organisms and compared with predicted no effect concentrations for resistance development. Prokaryotes were most sensitive to antibiotics but the range of sensitivities spanned up to several orders of magnitude. We show reliance on one species of (cyano)bacteria and the 'activated sludge respiration inhibition test' is not sufficient to set protection levels for the environment. Individually, neither traditional aquatic predicted no effect concentrations nor predicted no effect concentrations suggested to safeguard for antimicrobial resistance, protect against environmental or human health effects (via antimicrobial resistance development). Including data from clinically relevant bacteria and also more species of environmentally relevant bacteria in the regulatory framework would help in defining safe discharge concentrations for antibiotics for patient use and manufacturing that would protect environmental and human health. It would also support ending unnecessary testing on metazoan species. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Drought resilience across ecologically dominant species: An experiment-model integration approach

    Science.gov (United States)

    Felton, A. J.; Warren, J.; Ricciuto, D. M.; Smith, M. D.

    2017-12-01

    Poorly understood are the mechanisms contributing to variability in ecosystem recovery following drought. Grasslands of the central U.S. are ecologically and economically important ecosystems, yet are also highly sensitive to drought. Although characteristics of these ecosystems change across gradients of temperature and precipitation, a consistent feature among these systems is the presence of highly abundant, dominant grass species that control biomass production. As a result, the incorporation of these species' traits into terrestrial biosphere models may constrain predictions amid increases in climatic variability. Here we report the results of a modeling-experiment (MODEX) research approach. We investigated the physiological, morphological and growth responses of the dominant grass species from each of the four major grasslands of the central U.S. (ranging from tallgrass prairie to desert grassland) following severe drought. Despite significant differences in baseline values, full recovery in leaf physiological function was evident across species, of which was consistently driven by the production of new leaves. Further, recovery in whole-plant carbon uptake tended to be driven by shifts in allocation from belowground to aboveground structures. However, there was clear variability among species in the magnitude of this dynamic as well as the relative allocation to stem versus leaf production. As a result, all species harbored the physiological capacity to recover from drought, yet we posit that variability in the recovery of whole-plant carbon uptake to be more strongly driven by variability in the sensitivity of species' morphology to soil moisture increases. The next step of this project will be to incorporate these and other existing data on these species and ecosystems into the community land model in an effort to test the sensitivity of this model to these data.

  5. Do intrinsically dominant and subordinate species exist? A test statistic for field data

    NARCIS (Netherlands)

    Olff, Han; Bakker, Jan P.

    . We propose a new method to obtain information about processes that structure plant communities. We analysed the relationship between the presence and dominance of species across a range of habitats. A simple regression model was used to describe this relationship for each species. Based on the

  6. Prevalence and antimicrobial susceptibility profile of listeria species from ready-to-eat foods of animal origin in Gondar Town, Ethiopia.

    Science.gov (United States)

    Garedew, Legesse; Taddese, Ayele; Biru, Tigist; Nigatu, Seleshe; Kebede, Elias; Ejo, Mebrat; Fikru, Abraham; Birhanu, Tamiru

    2015-05-12

    Listeriosis, mostly caused by Listeria monocytogenes species, has become a major concern to public health authorities due to its clinical severity and high mortality rate, particularly in high risk groups. Currently, there is limited information regarding the prevalence and antimicrobial susceptibility profiles of listeria species in ready-to-eat foods of animal origin in Gondar town, Ethiopia. The aim of this study was to determine the prevalence and antimicrobial susceptibility pattern of Listeria species isolated from ready-to-eat food of animal origin from public dinning places in Gondar town, Ethiopia. A cross sectional study on ready-toeat foods of animal origin sampled from major supermarkets, butcher shops, pastry shops, restaurants and hotels was carried out. Culture, biochemical and sugar tests were conducted for listeria species identification and disc diffusion test was performed to study the antimicrobial susceptibility profiles of the isolates. Out of 384 food samples examined, 96 (25%) were positive for Listeria species. Listeria monocytogenes was detected in 24 (6.25%) of the samples. Listeria monocytogenes was isolated from cake, raw meat, ice cream, minced beef, fish, unpasteurized milk and pizza in that order from higher to lower rate. Assessment of antimicrobial susceptibility profile of L. monocytogenes revealed the presence of four multi-drug resistant isolates. The higher resistance rate was recorded for penicillin, nalidixic acid, tetracycline and chloramphenicol, in decreasing order. All L. monocytogenes identified in the current study were sensitive to amoxicillin, cephalothin, cloxacillin, sulfamethoxazole, gentamicin and vancomycin. The presence of L. monocytogenes including drug resistant and multidrug resistant isolates in some ready-to-eat food items is an indicator of the presence of public health hazards to the consumer, particularly to the high-risk groups. Hence awareness creation on food safety and implementation of regulations

  7. Antimicrobial Effect of 15 Medicinal Plant Species and their Dependency on Climatic Conditions of Growth in Different Geographical and Ecological Areas of Fars Province

    Directory of Open Access Journals (Sweden)

    Abbas Abdollahi

    2012-05-01

    Full Text Available Background: The effects of medicinal plants are variable in different conditions. Here, the antimicrobial effect of 15 medicinal plant species and their dependency on the climatic condition of growth in different geographical and ecological areas of Fars Province were studied. Materials and Methods: In This empirical study, the antimicrobial effect of hydro-alcoholic extract of 15 medicinal plant species was examined against standard bacterial strains comparing to conventional therapeutic antibiotics using disk diffusion assay and serial broth dilution. Results: All Extracts were effective against S.aureus ATCC 25923 growth; also Peganum harmala, Myrtus communis, Mentha pulegium, Mentha spp, and Zataria multiflora extracts were observed to have antimicrobial activity against E.coli ATCC 25922. This antimicrobial activity had partially similar results, comparing to conventional antibioticsConclusion: Medicinal plants produce various amounts of antimicrobial substances under the climatic and ecological conditions of each zone, which must be considered in manufacturing herbal medicines.

  8. Spatial distribution of dominant arboreal ants in a malagasy coastal rainforest: gaps and presence of an invasive species.

    Directory of Open Access Journals (Sweden)

    Alain Dejean

    Full Text Available We conducted a survey along three belt transects located at increasing distances from the coast to determine whether a non-random arboreal ant assemblage, such as an ant mosaic, exists in the rainforest on the Masoala Peninsula, Madagascar. In most tropical rainforests, very populous colonies of territorially dominant arboreal ant species defend absolute territories distributed in a mosaic pattern. Among the 29 ant species recorded, only nine had colonies large enough to be considered potentially territorially dominant; the remaining species had smaller colonies and were considered non-dominant. Nevertheless, the null-model analyses used to examine the spatial structure of their assemblages did not reveal the existence of an ant mosaic. Inland, up to 44% of the trees were devoid of dominant arboreal ants, something not reported in other studies. While two Crematogaster species were not associated with one another, Brachymyrmex cordemoyi was positively associated with Technomyrmex albipes, which is considered an invasive species-a non-indigenous species that has an adverse ecological effect on the habitats it invades. The latter two species and Crematogaster ranavalonae were mutually exclusive. On the other hand, all of the trees in the coastal transect and at least 4 km of coast were occupied by T. albipes, and were interconnected by columns of workers. Technomyrmex albipes workers collected from different trees did not attack each other during confrontation tests, indicating that this species has formed a supercolony along the coast. Yet interspecific aggressiveness did occur between T. albipes and Crematogaster ranavalonae, a native species which is likely territorially dominant based on our intraspecific confrontation tests. These results suggest that the Masoala rainforest is threatened by a potential invasion by T. albipes, and that the penetration of this species further inland might be facilitated by the low density of native

  9. Investigation of reactions and species dominating low temperature combustion - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Radi, P.; Knopp, G.; Johnson, M.; Boedi, A.; Gerber, T.

    2009-12-15

    This report for the Swiss Federal Office of Energy (SFOE) presents the results of work done at the Paul Scherrer Institute (PSI) in Switzerland. The project 'Investigation of reactions and species dominating low temperature combustion' involves the characterisation of species that govern ignition. A base established for the spectroscopic investigation of peroxy radicals is discussed. The two-fold aim of this project is discussed which includes the measurement of molecular features such as binding energies and dissociation patterns of well-studied and spectroscopically accessible molecules and radicals as well as the application of the measurement techniques to alkyl peroxy radicals. This was done in order to improve the database of a class of molecules playing a dominant role in combustion and atmospheric chemistry. Several experimental techniques that are to be developed to achieve these aims are looked at. Achievements made are discussed and future work to be carried out is noted.

  10. Prevalence and antimicrobial susceptibility of Ureaplasma species and Mycoplasma hominis in Greek female outpatients, 2012-2016.

    Science.gov (United States)

    Maraki, Sofia; Mavromanolaki, Viktoria Eirini; Nioti, Eleni; Stafylaki, Dimitra; Minadakis, George

    2017-11-28

    Mycoplasma hominis and Ureaplasma species are opportunistic pathogens associated with urogenital infections, complications during pregnancy and postpartum infections. Appropriate empirical antimicrobial treatment is necessary to achieve an optimal therapeutic outcome. This study evaluated the prevalence and the antimicrobial susceptibility of Mycoplasma hominis and Ureaplasma spp. isolated from 1,008 endocervical samples of outpatients in Crete, Greece, during a five-year period (2012-2016), using the commercially available Mycoview kit (Zeakon diagnostics, France). Ureaplasma spp. was isolated from 116 patients (11.5%), M. hominis from 6 (0.6%), while coinfection with both mycoplasmas was demonstrated in 17 (1.7%). All Ureaplasma strains were susceptible to josamycin and doxycycline. Doxycycline, minocycline and ofloxacin were the most potent antibiotics against M. hominis. Docycycline was proved the most active and is still the drug of choice for the treatment of genital mycoplasma infections. Local surveillance to monitor changes in antimicrobial susceptibilities is necessary to guide treatment strategies.

  11. Comparison of methods for in vitro testing of susceptibility of porcine Mycoplasma species to antimicrobial agents.

    OpenAIRE

    Ter Laak, E A; Pijpers, A; Noordergraaf, J H; Schoevers, E C; Verheijden, J H

    1991-01-01

    The MICs of 18 antimicrobial agents used against strains of three porcine Mycoplasma species were determined by a serial broth dilution method. Twenty field strains of M. hyorhinis, ten field strains of M. hyopneumoniae, six field strains of M. flocculare, and the type strains of these species were tested. Twelve field strains and the type strain of M. hyorhinis were also tested by an agar dilution method. Tests were read at various time points. When the broth dilution method was used, the fi...

  12. Effects of species' similarity and dominance on the functional and phylogenetic structure of a plant meta-community.

    Science.gov (United States)

    Chalmandrier, L; Münkemüller, T; Lavergne, S; Thuiller, W

    2015-01-01

    Different assembly processes drive the spatial structure of meta-communities (beta-diversity). Recently, functional and phylogenetic diversities have been suggested as indicators of these assembly processes. Assuming that diversity is a good proxy for niche overlap, high beta-diversity along environmental gradients should be the result of environmental filtering while low beta-diversity should stem from competitive interactions. So far, studies trying to disentangle the relative importance of these assembly processes have provided mixed results. One reason for this may be that these studies often rely on a single measure of diversity and thus implicitly make a choice on how they account for species relative abundances and how species similarities are captured by functional traits or phylogeny. Here, we tested the effect of gradually scaling the importance of dominance (the weight given to dominant vs. rare species) and species similarity (the weight given to small vs. large similarities) on resulting beta-diversity patterns of an alpine plant meta-community. To this end, we combined recent extensions of the Hill numbers framework with Pagel's phylogenetic tree transformation approach. We included functional (based on the leaf-height-seed spectrum) and phylogenetic facets of beta-diversity in our analysis and explicitly accounted for effects of environmental and spatial covariates. We found that functional beta-diversity, was high when the same weight was given to dominant vs. rare species and to large vs. small species' similarities. In contrast, phylogenetic beta-diversity was low when greater weight was given to dominant species and small species' similarities. Those results suggested that different environments along the gradients filtered different species according to their functional traits, while, the same competitive lineages dominated communities across the gradients. Our results highlight that functional vs. phylogenetic facets, presence-absence vs

  13. Antimicrobial and antioxidant activities of phenolic compound extracted from new verbascum species growing in Turkey

    International Nuclear Information System (INIS)

    Saltan, F.Z.; Sokmen, M.; Akin, M.; Saracoglu, H.T.; Gokturk, R.S.; Ahmad, M.; Ali, M.; Shah, M.R.

    2011-01-01

    The aim of this study was to evaluate the antimicrobial and antioxidant potential of the aerial parts of four new Verbascum L. (Scrophulariaceae) species namely, Verbascum bellum Hub.-Mor., Verbascum detersile Boiss. and Heldr., Verbascum myriocarpum Boiss. and Heldr. and Verbascum pestalozzae Boiss., growing in Turkey. Plant materials were extracted with chloroform, ethylacetate and methanol for antimicrobial tests. These extracts were assayed against both gram-positive and gram-negative bacteria by the microdilution method. The minimum inhibitory concentrations of the Verbascum species varied between 150-0.59 mg/ml. In general, ethylacetate extract was effective for E. coli (ATCC 25922, 1.88 mg/ml). Ethyl acetate extract of V. pestalozzae exhibited the highest effect on P. aeroginosa (ATCC 29853, 0.59 mg/ml). The antioxidant capacity of the studied species was only tested with methanol extracts. Their antioxidant action was tested by DPPH and beta-carotene-linoleic acid methods. While V. pestalozzae (IC/sub 50/=15 mu g/ml) exhibited the strongest activity in DPPH assay, V. detersile and V. pestalozzae provided an excellent inhibition effect (100% RAA) in the beta-caroten- linoleic acid system. HPLC analysis of methanol extracts was also carried out to determine the composition of the phenolic compounds responsible for the activity. Methanol extracts were also subjected to HPLC analysis to determine their phenolic compound profile. (author)

  14. Antimicrobial Potential of Momordica charantia L. against Multiresistant Standard Species and Clinical Isolates.

    Science.gov (United States)

    Lucena Filho, José Hardman Sátiro de; Lima, Rennaly de Freitas; Medeiros, Ana Claudia Dantas de; Pereira, Jozinete Vieira; Granville-Garcia, Ana Flávia; Costa, Edja Maria Melo de Brito

    2015-11-01

    The aim of the present study was to evaluate the antibacterial and antifungal potential in vitro of Momordica charantia L. against the microorganisms of clinical interest (standard strains and multiresistant isolates) in order to aggregate scientific information in relation to its use as a therapeutic product. M. charantia L. plant material was acquired in municipality of Malta, Paraiba, Brazil. The extract was obtained through maceration, filtration and then concentrated under reduced pressure in a rotary evaporator, resulting in a dough, and was then dried in an oven for 72 hours at 40°C. Antimicrobial action of ethanolic extract of seed M. charantia L. was evaluated based on the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) against standard strains of bacteria, isolates multiresistant bacteria and Candida species, by microdilution in broth method. All organisms were sensitive to the extract, being considered strong antimicrobial activity (MIC and MBC/MFC charantia L. showed strong antimicrobial potential, with bactericidal and fungicidal profile, there is the prospect to constitute a new therapeutic strategy for the control of infections, particularly in multiresistant strains. The use of medicinal plants in treatment of infectious processes have an important function nowadays, due to the limitations of the use of synthetic antibiotics available, related specifically to the microbial resistance emergence.

  15. Species of Genus Ganoderma (Agaricomycetes) Fermentation Broth: A Novel Antioxidant and Antimicrobial Agent.

    Science.gov (United States)

    Cilerdzic, Jasmina; Kosanic, Marijana; Stajić, Mirjana; Vukojevic, Jelena; Ranković, Branislav

    2016-01-01

    The bioactivity of Ganoderma lucidum basidiocarps has been well documented, but there are no data on the medicinal properties of its submerged cultivation broth nor on the other species of the genus Ganoderma. Thus the aim of this study was to test the potential antimicrobial and antioxidant activity of fermentation broth obtained after submerged cultivation of G. applanatum, G. carnosum, and G. lucidum. DPPH· scavenging ability, total phenols, and flavonoid contents were measured to determine the antioxidative potential of Ganoderma spp. fermentation filtrates, whereas their antimicrobial potential was studied using the microdilution method. DPPH· scavenging activity of G. lucidum fermentation filtrates was significantly higher than that of G. applanatum and G. carnosum, with the maximum (39.67%) obtained from strain BEOFB 432. This filtrate also contained the highest concentrations of phenols (134.89 μg gallic acid equivalents/mL) and flavonoids (42.20 μg quercetin equivalent/mL). High correlations between the activity and phenol content in the extracts showed that these compounds were active components of the antioxidative activity. G. lucidum strain BEOFB 432 was the most effective antibacterial agent, whereas strain BEOFB 434 has proven to be the most effective antifungal agent. The study showed that Ganoderma spp. fermentation filtrates are novel potent antioxidative and antimicrobial agents that could be obtained more quickly and cheaper than basidiocarps.

  16. Antimicrobial peptides in the centipede Scolopendra subspinipes mutilans.

    Science.gov (United States)

    Yoo, Won Gi; Lee, Joon Ha; Shin, Younhee; Shim, Jae-Young; Jung, Myunghee; Kang, Byeong-Chul; Oh, Jaedon; Seong, Jiyeon; Lee, Hak Kyo; Kong, Hong Sik; Song, Ki-Duk; Yun, Eun-Young; Kim, In-Woo; Kwon, Young-Nam; Lee, Dong Gun; Hwang, Ui-Wook; Park, Junhyung; Hwang, Jae Sam

    2014-06-01

    The centipede Scolopendra subspinipes mutilans is an environmentally beneficial and medically important arthropod species. Although this species is increasingly applied as a reliable source of new antimicrobial peptides, the transcriptome of this species is a prerequisite for more rational selection of antimicrobial peptides. In this report, we isolated total RNA from the whole body of adult centipedes, S. subspinipes mutilans, that were nonimmunized and immunized against Escherichia coli, and we generated a total of 77,063 pooled contigs and singletons using high-throughput sequencing. To screen putative antimicrobial peptides, in silico analyses of the S. subspinipes mutilans transcriptome were performed based on the physicochemical evidence of length, charge, isoelectric point, and in vitro and in vivo aggregation scores together with the existence of continuous antimicrobial peptide stretches. Moreover, we excluded some transcripts that showed similarity with both previously known antimicrobial peptides and the human proteome, had a proteolytic cleavage site, and had downregulated expression compared with the nonimmunized sample. As a result, we selected 17 transcripts and tested their antimicrobial activity with a radial diffusion assay. Among them, ten synthetic peptides experimentally showed antimicrobial activity against microbes and no toxicity to mouse erythrocytes. Our results provide not only a useful set of antimicrobial peptide candidates and an efficient strategy for novel antimicrobial peptide development but also the transcriptome data of a big centipede as a valuable resource.

  17. Antimicrobial activity of Lactobacillus strains of chicken origin against bacterial pathogenss.

    Science.gov (United States)

    Dec, Marta; Puchalski, Andrzej; Nowaczek, Anna; Wernicki, Andrzej

    2016-03-01

    This study was conducted to identify and evaluate the antimicrobial activity of some Lactobacillus isolates of chicken origin. Among 90 isolates 14 Lactobacillus species were distinguished using MALDI-TOF mass spectrometry and 16S-ARDRA. The dominant species was L. salivarius (34.4%), followed by L. johnsonii (23.3%), L. crispatus (13.3%) and L. reuteri (11.1%). All lactobacilli were screened for antimicrobial activity against wild-type strains of Salmonella enterica, Escherichia coli, and Clostridium perfringens. Results from the agar slab method showed that all Lactobacillus isolates were able to produce active compounds on solid media with antagonistic properties against these pathogens. The highest sensitivity to lactobacilli was observed in C. perfringens strains, and the lowest in E. coli. Lactobacillus salivarius exhibited particularly strong antagonism towards all of the indicator bacteria. Strains of L. ingluviei and L. johnsonii and one strain of L. salivarius (10d) selectively inhibited the growth of C. perfringens. No antimicrobial activity of many Lactobacillus isolates was observed when cell-free culture supernatant was used in a well diffusion assay. All Lactobacillus isolates exhibited the ability to produce H2O2 and proved to be hydrophobic (excluding one of L. salivarius). [Int Microbiol 19(1):57-67 (2016)]. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  18. Isolation and antimicrobial acitivity of anthraquinones from some species of the lichen genus Xanthoria

    Directory of Open Access Journals (Sweden)

    LJ. KRSTIC

    2000-08-01

    Full Text Available The isolation of six anthraquinones, erythroglaucin, physcion, xanthorin, emodin, fallacinal and teloschistin, from three species of the lichen genus Xanthoria (X. fallax, X. elegans and X. policarpa is reported. Physcion is the dominant anthraquinone in all species. the anthraquinones showed broad-spectrum antifingal activity and selective activity against some phytopathogenic bacterial species.

  19. Antimicrobial resistance and resistance gene determinants in clinical Escherichia coli from different animal species in Switzerland.

    Science.gov (United States)

    Lanz, Roland; Kuhnert, Peter; Boerlin, Patrick

    2003-01-02

    Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.

  20. Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species.

    Science.gov (United States)

    Baker, Kate S; Dallman, Timothy J; Field, Nigel; Childs, Tristan; Mitchell, Holly; Day, Martin; Weill, François-Xavier; Lefèvre, Sophie; Tourdjman, Mathieu; Hughes, Gwenda; Jenkins, Claire; Thomson, Nicholas

    2018-04-13

    Horizontal gene transfer has played a role in developing the global public health crisis of antimicrobial resistance (AMR). However, the dynamics of AMR transfer through bacterial populations and its direct impact on human disease is poorly elucidated. Here, we study parallel epidemic emergences of multiple Shigella species, a priority AMR organism, in men who have sex with men to gain insight into AMR emergence and spread. Using genomic epidemiology, we show that repeated horizontal transfer of a single AMR plasmid among Shigella enhanced existing and facilitated new epidemics. These epidemic patterns contrasted with slighter, slower increases in disease caused by organisms with vertically inherited (chromosomally encoded) AMR. This demonstrates that horizontal transfer of AMR directly affects epidemiological outcomes of globally important AMR pathogens and highlights the need for integration of genomic analyses into all areas of AMR research, surveillance and management.

  1. Mesoscale distribution of dominant diatom species relative to the hydrographical field along the Antarctic Polar Front

    Science.gov (United States)

    Smetacek, Victor; Klaas, Christine; Menden-Deuer, Susanne; Rynearson, Tatiana A.

    The quantitative distribution of dominant phytoplankton species was mapped at high spatial resolution (15 km spacing) during a quasi-synoptic, mesoscale survey of hydrographical, chemical, pigment, and zooplankton fields carried out along the Antarctic Polar Front within a grid 140×130 km 2 during austral summer. A rapid assessment method for quantifying phytoplankton species by microscopy in concentrated samples on board enabled estimation of total biomass and that of dominant species at hourly sampling intervals. The biomass distribution pattern derived from this method was remarkably coherent and correlated very well with chlorophyll concentrations and the location of different water masses covered by the grid. A "background" chlorophyll concentration of 0.5 mg m -3 in the grid could be assigned to the uniformly distributed pico- and nanophytoplankton; all higher values (up to 2.0 mg m -3) were contributed by large diatoms. Three species complexes ( Chaetoceros atlanticus/dichaeta, Pseudo-nitzschia cf. Lineola, and Thalassiothrix antarctica) contributed about one-third each to the biomass. Although all species were found throughout the study area, distinct patterns in abundance emerged: The Thalassiothrix maximum was located north of the frontal jet, Chaetoceros biomass was highest along the jet, and Pseudo-nitzschia was the most uniformly distributed of the three taxa. Since the meridional pattern of biomass and species composition persisted for about 5 weeks, despite heavy grazing pressure of small copepods, we hypothesize that the dominant species reflect the highest degree of grazer protection in the assemblage. This is accomplished by large size, needle-shaped cells, and long spines armed with barbs. We suggest that these persistent species sequester the limiting nutrient—iron—from the assemblage of smaller, less-defended species that must hence have higher turn-over rates.

  2. Antimicrobial Susceptibility Patterns of Brachyspira Species Isolated in Taiwan.

    Science.gov (United States)

    Yeh, Jih-Ching; Lo, Dan-Yuan; Chang, Shao-Kuang; Kuo, Hung-Chih

    2018-03-13

    Some members of the Brachyspira genus cause diseases such as swine dysentery (SD) and porcine intestinal (or colonic) spirochetosis. Severe economic losses are caused by decreased feed intake and increased feed conversion ratio, as well as costs associated with treatment and death. A loss of clinical efficacy of some antimicrobial agents authorized for treating SD has been observed in many countries. The aim of this study was to analyze the antimicrobial susceptibility of Brachyspira isolated from Taiwan and to investigate the mechanism of decreased susceptibility to macrolides. A total of 55 Brachyspira isolates obtained from the grower-finisher period were evaluated in this study. These isolates included B. hyodysenteriae (n = 37), B. murdochii (n = 11), B. pilosicoli (n = 5), B. intermedia (n = 1), and B. innocens (n = 1). Antimicrobial susceptibility testing was performed to examine 12 selected antimicrobial agents. The results showed that the 50% and 90% minimum inhibitory concentration (MIC) values of the tested macrolides were all >256 μg/ml. The MIC 50 of lincomycin, tiamulin, carbadox, olaquindox, ampicillin, amoxicillin, doxycycline, oxytetracycline, and gentamicin were 32, 1, ≤0.125, ≤0.125, 0.5, 0.25, 2, 2, and 2 μg/ml. The genetic basis of the decreased susceptibility to tylosin and lincomycin in Brachyspira spp. was investigated and the results showed a possible connection to the mutations at position A2058 and G2032 of the 23S rRNA gene. These findings demonstrated that, in Taiwan, there may be a decrease in susceptibility of Brachyspira spp. to antimicrobials commonly used for the treatment of SD.

  3. Antimicrobial activity of the pygidial gland secretion of three ground beetle species (Insecta: Coleoptera: Carabidae)

    Science.gov (United States)

    Nenadić, Marija; Soković, Marina; Glamočlija, Jasmina; Ćirić, Ana; Perić-Mataruga, Vesna; Ilijin, Larisa; Tešević, Vele; Vujisić, Ljubodrag; Todosijević, Marina; Vesović, Nikola; Ćurčić, Srećko

    2016-04-01

    The antimicrobial properties of the pygidial gland secretions released by the adults of the three ground beetle species, Carabus ullrichii, C. coriaceus, and Abax parallelepipedus, have been tested. Microdilution method was applied for detection of minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), and minimal fungicidal concentrations (MFCs). Additionally, morpho-histology of the pygidial glands is investigated. We have tested 16 laboratory and clinical strains of human pathogens—eight bacterial both gram-positive and gram-negative species and eight fungal species. The pygidial secretion samples of C. ullrichii have showed the strongest antimicrobial effect against all strains of treated bacteria and fungi. Staphylococcus aureus, Lysteria monocytogenes, and Salmonella typhimurium proved to be the most sensitive bacterial strains. Penicillium funiculosum proved to be the most sensitive micromycete, while P. ochrochloron and P. verrucosum var . cyclopium the most resistant micromycetes. The pygidial secretion of C. coriaceus has showed antibacterial potential solely against Pseudomonas aeruginosa and antifungal activity against Aspergillus fumigatus, A. versicolor, A. ochraceus, and P. ochrochloron. Antibacterial properties of pygidial gland secretion of A. parallelepipedus were achieved against P. aeruginosa, while antifungal activity was detected against five of the eight tested micromycetes (A. fumigatus, A. versicolor, A. ochraceus, Trichoderma viride, and P. verrucosum var . cyclopium). Commercial antibiotics Streptomycin and Ampicillin and mycotics Ketoconazole and Bifonazole, applied as the positive controls, showed higher antibacterial/antifungal properties for all bacterial and fungal strains. The results of this observation might have a significant impact on the environmental aspects and possible medical purpose in the future.

  4. Potential enterotoxicity and antimicrobial resistance pattern of Aeromonas species isolated from pet turtles and their environment.

    Science.gov (United States)

    Wimalasena, S H M P; Shin, Gee-Wook; Hossain, Sabrina; Heo, Gang-Joon

    2017-05-23

    To investigate the potential enterotoxicity and antimicrobial resistance of aeromonads from pet turtles as a risk for human infection, one hundred and two Aeromonas spp. were isolated from the feces, skin and rearing environments of pet turtles and identified by biochemical and gyrB sequence analyses. Aeromonas enteropelogenes was the predominant species among the isolates (52.9%) followed by A. hydrophila (32.4%), A. dharkensis (5.9%), A. veronii (4.9%) and A. caviae (3.9%). Their potential enterotoxicities were evaluated by PCR assays for detecting genes encoding cytotoxic enterotoxin (act) and two cytotonic enterotoxins (alt and ast). 75.8% of A. hydrophila isolates exhibited the act + /alt + /ast + genotype, whereas 94.4% of A. enteropelogenes isolates were determined to be act - /alt - /ast - . In an antimicrobial susceptibility test, most isolates were susceptible to all tested antibiotics except amoxicillin, ampicillin, cephalothin, chloramphenicol and tetracycline. Non-susceptible isolates to penicillins (ampicillin and amoxicillin) and fluoroquinolones (ciprofloxacin and norfloxacin) were frequently observed among the A. enteropelogenes isolates. Few isolates were resistant to imipenem, amikacin, ceftriaxone and cefotaxime. Collectively, these results suggest that pet turtles may pose a public health risk of infection by enterotoxigenic and antimicrobial resistant Aeromonas strains.

  5. Temperate forest development during secondary succession: effects of soil, dominant species and management

    NARCIS (Netherlands)

    Bose, A.K.; Schelhaas, M.; Mazerolle, M.J.; Bongers, F.

    2014-01-01

    With the increase in abandoned agricultural lands in Western Europe, knowledge on the successional pathways of newly developing forests becomes urgent. We evaluated the effect of time, soil type and dominant species type (shade tolerant or intolerant) on the development during succession of three

  6. Characterization of coagulase-negative staphylococcus species from cows' milk and environment based on bap, icaA, and mecA genes and phenotypic susceptibility to antimicrobials and teat dips.

    Science.gov (United States)

    Piessens, V; De Vliegher, S; Verbist, B; Braem, G; Van Nuffel, A; De Vuyst, L; Heyndrickx, M; Van Coillie, E

    2012-12-01

    The aim of this study was to investigate whether the main coagulase-negative staphylococci (CNS) species involved in bovine intramammary infections (IMI) possess specific characteristics that promote colonization of the udder. Virulence markers associated with biofilm formation, antimicrobial resistance, and biocide tolerance were compared between typically contagious CNS species (Staphylococcus chromogenes, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus simulans) and those rarely causing IMI (Staphylococcus sciuri, Staphylococcus equorum, and others) to find possible associations with pathogenicity. Coagulase-negative staphylococci isolates (n=366) belonging to 22 different species were analyzed by PCR for the presence of the biofilm-associated genes bap and icaA, and the methicillin resistance gene mecA. A selection of 82 isolates was additionally tested for their susceptibility to 5 antibiotics and 2 commercial teat dip products. Minimum inhibitory concentrations of antimicrobials were determined by Etest (AB bioMérieux, Marcy l'Etoile, France), and a microdilution method was optimized to determine minimum biocidal concentrations of teat dips. The bap, icaA, and mecA genes were detected significantly more in isolates from CNS species typically living in the cows' environment than in isolates from IMI-causing species. Antimicrobial resistance was mainly against erythromycin (23%) or oxacillin (16%), and was detected more often in the environmental species. The isolates least susceptible to the teat dips belonged to the IMI-causing species Staph. chromogenes and Staph. simulans. We concluded that carriage of biofilm genes and antimicrobial resistance were not associated with the ability to colonize the mammary gland because free-living CNS species constituted a more significant reservoir of biofilm and resistance determinants than did IMI-causing species. In contrast, increased tolerance to biocides may favor the establishment of

  7. Molecular and antimicrobial susceptibility profiling of atypical Streptococcus species from porcine clinical specimens.

    Science.gov (United States)

    Moreno, Luisa Z; Matajira, Carlos E C; Gomes, Vasco T M; Silva, Ana Paula S; Mesquita, Renan E; Christ, Ana Paula G; Sato, Maria Inês Z; Moreno, Andrea M

    2016-10-01

    The Streptococcus species present broad phenotypic variation, making identification difficult using only traditional microbiological methods. Even though Streptococcus suis is the most important species for the worldwide swine industry, other Streptococcus species appear to be able to cause disease in swine and could represent a higher underestimated risk for porcine health. The aim of this study was to identify Streptococcus-like isolates by MALDI-TOF MS and 16S rRNA sequencing and further molecular and antibiotic susceptibility characterization of the atypical Streptococcus species capable of causing disease in swine. Fifty presumptive Streptococcus isolates from diseased pigs isolated from different Brazilian States between 2002 and 2014 were evaluated. Among the studied isolates, 26% were identified as Streptococcus hyovaginalis, 24% as Streptococcus plurianimalium, 12% as Streptococcus alactolyticus, 10% as Streptococcus hyointestinalis, and the remaining isolates belonged to Streptococcus henryi (6%), Streptococcus thoraltensis (6%), Streptococcus gallolyticus (6%), Streptococcus gallinaceus (4%), Streptococcus sanguinis (4%), and Streptococcus mitis (2%). The Streptococcus isolates were successfully identified by spectral cluster analysis and 16S rRNA sequencing with 96% of concordance between the techniques. The SE-AFLP analysis also supported Streptococcus species distinction and enabled further observation of higher genetic heterogeneity intra-species. The identified Streptococcus species presented variable MIC values to β-lactams, enrofloxacin and florfenicol, and high resistance rates to tetracyclines and macrolides, which appear to be directly related to the industry's antimicrobial usage and resistance selection. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Antimicrobial activity of yeasts against some pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Gamal Younis

    2017-08-01

    Full Text Available Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR for detection of khs (kievitone hydratase and pelA (pectate degrading enzyme genes. Results: The recovery rate of yeasts from sausage was 20% (2/10 followed by kareish cheese, processed cheese, and butter 10% (1/10 each as well as raw milk 9% (9/100, and fruit yoghurt 30% (6/20. Different yeast species were recovered, namely, Candida kefyr (5 isolates, Saccharomyces cerevisiae (4 isolates, Candida intermedia (3 isolates, Candida tropicalis (2 isolates, Candida lusitaniae (2 isolates, and Candida krusei (1 isolate. khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food.

  9. Is browning a trigger for dominance of harmful cyanobacteria species in lakes?

    Science.gov (United States)

    Freeman, E. C.; Creed, I. F.

    2017-12-01

    "Browning" is the increase of dissolved organic matter (DOM) loads into aquatic ecosystems. It is typified by an increase in the color of surface waters as well as an increase in iron (Fe) concentrations. Browning, has been observed in boreal and temperate lakes of the northern hemisphere. This phenomena has implications for freshwater ecosystems by shifting microbial community compositions, influencing the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the anabolic food web. We hypothesize that browning of lake waters will increase the dominance of particular species of cyanobacteria with adaptations to lower light, mixotrophic tendencies, and specialized Fe-uptake mechanisms. Here, we present results from a high resolution real-time monitoring campaign of an Ontario lake during the growing season where the toxin-producing cyanobacteria Plantothrix Isothrix is the dominant species. We observe the changes in phytoplankton composition, Fe concentrations, and DOM. These observations are paired with a series of controlled in-lake bottle bioassay experiments that test the role of Fe in controlling the growth of Planktothix Isothrix. In a three-way factorial design, with additions of the macronutrients phosphorus and nitrogen, we explore the effects of Fe removal and addition on the phytoplankton community composition. Understanding the interaction between the effects of browning and toxin-producing phytoplankton gives insight into the dominance of cyanobacteria in a browner world, and the potential risks to aquatic ecosystems and the services they provide.

  10. External immunity in ant societies: sociality and colony size do not predict investment in antimicrobials

    Science.gov (United States)

    Halawani, Omar; Pearson, Bria; Mathews, Stephanie; López-Uribe, Margarita M.; Dunn, Robert R.; Smith, Adrian A.

    2018-01-01

    Social insects live in dense groups with a high probability of disease transmission and have therefore faced strong pressures to develop defences against pathogens. For this reason, social insects have been hypothesized to invest in antimicrobial secretions as a mechanism of external immunity to prevent the spread of disease. However, empirical studies linking the evolution of sociality with increased investment in antimicrobials have been relatively few. Here we quantify the strength of antimicrobial secretions among 20 ant species that cover a broad spectrum of ant diversity and colony sizes. We extracted external compounds from ant workers to test whether they inhibited the growth of the bacterium Staphylococcus epidermidis. Because all ant species are highly social, we predicted that all species would exhibit some antimicrobial activity and that species that form the largest colonies would exhibit the strongest antimicrobial response. Our comparative approach revealed that strong surface antimicrobials are common to particular ant clades, but 40% of species exhibited no antimicrobial activity at all. We also found no correlation between antimicrobial activity and colony size. Rather than relying on antimicrobial secretions as external immunity to control pathogen spread, many ant species have probably developed alternative strategies to defend against disease pressure. PMID:29515850

  11. Epistasis modifies the dominance of loci causing hybrid male sterility in the Drosophila pseudoobscura species group.

    Science.gov (United States)

    Chang, Audrey S; Noor, Mohamed A F

    2010-01-01

    Speciation, the evolution of reproductive isolation between populations, serves as the driving force for generating biodiversity. Postzygotic barriers to gene flow, such as F(1) hybrid sterility and inviability, play important roles in the establishment and maintenance of biological species. F(1) hybrid incompatibilities in taxa that obey Haldane's rule, the observation that the heterogametic sex suffers greater hybrid fitness problems than the homogametic sex, are thought to often result from interactions between recessive-acting X-linked loci and dominant-acting autosomal loci. Because they play such prominent roles in producing hybrid incompatibilities, we examine the dominance and nature of epistasis between alleles derived from Drosophila persimilis that confer hybrid male sterility in the genetic background of its sister species, D. pseudoobscura bogotana. We show that epistasis elevates the apparent dominance of individually recessive-acting QTL such that they can contribute to F(1) hybrid sterility. These results have important implications for assumptions underlying theoretical models of hybrid incompatibilities and may offer a possible explanation for why, to date, identification of dominant-acting autosomal "speciation genes" has been challenging.

  12. Antimicrobials of Bacillus species: mining and engineering

    NARCIS (Netherlands)

    Zhao, Xin

    2016-01-01

    Bacillus sp. have been successfully used to suppress various bacterial and fungal pathogens. Due to the wide availability of whole genome sequence data and the development of genome mining tools, novel antimicrobials are being discovered and updated,;not only bacteriocins, but also NRPs and PKs. A

  13. Prevalence and antimicrobial resistance of listeria species isolated from different types of raw meat in Iran.

    Science.gov (United States)

    Rahimi, Ebrahim; Yazdi, Farzad; Farzinezhadizadeh, Hussein

    2012-12-01

    Listeria and particularly Listeria monocytogenes are important foodborne pathogens that can cause listeriosis and severe complications in immunocompromised individuals, children, pregnant women, and the elderly. The objective of this study was to determine the prevalence of Listeria spp. in raw meat in Iran. From July 2010 to November 2011, a total of 1,107 samples of various raw meats were obtained from randomly selected retail butcher shops. The results of conventional bacteriologic and PCR methods revealed that 141 samples (12.7%) were positive for Listeria spp. The highest prevalence of Listeria was found in raw buffalo meat samples (7 of 24 samples; 29.2%) followed by quail meat (26 of 116 samples; 22.4%), partridge meat (13 of 74 samples; 17.6%), and chicken meat (27 of 160 samples; 16.9%). The most common species recovered was Listeria innocua (98 of 141 strains; 75.9 % ); the remaining isolates were L. monocytogenes (19.1% of strains), Listeria welshimeri (6.4% of strains), Listeria seeligeri (3.5% of strains), and Listeria grayi (1.4% of strains). Susceptibilities of the 141 strains to 11 antimicrobial drugs were determined using the disk diffusion assay. Overall, 104 (73.8%) of the Listeria isolates were resistant to one or more antimicrobials, and 17.0% of the isolates were resistant to three or more antimicrobials. The present study provides the first baseline data on the prevalence of Listeria in raw meat derived from sheep, goat, buffalo, quail, partridge, chicken, and ostrich in Iran and the susceptibility of these isolates to antimicrobials.

  14. Comparative in vitro activities of nemonoxacin, doripenem, tigecycline and 16 other antimicrobials against Nocardia brasiliensis, Nocardia asteroides and unusual Nocardia species.

    Science.gov (United States)

    Lai, Chih-Cheng; Tan, Che-Kim; Lin, Sheng Hsiang; Liao, Chun-Hsing; Chou, Chien-Hong; Hsu, Hsiao-Leng; Huang, Yu-Tsung; Hsueh, Po-Ren

    2009-07-01

    The aim of this study was to assess the in vitro activities of nemonoxacin (a novel non-fluorinated quinolone), doripenem, tigecycline and 16 other antimicrobial agents against the Nocardia species. MICs of 19 antimicrobial agents for 125 clinical isolates of the Nocardia species were determined by the broth microdilution method. Nocardia brasiliensis (n = 61), Nocardia asteroides (n = 45), Nocardia flavorosea (n = 5), Nocardia otitidiscaviarum (n = 4), Nocardia farcinica (n = 3), Nocardia beijingensis (n = 2), Nocardia puris (n = 2) and one each of Nocardia nova, Nocardia jinanensis and Nocardia takedensis were identified based on a 16S rRNA gene sequencing analysis. For N. brasiliensis isolates, the MIC(90)s of the tested quinolones were in the order nemonoxacin Nocardia species isolates, nemonoxacin showed good activity with the lowest MIC(90) of the tested quinolones. Among the four tested carbapenems, doripenem and meropenem had comparatively lower MIC(90)s. The results of this in vitro study suggest that nemonoxacin, linezolid and tigecycline show promise as treatment options for nocardiosis. Further investigation of their clinical role is warranted.

  15. Synthesis, characterization and antimicrobial activity of mixed ...

    African Journals Online (AJOL)

    Synthesis, characterization and antimicrobial activity of mixed ascorbic acid - nicotinamide metal complexes. ... The result of the antimicrobial studies showed that the mixed complexes have higher inhibitory activity than the original ligands against the tested bacteria and fungi species. KEY WORDS: Ascorbic acid, ...

  16. Frequency of endophytic fungi isolated from Dendrobium crumenatum (Pigeon orchid and antimicrobial activity

    Directory of Open Access Journals (Sweden)

    WIBOWO MANGUNWARDOYO

    2012-01-01

    Full Text Available Mangunwardoyo W, Suciatmih, Gandjar I. 2012. Frequency of endophytic fungi isolated from Dendrobium crumenatum (Pigeon orchid and antimicrobial activity. Biodiversitas 13: 34-39. The aims of this research was to isolate and study the frequency of endophytic fungi from roots, bulbous, stems, and leaves of Dendrobium crumenatum Sw. (pigeon orchid collected from Tanah Baru housing area, Bogor Botanical Garden, and Herbarium Bogoriense; and to assess for antimicrobial activity against Candida albicans ATCC 2091, Candida tropicalis LIPIMC 203, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6633 and Staphylococcus aureus ATCC 25923. Twelve species of endophytic fungi were identified from 60 samples obtained from D. crumenatum. Guignardia endophyllicola (anamorph: Phyllosticta capitalensis were the dominant endophytic fungi. Screening of the anti-microorganism activity of the endophytic fungi revealed that Fusarium nivale inhibited C albicans and C. tropicalis. All specimens did not inhibit B. subtilis, E. coli, and S. aureus.

  17. Isolation and identification of antimicrobial-producing lactic acid ...

    African Journals Online (AJOL)

    , Proteus species, Staphylococcus aureus, Salmonella species, Pseudomonas flourescence, P. aeruginosa, Serratia species and Pediococcus acidilactici. Of the 42 antimicrobial producing isolates characterized, 16, 12, 6 and 8 were identified ...

  18. Polyphenolic Content, Antioxidant and Antimicrobial Activities of Lycium barbarum L. and Lycium chinense Mill. Leaves

    Directory of Open Access Journals (Sweden)

    Andrei Mocan

    2014-07-01

    Full Text Available This study was performed to evaluate the in vitro antioxidant and antimicrobial activities and the polyphenolic content of Lycium barbarum L. and L. chinense Mill. leaves. The different leave extracts contain important amounts of flavonoids (43.73 ± 1.43 and 61.65 ± 0.95 mg/g, respectively and showed relevant antioxidant activity, as witnessed by the quoted methods. Qualitative and quantitative analyses of target phenolic compounds were achieved using a HPLC-UV-MS method. Rutin was the dominant flavonoid in both analysed species, the highest amount being registered for L. chinense. An important amount of chlorogenic acid was determined in L. chinense and L. barbarum extracts, being more than twice as high in L. chinense than in L. barbarum. Gentisic and caffeic acids were identified only in L. barbarum, whereas kaempferol was only detected in L. chinense. The antioxidant activity was evaluated by DPPH, TEAC, hemoglobin ascorbate peroxidase activity inhibition (HAPX and inhibition of lipid peroxidation catalyzed by cytochrome c assays revealing a better antioxidant activity for the L. chinense extract. Results obtained in the antimicrobial tests revealed that L. chinense extract was more active than L. barbarum against both Gram-positive and Gram-negative bacterial strains. The results suggest that these species are valuable sources of flavonoids with relevant antioxidant and antimicrobial activities.

  19. Campylobacter Species Isolated from Pigs in Grenada Exhibited Novel Clones: Genotypes and Antimicrobial Resistance Profiles of Sequence Types.

    Science.gov (United States)

    Amadi, Victor A; Matthew-Belmar, Vanessa; Subbarao, Charmarthy; Kashoma, Isaac; Rajashekara, Gireesh; Sharma, Ravindra; Hariharan, Harry; Stone, Diana

    2017-07-01

    Infections caused by Campylobacter species pose a severe threat to public health worldwide. However, in Grenada, the occurrence and characteristics of Campylobacter in food animals, including pigs, remain mostly unknown. In this study, we identified the sequence types (STs) of Campylobacter from young healthy pigs in Grenada and compared the results with previous studies in Grenada and other countries. Antimicrobial resistance patterns and diversity of the Campylobacter clones were evaluated. Ninety-nine Campylobacter isolates (97 Campylobacter coli and 2 Campylobacter jejuni) were analyzed by multilocus sequence typing. Eighteen previously reported STs and 13 novel STs were identified. Of the 18 previously reported STs, eight STs (ST-854, -887, -1068, -1096, -1445, -1446, 1556, and -1579) have been associated with human gastroenteritis in different geographical regions. Among these 18 previously reported STs, ST-1428, -1096, -1450, and -1058 predominated and accounted for 18.2%, 14.1%, 11.1%, and 8.1% of all isolates, respectively. Of the 13 novel STs, ST-7675 predominated and accounted for 20% (4 of 20 isolates), followed by ST-7678, -7682, and -7691, each accounting for 10% (2 of 20 isolates). Antimicrobial resistance testing using Epsilometer test revealed a low resistance rate (1-3%) of all C. coli/jejuni STs to all antimicrobials except for tetracycline (1-10.1%). Some of the C. coli STs (13 STs, 24/99 isolates, 24.2%) were resistant to multiple antimicrobials. This is the first report on antimicrobial resistance and multidrug resistance patterns associated with Campylobacter STs recovered from swine in Grenada. This study showed that pigs in Grenada are not major reservoirs for STs of C. coli and C. jejuni that are associated with human gastroenteritis worldwide.

  20. Chemical analysis of reactive species and antimicrobial activity of/nwater treated by nanosecond pulsed DBD air plasma

    Czech Academy of Sciences Publication Activity Database

    Laurita, R.; Barbieri, D.; Gherardi, M.; Colombo, V.; Lukeš, Petr

    2015-01-01

    Roč. 3, č. 2 (2015), s. 53-61 ISSN 2212-8166 R&D Projects: GA MŠk(CZ) LD14080 Grant - others:European Cooperation in Science and Technology(XE) COST TD1208 Institutional support: RVO:61389021 Keywords : Dielectric barrier discharge * Plasma activated water * Reactive species * Peroxynitrite * Phenol degradation * Candida albicans * Staphylococcus aureus * Antimicrobial activity * Nosocomial infections Subject RIV: BL - Plasma and Gas Discharge Physics http://www.sciencedirect.com/science/article/pii/S2212816615300081

  1. Mapping changing distributions of dominant species in oil-contaminated salt marshes of Louisiana using imaging spectroscopy

    Science.gov (United States)

    Beland, Michael; Roberts, Dar A.; Peterson, Seth H.; Biggs, Trent W.; Kokaly, Raymond F.; Piazza, Sarai; Roth, Keely L.; Khanna, Shruti; Ustin, Susan L.

    2016-01-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes.Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010 to 2012 for oiled and non-oiled shorelines.CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28 m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%).Marshes that were heavily contaminated with oil exhibited variable responses from 2010 to 2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines

  2. Antimicrobial resistance of Staphylococcus species isolated from Lebanese dairy-based products.

    Science.gov (United States)

    Zouhairi, O; Saleh, I; Alwan, N; Toufeili, I; Barbour, E; Harakeh, S

    2012-12-04

    The study evaluated the antimicrobial resistance of molecularly characterized strains of Staphylococcus aureus and S. saprophyticus isolated from 3 Lebanese dairy-based food products that are sometimes consumed raw: kishk, shanklish and baladi cheese. Suspected Staphylococcus isolates were identified initially using standard biochemical tests, then strains that were confirmed by polymerase chain reaction (29 S. aureus and 17 S. saprophyticus) were evaluated for their susceptibility to different antimicrobials. The highest levels of contamination with staphylococci were in baladi cheese. Resistance rates ranged from 67% to gentamicin to 94% to oxacillin and clindamycin. The results suggest that these locally made dairy-based foods may act as vehicles for the transmission of antimicrobial-resistant Staphylococcus spp.

  3. Using Imaging Spectroscopy to Map Changing Distributions of Dominant Species in Oil-Contaminated Salt Marshes of Louisiana

    Science.gov (United States)

    Beland, M. C.; Roberts, D. A.; Peterson, S.; Biggs, T. W.; Kokaly, R. F.; Piazza, S.; Roth, K. L.; Khanna, S.; Ustin, S.

    2016-12-01

    The April 2010 Deepwater Horizon (DWH) oil spill was the largest coastal spill in U.S. history. Monitoring subsequent change in marsh plant community distributions is critical to assess ecosystem impacts and to establish future coastal management priorities. Strategically deployed airborne imaging spectrometers, like the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), offer the spectral and spatial resolution needed to differentiate plant species. However, obtaining satisfactory and consistent classification accuracies over time is a major challenge, particularly in dynamic intertidal landscapes. Here, we develop and evaluate an image classification system for a time series of AVIRIS data for mapping dominant species in a heavily oiled salt marsh ecosystem. Using field-referenced image endmembers and canonical discriminant analysis (CDA), we classified 21 AVIRIS images acquired during the fall of 2010, 2011 and 2012. Classification results were evaluated using ground surveys that were conducted contemporaneously to AVIRIS collection dates. We analyzed changes in dominant species cover from 2010-2012 for oiled and non-oiled shorelines. CDA discriminated dominant species with a high level of accuracy (overall accuracy = 82%, kappa = 0.78) and consistency over three imaging dates (overall2010 = 82%, overall2011 = 82%, overall2012 = 88%). Marshes dominated by Spartina alterniflora were the most spatially abundant in shoreline zones (≤ 28m from shore) for all three dates (2010 = 79%, 2011 = 61%, 2012 = 63%), followed by Juncus roemerianus (2010 = 11%, 2011 = 19%, 2012 = 17%) and Distichlis spicata (2010 = 4%, 2011 = 10%, 2012 = 7%). Marshes that were heavily contaminated with oil exhibited variable responses from 2010-2012. Marsh vegetation classes converted to a subtidal, open water class along oiled and non-oiled shorelines that were similarly situated in the landscape. However, marsh loss along oil-contaminated shorelines doubled that of non

  4. Antimicrobial activities of some Euphorbia species | Kirbag | African ...

    African Journals Online (AJOL)

    The antimicrobial activities of these extracts were examined on test microorganisms as follows: Staphylococcus aureus COWAN 1, Bacillus megaterium DSM 32, Proteus vulgaris FMC 1, Klebsiella pneumonia FMC 5, Escherichia coli ATCC 25922, Pseudomonas aeruginosa DSM 50071, Candida albicans FMC 17, Candida ...

  5. Rearing room affects the non-dominant chicken caecum microbiota, while diet affects the dominant microbiota

    Directory of Open Access Journals (Sweden)

    Jane eLudvigsen

    2016-02-01

    Full Text Available The combined effect of environment and diet in shaping the gut microbiota remain largely unknown. This knowledge, however, is important for animal welfare and safe food production. For these reasons we determined the effect of experimental units on the chicken caecum microbiota for a full factorial experiment where we tested the combined effect of room, diet and antimicrobial treatment. By Illumina Deep sequencing of the 16S rRNA gene, we found that diet mainly affected the dominant microbiota, while the room as a proxy for environment had major effects on the non-dominant microbiota (p=0.006, Kruskal Wallis test. We therefore propose that the dominant and non-dominant microbiotas are shaped by different experimental units. These findings have implications both for our general understanding of the host-associated microbiota, and for setting up experiments related to specific targeting of pathogens.

  6. Do species differ in their ability to coexist with the dominant alien Lupinus polyphyllus? A comparison between two distinct invaded ranges and a native range

    Directory of Open Access Journals (Sweden)

    Martin Hejda

    2013-06-01

    Full Text Available The community-level impacts of invasive plants are likely to vary depending on the character of native species of the target communities and their ability to thrive within the stands of the dominant alien invader. Therefore, I examined the response of native species richness to the cover of the dominant alien Lupinus polyphyllus in two distinct invaded ranges: Czech Republic (Central Europe and New Zealand. I compared the relation between native species richness and the cover of the dominant alien L. polyphyllus with that in its native range, Pacific Northwest, USA.In the native range, I found no response of native species richness to the cover of L. polyphyllus. In the Czech Republic (central Europe, the richness of native species related to it negativelly, but the relation was only marginally significant. Contrary to that, the richness of species native to New Zealand related to the cover of L. polyphyllus strongly negatively and the negative relation was significantly stronger than that of species native to Europe.Of the two invaded ranges, species native to New Zealand have been documented to be much more vulnerable to the conditions associated with the invasion and dominance of L. polyphyllus, compared to species native to central Europe. This principle has been shown both across these two invaded ranges and in New Zealand, where the aliens of european origin successfully coexist with the dominant invasive alien L. polyphyllus. Similarly, species in the native range of L. polyphyllus showed no relation to its cover, indicating their ability to thrive even in dense stands of this dominant species.

  7. The Rising Dominance of Shigella sonnei: An Intercontinental Shift in the Etiology of Bacillary Dysentery.

    Directory of Open Access Journals (Sweden)

    Corinne N Thompson

    Full Text Available Shigellosis is the major global cause of dysentery. Shigella sonnei, which has historically been more commonly isolated in developed countries, is undergoing an unprecedented expansion across industrializing regions in Asia, Latin America, and the Middle East. The precise reasons underpinning the epidemiological distribution of the various Shigella species and this global surge in S. sonnei are unclear but may be due to three major environmental pressures. First, natural passive immunization with the bacterium Plesiomonas shigelloides is hypothesized to protect populations with poor water supplies against S. sonnei. Improving the quality of drinking water supplies would, therefore, result in a reduction in P. shigelloides exposure and a subsequent reduction in environmental immunization against S. sonnei. Secondly, the ubiquitous amoeba species Acanthamoeba castellanii has been shown to phagocytize S. sonnei efficiently and symbiotically, thus allowing the bacteria access to a protected niche in which to withstand chlorination and other harsh environmental conditions in temperate countries. Finally, S. sonnei has emerged from Europe and begun to spread globally only relatively recently. A strong selective pressure from localized antimicrobial use additionally appears to have had a dramatic impact on the evolution of the S. sonnei population. We hypothesize that S. sonnei, which exhibits an exceptional ability to acquire antimicrobial resistance genes from commensal and pathogenic bacteria, has a competitive advantage over S. flexneri, particularly in areas with poorly regulated antimicrobial use. Continuing improvement in the quality of global drinking water supplies alongside the rapid development of antimicrobial resistance predicts the burden and international distribution of S. sonnei will only continue to grow. An effective vaccine against S. sonnei is overdue and may become one of our only weapons against this increasingly dominant and

  8. Antimicrobial activity and chemical constituents of essential oils and oleoresins extracted from eight pepper species

    Directory of Open Access Journals (Sweden)

    Laira Martinelli

    Full Text Available ABSTRACT: Essential oils are the most important compounds produced during secondary metabolism in aromatic plants. Essential oils are volatile, have characteristic odor and are used as defensive agents by plants. In pepper, it is possible to say that essential oils are the “flavor fingerprint” of each species. In the present article, eight species of pepper were studied in order to extract their essential oils and oleoresins, test their antibacterial and antifungal activities and also to identify the compounds present in the most bioactive samples. Results demonstrated that two essential oils [Pimenta dioica (L. Merr. and Schinus terebinthifolius] and three oleoresins (Schinus terebinthifolius and Piper nigrum white and black recorded significant antimicrobial activity. These active essential oils and oleoresins are interesting for use in biotechnological processes employed in food, pharmaceutical and other industries.

  9. Use and Misuse of Antimicrobial Drugs in Poultry and Livestock: Mechanisms of Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Toni Poole* and Cynthia Sheffield

    2013-07-01

    Full Text Available Food safety begins on the farm with management practices that contribute to an abundant, safe, and affordable food supply. To attain this goal antimicrobials have been used in all stages of food animal production in the United States and elsewhere around the world at one time or another. Among food–production animals antimicrobials are used for growth promotion, disease prophylaxis or disease treatment, and are generally administered to the entire flock or herd. Over many decades bacteria have become resistant to multiple antimicrobial classes in a cumulative manner. Bacteria exhibit a number of well characterized mechanisms of resistance to antimicrobials that include: 1 modification of the antimicrobial; 2 alteration of the drug target; 3 decreased access of drug to target; and 4 implementation of an alternative metabolic pathway not affected by the drug. The mechanisms of resistance are complex and depend on the type of bacterium involved (e.g. Gram–positive or Gram–negative and the class of drug. Some bacterial species have accumulated resistance to nearly all antimicrobial classes due to a combination of intrinsic and acquired processes. This has and will continue to lead to clinical failures of antimicrobial treatment in both human and animal medicine.

  10. Antimicrobial susceptibility pattern of acinetobacter species-one year experience in a tertiary care setting

    International Nuclear Information System (INIS)

    Qureshi, Z.A.; Abbasi, S.A.; Mirza, I.A.; Malik, N.; Sattar, A.

    2012-01-01

    Objective: To find out antimicrobial susceptibility pattern of Acinetobacter species isolated from 1 January 2009 through 31 December 2009 at Department of Microbiology, Armed Forces Institute of Pathology Rawalpindi. Materials and Methods: A total of 276 isolates of Acinetobacter spp yielded from various clinical specimens during the study period were included Routine conventional methods were used to identify various species of Acinetobacter and modified Kirby-Bauer disk diffusion method was used for susceptibility testing. Out of total 276 isolates, 176 (63.8%) turned out to be Acinetobacter baumannii and 100 (36.2%) were Acinetobacter johnsonii. Overall sensitivity of Acinetobacter spp against piperacillin/sulbactam, tigecycline, sulbactam/cefoperazone, piperacillin/tazobactam, imipenem, doxycycline, ceftazidime, ciprofloxacin, chloramphenicol, trimethoprim /sulfamethoxazole, ampicillin, gentamycin, ceftriaxone, amoxicillin/clavulanic acid and ampicillin were 64%,63%, 48%, 47%, 41%,39%,35%, 34%, 32%, 31 %, 29%, 19%, 18% and 5% respectively. Out of 276 isolates, 181 (66 %) were multidrug resistant while 33 (18 %) isolates were pan-drug resistant. (author)

  11. Antimicrobial susceptibility testing by Australian veterinary diagnostic laboratories.

    Science.gov (United States)

    Hardefeldt, L Y; Marenda, M; Crabb, H; Stevenson, M A; Gilkerson, J R; Billman-Jacobe, H; Browning, G F

    2018-04-01

    The national strategy for tackling antimicrobial resistance highlights the need for antimicrobial stewardship in veterinary practice and for surveillance of antimicrobial susceptibility in veterinary pathogens. Diagnostic laboratories have an important role in facilitating both of these processes, but it is unclear whether data from veterinary diagnostic laboratories are similar enough to allow for compilation and if there is consistent promotion of appropriate antimicrobial use embedded in the approaches of different laboratories to susceptibility testing. A cross-sectional study of antimicrobial susceptibility testing and reporting procedures by Australian veterinary diagnostic laboratories was conducted in 2017 using an online questionnaire. All 18 veterinary diagnostic laboratories in Australia completed the questionnaire. Kirby-Bauer disc diffusion was the method predominantly used for antimicrobial susceptibility testing and was used to evaluate 86% of all isolates, although two different protocols were used across the 18 laboratories (CLSI 15/18, CDS 3/18). Minimum inhibitory concentrations were never reported by 61% of laboratories. Common isolates were consistently reported on across all species, except for gram-negative isolates in pigs, for which there was some variation in the approach to reporting. There was considerable diversity in the panels of antimicrobials used for susceptibility testing on common isolates and no consistency was apparent between laboratories for any bacterial species. We recommend that nationally agreed and consistent antimicrobial panels for routine susceptibility testing should be developed and a uniform set of guidelines should be adopted by veterinary diagnostic laboratories in Australia. © 2018 Australian Veterinary Association.

  12. Antimicrobial efficacy of 0·05% cetylpyridinium chloride mouthrinses.

    Science.gov (United States)

    Sreenivasan, P K; Haraszthy, V I; Zambon, J J

    2013-01-01

    This study evaluated the antimicrobial activity of two commercially available 0·05% cetylpyridinium chloride (CPC) mouthrinses with or without alcohol and examined its antimicrobial activity on oral bacterial species including fresh clinical isolates compared to a chlorhexidine mouthrinse and a control fluoride mouthrinse without CPC. Two different approaches were used to evaluate antimicrobial activity. First, the minimum inhibitory concentration (MIC) was determined for each mouthrinse against a panel of 25 micro-organisms including species associated with dental caries, gingivitis and periodontitis. Second, supragingival dental plaque obtained from 15 adults was incubated with the four mouthrinses to evaluate antimicrobial activity on micro-organisms in oral biofilms. Both CPC mouthrinses exhibited lower MIC's, that is, greater antimicrobial activity, against oral Gram-negative bacteria especially periodontal pathogens and species implicated in halitosis such as Aggregatibacter actinomycemcomitans, Campylobacter rectus, Eikenella corrodens, Porphyromonas gingivalis, Prevotella intermedia and Solobacterium moorei than the control mouthrinse. Ex-vivo tests on supragingival plaque micro-organisms demonstrated significantly greater antimicrobial activity by the CPC mouthrinses (>90% killing, P 98% killing, P fluoride mouthrinse. Whilst the chlorhexidine mouthrinse was most effective, mouthrinses containing 0·05% CPC formulated with or without alcohol demonstrated broad-spectrum antimicrobial activity against both laboratory strains and supragingival plaque bacteria compared to a control mouthrinse without CPC. These in vitro and ex-vivo studies provide a biological rationale for previous clinical studies demonstrating the efficacy of CPC mouthrinses in reducing supragingival plaque and plaque-associated gingivitis. © 2012 The Society for Applied Microbiology.

  13. In vitro biological activity and essential oil composition of four indigenous South African Helichrysum species.

    Science.gov (United States)

    Lourens, A C U; Reddy, D; Başer, K H C; Viljoen, A M; Van Vuuren, S F

    2004-12-01

    Helichrysum species are used widely to treat various medical conditions. In this study, the anti-microbial, anti-oxidant (DPPH assay) and anti-inflammatory activity (5-lipoxygenase assay) of Helichrysum dasyanthum, Helichrysum felinum, Helichrysum excisum and Helichrysum petiolare were investigated. The essential oil compositions of these species were determined. The acetone and methanol extracts as well as the essential oils exhibited activity against Gram-positive bacteria, while both the methanol and acetone extracts of all four species were active in the anti-oxidant assay. The essential oils, on the other hand, displayed activity in the 5-lipoxygenase assay, which was used as an indication of anti-inflammatory activity. Two extracts exhibited promising activity in the anti-microbial assay, the acetone extract of Helichrysum dasyanthum with a MIC value of 15.63 microg/ml and the methanol extract of Helichrysum excisum with a MIC value of 62.5 microg/ml. The acetone extract of Helichrysum dasyanthum was the most active free radical scavenger in the DPPH assay (IC(50) of 9.53 microg/ml) while values for the anti-inflammatory activity of the essential oils ranged between 25 and 32 microg/ml. The essential oil compositions of three species (Helichrysum dasyanthum, Helichrysum excisum and Helichrysum petiolare) were dominated by the presence of monoterpenes such as alpha-pinene, 1,8-cineole and p-cymene. In the oil of Helichrysum felinum, monoterpenes were largely absent. Its profile consisted of a variety of sesquiterpenes in low concentrations with beta-caryophyllene dominating.

  14. Relationships between browsing damage and the species dominance by the highly food-attractive and less food-attractive trees

    Directory of Open Access Journals (Sweden)

    Petr Čermák

    2011-01-01

    Full Text Available The paper analyses data on the browsing damage to Acer pseudoplatanus, Carpinus betulus, Fraxinus excelsior, Quercus spp., Tilia cordata and Fagus sylvatica. Field research was carried out in the period 2007–2010 and analysed data came from 33 transects at 10 localities with the various abundance of game in the CR (everywhere Capreolus capreolus, on several plots also Cervus elaphus, Ovis musimon or Dama dama. Trees were monitored up to a height of 150 cm in natural regeneration under stands and in plantations and the occurrence was noted of new browsing damage. Differences between the percentage of damaged individuals of the given species of a food-attractive species (A. p., C. b., F. e. and the percentage of damaged individuals of all tree species on a transect as well as the proportion of these parameters correlate negatively with the given species dominance and thus, they appear to be suitable parameters for the analysis of relationships between the damage intensity and dominance. The higher the percentage proportions of highly food-attractive species and the lower the percentage of less-attractive species, the lower the relative intensity of damage to highly food-attractive species. At the same time, the higher the percentage proportion of highly food-attractive species and the lower the percentage of less-attractive species then the lower a difference between damage to less food-attractive species and all species.

  15. Epidemiological investigation and antimicrobial susceptibility analysis of ureaplasma species and Mycoplasma hominis in outpatients with genital manifestations.

    Science.gov (United States)

    Song, Tiejun; Ye, Aiqing; Xie, Xinyou; Huang, Jun; Ruan, Zhi; Kong, Yingying; Song, Jingjuan; Wang, Yue; Chen, Jiangzhong; Zhang, Jun

    2014-09-01

    The aim of this study was to assess the prevalence and drug resistance of Ureaplasma species and Mycoplasma hominis in outpatients with genital manifestation from 2005 to 2013 in Hangzhou, China. A total of 2689 female and 2336 male patients with various genital symptoms were included in this study. Species identification and antimicrobial susceptibility test were performed by using the mycoplasma IST-2 kit. The prevalence rate of Ureaplasma species was 39.9%, M hominis was 1.2% in female patients, and the coinfection rate was 13.4%; while in males, the prevalence rate of Ureaplasma species was 18.8%, M hominis was 0.4%, and the coinfection rate was 2.9%. Moreover, significantly high positive rates for mycoplasmas (Ureaplasma species M hominis) and were found in 16–20-year-old females (65.2%) and males (27.3%). Ureaplasma species and M hominis displayed relatively lower resistance rates (Ureaplasma species to quinolones (ofloxacin and ciprofloxacin) were much higher (>50%) and increased significantly from 2005 to 2013. Our study indicates that high positive rates of Ureaplasma species and M hominis were found in young outpatients with genital symptoms, and monitoring the local drug resistance is critical for prevention of the occurrence of resistant strains.

  16. Antimicrobial Peptides (AMPs

    Directory of Open Access Journals (Sweden)

    Mehrzad Sadredinamin

    2016-04-01

    Full Text Available Antimicrobial peptides (AMPs are extensive group of molecules that produced by variety tissues of invertebrate, plants, and animal species which play an important role in their immunity response. AMPs have different classifications such as; biosynthetic machines, biological sources, biological functions, molecular properties, covalent bonding patterns, three dimensional structures, and molecular targets.These molecules have multidimensional properties including antimicrobial activity, antiviral activity, antifungal activity, anti-parasite activity, biofilm control, antitumor activity, mitogens activity and linking innate to adaptive immunity that making them promising agents for therapeutic drugs. In spite of this advantage of AMPs, their clinical developments have some limitation for commercial development. But some of AMPs are under clinical trials for the therapeutic purpose such as diabetic foot ulcers, different bacterial infections and tissue damage. In this review, we emphasized on the source, structure, multidimensional properties, limitation and therapeutic applications of various antimicrobial peptides.

  17. ANTIMICROBIAL ACTIVITY OF ESSENTIAL OILS OF PLANTS BELONGING TO LAMIACEAE JUSS. FAMILY

    Directory of Open Access Journals (Sweden)

    Shanayda M.I.

    2015-12-01

    Full Text Available Introduction. One of the important sources of therapeutic and prophylactic agents of modern medicines are essential oils of medicinal plants. Essential oils are the main group of biologically active substances of a number of plants belonging to Lamiaceae Juss. Family. Antibacterial activity of medicinal plants belonging to Lamiaceae Family many scientists associated with containing of essential oils. In this regard, considerable interest presents the comparative analysis of the antimicrobial properties of essential oils of Lamiaceae Family representatives. Material and methods.The antimicrobial activity of essential oils of investigated plants was studied with using in vitro condition. The essential oils derived from the aerial parts of cultivated plants of Ocimum, Hyssopus, Dracocephalum, Lophanthus, Monarda and Satureja genus harvested during flowering period (in terms of Ternopil region. The antimicrobial activity of essential oils studied plants was studied by serial dilution method and disk diffusion assay. It has been applied on standard microorganism test strains: Bacillus subtilis ATCC 6633, Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa ATCC 9027 and Candida albicans ATCC 885-653. Results and discussion. It was conducted a comparative study of the influence of some essential oils of cultivated plants belonging to Lamiaceae family on microorganisms in conditions in vitro. It was found that essential oils of the studied plants were most effective in the maximum concentration (1:10. Gram-positive cocci S. aureus and yeast C. albicans were the most sensitive to influence of investigated essential oils. It was analyzed the relationship of the biological activity with the component composition of essential oils of plants. Essential oils of L. anisatus, M. fistulosa and S. hortensis characterized by the dominance of aromatic compounds and had shown stronger antimicrobial activity than essential oils of

  18. Antimicrobial activities, toxinogenic potential and sensitivity to ...

    African Journals Online (AJOL)

    Antimicrobial activities, toxinogenic potential and sensitivity to antibiotics of ... Bacillus species showed variable ability to inhibit bacterial and/or fungal species. ... to produce Mbuja in order to better control the fermentation process of Mbuja ...

  19. Antimicrobial resistance of thermophilic Campylobacter

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Engberg, J.

    2001-01-01

    Campylobacter has become the leading cause of zoonotic enteric infections in developed and developing countries world-wide. Antimicrobial resistance has emerged among Campylobacter mainly as a consequence of the use of antimicrobial agents in food animal production. Resistance to drugs of choice...... for the treatment of infections, macrolides and fluoroquinolones has emerged as a clinical problem and interventions to reduce this are recommended. Resistance to fluoroquinolones and macrolides is mediated by chromosomal mutations. Resistance to other relevant antimicrobial agents, mediated by acquired resistance...... genes, has not become widespread so far. However, resistance genes originating from both Gram-positive and Gram-negative bacterial species have been found, showing the potential for acquired resistance to emerge in Campylobacter....

  20. Decomposition of Carex and Sphagnum litter in two mesotrophic fens differing in dominant plant species

    NARCIS (Netherlands)

    Scheffer, R.A.; Van Logtestijn, R. S P; Verhoeven, J. T A

    2001-01-01

    Peatlands can be classified into fens and bogs based on their hydrology. Development of fens to bogs is accompanied by the invasion of Sphagnum species. The purpose of this study was to determine how the decomposition process in fens is influenced by the transition from a vascular plant-dominated

  1. Nano ZnO/amine composites antimicrobial additives to acrylic paints

    Directory of Open Access Journals (Sweden)

    H.B. Kamal

    2015-12-01

    Full Text Available Nano ZnO has been widely used as an antimicrobial agent not only for food packaging purposes but also in many coating processes. The present work is meant to enhance such functions through the preparation of sustainable and safe conduct of nano ZnO composites with amine derivatives that are characterized by their antimicrobial and anti-fouling functional activities. The results obtained revealed a more comprehensive approach to the antimicrobial function based on the reported active oxide species role. The oxide/amine composites and the acrylic emulsion paint were characterized chemically and structurally through FT-IR, TGA and TEM supported by biological assessment of each ZnO/amine composite action. Results of the study concluded that equilibrium between the nano ZnO particles size, their dispersion form, and amine ability to stabilize the actively produced oxygen species responsible for the antimicrobial function, should all be accounted for when persistence of antimicrobial agent efficiency is regarded.

  2. Oceanographic mechanisms that possibly explain dominance of neritic-tropical zooplankton species assemblages around the Islas Marías Archipelago, Mexico

    Directory of Open Access Journals (Sweden)

    Jaime Gómez-Gutiérrez

    2014-11-01

    Full Text Available The nearshore zooplankton species assemblage, identified per taxonomic groups (20 and per species for 12 selected groups, was analyzed from samples collected during November 2010 at four volcanic islands of the Islas Marías Archipelago (IMA, located 90-120 km offshore Nayarit, Mexico. From chlorophyll-a concentration and zooplankton biovolume perspective mesotrophic conditions prevailed in comparison with the Gulf of California during November. Crustaceans numerically dominated the zooplankton assemblage (92.3% [Copepoda (79.2%, Decapoda larvae (4.7%, Cladocera (3.7%, Mysidacea (2.7%, and Euphausiacea (2.0%]. The other 15 taxonomic groups (7.7% combined accounted each one less than 1.5% of the relative abundance. Species richness of selected taxa (~56%> included 259 taxa (121 identified to species, 117 to genus, and 21 not identified. Tropical species from neritic affinity clearly dominated zooplankton assemblage around IMA. Five tropical Copepoda species [Calanopia minor (Dana, Clausocalanus jobei Frost & Fleminger, Acrocalanus gibber Giesbrecht, Canthocalanus pauper (Giesbrecht, and Centropages furcatus (Dana], a cladoceran Pseudevadne tergestina (Claus, and a Mysidacea species (Mysidium reckettsi Harrison & Bowman dominated the zooplankton assemblage (accounting about 55% of total abundance of the identified species. Except C. furcatus, all these species are not abundant at oceanic regions of the central and northern Gulf of California. The similarity of multiple neritic and tropical species in the zooplankton assemblage from IMA and Cape Corrientes suggests strong coastal-insular plankton connectivity. Episodic current plumes associated with anomalous intense rivers discharge during rainy years, eddies generated by coastal upwelling event that move offshore, and northward regional oceanic circulation are the most likely mesoscale oceanographic processes that cause costal tropical zooplankton drift enhancing coastal-Archipelago species

  3. Antimicrobial Compounds from Marine Invertebrates-Derived Microorganisms.

    Science.gov (United States)

    Liu, Juan; Jung, Jee H; Liu, Yonghong

    2016-01-01

    It is known that marine invertebrates, including sponges, tunicates, cnidaria or mollusks, host affluent and various communities of symbiotic microorganisms. The microorganisms associated with the invertebrates metabolized various biologically active compounds, which could be an important resource for the discovery and development of potentially novel drugs. In this review, the new compounds with antimicrobial activity isolated from marine invertebrate-derived microorganisms in the last decade (2004-2014) will be presented, with focus on the relevant antimicrobial activities, origin of isolation, and information of strain species. New compounds without antimicrobial activity were not revealed.

  4. Economically important species dominate aboveground carbon storage in forests of southwestern Amazonia

    Directory of Open Access Journals (Sweden)

    N. Galia Selaya

    2017-06-01

    Full Text Available Tree species in tropical forests provide economically important goods and ecosystem services. In submontane forests of southwestern Amazonia, we investigated the degree to which tree species important for subsistence and trade contribute to aboveground carbon storage (AGC. We used 41 1-hectare plots to determine the species abundance, basal area, and AGC of stems > 10 cm diameter at breast height (dbh. Economically important taxa were classified using ethnobotanical studies and according to their stem density. These taxa (n = 263 accounted for 45% of total stems, 53% of total basal area, and 56% of total AGC, significantly more than taxa with minor or unknown uses (Welch test at p 40 cm and few stems in regeneration classes of dbh < 10 to 20 cm (e.g., Bertholletia excelsa, Cariniana spp., Cedrelinga spp., Ceiba spp., Dipteryx spp., whereas dominant Tetragastris spp., and Pseudolmedia spp. had most stems in low diameter classes and a median diameter of < 30 cm. Bertholletia excelsa, with 1.5 stems per hectare, showed the highest basal area of any species and accounted for 9% of AGC (11 Mg/ha, twice that of the second-ranking species. Our study shows that economic importance and carbon stocks in trees are closely linked in southwestern Amazonia. Unplanned harvests can disrupt synergistic dual roles altering carbon stocks temporally or permanently. Precautionary measures based on species ecology, demography, and regeneration traits should be at the forefront of REDD+ to reconcile maximum harvesting limits, biodiversity conservation, and sustainable forest management.

  5. In vitro antimicrobial effect of Satureja wiedemanniana against Bacillus species isolated from raw meat samples.

    Science.gov (United States)

    Yucel, Nihal; Aslim, Belma; Ozdoğan, Hakan

    2009-08-01

    In this study a total of 30 raw meat samples obtained from Ankara, Turkey were screened for the presence of Bacillus species. Among the meat samples analyzed, the predominant species isolated was Bacillus circulans; other Bacillus species were identified as Bacillus firmus, Bacillus lentus, Bacillus megaterium, Bacillus licheniformis, Bacillus mycoides, Bacillus sphaericus, and Bacillus cereus. Minced meat samples were more contaminated with Bacillus species than sliced beef sample. From these samples, 242 Bacillus species isolates were obtained, which were investigated for proteolytic and lipolytic activity, associated with meat spoilage. Interestingly, some Bacillus strains produced the highest values of proteolytic/lipolytic activities. Nineteen Bacillus strains were selected among the 242 isolates according to their proteolytic/lipolytic activity with a clear zone diameter of > or =6 mm. The essential oil of Satureja wiedemanniana (Lalem) Velen was also tested against these 19 Bacillus species that had proteolytic and lipolytic activity. The essential oil yield obtained from the aerial parts of the plant was 0.35% (vol/wt). The inhibition zones of the essential oil obtained against all the Bacillus species were in the range of 5.0-12.0 mm. The oil showed high antimicrobial activities against B. licheniformis M 6(26), M 11(16), and M 12(1) strains. B. licheniformis 12(1) showed high lipolytic activity (18.0 mm). Also, B. licheniformis M 6(26) and M 11(16) showed high proteolytic activity (16.0 and 14.0 mm). These results may suggest that an essential oil of S. wiedemanniana can be used as a natural preservative in meat against spoilage bacteria.

  6. Sympatric Dreissena species in the Meuse River : towards a dominance shift from zebra to quagga mussels

    OpenAIRE

    Marescaux, Jonathan; Boets, Pieter; Lorquet, Julien; Sablon, Rose; Van Doninck, Karine; Beisel, Jean-Nicolas

    2015-01-01

    The rapid spread of the quagga mussel, Dreissena rostriformis, in Western Europe is of particular concern since the species is known to have serious ecological and economic impacts, similar to those of the well-established zebra mussel, Dreissena polymorpha. This study aimed (1) to provide an update on the quagga mussel distribution in several Belgian inland waterways, and (2) to check if a shift in dominance between Dreissena species is occurring. Using density measurements and artificial su...

  7. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...... abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects...... and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during...

  8. Comparison of methods for in vitro testing of susceptibility of porcine Mycoplasma species to antimicrobial agents.

    Science.gov (United States)

    Ter Laak, E A; Pijpers, A; Noordergraaf, J H; Schoevers, E C; Verheijden, J H

    1991-02-01

    The MICs of 18 antimicrobial agents used against strains of three porcine Mycoplasma species were determined by a serial broth dilution method. Twenty field strains of M. hyorhinis, ten field strains of M. hyopneumoniae, six field strains of M. flocculare, and the type strains of these species were tested. Twelve field strains and the type strain of M. hyorhinis were also tested by an agar dilution method. Tests were read at various time points. When the broth dilution method was used, the final MIC had to be read 2 days after color changes had stopped. MICs of tetracycline, oxytetracycline, doxycycline, and minocycline were low for the three Mycoplasma species tested. MICs of chlortetracycline were 8 to 16 times higher than MICs of the other tetracyclines. Spiramycin, tylosin, kitasamycin, spectinomycin, tiamulin, lincomycin, and clindamycin were effective against all strains of M. hyorhinis and M. hyopneumoniae. The quinolones were highly effective against M. hyopneumoniae but less effective against M. hyorhinis. The susceptibility patterns for M. hyopneumoniae and M. flocculare were similar.

  9. Remote-Sensed Monitoring of Dominant Plant Species Distribution and Dynamics at Jiuduansha Wetland in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Wenpeng Lin

    2015-08-01

    Full Text Available Spartina alterniflora is one of the most hazardous invasive plant species in China. Monitoring the changes in dominant plant species can help identify the invasion mechanisms of S. alterniflora, thereby providing scientific guidelines on managing or controlling the spreading of this invasive species at Jiuduansha Wetland in Shanghai, China. However, because of the complex terrain and the inaccessibility of tidal wetlands, it is very difficult to conduct field experiments on a large scale in this wetland. Hence, remote sensing plays an important role in monitoring the dynamics of plant species and its distribution on both spatial and temporal scales. In this study, based on multi-spectral and high resolution (<10 m remote sensing images and field observational data, we analyzed spectral characteristics of four dominant plant species at different green-up phenophases. Based on the difference in spectral characteristics, a decision tree classification was built for identifying the distribution of these plant species. The results indicated that the overall classification accuracy for plant species was 87.17%, and the Kappa Coefficient was 0.81, implying that our classification method could effectively identify the four plant species. We found that the area of Phragmites australi showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 33.77% and 31.92%, respectively. The area of Scirpus mariqueter displayed an increasing trend from 1997 to 2004 (12.16% per year and a decreasing trend from 2004 to 2012 (−7.05% per year. S. alterniflora has the biggest area (3302.20 ha as compared to other species, accounting for 51% of total vegetated area at the study region in 2012. It showed an increasing trend from 1997 to 2004 and from 2004 to 2012, with an annual spreading rate of 130.63% and 28.11%, respectively. As a result, the native species P. australi was surrounded and the habitats of S. mariqueter were

  10. Scoping review to identify potential non-antimicrobial interventions to mitigate antimicrobial resistance in commensal enteric bacteria in North American cattle production systems.

    Science.gov (United States)

    Murphy, C P; Fajt, V R; Scott, H M; Foster, M J; Wickwire, P; McEwen, S A

    2016-01-01

    A scoping review was conducted to identify modifiable non-antimicrobial factors to reduce the occurrence of antimicrobial resistance in cattle populations. Searches were developed to retrieve peer-reviewed published studies in animal, human and in vitro microbial populations. Citations were retained when modifiable non-antimicrobial factors or interventions potentially associated with antimicrobial resistance were described. Studies described resistance in five bacterial genera, species or types, and 40 antimicrobials. Modifiable non-antimicrobial factors or interventions ranged widely in type, and the depth of evidence in animal populations was shallow. Specific associations between a factor or intervention with antimicrobial resistance in a population (e.g. associations between organic systems and tetracycline susceptibility in E. coli from cattle) were reported in a maximum of three studies. The identified non-antimicrobial factors or interventions were classified into 16 themes. Most reported associations between the non-antimicrobial modifiable factors or interventions and antimicrobial resistance were not statistically significant (P > 0·05 and a confidence interval including 1), but when significant, the results were not consistent in direction (increase or decrease in antimicrobial resistance) or magnitude. Research is needed to better understand the impacts of promising modifiable factors or interventions on the occurrence of antimicrobial resistance before any recommendations can be offered or adopted.

  11. Dominance Hierarchies in Young Children

    Science.gov (United States)

    Edelman, Murray S.; Omark, Donald R.

    1973-01-01

    This study uses the ethological approach of seeking species characteristics and phylogenetic continuities in an investigation of human behavior. Among primates a striking consistency is the presence of some form of dominance hierarchy in many species. The present study examines peer group dominance hierarchies as they are perceived by children in…

  12. Plasmid-Mediated Antimicrobial Resistance in Staphylococci and Other Firmicutes.

    Science.gov (United States)

    Schwarz, Stefan; Shen, Jianzhong; Wendlandt, Sarah; Fessler, Andrea T; Wang, Yang; Kadlec, Kristina; Wu, Cong-Ming

    2014-12-01

    In staphylococci and other Firmicutes, resistance to numerous classes of antimicrobial agents, which are commonly used in human and veterinary medicine, is mediated by genes that are associated with mobile genetic elements. The gene products of some of these antimicrobial resistance genes confer resistance to only specific members of a certain class of antimicrobial agents, whereas others confer resistance to the entire class or even to members of different classes of antimicrobial agents. The resistance mechanisms specified by the resistance genes fall into any of three major categories: active efflux, enzymatic inactivation, and modification/replacement/protection of the target sites of the antimicrobial agents. Among the mobile genetic elements that carry such resistance genes, plasmids play an important role as carriers of primarily plasmid-borne resistance genes, but also as vectors for nonconjugative and conjugative transposons that harbor resistance genes. Plasmids can be exchanged by horizontal gene transfer between members of the same species but also between bacteria belonging to different species and genera. Plasmids are highly flexible elements, and various mechanisms exist by which plasmids can recombine, form cointegrates, or become integrated in part or in toto into the chromosomal DNA or into other plasmids. As such, plasmids play a key role in the dissemination of antimicrobial resistance genes within the gene pool to which staphylococci and other Firmicutes have access. This chapter is intended to provide an overview of the current knowledge of plasmid-mediated antimicrobial resistance in staphylococci and other Firmicutes.

  13. Distribution of dominant arbuscular mycorrhizal fungi among five plant species in undisturbed vegetation of a coastal grassland

    DEFF Research Database (Denmark)

    Holtgrewe-Stukenbrock, Eva; Rosendahl, Søren

    2005-01-01

    Most plant species in mixed grassland vegetation are colonized by arbuscular mycorrhizal (AM) fungi. Previous studies have reported differences in host preferences among AM fungi, although the fungi are known to lack host specificity. In the present study, the distribution of phylogenetic groups...... of AM fungi belonging to a clade of Glomus species was studied in five plant species from a coastal grassland in Denmark. The occurrence of the fungi was determined by PCR analyses of fungal large subunit ribosomal DNA sequences amplified from root fragments using a specific primer set. The results...... showed that the dominant Glomus species were able to colonize all the studied plant species, supporting the view that the AM fungi represent a large underground interconnecting mycelial network....

  14. Changes in vaginal microbiota following antimicrobial and probiotic therapy

    Directory of Open Access Journals (Sweden)

    Jean M. Macklaim

    2015-08-01

    Full Text Available Background: The composition of the vaginal microbiota is known to be important for health. When infections occur, antimicrobial therapy is often poorly efficacious. Objective and design: We used 16S rRNA gene sequencing to characterize changes in the bacterial microbiota following oral antimicrobial and probiotic interventions. Results: While the bacterial vaginal profiles of women with vulvovaginal candidiasis were dominated by lactobacilli as in healthy women, and unchanged by therapy, Gardnerella vaginalis, Prevotella, Atopobium, Sneathia, and Megasphaera dominated the vagina of women with bacterial vaginosis (BV, and treatment with tinidazole plus Lactobacillus reuteri RC-14+L. rhamnosus GR-1 resulted in an increased relative abundance of indigenous L. iners or L. crispatus. Conclusions: The ability to restore homeostasis provides a rationale for conjoint use of probiotics with antibiotic treatment of BV.

  15. [Consensus for antimicrobial susceptibility testing for Enterobacteriaceae. Subcommittee on Antimicrobials, SADEBAC (Argentinian Society of Clinical Bacteriology), Argentinian Association of Microbiology].

    Science.gov (United States)

    Famiglietti, A; Quinteros, M; Vázquez, M; Marín, M; Nicola, F; Radice, M; Galas, M; Pasterán, F; Bantar, C; Casellas, J M; Kovensky Pupko, J; Couto, E; Goldberg, M; Lopardo, H; Gutkind, G; Soloaga, R

    2005-01-01

    Taking into account previous recommendations from the National Committee for Clinical Laboratory Standards (NCCLS), the Antimicrobial Committee, Sociedad Argentina de Bacteriología Clínica (SADEBAC), Asociación Argentina de Microbiología (AAM), and the experience from its members and some invited microbiologists, a consensus was obtained for antimicrobial susceptibility testing and interpretation in most frequent enterobacterial species isolated from clinical samples in our region. This document describes the natural antimicrobial resistance of some Enterobacteriaceae family members, including the resistance profiles due to their own chromosomal encoded beta-lactamases. A list of the antimicrobial agents that should be tested, their position on the agar plates, in order to detect the most frequent antimicrobial resistance mechanisms, and considerations on which antimicrobial agents should be reported regarding to the infection site and patient characteristics are included. Also, a description on appropriate phenotypic screening and confirmatory test for detection of prevalent extended spectrum beta-lactamases in our region are presented. Finally, a summary on frequent antimicrobial susceptibility profiles and their probably associated resistance mechanisms, and some infrequent antimicrobial resistance profiles that deserve confirmation are outlined.

  16. Tree species richness, diversity, and regeneration status in different oak (Quercus spp. dominated forests of Garhwal Himalaya, India

    Directory of Open Access Journals (Sweden)

    Sushma Singh

    2016-09-01

    Full Text Available Himalayan forests are dominated by different species of oaks (Quercus spp. at different altitudes. These oaks are intimately linked with hill agriculture as they protect soil fertility, watershed, and local biodiversity. They also play an important role in maintaining ecosystem stability. This work was carried out to study the diversity and regeneration status of some oak forests in Garhwal Himalaya, India. A total of 18 tree species belonging to 16 genera and 12 families were reported from the study area. Species richness varied for trees (4–7, saplings (3–10, and seedlings (2–6. Seedling and sapling densities (Ind/ha varied between 1,376 Ind/ha and 9,600 Ind/ha and 167 Ind/ha and 1,296 Ind/ha, respectively. Species diversity varied from 1.27 to 1.86 (trees, from 0.93 to 3.18 (saplings, and from 0.68 to 2.26 (seedlings. Total basal area (m2/ha of trees and saplings was 2.2–87.07 m2/ha and 0.20–2.24 m2/ha, respectively, whereas that of seedlings varied from 299 cm2/ha to 8,177 cm2/ha. Maximum tree species (20–80% had “good” regeneration. Quercus floribunda, the dominant tree species in the study area, showed “poor” regeneration, which is a matter of concern, and therefore, proper management and conservation strategies need to be developed for maintenance and sustainability of this oak species along with other tree species that show poor or no regeneration.

  17. National disparities in the relationship between antimicrobial resistance and antimicrobial consumption in Europe: an observational study in 29 countries.

    Science.gov (United States)

    McDonnell, Lucy; Armstrong, David; Ashworth, Mark; Dregan, Alexandru; Malik, Umer; White, Patrick

    2017-11-01

    Antimicrobial resistance in invasive infections is driven mainly by human antimicrobial consumption. Limited cross-national comparative evidence exists about variation in antimicrobial consumption and effect on resistance. We examined the relationship between national community antimicrobial consumption rates (2013) and national hospital antimicrobial resistance rates (2014) across 29 countries in the European Economic Area (EEA). Consumption rates were obtained from the European Surveillance of Antimicrobial Consumption Network (ESAC-Net). Resistance data were obtained from the European Antimicrobial Resistance Surveillance Network (EARS-Net), based on 196480 invasive isolates in 2014. Data availability and consistency were good. Some countries did not report figures for each strain of resistant bacteria. National antimicrobial consumption rates (2013) varied from ≤ 13 DDD (Estonia, the Netherlands and Sweden) to ≥ 30 DDD (France, Greece and Romania) per 1000 inhabitants per day. National antimicrobial resistance rates (hospital isolates, 15 species) also varied from  37.2% (Bulgaria, Greece, Romania and Slovakia). National antimicrobial consumption rates (2013) showed strong to moderate correlation with national hospital antimicrobial resistance rates (2014) in 19 strains of bacteria (r = 0.84 to r = 0.39). Some countries defied the trend with high consumption and low resistance (France, Belgium and Luxembourg) or low consumption and high resistance (Bulgaria, Hungary and Latvia). We found associations between national community antimicrobial consumption and national hospital antimicrobial resistance across a wide range of bacteria. These associations were not uniform. Different mechanisms may drive resistance in hospital-based invasive infections. Future research on international variations in antimicrobial resistance should consider environmental factors, agricultural use, vaccination policies and prescribing quality. © The Author 2017

  18. Insect radiosensitivity: dose curves and dose-fractionation studies of dominant lethal mutations in the mature sperm of 4 insect species

    International Nuclear Information System (INIS)

    LaChance, L.E.; Graham, C.K.

    1984-01-01

    Males of 4 species of insects: Musca domestica L. (housefly) (Diptera), Oncopeltus fasciatus (Dallas) (milkweed bug) (Hemiptera), Anagasta kuhniella (Zeller) (mealmoth) (Lepidoptera) and Heliothis virescens (Fab.) (tobacco budworm) (Lepidoptera) were irradiated as adults. Dose-response curves for the induction of dominant lethal mutations in the mature sperm were constructed. The curves were analyzed mathematically and compared with theoretical computer simulated curves requiring 1, 2, 4, 8 and 16 'hits' for the induction of a dominant lethal mutation. The 4 species belonging to 3 different orders of insects showed a wide range in radiation sensitivity and vastly different dose-response curves. When the data were analyzed by several mathematical models the authors found that a logistic response curve gave reasonably good fit with vastly different parameters for the 4 species. Dose-fractionation experiments showed no reduction in the frequency of lethal mutations induced in any species when an acute dose was fractionated into 2 equal exposures separated by an 8-h period. (Auth.)

  19. Mushrooms as Possible Antioxidant and Antimicrobial Agents

    Science.gov (United States)

    Kosanić, Marijana; Ranković, Branislav; Dašić, Marko

    2012-01-01

    The aim of the study is to examine in-vitro antioxidant and antimicrobial activity of the acetonic and methanolic extracts of the mushrooms Boletus aestivalis, Boletus edulis and Leccinum carpini. Antioxidant activity was evaluated by using free radical scavenging activity and reducing power. In addition, total content of phenol and flavonoid in extracts were determined as pyrocatechol equivalent, and as rutin equivalent, respectively. As a result of the study acetonic extracts from Boletus edulis was more powerful antioxidant activity with IC50 value of 4.72 μg/mL which was similar or greater than the standard antioxidants, ascorbic acid (IC50 = 4.22 μg/mL), BHA (IC50 = 6.42 μg/mL) and α-tocopherol (IC50 = 62.43 μg/mL). Moreover, the tested extracts had effective reducing power. A significant relationship between total phenolic and flavonoid contents and their antioxidative activities was significantly observed. The antimicrobial activity of each extract was estimated by determination of the minimum inhibitory concentration by using microdilution plate method against five species of bacteria and five species of fungi. Generally, the tested mushroom extracts had relatively strong antimicrobial activity against the tested microorganisms. The minimum inhibitory concentration for both extracts related to the tested bacteria and fungi were 1.25 - 10 mg/ mL. The present study shows that tested mushroom species demonstrated a strong antioxidant and antimicrobial activity. It suggests that mushroom may be used as good sources of natural antioxidants and for pharmaceutical purposes in treating of various deseases. PMID:24250542

  20. Biomimetic synthesis of antimicrobial silver nanoparticles using in vitro-propagated plantlets of a medicinally important endangered species: Phlomis bracteosa.

    Science.gov (United States)

    Anjum, Sumaira; Abbasi, Bilal Haider

    2016-01-01

    In vitro-derived cultures of plants offer a great potential for rapid biosynthesis of chemical-free antimicrobial silver nanoparticles (AgNPs) by enhancing their phytochemical reducing potential. Here, we developed an efficient protocol for in vitro micropropagation of a high-value endangered medicinal plant species, Phlomis bracteosa, in order to explore its biogenic potential in biomimetic synthesis of antimicrobial AgNPs. Murashige and Skoog medium supplemented with 2.0 mg/L thidiazuron was found to be more efficient in inducing optimum in vitro shoot regeneration (78%±4.09%), and 2.0 mg/L indole-3-butyric acid was used for maximum root induction (86%±4.457%). Antimicrobial AgNPs were successfully synthesized by using aqueous extract (rich in total phenolics and flavonoids content) of in vitro derived plantlets of P. bracteosa. Ultraviolet-visible spectroscopy of synthesized AgNPs showed characteristic surface plasmon band in the range of 420-429 nm. The crystallinity, size, and shape of the AgNPs were characterized by X-ray diffraction and scanning electron microscopy. Face-centered cubic AgNPs of almost uniform spherical size (22.41 nm) were synthesized within a short time (1 hour) at room temperature. Fourier-transform infrared spectroscopy revealed that the polyphenols were mainly responsible for reduction and capping of synthesized AgNPs. Energy dispersive X-ray analysis further endorsed the presence of elemental silver in synthesized AgNPs. These biosynthesized AgNPs displayed significantly higher bactericidal activity against multiple drug-resistant human pathogens. The present work highlighted the potent role of in vitro-derived plantlets of P. bracteosa for feasible biosynthesis of antimicrobial AgNPs, which can be used as nanomedicines in many biomedical applications.

  1. Microbiology and antimicrobial susceptibility of otitis externa: a changing pattern of antimicrobial resistance.

    Science.gov (United States)

    Heward, E; Cullen, M; Hobson, J

    2018-04-01

    Otitis externa is a common presentation to secondary care otolaryngology clinics. Despite this, few studies have investigated the microbiology and antimicrobial resistance of otitis externa. This study aimed to examine these issues. Analysis identified 302 swabs taken from 217 patients (100 male, 117 female), between 1 January 2015 and 30 March 2016, at our rapid access otolaryngology clinic. In total, 315 organisms were isolated; the most frequent was Pseudomonas aeruginosa (31.1 per cent), followed by candida species (22.9 per cent) and Staphylococcus aureus (11.7 per cent). P aeruginosa was sensitive to ciprofloxacin in 97.7 per cent of cases and to gentamicin in 78.4 per cent. Compared with studies worldwide, the relative proportions of different organisms causing otitis externa and the patterns of antimicrobial resistance differ. Increasing resistance of P aeruginosa to aminoglycosides demonstrates a changing pattern of antimicrobial resistance that has not been previously reported. Reassuringly, quinolone antibiotics remain highly effective when treating P aeruginosa.

  2. Habitats and landscapes associated with bird species in a lowland conifer-dominated ecosystem

    Directory of Open Access Journals (Sweden)

    Edmund J. Zlonis

    2017-06-01

    Full Text Available Human-induced effects on lowland conifer forests in hemiboreal regions are increasing because of expanded use of these northern ecosystems for raw materials, energy, and minerals as well as the potential effects of climatic changes. These forests support many breeding bird species across the Holarctic and allow the persistence of several boreal bird species in hemiboreal and even temperate regions. These bird species are of particular conservation concern as shifting patterns northward in forest composition caused by climate change will likely affect their populations. However, effective management and conservation options are limited because the specifics of these species' breeding habitats are not well understood. We modeled and mapped habitat suitability for 11 species of boreal birds that breed in the lowland conifer forests of the Agassiz Lowlands Ecological Subsection in northern Minnesota and are likely to have reduced breeding habitat in the future: Spruce Grouse (Falcipennis canadensis, Black-backed Woodpecker (Picoides arcticus, Olive-sided Flycatcher (Contopus cooperi, Yellow-bellied Flycatcher (Empidonax flaviventris, Boreal Chickadee (Poecile hudsonicus, Golden-crowned Kinglet (Regulus satrapa, Ruby-crowned Kinglet (Regulus calendula, Swainson's Thrush (Catharus ustulatus, Connecticut Warbler (Oporornis agilis, Palm Warbler (Setophaga palmarum, and Dark-eyed Junco (Junco hyemalis. Sets of 7 to 16 potential environmental covariates, including both stand-level and landscape attributes, were used to develop individual species models. Within this lowland conifer-dominated ecosystem, we found significant selection for specific forest and landscape characteristics by all but one of these species, with the best models including between one and nine variables. Habitat suitability maps were developed from these models and predictions tested with an independent dataset. Model performance depended on species, correctly predicting 56-96% of

  3. Comparative evaluation of antimicrobials for textile applications.

    Science.gov (United States)

    Windler, Lena; Height, Murray; Nowack, Bernd

    2013-03-01

    Many antimicrobial technologies are available for textiles. They may be used in many different textile applications to prevent the growth of microorganisms. Due to the biological activity of the antimicrobial compounds, the assessment of the safety of these substances is an ongoing subject of research and regulatory scrutiny. This review aims to give an overview on the main compounds used today for antimicrobial textile functionalization. Based on an evaluation of scientific publications, market data as well as regulatory documents, the potential effects of antimicrobials on the environment and on human health were considered and also life cycle perspectives were taken into account. The characteristics of each compound were summarized according to technical, environmental and human health criteria. Triclosan, silane quaternary ammonium compounds, zinc pyrithione and silver-based compounds are the main antimicrobials used in textiles. The synthetic organic compounds dominate the antimicrobials market on a weight basis. On the technical side the application rates of the antimicrobials used to functionalize a textile product are an important parameter with treatments requiring lower dosage rates offering clear benefits in terms of less active substance required to achieve the functionality. The durability of the antimicrobial treatment has a strong influence on the potential for release and subsequent environmental effects. In terms of environmental criteria, all compounds were rated similarly in effective removal in wastewater treatment processes. The extent of published information about environmental behavior for each compound varies, limiting the possibility for an in-depth comparison of all textile-relevant parameters across the antimicrobials. Nevertheless the comparative evaluation showed that each antimicrobial technology has specific risks and benefits that should be taken into account in evaluating the suitability of different antimicrobial products. The

  4. Cytotoxic and Antimicrobial Compounds from the Marine-Derived Fungus, Penicillium Species

    Directory of Open Access Journals (Sweden)

    Diaa T. A. Youssef

    2018-02-01

    Full Text Available The organic extract of liquid cultures of the marine-derived Penicillium sp. was investigated. Fractionation of the extracts of the fungus led to the purification and identification of two new compounds, penicillatides A (1 and B (2, together with the previously reported cyclo(R-Pro–S-Phe (3 and cyclo(R-Pro–R-Phe (4. The structures of compounds 1–4 were assigned by extensive interpretation of their NMR and high-resolution mass spectrometry (HRMS. The antiproliferative and cytotoxic activities of the compounds against three human cancer cell lines as well as their antimicrobial activity against several pathogens were evaluated. Compounds 2–4 displayed variable cytotoxic and antimicrobial activities.

  5. Antimicrobial peptide evolution in the Asiatic honey bee Apis cerana.

    Directory of Open Access Journals (Sweden)

    Peng Xu

    Full Text Available The Asiatic honeybee, Apis cerana Fabricius, is an important honeybee species in Asian countries. It is still found in the wild, but is also one of the few bee species that can be domesticated. It has acquired some genetic advantages and significantly different biological characteristics compared with other Apis species. However, it has been less studied, and over the past two decades, has become a threatened species in China. We designed primers for the sequences of the four antimicrobial peptide cDNA gene families (abaecin, defensin, apidaecin, and hymenoptaecin of the Western honeybee, Apis mellifera L. and identified all the antimicrobial peptide cDNA genes in the Asiatic honeybee for the first time. All the sequences were amplified by reverse transcriptase-polymerase chain reaction (RT-PCR. In all, 29 different defensin cDNA genes coding 7 different defensin peptides, 11 different abaecin cDNA genes coding 2 different abaecin peptides, 13 different apidaecin cDNA genes coding 4 apidaecin peptides and 34 different hymenoptaecin cDNA genes coding 13 different hymenoptaecin peptides were cloned and identified from the Asiatic honeybee adult workers. Detailed comparison of these four antimicrobial peptide gene families with those of the Western honeybee revealed that there are many similarities in the quantity and amino acid components of peptides in the abaecin, defensin and apidaecin families, while many more hymenoptaecin peptides are found in the Asiatic honeybee than those in the Western honeybee (13 versus 1. The results indicated that the Asiatic honeybee adult generated more variable antimicrobial peptides, especially hymenoptaecin peptides than the Western honeybee when stimulated by pathogens or injury. This suggests that, compared to the Western honeybee that has a longer history of domestication, selection on the Asiatic honeybee has favored the generation of more variable antimicrobial peptides as protection against pathogens.

  6. Antimicrobial peptide evolution in the Asiatic honey bee Apis cerana.

    Science.gov (United States)

    Xu, Peng; Shi, Min; Chen, Xue-Xin

    2009-01-01

    The Asiatic honeybee, Apis cerana Fabricius, is an important honeybee species in Asian countries. It is still found in the wild, but is also one of the few bee species that can be domesticated. It has acquired some genetic advantages and significantly different biological characteristics compared with other Apis species. However, it has been less studied, and over the past two decades, has become a threatened species in China. We designed primers for the sequences of the four antimicrobial peptide cDNA gene families (abaecin, defensin, apidaecin, and hymenoptaecin) of the Western honeybee, Apis mellifera L. and identified all the antimicrobial peptide cDNA genes in the Asiatic honeybee for the first time. All the sequences were amplified by reverse transcriptase-polymerase chain reaction (RT-PCR). In all, 29 different defensin cDNA genes coding 7 different defensin peptides, 11 different abaecin cDNA genes coding 2 different abaecin peptides, 13 different apidaecin cDNA genes coding 4 apidaecin peptides and 34 different hymenoptaecin cDNA genes coding 13 different hymenoptaecin peptides were cloned and identified from the Asiatic honeybee adult workers. Detailed comparison of these four antimicrobial peptide gene families with those of the Western honeybee revealed that there are many similarities in the quantity and amino acid components of peptides in the abaecin, defensin and apidaecin families, while many more hymenoptaecin peptides are found in the Asiatic honeybee than those in the Western honeybee (13 versus 1). The results indicated that the Asiatic honeybee adult generated more variable antimicrobial peptides, especially hymenoptaecin peptides than the Western honeybee when stimulated by pathogens or injury. This suggests that, compared to the Western honeybee that has a longer history of domestication, selection on the Asiatic honeybee has favored the generation of more variable antimicrobial peptides as protection against pathogens.

  7. Antimicrobial-resistant faecal organisms in algae products marketed as health supplements

    LENUS (Irish Health Repository)

    2017-09-01

    Dietary supplements are increasingly popular in Irish society. One of these is blue-green algae which is used with a variety health benefits in mind. A batch of Chlorella powder was found to be contaminated with Salmonella species in Ireland in 2015. This prompted additional testing of a total of 8 samples of three different products (Chlorella, Spirulina and Super Greens), for other faecal flora and antimicrobial resistance in any bacteria isolated. All 8 samples cultured enteric flora such as Enterococci, Enterobacteriaceae and Clostridium species. Antimicrobial susceptibility testing revealed one isolate with extended-spectrum β-lactamase (ESBL) activity and one with carbapenemase activity. Clinicians caring for vulnerable patients should be aware of the potential risk of exposure to antimicrobial resistant bacteria associated with these products

  8. Comparison of antimicrobial consumption patterns in the Swiss and Danish cattle and swine production (2007-2013)

    DEFF Research Database (Denmark)

    Carmo, Luis Pedro; Nielsen, Liza Rosenbaum; Alban, Lis

    2017-01-01

    antimicrobials are reported at sales level without any information on the consumption by different animal species. This hinders a proper comparison of antimicrobial consumption at the species level between countries. However, it is imperative to improve our understanding on antimicrobial usage patterns...... consumption of different antimicrobial classes were also evident. Sulfonamides/trimethoprim and tetracyclines were consumed in a higher proportion in Switzerland than in Denmark, whereas the relative consumption of penicillins was higher in Denmark. The differences observed in veterinary antimicrobial...... consumption are not solely related to animal demographic characteristics in these two countries. Other factors, such as the level of biosecurity and farming practices, veterinarians and farmers’ education, or governmental/industry programs put in place might also partly explain these variations...

  9. Acid resistance, bile tolerance and antimicrobial properties of ...

    African Journals Online (AJOL)

    Maari is a fermented food condiment obtained by spontaneous fermentation of seeds from the baobab tree (Adansonia digitata). Nine dominant lactic acid bacteria (LAB) strains, isolated from traditional maari fermentation were examined for their resistance to pH 2.5, their tolerance to 0.3% bile and their antimicrobial ...

  10. In-vitro antimicrobial activity of crude extracts of Diospyros ...

    African Journals Online (AJOL)

    Diospyros species in folklore medicine are used as anti-inflammatory, antibacterial, antioxidant, anticancer and antiviral agents. The in vitro antimicrobial activity of crude extracts of the leaves of Diospyros monbuttensis were evaluated against three bacterial species (Staphylococcus aureus, Escherichia coli and ...

  11. Multicenter study in Taiwan of the in vitro activities of nemonoxacin, tigecycline, doripenem, and other antimicrobial agents against clinical isolates of various Nocardia species.

    Science.gov (United States)

    Lai, Chih-Cheng; Liu, Wei-Lun; Ko, Wen-Chien; Chen, Yen-Hsu; Tan, Hon-Ren; Huang, Yu-Tsung; Hsueh, Po-Ren

    2011-05-01

    The aim of this study was to assess the in vitro activities of nemonoxacin (a novel nonfluorinated quinolone), doripenem, tigecycline, and 16 other antimicrobial agents against Nocardia species. The MICs of the 19 agents against 151 clinical isolates of Nocardia species were determined by the broth microdilution method. The isolates were identified to the species level using 16S rRNA gene sequencing analysis. The results showed that N. brasiliensis (n=60; 40%) was the most common species, followed by N. cyriacigeorgica (n=24; 16%), N. farcinica (n=12; 8%), N. beijingensis (n=9), N. otitidiscaviarum (n=8), N. nova (n=8), N. asiatica (n=7), N. puris (n=6), N. flavorosea (n=5), N. abscessus (n=3), N. carnea (2), and one each of N. alba, N. asteroides complex, N. rhamnosiphila, N. elegans, N. jinanensis, N. takedensis, and N. transvalensis. The MIC90s of the tested quinolones against the N. brasiliensis isolates were in the order nemonoxacin=gemifloxacinNocardia isolates. Among the four tested carbapenems, imipenem had the lowest MIC90s. All of the clinical isolates of N. beijingensis, N. otitidiscaviarum, N. nova, and N. puris and more than half of the N. brasiliensis and N. cyriacigeorgica isolates were resistant to at least one antimicrobial agent. The results of this in vitro study suggest that nemonoxacin, linezolid, and tigecycline are promising treatment options for nocardiosis. Further investigation of their clinical role is warranted.

  12. Antimicrobial activity of some Iranian medicinal plants

    Directory of Open Access Journals (Sweden)

    Ghasemi Pirbalouti Abdollah

    2010-01-01

    Full Text Available The major aim of this study was to determine the antimicrobial activity of the extracts of eight plant species which are endemic in Iran. The antimicrobial activities of the extracts of eight Iranian traditional plants, including Hypericum scabrum, Myrtus communis, Pistachia atlantica, Arnebia euchroma, Salvia hydrangea, Satureja bachtiarica, Thymus daenensis and Kelussia odoratissima, were investigated against Escherichia coli O157:H7, Bacillus cereus, Listeria monocytogenes and Candida albicans by agar disc diffusion and serial dilution assays. Most of the extracts showed a relatively high antimicrobial activity against all the tested bacteria and fungi. Of the plants studied, the most active extracts were those obtained from the essential oils of M. communis and T. daenensis. The MIC values for active extract and essential oil ranged between 0.039 and 10 mg/ml. It can be said that the extract and essential oil of some medicinal plants could be used as natural antimicrobial agents in food preservation. .

  13. chemical composition and antimicrobial activity of the essential oil

    African Journals Online (AJOL)

    Hydro-distilled essential oil from Satureja biflora (Lamiaceae) growing in Kenya was analysed by gas chromatography mass spectrometry (GC-MS) and also evaluated for antimicrobial activity. Twenty two compounds which constitute 99.29 % of the total oil were identified. The oil was dominated by monoterpenes, which ...

  14. Antimicrobial resistance challenged with metal-based antimicrobial macromolecules.

    Science.gov (United States)

    Abd-El-Aziz, Alaa S; Agatemor, Christian; Etkin, Nola

    2017-02-01

    Antimicrobial resistance threatens the achievements of science and medicine, as it deactivates conventional antimicrobial therapeutics. Scientists respond to the threat by developing new antimicrobial platforms to prevent and treat infections from these resistant strains. Metal-based antimicrobial macromolecules are emerging as an alternative to conventional platforms because they combine multiple mechanisms of action into one platform due to the distinctive properties of metals. For example, metals interact with intracellular proteins and enzymes, and catalyse various intracellular processes. The macromolecular architecture offers a means to enhance antimicrobial activity since several antimicrobial moieties can be conjugated to the scaffold. Further, these macromolecules can be fabricated into antimicrobial materials for contact-killing medical implants, fabrics, and devices. As volatilization or leaching out of the antimicrobial moieties from the macromolecular scaffold is reduced, these medical implants, fabrics, and devices can retain their antimicrobial activity over an extended period. Recent advances demonstrate the potential of metal-based antimicrobial macromolecules as effective platforms that prevent and treat infections from resistant strains. In this review these advances are thoroughly discussed within the context of examples of metal-based antimicrobial macromolecules, their mechanisms of action and biocompatibility. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Antimicrobial resistance profiles of common mastitis pathogens on Canadian dairy farms.

    Science.gov (United States)

    Saini, V; McClure, J T; Léger, D; Keefe, G P; Scholl, D T; Morck, D W; Barkema, H W

    2012-08-01

    Monitoring of antimicrobial resistance (AMR) in bacteria has clinical and public health significance. The present study determined prevalence of AMR in common mastitis pathogens Staphylococcus aureus, including methicillin-resistant Staph. aureus (MRSA; n=1,810), Escherichia coli (n=394), and Klebsiella species (n=139), including extended-spectrum β-lactamase (ESBL)-producing E. coli and Klebsiella species, isolated from milk samples on 89 dairy farms in 6 Canadian provinces. Minimum inhibitory concentrations (MIC) were determined using the Sensititer bovine mastitis plate (Trek Diagnostic Systems Inc., Cleveland, OH) and a National Antimicrobial Resistance Monitoring System gram-negative panel containing antimicrobials commonly used for mastitis treatment and control. Denim blue chromogenic agar and real-time PCR were used to screen and confirm MRSA, respectively. Resistance proportion estimates ranged from 0% for cephalothin and oxacillin to 8.8% for penicillin in Staph. aureus isolates, and 15% of the resistant Staph. aureus isolates were multidrug resistant. One MRSA isolate was confirmed (prevalence: 0.05%). Resistance proportion estimates ranged from 0% for ceftriaxone and ciprofloxacin to 14.8% for tetracycline in E. coli, and 0% for amikacin, ceftiofur, ciprofloxacin, and nalidixic acid to 18.6% for tetracycline in Klebsiella species isolates. Further, 62.8 and 55% of the resistant E. coli and Klebsiella species isolates were multidrug resistant, respectively. Resistance to >5 and >2 antimicrobials was most common in E. coli and Klebsiella species isolates, respectively, and no ESBL producers were found. Prevalence of AMR in bovine mastitis pathogens was low. Most gram-negative udder pathogens were multidrug resistant; MRSA was rarely found, and ESBL E. coli and Klebsiella species isolates were absent in Canadian milk samples. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Occurrence of antimicrobial resistance in bacteria from diagnostic samples from dogs.

    Science.gov (United States)

    Pedersen, Karl; Pedersen, Kristina; Jensen, Helene; Finster, Kai; Jensen, Vibeke F; Heuer, Ole E

    2007-10-01

    To study the occurrence of antimicrobial resistance among common bacterial pathogens from dogs and relate resistance patterns to data on consumption of antimicrobials. The antimicrobial susceptibility patterns of 201 Staphylococcus intermedius, 37 Streptococcus canis, 39 Pseudomonas aeruginosa, 25 Pasteurella multocida, 29 Proteus spp. and 449 Escherichia coli isolates from clinical submissions from dogs were determined by a broth-dilution method for determination of minimal inhibitory concentration. Data for consumption of antimicrobials were retrieved from VetStat, a national database for reporting antimicrobial prescriptions. The majority of the antimicrobials prescribed for dogs were broad-spectrum compounds, and extended-spectrum penicillins, cephalosporins and sulphonamides + trimethoprim together accounted for 81% of the total amount used for companion animals. Resistance to cephalosporins and amoxicillin with clavulanic acid was very low for all bacterial species examined, except for P. aeruginosa, and resistance to sulphonamides and trimethoprim was low for most species. Among the S. intermedius isolates, 60.2% were resistant to penicillin, 30.2% to fusidic acid and 27.9% to macrolides. Among E. coli isolates, the highest level of resistance was recorded for ampicillin, sulphonamides, trimethoprim, tetracyclines and streptomycin. Certain differences in resistance patterns between isolates from different sites or organs were noticed for E. coli, S. intermedius and Proteus isolates. This investigation provided data on occurrence of antimicrobial resistance in important pathogenic bacteria from dogs, which may be useful for the small animal practitioner. Resistance was low to the compounds that were most often used, but unfortunately, these compounds were broad-spectrum. Data on resistance and usage may form a background for the establishment of a set of recommendations for prudent use of antimicrobials for companion animals.

  17. Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity.

    Science.gov (United States)

    Langenheder, Silke; Bulling, Mark T; Prosser, James I; Solan, Martin

    2012-07-30

    Theory suggests that biodiversity can act as a buffer against disturbances and environmental variability via two major mechanisms: Firstly, a stabilising effect by decreasing the temporal variance in ecosystem functioning due to compensatory processes; and secondly, a performance enhancing effect by raising the level of community response through the selection of better performing species. Empirical evidence for the stabilizing effect of biodiversity is readily available, whereas experimental confirmation of the performance-enhancing effect of biodiversity is sparse. Here, we test the effect of different environmental regimes (constant versus fluctuating temperature) on bacterial biodiversity-ecosystem functioning relations. We show that positive effects of species richness on ecosystem functioning are enhanced by stronger temperature fluctuations due to the increased performance of individual species. Our results provide evidence for the performance enhancing effect and suggest that selection towards functionally dominant species is likely to benefit the maintenance of ecosystem functioning under more variable conditions.

  18. Decreased antimicrobial resistance and defined daily doses after implementation of a clinical culture-guided antimicrobial stewardship program in a local hospital

    Directory of Open Access Journals (Sweden)

    Chang-Teng Wu

    2017-12-01

    Full Text Available Background: We aimed to report the implementation of an antimicrobial stewardship program (ASP guided by clinically significant cultures in a hospital to assess its pharmaceutical, microbiological, financial, and outcome effects. Methods: A 3-year cohort study of an antimicrobial restriction policy implementation was performed. The ASP with culture-guided de-escalation of antibiotics was instituted in a local hospital since January 1, 2012. The cost of antimicrobials, defined daily dose (DDD, susceptibility to antimicrobials, and outcome of all admitted patients were calculated and evaluated before and after the ASP implementation. Results: Average monthly length of stay of admitted patients decreased from 7.8 ± 0.5 days in 2011 to 6.9 ± 0.3 days in 2013 (p < 0.001. The average monthly cost of antimicrobials decreased 46.9% from US$30,146.8 in 2011 to US$16,021.3 in 2013 (p < 0.001. Total intravenous antimicrobial DDDs per 100 bed-days of the inpatients were 66.9, 54.1 and 48.4 in 2011, 2012 and 2013, respectively. A total of 18.6 DDDs per 100 bed-days of inpatients (27.7% decreased from 2011 to 2013. By comparing data in 2013 to those in 2011, the ASP reduced antimicrobial resistance of Gram-positive bacteria (p = 0.013, Gram-negative bacteria (p < 0.001, and predominant species (all p < 0.05. The yearly mortality also decreased from 1.3% in 2011 to 1.1% in 2012 and 1.0% in 2013. Conclusions: The ASP with a culture-guided de-escalation of antibiotics successfully reduced length of stay, mortality, the cost of antimicrobials, DDDs, and antimicrobial resistance rate, and that is highly recommended for local hospitals. Keywords: antimicrobial resistance, antimicrobial restriction policy, antimicrobial stewardship program, defined daily dose

  19. Impact of Delftia tsuruhatensis and Achromobacter xylosoxidans on Escherichia coli dual-species biofilms treated with antibiotic agents

    DEFF Research Database (Denmark)

    Azevedo, Andreia S; Almeida, Carina; Pereira, Bruno

    2016-01-01

    Recently it was demonstrated that for urinary tract infections species with a lower or unproven pathogenic potential, such as Delftia tsuruhatensis and Achromobacter xylosoxidans, might interact with conventional pathogenic agents such as Escherichia coli. Here, single- and dual-species biofilms...... of these microorganisms were characterized in terms of microbial composition over time, the average fitness of E. coli, the spatial organization and the biofilm antimicrobial profile. The results revealed a positive impact of these species on the fitness of E. coli and a greater tolerance to the antibiotic agents....... In dual-species biofilms exposed to antibiotics, E. coli was able to dominate the microbial consortia in spite of being the most sensitive strain. This is the first study demonstrating the protective effect of less common species over E. coli under adverse conditions imposed by the use of antibiotic...

  20. Impact of Delftia tsuruhatensis and Achromobacter xylosoxidans on Escherichia coli dual-species biofilms treated with antibiotic agents.

    Science.gov (United States)

    Azevedo, Andreia S; Almeida, Carina; Pereira, Bruno; Melo, Luís F; Azevedo, Nuno F

    2016-01-01

    Recently it was demonstrated that for urinary tract infections species with a lower or unproven pathogenic potential, such as Delftia tsuruhatensis and Achromobacter xylosoxidans, might interact with conventional pathogenic agents such as Escherichia coli. Here, single- and dual-species biofilms of these microorganisms were characterized in terms of microbial composition over time, the average fitness of E. coli, the spatial organization and the biofilm antimicrobial profile. The results revealed a positive impact of these species on the fitness of E. coli and a greater tolerance to the antibiotic agents. In dual-species biofilms exposed to antibiotics, E. coli was able to dominate the microbial consortia in spite of being the most sensitive strain. This is the first study demonstrating the protective effect of less common species over E. coli under adverse conditions imposed by the use of antibiotic agents.

  1. Antimicrobial susceptibility of Clostridium perfringens isolated from domestic and wild animal species in Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Augusto de Oliveira Júnior

    2016-02-01

    Full Text Available Clostridium perfringens is a microorganism commonly found in the microbiota of humans and animals and a potential cause of enteric, muscle or nervous diseases. The treatment of these diseases is based on antimicrobial therapy and it is extremely important to know the antimicrobial susceptibility profile of the strains present in the region. The aim of this study was to evaluate the antimicrobial susceptibility of C. perfringens isolated from domestic and wild animals in Brazil against seven different antimicrobials. Forty-one strains from the stool samples of cattle (n = 12, buffalo (n = 2, goat (n = 3, dogs (n = 12 and wild carnivores (n = 12 were examined. The minimum inhibitory concentration was determined by the agar dilution method using Brucella agar supplemented with 5% of sheep blood, 0.1% of vitamin K, 0.1% of hemin and concentrations ranging from 0,25 to 256,0 mg L-1 of the following antibiotics: erythromycin, florfenicol, metronidazole, oxytetracycline, penicillin, tylosin, and vancomycin. All C. perfringens strains were susceptible to florfenicol, metronidazole, penicillin and vancomycin. Two strains (4.9% were resistant to erythromycin and tylosin, while five (12.2% were resistant to oxytetracycline, one of which (2.4% from an ocelot.

  2. Antimicrobial activity of jasmine oil against oral microorganisms

    Science.gov (United States)

    Thaweboon, S.; Thaweboon, B.; Kaypetch, R.

    2018-02-01

    Jasmine sambac is a species of jasmine indigenous to the tropical and warm temperature regions in particular West and Southeast Asia. Essential oil extracted from the flowers of J. sambac has been shown to have anti-oxidant activity. However, very little information regarding antimicrobial activity especially oral microorganisms exists. Objective: To investigate antimicrobial effect of essential oil extracted from flowers of J. sambac against various oral microorganisms. Materials and Methods: Oral microbial strains used in the study were Streptococcus mutans KPSK2, Staphylococcus aureus ATCC 5638, Lactobacillus casei ATCC 6363, Klebsiella pneumoniae (clinical isolate), Escherichia coli ATCC 25922, Candida albicans ATCC 10231, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida tropicalis (clinical isolate), Candida glabrata ATCC 90030, Candida pseudotropicalis (clinical isolate) and Candida stellatoidia (clinical isolate). The potential of microbial growth inhibition of the oil was firstly screened by Kirby-Bauer disk diffusion method and then the minimum inhibitory concentration (MIC) was determined by agar dilution method. Results: Jasmine oil showed antimicrobial activities against S. mutans, L. casei, E. coli and all strains of Candida species with the zones of inhibition ranging from 9 to 26 mm and MIC values of 0.19-1.56 %v/v. Conclusion: Results from the present study are scientific evidence to demonstrate that jasmine oil could be employed as a natural antimicrobial agent against oral microorganisms.

  3. Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species.

    Science.gov (United States)

    Ghaffar, Abdul; Yameen, Muhammad; Kiran, Shumaila; Kamal, Shagufta; Jalal, Fatima; Munir, Bushra; Saleem, Sadaf; Rafiq, Naila; Ahmad, Aftab; Saba, Iram; Jabbar, Abdul

    2015-11-18

    Eucalyptus is well reputed for its use as medicinal plant around the globe. The present study was planned to evaluate chemical composition, antimicrobial and antioxidant activity of the essential oils (EOs) extracted from seven Eucalyptus species frequently found in South East Asia (Pakistan). EOs from Eucalyptus citriodora, Eucalyptus melanophloia, Eucalyptus crebra, Eucalyptus tereticornis, Eucalyptus globulus, Eucalyptus camaldulensis and Eucalyptus microtheca were extracted from leaves through hydrodistillation. The chemical composition of the EOs was determined through GC-MS-FID analysis. The study revealed presence of 31 compounds in E. citriodora and E. melanophloia, 27 compounds in E. crebra, 24 compounds in E. tereticornis, 10 compounds in E. globulus, 13 compounds in E. camaldulensis and 12 compounds in E. microtheca. 1,8-Cineole (56.5%), α-pinene (31.4%), citrinyl acetate (13.3%), eugenol (11.8%) and terpenene-4-ol (10.2%) were the highest principal components in these EOs. E. citriodora exhibited the highest antimicrobial activity against the five microbial species tested (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Aspergillus niger and Rhizopus solani). Gram positive bacteria were found more sensitive than Gram negative bacteria to all EOs. The diphenyl-1-picrylhydazyl (DPPH) radical scavenging activity and percentage inhibition of linoleic acid oxidation were highest in E. citriodora (82.1% and 83.8%, respectively) followed by E. camaldulensis (81.9% and 83.3%, respectively). The great variation in chemical composition of EOs from Eucalyptus, highlight its potential for medicinal and nutraceutical applications.

  4. Chemical Composition and in-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species

    Directory of Open Access Journals (Sweden)

    Abdul Ghaffar

    2015-11-01

    Full Text Available Eucalyptus is well reputed for its use as medicinal plant around the globe. The present study was planned to evaluate chemical composition, antimicrobial and antioxidant activity of the essential oils (EOs extracted from seven Eucalyptus species frequently found in South East Asia (Pakistan. EOs from Eucalyptus citriodora, Eucalyptus melanophloia, Eucalyptus crebra, Eucalyptus tereticornis, Eucalyptus globulus, Eucalyptus camaldulensis and Eucalyptus microtheca were extracted from leaves through hydrodistillation. The chemical composition of the EOs was determined through GC-MS-FID analysis. The study revealed presence of 31 compounds in E. citriodora and E. melanophloia, 27 compounds in E. crebra, 24 compounds in E. tereticornis, 10 compounds in E. globulus, 13 compounds in E. camaldulensis and 12 compounds in E. microtheca. 1,8-Cineole (56.5%, α-pinene (31.4%, citrinyl acetate (13.3%, eugenol (11.8% and terpenene-4-ol (10.2% were the highest principal components in these EOs. E. citriodora exhibited the highest antimicrobial activity against the five microbial species tested (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Aspergillus niger and Rhizopus solani. Gram positive bacteria were found more sensitive than Gram negative bacteria to all EOs. The diphenyl-1-picrylhydazyl (DPPH radical scavenging activity and percentage inhibition of linoleic acid oxidation were highest in E. citriodora (82.1% and 83.8%, respectively followed by E. camaldulensis (81.9% and 83.3%, respectively. The great variation in chemical composition of EOs from Eucalyptus, highlight its potential for medicinal and nutraceutical applications.

  5. Antimicrobial activity of Bryum argenteum.

    Science.gov (United States)

    Sabovljevic, Aneta; Sokovic, Marina; Sabovljevic, Marko; Grubisic, Dragoljub

    2006-02-01

    The antimicrobial activity of Bryum argenteum ethanol extracts was evaluated by microdilution method against four bacterial (Escherichia coli, Bacillus subtilis, Micrococcus luteus and Staphilococcus aureus) and four fungal species (Aspergillus niger, Penicillium ochrochloron, Candida albicans and Trichophyton mentagrophyes). All the investigated ethanol extracts have been proved to be active against all bacteria and fungi tested.

  6. CHEMICAL CHARACTERIZATION OF Lavandula angustifolia Mill. WHICH IS A PHYTOCOSMETIC SPECIES AND INVESTIGATION OF ITS ANTIMICROBIAL EFFECT IN COSMETIC PRODUCTS

    Directory of Open Access Journals (Sweden)

    Aslıhan Cesur Turgut

    2016-11-01

    Full Text Available Lavander (Lavandula sp. is a precious essential oil plant from the Lamiaceae family. There are 39 lavender species (Lavandula sp. most of which have Mediterranean origin and among them three have high commercial value. While the essential oil quality of the lavender species (British lavender is high the lavandin species (hybrid lavender have high essential oil yield [2, 52]. In this study, the content of the extracts obtained from Lavandula angustifolia, which were grown in Burdur Örtülü locality, was determined via HPLC and GC analysis and the anti-microbial effect of the essential oil L. angustifolia was investigated. The study was made with the dried flowers of L. angustifolia. Some of the dried flowers were extracted and the essential oil was distilled from the remaining part. Various phenolic compounds in the extract were quantitatively determined by HPLC. Quantitatively cafeic, rosemeric and the 4-hydroxybenzoic acids were the most abundant phenolic acids in the content in decreasing order. In the GC analysis 31 different compounds were determined: Linalool and Linalil Acetate having the highest concentration. Anti-microbial effect was determined against the most frequently encountered microorganisms in the cosmetics: Candida albicans, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus brasiliensis. According to the results it is concluded that the essential oil, L. angustifolia, can be used either directly or incorporated into the cosmetics without the necessity for any other extra preservative against the said microrganisms. According to the literature these microorganisms, which are frequently found in creams, cause various diseases. It was observed that the essential oil L. Angustifolia could completely remove the contamination caused by the said micro-organisms as of the 14. day.

  7. Impact of interspecific interactions on antimicrobial activity among soil bacteria

    NARCIS (Netherlands)

    Tyc, O.; Berg, van den M.; Gerards, S.; Veen, van J.A.; Raaijmakers, J.M.; Boer, de W.; Garbeva, P.

    2014-01-01

    Certain bacterial species produce antimicrobial compounds only in the presence of a competing species. However, little is known on the frequency of interaction-mediated induction of antibiotic compound production in natural communities of soil bacteria. Here we developed a high-throughput method to

  8. The in-vitro antimicrobial activities of some medicinal plants from Cameroon.

    Science.gov (United States)

    Gangoué-Piéboji, J; Pegnyemb, D E; Niyitegeka, D; Nsangou, A; Eze, N; Minyem, C; Mbing, J Ngo; Ngassam, P; Tih, R Ghogomu; Sodengam, B L; Bodo, B

    2006-04-01

    The antimicrobial activities of 10 plant species (Voacanga africana, Crepis cameroonica, Plagiostyles africana, Crotalaria retusa, Mammea africana, Lophira lanceolata, Ochna afzelii, Ouratea elongata, Ou. flava and Ou. sulcata), each of which is currently used in the traditional medicine of Cameroon, were investigated in vitro. The activities of a methanol extract of each plant were tested, in disc-diffusion assays, against 37 reference or laboratory strains of seven species of microorganism (Staphylococcus aureus, S. epidermidis, Enterococcus hirae, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa and Candida albicans). The minimal inhibitory concentrations of each extract were then estimated, against each of the more susceptible microorganisms (i.e. those giving an inhibition zone measuring at least 9 mm in diameter in the disc-diffusion assays), by agar dilution. Although, in the disc-diffusion assays, each of the 10 methanol extracts investigated displayed some degree of antimicrobial activity against at least one species of microorganism, no activity against the Gram-negative bacteria (Es. coli, K. pneumoniae and Ps. aeruginosa) was observed. The extract with the greatest antimicrobial activity was that of Pl. africana (Euphorbiaceae).

  9. Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens.

    Science.gov (United States)

    Olff, H; Hoorens, B; de Goede, R G M; van der Putten, W H; Gleichman, J M

    2000-10-01

    We analyzed the dynamics of dominant plant species in a grazed grassland over 17 years, and investigated whether local shifts in these dominant species, leading to vegetation mosaics, could be attributed to interactions between plants and soil-borne pathogens. We found that Festuca rubra and Carex arenaria locally alternated in abundance, with different sites close together behaving out of phase, resulting in a shifting mosaic. The net effect of killing all soil biota on the growth of these two species was investigated in a greenhouse experiment using gamma radiation, controlling for possible effects of sterilization on soil chemistry. Both plant species showed a strong net positive response to soil sterilization, indicating that pathogens (e.g., nematodes, pathogenic fungi) outweighed the effect of mutualists (e.g., mycorrhizae). This positive growth response towards soil sterilization appeared not be due to effects of sterilization on soil chemistry. Growth of Carex was strongly reduced by soil-borne pathogens (86% reduction relative to its growth on sterilized soil) on soil from a site where this species decreased during the last decade (and Festuca increased), while it was reduced much less (50%) on soil from a nearby site where it increased in abundance during the last decade. Similarly, Festuca was reduced more (67%) on soil from the site where it decreased (and Carex increased) than on soil from the site where it increased (55%, the site where Carex decreased). Plant-feeding nematodes showed high small-scale variation in densities, and we related this variation to the observed growth reductions in both plant species. Carex growth on unsterilized soil was significantly more reduced at higher densities of plant-feeding nematodes, while the growth reduction in Festuca was independent of plant-feeding nematode densities. At high plant-feeding nematode densities, growth of Carex was reduced more than Festuca, while at low nematode densities the opposite was found

  10. Evaluation of fruit extracts of six Turkish Juniperus species for their antioxidant, anticholinesterase and antimicrobial activities.

    Science.gov (United States)

    Oztürk, Mehmet; Tümen, İbrahim; Uğur, Aysel; Aydoğmuş-Öztürk, Fatma; Topçu, Gülaçtı

    2011-03-30

    Juniperus L. (Cupressaceae) species are mostly spread out in the Northern Hemisphere of the world, and some of them are used as folkloric medicines. The fruits of some species are eaten. Since oxidative stress is one of the reasons for neurodegeneration and is associated with the Alzheimer's disease (AD), the extracts prepared from the fruits of six Juniperus species were screened for their antioxidant activity. Therefore, the extracts were also evaluated against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), which are chief enzymes in the pathogenesis of AD. In addition, antimicrobial activity was also evaluated. In the β-carotene-linoleic acid assay, acetone extracts of J. oxycedrus subsp. oxycedrus, J. sabina and J. excelsa, and methanol extracts of J. phoenicea and J. sabina, effectively inhibited oxidation of linoleic acid. The hexane extracts of J. oxycedrus subsp. oxycedrus, J. foetidissima and J. phoenicea showed remarkable inhibitory effect against AChE and BChE. Because of their high antioxidant activity, J. excelsa, J. oxycedrus subsp. oxycedrus, J. sabina and J. phoenicia might be used in the food industry as preservative agents or extension of the shelf-life of raw and processed foods. Since the hexane extracts of J. oxycedrus subsp. oxycedrus and J. foetidissima demonstrated significant anticholinesterase activity they should be considered as a potential source for anticholinesterase agents. Copyright © 2010 Society of Chemical Industry.

  11. Diversity, evolution and medical applications of insect antimicrobial peptides

    OpenAIRE

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged; Vilcinskas, Andreas

    2016-01-01

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolutio...

  12. Antimicrobial histones and DNA traps in invertebrate immunity: evidences in Crassostrea gigas.

    Science.gov (United States)

    Poirier, Aurore C; Schmitt, Paulina; Rosa, Rafael D; Vanhove, Audrey S; Kieffer-Jaquinod, Sylvie; Rubio, Tristan P; Charrière, Guillaume M; Destoumieux-Garzón, Delphine

    2014-09-05

    Although antimicrobial histones have been isolated from multiple metazoan species, their role in host defense has long remained unanswered. We found here that the hemocytes of the oyster Crassostrea gigas release antimicrobial H1-like and H5-like histones in response to tissue damage and infection. These antimicrobial histones were shown to be associated with extracellular DNA networks released by hemocytes, the circulating immune cells of invertebrates, in response to immune challenge. The hemocyte-released DNA was found to surround and entangle vibrios. This defense mechanism is reminiscent of the neutrophil extracellular traps (ETs) recently described in vertebrates. Importantly, oyster ETs were evidenced in vivo in hemocyte-infiltrated interstitial tissues surrounding wounds, whereas they were absent from tissues of unchallenged oysters. Consistently, antimicrobial histones were found to accumulate in oyster tissues following injury or infection with vibrios. Finally, oyster ET formation was highly dependent on the production of reactive oxygen species by hemocytes. This shows that ET formation relies on common cellular and molecular mechanisms from vertebrates to invertebrates. Altogether, our data reveal that ET formation is a defense mechanism triggered by infection and tissue damage, which is shared by relatively distant species suggesting either evolutionary conservation or convergent evolution within Bilateria. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Role of functionally dominant species in varying environmental regimes: evidence for the performance-enhancing effect of biodiversity

    Directory of Open Access Journals (Sweden)

    Langenheder Silke

    2012-07-01

    Full Text Available Abstract Background Theory suggests that biodiversity can act as a buffer against disturbances and environmental variability via two major mechanisms: Firstly, a stabilising effect by decreasing the temporal variance in ecosystem functioning due to compensatory processes; and secondly, a performance enhancing effect by raising the level of community response through the selection of better performing species. Empirical evidence for the stabilizing effect of biodiversity is readily available, whereas experimental confirmation of the performance-enhancing effect of biodiversity is sparse. Results Here, we test the effect of different environmental regimes (constant versus fluctuating temperature on bacterial biodiversity-ecosystem functioning relations. We show that positive effects of species richness on ecosystem functioning are enhanced by stronger temperature fluctuations due to the increased performance of individual species. Conclusions Our results provide evidence for the performance enhancing effect and suggest that selection towards functionally dominant species is likely to benefit the maintenance of ecosystem functioning under more variable conditions.

  14. Antimicrobial and biocompatible properties of nanomaterials.

    Science.gov (United States)

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  15. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    OpenAIRE

    Cheng, Guyue; Dai, Menghong; Ahmed, Saeed; Hao, Haihong; Wang, Xu; Yuan, Zonghui

    2016-01-01

    The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i....

  16. Validation of the Explorer® 2.0 test coupled to e-Reader® for the screening of antimicrobials in muscle from different animal species.

    Science.gov (United States)

    Mata, Luis; Sanz, David; Razquin, Pedro

    2014-01-01

    The Explorer(®) 2.0 tube test is a microbial inhibition test for the screening of antimicrobial residues in food samples. The new e-Reader(®) device coupled to Explorer(®) 2.0 operates by incubation at a selected temperature, determination of the endpoint of the assay and interpretation to generate results. This system was validated for muscle samples according to the European Commission Decision 2002/657/EC. Sensitivity towards 25 substances from several groups of antimicrobials was investigated in a first step. Detection capabilities for six substances representing the six major antimicrobial groups were also determined in bovine muscle. The detection capabilities for amoxicillin (10 µg l(-1)), cefalexin (200 µg l(-1)), doxycyclin (100 µg l(-1)), sulfamethazine (100 µg l(-1)), tylosin (100 µg l(-1)) and neomycin (200 µg l(-1)) were in all cases at or below the maximum residue limit (MRL). Specificity and applicability of the test were demonstrated with muscle samples from four animal species (bovine, porcine, ovine and poultry) and results were found to be satisfactory. Ruggedness was evaluated on negative and spiked samples with sulfamethazine as a representative antimicrobial. Neither false-positives nor false-negatives were detected when varying the sample volume, the time of pre-incubation, the temperature of incubation and the batch of the test. These results prove that Explorer(®) 2.0 coupled to e-Reader(®) is a valuable tool for the screening of a broad range of antimicrobials in muscle. This new methodology simplifies the analysis and increases the accuracy of interpretation of the test results since the endpoint of the assay is automatically determined and results are interpreted objectively.

  17. Antimicrobial susceptibility pattern in nosocomial infections caused by Acinetobacter species in Asir Region, Saudi Arabia.

    Science.gov (United States)

    Abdalla, Nazar M; Osman, Amani A; Haimour, Waleed O; Sarhan, Mohammed A A; Mohammed, Mohammed N; Zyad, Eyhab M; Al-Ghtani, Abdalla M

    2013-03-15

    This study aimed at evaluating the sensitivity of antibiotics towards nosocomial infections caused by Acinetobacter species. The study took place during the period Dec. 2011- Dec. 2012 at Assir Central Hospital in collaboration with the department of microbiology, college of medicine, King Khalid University, Abha. A prospective study involving 150 patients presented with nosocomial infections due to Acinetobacter species detected by bacteriological tests; direct microscopy, culture in blood agar media, fermentation test in MacConkey media and MIC (minimum inhibitory concentration) for antibiotics sensitivity using Muller Hinton media and Chemical test using API 20. A 150 nosocomial infections in this study showed gram-negative coccobacilli, non motile, glucose-negative fermentor and oxidase negative. All isolates showed 100% sensitivity to: Imipramine, Meropenem, Colistin. From the rest of tested antibiotics the higher resistant ones were; Nitrofurantoin 87% and Cefoxitin 85%. The least resistant antibiotics; Imipenem 3% and Ticarcillin 7%. While variable resistance in the rest of tested antimicrobials. A 47 patients (31.3%) have used antibiotics prior to this study. The high rate of usage occurred in elder patients. The frequency of Acinetobacter calcoaceticus baumannii complex multi-drugs resistance ABCMDR is rising including almost all commonly used antibiotics. Only few antibiotics exert 100% sensitivity towards these bacteria.

  18. Chemosystematic Value of the Essential Oil Composition of Thuja species Cultivated in Poland—Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Caroline Spyropoulos

    2009-11-01

    Full Text Available In the framework of the correlation between chemotaxonomy and chemical analysis studies, the chemical composition of the essential oils of four varieties of Thuja species cultivated in Poland − T. occidentalis ‘globosa’, T. occidentalis ‘aurea’, T. plicata and T. plicata ‘gracialis’ − were investigated by GC and GC-MS. Thirty-one compounds were identified from T. occidentalis ‘globosa’, representing 96.92% of the total oil; twenty-seven from T. occidentalis ‘aurea’ (94.34%; thirty-one from T. plicata (94.75%; and thirty compounds from T. plicata ‘gracialis’ (96.36%. The main constituents in all samples were the monoterpene ketones α- and β-thujone, fenchone and sabinene, as well as the diterpenes beyerene and rimuene.The chemosystematic value of the total ketone content of all samples (which varied from 54.30–69.18% has been discussed and investigated. The constituents, beyerene and the mixture of α- and β-thujone, were isolated from the oils and tested against six Gram-positive and -negative bacteria and three pathogenic fungi. The oils of the two T. plicata species exhibited significant antimicrobial activity, while the mixture of α- and β-thujone showed very strong activity as well.

  19. Screening of some Malay medicated oils for antimicrobial activity

    Directory of Open Access Journals (Sweden)

    Khalid Khalisanni

    2010-01-01

    Full Text Available Oils from six Malay medicated oils, used traditionally in the treatment of infectious and septic diseases in humans, were tested for their antimicrobial property. The aim was to evaluate the antimicrobial properties of six Malay medicated oils against certain microbial isolates. Locally available Malay medicated oils were checked for their antimicrobial activities using six species of bacteria: E. coli, Salmonella spp., Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus, Bacillus subtilis and 2 fungi with 1 yeast (Aspergillus niger, Penicillum spp. and Candida albicans. Clove oil showed the highest antibacterial activity followed, respectively, by 'bunga merah', cajaput, nutmeg, lemon grass and 'gamat' oil. Clove oil and lemon grass showed anticandidal activity. The Malay medicated oil studies did not show any antifungal activity. The study shows that Malay medicated oils, like antibiotics, have antimicrobial activities against some microorganisms.

  20. A global map of dominant malaria vectors

    Directory of Open Access Journals (Sweden)

    Sinka Marianne E

    2012-04-01

    Full Text Available Abstract Background Global maps, in particular those based on vector distributions, have long been used to help visualise the global extent of malaria. Few, however, have been created with the support of a comprehensive and extensive evidence-based approach. Methods Here we describe the generation of a global map of the dominant vector species (DVS of malaria that makes use of predicted distribution maps for individual species or species complexes. Results Our global map highlights the spatial variability in the complexity of the vector situation. In Africa, An. gambiae, An. arabiensis and An. funestus are co-dominant across much of the continent, whereas in the Asian-Pacific region there is a highly complex situation with multi-species coexistence and variable species dominance. Conclusions The competence of the mapping methodology to accurately portray DVS distributions is discussed. The comprehensive and contemporary database of species-specific spatial occurrence (currently available on request will be made directly available via the Malaria Atlas Project (MAP website from early 2012.

  1. STUDY OF THE ANTIMICROBIAL PROPERTIES OF CERTAIN SAPROPHYTIC OBLIGATE MARINE FUNGI

    Directory of Open Access Journals (Sweden)

    Kalyuzhnaya O.S.

    2015-05-01

    of E. coli and S. aureus in control and after their cocultivation with fungi Halosphaeriopsis mediosetigera and Nia vibrissa on yeast broth at (37 ± 1 ° C showed that the number of test cells after culturing strains with selected species of marine fungi significantly lower than in control: when cultured with Halosphaeriopsis mediosetigera cell number of E. coli decreased by almost 100 times, and cells of S. aureus - 1000, when cultured with Nia vibrissa number of cells test strains decreased 100 times. These results prove the presence of antimicrobial properties for these species, with observed the same trend as the study of antimicrobial properties of agar diffusion method - both types of fungi inhibit gram-positive and gram-negative bacteria. Conclusions. The study of the antimicrobial properties of some species of saprophytic obligate marine fungi, which are the inhabitants of the north-western Black Sea region: Arenariomyces trifurcata, Ceriosporopsis halima, Corollospora maritima, Halosphaeriopsis mediosetigera, Nia vibrissa, was carried out. It was established that their culture supernatant have antimicrobial activity against gram-positive bacteria, and the last two species - against gram-negative bacteria, such action was not observed against C. albicans. Thus, the selected objects of study are potential producers of antimicrobial substances; it leads to the prospect of further work in this area. Keywords: saprophytic obligate marine fungi, antimicrobial properties

  2. Floristic composition of the dry tropical forest in biological reserve (sanctuary "Los Besotes" and phenology of the dominant arboreal species (Valledupar, Cesar, Colombia

    Directory of Open Access Journals (Sweden)

    Mary Lee Berdugo Lattke

    2015-01-01

    Full Text Available Based on the floristic composition and structural aspects, the formation tropical dry forest of the reserve "Los Besotes" (Valledupar, Cesar; 248 y 1046m of altitude was characterized. In 35 individuals from nine dominant tree species in two forest types, the phenological characteristics were assessed. Seven monitoring were performed along one year according to the scheme of distribution of rainfall. The leaf fall in the forests of Myrcianthes aff. fragrans and Brosimum alicastrum did not exceed 20% regardless of the climatic period (drought or rainy seasons. In others dominant understory species the leaf fall was less than 40%, thus species of the canopy are classified as evergreen while those of the understory as semideciduous. Blooming peaked during the dry season while fruit production peaked during the two rainy seasons. In the forest ofBursera simaruba and Pterocarpus acapulcensis the leaf fall exceeded 60% in the dry season, while in the rainy season was only 30%. The leaf fall increased to 60% in others dominant understory species. Both canopy as well as understory species are deciduous. Blooming was observed during the dry season (December to March, and July, but it is also likely to occur in October; fruit production was observed at the end of the rainy season. In the tropical dry forest formation evergreen plant communities with low values of leaf fall (40% and deciduous communities with values greater than 60% are recognized.

  3. Are antimicrobial peptides an alternative for conventional antibiotics?

    International Nuclear Information System (INIS)

    Kamysz, W.

    2005-01-01

    Antimicrobial peptides are widespread in living organisms and constitute an important component of innate immunity to microbial infections. By the early 1980' s , more than 800 different antimicrobial peptides had been isolated from mammals, amphibians, fish, insects, plants and bacterial species. In humans, they are produced by granulocytes, macrophages and most epithelial and endothelial cells. Newly discovered antibiotics have antibacterial, antifungal, antiviral and even antiprotozoal activity. Occasionally, a single antibiotic may have a very wide spectrum of activity and may show activity towards various kinds of microorganisms. Although antimicrobial activity is the most typical function of peptides, they are also characterized by numerous other properties. They stimulate the immune system, have anti-neoplastic properties and participate in cell signalling and proliferation regulation. As antimicrobial peptides from higher eukaryotes differ structurally from conventional antibiotics produced by bacteria and fungi, they offer novel templates for pharmaceutical compounds, which could be used effectively against the increasing number of resistant microbes. (author)

  4. Antimicrobial activity and phytochemical characterization of Carya illinoensis.

    Science.gov (United States)

    Bottari, Nathieli Bianchin; Lopes, Leonardo Quintana Soares; Pizzuti, Kauana; Filippi Dos Santos Alves, Camilla; Corrêa, Marcos Saldanha; Bolzan, Leandro Perger; Zago, Adriana; de Almeida Vaucher, Rodrigo; Boligon, Aline Augusti; Giongo, Janice Luehring; Baldissera, Matheus Dellaméa; Santos, Roberto Christ Vianna

    2017-03-01

    Carya illinoensis is a widespread species, belonging to the Juglandaceae family, commonly known as Pecan. Popularly, the leaves have been used in the treatment of smoking as a hypoglycemic, cleansing, astringent, keratolytic, antioxidant, and antimicrobial agent. The following research aimed to identify for the first time the phytochemical compounds present in the leaves of C. illinoensis and carry out the determination of antimicrobial activity of aqueous and ethanolic extracts. The antimicrobial activity was tested against 20 microorganisms by determining the minimum inhibitory concentration (MIC). Phenolic acids (gallic acid and ellagic acid), flavonoids (rutin), and tannins (catechins and epicatechins) were identified by HPLC-DAD and may be partially responsible for the antimicrobial activity against Gram-positive, Gram-negative, and yeast. The results showed MIC values between 25 mg/mL and 0.78 mg/mL. The extracts were also able to inhibit the production of germ tubes by Candida albicans. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. SALMONELLA SPECIES

    African Journals Online (AJOL)

    DR. AMINU

    ... of Salmonella species serotypes in relation to age and sex among children, ..... However, most antimicrobials show sufficient selective toxicity to be of value in ... salmonellosis should be given good attention (Barrow et al., 2007). To reduce ...

  6. Species distribution and resistance patterns to growth-promoting antimicrobials of enterococci isolated from pigs and chickens in Korea.

    Science.gov (United States)

    Hwang, In Yeong; Ku, Hyun Ok; Lim, Suk Kyung; Park, Choi Kyu; Jung, Gab Su; Jung, Suk Chan; Nam, Hyang Mi

    2009-11-01

    A total of 147 Enterococcus faecium and 165 Enterococcus faecalis isolates from fecal samples of chickens and pigs at slaughterhouses in Korea were tested for their resistance to 8 growth-promoting antimicrobials commonly used in animals and quinupristin and dalfopristin. Resistance to most antimicrobials was very common among both E. faecalis and E. faecium. In particular, E. faecalis showed almost no susceptibility to all the antimicrobials tested except penicillin and flavomycin, to which 1.4% and less than 24% showed resistance, respectively. Although the prevalence of resistance was lower than in E. faecalis, E. faecium showed relatively uniform resistance to all the agents tested. Among the antimicrobials tested, virginiamycin and penicillin were the most effective against E. faecium isolates: less than 31% and 41% showed resistance to those 2 antimicrobials, respectively. Penicillin was the only agent that showed relatively strong activity against both E. faecalis and E. faecium. Resistance observed in E. faecalis and E. faecium against most antimicrobials used for growth promotion was more prevalent in Korea than in European countries. The current study is the first report of resistance against feed additive antimicrobials in enterococcal isolates from livestock in Korea.

  7. Protein and alkaloid patterns of the floral nectar in some solanaceous species.

    Science.gov (United States)

    Kerchner, András; Darók, Judit; Bacskay, Ivett; Felinger, Attila; Jakab, Gábor; Farkas, Ágnes

    2015-09-01

    The family Solanaceae includes several melliferous plants, which tend to produce copious amounts of nectar. Floral nectar is a chemically complex aqueous solution, dominated by sugars, but minor components such as amino acids, proteins, flavonoids and alkaloids are present as well. This study aimed at analysing the protein and alkaloid profile of the nectar in seven solanaceous species. Proteins were examined with SDS-PAGE and alkaloids were analyzed with HPLC. The investigation of protein profile revealed significant differences in nectar-protein patterns not only between different plant genera, but also between the three Nicotiana species investigated. SDS-PAGE suggested the presence of several Nectarin proteins with antimicrobial activity in Nicotiana species. The nectar of all tobacco species contained the alkaloid nicotine, N. tabacum having the highest nicotine content. The nectar of Brugmansia suaveolens, Datura stramonium, Hyoscyamus niger and Lycium barbarum contained scopolamine, the highest content of which was measured in B. suaveolens. The alkaloid concentrations in the nectars of most solanaceous species investigated can cause deterrence in honeybees, and the nectar of N. rustica and N. tabacum can be considered toxic for honeybees.

  8. Differences in the antimicrobial susceptibility profiles of Moraxella bovis, M. bovoculi and M. ovis

    Directory of Open Access Journals (Sweden)

    Grazieli Maboni

    2015-06-01

    Full Text Available The aim of this study was to determine the differences in the antimicrobial susceptibility profiles of Moraxella bovis, M. bovoculi and M. ovis. Thirty-two strains of Moraxella spp. isolated from cattle and sheep with infectious keratoconjunctivitis were tested via broth microdilution method to determine their susceptibility to ampicillin, cefoperazone, ceftiofur, cloxacillin, enrofloxacin, florfenicol, gentamicin, neomycin, oxytetracycline and penicillin. The results demonstrated that Moraxella spp. strains could be considered sensitive for most of the antimicrobials tested in this study, but differences between the antimicrobial susceptibility profiles of these three Moraxella species were found. M. bovis might differ from other species due to the higher MIC and MBC values it presented.

  9. Differences in the antimicrobial susceptibility profiles of Moraxella bovis, M. bovoculi and M. ovis

    Science.gov (United States)

    Maboni, Grazieli; Gressler, Leticia T.; Espindola, Julia P.; Schwab, Marcelo; Tasca, Caiane; Potter, Luciana; de Vargas, Agueda Castagna

    2015-01-01

    The aim of this study was to determine the differences in the antimicrobial susceptibility profiles of Moraxella bovis, M. bovoculi and M. ovis. Thirty-two strains of Moraxella spp. isolated from cattle and sheep with infectious keratoconjunctivitis were tested via broth microdilution method to determine their susceptibility to ampicillin, cefoperazone, ceftiofur, cloxacillin, enrofloxacin, florfenicol, gentamicin, neomycin, oxytetracycline and penicillin. The results demonstrated that Moraxella spp. strains could be considered sensitive for most of the antimicrobials tested in this study, but differences between the antimicrobial susceptibility profiles of these three Moraxella species were found. M. bovis might differ from other species due to the higher MIC and MBC values it presented. PMID:26273272

  10. The response of three dominant Arctic copepod species to elevated CO2 concentrations and water temperatures

    OpenAIRE

    Hildebrandt, Nicole

    2014-01-01

    Ocean acidification (OA) and ocean warming are threatening marine life. Within the framework of the research project BIOACID, this thesis aims to provide a comprehensive overview on the sensitivity of the dominant Arctic calanoid copepod species Calanus finmarchicus, C. glacialis and C. hyperboreus to elevated pCO2 and temperatures. Controlled laboratory experiments have shown that subadult and adult Calanus life stages are rather robust to the direct effects of OA during both active and rest...

  11. Identification of Nematode Fauna in Vineyards of South of Western Azerbaijan and Determination of the Dominant Parasitic Species

    Directory of Open Access Journals (Sweden)

    E. Mohajeri

    2017-12-01

    Full Text Available Introduction: Grapevine belongs to the Vitaceae family that consists of 14 genera and about 700 species. Only in the genus Vitis fruits are edible. Italy is the largest producer of grapes and Iran has the seventh position in the world from this point of view. Western Azarbaijan province comprises a high diversity of crops including wild grapes. Although, some nematodes are free living and antagonists of another soil microfauna, the other are plant parasitic agents. Most of which live in the agricultural soils where they are widely dispersed. Effectiveness of the disease management strategies are affected by the accurate identification of the plant disease causal agents and the nematodal diseases are not the exception from this rule. Therefore, for control of the diseases caused by the nematodes, it is necessary to separate the parasitic nematodes from the suspected contaminated soils and identify them. Although separation and identification of the nematodes are partly time-consuming, it is not very complicated. Some nematodes likeXiphinema, Longidorus and Ditylenchus are cosmopolitan and catastrophic nematodes in vineyards worldwide. So far no study has been performed regarding the plant parasitic nematode in vineyards of the south of Western Azerbaijan. Therefore, in this study as an introduction to the management ofthe vineyard parasitic nematodes, the dominant nematodes of the plant were identified. In the next step, investigation of nematodes bioecology, the interaction of nematodes with the other plant pathogens, their host range and their damages to the host plants would be studied. Materials and Methods: In order to identify the fauna of plant parasitic nematodes in vineyards of the south of Western Azarbaijan, during 2013-2014, 50 soil samples were collected from the rhizosphere of grapevine. The sampling was carried out from the vineyards of five grapevine growing cities including Mahabad, Bookan, Sardasht, Piranshahr and Miyandoab. The

  12. Non-typhoidal Salmonella serotypes, antimicrobial resistance and co-infection with parasites among patients with diarrhea and other gastrointestinal complaints in Addis Ababa, Ethiopia.

    Science.gov (United States)

    Eguale, Tadesse; Gebreyes, Wondwossen A; Asrat, Daniel; Alemayehu, Haile; Gunn, John S; Engidawork, Ephrem

    2015-11-04

    Non-typhoidal Salmonella (NTS) is an important public health problem worldwide. Consumption of animal-derived food products and direct and/or indirect contact with animals are the major routes of acquiring infection with NTS. Published information, particularly on the serotype distribution of NTS among human patients with gastroenteritis and associated risk factors, is scarce in Ethiopia. This study investigated the prevalence, risk factors, serotype distribution and antimicrobial susceptibility of Salmonella species among diarrheic out-patients attending health centers in Addis Ababa and patients with various gastrointestinal complaints at Tikur Anbessa Specialized Hospital (TASH). Stool samples were cultured for Salmonella species according to the WHO Global Foodborne Infections Network laboratory protocol. Salmonella serotyping was conducted using slide agglutination and microplate agglutination techniques. Antibiotic susceptibility testing was performed using the disk diffusion method according to Clinical and Laboratory Standards Institute guidelines. A total of 59 (6.2 %) stool samples, out of 957 were culture positive for Salmonella species. Fifty-five (7.2 %) of 765 diarrheic patients from health centers and 4 (2.1 %) of 192 patients from TASH were culture positive for Salmonella species. Multivariable logistic regression analysis after adjusting for all other variables revealed statistically significant association of Salmonella infection with consumption of raw vegetables (OR = 1.91, 95 % CI = 1.29-2.83, χ(2) = 4.74, p = 0.025) and symptom of watery diarrhea (OR = 3.3, 95 % CI = 1.23-8.88, χ(2) = 10.54, p = 0.005). Eleven serotypes were detected, and the most prominent were S. Typhimurium (37.3 %), S. Virchow (34 %), and S. Kottbus (10.2 %). Other serotypes were S. Miami, S. Kentucky, S. Newport, S. Enteritidis, S. Braenderup, S. Saintpaul, S. Concord and S. V:ROUGH-O. Resistance to three or more antimicrobials was detected in 27 (40.3 %) of the

  13. An assessment of antimicrobial consumption in food producing animals in Kenya

    DEFF Research Database (Denmark)

    Mitema, E.S.; Kikuvi, G.M.; Wegener, Henrik Caspar

    2001-01-01

    Antimicrobial agents are useful for control of bacterial infections in food animals and man. Their prudent use in these animals is important to control any possible development and transfer of resistance between animals and man. The objective of this study was to generate quantitative information...... to evaluate antimicrobial usage patterns by animal species, route of administration, antimicrobial class and type of use from 1995 to 1999 in Kenya. Theses data are essential for risk analysis and planning and can be helpful in interpreting resistance surveillance data, and evaluating the effectiveness...... of prudent use efforts and antimicrobial resistance mitigation strategies. Data on quantities of active substance classes were collected from the official records of the Pharmacy and Poisons Board of the Ministry of Health and analysed in MS Excel 2000 program. The mean antimicrobial consumption for the 5...

  14. Antimicrobial resistance and detection of mecA and blaZ genes in coagulase-negative Staphylococcus isolated from bovine mastitis

    Directory of Open Access Journals (Sweden)

    Lidiane C. Soares

    2012-08-01

    Full Text Available The present study evaluated the pheno- and genotypical antimicrobial resistance profile of coagulase-negative Staphylococcus (CNS species isolated from dairy cows milk, specially concerning to oxacillin. Of 100 CNS isolates, the S. xylosus was the prevalent species, followed by S. cohnii, S. hominis, S. capitis and S. haemolyticus. Only 6% were phenotypically susceptible to the antimicrobial agents tested in disk diffusion assay. Penicillin and ampicillin resistance rates were significantly higher than others antimicrobials. Four isolates were positive to mecA gene (4%, all represented by the S. xylosus species. The blaZ gene was detected in 16% of the isolates (16/100. It was noticed that all mecA + were also positive to this gene and the presence of both genes was correlated to phenotypic beta-lactamic resistance. We conclude that CNS species from bovine milk presented significantly distinct antimicrobial resistance profiles, evaluated by phenotypic and genotypic tests, which has implications for treatment and management decisions.

  15. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Organically Cultivated Fennel Cultivars

    Directory of Open Access Journals (Sweden)

    Mahmoud A. Saleh

    2011-02-01

    Full Text Available Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragole, fenchone and limonene were highly abundant in all of the examined oils. Antioxidant activities of the essential oils were evaluated using the DPPH radical scavenging, lipid peroxidation and metal chelating assays. Essential oils from the azoricum and dulce cultivars were more effective antioxidants than that from the vulgare cultivar. Antimicrobial activities of each oil were measured against two species of fungi, two species of Gram negative and two species of Gram positive bacteria. All three cultivars showed similar antimicrobial activity.

  16. Chemical composition, antimicrobial and antioxidant activities of essential oils from organically cultivated fennel cultivars.

    Science.gov (United States)

    Shahat, Abdelaaty A; Ibrahim, Abeer Y; Hendawy, Saber F; Omer, Elsayed A; Hammouda, Faiza M; Abdel-Rahman, Fawzia H; Saleh, Mahmoud A

    2011-02-01

    Essential oils of the fruits of three organically grown cultivars of Egyptian fennel (Foeniculum vulgare var. azoricum, Foeniculum vulgare var. dulce and Foeniculum vulgare var. vulgare) were examined for their chemical constituents, antimicrobial and antioxidant activities. Gas chromatography/mass spectrometry analysis of the essential oils revealed the presence of 18 major monoterpenoids in all three cultivars but their percentage in each oil were greatly different. trans-Anethole, estragole, fenchone and limonene were highly abundant in all of the examined oils. Antioxidant activities of the essential oils were evaluated using the DPPH radical scavenging, lipid peroxidation and metal chelating assays. Essential oils from the azoricum and dulce cultivars were more effective antioxidants than that from the vulgare cultivar. Antimicrobial activities of each oil were measured against two species of fungi, two species of Gram negative and two species of Gram positive bacteria. All three cultivars showed similar antimicrobial activity.

  17. Preliminary phytochemical and antimicrobial screening of 50 ...

    African Journals Online (AJOL)

    Ethanolic extracts of 50 plant species were screened for their antimicrobial activity against Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The results indicated that of the 50 plant extracts, 28 plant extracts inhibited the growth of one or more test pathogens.

  18. Prevalence and antimicrobial resistance pattern of coagulase ...

    African Journals Online (AJOL)

    Prevalence and antimicrobial resistance pattern of coagulase negative Staphylococci isolated from pigs and in-contact humans in Jos Metropolis, Nigeria. ... (53/401) of the isolates were CoNS species based on confirmatory test with Microgen biochemical kit and were further subjected to antibiotic susceptibility testing.

  19. Brevibacillus laterosporus, a Pathogen of Invertebrates and a Broad-Spectrum Antimicrobial Species

    Directory of Open Access Journals (Sweden)

    Luca Ruiu

    2013-09-01

    Full Text Available Brevibacillus laterosporus, a bacterium characterized by the production of a unique canoe-shaped lamellar body attached to one side of the spore, is a natural inhabitant of water, soil and insects. Its biopesticidal potential has been reported against insects in different orders including Coleoptera, Lepidoptera, Diptera and against nematodes and mollusks. In addition to its pathogenicity against invertebrates, different B. laterosporus strains show a broad-spectrum antimicrobial activity including activity against phytopathogenic bacteria and fungi. A wide variety of molecules, including proteins and antibiotics, have been associated with the observed pathogenicity and mode of action. Before being considered as a biological control agent against plant pathogens, the antifungal and antibacterial properties of certain B. laterosporus strains have found medical interest, associated with the production of antibiotics with therapeutic effects. The recent whole genome sequencing of this species revealed its potential to produce polyketides, nonribosomal peptides, and toxins. Another field of growing interest is the use of this bacterium for bioremediation of contaminated sites by exploiting its biodegradation properties. The aim of the present review is to gather and discuss all recent findings on this emerging entomopathogen, giving a wider picture of its complex and broad-spectrum biocontrol activity.

  20. Composition and antimicrobial activity of essential oils of Artemisia judaica, A. herba-alba and A. arborescens from Libya

    Directory of Open Access Journals (Sweden)

    Janaćković Peđa

    2015-01-01

    Full Text Available The essential oils obtained by hydrodistillation from the aerial parts of Artemisia judaica L., Artemisia herba-alba Asso. and Artemisia arborescens L. (cultivated from Libya, were analyzed by GC and GC-MS. The antimicrobial properties were determined using the broth microdilution method against eight bacterial species: Bacillus cereus (clinical isolate, Micrococcus flavus (ATCC10240, Listeria monocytogenes (NCTC7973, Staphylococcus aureus (ATCC6538, Escherichia coli (ATCC35210, Pseudomonas aeruginosa (ATCC27853, Salmonella typhimurium (ATCC13311, Enterobacter cloacae (human isolates and eight fungal species: Aspergillus niger (ATCC6275, A. ochraceus (ATCC12066, A. versicolor (ATCC11730, A. fumigatus (ATCC1022, Penicillium ochrochloron (ATCC9112, P. funiculosum (ATCC10509, Trichoderma viride (IAM5061 and Candida albicans (human isolate. The major constituents of A. arborescens oil were sesquiterpene hydrocarbons (47.4%. Oxygenated monoterpenes were the dominant constituents in the A. judaica and A. herba-alba oils (54.2% and 77.3%, respectively. Camphor (24.7% and chamazulene (20.9% were the major components in the essential oil of A. arborescens, chrysanthenone (20.8%, cis-chrysanthenyl acetate (17.6% and cis-thujone (13.6% dominated in the A. herba-alba oil, and the major constituents in the A. judaica oil were piperitone (30.21% and cis-chrysanthenol (9.1%. The best antimicrobial activity was obtained for A. judaica oil and the lowest effect was noticed in A. arborescens oil. The effect of the tested oils was higher against Gram (+ than Gram (- bacteria. All three oils showed the best antibacterial activity against Listeria monocytogenes and the lowest against Pseudomonas aeruginosa, Escherichia coli, Enterobacter cloacae, compared to streptomycin and ampicillin. All three oils showed better antifungal activities than ketoconazole, except A. arborescens oil against Aspergillus niger. [Projekat Ministarstv nauke Republike Srbije, br. 173029

  1. Antimicrobial and antioxidant activity of natural honeys of different origin

    Directory of Open Access Journals (Sweden)

    Miartina Fikselová

    2014-10-01

    Full Text Available To examine the antimicrobial and antioxidant activity of 15 natural honeys, honey samples were collected from different locations of Slovakia, Poland and Serbia. For antimicrobial activity determination honey solutions were prepared at three concentrations: 50, 25 and 12.5 % (by mass per volume. The potential antimicrobial activity of  selected samples against four species of bacteria (Escherichia coli CCM 3988, Pseudomonas aeroginosa CCM 1960, Staphylococcus epidermis CCM 4418, Bacillus cereus CCM 2010 and two species of yeasts (Saccharomyces cerevisiae CCM 8191, Candida albicans CCM 8216 was studied using the disc diffusion method. After incubation, the zones of inhibition of the growth of the microorganisms around the disks were measured. The strongest antimicrobial activity was shown at honey samples of 50 % concentration against Escherichia coli, Pseudomonas aeroginosa and Staphylococcus epidermis. Against Saccharomyces cerevisae and Candida albicans very low (at 50 %, 25 % concentration or zero antifugal (at 12.5 % concentration activity was determined. From the results obtained it was shown the variable ability of honey samples to scavenge stable free radical DPPH. TEACDPPH values ranged between 0.1-1.0 mmol.kg-1. As the antioxidative best source buckwheat honey was manifested and the lowest antioxidant activity was shown at acacia honey.

  2. Antimicrobial susceptibility of coagulase-negative staphylococci isolated from bovine milk samples

    NARCIS (Netherlands)

    Sampimon, O.C.; Lam, T.G.J.M.; Mevius, D.J.; Schukken, Y.H.; Zadoks, R.N.

    2011-01-01

    The aim of this study was to examine whether antimicrobial resistance profiles of coagulase-negative Staphylococcus (CNS) species isolated from milk of dairy cows differed between bacterial species, and to compare results obtained by phenotypic and genotypic profiling of resistance to penicillin,

  3. Antimicrobial properties of nest volatiles in red imported fire ants, Solenopsis invicta (Hymenoptera: Formicidae)

    Science.gov (United States)

    In social insects, antimicrobial secretions are often used collectively for the benefit of the whole colony, which is an important component in social immunity. Many ant species build nests in which air circulation can be controlled. Volatile antimicrobial agents would be ideal in implementing socia...

  4. Antimicrobial property of lemongrass (Cymbopogon citratus) oil against pathogenic bacteria isolated from pet turtles.

    Science.gov (United States)

    De Silva, B C J; Jung, Won-Gi; Hossain, Sabrina; Wimalasena, S H M P; Pathirana, H N K S; Heo, Gang-Joon

    2017-06-01

    The usage of essential oils as antimicrobial agents is gaining attention. Besides, pet turtles were known to harbor a range of pathogenic bacteria while the turtle keeping is a growing trend worldwide.The current study examined the antimicrobial activity of lemon grass oil (LGO) against seven species of Gram negative bacteria namely; Aeromonas hydrophila , A. caviae , Citrobacter freundii , Salmonella enterica , Edwardsiella tarda , Pseudomonas aeruginosa , and Proteus mirabilis isolated from three popular species of pet turtles. Along with the results of disc diffusion, minimum inhibitory and minimum bactericidal concentration (MIC and MBC) tests, LGO was detected as effective against 6 species of bacteria excluding P. aeruginosa . MIC of LGO for the strains except P. aeruginosa ranged from 0.016 to 0.5% (V/V). The lowest MIC recorded in the E. tarda strain followed by A. hydrophilla , C. freundii , P. mirabilis , and S. enterica . Interestingly, all the bacterial species except E. tarda were showing high multiple antimicrobial resistance (MAR) index values ranging from 0.36 to 0.91 upon the 11 antibiotics tested although they were sensitive to LGO.

  5. Cross-species induction of antimicrobial compounds, biosurfactants and quorum-sensing inhibitors in tropical marine epibiotic bacteria by pathogens and biofouling microorganisms.

    Science.gov (United States)

    Dusane, Devendra H; Matkar, Pratiek; Venugopalan, Valayam P; Kumar, Ameeta Ravi; Zinjarde, Smita S

    2011-03-01

    Enhancement or induction of antimicrobial, biosurfactant, and quorum-sensing inhibition property in marine bacteria due to cross-species and cross-genera interactions was investigated. Four marine epibiotic bacteria (Bacillus sp. S3, B. pumilus S8, B. licheniformis D1, and Serratia marcescens V1) displaying antimicrobial activity against pathogenic or biofouling fungi (Candida albicans CA and Yarrowia lipolytica YL), and bacteria (Pseudomonas aeruginosa PA and Bacillus pumilus BP) were chosen for this study. The marine epibiotic bacteria when co-cultivated with the aforementioned fungi or bacteria showed induction or enhancement in antimicrobial activity, biosurfactant production, and quorum-sensing inhibition. Antifungal activity against Y. lipolytica YL was induced by co-cultivation of the pathogens or biofouling strains with the marine Bacillus sp. S3, B. pumilus S8, or B. licheniformis D1. Antibacterial activity against Ps. aeruginosa PA or B. pumilus BP was enhanced in most of the marine isolates after co-cultivation. Biosurfactant activity was significantly increased when cells of B. pumilus BP were co-cultivated with S. marcescens V1, B. pumilus S8, or B. licheniformis D1. Pigment reduction in the quorum-sensing inhibition indicator strain Chromobacterium violaceum 12472 was evident when the marine strain of Bacillus sp. S3 was grown in the presence of the inducer strain Ps. aeruginosa PA, suggesting quorum-sensing inhibition. The study has important ecological and biotechnological implications in terms of microbial competition in natural environments and enhancement of secondary metabolite production.

  6. Antimicrobial activities of three species of family mimosaceae.

    Science.gov (United States)

    Mahmood, Adeel; Mahmood, Aqeel; Qureshi, Rizwana Aleem

    2012-01-01

    The antimicrobial activities of crude methanolic extract of leaves of Acacia nilotica L., Albizia lebbeck L. and Mimosa himalayana Gamble belonging to family mimosaceae were investigated in this research work. Antibacterial activity was studied by agar well diffusion method against one gram-positive Bacillus subtilis and three gram-negative Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumonia. Crude extract of all plants showed best activity against gram-negative bacterial strains while minor inhibition zones were found against gram positive bacterial strains. Antifungal activity of crude plant extract was screened by agar tube dilution method against Aspergillus nigar and Aspergillus flavus. These results showed that these plants extracts have potential against bacterias, while against fungi their activity is not much effective.

  7. In vitro antimicrobial activity and antagonistic effect of essential oils from plant species.

    Science.gov (United States)

    Toroglu, Sevil

    2007-07-01

    Kahramanmaras, is a developing city located in the southern part of Turkey Thymus eigii (M. Zohary and RH. Davis) Jalas, Pinus nigraAm. sub sp pallasiana and Cupressus sempervirens L. are the useful plants of the Kahramanmaras province and have been understudy since 2004 for the traditional uses of plants empiric drug, spice, herbal tea industry herbal gum and fuel. The study was designed to examine the antimicrobial activities of essential oils of these plants by the disc diffusion and minimum inhibitory concentration (MIC) methods. In addition, antimicrobial activity of Thymus eigii was researched by effects when it was used together with antibiotics and even when it was combined with other essential oils. When the results of this study were compared with vancomycin (30 mcg) and erytromycin (15 mcg) standards, it was found that Thymus eigii essential oil was particularly found to possess strongerantimicrobial activity whereas other essential oils showed susceptible or moderate activity However, antimicrobial activity changed also by in vitro interactions between antibiotics and Thymus eigii essential oil, also between essential oils of these plants and that of Thymus eigii causing synergic, additive, antagonist effect.

  8. Species Distribution and Antibiotic Resistance in Coagulase ...

    African Journals Online (AJOL)

    Purpose: The antimicrobial susceptibility of 149 coagulase-negative staphylococci (CoNS) isolates from faecal samples of children in Ile-Ife, Nigeria, was evaluated in order to determine their contribution to antimicrobial resistance in the community. Methods: The isolates were identified to the species level by conventional ...

  9. Antimicrobial Potency of Pentaclethra Macrophylla Seed Extract on

    African Journals Online (AJOL)

    SAM

    ABSTRACTS: The antimicrobial efficacy of extracts of Pentaclethra macrophylla in ethanol, methanol and water was determined against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella species, Salmonella typhi,. Aspergills niger and Candida albican using paper disc and hole diffusion ...

  10. Incidence and antimicrobial susceptibility pattern of salmonella ...

    African Journals Online (AJOL)

    A study was carried out to investigate the incidence of Salmonella species among 300 children using stool samples from six hospitals in the metropolitan Kano. The organisms were investigated using cultural, serological biochemical characterization and sensitivity to some antimicrobial agents. The incidence of the bacteria ...

  11. The Genus Artemisia: A 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils

    Science.gov (United States)

    Singh, Pooja

    2017-01-01

    Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017) on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity. PMID:28930281

  12. The Genus Artemisia: a 2012–2017 Literature Review on Chemical Composition, Antimicrobial, Insecticidal and Antioxidant Activities of Essential Oils

    Directory of Open Access Journals (Sweden)

    Abhay K. Pandey

    2017-09-01

    Full Text Available Essential oils of aromatic and medicinal plants generally have a diverse range of activities because they possess several active constituents that work through several modes of action. The genus Artemisia includes the largest genus of family Asteraceae has several medicinal uses in human and plant diseases aliments. Extensive investigations on essential oil composition, antimicrobial, insecticidal and antioxidant studies have been conducted for various species of this genus. In this review, we have compiled data of recent literature (2012–2017 on essential oil composition, antimicrobial, insecticidal and antioxidant activities of different species of the genus Artemisia. Regarding the antimicrobial and insecticidal properties we have only described here efficacy of essential oils against plant pathogens and insect pests. The literature revealed that 1, 8-cineole, beta-pinene, thujone, artemisia ketone, camphor, caryophyllene, camphene and germacrene D are the major components in most of the essential oils of this plant species. Oils from different species of genus Artemisia exhibited strong antimicrobial activity against plant pathogens and insecticidal activity against insect pests. However, only few species have been explored for antioxidant activity.

  13. Antimicrobial activity of some selected species of genus .I.Nigella./I..

    Czech Academy of Sciences Publication Activity Database

    Kokoška, L.; Rada, V.; Vaněk, Tomáš; Nepovím, Aleš

    2002-01-01

    Roč. 2, Supl. 1 (2002), s. 180 ISSN 1576-0952. [Annual Congress of the Society for Medicinal Plant Research /50./. 08.09.2002-12.09.2002, Barcelona] R&D Projects: GA MŠk OC 843.10 Institutional research plan: CEZ:AV0Z4055905 Keywords : antimicrobial activity Subject RIV: EI - Biotechnology ; Bionics

  14. Antimicrobial use surveillance in broiler chicken flocks in Canada, 2013-2015.

    Science.gov (United States)

    Agunos, Agnes; Léger, David F; Carson, Carolee A; Gow, Sheryl P; Bosman, Angelina; Irwin, Rebecca J; Reid-Smith, Richard J

    2017-01-01

    There is a paucity of data on the reason for and the quantity of antimicrobials used in broiler chickens in Canada. To address this, the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) implemented surveillance of antimicrobial use (AMU) and antimicrobial resistance (AMR) in broiler chicken flocks in 2013. Shortly after this (2014), the poultry industry banned the preventive use of ceftiofur in broiler chickens. The objectives of this analysis were to describe antimicrobial use (AMU) in Canadian broiler chickens between 2013 and 2015 (n = 378 flocks), compare these results to other animal species in Canada, to highlight the utility of farm surveillance data to evaluate the impact of a policy change, and to explore how different antimicrobial use metrics might affect data interpretation and communication. The surveillance data indicated that the poultry industry policy resulted in lower antimicrobial use and resistance, and they successfully captured information on when, where, why, and how much antimicrobials were being used. The majority of antimicrobials were administered via the feed (95%). The relative frequency of antimicrobial classes used in broiler chickens differed from those used in swine or in food animal production in general. Coccidiostats were the most frequently used antimicrobial classes (53% of total kg). Excluding coccidiostats, the top three most frequently used antimicrobial classes were bacitracin (53% of flocks), virginiamycin (25%) and avilamycin (21%), mainly used for the prevention of necrotic enteritis. Depending on the AMU metric utilized, the relative rankings of the top antimicrobials changed; hence the choice of the AMU metric is an important consideration for any AMU reporting. When using milligrams/Population Correction Unit (mg/PCU) the top three antimicrobial classes used were bacitracins (76 mg/PCU), trimethoprim-sulfonamides (24 mg/PCU), and penicillins (15 mg/PCU), whereas when using a number of

  15. Antimicrobial use surveillance in broiler chicken flocks in Canada, 2013-2015.

    Directory of Open Access Journals (Sweden)

    Agnes Agunos

    Full Text Available There is a paucity of data on the reason for and the quantity of antimicrobials used in broiler chickens in Canada. To address this, the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS implemented surveillance of antimicrobial use (AMU and antimicrobial resistance (AMR in broiler chicken flocks in 2013. Shortly after this (2014, the poultry industry banned the preventive use of ceftiofur in broiler chickens. The objectives of this analysis were to describe antimicrobial use (AMU in Canadian broiler chickens between 2013 and 2015 (n = 378 flocks, compare these results to other animal species in Canada, to highlight the utility of farm surveillance data to evaluate the impact of a policy change, and to explore how different antimicrobial use metrics might affect data interpretation and communication. The surveillance data indicated that the poultry industry policy resulted in lower antimicrobial use and resistance, and they successfully captured information on when, where, why, and how much antimicrobials were being used. The majority of antimicrobials were administered via the feed (95%. The relative frequency of antimicrobial classes used in broiler chickens differed from those used in swine or in food animal production in general. Coccidiostats were the most frequently used antimicrobial classes (53% of total kg. Excluding coccidiostats, the top three most frequently used antimicrobial classes were bacitracin (53% of flocks, virginiamycin (25% and avilamycin (21%, mainly used for the prevention of necrotic enteritis. Depending on the AMU metric utilized, the relative rankings of the top antimicrobials changed; hence the choice of the AMU metric is an important consideration for any AMU reporting. When using milligrams/Population Correction Unit (mg/PCU the top three antimicrobial classes used were bacitracins (76 mg/PCU, trimethoprim-sulfonamides (24 mg/PCU, and penicillins (15 mg/PCU, whereas when using a number

  16. Social Complexity and Nesting Habits Are Factors in the Evolution of Antimicrobial Defences in Wasps

    OpenAIRE

    Hoggard, Stephen J.; Wilson, Peter D.; Beattie, Andrew J.; Stow, Adam J.

    2011-01-01

    Microbial diseases are important selective agents in social insects and one major defense mechanism is the secretion of cuticular antimicrobial compounds. We hypothesized that given differences in group size, social complexity, and nest type the secretions of these antimicrobials will be under different selective pressures. To test this we extracted secretions from nine wasp species of varying social complexity and nesting habits and assayed their antimicrobial compounds against cultures of S...

  17. Antimicrobial activity of traditional medicinal plants from Ankober District, North Shewa Zone, Amhara Region, Ethiopia.

    Science.gov (United States)

    Lulekal, E; Rondevaldova, J; Bernaskova, E; Cepkova, J; Asfaw, Z; Kelbessa, E; Kokoska, L; Van Damme, P

    2014-05-01

    Traditional medicinal plants have long been used in Ethiopia to treat human and livestock ailments. Despite a well-documented rich tradition of medicinal plant use in the country, their direct antimicrobial effects are still poorly known. To investigate the antimicrobial activity of 19 medicinal plant species that were selected based on the ethnobotanical information on their traditional use to treat infectious diseases in Ankober District. About 23 different ethanol extracts of plants obtained by maceration of various parts of 19 medicinal plant species were studied for potential antimicrobial activity using a broth microdilution method against Bacillus cereus, Bacteroides fragilis, Candida albicans, Clostridium perfringens, Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes. Plant extracts from Embelia schimperi Vatke (Myrsinaceae) showed the strongest antibacterial activity with a minimum inhibitory concentration (MIC) value of 64 µg/ml against B. cereus, L. monocytogenes, and S. pyogenes. Growth inhibitory activities were also observed for extracts of Ocimum lamiifolium Hochst. (Lamiaceae) against S. pyogenes, and those of Rubus steudneri Schweinf. (Rosaceae) against S. epidermidis at an MIC value of 128 µg/ml. Generally, 74% of ethanol extracts (17 extracts) showed antimicrobial activity against one or more of the microbial strains tested at an MIC value of 512 µg/ml or below. Results confirm the antimicrobial role of traditional medicinal plants of Ankober and warrant further investigations on promising medicinal plant species so as to isolate and characterise chemicals responsible for the observed strong antimicrobial activities.

  18. Commercial Essential Oils as Potential Antimicrobials to Treat Skin Diseases

    Science.gov (United States)

    Orchard, Ané

    2017-01-01

    Essential oils are one of the most notorious natural products used for medical purposes. Combined with their popular use in dermatology, their availability, and the development of antimicrobial resistance, commercial essential oils are often an option for therapy. At least 90 essential oils can be identified as being recommended for dermatological use, with at least 1500 combinations. This review explores the fundamental knowledge available on the antimicrobial properties against pathogens responsible for dermatological infections and compares the scientific evidence to what is recommended for use in common layman's literature. Also included is a review of combinations with other essential oils and antimicrobials. The minimum inhibitory concentration dilution method is the preferred means of determining antimicrobial activity. While dermatological skin pathogens such as Staphylococcus aureus have been well studied, other pathogens such as Streptococcus pyogenes, Propionibacterium acnes, Haemophilus influenzae, and Brevibacterium species have been sorely neglected. Combination studies incorporating oil blends, as well as interactions with conventional antimicrobials, have shown that mostly synergy is reported. Very few viral studies of relevance to the skin have been made. Encouragement is made for further research into essential oil combinations with other essential oils, antimicrobials, and carrier oils. PMID:28546822

  19. Prevalence and Genetic Basis of Antimicrobial Resistance in Non-aureus Staphylococci Isolated from Canadian Dairy Herds

    Science.gov (United States)

    Nobrega, Diego B.; Naushad, Sohail; Naqvi, S. Ali; Condas, Larissa A. Z.; Saini, Vineet; Kastelic, John P.; Luby, Christopher; De Buck, Jeroen; Barkema, Herman W.

    2018-01-01

    Emergence and spread of antimicrobial resistance is a major concern for the dairy industry worldwide. Objectives were to determine: (1) phenotypic and genotypic prevalence of drug-specific resistance for 25 species of non-aureus staphylococci, and (2) associations between presence of resistance determinants and antimicrobial resistance. Broth micro-dilution was used to determine resistance profiles for 1,702 isolates from 89 dairy herds. Additionally, 405 isolates were sequenced to screen for resistance determinants. Antimicrobial resistance was clearly species-dependent. Resistance to quinupristin/dalfopristin was common in Staphylococcus gallinarum (prevalence of 98%), whereas S. cohnii and S. arlettae were frequently resistant to erythromycin (prevalence of 63 and 100%, respectively). Prevalence of resistance was 10% against β-lactams and tetracyclines. In contrast, resistance to antimicrobials critically important for human medicine, namely vancomycin, fluoroquinolones, linezolid and daptomycin, was uncommon (< 1%). Genes encoding multidrug-resistance efflux pumps and resistance-associated residues in deducted amino acid sequences of the folP gene were the most frequent mechanisms of resistance, regardless of species. The estimated prevalence of the mecA gene was 17% for S. epidermidis. Several genes, including blaZ, mecA, fexA, erm, mphC, msrA, and tet were associated with drug-specific resistance, whereas other elements were not. There were specific residues in gyrB for all isolates of species intrinsically resistant to novobiocin. This study provided consensus protein sequences of key elements previously associated with resistance for 25 species of non-aureus staphylococci from dairy cattle. These results will be important for evaluating effects of interventions in antimicrobial use in Canadian dairy herds. PMID:29503642

  20. Prevalence and Genetic Basis of Antimicrobial Resistance in Non-aureus Staphylococci Isolated from Canadian Dairy Herds

    Directory of Open Access Journals (Sweden)

    Diego B. Nobrega

    2018-02-01

    Full Text Available Emergence and spread of antimicrobial resistance is a major concern for the dairy industry worldwide. Objectives were to determine: (1 phenotypic and genotypic prevalence of drug-specific resistance for 25 species of non-aureus staphylococci, and (2 associations between presence of resistance determinants and antimicrobial resistance. Broth micro-dilution was used to determine resistance profiles for 1,702 isolates from 89 dairy herds. Additionally, 405 isolates were sequenced to screen for resistance determinants. Antimicrobial resistance was clearly species-dependent. Resistance to quinupristin/dalfopristin was common in Staphylococcus gallinarum (prevalence of 98%, whereas S. cohnii and S. arlettae were frequently resistant to erythromycin (prevalence of 63 and 100%, respectively. Prevalence of resistance was 10% against β-lactams and tetracyclines. In contrast, resistance to antimicrobials critically important for human medicine, namely vancomycin, fluoroquinolones, linezolid and daptomycin, was uncommon (< 1%. Genes encoding multidrug-resistance efflux pumps and resistance-associated residues in deducted amino acid sequences of the folP gene were the most frequent mechanisms of resistance, regardless of species. The estimated prevalence of the mecA gene was 17% for S. epidermidis. Several genes, including blaZ, mecA, fexA, erm, mphC, msrA, and tet were associated with drug-specific resistance, whereas other elements were not. There were specific residues in gyrB for all isolates of species intrinsically resistant to novobiocin. This study provided consensus protein sequences of key elements previously associated with resistance for 25 species of non-aureus staphylococci from dairy cattle. These results will be important for evaluating effects of interventions in antimicrobial use in Canadian dairy herds.

  1. Cultivable Bacterial Microbiota of Northern Bobwhite (Colinus virginianus): A New Reservoir of Antimicrobial Resistance?

    Science.gov (United States)

    Su, Hongwen; McKelvey, Jessica; Rollins, Dale; Zhang, Michael; Brightsmith, Donald J.; Derr, James; Zhang, Shuping

    2014-01-01

    The northern bobwhite (Colinus virginianus) is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57%) followed by Actinobacteria (24%), Proteobacteria (17%) and Bacteroidetes (0.02%). Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations. PMID:24937705

  2. Cultivable bacterial microbiota of northern bobwhite (Colinus virginianus: a new reservoir of antimicrobial resistance?

    Directory of Open Access Journals (Sweden)

    Hongwen Su

    Full Text Available The northern bobwhite (Colinus virginianus is an ecologically and economically important avian species. At the present time, little is known about the microbial communities associated with these birds. As the first step to create a quail microbiology knowledge base, the current study conducted an inventory of cultivable quail tracheal, crop, cecal, and cloacal microbiota and associated antimicrobial resistance using a combined bacteriology and DNA sequencing approach. A total of 414 morphologically unique bacterial colonies were selected from nonselective aerobic and anaerobic cultures, as well as selective and enrichment cultures. Analysis of the first 500-bp 16S rRNA gene sequences in conjunction with biochemical identifications revealed 190 non-redundant species-level taxonomic units, representing 160 known bacterial species and 30 novel species. The bacterial species were classified into 4 phyla, 14 orders, 37 families, and 59 or more genera. Firmicutes was the most commonly encountered phylum (57% followed by Actinobacteria (24%, Proteobacteria (17% and Bacteroidetes (0.02%. Extensive diversity in the species composition of quail microbiota was observed among individual birds and anatomical locations. Quail microbiota harbored several opportunistic pathogens, such as E. coli and Ps. aeruginosa, as well as human commensal organisms, including Neisseria species. Phenotypic characterization of selected bacterial species demonstrated a high prevalence of resistance to the following classes of antimicrobials: phenicol, macrolide, lincosamide, quinolone, and sulphate. Data from the current investigation warrant further investigation on the source, transmission, pathology, and control of antimicrobial resistance in wild quail populations.

  3. Antioxidant and Antimicrobial Activity of Polyphenol Extracts from ...

    African Journals Online (AJOL)

    Purpose: To assess the antioxidant and antimicrobial activities of polyphenolic extracts of three wild red wild berry fruit species from Southeast Serbia, viz, European cornel (Cornus mas), blackthorn (Prunus spinosa L.) and wild blackberry (Rubus fruticosus). Methods: Polyphenol content was determined using ...

  4. Antimicrobial Susceptibility Patterns of Environmental Streptococci Recovered from Bovine Milk Samples in the Maritime Provinces of Canada

    Directory of Open Access Journals (Sweden)

    Marguerite Cameron

    2016-09-01

    Full Text Available Determination of antimicrobial susceptibility of bovine mastitis pathogens is important for guiding antimicrobial treatment decisions and for the detection of emerging resistance. Environmental streptococci are ubiquitous in the farm environment and are a frequent cause of mastitis in dairy cows. The aim of the study was to determine patterns of antimicrobial susceptibility among species of environmental streptococci isolated from dairy cows in the Maritime Provinces of Canada. The collection consisted of 192 isolates identified in milk samples collected from 177 cows originating from 18 dairy herds. Results were aggregated into: 1 Streptococcus uberis (n = 70, 2 Streptococcus dysgalactiae (n = 28, 3 other Streptococci spp. (n = 35, 4, Lactococcus spp. (n = 32, and 5 Enterococcus spp. (n = 27. Minimum inhibitory concentrations (MIC were determined using the Sensititre microdilution system and mastitis plate format. Multilevel logistic regression models were used to analyze the data, with antimicrobial susceptibility as the outcome. The proportion of susceptible Streptococcus uberis ranged from 23% (for penicillin to 99% (for penicillin/novobiocin, with a median of 82%. All Streptococcus dysgalactiae were susceptible to all antimicrobials except for penicillin (93% susceptible and tetracycline (18% susceptible. The range of susceptibility for other Streptococcus spp. was 43% (for tetracycline to 100%, with a median percent susceptibility of 92%. Lactococcus spp. isolates displayed percent susceptibilities ranging from 0% (for penicillin to 97% (for erythromycin, median 75%. For the antimicrobials tested, the MIC were higher for Enterococcus spp. than for the other species. According to the multilevel models, there was a significant interaction between antimicrobial and bacterial species, indicating that susceptibility against a particular antimicrobial varied among the species of environmental streptococci and vice versa. Generally

  5. Use of Gifu Anaerobic Medium for culturing 32 dominant species of human gut microbes and its evaluation based on short-chain fatty acids fermentation profiles.

    Science.gov (United States)

    Gotoh, Aina; Nara, Misaki; Sugiyama, Yuta; Sakanaka, Mikiyasu; Yachi, Hiroyuki; Kitakata, Aya; Nakagawa, Akira; Minami, Hiromichi; Okuda, Shujiro; Katoh, Toshihiko; Katayama, Takane; Kurihara, Shin

    2017-10-01

    Recently, a "human gut microbial gene catalogue," which ranks the dominance of microbe genus/species in human fecal samples, was published. Most of the bacteria ranked in the catalog are currently publicly available; however, the growth media recommended by the distributors vary among species, hampering physiological comparisons among the bacteria. To address this problem, we evaluated Gifu anaerobic medium (GAM) as a standard medium. Forty-four publicly available species of the top 56 species listed in the "human gut microbial gene catalogue" were cultured in GAM, and out of these, 32 (72%) were successfully cultured. Short-chain fatty acids from the bacterial culture supernatants were then quantified, and bacterial metabolic pathways were predicted based on in silico genomic sequence analysis. Our system provides a useful platform for assessing growth properties and analyzing metabolites of dominant human gut bacteria grown in GAM and supplemented with compounds of interest.

  6. Polylactic Acid-Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties.

    Science.gov (United States)

    Liakos, Ioannis L; Grumezescu, Alexandru Mihai; Holban, Alina Maria; Florin, Iordache; D'Autilia, Francesca; Carzino, Riccardo; Bianchini, Paolo; Athanassiou, Athanassia

    2016-07-07

    Polylactic acid was combined with lemongrass essential oil (EO) to produce functional nanocapsules (NCs). The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid-lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization.

  7. Polylactic Acid—Lemongrass Essential Oil Nanocapsules with Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Ioannis L. Liakos

    2016-07-01

    Full Text Available Polylactic acid was combined with lemongrass essential oil (EO to produce functional nanocapsules (NCs. The obtained polylactic acid nanoparticles showed antimicrobial activity both with and without the presence of lemongrass oil; however, the presence of EO improved the activity of the NCs. The presence of lemongrass assisted the formation of well-separated NCs and also provided enhanced antimicrobial properties, since lemongrass is known for its antimicrobial character. Fluorescence microscopy was used to optically observe the nanoparticles and NCs and revealed the attachment of lemongrass oil with the polylactic acid NCs. Dynamic light scattering was used to determine their size. UV absorption was used to determine the exact amount of lemongrass oil found in the polylactic acid—lemongrass oil NCs, which was important for understanding the minimum inhibitory concentration for the antimicrobial experiments. A series of clinically important microbial species were used in the study and the obtained NCs proved to have very good antimicrobial properties against all tested strains. Such NCs can be used for the design of ecological strategies, based on natural alternatives, which may be efficient against severe infections, including those that involve resistant pathogens and biofilms or those with difficult to reach localization.

  8. Current and future challenges in the development of antimicrobial agents.

    Science.gov (United States)

    Rennie, Robert P

    2012-01-01

    Micro-organisms exist to survive. Even in the absence of antimicrobial agents, many have determinants of resistance that may be expressed phenotypically, should the need arise. With the advent of the antibiotic age, as more and more drugs were developed to treat serious infections, micro-organisms (particularly bacteria) rapidly developed resistance determinants to prevent their own demise.The most important determinants of resistance have been in the Gram-positive and Gram-negative bacteria. Among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE) and penicillin-resistant Streptococcus pneumoniae (PRSP) have taxed researchers and pharmaceutical companies to develop new agents that are effective against these resistant strains. Among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBL) enzymes, carbapenemases (CREs) and the so-called amp-C enzymes that may be readily transferred between species of enterobacteriaceae and other facultative species have created multi-drug resistant organisms that are difficult to treat. Other resistance determinants have been seen in other clinically important bacterial species such as Neisseria gonorrhoeae, Clostridium difficile, Haemophilus influenzae and Mycobacterium tuberculosis. These issues have now spread to fungal agents of infection.A variety of modalities have been used to stem the tide of resistance. These include the development of niche compounds that target specific resistance determinants. Other approaches have been to find new targets for antimicrobial activity, use of combination agents that are effective against more than one target in the cell, or new delivery mechanism to maximize the concentration of antimicrobial agents at the site of infection without causing toxicity to the host. It is important that such new modalities have been proved effective for clinical therapy. Animal models and non-mammalian systems have been developed to

  9. Antimicrobial resistance of Pseudomonas spp. isolated from wastewater and wastewater-impacted marine coastal zone.

    Science.gov (United States)

    Luczkiewicz, Aneta; Kotlarska, Ewa; Artichowicz, Wojciech; Tarasewicz, Katarzyna; Fudala-Ksiazek, Sylwia

    2015-12-01

    In this study, species distribution and antimicrobial susceptibility of cultivated Pseudomonas spp. were studied in influent (INF), effluent (EFF), and marine outfall (MOut) of wastewater treatment plant (WWTP). The susceptibility was tested against 8 antimicrobial classes, active against Pseudomonas spp.: aminoglycosides, carbapenems, broad-spectrum cephalosporins from the 3rd and 4th generation, extended-spectrum penicillins, as well as their combination with the β-lactamase inhibitors, monobactams, fluoroquinolones, and polymyxins. Among identified species, resistance to all antimicrobials but colistin was shown by Pseudomonas putida, the predominant species in all sampling points. In other species, resistance was observed mainly against ceftazidime, ticarcillin, ticarcillin-clavulanate, and aztreonam, although some isolates of Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas pseudoalcaligenes, and Pseudomonas protegens showed multidrug-resistance (MDR) phenotype. Among P. putida, resistance to β-lactams and to fluoroquinolones as well as multidrug resistance become more prevalent after wastewater treatment, but the resistance rate decreased in marine water samples. Obtained data, however, suggests that Pseudomonas spp. are equipped or are able to acquire a wide range of antibiotic resistance mechanisms, and thus should be monitored as possible source of resistance genes.

  10. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    Directory of Open Access Journals (Sweden)

    Guodong Jia

    Full Text Available Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined.

  11. Resistance to antimicrobial agents used for animal therapy in pathogenic , zoonotic and indicator bacteria isolated from different food animals in Denmark: A baseline study for the Danish Integrated Antimicrobial Resistance Monitoring Programme (DANMAP)

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Bager, Flemming; Jensen, N. E.

    1998-01-01

    was found. The occurrence of resistance varied by animal origin and bacterial species. In general, resistance was observed more frequently among isolates from pigs than from cattle and broilers. The association between the occurrence of resistance and the consumption of the antimicrobial is discussed......, as is the occurrence of resistance in other countries. The results of this study show the present level of resistance to antimicrobial agents among a number of bacterial species isolated from food animals in Denmark. Thus, the baseline for comparison with future prospective studies has been established, enabling......This study describes the establishment and first results of a continuous surveillance system of antimicrobial resistance among bacteria isolated from pigs, cattle and broilers in Denmark. The three categories of bacteria tested were: 1) indicator bacteria (Escherichia coli, Enterococcus faecalis...

  12. Air spark-like plasma source for antimicrobial NOx generation

    International Nuclear Information System (INIS)

    Pavlovich, M J; Galleher, C; Curtis, B; Clark, D S; Graves, D B; Ono, T; Machala, Z

    2014-01-01

    We demonstrate and analyse the generation of nitrogen oxides and their antimicrobial efficacy using atmospheric air spark-like plasmas. Spark-like discharges in air in a 1 L confined volume are shown to generate NO x at an initial rate of about 1.5  ×  10 16 NO x molecules/J dissipated in the plasma. Such a discharge operating in this confined volume generates on the order of 6000 ppm NO x in 10 min. Around 90% of the NO x is in the form of NO 2 after several minutes of operation in the confined volume, suggesting that NO 2 is the dominant antimicrobial component. The strong antimicrobial action of the NO x mixture after several minutes of plasma operation is demonstrated by measuring rates of E. coli disinfection on surfaces and in water exposed to the NO x mixture. Some possible applications of plasma generation of NO x (perhaps followed by dissolution in water) include disinfection of surfaces, skin or wound antisepsis, and sterilization of medical instruments at or near room temperature. (paper)

  13. Reconfirmation of antimicrobial activity in the coelomic fluid of the ...

    Indian Academy of Sciences (India)

    Unknown

    723. Keywords. Antimicrobial activity; column chromatography; earthworm; Eisenia fetida andrei; Tetrazolium salt ... fair resistance against E. coli, P. aeruginosa and Arthrobacter sp., respectively. [Pan W, Liu X, Ge F ... 2.2 Test bacteria species.

  14. Distribution and Antimicrobial Resistance Profile of Yersinia Species Isolated From Chicken and Beef Meat

    Directory of Open Access Journals (Sweden)

    Shadi Aghamohammad

    2015-11-01

    the isolation ratio of Y. enterocolitica and other species is higher in colder regions. Most of the isolates were resistant to first generation cephalosporins (cephalothin. The most active antimicrobial agents were choloramphenicol, aminoglycozide and sulfunamdes. Regarding to the high sensitivity of Yersinia spp. to gentamicin and chloramphenicol, these antibiotics would be the choice for the treatment of Yersinia infections.

  15. Chemical composition and antimicrobial activity of the essential oil of Satureja biflora (Lamiaceae

    Directory of Open Access Journals (Sweden)

    Josphat C. Matasyoh

    2007-08-01

    Full Text Available Hydro-distilled essential oil from Satureja biflora (Lamiaceae growing in Kenya was analysed by gas chromatography mass spectrometry (GC-MS and also evaluated for antimicrobial activity. Twenty two compounds which constitute 99.29 % of the total oil were identified. The oil was dominated by monoterpenes, which accounted for 62.02 % of the oil. This monoterpene fraction was characterized by a high percentage of linalool (50.60 % such that this Satureja species can be classified as the linalool chemotype. The other major monoterpenes were α-terpineol (2.80 %, β-ocimene (2.25 %, β-pinene (1.96 % and cis-linalool oxide (1.91 %. Sesquiterpenes present in fairly good amounts are germacrene D (10.63 %, α-cadinol (4.53 %, β-bourbonene (2.33 %, δ-cadinene (2.19 %, τ-cadinol (2.17 %, endo-1-bourbonanol (2.14 % and β-caryophyllene (1.98 %. Aliphatic alcohols and acids accounted for 7.23 % of the oil, of which the major one was linoleic acid (4.48 %. The oil was screened for antimicrobial activity against both gram-positive (Staphylococcus aureus, Bacillus ssp. and gram-negative (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Klebsiella pheumoniae, Proteus mirabilis bacteria and a pathogenic fungus (Candida albicans. To the best of our knowledge nothing concerning the chemical composition and biological activity of the essential oil of S. biflora has been reported.

  16. Antimicrobials Treatment

    Science.gov (United States)

    Drosinos, Eleftherios H.; Skandamis, Panagiotis N.; Mataragas, Marios

    The use of antimicrobials is a common practice for preservation of foods. Incorporation, in a food recipe, of chemical antimicrobials towards inhibition of spoilage and pathogenic micro-organisms results in the compositional modification of food. This treatment is nowadays undesirable for the consumer, who likes natural products. Scientific community reflecting consumers demand for natural antimicrobials has made efforts to investigate the possibility to use natural antimicrobials such us bacteriocins and essential oils of plant origin to inhibit microbial growth.

  17. Comparative study of chemistry compositions and antimicrobial potentials of essential oils and oleoresins from dried and fresh Mentha longifolia L.

    Directory of Open Access Journals (Sweden)

    Sunita Singh

    2015-12-01

    Full Text Available Objective: To investigate the chemical compositions and antimicrobial potentials of the essential oils and oleoresins obtained from fresh and dried Mentha longifolia L. Methods: Gas chromatography and gas chromatography-mass spectrometer techniques were used to determine the profiling of the essential oils and oleoresins. In order to determine the antimicrobial efficacy of the volatile oil and oleoresins, the pathogenic fungus Aspergillus niger (1884, Aspergillus flavus (2479, Fusarium monoliforme (1893, Fusarium graminearum (2088 and Penicillium viridicatum (2007 were undertaken whereas four pathogenic bacteria Bacillus subtilis (1790, Staphylococcus aureus (3103 (Gram-positive, Escherichia coli (1672, Pseudomonas aeruginosa (1942 (Gram-negative were selected for the present study. Food poisoned, inverted Petri plate, agar well diffusion and disk diffusion methods were employed for investigating antimicrobial potentials. Results: Piperitenone oxide, an oxygenated monoterpene, dominated the chemical compositions of essential oils and oleoresins whose compositions varied from 23.5%–87.8%. Both essential oils showed good antifungal activities against Aspergillus and Fusarium species. The antibacterial investigations revealed that Gram-positive bacteria were more sensitive to the essential oils. Conclusions: Drying the fresh herbal materials influences the chemical contents and the biological activities of the essential oils and oleoresins. Such results indicate that essential oils of Mentha longifolia L. can be possible candidates for further investigations to isolate and characterize their active principles as possible new natural preservatives.

  18. Two investigational glycylcyclines, DMG-DMDOT and DMG-MINO. Antimicrobial activity studies against gram-positive species.

    Science.gov (United States)

    Johnson, D M; Jones, R N

    1996-01-01

    DMG-DMDOT (CL-331,002 OR CL-331,928) and DMG-MINO (CL-329,998 or CL-344,677) are two new semisynthetic tetracyclines called glycylcyclines, with a broad spectrum of activity and includes Enterobacteriaceae, Gram-positive cocci, JK diphtheroids, and Bacillus cereus. Potent activity was demonstrated against all Streptococcus spp. strains [minimum inhibitory concentrations] (MIC90S) 0.06-0.25 micrograms/ml) and staphylococci (oxacillin susceptible ans resistant; MIC90S 0.12-2 micrograms/ml). Both glycylcyclines (MIC90, 0.06 micrograms/ml) were more potent than minocycline (MIC90 8 micrograms/ml) against Enterococcus faecium, many of which were vancomycin resistant (116 strains). Organisms with minocycline MICs at > or = 8 micrograms/ml (Staphylococcus aureus, enterococci, beta-hemolytic streptococci, and pneumococci) had glycylcycline MIC results ranging from 0.06 to 0.5 micrograms/ml (e.g., apparent use against existing tetracycline-resistance phenotypes). Drugs in this class appear promising for therapy of infections caused by Gram-positive species now testing resistant to contemporary antimicrobial agents, and further development of compounds in this class is encouraged.

  19. SCREENING OF PLANT EXTRACTS FOR ANTIMICROBIAL ACTIVITY AGAINST BACTERIA

    Directory of Open Access Journals (Sweden)

    Alexander Vatľák

    2014-02-01

    Full Text Available The aim of this study was antimicrobial action of the methanolic extracts of Equisetum arvense L. and Urtica dioica L. against gramnegative and grampositive bacteria. The antimicrobial activities of the extracts against gramnegative bacteria: Escherichia coli CCM 3988, Listeria ivanovii CCM 5884, Listeria innocua CCM 4030, Pseudomonas aeruginosa CCM 1960, Serratia rubidaea CCM 4684 and grampositive bacteria: Brochothrix thermosphacta CCM 4769, Enterococcus raffinosus CCM 4216, Lactobacillus rhamnosus CCM 1828, Paenobacillus larvae CCM 4483 and Staphylococcus epidermis CCM 4418 were determined by the disc diffusion method and the microbroth dilution method according to CLSI. Probit analysis was used in this experiment. Of the 2 plant extracts tested, all extracts showed antimicrobial activity against one or more species of microorganisms. The most antimicrobial activity showed methanolic plant extract of E. arvense against S. epidermis with disc diffusion method and with microbroth dilution method against S. rubidaea and plant extract Urtica dioica with disc diffusion method against P. aeruginosa and with microbroth dilution method against S. rubidaea and E. coli.

  20. Antimicrobial resistance of zoonotic and commensal bacteria in Europe: the missing link between consumption and resistance in veterinary medicine.

    Science.gov (United States)

    Garcia-Migura, Lourdes; Hendriksen, Rene S; Fraile, Lorenzo; Aarestrup, Frank M

    2014-05-14

    The emergence of resistance in food animals has been associated to the consumption of antimicrobials in veterinary medicine. Consequently, monitoring programs have been designed to monitor the occurrence of antimicrobial resistant bacteria. This study analyses the amount of antimicrobial agents used in nine European countries from 2005 to 2011, and compares by univariate analysis the correlations between consumptions of each of the following antimicrobial classes; tetracycline, penicillins, cephalosporins, quinolones and macrolides. An overview of resistance in zoonotic and commensal bacteria in Europe focusing on Salmonella, Escherichia coli, Campylobacter sp. and Enterococcus sp., during the same period of time based on monitoring programs is also assessed. With the exception of cephalosporins, linear regressions showed strong positive associations between the consumption of the four different antimicrobial classes. Substantial differences between countries were observed in the amount of antimicrobials used to produce 1 kg of meat. Moreover, large variations in proportions of resistant bacteria were reported by the different countries, suggesting differences in veterinary practice. Despite the withdrawn of a specific antimicrobial from "on farm" use, persistence over the years of bacteria resistant to this particular antimicrobial agent, was still observed. There were also differences in trends of resistance associated to specific animal species. In order to correlate the use of antimicrobial agents to the presence of resistance, surveillance of antimicrobial consumption by animal species should be established. Subsequently, intervention strategies could be designed to minimize the occurrence of resistance. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii.

    Directory of Open Access Journals (Sweden)

    Preuttiporn Supaphon

    Full Text Available Endophytic fungi from three commonly found seagrasses in southern Thailand were explored for their ability to produce antimicrobial metabolites. One hundred and sixty endophytic fungi derived from Cymodoceaserrulata (Family Cymodoceaceae, Halophilaovalis and Thalassiahemprichii (Family Hydrocharitaceae were screened for production of antimicrobial compounds by a colorimetric broth microdilution test against ten human pathogenic microorganisms including Staphylococcus aureus ATCC 25923, a clinical isolate of methicillin-resistant S. aureus, Escherichia coli ATCC 25923, Pseudomonas aeruginosa ATCC 27853, Candida albicans ATCC 90028 and NCPF 3153, Cryptococcus neoformans ATCC 90112 and ATCC 90113 and clinical isolates of Microsporumgypseum and Penicilliummarneffei. Sixty-nine percent of the isolates exhibited antimicrobial activity against at least one test strain. Antifungal activity was more pronounced than antibacterial activity. Among the active fungi, seven isolates including Hypocreales sp. PSU-ES26 from C. serrulata, Trichoderma spp. PSU-ES8 and PSU-ES38 from H. ovalis, and Penicillium sp. PSU-ES43, Fusarium sp. PSU-ES73, Stephanonectria sp. PSU-ES172 and an unidentified endophyte PSU-ES190 from T. hemprichii exhibited strong antimicrobial activity against human pathogens with minimum inhibitory concentrations (MIC of less than 10 µg/ml. The inhibitory extracts at concentrations of 4 times their MIC destroyed the targeted cells as observed by scanning electron microscopy. These results showed the antimicrobial potential of extracts from endophytic fungi from seagrasses.

  2. Antimicrobial activity of the essential oil of wild-growing Micromeria thymifolia (Scop. Fritsch

    Directory of Open Access Journals (Sweden)

    MARIJA A. MARIN

    2015-04-01

    Full Text Available The genus Micromeria Benth. (Lamiaceae, Nepetoideae includes about 130 species, often aromatc. The essential oil and extracts of some Micromeria species have significant antioxidant, antibacterial and antifungal activities. Micromeria thymifolia is endemic species of the Balkan peninsula. It has been traditionally used in the Mediterranean area as condiment and medicinal plant. The aim of this study was to investigate antimicrobial properties of essential oil of wild Micromeria thymifolia against four Gram negative bacteria (Escherichia coli SY252, Pseudomonas aeruginosa ATCC27853, Salmonella enterica ATCC13076 and human patogen Burkholderia cepacia ATCC25416, four Gram positive bacteria (Enterococcus fecalis ATCC29212, Staphylococcus aureus ATCC25923, Bacillus subtilis ATCC6633, Listeria innocua ATCC33090 and two fungi strains (Candida albicans ATCC10231 and Saccharomyces cerevisiae ATCC9763. The MICs of M. thymifolia essential oil against tested bacteria and fungi was assessed using microtitre plate-based antimicrobial assay. MHB was used as growth media for bacteria, with exception of L. innocua when BHI was used, YPD was used for fungi. The results of our investigation showed that the essential oil of wild-growing M. thymifolia possess significant antimicrobial activity against all tested strains except the P. aeruginosa.

  3. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    Science.gov (United States)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-10-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe2O4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.

  4. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    International Nuclear Information System (INIS)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas

    2016-01-01

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe_2O_4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract

  5. Chemical variation in a dominant tree species: population divergence, selection and genetic stability across environments.

    Directory of Open Access Journals (Sweden)

    Julianne M O'Reilly-Wapstra

    Full Text Available Understanding among and within population genetic variation of ecologically important plant traits provides insight into the potential evolutionary processes affecting those traits. The strength and consistency of selection driving variability in traits would be affected by plasticity in differences among genotypes across environments (G×E. We investigated population divergence, selection and environmental plasticity of foliar plant secondary metabolites (PSMs in a dominant tree species, Eucalyptus globulus. Using two common garden trials we examined variation in PSMs at multiple genetic scales; among 12 populations covering the full geographic range of the species and among up to 60 families within populations. Significant genetic variation in the expression of many PSMs resides both among and within populations of E. globulus with moderate (e.g., sideroxylonal A h(2op = 0.24 to high (e.g., macrocarpal G h(2op = 0.48 narrow sense heritabilities and high coefficients of additive genetic variation estimated for some compounds. A comparison of Qst and Fst estimates suggest that variability in some of these traits may be due to selection. Importantly, there was no genetic by environment interaction in the expression of any of the quantitative chemical traits despite often significant site effects. These results provide evidence that natural selection has contributed to population divergence in PSMs in E. globulus, and identifies the formylated phloroglucinol compounds (particularly sideroxylonal and a dominant oil, 1,8-cineole, as candidates for traits whose genetic architecture has been shaped by divergent selection. Additionally, as the genetic differences in these PSMs that influence community phenotypes is stable across environments, the role of plant genotype in structuring communities is strengthened and these genotypic differences may be relatively stable under global environmental changes.

  6. Female dominance over males in primates: self-organisation and sexual dimorphism.

    Directory of Open Access Journals (Sweden)

    Charlotte K Hemelrijk

    Full Text Available The processes that underlie the formation of the dominance hierarchy in a group are since long under debate. Models of self-organisation suggest that dominance hierarchies develop by the self-reinforcing effects of winning and losing fights (the so-called winner-loser effect, but according to 'the prior attribute hypothesis', dominance hierarchies develop from pre-existing individual differences, such as in body mass. In the present paper, we investigate the relevance of each of these two theories for the degree of female dominance over males. We investigate this in a correlative study in which we compare female dominance between groups of 22 species throughout the primate order. In our study female dominance may range from 0 (no female dominance to 1 (complete female dominance. As regards 'the prior attribute hypothesis', we expected a negative correlation between female dominance over males and species-specific sexual dimorphism in body mass. However, to our surprise we found none (we use the method of independent contrasts. Instead, we confirm the self-organisation hypothesis: our model based on the winner-loser effect predicts that female dominance over males increases with the percentage of males in the group. We confirm this pattern at several levels in empirical data (among groups of a single species and between species of the same genus and of different ones. Since the winner-loser effect has been shown to work in many taxa including humans, these results may have broad implications.

  7. Variations in Vegetation Structure, Species Dominance and Plant Communities in South of the Eastern Desert-Egypt

    Directory of Open Access Journals (Sweden)

    Fawzy SALAMA

    2014-03-01

    Full Text Available For two successive years, the floristic diversity and vegetation composition in the southern part of the Eastern Desert ofEgypt were investigated through four transects (3 crossing the Eastern Desert and one along the Red Sea. The data collected from 142 stands covering the study area included the species composition, functional groups, chorology and occurrences (Qvalues. A total of 94 plant species belonging to 33 different families were recorded, with Asteracea, Zygophyllaceae, Fabaceae,Poaceae, Chenopodiaceae and Brassicaceae as the largest families. Shrubs represented the largest functional group (39.4%, while perennial herbs represented the smallest ones (12.8%. Species occurrence (Q-value revealed that Zilla spinosa, Acacia tortilis subsp raddiana, Morettia philaeana, Caroxylon imbricatum, Zygophyllum coccineum and Citrullus colocynthis had wide ecological range of distribution (dominant species, Q-values 0.2. Saharo-Arabian chorotype was highly represented (72.6 % in the flora of this area, eventually as mono, bi or pluriregional. Classification of the data set yielded 7 vegetation groups included: (A Zilla spinosa-Morettia philaeana, (B1 Zilla spinosa-Citrullus colocynthis-Morettia philaeana, (B2 Zilla spinosa, (C1Zygophyllum album-Tamarix nilotica, (C2 Zygophyllum coccineum-Tamarix nilotica, (D1 Zilla spinosa-Zygophyllum coccineum and (D2 Zilla spinosa-Acacia tortilis subsp. raddiana-Tamarix aphylla-Balanites aegyptiaca. Certain vegetation groups were assigned to one or more transects. Detrended Correspondence Analysis (DCA revealed that electrical conductivity, sodium, potassium, calcium, magnesium, chlorides, moisture content, sulphates, pH, organic matter and gravel were the soil variables that affect the species distribution in this study.

  8. A role for antimicrobial peptides in intestinal microsporidiosis

    Science.gov (United States)

    Leitch, Gordon J.; Ceballos, Carolina

    2009-01-01

    SUMMARY Clinical isolates from three microsporidia species, Encephalitozoon intestinalis and Encephalitozoon hellem, and the insect parasite Anncaliia (Brachiola, Nosema) algerae, were used in spore germination and enterocyte-like (C2Bbe1) cell infection assays to determine the effect of a panel of antimicrobial peptides. Spores were incubated with lactoferrin (Lf), lysozyme (Lz), and human beta defensin 2 (HBD2), human alpha defensin 5 (HD5), and human alpha defensin 1 (HNP1), alone and in combination with Lz, prior to germination. Of the Encephalitozoon species only E. hellem spore germination was inhibited by HNP1, while A. algerae spore germination was inhibited by Lf, HBD2, HD5 and HNP1, although HBD2 and HD5 inhibition required the presence of Lz. The effects of HBD2 and HD5 on microsporidia enterocyte infection paralleled their effects on spore germination. Lysozyme alone only inhibited infection with A. algerae, while Lf inhibited infection by E. intestinalis and A. algerae. HNP1 significantly reduced enterocyte infection by all three parasite species and a combination of Lf, Lz and HNP1 caused a further reduced infection with A. algerae. These data suggest that intestinal antimicrobial peptides contribute to the defense of the intestine against infection by luminal microsporidia spores and may partially determine which parasite species infects the intestine. PMID:19079820

  9. Antimicrobial stewardship in a Gastroenterology Department: Impact on antimicrobial consumption, antimicrobial resistance and clinical outcome.

    Science.gov (United States)

    Bedini, Andrea; De Maria, Nicola; Del Buono, Mariagrazia; Bianchini, Marcello; Mancini, Mauro; Binda, Cecilia; Brasacchio, Andrea; Orlando, Gabriella; Franceschini, Erica; Meschiari, Marianna; Sartini, Alessandro; Zona, Stefano; Paioli, Serena; Villa, Erica; Gyssens, Inge C; Mussini, Cristina

    2016-10-01

    A major cause of the increase in antimicrobial resistance is the inappropriate use of antimicrobials. To evaluate the impact on antimicrobial consumption and clinical outcome of an antimicrobial stewardship program in an Italian Gastroenterology Department. Between October 2014 and September 2015 (period B), a specialist in infectious diseases (ID) controlled all antimicrobial prescriptions and decided about the therapy in agreement with gastroenterologists. The defined daily doses of antimicrobials (DDDs), incidence of MDR-infections, mean length of stay and overall in-hospital mortality rate were compared with those of the same period in the previous 12-months (period A). During period B, the ID specialist performed 304 consultations: antimicrobials were continued in 44.4% of the cases, discontinued in 13.8%, not recommended in 12.1%, de-escalated 9.9%, escalated in 7.9%, and started in 4.0%. Comparing the 2 periods, we observed a decreased of antibiotics consumption (from 109.81 to 78.45 DDDs/100 patient-days, p=0.0005), antifungals (from 41.28 to 24.75 DDDs/100pd, p=0.0004), carbapenems (from 15.99 to 6.80 DDDsx100pd, p=0.0032), quinolones (from 35.79 to 17.82 DDDsx100pd, p=0.0079). No differences were observed in incidence of MDR-infections, length of hospital stay (LOS), and mortality rate. ASP program had a positive impact on reducing the consumption of antimicrobials, without an increase in LOS and mortality. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  10. Environmental species sorting dominates forest-bird community assembly across scales

    DEFF Research Database (Denmark)

    Özkan, Korhan; Svenning, J.-C.; Jeppesen, Erik

    2013-01-01

    species richness and composition within the metacommunity. Second, we analysed species' abundance–occupancy relationship across the metacommunity and used null models to assess whether occupancy is determined by species' environmental niches. Third, we used generalized linear models to test for links...... between species' metacommunity-wide occupancy and their broader WP regional populations and assessed whether these links are consistent with environmental species sorting. There was strong environmental control on local species richness and composition patterns within the metacommunity, but non......-environmental spatial factors had also an important joint role. Null model analyses on randomized communities showed that species' occupancy across the metacommunity was strongly determined by species' environmental niches, with occupancy being related to niche position marginality. Species' metacommunity...

  11. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... of Animation of Antimicrobial Resistance More in Antimicrobial ... Antimicrobial Resistance Monitoring System About NARMS 2015 NARMS Integrated ...

  12. Antimicrobial and cytotoxic potentials of Buddleja polystachya extracts

    Directory of Open Access Journals (Sweden)

    Ghada Ahmed Fawzy

    2013-06-01

    Full Text Available Most of the species of Buddleja have found applications in folk medicine. This study aimed to evaluate the in vitro antimicrobial and cytotoxic potentials of B. polystachya extracts. Four extracts were prepared A-D (dichloromethane, ethyl acetate, n-butanol, and aqueous extracts, respectively. The antimicrobial activity was evaluated using the broth micro-dilution assay for minimum inhibitory concentrations (MIC. The crystal violet staining method (CVS was used for the evaluation of the cytotoxic activity on HepG-2, MCF-7 and HCT-116 human cell lines. Results showed that the highest antimicrobial activity was given by the ethyl acetate extract followed by the dichloromethane extract, while the n-butanol revealed moderate activity against gram positive bacteria only with no activity against the rest of tested microorganisms. The aqueous extract was totally ineffective against all tested microorganisms at 20 mg/ml. Among the four extracts tested, dichloromethane and ethyl acetate extracts showed the highest cytotoxic activity on all three human cell lines.

  13. Chitosan-thioglycolic acid as a versatile antimicrobial agent.

    Science.gov (United States)

    Geisberger, Georg; Gyenge, Emina Besic; Hinger, Doris; Käch, Andres; Maake, Caroline; Patzke, Greta R

    2013-04-08

    As functionalized chitosans hold great potential for the development of effective and broad-spectrum antibiotics, representative chitosan derivatives were tested for antimicrobial activity in neutral media: trimethyl chitosan (TMC), carboxy-methyl chitosan (CMC), and chitosan-thioglycolic acid (TGA; medium molecular weight: MMW-TGA; low molecular weight: LMW-TGA). Colony forming assays indicated that LMW-TGA displayed superior antimicrobial activity over the other derivatives tested: a 30 min incubation killed 100% Streptococcus sobrinus (Gram-positive bacteria) and reduced colony counts by 99.99% in Neisseria subflava (Gram-negative bacteria) and 99.97% in Candida albicans (fungi). To elucidate LMW-TGA effects at the cellular level, microscopic studies were performed. Use of fluorescein isothiocyanate (FITC)-labeled chitosan derivates in confocal microscopy showed that LMW-TGA attaches to microbial cell walls, while transmission electron microscopy indicated that this derivative severely affects cell wall integrity and intracellular ultrastructure in all species tested. We therefore propose LMW-TGA as a promising and effective broad-band antimicrobial compound.

  14. Antimicrobial effect of essential oils: a systematic review

    Directory of Open Access Journals (Sweden)

    E Sadeghi

    2015-08-01

    Full Text Available Regarding the harmful effects of chemical foods preservatives on human body, it is crucial to find out safe antimicrobials among essential oils and herbs. This study aimed to address the effects of different essential oils on various bacterial species through a systematic review. A wide range of published papers in national and international data bases have been searched for the relevant articles. For this reason, the keywords used in searching were: "essential oils in food", "antimicrobial effect" and "vegetable oils". Among 462 retrieved articles, 76 papers were selected for further reviewing based on their title and abstracts. Based on results, the antimicrobial effects of different essential oils on pathogenic and spoilage organisms were compared. Moreover, the most effective as well as the least effective essential oils on microbial growth were identified. It was concluded that essential oils are more effective on gram positive bacteria rather than gram negatives. Besides, it was evident that some essential oils negatively affected the useful organisms such as lactobacilli.

  15. Artificial marine habitats favour a single fish species on a long-term scale: the dominance of Boops boops around off-shore fish cages

    Directory of Open Access Journals (Sweden)

    Rodrigo Riera

    2014-12-01

    Full Text Available Off-shore fish cages are new artificial habitats that can affect pelagic fish assemblages and constitute an important food source for wild fish assemblages. This aggregation has noticeable ecological consequences in cage areas in impoverished ecosystems such as those in the Canary archipelago (NE Atlantic Ocean. However, this new habitat could be dominated by a single species, reducing its positive ecological effects. Wild fish assemblages associated with an off-shore fish lease on the northeastern coast of Tenerife (Canary Islands were sampled for six years. Fish assemblage structure beneath fish cages and at controls ( > 500 m from cages differed significantly between locations, with 13 times greater abundance at cage locations. These differences were mainly explained by the dominance of bogue (Boops boops around fish cages. This trend was consistent in the long-term throughout the study period (2004-2009, affecting local fisheries. The presence of fish cages significantly altered wild fish assemblages in the study area, enhancing mainly biomass and abundance of one species, bogue, and causing shifts in species composition.

  16. Antimicrobial activities of essential oils from Southern Africa against ...

    African Journals Online (AJOL)

    In the present study, essential oils from four plants including Melissa officinalis, Mentha piperita, Pelargonium graveolens and Leucosidea sericea, traditionally used to treat infectious diseases were tested for antimicrobial activity against seven Gram-positive bacteria, eight Gram-negative bacteria and six yeast species ...

  17. Antimicrobial hyperbranched poly(ester amide)/polyaniline nanofiber modified montmorillonite nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Sujata [Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028 (India); Bharali, Pranjal; Konwar, B.K. [Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028 (India); Karak, Niranjan, E-mail: karakniranjan@yahoo.com [Advanced Polymer and Nanomaterial Laboratory, Department of Chemical Sciences, Tezpur University, Tezpur 784028 (India)

    2014-02-01

    There has been growing interest in the use of nanomaterials featuring potent of antimicrobial activity in the biomedical domain. It still remains a challenge for the researchers to develop an efficient nanocomposite possessing antimicrobial efficacy against broad spectrum microbes including bacteria, fungi as well as algal consortium, posing serious challenges for the human survival. In addressing the above problem, we report the fabrication of bio-based hyperbranched poly(ester amide) (HBPEA)/polyaniline nanofiber modified montmorillonite (MMT) nanocomposites by an ex-situ polymerization technique at varied weight percentages (1, 2.5, 5 wt.%) of the modified MMT (nanohybrid). The Fourier transform infrared spectroscopy confirmed the structural changes upon interaction of the nanohybrid with HBPEA. A probable mechanism is proposed for the formation of nanocomposites with partially exfoliated nanoplatelet structure, which was further confirmed from the high resolution transmission electron microscopic analyses. The prepared nanocomposites exhibited potent efficacy against gram positive bacteria like Bacillus subtilis and Staphylococcus aureus as compared to the gram negative ones like Pseudomonas aeruginosa and Escherichia coli. The nanocomposites showed significant antifungal activity against Aspergillus niger, Fusarium oxysporum and Coleotricum capcii and antialgal activity against algal consortium comprising of Chlorella, Hormidium and Cladophorella species. The formation of thermosetting nanocomposites resulted in the acceptable improvement of desired physico-chemical and mechanical properties including thermostability. Thus pronounced antimicrobial activity of the nanocomposites against a spectrum of bacterial and fungal strains as well as a consortium of algal species along with other desired performance vouched them as potent antimicrobial materials in the realm of health and biomedical industry. - Highlights: • A possible approach for fabrication of the

  18. Antimicrobial hyperbranched poly(ester amide)/polyaniline nanofiber modified montmorillonite nanocomposites

    International Nuclear Information System (INIS)

    Pramanik, Sujata; Bharali, Pranjal; Konwar, B.K.; Karak, Niranjan

    2014-01-01

    There has been growing interest in the use of nanomaterials featuring potent of antimicrobial activity in the biomedical domain. It still remains a challenge for the researchers to develop an efficient nanocomposite possessing antimicrobial efficacy against broad spectrum microbes including bacteria, fungi as well as algal consortium, posing serious challenges for the human survival. In addressing the above problem, we report the fabrication of bio-based hyperbranched poly(ester amide) (HBPEA)/polyaniline nanofiber modified montmorillonite (MMT) nanocomposites by an ex-situ polymerization technique at varied weight percentages (1, 2.5, 5 wt.%) of the modified MMT (nanohybrid). The Fourier transform infrared spectroscopy confirmed the structural changes upon interaction of the nanohybrid with HBPEA. A probable mechanism is proposed for the formation of nanocomposites with partially exfoliated nanoplatelet structure, which was further confirmed from the high resolution transmission electron microscopic analyses. The prepared nanocomposites exhibited potent efficacy against gram positive bacteria like Bacillus subtilis and Staphylococcus aureus as compared to the gram negative ones like Pseudomonas aeruginosa and Escherichia coli. The nanocomposites showed significant antifungal activity against Aspergillus niger, Fusarium oxysporum and Coleotricum capcii and antialgal activity against algal consortium comprising of Chlorella, Hormidium and Cladophorella species. The formation of thermosetting nanocomposites resulted in the acceptable improvement of desired physico-chemical and mechanical properties including thermostability. Thus pronounced antimicrobial activity of the nanocomposites against a spectrum of bacterial and fungal strains as well as a consortium of algal species along with other desired performance vouched them as potent antimicrobial materials in the realm of health and biomedical industry. - Highlights: • A possible approach for fabrication of the

  19. Isolation and Identification of Bacillus Species From Soil and Evaluation of Their Antibacterial Properties

    Directory of Open Access Journals (Sweden)

    Amin

    2015-02-01

    Full Text Available Background Bacillus species are the predominant soil bacteria because of their resistant-endospore formation and production of essential antibiotics such as bacitracin. Objectives The aim of this study was to isolate Bacillus spp. from riverside soil and investigate their antimicrobial characteristics against some pathogenic bacteria. Materials and Methods Fifty soil samples were collected from different sites of Bahmanshir riverside in Abadan city, Iran, and analyzed for the presence of Bacillus species. The media used in this research were nutrient broth and agar. Bacillus species were identified by their phenotypic and biochemical characteristics. The antimicrobial effects of Bacillus extract against the target bacteria including Escherichia coli, Staphylococcus aureus, Salmonella typhi, Shigella dysenteriae and Corynebacterium diphtheriae were examined. Results The identified Bacillus species included B. cereus (86.6%, B. subtilis (6.6%, B. thuringiensis (3.3%, and B. pumilus (3.3%. Evaluation of the antimicrobial activity of the extracted compounds was carried out against five different bacteria. Antibiotic production tests indicated that two Bacillus strains belong to B. cereus, which showed antimicrobial properties. The minimum inhibitory concentrations (MICs of these compounds ranged between 8.34-33.34 mg/mL for the target bacteria. Conclusions This study indicated that some Bacillus species have the potential to produce antimicrobial compounds which can be used to control microbial infections.

  20. Prophylactic use of antimicrobials in surgical pig models; a literature review (2012-2014).

    Science.gov (United States)

    Bradbury, A G; Argyle, S; Eddleston, M; Clutton, R E

    2015-07-04

    There are no guidelines for antimicrobial use in experimental animals even though appropriate selection is required to reduce risk of surgical site infection (SSI) and resistance development. Pigs are used extensively as experimental surgical models for people. This review compares reported antimicrobial prescription in recently published pig surgical studies (retrieved by PubMed, Web of Knowledge and Google Scholar) with human guidelines for prophylactic antimicrobial use (National Institute of Clinical Excellence and the American Society of Health-System Pharmacists). A five-point appropriate antimicrobial use index (AAUI), based on aforementioned guidelines, was used to grade 233 studies. Use of World Health Organization-designated critically important antimicrobials (CIA) was recorded. Antimicrobial use was described in 111 of 233 (48 per cent) papers. AAUI scores of 5 (maximal compliance) and 0 (no compliance) were awarded to 34 (15 per cent) and 101 (43 per cent) articles. Where reported, prophylactic antimicrobials were mostly administered after surgery (62/95, 65 per cent) and intramuscularly (36/72, 50 per cent). CIAs were described in 21 of 111 (19 per cent) papers and SSIs in 21 of 233 (9 per cent). Reported antimicrobial prophylaxis in experimental pig surgery deviates from human clinical guidelines. This has implications for antimicrobial resistance, study quality and animal welfare. Until species-specific guidelines are formulated, experimental surgical studies involving animals would probably benefit from adherence to human guidelines. British Veterinary Association.

  1. Compositions and comparisons of antimicrobial potencies of some ...

    African Journals Online (AJOL)

    The antimicrobial activities of 10 essential oils extracted from various plant species were investigated and compared with the activities of 10 commercial antibiotics against 10 strains of bacteria using agar diffusion method. Although, all the essential oils were active at concentration ranging from 0.5 to 1.5 mg/ml, their ...

  2. Territorial behaviour and dominance hierarchy of Anthracothorax nigricollis Vieillot 1817 (Aves: Trochilidae) on food resources

    OpenAIRE

    Araujo-Silva, Lucas Eduardo; Bessa, Eduardo [UNESP

    2010-01-01

    Dominant species are those which delimit and defend territories from other individuals of the same or different species. Subordinate species are those which, furtive and sneakily, use sources of nectar from other individuals. This study aimed to describe the aggressive interactions between species of hummingbirds, define which species are dominant and which are subordinate, investigate if the sharing of resources occurs during the visits, and compare the behaviour of the dominant species in d...

  3. The genetics of hybrid male sterility between the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana: dominant sterility alleles in collinear autosomal regions.

    Science.gov (United States)

    Chang, Audrey S; Noor, Mohamed A F

    2007-05-01

    F(1) hybrid male sterility is thought to result from interactions between loci on the X chromosome and dominant-acting loci on the autosomes. While X-linked loci that contribute to hybrid male sterility have been precisely localized in many animal taxa, their dominant autosomal interactors have been more difficult to localize precisely and/or have been shown to be of relatively smaller effect. Here, we identified and mapped at least four dominant autosomal factors contributing to hybrid male sterility in the allopatric species pair Drosophila persimilis and D. pseudoobscura bogotana. Using these results, we tested predictions of reduced recombination models of speciation. Consistent with these models, three of the four QTL associated with hybrid male sterility occur in collinear (uninverted) regions of these genomes. Furthermore, these QTL do not contribute significantly to hybrid male sterility in crosses between the sympatric species D. persimilis and D. pseudoobscura pseudoobscura. The autosomal loci identified in this study provide the basis for introgression mapping and, ultimately, for molecular cloning of interacting genes that contribute to F(1) hybrid sterility.

  4. Antimicrobial susceptibility and distribution of inhibition zone diameters of bovine mastitis pathogens in Flanders, Belgium.

    Science.gov (United States)

    Supré, K; Lommelen, K; De Meulemeester, L

    2014-07-16

    In dairy farms, antimicrobial drugs are frequently used for treatment of (sub)clinical mastitis. Determining the antimicrobial susceptibility of mastitis pathogens is needed to come to a correct use of antimicrobials. Strains of Staphylococcus aureus (n=768), Streptococcus uberis (n=939), Streptococcus dysgalactiae (n=444), Escherichia coli (n=563), and Klebsiella species (n=59) originating from routine milk samples from (sub)clinical mastitis were subjected to the disk diffusion method. Disks contained representatives of frequently used antibiotics in dairy. A limited number of clinical breakpoints were available through CLSI, and showed that susceptibility of Staph. aureus, E. coli, and Klebsiella was moderate to high. For streptococcal species however, a large variation between the tested species and the different antimicrobials was observed. In a next step, wild type populations were described based on epidemiological cut off values (EUCAST). Because of the limited number of official cut off values, the data were observed as a mastitis subpopulation and self-generated cut off values were created and a putative wild type population was suggested. The need for accurate clinical breakpoints for veterinary pathogens is high. Despite the lack of these breakpoints, however, a population study can be performed based on the distribution of inhibition zone diameters on the condition that a large number of strains is tested. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Coral-Associated Bacterial Diversity is Conserved Across Two Deep-Sea Anthothela Species

    Directory of Open Access Journals (Sweden)

    Stephanie Nichole Lawler

    2016-04-01

    Full Text Available Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12 and Baltimore Canyons (n = 11 from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp. and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp. had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

  6. Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Žalnėravičius, Rokas [State Research Institute Center for Physical Sciences and Technology (Lithuania); Paškevičius, Algimantas [Nature Research Centre, Laboratory of Biodeterioration Research (Lithuania); Kurtinaitiene, Marija; Jagminas, Arūnas, E-mail: arunas.jagminas@ftmc.lt [State Research Institute Center for Physical Sciences and Technology (Lithuania)

    2016-10-15

    The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe{sub 2}O{sub 4} Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.Graphical Abstract.

  7. Antimicrobial and toxicological evaluation of ethanol leaf extract of Salacia lehmbachii

    Directory of Open Access Journals (Sweden)

    Essien Augustine Dick

    2017-12-01

    Full Text Available The leaves of Salacia lehmbachii are used ethnomedically across Africa for the treatment of different diseases its antimicrobial activity as well as toxicological profile were evaluated. Antimicrobial activity against clinical strains of Pseudomonas aeruginosa, Salmonella typhi, Staphylococus aureus, Shigella species, Eschericha coli and Proteus mirabilis were compared with Gentamycin. Toxicological investigation was determined by administering 100 mg/kg, 200 mg/kg and 400 mg/kg of the ethanol leaf extract to male Wistar rats for 21 days with distilled water as control. Hematological and biochemical parameters as well as the vital organs were examined. The ethanol extract inhibited the growth of P. aeruginosa, S. typhi, S. aureus, Shigella species, E. coli and P. mirabilis to varying extents. The LD50 in rats was greater than 5000 mg/kg. Toxicological evaluation of the extract did not produce any significant effect on hematological and biochemical parameters and vital organs in rats. S. lehmbachii ethanol leaf extract did not demonstrate antimicrobial activity against selected microorganisms. Neither did it show any non-toxic effect on the parameters investigated in rats. Thus the extract can be considered safe when administered orally.

  8. Evaluation of antimicrobial activity of the lichens Physcia aipolia, Xanthoria parietina, Usnea florida, Usnea subfloridana and Melanohalea exasperata

    Directory of Open Access Journals (Sweden)

    Gülşah Çobanoğlu

    2016-06-01

    Full Text Available The present study aimed to evaluate the antimicrobial activity of methanol and chloroform extracts of five lichen species, Melanohalea exasperata, Physcia aipolia, Usnea florida, U. subfloridana and Xanthoria parietina. Antimicrobial activity in culture assays of these foliose and fruticose lichen extracts were examined against two Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli, two Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus, and the yeast Candida albicans using the paper disc method through determination of minimal inhibitory concentrations (MICs. The obtained results indicated the existence of different levels of antibiotic substances in the chloroform and the methanol extracts of the examined lichen species. The chloroform extracts of Usnea subfloridana showed the highest activity against Escherichia coli and Pseudomonas aeruginosa while the methanol extracts of this species were not active against these microorganisms. The chloroform extracts of the examined species exhibited more significant antimicrobial activity than the methanol extracts. None of the species were active against Enterococcus faecalis and Staphylococcus aureus. Most of the lichen extracts indicated a moderate antifungal activity against Candida albicans, except for Physcia aipolia, which was not active.

  9. Characterization of Antimicrobial Peptides toward the Development of Novel Antibiotics

    Directory of Open Access Journals (Sweden)

    Wataru Aoki

    2013-08-01

    Full Text Available Antimicrobial agents have eradicated many infectious diseases and significantly improved our living environment. However, abuse of antimicrobial agents has accelerated the emergence of multidrug-resistant microorganisms, and there is an urgent need for novel antibiotics. Antimicrobial peptides (AMPs have attracted attention as a novel class of antimicrobial agents because AMPs efficiently kill a wide range of species, including bacteria, fungi, and viruses, via a novel mechanism of action. In addition, they are effective against pathogens that are resistant to almost all conventional antibiotics. AMPs have promising properties; they directly disrupt the functions of cellular membranes and nucleic acids, and the rate of appearance of AMP-resistant strains is very low. However, as pharmaceuticals, AMPs exhibit unfavorable properties, such as instability, hemolytic activity, high cost of production, salt sensitivity, and a broad spectrum of activity. Therefore, it is vital to improve these properties to develop novel AMP treatments. Here, we have reviewed the basic biochemical properties of AMPs and the recent strategies used to modulate these properties of AMPs to enhance their safety.

  10. Annual Surveillance Summary: Acinetobacter Species Infections in the Military Health System (MHS), 2016

    Science.gov (United States)

    2017-06-01

    Infection Classifications .................................................................. 7 Section B – Antimicrobial Resistance and Use... Antimicrobial Resistance and Use Regional Multidrug Resistance In 2016, the IR of Acinetobacter species infection was 5.34 infections per 100,000 persons...et al. Antimicrobial - resistant pathogens associated with health-associated infections: annual summary of data reported to the National Healthcare

  11. Antimicrobial and healing activity of kefir and kefiran extract.

    Science.gov (United States)

    Rodrigues, Kamila Leite; Caputo, Lucélia Rita Gaudino; Carvalho, Jose Carlos Tavares; Evangelista, João; Schneedorf, Jose Maurício

    2005-05-01

    Kefir and its insoluble polysaccharide, kefiran, were both tested for antimicrobial and cicatrizing activities against several bacterial species and Candida albicans using an agar diffusion method. Comparator antimicrobials were also tested. Cicatrizing experiments were carried out on Wistar rats with induced skin lesions and Staphylococcus aureus inoculation, using a topical application of a 70% kefir gel. Both kefir and kefiran showed some activity against all organisms tested; the highest activity was against Streptococcus pyogenes. Cicatrizing experiments using 70% kefir gel had a protective effect on skin connective tissue and 7 days treatment enhanced wound healing compared with 5 mg/kg of neomycin-clostebol emulsion.

  12. Bacteriocins: New generation of antimicrobial peptides

    Directory of Open Access Journals (Sweden)

    P. Motahari

    2017-06-01

    Full Text Available Antibiotics are used as a first-choice to inhibit microbial growth since the discovery in the first half of the 19th century. Nevertheless, the widespread use of antibiotics has resulted in the emergence of antibiotic-resistant strains that is one of our century problems. Concerns about antibiotic resistant is so serious which huge budget is allocated for discovery of alternative drugs in many countries. Bacteriocin is one of these compounds which was first discovered in 1925, released into the medium by E. coli. Bacteriocins are antimicrobial peptides or proteins ribosomally synthesized by many bacterial species. The use of this antimicrobial molecules in food industry obviate consumers need to safe food with least interference of chemical substances. Nisin, the most well-known bacteriocin, is the first bacteriocin found its way to food industry. Despite the widespread application of bacteriocins, resistance is seen in some species. Although it’s exact mechanism is not clear. So according to the today’s world need to find effective methods to control pathogens, studies of bacteriocins as a substitute for antibiotics are so important. The present review has studied the structure and activity of five classes of bacteriocins from gene to function in gram positive bacteria.

  13. A consistent nomenclature of antimicrobial peptides isolated from frogs of the subfamily Phyllomedusinae.

    Science.gov (United States)

    Amiche, Mohamed; Ladram, Ali; Nicolas, Pierre

    2008-11-01

    A growing number of cationic antimicrobial peptides have been isolated from the skin of hylid frogs belonging to the Phyllomedusinae subfamily. The amino acid sequences of these peptides are currently located in several databases under identifiers with no consistent system of nomenclature to describe them. In order to provide a workable terminology for antimicrobial peptides from Phyllomedusid frogs, we have made a systematic effort to collect, analyze, and classify all the Phyllomedusid peptide sequences available in databases. We propose that frogs belonging to the Phyllomedusinae subfamily should be described by the species names set out in Amphibian Species of the World: http://research.amnh.org/herpetology/amphibia/index.php, American Museum of Natural History, New York, USA. Multiple alignments analysis of at least 80 antimicrobial peptides isolated from 12 Phyllomedusinae species were distributed in seven distinct peptide families including dermaseptin, phylloseptin, plasticin, dermatoxin, phylloxin, hyposin and orphan peptides, and will be considered as the name of the headgroup of each family. The parent peptide's name should be followed by the first upper letter of the species for orthologous peptides and publication date determines priority. For example, the abbreviation B for bicolor and H for hypochondrialis. When two species begin with the same letter, two letters in upper case should be used (the first letter followed by the second or the third letter and so on). For example, the abbreviation DI for distincta, DU for duellmani, VA for vaillanti and VN for vanzolinii. Paralogous peptides should bear letter(s) in upper case followed by numbers.

  14. Sustained antimicrobial activity and reduced toxicity of oxidative biocides through biodegradable microparticles.

    Science.gov (United States)

    Sofokleous, Panagiotis; Ali, Shanom; Wilson, Peter; Buanz, Asma; Gaisford, Simon; Mistry, Dharmit; Fellows, Adrian; Day, Richard M

    2017-12-01

    The spread of antibiotic-resistant pathogens requires new treatments. Small molecule precursor compounds that produce oxidative biocides with well-established antimicrobial properties could provide a range of new therapeutic products to combat resistant infections. The aim of this study was to investigate a novel biomaterials-based approach for the manufacture, targeted delivery and controlled release of a peroxygen donor (sodium percarbonate) combined with an acetyl donor (tetraacetylethylenediamine) to deliver local antimicrobial activity via a dynamic equilibrium mixture of hydrogen peroxide and peracetic acid. Entrapment of the pre-cursor compounds into hierarchically structured degradable microparticles was achieved using an innovative dry manufacturing process involving thermally induced phase separation (TIPS) that circumvented compound decomposition associated with conventional microparticle manufacture. The microparticles provided controlled release of hydrogen peroxide and peracetic acid that led to rapid and sustained killing of multiple drug-resistant organisms (methicillin-resistant Staphylococcus aureus and carbapenem-resistant Escherichia coli) without associated cytotoxicity in vitro nor intracutaneous reactivity in vivo. The results from this study demonstrate for the first time that microparticles loaded with acetyl and peroxygen donors retain their antimicrobial activity whilst eliciting no host toxicity. In doing so, it overcomes the detrimental effects that have prevented oxidative biocides from being used as alternatives to conventional antibiotics. The manuscript explores a novel approach to utilize the antimicrobial activity of oxidative species for sustained killing of multiple drug-resistant organisms without causing collateral tissue damage. The results demonstrate, for the first time, the ability to load pre-cursor compounds into porous polymeric structures that results in their release and conversion into oxidative species in a

  15. Viruses and Gram-negative bacilli dominate the etiology of community-acquired pneumonia in Indonesia, a cohort study

    Directory of Open Access Journals (Sweden)

    Helmia Farida

    2015-09-01

    Conclusions: Viruses and Gram-negative bacilli are dominant causes of CAP in this region, more so than S. pneumoniae. Most of the bacteria have wild type susceptibility to antimicrobial agents. Patients with severe disease and those with unknown etiology have a higher mortality risk.

  16. In Vitro efficacy of antimicrobial extracts against the atypical ruminant pathogen Mycoplasma mycoides subsp. capri.

    Science.gov (United States)

    Arjoon, Amanda V; Saylor, Charlotte V; May, Meghan

    2012-10-02

    Mycoplasmosis is a common infection in human and veterinary medicine, and is associated with chronic inflammation and high morbidity. Mycoplasma species are often intrinsically resistant to many conventional antimicrobial therapies, and the resistance patterns of pathogenic mycoplasmas to commonly used medicinal (antimicrobial) plant extracts are currently unknown. Aqueous extracts, ethanol extracts, or oils of the targeted plant species and colloidal silver were prepared or purchased. Activity against the wall-less bacterial pathogen Mycoplasma mycoides subsp. capri was determined and compared to activities measured against Escherichia coli and Bacillus subtilis. Antimicrobial susceptibility testing was performed by broth microdilution assays. The lethal or inhibitory nature of each extract was determined by subculture into neat growth medium. Growth of M. mycoides capri, E. coli, and B. subtilis was inhibited by elderberry extract, oregano oil, ethanol extract of oregano leaves, and ethanol extract of goldenseal root. No inhibition was seen with aqueous extract of astragalus or calendula oil. Growth of M. mycoides capri and B. subtilis was inhibited by ethanol extract of astragalus, whereas growth of E. coli was not. Similarly, M. mycoides capri and E. coli were inhibited by aqueous extract of thyme, but B. subtilis was unaffected. Only B. subtilis was inhibited by colloidal silver. Measured MICs ranged from 0.0003 mg/mL to 3.8 mg/mL. Bacteriostatic and bactericidal effects differed by species and extract. The atypical pathogen M. mycoides capri was sensitive to extracts from many medicinal plants commonly used as antimicrobials in states of preparation and concentrations currently available for purchase in the United States and Europe. Variation in bacteriostatic and bactericidal activities between species and extracts indicates that multiple effecter compounds are present in these plant species.

  17. In Vitro efficacy of antimicrobial extracts against the atypical ruminant pathogen Mycoplasma mycoides subsp. capri

    Directory of Open Access Journals (Sweden)

    Arjoon Amanda V

    2012-10-01

    Full Text Available Abstract Background Mycoplasmosis is a common infection in human and veterinary medicine, and is associated with chronic inflammation and high morbidity. Mycoplasma species are often intrinsically resistant to many conventional antimicrobial therapies, and the resistance patterns of pathogenic mycoplasmas to commonly used medicinal (antimicrobial plant extracts are currently unknown. Methods Aqueous extracts, ethanol extracts, or oils of the targeted plant species and colloidal silver were prepared or purchased. Activity against the wall-less bacterial pathogen Mycoplasma mycoides subsp. capri was determined and compared to activities measured against Escherichia coli and Bacillus subtilis. Antimicrobial susceptibility testing was performed by broth microdilution assays. The lethal or inhibitory nature of each extract was determined by subculture into neat growth medium. Results Growth of M. mycoides capri, E. coli, and B. subtilis was inhibited by elderberry extract, oregano oil, ethanol extract of oregano leaves, and ethanol extract of goldenseal root. No inhibition was seen with aqueous extract of astragalus or calendula oil. Growth of M. mycoides capri and B. subtilis was inhibited by ethanol extract of astragalus, whereas growth of E. coli was not. Similarly, M. mycoides capri and E. coli were inhibited by aqueous extract of thyme, but B. subtilis was unaffected. Only B. subtilis was inhibited by colloidal silver. Measured MICs ranged from 0.0003 mg/mL to 3.8 mg/mL. Bacteriostatic and bactericidal effects differed by species and extract. Conclusions The atypical pathogen M. mycoides capri was sensitive to extracts from many medicinal plants commonly used as antimicrobials in states of preparation and concentrations currently available for purchase in the United States and Europe. Variation in bacteriostatic and bactericidal activities between species and extracts indicates that multiple effecter compounds are present in these plant species.

  18. ANTIMICROBIAL PROPERTIES OF PLEUROTUS ERYNGII AND LENTINUS EDODES HYDRO-ALCOHOLIC EXTRACTS

    Directory of Open Access Journals (Sweden)

    Gabriela Popa

    2016-11-01

    Full Text Available Besides superior nutritional values mushrooms posed significant medicinal properties. Hydro-alcoholic extracts of several isolates of Pleurotus eryngii and Lentinus edodes mushroom species were investigated for their antimicrobial activities against pathogenic microorganisms with medicinal importance. Antimicrobial activities of the extracts were evaluated by the agar disk diffusion method. Results revealed that the 70% ethylic alcohol extracts have significant inhibitory activities against Bacillus subtilis var. spizizinii, Escherichia coli and Staphylococcus aureus. The results showed that the 70% ethanol extracts of Pleurotus eryngii and Lentinus edodes mushroom isolates may have biopharmaceutical potentiality.

  19. How gamma-rays and electron-beam irradiation would affect the antimicrobial activity of differently processed wild mushroom extracts?

    Science.gov (United States)

    Alves, M J; Fernandes, Â; Barreira, J C M; Lourenço, I; Fernandes, D; Moura, A; Ribeiro, A R; Salgado, J; Antonio, A; Ferreira, I C F R

    2015-03-01

    The effects of irradiation (gamma-rays and electron-beams), up to 10 kGy, in the antimicrobial activity of mushroom species (Boletus edulis, Hydnum repandum, Macrolepiota procera and Russula delica) differently processed (fresh, dried, freeze) were evaluated. Clinical isolates with different resistance profiles from hospitalized patients in Local Health Unit of Mirandela, Northeast of Portugal, were used as target micro-organisms. The mushrooms antimicrobial activity did not suffer significant changes that might compromise applying irradiation as a possible mushroom conservation technology. Two kGy dose (independently of using gamma-rays or electron-beams) seemed to be the most suitable choice to irradiate mushrooms. This study provides important results in antimicrobial activity of extracts prepared from irradiated mushroom species. © 2014 The Society for Applied Microbiology.

  20. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    Directory of Open Access Journals (Sweden)

    Nurit Beyth

    2015-01-01

    Full Text Available Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The present review discusses the activities of nanoparticles as an antimicrobial means, their mode of action, nanoparticle effect on drug-resistant bacteria, and the risks attendant on their use as antibacterial agents. Factors contributing to nanoparticle performance in the clinical setting, their unique properties, and mechanism of action as antibacterial agents are discussed in detail.

  1. Environmental species sorting dominates forest-bird community assembly across scales.

    Science.gov (United States)

    Özkan, Korhan; Svenning, Jens-Christian; Jeppesen, Erik

    2013-01-01

    Environmental species sorting and dispersal are seen as key factors in community assembly, but their relative importance and scale dependence remain uncertain, as the extent to which communities are consistently assembled throughout their biomes. To address these issues, we analysed bird metacommunity structure in a 1200-km(2) forested landscape (Istranca Forests) in Turkish Thrace at the margin of the Western Palaearctic (WP) temperate-forest biome. First, we used spatial regressions and Mantel tests to assess the relative importance of environmental and spatial factors as drivers of local species richness and composition within the metacommunity. Second, we analysed species' abundance-occupancy relationship across the metacommunity and used null models to assess whether occupancy is determined by species' environmental niches. Third, we used generalized linear models to test for links between species' metacommunity-wide occupancy and their broader WP regional populations and assessed whether these links are consistent with environmental species sorting. There was strong environmental control on local species richness and composition patterns within the metacommunity, but non-environmental spatial factors had also an important joint role. Null model analyses on randomized communities showed that species' occupancy across the metacommunity was strongly determined by species' environmental niches, with occupancy being related to niche position marginality. Species' metacommunity-wide occupancy correlated with their local abundance as well as with their range size and total abundance for the whole WP, suggesting that the same assembly mechanisms act consistently across local to regional scales. A species specialization index that was estimated by bird species' habitat use across France, incorporating both niche position and breadth, was significantly related to species' occupancy and abundance at both metacommunity and WP regional scales. Hence, the same niche

  2. Antimicrobial-Resistant Enterococci in Animals and Meat: A Human Health Hazard?

    DEFF Research Database (Denmark)

    Hammerum, A.M.; Lester, C.H.; Heuer, Ole Eske

    2010-01-01

    clones predominate in certain animal species. This may suggest that antimicrobial-resistant E. faecium from animals could be regarded less hazardous to humans; however, due to their excellent ability to acquire and transfer resistance genes, E. faecium of animal origin may act as donors of antimicrobial...... resistance genes for other more virulent enterococci. For E. faecalis, the situation appears different, as similar clones of, for example, vancomycin-and gentamicin-resistant E. faecalis have been obtained from animals and from human patients. Continuous surveillance of antimicrobial resistance...... of avoparcin, gentamicin, and virginiamycin for growth promotion and therapy in food animals has lead to the emergence of vancomycin-and gentamicin-resistant enterococci and quinupristin/dalfopristin-resistant E. faecium in animals and meat. This implies a potential risk for transfer of resistance genes...

  3. Cytotoxicity and antimicrobial activity of Salvia officinalis L. flowers ...

    African Journals Online (AJOL)

    In this study a comparison of the Cytotoxicity and antimicrobial action of the aqueous and 70% methanol extracts from the flower of the herbal species Salvia officinalis L. (Lamiaceae), originating from Sudan was carried out. Material and Methods: Aqueous, and aquatic methanolic extracts of S. officinalis was investigated for ...

  4. Estimating Effects of Species Interactions on Populations of Endangered Species.

    Science.gov (United States)

    Roth, Tobias; Bühler, Christoph; Amrhein, Valentin

    2016-04-01

    Global change causes community composition to change considerably through time, with ever-new combinations of interacting species. To study the consequences of newly established species interactions, one available source of data could be observational surveys from biodiversity monitoring. However, approaches using observational data would need to account for niche differences between species and for imperfect detection of individuals. To estimate population sizes of interacting species, we extended N-mixture models that were developed to estimate true population sizes in single species. Simulations revealed that our model is able to disentangle direct effects of dominant on subordinate species from indirect effects of dominant species on detection probability of subordinate species. For illustration, we applied our model to data from a Swiss amphibian monitoring program and showed that sizes of expanding water frog populations were negatively related to population sizes of endangered yellow-bellied toads and common midwife toads and partly of natterjack toads. Unlike other studies that analyzed presence and absence of species, our model suggests that the spread of water frogs in Central Europe is one of the reasons for the decline of endangered toad species. Thus, studying population impacts of dominant species on population sizes of endangered species using data from biodiversity monitoring programs should help to inform conservation policy and to decide whether competing species should be subject to population management.

  5. Antimicrobial susceptibility profiles of Staphylococcus spp. from domestic and wild animals

    Directory of Open Access Journals (Sweden)

    Isabela de Godoy

    Full Text Available ABSTRACT: The aim of this study was to determine the prevalence and diversity of veterinary clinical isolates of Staphylococcus and analyze their antimicrobial susceptibility. One hundred Staphylococcus spp. clinical isolates from domestic and wild animals were subjected to partial sequencing of the 16S rRNA gene to species determination. Antimicrobial susceptibility was obtained by a disk diffusion test against six antibiotics: amoxicillin (AMX, cephalexin (LEX, ciprofloxacin (CIP, erythromycin (ERY, gentamicin (GEN and trimethoprim-sulfamethoxazole (SXT. The most common specie was S. pseudintermedius (61%, 61/100 and resistance to ERY (57%, 57/100, SXT (50%, 50/100 and AMX (46%, 46/100 was detected most frequently. In total, 40% (40/100 of Staphylococcus spp. exhibited a multidrug-resistant (MDR phenotype. Results of this study emphasize that animals are reservoir of MDR Staphylococcus spp.

  6. Antimicrobial activity of Tulsi (Ocimum tenuiflorum essential oil and their major constituents against three species of bacteria

    Directory of Open Access Journals (Sweden)

    Hanaa Abbas M Yamani

    2016-05-01

    Full Text Available In recent years scientists worldwide have realized that the effective life span of any antimicrobial agent is limited, due to increasing development of resistance by microorganisms. Consequently, numerous studies have been conducted to find new alternative sources of antimicrobial agents, especially from plants. The aims of this project were to examine the antimicrobial properties of essential oils distilled from Australian-grown Ocimum teniflorum (Tulsi, to quantify the volatile components present in flower spikes, leaves and the essential oil, and to investigate the compounds responsible for any activity. Broth micro-dilution was used to determine the minimum inhibitory concentration (MIC of Tulsi essential oil against selected microbial pathogens. The oils, at concentrations of 4.5% and 2.25% completely inhibited the growth of Staphylococcus aureus (including MRSA and Escherichia coli, while the same concentrations only partly inhibited the growth of Pseudomonas aeruginosa. Of 54 compounds identified in Tulsi leaves, flower spikes or essential oil, three are proposed to be responsible for this activity; camphor, eucalyptol and eugenol. Since S. aureus (including MRSA, P. aeruginosa and E. coli are major pathogens causing skin and soft tissue infections, Tulsi essential oil could be a valuable topical antimicrobial agent for management of skin infections caused by these organisms.

  7. Water-body preferences of dominant calanoid copepod species in ...

    African Journals Online (AJOL)

    The distribution of five dominant calanoid copepods was related to different water masses in the Angola-Benguela Front system. Five water bodies were identified by principal component analysis, on the basis of abiotic parameters such as temperature, salinity, dissolved oxygen, phosphate, silicate, nitrate and nitrite.

  8. Facial width-to-height ratio relates to dominance style in the genus Macaca

    Directory of Open Access Journals (Sweden)

    Marta Borgi

    2016-03-01

    Full Text Available Background. Physical, visual, chemical, and auditory cues signalling fighting ability have independently evolved in many animal taxa as a means to resolve conflicts without escalating to physical aggression. Facial width-to-height ratio (fWHR, i.e., the relative width to height of the face has been associated with dominance-related phenotypes both in humans and in other primates. In humans, faces with a larger fWHR are perceived as more aggressive. Methods. We examined fWHR variation among 11 species of the genus Macaca. Macaques have been grouped into four distinct categories, from despotic to tolerant, based on their female dominance style. Female dominance style is related to intra- and inter-sexual competition in both males and females and is the result of different evolutionary pressure across species. We used female dominance style as a proxy of intra-/inter-sexual competition to test the occurrence of correlated evolution between competitive regimes and dominance-related phenotypes. fWHR was calculated from 145 2D photographs of male and female adult macaques. Results. We found no phylogenetic signal on the differences in fWHR across species in the two sexes. However, fWHR was greater, in females and males, in species characterised by despotic female dominance style than in tolerant species. Discussion. Our results suggest that dominance-related phenotypes are related to differences in competitive regimes and intensity of inter- and intra-sexual selection across species.

  9. Antimicrobial effects of 14 Medicinal plant speices of Dashti in Bushehr province

    Directory of Open Access Journals (Sweden)

    Afshin Shirkani

    2014-04-01

    Full Text Available Background: Medicinal plants are used in treating diseases as low-risk, available and inexpensive natural materials with higher consumption by people comparing to synthetic antimicrobial drugs. Excessive use of antimicrobial drugs led to medicinal resistance against different antibiotics in most bacteria. Material and Methods: In this empirical experimental study, the antimicrobial effects of methanolic extracts of 14 medicinal plants species were examined comparing to conventional therapeutic antibiotics against standard bacterial strains. The plant species were collected from dashti of Bushehr province.The methanolic extract of the cultivations broths were prepared in different concentrations (0/25%, 0/5%, 1%, 2% and 4% dissolved in DMSO/ Methanolic solution and their antibacterial potency respected on the inhibition zone using the disc diffusion assay. Results: The maximum effects on Escherichia coli belonged to Arundo donax and the least effects belonged to Calotropis procera. The maximum effects on Staphylococcus aureus belonged to Lawsonia inermis and the least effects belonged to Calotropis procera. The maximum effects on Micrococcus luteus belonged to Phoeniex doctylifera and the least effects belonged to Oligomeris baccatus. The maximum effects on Klebsiella pneumonia belonged to mnocarpos decander and the least effects belonged Oligomeris baccatus. The maximum effects on pseudomonas aeroginosa belonged to Arundo donax. The maximum effects on Bacillus subtilis belonged to Astragalus arbusculinus. Conclusion: The antimicrobial effects of 4% methanolic extracts of Arundo donax were comparable to Cephalotin (30mcg, Piperacilin (30mcg and Amikacin (30mcg against Escherichia coli and pseudomonas aeroginosa. The antimicrobial effects of %4 extracts of Lawsonia inermis were similar to Amikacin (30mcg and Chloramphenicol (30mcg against Klebsiella penumoniae.

  10. Dominant lactic acid bacteria in artisanal Pirot cheeses of different ripening period

    Directory of Open Access Journals (Sweden)

    Terzić-Vidojević Amarela

    2009-01-01

    Full Text Available In this study two raw cow's milk cheeses of a different ripening period were examined. The cheeses were taken from a country household in the region of mountain Stara Planina and manufactured without adding of starter culture. A total 106 lactic acid bacteria (LAB strains were isolated from both cheeses. They are tested by classical physiological tests as well as by API 50 CH tests. Proteolytic and antimicrobial activities were done too. Identification of LAB isolates was done by repetitive extragenic palindromic-polimerase chain reaction (rep-PCR with (GTG5 primer. The LAB isolates from cheese BGPT9 (four days old belonged to the eight species of LAB (Lactobacillus plantarum, Lactobacillus paracasei subsp. paracasei, Lactobacillus delbrueckii, Lactobacillus brevis, Enterococcus faecium, Enterococcus faecalis, Enterococcus durans and Leuconostoc garlicum, while in the BGPT10 cheese (eight months old only two species were present (Lactobacillus plantarum and Enterococcus faecium. Proteolytic activity showed 30 LAB from BGPT9 cheese, mainly enterococci. From BGPT10 cheese only one isolate (which belonged to the Lactobacillus plantarum species possessed partial ability to hydrolyze β-casein. Seven enterococci from BGPT9 cheese and four enterococci from BGPT10 cheese produced antimicrobial compounds.

  11. Antimicrobial resistance in clinical Escherichia coli isolates from poultry and livestock, China.

    Directory of Open Access Journals (Sweden)

    Afrah Kamal Yassin

    Full Text Available Poultry and livestock are the most important reservoirs for pathogenic Escherichia coli and use of antimicrobials in animal farming is considered the most important factor promoting the emergence, selection and dissemination of antimicrobial-resistant microorganisms. The aim of our study was to investigate antimicrobial resistance in E. coli isolated from food animals in Jiangsu, China. The disc diffusion method was used to determine susceptibility to 18 antimicrobial agents in 862 clinical isolates collected from chickens, ducks, pigs, and cows between 2004 and 2012. Overall, 94% of the isolates showed resistance to at least one drug with 83% being resistance to at least three different classes of antimicrobials. The isolates from the different species were most commonly resistant to tetracycline, nalidixic acid, sulfamethoxazole, trimethoprim/sulfamethoxazole and ampicillin, and showed increasing resistance to amikacin, aztreonam, ceftazidime, cefotaxime, chloramphenicol, ciprofloxacin. They were least resistant to amoxicillin/clavulanic acid (3.4% and ertapenem (0.2%. MDR was most common in isolates from ducks (44/44, 100%, followed by chickens (568/644, 88.2%, pigs (93/113, 82.3% and cows (13/61, 21.3%. Our finding that clinical E. coli isolates from poultry and livestock are commonly resistant to multiple antibiotics should alert public health and veterinary authorities to limit and rationalize antimicrobial use in China.

  12. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials

    OpenAIRE

    Nurit Beyth; Yael Houri-Haddad; Avi Domb; Wahid Khan; Ronen Hazan

    2015-01-01

    Despite numerous existing potent antibiotics and other antimicrobial means, bacterial infections are still a major cause of morbidity and mortality. Moreover, the need to develop additional bactericidal means has significantly increased due to the growing concern regarding multidrug-resistant bacterial strains and biofilm associated infections. Consequently, attention has been especially devoted to new and emerging nanoparticle-based materials in the field of antimicrobial chemotherapy. The ...

  13. Antimicrobial activity and phytochemical analysis of crude extracts and essential oils from medicinal plants.

    Science.gov (United States)

    Silva, N C C; Barbosa, L; Seito, L N; Fernandes, A

    2012-01-01

    We aimed to establish a phytochemical analysis of the crude extracts and performed GC-MS of the essential oils (EOs) of Eugenia uniflora L. (Myrtaceae) and Asteraceae species Baccharis dracunculifolia DC, Matricaria chamomilla L. and Vernonia polyanthes Less, as well as determining their antimicrobial activity. Establishment of the minimal inhibitory concentrations of the crude extracts and EOs against 16 Staphylococcus aureus and 16 Escherichia coli strains from human specimens was carried out using the dilution method in Mueller-Hinton agar. Some phenolic compounds with antimicrobial properties were established, and all EOs had a higher antimicrobial activity than the extracts. Matricaria chamomilla extract and E. uniflora EO were efficient against S. aureus strains, while E. uniflora and V. polyanthes extracts and V. polyanthes EO showed the best antimicrobial activity against E. coli strains. Staphylococcus aureus strains were more susceptible to the tested plant products than E. coli, but all natural products promoted antimicrobial growth inhibition.

  14. Hoopoes color their eggs with antimicrobial uropygial secretions

    Science.gov (United States)

    Soler, Juan J.; Martín-Vivaldi, M.; Peralta-Sánchez, J. M.; Arco, L.; Juárez-García-Pelayo, N.

    2014-09-01

    Uropygial gland secretions are used as cosmetics by some species of birds to color and enhance properties of feathers and teguments, which may signal individual quality. Uropygial secretions also reach eggshells during incubation and, therefore, may influence the coloration of birds' eggs, a trait that has attracted the attention of evolutionary biologists for more than one century. The color of hoopoe eggs typically changes along incubation, from bluish-gray to greenish-brown. Here, we test experimentally the hypothesis that dark uropygial secretion of females is responsible for such drastic color change. Moreover, since uropygial secretion of hoopoes has antimicrobial properties, we also explore the association between color and antimicrobial activity of the uropygial secretion of females. We found that eggs stayed bluish-gray in nests where female access to the uropygial secretion was experimentally blocked. Furthermore, experimental eggs that were maintained in incubators and manually smeared with uropygial secretion experienced similar color changes that naturally incubated eggs did, while control eggs that were not in contact with the secretions did not experience such color changes. All these results strongly support the hypothesis that female hoopoes use their uropygial gland secretion to color the eggs. Moreover, saturation of the uropygial secretion was associated with antimicrobial activity against Bacillus licheniformis. Given the known antimicrobial potential of uropygial secretions of birds, this finding opens the possibility that in scenarios of sexual selection, hoopoes in particular and birds in general signal antimicrobial properties of their uropygial secretion by mean of changes in egg coloration along incubation.

  15. Radial growth of two dominant montane conifer tree species in response to climate change in North-Central China.

    Science.gov (United States)

    Jiang, Yuan; Zhang, Wentao; Wang, Mingchang; Kang, Muyi; Dong, Manyu

    2014-01-01

    North-Central China is a region in which the air temperature has clearly increased for several decades. Picea meyeri and Larix principis-rupprechtii are the most dominant co-occurring tree species within the cold coniferous forest belt ranging vertically from 1800 m to 2800 m a.s.l. in this region. Based on a tree-ring analysis of 292 increment cores sampled from 146 trees at different elevations, this study aimed to examine if the radial growth of the two species in response to climate is similar, whether the responses are consistent along altitudinal gradients and which species might be favored in the future driven by the changing climate. The results indicated the following: (1) The two species grew in different rhythms at low and high elevation respectively; (2) Both species displayed inconsistent relationships between radial growth and climate data along altitudinal gradients. The correlation between radial growth and the monthly mean temperature in the spring or summer changed from negative at low elevation into positive at high elevation, whereas those between the radial growth and the total monthly precipitation displayed a change from positive into negative along the elevation gradient. These indicate the different influences of the horizontal climate and vertical mountainous climate on the radial growth of the two species; (3) The species-dependent different response to climate in radial growth appeared mainly in autumn of the previous year. The radial growth of L. principis-rupprechtii displayed negative responses both to temperature and to precipitation in the previous September, October or November, which was not observed in the radial growth of P. meyeri. (4) The radial growth of both species will tend to be increased at high elevation and limited at low elevation, and L. principis-rupprechtii might be more favored in the future, if the temperature keeps rising.

  16. Radial growth of two dominant montane conifer tree species in response to climate change in North-Central China.

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    Full Text Available North-Central China is a region in which the air temperature has clearly increased for several decades. Picea meyeri and Larix principis-rupprechtii are the most dominant co-occurring tree species within the cold coniferous forest belt ranging vertically from 1800 m to 2800 m a.s.l. in this region. Based on a tree-ring analysis of 292 increment cores sampled from 146 trees at different elevations, this study aimed to examine if the radial growth of the two species in response to climate is similar, whether the responses are consistent along altitudinal gradients and which species might be favored in the future driven by the changing climate. The results indicated the following: (1 The two species grew in different rhythms at low and high elevation respectively; (2 Both species displayed inconsistent relationships between radial growth and climate data along altitudinal gradients. The correlation between radial growth and the monthly mean temperature in the spring or summer changed from negative at low elevation into positive at high elevation, whereas those between the radial growth and the total monthly precipitation displayed a change from positive into negative along the elevation gradient. These indicate the different influences of the horizontal climate and vertical mountainous climate on the radial growth of the two species; (3 The species-dependent different response to climate in radial growth appeared mainly in autumn of the previous year. The radial growth of L. principis-rupprechtii displayed negative responses both to temperature and to precipitation in the previous September, October or November, which was not observed in the radial growth of P. meyeri. (4 The radial growth of both species will tend to be increased at high elevation and limited at low elevation, and L. principis-rupprechtii might be more favored in the future, if the temperature keeps rising.

  17. Antimicrobial resistance in Libya: 1970–2011

    Directory of Open Access Journals (Sweden)

    Khalifa Sifaw Ghenghesh

    2013-03-01

    Full Text Available Resistance to antimicrobial agents is a major health problem that affects the whole world. Providing information on the past state of antimicrobial resistance in Libya may assist the health authorities in addressing the problem more effectively in the future. Information was obtained mainly from Highwire Press (including PubMed search for the period 1970–2011 using the terms ‘antibiotic resistance in Libya’, ‘antimicrobial resistance in Libya’, ‘tuberculosis in Libya’, and ‘primary and acquired resistance in Libya’ in title and abstract. From 1970 to 2011 little data was available on antimicrobial resistance in Libya due to lack of surveillance and few published studies. Available data shows high resistance rates for Salmonella species in the late 1970s and has remained high to the present day. High prevalence rates (54–68% of methicillin-resistant Staphylococcus aureus (MRSA were reported in the last decade among S. aureus from patients with burns and surgical wound infections. No reports were found of vancomycin-resistant S. aureus (VRSA or vancomycin-intermediate-resistant S. aureus (VISA using standard methods from Libya up to the end of 2011. Reported rates of primary (i.e. new cases and acquired (i.e. retreatment cases multidrug-resistant tuberculosis (MDR-TB from the eastern region of Libya in 1971 were 16.6 and 33.3% and in 1976 were 8.6 and 14.7%, in western regions in 1984–1986 were 11 and 21.5% and in the whole country in 2011 were estimated at 3.4 and 29%, respectively. The problem of antibiotic resistance is very serious in Libya. The health authorities in particular and society in general should address this problem urgently. Establishing monitoring systems based on the routine testing of antimicrobial sensitivity and education of healthcare workers, pharmacists, and the community on the health risks associated with the problem and benefits of prudent use of antimicrobials are some steps that can be taken to

  18. Antifungal effect and action mechanism of antimicrobial peptide polybia-CP.

    Science.gov (United States)

    Wang, Kairong; Jia, Fengjing; Dang, Wen; Zhao, Yanyan; Zhu, Ranran; Sun, Mengyang; Qiu, Shuai; An, Xiaoping; Ma, Zelin; Zhu, Yuanyuan; Yan, Jiexi; Kong, Ziqing; Yan, Wenjin; Wang, Rui

    2016-01-01

    The incidence of life-threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia-CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane-active action mode. In addition, polybia-CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia-CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  19. Antimicrobial resistance

    DEFF Research Database (Denmark)

    Llor, Carl; Bjerrum, Lars

    2014-01-01

    Antimicrobial resistance is a global public health challenge, which has accelerated by the overuse of antibiotics worldwide. Increased antimicrobial resistance is the cause of severe infections, complications, longer hospital stays and increased mortality. Overprescribing of antibiotics......-the-counter sale of antibiotics, the use of antimicrobial stewardship programmes, the active participation of clinicians in audits, the utilization of valid rapid point-of-care tests, the promotion of delayed antibiotic prescribing strategies, the enhancement of communication skills with patients with the aid...

  20. A Clostridium Group IV Species Dominates and Suppresses a Mixed Culture Fermentation by Tolerance to Medium Chain Fatty Acids Products

    Science.gov (United States)

    Andersen, Stephen J.; De Groof, Vicky; Khor, Way Cern; Roume, Hugo; Props, Ruben; Coma, Marta; Rabaey, Korneel

    2017-01-01

    A microbial community is engaged in a complex economy of cooperation and competition for carbon and energy. In engineered systems such as anaerobic digestion and fermentation, these relationships are exploited for conversion of a broad range of substrates into products, such as biogas, ethanol, and carboxylic acids. Medium chain fatty acids (MCFAs), for example, hexanoic acid, are valuable, energy dense microbial fermentation products, however, MCFA tend to exhibit microbial toxicity to a broad range of microorganisms at low concentrations. Here, we operated continuous mixed population MCFA fermentations on biorefinery thin stillage to investigate the community response associated with the production and toxicity of MCFA. In this study, an uncultured species from the Clostridium group IV (related to Clostridium sp. BS-1) became enriched in two independent reactors that produced hexanoic acid (up to 8.1 g L−1), octanoic acid (up to 3.2 g L−1), and trace concentrations of decanoic acid. Decanoic acid is reported here for the first time as a possible product of a Clostridium group IV species. Other significant species in the community, Lactobacillus spp. and Acetobacterium sp., generate intermediates in MCFA production, and their collapse in relative abundance resulted in an overall production decrease. A strong correlation was present between the community composition and both the hexanoic acid concentration (p = 0.026) and total volatile fatty acid concentration (p = 0.003). MCFA suppressed species related to Clostridium sp. CPB-6 and Lactobacillus spp. to a greater extent than others. The proportion of the species related to Clostridium sp. BS-1 over Clostridium sp. CPB-6 had a strong correlation with the concentration of octanoic acid (p = 0.003). The dominance of this species and the increase in MCFA resulted in an overall toxic effect on the mixed community, most significantly on the Lactobacillus spp., which resulted in a decrease in total

  1. Comparing antimicrobial exposure based on sales data

    DEFF Research Database (Denmark)

    Bondt, Nico; Jensen, Vibeke Frøkjær; Puister-Jansen, Linda F.

    2013-01-01

    with information about estimated average dosages, to make model calculations of the average number of treatment days per average animal per year, at first based on the assumption that the treatment incidence is the same in all species and production types. Secondly, the exposure in respectively animals for meat......This paper explores the possibilities of making meaningful comparisons of the veterinary use of antimicrobial agents among countries, based on national total sales data. Veterinary antimicrobial sales data on country level and animal census data in both Denmark and the Netherlands were combined...... production and dairy and other cattle (excluding veal and young beef) was estimated, assuming zero use in the dairy and other cattle, and thirdly by assuming respectively 100% oral and 100% parenteral administration. Subsequently, the outcomes of these model calculations were compared with treatment...

  2. Antimicrobial properties of a nanostructured eggshell from a compost-nesting bird.

    Science.gov (United States)

    D'Alba, Liliana; Jones, Darryl N; Badawy, Hope T; Eliason, Chad M; Shawkey, Matthew D

    2014-04-01

    Infection is an important source of mortality for avian embryos but parental behaviors and eggs themselves can provide a network of antimicrobial defenses. Mound builders (Aves: Megapodiidae) are unique among birds in that they produce heat for developing embryos not by sitting on eggs but by burying them in carefully tended mounds of soil and microbially decomposing vegetation. The low infection rate of eggs of one species in particular, the Australian brush-turkey (Alectura lathami), suggests that they possess strong defensive mechanisms. To identify some of these mechanisms, we first quantified antimicrobial albumen proteins and characterized eggshell structure, finding that albumen was not unusually antimicrobial, but that eggshell cuticle was composed of nanometer-sized calcite spheres. Experimental tests revealed that these modified eggshells were significantly more hydrophobic and better at preventing bacterial attachment and penetration into the egg contents than chicken eggs. Our results suggest that these mechanisms may contribute to the antimicrobial defense system of these eggs, and may provide inspiration for new biomimetic anti-fouling surfaces.

  3. Antimicrobial Resistance

    Science.gov (United States)

    ... least 10 countries (Australia, Austria, Canada, France, Japan, Norway, Slovenia, South Africa, Sweden and the United Kingdom ... plan Global report on surveillance Country situation analysis Policy to combat antimicrobial resistance More on antimicrobial resistance ...

  4. Antimicrobial Resistance

    Science.gov (United States)

    ... can prevent and manage antimicrobial resistance. It is collaborating with partners to strengthen the evidence base and ... on the global action plan. WHO has been leading multiple initiatives to address antimicrobial resistance: World Antibiotic ...

  5. ASSESSMENT OF ANTIMICROBIAL AND PHYTOCHEMICAL POTENTIALS OF HIGH ALTITUDINAL NEPALESE LICHENS

    Directory of Open Access Journals (Sweden)

    Bijaya Laxmi Maharjan

    2011-10-01

    Full Text Available Lichens and lichen products have been used in traditional medicines for centuries. The lichens of the high altitudinal meadow of MCA (Manaslu Conservation Area have remained unexplored for which this research has been conducted with an aim of unveiling the phytochemical and antimicrobial properties of lichens present there. Four densely populated lichen species namely Usnea longifolia, Setraria spp, Parmotrema reticulatum and Evernastrium nepalense were chosen for the study. The extracts of these species were obtained in 6 different solvents viz. hexane, chloroform, ethyl acetate, acetone, methanol and water by soxhlet extraction method and the antimicrobial assay was carried out by agar well diffusion method. The extract yield varied from 0.07 -29.4%. The extracts obtained showed the presence of volatile oil, saponins, coumarins and quinines, flavonic glycosides and carotenoids. The ethyl acetate fraction of E. nepalense and U. longifolia were found to be most effective against all the 8 clinical bacterial pathogens and 5 phytopathogenic fungi tested. The extracts of Cetraria spp and P. milghenensis were found to be specifically inhibiting the fungal pathogens compared to the bacterial pathogens. Generally the lichen extracts tested demonstrated antimicrobial effect which suggests a possibility of their use in treatment of various diseases caused by these and similar microorganisms.

  6. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract

    Directory of Open Access Journals (Sweden)

    Amgad A Awad El-Gied

    2015-01-01

    Full Text Available Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L. is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L. The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity.

  7. Investigation of cream and ointment on antimicrobial activity of Mangifera indica extract

    Science.gov (United States)

    Awad El-Gied, Amgad A.; Abdelkareem, Abdelkareem M.; Hamedelniel, Elnazeer I.

    2015-01-01

    Medicinal plants have curative properties due to the presence of various complex chemical substance of different composition, which are found as secondary plant metabolites in one or more parts of these plants. Mangifera indica Linn (MI L.) is a species of mango in the Anacardiaceae family. Phytoconstituents in the seed extracts may be responsible for the antimicrobial activity of the plant. The purpose of the study was to formulate and evaluate the antimicrobial herbal ointment and cream from extracts of the seeds of mango (MI L.) The formulated ointments containing oleaginous-based showed the best formulation compared to the emulsion water in oil type, the ointment and cream bases in different concentration 1%, 5% and 10%. The formulated ointment and cream of MI L. were subjected to evaluation of Uniformity of Weight, measurement of pH, viscosity, Spreadability, Acute skin irritation study, stability study and antimicrobial activity. Our study shows that MI has high potential as an antimicrobial agent when formulated as ointment and creams for topical use. Thus, the present study concludes that the formulated formulations of the MI are safe and efficient carriers, with potent antimicrobial activity. PMID:25878974

  8. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... video) Animation of Antimicrobial Resistance (text version) Arabic Translation of Animation of Antimicrobial Resistance Chinese Translation of Animation of Antimicrobial Resistance French Translation of ...

  9. Antimicrobial activity of traditional medicinal plants from Ankober District, North Shewa Zone, Amhara Region, Ethiopia

    OpenAIRE

    Molla, Ermias Lulekal; Rondevaldova, J; Bernaskova, E; Cepkova, J; Asfaw, Z; Kelbessa, E; Kokoska, L; Van Damme, Patrick

    2014-01-01

    Context: Traditional medicinal plants have long been used in Ethiopia to treat human and livestock ailments. Despite a well-documented rich tradition of medicinal plant use in the country, their direct antimicrobial effects are still poorly known. Objective: To investigate the antimicrobial activity of 19 medicinal plant species that were selected based on the ethnobotanical information on their traditional use to treat infectious diseases in Ankober District. Methods: About 23 differ...

  10. The oral microbiota of domestic cats harbors a wide variety of Staphylococcus species with zoonotic potential.

    Science.gov (United States)

    Rossi, Ciro César; da Silva Dias, Ingrid; Muniz, Igor Mansur; Lilenbaum, Walter; Giambiagi-deMarval, Marcia

    2017-03-01

    This study aimed to characterize the species, antimicrobial resistance and dispersion of CRISPR systems in staphylococci isolated from the oropharynx of domestic cats in Brazil. Staphylococcus strains (n=75) were identified by MALDI-TOF and sequencing of rpoB and tuf genes. Antimicrobial susceptibility was assessed by disk diffusion method and PCR to investigate the presence of antimicrobial-resistance genes usually present in mobile genetic elements (plasmids), in addition to plasmid extraction. CRISPR - genetic arrangements that give the bacteria the ability to resist the entry of exogenous DNA - were investigated by the presence of the essential protein Cas1 gene. A great diversity of Staphylococcus species (n=13) was identified. The presence of understudied species, like S. nepalensis and S. pettenkoferi reveals that more than one identification method may be necessary to achieve conclusive results. At least 56% of the strains contain plamids, being 99% resistant to at least one of the eight tested antimicrobials and 12% multidrug resistant. CRISPR were rare among the studied strains, consistent with their putative role as gene reservoirs. Moreover, herein we describe for the first time their existence in Staphylococcus lentus, to which the system must confer additional adaptive advantage. Prevalence of resistance among staphylococci against antimicrobials used in veterinary and human clinical practice and the zoonotic risk highlight the need of better antimicrobial management practices, as staphylococci may transfer resistance genes among themselves, including to virulent species, like S. aureus. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Dominant Species in Subtropical Forests Could Decrease Photosynthetic N Allocation to Carboxylation and Bioenergetics and Enhance Leaf Construction Costs during Forest Succession.

    Science.gov (United States)

    Xiao, Yihua; Liu, Shirong; Tong, Fuchun; Chen, Bufeng; Kuang, Yuanwen

    2018-01-01

    It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content ( N A ), maximum CO 2 assimilation rate ( P max ), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation ( N C ), and to bioenergetics ( N B ). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, N A , but higher P max , SLA, PNUE, N C , and N B , in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between P max and leaf CC strengthened, whereas the relationships between N B , N C , PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization.

  12. Antimicrobial resistance patterns of Staphylococcus species isolated from cats presented at a veterinary academic hospital in South Africa.

    Science.gov (United States)

    Qekwana, Daniel Nenene; Sebola, Dikeledi; Oguttu, James Wabwire; Odoi, Agricola

    2017-09-15

    Antimicrobial resistance is becoming increasingly important in both human and veterinary medicine. This study investigated the proportion of antimicrobial resistant samples and resistance patterns of Staphylococcus isolates from cats presented at a veterinary teaching hospital in South Africa. Records of 216 samples from cats that were submitted to the bacteriology laboratory of the University of Pretoria academic veterinary hospital between 2007 and 2012 were evaluated. Isolates were subjected to antimicrobial susceptibility testing against a panel of 15 drugs using the disc diffusion method. Chi square and Fisher's exact tests were used to assess simple associations between antimicrobial resistance and age group, sex, breed and specimen type. Additionally, associations between Staphylococcus infection and age group, breed, sex and specimen type were assessed using logistic regression. Staphylococcus spp. isolates were identified in 17.6% (38/216) of the samples submitted and 4.6% (10/216) of these were unspeciated. The majority (61.1%,11/18) of the isolates were from skin samples, followed by otitis media (34.5%, 10/29). Coagulase Positive Staphylococcus (CoPS) comprised 11.1% (24/216) of the samples of which 7.9% (17/216) were S. intermedius group and 3.2% (7/216) were S. aureus. Among the Coagulase Negative Staphylococcus (CoNS) (1.9%, 4/216), S. felis and S. simulans each constituted 0.9% (2/216). There was a significant association between Staphylococcus spp. infection and specimen type with odds of infection being higher for ear canal and skin compared to urine specimens. There were higher proportions of samples resistant to clindamycin 34.2% (13/25), ampicillin 32.4% (2/26), lincospectin 31.6% (12/26) and penicillin-G 29.0% (11/27). Sixty three percent (24/38) of Staphylococcus spp. were resistant to one antimicrobial agent and 15.8% were multidrug resistant (MDR). MDR was more common among S. aureus 28.6% (2/7) than S. intermedius group isolates 11.8% (2

  13. Genotypic and phenotypic characterization of antimicrobial-resistant Escherichia coli from farm-raised diarrheic sika deer in Northeastern China.

    Directory of Open Access Journals (Sweden)

    Rui Li

    Full Text Available In China, overuse and/or abuse of antimicrobials are common in stockbreeding, which possess high risks of antimicrobial-resistant contaminations. The serogroups, major virulence genes, and antimicrobial resistant patterns of the antimicrobial-resistant Escherichia coli (E. coli were investigated in the feces of diarrheic farm-raised sika deer from 50 farms in three Northeastern provinces of China. A total of 220 E. coli isolates were obtained and characterized. Twenty-eight O serogroups were identified from the obtained E. coli isolates with O2, O26, O128, O142 and O154 being dominant. Nearly all the isolates were resistant to at least four of the tested antimicrobials. More than 90% of the E. coli isolates carried at least one of the tested virulence genes. About 85% of the E. coli isolates carried one or more antimicrobial-resistant genes responsible for resistant phenotypes of sulfonamides, streptomycin/spectionomycin or tetracycline. The antimicrobial resistant level and pathogenic group occurrences of the obtained E. coli isolates were higher than that of livestock and wild animals reported in some developed countries. Thus, the fecal-carrying antimicrobial-resistant E. coli from the farm-raised sika deer is potentially a significant contamination source for freshwater systems and food chain, and may pose great health risks for human and animals in Northeastern China.

  14. THE STRATEGY OF ANTIMICROBIAL THERAPY OF ACUTE UNCOMPLICATED PYELONEPHRITIS FROM THE POSITION OF ETIOLOGICAL DATA

    Directory of Open Access Journals (Sweden)

    A. D. Kaprin

    2015-01-01

    Full Text Available Abstract:Acute pyelonephritis is one of the common diseases both in outpatient and in the hospital practice. The leading causative agent of this disease is E. coli. Obstructive uropathy, foreign body, vesicoureteral reflux, sexual activity, use of local contraceptives contribute to the upward development of urinary infection. The goals of antimicrobial therapy for acute uncomplicated pyelonephritis are: relief of symptoms, restoration of social activity, prevention of complications and relapse prevention. The choice of an antimicrobial agent in most cases is carried out empirically based on the data on the dominant pathogens and their regional resistance. In acute uncomplicated pyelonephritis duration of antimicrobial therapy should be 7–14 days. The drugs of choice for treatment of acute uncomplicated pyelonephritis non-severe in adults are ciprofloxacin and levofloxacin, ceftibuten and cefixime. Patients with acute uncomplicated pyelonephritis severe emergency hospitalization is shown in urological outpatient and parenteral antimicrobial therapy (carbapenems or protected aminopenicillins combined with or without amikacin with subsequent conversion to oral drugs and infusion therapy.

  15. Antimicrobial-resistant patterns of Escherichia coli and Salmonella strains in the aquatic Lebanese environments

    International Nuclear Information System (INIS)

    Harakeh, Steve; Yassine, Hadi; El-Fadel, Mutasem

    2006-01-01

    This study is the first to be conducted in Lebanon on the isolation and molecular characterization and the antimicrobial resistance profile of environmental pathogenic bacterial strains. Fifty-seven samples of seawater, sediment, crab, and fresh water were collected during the spring and summer seasons of 2003. The isolation of Escherichia coli and Salmonella using appropriate selective media revealed that 94.7% of the tested samples were contaminated with one or both of the tested bacteria. The polymerase chain reaction (PCR) was then used to identify the species of both bacteria using various sets of primers. Many pathogenic E. coli isolates were detected by PCR out of which two were identified as O157:H7 E. coli. Similarly, the species of many of the Salmonella isolates was molecularly identified. The confirmed isolates of Salmonella and E. coli were then tested using the disk diffusion method for their susceptibility to four different antimicrobials revealing high rates of antimicrobial resistance. - First report of antibiotic resistance in bacteria in the environment in Lebanon

  16. ACVIM Consensus Statement on Therapeutic Antimicrobial Use in Animals and Antimicrobial Resistance

    OpenAIRE

    Weese, J.S.; Gigu?re, S.; Guardabassi, L.; Morley, P.S.; Papich, M.; Ricciuto, D.R.; Sykes, J.E.

    2015-01-01

    The epidemic of antimicrobial resistant infections continues to challenge, compromising animal care, complicating food animal production and posing zoonotic disease risks. While the overall role of therapeutic antimicrobial use in animals in the development AMR in animal and human pathogens is poorly defined, veterinarians must consider the impacts of antimicrobial use in animal and take steps to optimize antimicrobial use, so as to maximize the health benefits to animals while minimizing the...

  17. Antimicrobial-resistant bacteria in wild game in Slovenia

    Science.gov (United States)

    Križman, M.; Kirbiš, A.; Jamnikar-Ciglenečki, U.

    2017-09-01

    Wildlife is usually not exposed to clinically-used antimicrobial agents but can acquire antimicrobial resistance throughout contact with humans, domesticated animals and environments. Samples of faeces from intestines (80 in total) were collected from roe deer (52), wild boars (11), chamois (10) red deer (6) and moufflon (1). After culture on ChromID extended spectrum β-lactamase (ESBL) plates to select for growth of ESBL-producing bacteria, 25 samples produced bacterial colonies for further study. Six species of bacteria were identified from the 25 samples: Stenotrophomonas maltophilia, Serratia fonticola, Stenotrophomonas nitritireducens, Enterococcus faecium, Enterococcus faecalis and Escherichia coli. Two ESBL enzymes were amplified from group TEM and three from group CTX-M-1. Undercooked game meat and salami can be a source of resistant bacteria when animals are not eviscerated properly.

  18. Usage of Intramammary Antimicrobial Veterinary Medicinal Products in The Republic of Serbia from 2011 to 2014

    Directory of Open Access Journals (Sweden)

    Andjelkovic Jelena

    2017-03-01

    Full Text Available Prudent use of antimicrobial medicine is an imperative in both human and veterinary medicine today. Antibiotic usage in humans and animals has increased over the years, consequently giving rise to antimicrobial resistance in pathogenic microorganisms. Mastitis is one of the most common conditions in bovine species, and intramammary antibacterial medicinal products are used in animal husbandry for mastitis treatment and prophylaxis.

  19. Antagonistic intestinal microflora produces antimicrobial substance inhibitory to pseudomonas species and other spoilage organisms

    NARCIS (Netherlands)

    Hatew, B.; Delessa, T.; Zakin, V.; Gollop, N.

    2011-01-01

    Chicken intestine harbors a vast number of bacterial strains. In the present study, antimicrobial substance produced by lactic acid bacteria (LAB) isolated from the gastrointestinal tract of healthy chicken was detected, characterized, and purified. Based on 16S rRNA sequencing, the bacteria were

  20. Novel natural food antimicrobials.

    Science.gov (United States)

    Juneja, Vijay K; Dwivedi, Hari P; Yan, Xianghe

    2012-01-01

    Naturally occurring antimicrobial compounds could be applied as food preservatives to protect food quality and extend the shelf life of foods and beverages. These compounds are naturally produced and isolated from various sources, including plants, animals and microorganisms, in which they constitute part of host defense systems. Many naturally occurring compounds, such as nisin, plant essential oils, and natamycin, have been widely studied and are reported to be effective in their potential role as antimicrobial agents against spoilage and pathogenic microorganisms. Although some of these natural antimicrobials are commercially available and applied in food processing, their efficacy, consumer acceptance and regulation are not well defined. This manuscript reviews natural antimicrobial compounds with reference to their applications in food when applied individually or in combination with other hurdles. It also reviews the mechanism of action of selected natural antimicrobials, factors affecting their antimicrobial activities, and future prospects for use of natural antimicrobials in the food industry.

  1. Natural Cinnamic Acids, Synthetic Derivatives and Hybrids with Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Juan David Guzman

    2014-11-01

    Full Text Available Antimicrobial natural preparations involving cinnamon, storax and propolis have been long used topically for treating infections. Cinnamic acids and related molecules are partly responsible for the therapeutic effects observed in these preparations. Most of the cinnamic acids, their esters, amides, aldehydes and alcohols, show significant growth inhibition against one or several bacterial and fungal species. Of particular interest is the potent antitubercular activity observed for some of these cinnamic derivatives, which may be amenable as future drugs for treating tuberculosis. This review intends to summarize the literature data on the antimicrobial activity of the natural cinnamic acids and related derivatives. In addition, selected hybrids between cinnamic acids and biologically active scaffolds with antimicrobial activity were also included. A comprehensive literature search was performed collating the minimum inhibitory concentration (MIC of each cinnamic acid or derivative against the reported microorganisms. The MIC data allows the relative comparison between series of molecules and the derivation of structure-activity relationships.

  2. [Wetlands dominated by palms (Arecaceae), emphasis in those in the New World].

    Science.gov (United States)

    Myers, Ronald L

    2013-09-01

    It is well known that most forests in humid tropical lowlands are species rich, and the popular view is that most species are represented by only a few individuals. Despite this common understanding of high richness and low species dominance, within humid tropical regions there are extensive forested ecosystems composed by only few species. These nearly monospecific forests usually occupy poorly drained soils and, except for the mangroves, are quite understudied. In this paper, I review the literature and my own field notes on more than three years studying the structure of palm swamps in Caribbean Costa Rica and Florida to describe some of the major vegetation associations in wetlands dominated by palm species in the Neotropical Region, although I also include some information about similar systems in the Old World Tropics. I mention the most abundant species that compose those palm dominated swamps and -whenever possible- describe forest structure, known distribution, and uses.

  3. Resistance to Antimicrobial Peptides in Vibrios

    Directory of Open Access Journals (Sweden)

    Delphine Destoumieux-Garzón

    2014-10-01

    Full Text Available Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.

  4. Understanding the determinants of antimicrobial prescribing within hospitals: the role of "prescribing etiquette".

    Science.gov (United States)

    Charani, E; Castro-Sanchez, E; Sevdalis, N; Kyratsis, Y; Drumright, L; Shah, N; Holmes, A

    2013-07-01

    There is limited knowledge of the key determinants of antimicrobial prescribing behavior (APB) in hospitals. An understanding of these determinants is required for the successful design, adoption, and implementation of quality improvement interventions in antimicrobial stewardship programs. Qualitative semistructured interviews were conducted with doctors (n = 10), pharmacists (n = 10), and nurses and midwives (n = 19) in 4 hospitals in London. Interviews were conducted until thematic saturation was reached. Thematic analysis was applied to the data to identify the key determinants of antimicrobial prescribing behaviors. The APB of healthcare professionals is governed by a set of cultural rules. Antimicrobial prescribing is performed in an environment where the behavior of clinical leaders or seniors influences practice of junior doctors. Senior doctors consider themselves exempt from following policy and practice within a culture of perceived autonomous decision making that relies more on personal knowledge and experience than formal policy. Prescribers identify with the clinical groups in which they work and adjust their APB according to the prevailing practice within these groups. A culture of "noninterference" in the antimicrobial prescribing practice of peers prevents intervention into prescribing of colleagues. These sets of cultural rules demonstrate the existence of a "prescribing etiquette," which dominates the APB of healthcare professionals. Prescribing etiquette creates an environment in which professional hierarchy and clinical groups act as key determinants of APB. To influence the antimicrobial prescribing of individual healthcare professionals, interventions need to address prescribing etiquette and use clinical leadership within existing clinical groups to influence practice.

  5. Prevalence and antimicrobial resistance of Campylobacter species isolated from chicken carcasses during processing in Iran.

    Science.gov (United States)

    Rahimi, E; Momtaz, H; Ameri, M; Ghasemian-Safaei, H; Ali-Kasemi, M

    2010-05-01

    The objective of this study was to determine the prevalence and antimicrobial resistance of Campylobacter spp. isolated from chicken carcasses during different stages of broiler processing in a major commercial poultry processing plant in southwestern Iran. Overall, 84 chicken carcasses were sampled from 4 sites along the processing line during a total of 7 visits. In addition, 14 water samples from the chiller tank were taken. Using the cultural method, 186 of 336 (55.4%) carcasses were positive for Campylobacter. Campylobacter jejuni was more frequently isolated (89.4%) than Campylobacter coli (10.6%). The frequency of Campylobacter spp. on carcasses was 54.8% after defeathering, 51.2% after evisceration, 69.0% 20 min after the chilling period started, and 46.4% 24 h after the chilling period completed. Campylobacter was positive in 85.7% of the samples taken from the chilling water. The frequency of Campylobacter spp.-positive carcasses was reduced in complete chilled chickens but not during the slaughtering process. Susceptibilities of Campylobacter isolates were determined for 10 antimicrobial drugs using the disk diffusion method. Of the 198 Campylobacter isolates tested, 92.9% were resistant to one or more antimicrobial agents. Resistance to tetracycline was the most common finding (78.3%), followed by resistance to ciprofloxacin (62.1%), nalidixic acid (58.6%), and enrofloxacin (44.4%).

  6. An Investigation on the antimicrobial activity of some endemic plant ...

    African Journals Online (AJOL)

    In this study performed on six endemic plant species, antimicrobial activity was observed in Campanula lyrata subsp.lyrata and Abies nordmanniana subsp. bornmuelleriana plants. The minimum inhibitory concentration of C. lyrata subsp. lyrata (leaf and flower) extract was found to be 29 mg/ml for Baccillus subtilis and 14.5 ...

  7. Antimicrobial and anti-biofilm properties of polypropylene meshes coated with metal-containing DLC thin films.

    Science.gov (United States)

    Cazalini, Elisa M; Miyakawa, Walter; Teodoro, Guilherme R; Sobrinho, Argemiro S S; Matieli, José E; Massi, Marcos; Koga-Ito, Cristiane Y

    2017-06-01

    A promising strategy to reduce nosocomial infections related to prosthetic meshes is the prevention of microbial colonization. To this aim, prosthetic meshes coated with antimicrobial thin films are proposed. Commercial polypropylene meshes were coated with metal-containing diamond-like carbon (Me-DLC) thin films by the magnetron sputtering technique. Several dissimilar metals (silver, cobalt, indium, tungsten, tin, aluminum, chromium, zinc, manganese, tantalum, and titanium) were tested and compositional analyses of each Me-DLC were performed by Rutherford backscattering spectrometry. Antimicrobial activities of the films against five microbial species (Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Enterococcus faecalis) were also investigated by a modified Kirby-Bauer test. Results showed that films containing silver and cobalt have inhibited the growth of all microbial species. Tungsten-DLC, tin-DLC, aluminum-DLC, zinc-DLC, manganese-DLC, and tantalum-DLC inhibited the growth of some strains, while chromium- and titanium-DLC weakly inhibited the growth of only one tested strain. In-DLC film showed no antimicrobial activity. The effects of tungsten-DLC and cobalt-DLC on Pseudomonas aeruginosa biofilm formation were also assessed. Tungsten-DLC was able to significantly reduce biofilm formation. Overall, the experimental results in the present study have shown new approaches to coating polymeric biomaterials aiming antimicrobial effect.

  8. Identification and screening of potent antimicrobial peptides in arthropod genomes.

    Science.gov (United States)

    Duwadi, Deepesh; Shrestha, Anishma; Yilma, Binyam; Kozlovski, Itamar; Sa-Eed, Munaya; Dahal, Nikesh; Jukosky, James

    2018-05-01

    Using tBLASTn and BLASTp searches, we queried recently sequenced arthropod genomes and expressed sequence tags (ESTs) using a database of known arthropod cecropins, defensins, and attacins. We identified and synthesized 6 potential AMPs and screened them for antimicrobial activity. Using radial diffusion assays and microtiter antimicrobial assays, we assessed the in vitro antimicrobial effects of these peptides against several human pathogens including Gram-positive and Gram-negative bacteria and fungi. We also conducted hemolysis assays to examine the cytotoxicity of these peptides to mammalian cells. Four of the six peptides identified showed antimicrobial effects in these assays. We also created truncated versions of these four peptides to assay their antimicrobial activity. Two cecropins derived from the monarch butterfly genome (Danaus plexippus), DAN1 and DAN2, showed minimum inhibitory concentrations (MICs) in the range of 2-16 μg/ml when screened against Gram-negative bacteria. HOLO1 and LOUDEF1, two defensin-like peptides derived from red flour beetle (Tribolium castaneum) and human body louse (Pediculus humanus humanus), respectively, exhibited MICs in the range of 13-25 μg/ml against Gram-positive bacteria. Furthermore, HOLO1 showed an MIC less than 5 μg/ml against the fungal species Candida albicans. These peptides exhibited no hemolytic activity at concentrations up to 200 μg/ml. The truncated peptides derived from DAN2 and HOLO1 showed very little antimicrobial activity. Our experiments show that the peptides DAN1, DAN2, HOLO1, and LOUDEF1 showed potent antimicrobial activity in vitro against common human pathogens, did not lyse mammalian red blood cells, and indicates their potential as templates for novel therapeutic agents against microbial infection. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Oral antimicrobials increase antimicrobial resistance in porcine E. coli--a systematic review.

    Science.gov (United States)

    Burow, E; Simoneit, C; Tenhagen, B-A; Käsbohrer, A

    2014-03-01

    Administration of antimicrobials to livestock increases the risk of antimicrobial resistance (AMR) in commensal bacteria. Antimicrobials in pig production are usually administered per pen via feed which implies treatment of sick alongside with healthy animals. The objective of this systematic literature review was to investigate the effect of orally administered antimicrobials on AMR in Escherichia coli of swine. Studies published in peer reviewed journals were retrieved from the international online databases ISI Web of Knowledge, PubMed, Scopus and the national electronic literature data base of Deutsches Institut für Medizinische Dokumentation und Information. The studies were assessed using the eligibility criteria English or German language, access to full paper version, defined treatment and control group (initial value or non-treatment) as well as administration and resistance testing of the same antimicrobial class. In the qualitative synthesis, only studies were included presenting the summary measures odds ratio or prevalence of resistance, the category of the applied antimicrobial and the dosage. An effect of the antimicrobial on AMR in E. coli was evaluated as an "increase", "no effect" or "decrease" if the odds or alternatively the prevalence ratio were >1.0, 1.0 or antimicrobial substance and dosage was missing in 4 and 5 of the 11 finally selected studies. The 36 identified trials were inhomogenous in usage and provision of information on sample size. Oral administration of antimicrobials increases the risk of AMR in E. coli from swine. There is however a lack of studies on the impact of dosage and longitudinal effects of treatment. The published studies have a number of issues concerning their scientific quality. More high quality research is needed to better address and quantifiy the effect of orally administered antimicrobials on AMR in swine. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Study on Europium-Doped Hydroxyapatite Nanoparticles by Fourier Transform Infrared Spectroscopy and Their Antimicrobial Properties

    Directory of Open Access Journals (Sweden)

    Simona-Liliana Iconaru

    2013-01-01

    Full Text Available Fourier transform infrared spectroscopy (FT-IR analysis was conducted on europium-doped hydroxyapatite, Ca10-xEux(PO46(OH2 nanocrystalline powders (Eu:HAp with 0≤xEu≤0.2. Antimicrobial studies were also performed for the first time on Eu:HAp. The antimicrobial properties of Eu:HAp nanoparticles with 0≤xEu≤0.2 on Gram-negative (E. coli ATCC 25922, Pseudomonas aeruginosa 1397 and Gram-positive (Staphylococcus aureus 0364, Enterococcus faecalis ATCC 29212 bacteria systems and a species of fungus (Candida albicans ATCC 10231 were reported. Our study demonstrates that the antimicrobial activity of Eu:HAp nanoparticles is dependent on the europium concentration.

  11. Mastitis therapy and antimicrobial susceptibility: a multispecies review with a focus on antibiotic treatment of mastitis in dairy cattle.

    Science.gov (United States)

    Barlow, John

    2011-12-01

    Mastitis occurs in numerous species. Antimicrobial agents are used for treatment of infectious mastitis in dairy cattle, other livestock, companion animals, and humans. Mastitis is an economically important disease of dairy cattle and most mastitis research has focused on epidemiology and control of bovine mastitis. Antibiotic treatment of clinical and subclinical mastitis in dairy cattle is an established component of mastitis control programs. Research on the treatment of clinical and subclinical mastitis in other dairy species such as sheep and goats has been less frequent, although the general principles of mastitis therapy in small ruminants are similar to those of dairy cattle. Research on treatment of clinical mastitis in humans is limited and as for other species empirical treatment of mastitis appears to be common. While antimicrobial susceptibility testing is recommended to direct treatment decisions in many clinical settings, the use of susceptibility testing for antibiotic selection for mastitis treatments of dairy cattle has been challenged in a number of publications. The principle objective of this review is to summarize the literature evaluating the question, "Does antimicrobial susceptibility predict treatment outcome for intramammary infections caused by common bacterial pathogens?" This review also addresses current issues related to antimicrobial use and treatment decisions for mastitis in dairy cattle. Information on treatment of mastitis in other species, including humans, is included although research appears to be limited. Issues related to study design, gaps in current knowledge and opportunities for future research are identified for bovine mastitis therapy.

  12. Substandard/counterfeit antimicrobial drugs.

    Science.gov (United States)

    Kelesidis, Theodoros; Falagas, Matthew E

    2015-04-01

    Substandard/counterfeit antimicrobial drugs are a growing global problem. The most common substandard/counterfeit antimicrobials include beta-lactams (among antibiotics) and chloroquine and artemisin derivatives (among antimalarials). The most common type of substandard/counterfeit antimicrobial drugs have a reduced amount of the active drug, and the majority of them are manufactured in Southeast Asia and Africa. Counterfeit antimicrobial drugs may cause increased mortality and morbidity and pose a danger to patients. Here we review the literature with regard to the issue of substandard/counterfeit antimicrobials and describe the prevalence of this problem, the different types of substandard/counterfeit antimicrobial drugs, and the consequences for the individuals and global public health. Local, national, and international initiatives are required to combat this very important public health issue. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Antimicrobial peptides design by evolutionary multiobjective optimization.

    Directory of Open Access Journals (Sweden)

    Giuseppe Maccari

    Full Text Available Antimicrobial peptides (AMPs are an abundant and wide class of molecules produced by many tissues and cell types in a variety of mammals, plant and animal species. Linear alpha-helical antimicrobial peptides are among the most widespread membrane-disruptive AMPs in nature, representing a particularly successful structural arrangement in innate defense. Recently, AMPs have received increasing attention as potential therapeutic agents, owing to their broad activity spectrum and their reduced tendency to induce resistance. The introduction of non-natural amino acids will be a key requisite in order to contrast host resistance and increase compound's life. In this work, the possibility to design novel AMP sequences with non-natural amino acids was achieved through a flexible computational approach, based on chemophysical profiles of peptide sequences. Quantitative structure-activity relationship (QSAR descriptors were employed to code each peptide and train two statistical models in order to account for structural and functional properties of alpha-helical amphipathic AMPs. These models were then used as fitness functions for a multi-objective evolutional algorithm, together with a set of constraints for the design of a series of candidate AMPs. Two ab-initio natural peptides were synthesized and experimentally validated for antimicrobial activity, together with a series of control peptides. Furthermore, a well-known Cecropin-Mellitin alpha helical antimicrobial hybrid (CM18 was optimized by shortening its amino acid sequence while maintaining its activity and a peptide with non-natural amino acids was designed and tested, demonstrating the higher activity achievable with artificial residues.

  14. Antimicrobial-resistant Klebsiella species isolated from free-range chicken samples in an informal settlement.

    Science.gov (United States)

    Fielding, Burtram C; Mnabisa, Amanda; Gouws, Pieter A; Morris, Thureyah

    2012-02-29

    Sub-therapeutic doses of antimicrobial agents are administered routinely to poultry to aid growth and to prevent disease, with prolonged exposure often resulting in bacterial resistance. Crossover of antibiotic resistant bacteria from poultry to humans poses a risk to human health. In this study, 17 chicken samples collected from a vendor operating in an informal settlement in the Cape Town Metropolitan area, South Africa were screened for antimicrobial-resistant Gram-negative bacilli using the Kirby Bauer disk diffusion assay. IN TOTAL, SIX ANTIBIOTICS WERE SCREENED: ampicillin, ciprofloxacin, gentamicin, nalidixic acid, tetracycline and trimethoprim. Surprisingly, Klebsiella ozaenae was identified in 96 and K. rhinoscleromatis in 6 (n=102) of the samples tested. Interestingly, ∼40% of the isolated Klebsiella spp. showed multiple resistance to at least three of the six antibiotics tested. Klebsiella ozaenae and K. rhinoscleromatis cause clinical chronic rhinitis and are almost exclusively associated with people living in areas of poor hygiene.

  15. Discovery of antimicrobial compounds targeting bacterial type FAD synthetases.

    Science.gov (United States)

    Sebastián, María; Anoz-Carbonell, Ernesto; Gracia, Begoña; Cossio, Pilar; Aínsa, José Antonio; Lans, Isaías; Medina, Milagros

    2018-12-01

    The increase of bacterial strains resistant to most of the available antibiotics shows a need to explore novel antibacterial targets to discover antimicrobial drugs. Bifunctional bacterial FAD synthetases (FADSs) synthesise the flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). These cofactors act in vital processes as part of flavoproteins, making FADS an essential enzyme. Bacterial FADSs are potential antibacterial targets because of differences to mammalian enzymes, particularly at the FAD producing site. We have optimised an activity-based high throughput screening assay targeting Corynebacterium ammoniagenes FADS (CaFADS) that identifies inhibitors of its different activities. We selected the three best high-performing inhibitors of the FMN:adenylyltransferase activity (FMNAT) and studied their inhibition mechanisms and binding properties. The specificity of the CaFADS hits was evaluated by studying also their effect on the Streptococcus pneumoniae FADS activities, envisaging differences that can be used to discover species-specific antibacterial drugs. The antimicrobial effect of these compounds was also evaluated on C. ammoniagenes, S. pneumoniae, and Mycobacterium tuberculosis cultures, finding hits with favourable antimicrobial properties.

  16. Marine Pseudovibrio sp. as a Novel Source of Antimicrobials

    Directory of Open Access Journals (Sweden)

    Susan P. Crowley

    2014-12-01

    Full Text Available Antibiotic resistance among pathogenic microorganisms is becoming ever more common. Unfortunately, the development of new antibiotics which may combat resistance has decreased. Recently, however the oceans and the marine animals that reside there have received increased attention as a potential source for natural product discovery. Many marine eukaryotes interact and form close associations with microorganisms that inhabit their surfaces, many of which can inhibit the attachment, growth or survival of competitor species. It is the bioactive compounds responsible for the inhibition that is of interest to researchers on the hunt for novel bioactives. The genus Pseudovibrio has been repeatedly identified from the bacterial communities isolated from marine surfaces. In addition, antimicrobial activity assays have demonstrated significant antimicrobial producing capabilities throughout the genus. This review will describe the potency, spectrum and possible novelty of the compounds produced by these bacteria, while highlighting the capacity for this genus to produce natural antimicrobial compounds which could be employed to control undesirable bacteria in the healthcare and food production sectors.

  17. Improving antimicrobial prescribing: implementation of an antimicrobial i.v.-to-oral switch policy.

    Science.gov (United States)

    McCallum, A D; Sutherland, R K; Mackintosh, C L

    2013-01-01

    Antimicrobial stewardship programmes reduce the risk of hospital associated infections (HAI) and antimicrobial resistance, and include early intravenous-to-oral switch (IVOS) as a key stewardship measure. We audited the number of patients on intravenous antimicrobials suitable for oral switch, assessed whether prescribing guidelines were followed and reviewed prescribing documentation in three clinical areas in the Western General Hospital, Edinburgh, in late 2012. Following this, the first cycle results and local guidelines were presented at a local level and at the hospital grand rounds, posters with recommendations were distributed, joint infection consult and antimicrobial rounds commenced and an alert antimicrobial policy was introduced before re-auditing in early 2013. We demonstrate suboptimal prescribing of intravenous antimicrobials, with 43.9% (43/98) of patients eligible for IVOS at the time of auditing. Only 56.1% (55/98) followed empiric prescribing recommendations. Documentation of antimicrobial prescribing was poor with stop dates recorded in 14.3%, indication on prescription charts in 18.4% and in the notes in 90.8%. The commonest reason for deferring IVOS was deteriorating clinical condition or severe sepsis. Further work to encourage prudent antimicrobial prescribing and earlier consideration of IVOS is required.

  18. Chemical Composition and Antimicrobial Activities of Essential Oils of Some Coniferous Plants Cultivated in Egypt.

    Science.gov (United States)

    Ibrahim, Taghreed A; El-Hela, Atef A; El-Hefnawy, Hala M; Al-Taweel, Areej M; Perveen, Shagufta

    2017-01-01

    Family Cupressaceae is the largest coniferous plant family. Essential oils of many species belonging to family Cupressaceae are known to have several biological activities specially antimicrobial activity. The essential oils from aerial parts of Calocedrus decurrens Torr., Cupressus sempervirens stricta L. and Tetraclinis articulata (Vahl) Mast. were prepared by hydrodistillation. The chemical composition of the essential oils has been elucidated by gas chromatography-mass spectroscopy analysis. The prepared essential oils were examined against selected species of Gram-positive, Gram-negative bacteria and Candida species. Broth dilution methods were used to detect minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC). Sixteen compounds were identified in the essential oils of both Calocedrus decurrens and Cupressus sempervirens L. and fifteen compounds were identified in the essential oil of Tetraclinis articulata . δ-3-Carene (43.10%), (+)-Cedrol (74.03%) and Camphor (21.23%) were the major constituents in the essential oils of Calocedrus decurrens , Cupressus sempervirens L. and Tetraclinis articulata , respectively. The essential oils showed strong antimicrobial activities against the selected microorganisms in concentration range 0.02 3- 3.03 µL/mL. This study could contribute to the chemotaxonomic characterization of family Cupressaceae. In addition, it proved that the essential oils under investigation possess potential antimicrobial properties.

  19. THE ANTIMICROBIAL ACTIVITY OF SOME EXTRACTS OF FERN GAMETOPHYTES

    Directory of Open Access Journals (Sweden)

    Ionica Deliu

    2013-12-01

    Full Text Available The nature freely offers us many resources for health and beauty. The ferns and their therapeutic properties are less exploit in Romania, except Lycopodium clavatum and Equisetum arvense. Some of the fern properties were demonstrated, like antioxidant, antimicrobial, antiviral, antihelmintic properties. Plants are reasonable alternative to synthetic drugs, avoid the side effect and high cost of synthetic drugs production. Also, the drug resistance bacteria can be controlled using plant derived remedies. In this study the antimicrobial effect of methanolic and ethanolic extracts from three fern species were tested. The extracts were gained from gametophytic stage of ferns obtained in vitro. The most obvious effect was observed for Asplenium trichomanes-ramosum extract. The total polyphenols and flavonoids content were established, too.

  20. Therapeutic drug monitoring of antimicrobials

    Science.gov (United States)

    Roberts, Jason A; Norris, Ross; Paterson, David L; Martin, Jennifer H

    2012-01-01

    Optimizing the prescription of antimicrobials is required to improve clinical outcome from infections and to reduce the development of antimicrobial resistance. One such method to improve antimicrobial dosing in individual patients is through application of therapeutic drug monitoring (TDM). The aim of this manuscript is to review the place of TDM in the dosing of antimicrobial agents, specifically the importance of pharmacokinetics (PK) and pharmacodynamics (PD) to define the antimicrobial exposures necessary for maximizing killing or inhibition of bacterial growth. In this context, there are robust data for some antimicrobials, including the ratio of a PK parameter (e.g. peak concentration) to the minimal inhibitory concentration of the bacteria associated with maximal antimicrobial effect. Blood sampling of an individual patient can then further define the relevant PK parameter value in that patient and, if necessary, antimicrobial dosing can be adjusted to enable achievement of the target PK/PD ratio. To date, the clinical outcome benefits of a systematic TDM programme for antimicrobials have only been demonstrated for aminoglycosides, although the decreasing susceptibility of bacteria to available antimicrobials and the increasing costs of pharmaceuticals, as well as emerging data on pharmacokinetic variability, suggest that benefits are likely. PMID:21831196

  1. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, ...

  2. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will result in the development of resistant strains of bacteria, complicating clinician's efforts to select the appropriate antimicrobial ...

  3. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing ... CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over ...

  4. Antimicrobial resistance of bacterial strains isolated from avian cellulitis

    Directory of Open Access Journals (Sweden)

    MM Santos

    2014-03-01

    Full Text Available Avian cellulitis is an inflammatory process in the subcutaneous tissue, mainly located in the abdomen and thighs. This problem is commonly observed in poultry at slaughter and it is considered one of the major causes of condemnation of carcasses in Brazil. The aim of this study was to perform the microbial isolation of lesions of avian cellulitis from a processing plant located in the State of Goiás in order to analyze antimicrobial resistance by antibiogram test and to detect resistance genes by polymerase chain reaction. A total of 25 samples of avian cellulitis lesions were analyzed, from which 30 bacterial strains were isolated. There were eleven (44% strains of Escherichia coli, nine (36% strains of Staphylococcus epidermidis, seven (28% strains of Proteus mirabilis and three (12% strains of Manheimiahaemolytica. The antibiogram test showed that all strains were resistant to at least one antimicrobial. The gene of antimicrobial resistance tetB was detected in E. coli, S. epidermidis and P. mirabilis strains, and was the most frequently observed gene. The gene of antimicrobial resistance Sul1 was detected in all bacterial species, while tetA was found in E. coli and S. epidermidis strains, SHV in E. coli strains, S. epidermidis and P. mirabilis,and cat1 in one P. mirabilis strain. The results suggest a potential public health hazard due to the ability of these microorganisms to transmit antimicrobial resistancegenes to other microorganisms present in the intestinal tract of humans and animals, which may affect clinical-medical usage of these drugs.

  5. EXTRACTION AND ANTIOXIDANT ACTIVITIES OF TWO SPECIES ...

    African Journals Online (AJOL)

    2013-06-30

    Jun 30, 2013 ... Origanum vulgare were investigated and also the total phenolic and ... species majorana, and vulgare respectively; also the DPPH of essential oil of Origanum ... inflammatory, antimicrobial and antioxidant activities[10] .

  6. Potential phytotoxic and shading effects of invasive Fallopia (Polygonaceae taxa on the germination of native dominant species

    Directory of Open Access Journals (Sweden)

    Lenka Moravcová

    2011-08-01

    riparian-like habitats where it often encounters U. dioica populations, while F. ×bohemica tends to occur more often in ruderal sites with a high representation of C. epigejos; this might imply that each of the knotweed species exhibits a stronger effect on native species that are dominant in habitats they typically invade. The weakest phytotoxic effect of F. japonica corresponds to the results of previous studies that found this species to be generally a weaker competitor than its two congeners. Although the results of our experiments cannot be taken as a direct evidence for allelopathic effects acting in the field, the demonstrated potential phytotoxic effect of invasive Fallopia species on the germination of native species suggests that allelopathy may play a role in the strong impact of knotweed invasion on species diversity of invaded communities observed in the field.

  7. Antimicrobial Activity and Morphological Changes of Streptomyces Ascendable and Streptomyces Eighty-three's as Affected by Environmental Conditions and Gamma Radiation

    International Nuclear Information System (INIS)

    Moussa, L.A.A.; Abou El-Nour, S.A.M.; Mansour, F.A.; Serag, M.S.

    2004-01-01

    Fourteen actinomycetes out of thirty isolates were recovered from different Egyptian soils and exhibited antimicrobial activities. Streptomyces ascendable and Streptomyces eighty-three's used in the present work showed the most active antimicrobial potentialities against bacteria, moulds and yeasts. The optimum temperature and acidity for their growth and production of microbial activity were 50 degree and ph 7.0, while the maximum biomass yield and the highest antimicrobial activity were attained 10 days of incubation. Among carbon sources starch at 30 gm/L highly supported the growth and antimicrobial activity by the two species, while sodium nitrate (3 gm/L) and dipotassium hydrogen phosphate (0.75 gm/L) were the most favorable for both isolates. The presence of microelements such as manganese chloride, zinc sulphate, ferrous sulphate and copper sulphate in the growth medium at a concentration of 1 mg/L for each had a good stimulatory effect on the growth and antimicrobial activity for both Streptomyces species. As different irradiation doses were used (up to 5.0 kGy), the high levels clearly affected the morphological characteristics of both tested isolates either in the first or second generation

  8. Diverse deep-sea fungi from the South China Sea and their antimicrobial activity.

    Science.gov (United States)

    Zhang, Xiao-Yong; Zhang, Yun; Xu, Xin-Ya; Qi, Shu-Hua

    2013-11-01

    We investigated the diversity of fungal communities in nine different deep-sea sediment samples of the South China Sea by culture-dependent methods followed by analysis of fungal internal transcribed spacer (ITS) sequences. Although 14 out of 27 identified species were reported in a previous study, 13 species were isolated from sediments of deep-sea environments for the first report. Moreover, these ITS sequences of six isolates shared 84-92 % similarity with their closest matches in GenBank, which suggested that they might be novel phylotypes of genera Ajellomyces, Podosordaria, Torula, and Xylaria. The antimicrobial activities of these fungal isolates were explored using a double-layer technique. A relatively high proportion (56 %) of fungal isolates exhibited antimicrobial activity against at least one pathogenic bacterium or fungus among four marine pathogenic microbes (Micrococcus luteus, Pseudoaltermonas piscida, Aspergerillus versicolor, and A. sydowii). Out of these antimicrobial fungi, the genera Arthrinium, Aspergillus, and Penicillium exhibited antibacterial and antifungal activities, while genus Aureobasidium displayed only antibacterial activity, and genera Acremonium, Cladosporium, Geomyces, and Phaeosphaeriopsis displayed only antifungal activity. To our knowledge, this is the first report to investigate the diversity and antimicrobial activity of culturable deep-sea-derived fungi in the South China Sea. These results suggest that diverse deep-sea fungi from the South China Sea are a potential source for antibiotics' discovery and further increase the pool of fungi available for natural bioactive product screening.

  9. Evaluation of Antimicrobial Efficiency of New Polymers Comprised by Covalently Attached and/or Electrostatically Bound Bacteriostatic Species, Based on Quaternary Ammonium Compounds.

    Science.gov (United States)

    Kougia, Efstathia; Tselepi, Maria; Vasilopoulos, Gavriil; Lainioti, Georgia Ch; Koromilas, Nikos D; Druvari, Denisa; Bokias, Georgios; Vantarakis, Apostolos; Kallitsis, Joannis K

    2015-12-01

    In the present work a detailed study of new bacteriostatic copolymers with quaternized ammonium groups introduced in the polymer chain through covalent attachment or electrostatic interaction, was performed. Different copolymers have been considered since beside the active species, the hydrophobic/hydrophilic nature of the co-monomer was also evaluated in the case of covalently attached bacteriostatic groups, aiming at achieving permanent antibacterial activity. Homopolymers with quaternized ammonium/phosphonium groups were also tested for comparison reasons. The antimicrobial activity of the synthesized polymers after 3 and 24 h of exposure at 4 and 22 °C was investigated on cultures of Gram-negative (P. aeruginosa, E. coli) and Gram-positive (S. aureus, E. faecalis) bacteria. It was found that the combination of the hydrophilic monomer acrylic acid (AA), at low contents, with the covalently attached bacteriostatic group vinyl benzyl dimethylhexadecylammonium chloride (VBCHAM) in the copolymer P(AA-co-VBCHAM88), resulted in a high bacteriostatic activity against P. aeruginosa and E. faecalis (6 log reduction in certain cases). Moreover, the combination of covalently attached VBCHAM units with electrostatically bound cetyltrimethylammonium 4-styrene sulfonate (SSAmC16) units in the P(SSAmC16-co-VBCHAMx) copolymers led to efficient antimicrobial materials, especially against Gram-positive bacteria, where a log reduction between 4.9 and 6.2 was verified. These materials remain remarkably efficient even when they are incorporated in polysulfone membranes.

  10. Microbial shifts in the swine nasal microbiota in response to parenteral antimicrobial administration.

    Science.gov (United States)

    Zeineldin, Mohamed; Aldridge, Brian; Blair, Benjamin; Kancer, Katherine; Lowe, James

    2018-05-24

    The continuous administration of antimicrobials in swine production has been widely criticized with the increase of antimicrobial-resistant bacteria and dysbiosis of the beneficial microbial communities. While an increasing number of studies investigate the effects of antimicrobial administration on swine gastrointestinal microbiota biodiversity, the impact of their use on the composition and diversity of nasal microbial communities has not been widely explored. The objective of this study was to characterize the short-term impact of different parenteral antibiotics administration on the composition and diversity of nasal microbial communities in growing pigs. Five antimicrobial treatment groups, each consisting of four, eight-week old piglets, were administered one of the antimicrobials; Ceftiofur Crystalline free acid (CCFA), Ceftiofur hydrochloride (CHC), Tulathromycin (TUL), Oxytetracycline (OTC), and Procaine Penicillin G (PPG) at label dose and route. Individual deep nasal swabs were collected immediately before antimicrobial administration (control = day 0), and again on days 1, 3, 7, and 14 after dosing. The nasal microbiota across all the samples were dominated by Firmicutes, proteobacteria and Bacteroidetes. While, the predominant bacterial genera were Moraxella, Clostridium and Streptococcus. Linear discriminant analysis, showed a pronounced, antimicrobial-dependent microbial shift in the composition of nasal microbiota and over time from day 0. By day 14, the nasal microbial compositions of the groups receiving CCFA and OTC had returned to a distribution that closely resembled that observed on day 0. In contrast, pigs that received CHC, TUL and PPG appeared to deviate away from the day 0 composition by day 14. Based on our results, it appears that the impact of parenteral antibiotics on the swine nasal microbiota is variable and has a considerable impact in modulating the nasal microbiota structure. Our results will aid in developing alternative

  11. Trace Elements in Dominant Species of the Fenghe River, China: Their Relations to Environmental Factors.

    Science.gov (United States)

    Yang, Yang; Zhou, Zhengchao; Bai, Yanying; Jiao, Wentao; Chen, Weiping

    2016-07-01

    The distribution of trace elements (TEs) in water, sediment, riparian soil and dominant plants was investigated in the Fenghe River, Northwestern China. The Fenghe River ecosystem was polluted with Cd, Cr, Hg and Pb. There was a high pollution risk in the midstream and downstream regions and the risk level for Cd was much higher than that of the other elements. The average values of bioconcentration coefficient for Cd and Zn were 2.21 and 1.75, respectively, indicating a large accumulation of Cd and Zn in the studied species. With broad ecological amplitudes, L. Levl. et Vant. Trin., and L. had the greatest TE concentrations in aboveground and belowground biomass of the studied species and were potential biomonitors or phytoremediators for the study area. Multivariate techniques including cluster analysis, correlation analysis, principal component analysis, and canonical correspondence analysis were used to analyze the relations between TE concentrations in plants and various environmental factors. The soil element concentration is the main factor determining the accumulation of TEs in plants. The co-release behavior of common pollutants and TEs drove the accumulation of Hg, Cd, and As in the studied plants. Significant enrichment of some elements in the Fenghe River has led to a decline in the biodiversity of plants. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Comparison of phenolic compounds and the effects of invasive and native species in East Asia: Support for the novel weapons hypothesis

    Science.gov (United States)

    Kim, Y.-O.; Lee, E.J.

    2011-01-01

    One prediction of the novel weapons hypothesis (NWH) for the dominance of exotic invasive plant species is that the allelopathic effects of successful invaders will, in general, be more biochemically inhibitory to native species and microbes in invaded regions than the native plants themselves. However, no study has compared biochemical concentrations, compositions, or effects of large numbers of native species to those of large numbers of invasive species. In this context we tested the allelopathic and antimicrobial potentials of nine native plant species and nine invasive species in East Asia by comparing their broad phenolic contents and the effects of extracts made from each of the species on target plants and soil fungi. Three of the invasive species, including Eupatorium rugosum, had higher concentrations of total phenolic compounds than any of the native species, and the mean concentration of total phenolics for invasive species was 2.6 times greater than the mean for native species. Only scopoletin was novel to the invasive species, being found in all of nine invasive species, but not in the native species. More importantly, the effects of the total suites of phenolic compounds produced by invasive species differed from the effects of phenolics produced by natives. Extracts of invasive species reduced radicle growth of the three test plant species by 60-80%, but extracts of native species reduced radicle growth by only 30-50%. Extracts of invasive species reduced shoot growth of the three test species by 20-40%, but the overall effect of native species' extract was to stimulate shoot growth. The antimicrobial activity of invasive species was also significantly higher than that of native species. It should be noted that phenolics are just one component of a plant's potential allelopathic arsenal and non-phenolic compounds are likely to play a role in the total extract effect. For example, extracts of P. americana contained the lowest levels of phenolic

  13. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin it More sharing options ... CVM) produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, ...

  14. Antioxidant Activity of Dominant Plants Species in Obat Pahit from Lingga Malay Ethnic in Riau Archipelago

    Directory of Open Access Journals (Sweden)

    Fitmawati Fitmawati

    2017-07-01

    Full Text Available Obat Pahit is a potion that has been long commonly consumed by Lingga Malay society for generations as stamina keeper. The most dominant plants found in the packaging of the Obat Pahit were namely Bauhunia semibifida, Cnestis palala and Penawa Root (3 species. This research aimed to investigate and determine activity of antioxidant contents in Obat Pahit from five Traditional Medicine Practitioners (TMPs in the district of Lingga. The tested samples were mashed then being soaked into 2 types of solvent: distilled water and methanol, containing HCl 1%. DPPH method was also used in this research. Quantitatively antioxidant activity test of Obat Pahit from the five TMPs by using methanol solvent had extremely highest activity compared to the distilled water solvent. The test, using TLC plate by spraying the extract from three dominant plants with 0.1 mM of DPPH solution, produced a pale-yellow spots at a wavelength of 366 nm. On the other hand, the test using HPLC at wavelengths of 230 nm and 280 nm showed the presence of two dominant secondary metabolites contents: flavonoid and phenolic. IC50 (ppm of Bauhinia semibifida (6.6247, Penawa Root (5.0124 and Cnestis palala (5.9968 were much lower than IC50 of mangosteen’s rind (41.7675, vitamin C (6.6612 and Stimuno drug (8.333. This antioxidant analysis has not been reported previously. This proof contributed greatly to uncovering potentially native natural resources as an indigenous Indonesian drug which is expected to decrease dependence on imported drugs especially imunomodulator, antihypertensive, antidiabet etc. This research would be beneficial and excellent manifestation for the development of natural antioxidant-based medicines from traditional knowledge of Indonesia’s local ethnicities.

  15. Oregano Essential Oil as an Antimicrobial and Antioxidant Additive in Food Products.

    Science.gov (United States)

    Rodriguez-Garcia, I; Silva-Espinoza, B A; Ortega-Ramirez, L A; Leyva, J M; Siddiqui, M W; Cruz-Valenzuela, M R; Gonzalez-Aguilar, G A; Ayala-Zavala, J F

    2016-07-26

    Food consumers and industries urged the need of natural alternatives to assure food safety and quality. As a response, the use of natural compounds from herbs and spices is an alternative to synthetic additives associated with toxic problems. This review discusses the antimicrobial and antioxidant activity of oregano essential oil (OEO) and its potential as a food additive. Oregano is a plant that has been used as a food seasoning since ancient times. The common name of oregano is given to several species: Origanum (family: Lamiaceae) and Lippia (family: Verbenaceae), amongst others. The main compounds identified in the different OEOs are carvacrol and thymol, which are responsible for the characteristic odor, antimicrobial, and antioxidant activity; however, their content may vary according to the species, harvesting season, and geographical sources. These substances as antibacterial agents make the cell membrane permeable due to its impregnation in the hydrophobic domains, this effect is higher against gram positive bacteria. In addition, the OEO has antioxidant properties effective in retarding the process of lipid peroxidation in fatty foods, and scavenging free radicals. In this perspective, the present review analyzes and discusses the state of the art about the actual and potential uses of OEO as an antimicrobial and antioxidant food additives.

  16. Occurrence and antimicrobial susceptibility of enteric rods and pseudomonads isolated from the dental prostheses biofilm

    Directory of Open Access Journals (Sweden)

    Sanrrangers Sales Silva

    Full Text Available ABSTRACT Aspiration of oral bacteria leads to cardiac and respiratory infectious diseases and dentures can act as a reservoir for pathogenic microorganisms. Objective: To determine the occurrence and the in vitro antimicrobial susceptibility of enteric rods and pseudomonads from the denture biofilm of 52 subjects at the Center for Dental Specialties of Sobral/ Ceara, Brazil. Material and Methods: Denture biofilm was collected and samples plated on MacConkey agar. The isolated bacterial colonies were identified using the BBL Crystal enteric/non-fermenter system. Antibiotic bacterial susceptibility was assessed by the disc diffusion method of amoxicillin, amoxicillin/clavulanic acid, doxycycline, tetracycline, tobramycin, imipenem, cefotaxime, and ciprofloxacin. The Minimum Inhibitory Concentration (MIC of cefotaxime, tobramycin, doxycycline, imipenem, and ciprofloxacin was determined for 40 species by E-test. Results: 34 subjects (65.4% harbored enteric rods in their prostheses. Klebsiella pneumoniae (26.5%, Escherichia coli (23.5%, and Enterobacter aerogenes (23.5% were the most prevalent species. All organisms were susceptible to ciprofloxacin and most species were resistant to amoxicillin or amoxicillin/clavulanic acid, demonstrating variable sensitivity patterns to other antimicrobials. However, the MIC showed the emergence of strains with reduced sensitivity to ciprofloxacin (MIC90≥3 μg/ mL and cefotaxime (MIC90≥2 μg/mL. Conclusion: The findings show high prevalence of nosocomial diseases-related bacterial species and low susceptibility to antimicrobial drugs. Therefore, these results imply caution against the indiscriminate use of broad spectrum antibiotics in dental practice.

  17. Can native plant species be preserved in an anthropogenic forest landscape dominated by aliens? A case study from Mediterranean Chile

    Directory of Open Access Journals (Sweden)

    Steffi Heinrichs

    2016-06-01

    Full Text Available Plantations with fast growing exotic tree species can negatively affect native plant species diversity and promote the spread of alien species. Mediterranean Chile experienced major landscape changes with a vast expansion of industrial plantations of Pinus radiata in the past. However, with increasing knowledge of biodiversity effects on ecosystem services Chilean forest owners now aim to integrate the conservation of native biodiversity into forest management, but data on native species diversity and establishment within a plantation landscape is scarce. Here we investigated plant species diversity and composition in four forest management options applied within a landscape dominated by P. radiata plantations in comparison to an unmanaged reference: (i a clear cut, (ii a strip cut, (iii a native canopy of Nothofagus glauca and (iv a young P. radiata plantation. We wanted to assess if native plant species can be maintained either by natural regeneration or by planting of native tree species (Nothofagus glauca, N. obliqua, Quillaja saponaria within this landscape. Results show a high diversity of native and forest plant species within the different management options indicating a high potential for native biodiversity restoration within an anthropogenic landscape. In particular, herbaceous species can benefit from management. They are rare in unmanaged natural forests that are characterized by low light conditions and a thick litter layer. Management, however, also promoted a diversity of alien species. The rapid spread of alien grass species after management can deter an initial establishment of native tree species or the survival and growth after planting mainly under dry but less under sufficient moisture conditions. The most unsuccessful option for promoting native plant species was clear cutting in a dry area where alien grasses were abundant. For drought-tolerant tree species such as Quillaja saponaria, though

  18. Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002–2004

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Mevius, Dik J; Schroeter, Andreas

    2008-01-01

    Background: The project "Antibiotic resistance in bacteria of animal origin - II" (ARBAO-II) was funded by the European Union (FAIR5-QLK2-2002-01146) for the period 2003 - 2005, with the aim to establish a continuous monitoring of antimicrobial susceptibility among veterinary laboratories...... (2002-2004). Each year the participating laboratories were requested to fill in excelfile templates with national summary data on the occurrence of antimicrobial resistance from different bacterial species. A proficiency test (EQAS - external quality assurance system) for antimicrobial susceptibility...... from 13 European countries. For Staphylococcus aureus from bovine mastitis major differences were apparent in the occurrence of resistance between countries and between the different antimicrobial agents tested. The highest frequency of resistance was observed for penicillin. For Mannheimia haemolytica...

  19. Association between selected antimicrobial resistance genes and antimicrobial exposure in Danish pig farms

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla; Hisham Beshara Halasa, Tariq; Græsbøll, Kaare

    2017-01-01

    Bacterial antimicrobial resistance (AMR) in pigs is an important public health concern due to its possible transfer to humans. We aimed at quantifying the relationship between the lifetime exposure of antimicrobials and seven antimicrobial resistance genes in Danish slaughter pig farms. AMR gene...... levels were quantified by qPCR of total-community DNA in faecal samples obtained from 681 batches of slaughter pigs. The lifetime exposure to antimicrobials was estimated at batch level for the piglet, weaner, and finisher periods individually for the sampled batches. We showed that the effect...... of antimicrobial exposure on the levels of AMR genes was complex and unique for each individual gene. Several antimicrobial classes had both negative and positive correlations with the AMR genes. From 10-42% of the variation in AMR gene levels could be explained in the final regression models, indicating...

  20. Checklist comparison and dominance patterns of the fish fauna at Taim Wetland, South Brazil

    Directory of Open Access Journals (Sweden)

    Alexandre M. Garcia

    Full Text Available Taim Hydrological System is a unique subtropical wetland in southern Brazil harboring an exceptional biological diversity. In 1978, an ecological reserve was established to protect part of this area from increasing anthropogenic impacts in its surroundings. Fishes have been poorly investigated in this system. Based on a multi-gear sampling study encompassing several years (2001-2005, and on comparisons with previous fish inventories, we provide an up-to-date species list of fishes occurring in the Taim Wetland. In addition, we made the first preliminary description of fish dominance patterns found in the main lakes of the system (Flores, Nicola, Jacaré and Mangueira. Checklist comparison resulted in 62 fish species distributed in 24 families, with Characidae (19 species and Cichlidae (7 showing the highest species richness. Six species are cited for the first time in the reserve: Trachelyopterus lucenai (Auchenipteridae, Hoplosternum littorale (Callichthyidae, Rineloricaria cadeae (Loricariidae, Eigenmannia trilineata (Sternopygidae, Odontesthes mirinensis and O. perugiae (Atherinopsidae. Apparently, the black catfish T. lucenai invaded the system in the last decade and became one of the dominant species in the pelagic waters. Although differences in gears hindered direct comparisons, differences in species composition and dominance patterns between shallow margins and pelagic waters of lakes seem to occur in the lakes. A more diverse assemblage dominated by small fishes ( 15 cm seemed to dominate in pelagic waters.

  1. mangrove litter production and seasonality of dominant species

    African Journals Online (AJOL)

    L.A

    storminess, and sea-level rise (Snedaker, 1995; Nigel, 1998). In the last .... mangrove species (three-levels) were entered as fixed factors, with the total litter components ..... Mangroves and climate change in the Florida and Caribbean region:.

  2. Antimicrobial activity of Bursera morelensis ramírez essential oil ...

    African Journals Online (AJOL)

    Background: Bursera morelensis, known as “Aceitillo”, is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil ...

  3. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms.

    Science.gov (United States)

    Zhang, Chiqian; Hu, Zhiqiang; Deng, Baolin

    2016-01-01

    Nanosilver (silver nanoparticles or AgNPs) has unique physiochemical properties and strong antimicrobial activities. This paper provides a comprehensive review of the physicochemical behavior (e.g., dissolution and aggregation) and antimicrobial mechanisms of nanosilver in aquatic environments. The inconsistency in calculating the Gibbs free energy of formation of nanosilver [ΔGf(AgNPs)] in aquatic environments highlights the research needed to carefully determine the thermodynamic stability of nanosilver. The dissolutive release of silver ion (Ag(+)) in the literature is often described using a pseudo-first-order kinetics, but the fit is generally poor. This paper proposes a two-stage model that could better predict silver ion release kinetics. The theoretical analysis suggests that nanosilver dissolution could occur under anoxic conditions and that nanosilver may be sulfidized to form silver sulfide (Ag2S) under strict anaerobic conditions, but more investigation with carefully-designed experiments is required to confirm the analysis. Although silver ion release is likely the main antimicrobial mechanism of nanosilver, the contributions of (ion-free) AgNPs and reactive oxygen species (ROS) generation to the overall toxicity of nanosilver must not be neglected. Several research directions are proposed to better understand the dissolution kinetics of nanosilver and its antimicrobial mechanisms under various aquatic environmental conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Antimicrobial effects of Thai medicinal plants against acne-inducing bacteria.

    Science.gov (United States)

    Chomnawang, Mullika Traidej; Surassmo, Suvimol; Nukoolkarn, Veena S; Gritsanapan, Wandee

    2005-10-03

    Propionibacterium acnes and Staphylococcus epidermidis have been recognized as pus-forming bacteria triggering an inflammation in acne. The present study was conducted to evaluate antimicrobial activities of Thai medicinal plants against these etiologic agents of acne vulgaris. Crude extracts were tested for antimicrobial activities by disc diffusion and broth dilution methods. The results from the disc diffusion method showed that 13 medicinal plants could inhibit the growth of Propionibacterium acnes. Among those, Senna alata, Eupatorium odoratum, Garcinia mangostana, and Barleria lupulina had strong inhibitory effects. Based on a broth dilution method, the Garcinia mangostana extract had the greatest antimicrobial effect. The MIC values were the same (0.039 mg/ml) for both bacterial species and the MBC values were 0.039 and 0.156 mg/ml against Propionibacterium acnes and Staphylococcus epidermidis, respectively. In bioautography assay, the Garcinia mangostana extract produced strong inhibition zones against Propionibacterium acnes. Antimicrobial activity from fractions of column chromatography revealed one of the active compounds in Garcinia mangostana could be mangostin, a xanthone derivative. Taken together, our data indicated that Garcinia mangostana had a strong inhibitory effect on Propionibacterium acnes and Staphylococcus epidermidis. Therefore, this plant would be an interesting topic for further study and possibly for an alternative treatment for acne.

  5. Antimicrobial resistance in Danish pigs: A cross sectional study of the association between antimicrobial resistance and geography, exposure to antimicrobials, and trade

    DEFF Research Database (Denmark)

    Birkegård, Anna Camilla

    Antimicrobial resistance is a worldwide problem of paramount importance for both humans and animals. To combat the emergence of antimicrobial resistance, the problem must be targeted in all major reservoirs as it is assumed that a high level of AMR genes in environmental reservoirs can increase...... the risk of human pathogens becoming resistant. Pigs might constitute an important reservoir. Therefore, it is important to manage antimicrobial resistance in pigs. Before effectiveactions can be initiated, it is crucial to know which factors are associated with the levels of antimicrobial resistance...... the collection of information on relevant factors. The aim of this PhD project was to study the relationship between the levels of antimicrobial resistance genes and three factors in Danish pig farms: the geographical location of the farm, the exposure to antimicrobials, and the trade patterns. Data collection...

  6. Cross-sectional prospective survey to study indication-based usage of antimicrobials in animals: Results of use in cattle

    Directory of Open Access Journals (Sweden)

    Pyörälä Satu

    2008-04-01

    Full Text Available Abstract Background Indication-based data on the use of antimicrobials in animals were collected using a prospective cross-sectional survey, similarly as for surveys carried out in human medicine, but adapting the questionnaire to include veterinary-specific issues. The participating veterinarians were randomly selected from a sample population of practising veterinarians. The sampling was stratified to take into account the proportions of different types of veterinary practice in the country. All patients consulting the veterinary practice during a 1-week period were included in the study and veterinarians returned a completed questionnaire for each patient receiving antimicrobial treatment. As cattle received most of the treatments, results from the survey are given using cattle as an example species. Results The survey was sent to 681 veterinarians, of whom 262 (39% responded. In total 2850 questionnaires were completed. The largest quantities of antimicrobials, measured in kilograms, were used for cattle, followed by pigs, dogs and horses. The species that were treated most were cattle (n = 1308, dogs (n = 989 and cats (n = 311. For cattle, the most common reason for treatment was acute mastitis (52%, followed by dry-cow therapy (21%, subclinical mastitis (6% and treatment for acute enteritis (4%. The remaining treatments covered 17% of cattle patients and 15 different indications. For acute mastitis, parenteral or intramammary treatment was used in 36% and 34% of the cases, respectively. The remaining 30% received both treatments simultaneously. Of the parenteral treatments (n = 459, benzyl penicillin was used in 83% of the treated animals (n = 379, while fluoroquinolones were used in 49 cases (11%. Of the 433 cows receiving intramammary treatment, ampicillin combined with cloxacillin was most commonly used (n = 157; 36%, followed by cephalexin+streptomycin (n = 113; 26%. Conclusion This cross-sectional prospective survey provided a useful

  7. Cross-sectional prospective survey to study indication-based usage of antimicrobials in animals: results of use in cattle.

    Science.gov (United States)

    Thomson, Katariina; Rantala, Merja; Hautala, Maria; Pyörälä, Satu; Kaartinen, Liisa

    2008-04-14

    Indication-based data on the use of antimicrobials in animals were collected using a prospective cross-sectional survey, similarly as for surveys carried out in human medicine, but adapting the questionnaire to include veterinary-specific issues. The participating veterinarians were randomly selected from a sample population of practising veterinarians. The sampling was stratified to take into account the proportions of different types of veterinary practice in the country. All patients consulting the veterinary practice during a 1-week period were included in the study and veterinarians returned a completed questionnaire for each patient receiving antimicrobial treatment. As cattle received most of the treatments, results from the survey are given using cattle as an example species. The survey was sent to 681 veterinarians, of whom 262 (39%) responded. In total 2850 questionnaires were completed. The largest quantities of antimicrobials, measured in kilograms, were used for cattle, followed by pigs, dogs and horses. The species that were treated most were cattle (n = 1308), dogs (n = 989) and cats (n = 311). For cattle, the most common reason for treatment was acute mastitis (52%), followed by dry-cow therapy (21%), subclinical mastitis (6%) and treatment for acute enteritis (4%). The remaining treatments covered 17% of cattle patients and 15 different indications. For acute mastitis, parenteral or intramammary treatment was used in 36% and 34% of the cases, respectively. The remaining 30% received both treatments simultaneously. Of the parenteral treatments (n = 459), benzyl penicillin was used in 83% of the treated animals (n = 379), while fluoroquinolones were used in 49 cases (11%). Of the 433 cows receiving intramammary treatment, ampicillin combined with cloxacillin was most commonly used (n = 157; 36%), followed by cephalexin+streptomycin (n = 113; 26%). This cross-sectional prospective survey provided a useful method for the collection of information on

  8. General principles of antimicrobial therapy.

    Science.gov (United States)

    Leekha, Surbhi; Terrell, Christine L; Edson, Randall S

    2011-02-01

    Antimicrobial agents are some of the most widely, and often injudiciously, used therapeutic drugs worldwide. Important considerations when prescribing antimicrobial therapy include obtaining an accurate diagnosis of infection; understanding the difference between empiric and definitive therapy; identifying opportunities to switch to narrow-spectrum, cost-effective oral agents for the shortest duration necessary; understanding drug characteristics that are peculiar to antimicrobial agents (such as pharmacodynamics and efficacy at the site of infection); accounting for host characteristics that influence antimicrobial activity; and in turn, recognizing the adverse effects of antimicrobial agents on the host. It is also important to understand the importance of antimicrobial stewardship, to know when to consult infectious disease specialists for guidance, and to be able to identify situations when antimicrobial therapy is not needed. By following these general principles, all practicing physicians should be able to use antimicrobial agents in a responsible manner that benefits both the individual patient and the community.

  9. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens

    Directory of Open Access Journals (Sweden)

    M.A. Botelho

    2007-03-01

    Full Text Available Dental caries and periodontal disease are associated with oral pathogens. Several plant derivatives have been evaluated with respect to their antimicrobial effects against such pathogenic microorganisms. Lippia sidoides Cham (Verbenaceae, popularly known as "Alecrim-pimenta" is a typical shrub commonly found in the Northeast of Brazil. Many plant species belonging to the genus Lippia yield very fragrant essential oils of potential economic value which are used by the industry for the commercial production of perfumes, creams, lotions, and deodorants. Since the leaves of L. sidoides are also extensively used in popular medicine for the treatment of skin wounds and cuts, the objective of the present study was to evaluate the composition and antimicrobial activity of L. sidoides essential oil. The essential oil was obtained by hydro-distillation and analyzed by GC-MS. Twelve compounds were characterized, having as major constituents thymol (56.7% and carvacrol (16.7%. The antimicrobial activity of the oil and the major components was tested against cariogenic bacterial species of the genus Streptococcus as well as Candida albicans using the broth dilution and disk diffusion assays. The essential oil and its major components thymol and carvacrol exhibited potent antimicrobial activity against the organisms tested with minimum inhibitory concentrations ranging from 0.625 to 10.0 mg/mL. The most sensitive microorganisms were C. albicans and Streptococcus mutans. The essential oil of L. sidoides and its major components exert promising antimicrobial effects against oral pathogens and suggest its likely usefulness to combat oral microbial growth.

  10. Antimicrobial activity of the essential oil from Lippia sidoides, carvacrol and thymol against oral pathogens.

    Science.gov (United States)

    Botelho, M A; Nogueira, N A P; Bastos, G M; Fonseca, S G C; Lemos, T L G; Matos, F J A; Montenegro, D; Heukelbach, J; Rao, V S; Brito, G A C

    2007-03-01

    Dental caries and periodontal disease are associated with oral pathogens. Several plant derivatives have been evaluated with respect to their antimicrobial effects against such pathogenic microorganisms. Lippia sidoides Cham (Verbenaceae), popularly known as "Alecrim-pimenta" is a typical shrub commonly found in the Northeast of Brazil. Many plant species belonging to the genus Lippia yield very fragrant essential oils of potential economic value which are used by the industry for the commercial production of perfumes, creams, lotions, and deodorants. Since the leaves of L. sidoides are also extensively used in popular medicine for the treatment of skin wounds and cuts, the objective of the present study was to evaluate the composition and antimicrobial activity of L. sidoides essential oil. The essential oil was obtained by hydro-distillation and analyzed by GC-MS. Twelve compounds were characterized, having as major constituents thymol (56.7%) and carvacrol (16.7%). The antimicrobial activity of the oil and the major components was tested against cariogenic bacterial species of the genus Streptococcus as well as Candida albicans using the broth dilution and disk diffusion assays. The essential oil and its major components thymol and carvacrol exhibited potent antimicrobial activity against the organisms tested with minimum inhibitory concentrations ranging from 0.625 to 10.0 mg/mL. The most sensitive microorganisms were C. albicans and Streptococcus mutans. The essential oil of L. sidoides and its major components exert promising antimicrobial effects against oral pathogens and suggest its likely usefulness to combat oral microbial growth.

  11. Diversity and antimicrobial susceptibility of oxytetracycline-resistant isolates of Stenotrophomonas sp. and Serratia sp. associated with Costa Rican crops.

    Science.gov (United States)

    Rodríguez, C; Wachlin, A; Altendorf, K; García, F; Lipski, A

    2007-12-01

    To ameliorate the identification, evaluate the diversity, and determine the antimicrobial sensitivity of 19 oxytetracycline-resistant isolates of Stenotrophomonas sp. and Serratia sp. associated with Costa Rican crops. Phenotypical, chemotaxonomical, and molecular data allocated most isolates to the species Sten. maltophilia and Ser. marcescens. The API profiles, antimicrobial resistance patterns (ATB system), and BOX-polymerase chain reaction (PCR) genomic fingerprints of isolates of Stenotrophomonas sp. exhibited a higher degree of heterogeneity than those obtained for the isolates of Serratia sp. The former group of bacteria exhibited multiresistance to antimicrobials. In contrast, isolates of Serratia sp. were sensitive to the majority of the drugs tested. Changes in the results of the antibiograms throughout incubation, which indicate an induction of tolerance, were observed for isolates of both the species. Minimum inhibitory concentration of oxytetracycline, determined using E-test stripes, were rather elevated. The occurrence of two species of opportunistic pathogens in crop-associated materials poses a risk to consumers in the community. The phenotypic and genotypic data presented could support epidemiologist and physicians dealing with infections caused by environmental strains of these taxa.

  12. Antimicrobial Peptides in 2014

    Directory of Open Access Journals (Sweden)

    Guangshun Wang

    2015-03-01

    Full Text Available This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.

  13. Chemical Composition of Mentha spicata L. subsp. tomentosa and M. pulegium L., and their Antimicrobial Activity on Strong Pathogen Microorganisms

    Directory of Open Access Journals (Sweden)

    Emre SEVİNDİK

    2017-03-01

    Full Text Available Mentha L., recognized as a medical and aromatic plant, is a general name affiliated to mint species and belongs to Labiatae family. Some species are used as fresh vegetables in the Turkish kitchen and they can also be used in salads. In addition, some species have been used as a spice in food. In this study, chemical composition and antimicrobial activity towards some pathogenics (gram + and gram - microorganisms of the essential oils Mentha spicata L. subsp. tomentosa (Briq. Harley, Mentha pulegium L. grown under West Anatolian ecological conditions were investigated. Extractions were carried out with Clevenger apparatus and essential oil composition was determined by Gas Chromatography-Mass Spectrometry (GC-MS. Microorganisms used for the antimicrobial studies were Methicillin-resistant Staphylococcus aureus (MRSA, Staphylococcus aureus ATCC 6538, Pseudomonas aeruginosa, Enterecoccus faecium DSM 13590, Escherichia coli Q157:H7 and Bacillus cereus CCM99.  As a result, M. pulegium and M. spicata subsp. tomentosa were found to be rich in piperitenone oxide: 72.77% and 28.84%, respectively. Each of the oils was found to possess antimicrobial properties against test microorganisms. Essential oils obtained from Mentha species give positive effect on all microorganisms.

  14. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes

    Directory of Open Access Journals (Sweden)

    Catherine Périé

    2016-07-01

    Full Text Available Projecting suitable conditions for a species as a function of future climate provides a reasonable, although admittedly imperfect, spatially explicit estimate of species vulnerability associated with climate change. Projections emphasizing range shifts at continental scale, however, can mask contrasting patterns at local or regional scale where management and policy decisions are made. Moreover, models usually show potential for areas to become climatically unsuitable, remain suitable, or become suitable for a particular species with climate change, but each of these outcomes raises markedly different ecological and management issues. Managing forest decline at sites where climatic stress is projected to increase is likely to be the most immediate challenge resulting from climate change. Here we assess habitat suitability with climate change for five dominant tree species of eastern North American forests, focusing on areas of greatest vulnerability (loss of suitability in the baseline range in Quebec (Canada rather than opportunities (increase in suitability. Results show that these species are at risk of maladaptation over a remarkably large proportion of their baseline range. Depending on species, 5–21% of currently climatically suitable habitats are projected to be at risk of becoming unsuitable. This suggests that species that have traditionally defined whole regional vegetation assemblages could become less adapted to these regions, with significant impact on ecosystems and forest economy. In spite of their well-recognised limitations and the uncertainty that remains, regionally-explicit risk assessment approaches remain one of the best options to convey that message and the need for climate policies and forest management adaptation strategies.

  15. Dominant forest tree species are potentially vulnerable to climate change over large portions of their range even at high latitudes.

    Science.gov (United States)

    Périé, Catherine; de Blois, Sylvie

    2016-01-01

    Projecting suitable conditions for a species as a function of future climate provides a reasonable, although admittedly imperfect, spatially explicit estimate of species vulnerability associated with climate change. Projections emphasizing range shifts at continental scale, however, can mask contrasting patterns at local or regional scale where management and policy decisions are made. Moreover, models usually show potential for areas to become climatically unsuitable, remain suitable, or become suitable for a particular species with climate change, but each of these outcomes raises markedly different ecological and management issues. Managing forest decline at sites where climatic stress is projected to increase is likely to be the most immediate challenge resulting from climate change. Here we assess habitat suitability with climate change for five dominant tree species of eastern North American forests, focusing on areas of greatest vulnerability (loss of suitability in the baseline range) in Quebec (Canada) rather than opportunities (increase in suitability). Results show that these species are at risk of maladaptation over a remarkably large proportion of their baseline range. Depending on species, 5-21% of currently climatically suitable habitats are projected to be at risk of becoming unsuitable. This suggests that species that have traditionally defined whole regional vegetation assemblages could become less adapted to these regions, with significant impact on ecosystems and forest economy. In spite of their well-recognised limitations and the uncertainty that remains, regionally-explicit risk assessment approaches remain one of the best options to convey that message and the need for climate policies and forest management adaptation strategies.

  16. Canopy Transpiration and Stomatal Responses to Prolonged Drought by a Dominant Desert Species in Central Asia

    Directory of Open Access Journals (Sweden)

    Daxing Gu

    2017-06-01

    Full Text Available In arid and semiarid lands, canopy transpiration and its dynamics depend largely on stomatal sensitivity to drought. In this study, the sap flow of a dominant species, Haloxylon ammodendron growing in Central Asian deserts, was monitored using Granier-type sensors, from which the canopy stomatal conductance was derived. The responses of canopy transpiration and stomatal conductance to environmental variables during the second half of the growing season, when annual prolonged drought occurred, was analyzed for four continuous years, from 2013 to 2016. A soil water content (SWC of 3% was identified as the lower soil water threshold for this species, below which the plant lost the ability for stomatal regulation on water loss and suffered the risk of mortality. Above this threshold, the sensitivity of canopy transpiration to vapor pressure deficit, VPD (K, was linearly correlated with SWC, which mainly resulted from different stomatal behaviors at varying drought intensities. Stomatal sensitivity to VPD (m/Gsref increased linearly with soil moisture deficit, inducing a shift from more anisohydric to a more isohydric stomatal behavior. The flexibility of stomatal behavior regarding soil drought was one key element facilitating the survival of H. ammodendron in such an extreme dry environment.

  17. Phytochemical screening and biological activity of extracts of plant species Halacsya sendtneri (Boiss. Dörfl.

    Directory of Open Access Journals (Sweden)

    Mašković Pavle Z.

    2012-01-01

    Full Text Available This study is aimed at examining total polyphenol, flavonoid, gallotannin and condensed tannins content in acetone, chloroform, ethyl acetate and petroleum ether extracts of Halacsya sendtneri (Boiss. Dörfl., their antimicrobial and antioxidant activities, as well as identifying and quantifying the phenolic components. The antioxidant activity is consistent with the results of total quantity of phenolic compound. The results showed that the acetone extract of plant species Halascya sendtneri (Boiss. Dörfl. possessed the highest antioxidant activity. IC50 values were determined: 9.45��1.55 μg/mL for DPPH free radical scavenging activity, 13.46±1.68 μg/mL for inhibitory activity against lipid peroxidation, 59.11±0.83 μg/mL for hydroxyl radical scavenging activity and 27.91±0.88 μg/mL for ferrous ion chelating ability. The antimicrobial activity was tested using broth dilution procedure for determination of the minimum inhibitory concentration (MIC. The MICs were determined for 8 selected indicator strains. All of the extracts showed strong to moderate strong antimicrobial activity. The phenolic composition of Halacsya sendtneri extracts was determined by the HPLC method. The dominant phenolic compound in acetone, chloroform and ethyl acetate extract is rosmarinic acid. Ethyl acetate extract was also abundant in p-hydroxybenzoic acid and ferulic acid. The main compounds in petrol ether extract were chlorogenic acid and quercetin.

  18. Susceptibilities of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum strains to antimicrobial agents in vitro.

    Science.gov (United States)

    ter Laak, E A; Noordergraaf, J H; Verschure, M H

    1993-02-01

    The purpose of this study was to determine the susceptibility of various strains of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum, which are prevalent causes of pneumonia in calves, to 16 antimicrobial agents in vitro. The MICs of the antimicrobial agents were determined by a serial broth dilution method for 16 field strains and the type strain of M. bovis, for 19 field strains and the type strain of M. dispar, and for 17 field strains of U. diversum. Final MICs for M. bovis and M. dispar were read after 7 days and final MICs for U. diversum after 1 to 2 days. All strains tested were susceptible to tylosin, kitasamycin, and tiamulin but were resistant to nifuroquine and streptomycin. Most strains of U. diversum were intermediately susceptible to oxytetracycline but fully susceptible to chlortetracycline; most strains of M. bovis and M. dispar, however, were resistant to both agents. Strains of M. dispar and U. diversum were susceptible to doxycycline and minocycline, but strains of M. bovis were only intermediately susceptible. Susceptibility or resistance to chloramphenicol, spiramycin, spectinomycin, lincomycin, or enrofloxacin depended on the species but was not equal for the three species. The type strains of M. bovis and M. dispar were more susceptible to various antimicrobial agents, including tetracyclines, than the field strains. This finding might indicate that M. bovis and M. dispar strains are becoming resistant to these agents. Antimicrobial agents that are effective in vitro against all three mycoplasma species can be considered for treating mycoplasma infections in pneumonic calves. Therefore, tylosin, kitasamycin, and tiamulin may be preferred over oxytetracycline and chlortetracycline.

  19. ANTIMICROBIAL ACTIVITY OF BURSERA MORELENSIS RAMÍREZ ESSENTIAL OIL.

    Science.gov (United States)

    M, Canales-Martinez; C R, Rivera-Yañez; J, Salas-Oropeza; H R, Lopez; M, Jimenez-Estrada; R, Rosas-Lopez; D A, Duran; C, Flores; L B, Hernandez; M A, Rodriguez-Monroy

    2017-01-01

    Bursera morelensis , known as "Aceitillo", is an endemic tree of Mexico. Infusions made from the bark of this species have been used for the treatment of skin infections and for their wound healing properties. In this work, we present the results of a phytochemical and antimicrobial investigation of the essential oil of B. morelensis . The essential oil was obtained by a steam distillation method and analyzed using GC-MS. The antibacterial and antifungal activities were evaluated. GC-MS of the essential oil demonstrated the presence of 28 compounds. The principal compound of the essential oil was a-Phellandrene (32.69%). The essential oil had antibacterial activity against Gram positive and negative strains. The most sensitive strains were S. pneumoniae , V. cholerae (cc) and E. coli (MIC 0.125 mg/mL, MBC 0.25 mg/mL). The essential oil was bactericidal for V. cholera (cc). The essential oil inhibited all the filamentous fungi. F. monilifome (IC 50 = 2.27 mg/mL) was the most sensitive fungal strain. This work provides evidence that confirms the antimicrobial activity of the B. morelensis essential oil and this is a scientific support about of traditional uses of this species.

  20. Antimicrobial peptides from the skins of North American frogs.

    Science.gov (United States)

    Conlon, J Michael; Kolodziejek, Jolanta; Nowotny, Norbert

    2009-08-01

    North America is home to anuran species belonging to the families Bufonidae, Eleutherodactylidae, Hylidae, Leiopelmatidae, Ranidae, and Scaphiopodidae but antimicrobial peptides have been identified only in skin secretions and/or skin extracts of frogs belonging to the Leiopelmatidae ("tailed frogs") and Ranidae ("true frogs"). Eight structurally-related cationic alpha-helical peptides with broad-spectrum antibacterial activity, termed ascaphins, have been isolated from specimens of Ascaphus truei (Leiopelmatidae) occupying a coastal range. Characterization of orthologous antimicrobial peptides from Ascaphus specimens occupying an inland range supports the proposal that this population should be regarded as a separate species A. montanus. Ascaphin-8 shows potential for development into a therapeutically valuable anti-infective agent. Peptides belonging to the brevinin-1, esculentin-1, esculentin-2, palustrin-1, palustrin-2, ranacyclin, ranatuerin-1, ranatuerin-2, and temporin families have been isolated from North American ranids. It is proposed that "ranalexins" represent brevinin-1 peptides that have undergone a four amino acid residue internal deletion. Current taxonomic recommendations divide North American frogs from the family Ranidae into two genera: Lithobates and Rana. Cladistic analysis based upon the amino acid sequences of the brevinin-1 peptides provides strong support for this assignment.

  1. A high prevalence of antimicrobial resistant Escherichia coli isolated from pigs and a low prevalence of antimicrobial resistant E. coli from cattle and sheep in Great Britain at slaughter.

    Science.gov (United States)

    Enne, Virve I; Cassar, Claire; Sprigings, Katherine; Woodward, Martin J; Bennett, Peter M

    2008-01-01

    The incidence of antimicrobial resistance and expressed and unexpressed resistance genes among commensal Escherichia coli isolated from healthy farm animals at slaughter in Great Britain was investigated. The prevalence of antimicrobial resistance among the isolates varied according to the animal species; of 836 isolates from cattle tested only 5.7% were resistant to one or more antimicrobials, while only 3.0% of 836 isolates from sheep were resistant to one or more agents. However, 92.1% of 2480 isolates from pigs were resistant to at least one antimicrobial. Among isolates from pigs, resistance to some antimicrobials such as tetracycline (78.7%), sulphonamide (66.9%) and streptomycin (37.5%) was found to be common, but relatively rare to other agents such as amikacin (0.1%), ceftazidime (0.1%) and coamoxiclav (0.2%). The isolates had a diverse range of resistance gene profiles, with tet(B), sul2 and strAB identified most frequently. Seven out of 615 isolates investigated carried unexpressed resistance genes. One trimethoprim-susceptible isolate carried a complete dfrA17 gene but lacked a promoter for it. However, in the remaining six streptomycin-susceptible isolates, one of which carried strAB while the others carried aadA, no mutations or deletions in gene or promoter sequences were identified to account for susceptibility. The data indicate that antimicrobial resistance in E. coli of animal origin is due to a broad range of acquired genes.

  2. Modified lysozymes as novel broad spectrum natural antimicrobial agents in foods.

    Science.gov (United States)

    Aminlari, Ladan; Hashemi, Marjan Mohammadi; Aminlari, Mahmoud

    2014-06-01

    In recent years much attention and interest have been directed toward application of natural antimicrobial agents in foods. Some naturally occurring proteins such as lactoperoxidase, lactoferrin, and lysozyme have received considerable attention and are being considered as potential antimicrobial agents in foods. Lysozyme kills bacteria by hydrolyzing the peptidoglycan layer of the cell wall of certain bacterial species, hence its application as a natural antimicrobial agent has been suggested. However, limitations in the action of lysozyme against only Gram-positive bacteria have prompted scientists to extend the antimicrobial effects of lysozyme by several types of chemical modifications. During the last 2 decades extensive research has been directed toward modification of lysozyme in order to improve its antimicrobial properties. This review will report on the latest information available on lysozyme modifications and examine the applicability of the modified lysozymes in controlling growth of Gram-positive and Gram-negative bacteria in foods. The results of modifications of lysozyme using its conjugation with different small molecule, polysaccharides, as well as modifications using proteolytic enzymes will be reviewed. These types of modifications have not only increased the functional properties of lysozyme (such as solubility and heat stability) but also extended the antimicrobial activity of lysozyme. Many examples will be given to show that modification can decrease the count of Gram-negative bacteria in bacterial culture and in foods by as much as 5 log CFU/mL and in some cases essentially eliminated Escherichia coli. In conclusion this review demonstrates that modified lysozymes are excellent natural food preservatives, which can be used in food industry. The subject described in this review article can lead to the development of methods to produce new broad-spectrum natural antimicrobial agents, based on modification of chicken egg white lysozyme, which

  3. Evaluation of Antimicrobial and Anti-Inflammatory Activities of Seed Extracts from Six Nigella Species

    Czech Academy of Sciences Publication Activity Database

    Landa, Přemysl; Maršík, Petr; Havlík, J.; Klouček, P.; Vaněk, Tomáš; Kokoška, L.

    2009-01-01

    Roč. 12, č. 2 (2009), s. 408-415 ISSN 1096-620X R&D Projects: GA MŠk ME08070; GA ČR GP525/09/P528 Institutional research plan: CEZ:AV0Z50380511 Keywords : antimicrobial activity * cyclooxygenase-1 * cyclooxygenase-2 Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.390, year: 2009

  4. Phenotypic and genotypic characterization of lactic acid bacteria isolated from raw goat milk and effect of farming practices on the dominant species of lactic acid bacteria.

    Science.gov (United States)

    Tormo, Hélène; Ali Haimoud Lekhal, Djamila; Roques, C

    2015-10-01

    Lactic acid bacteria, in particular Lactococcus lactis, play a decisive role in the cheese making process and more particularly in lactic cheeses which are primarily produced on goat dairy farms. The objective of this study was therefore to identify the main lactic acid bacteria found in raw goats' milk from three different regions in France and evaluate if certain farming practices have an effect on the distribution of species of lactic acid bacteria in the various milk samples. Identification at genus or species level was carried out using phenotypic tests and genotypic methods including repetitive element REP-PCR, species-specific PCR and 16S rRNA gene sequencing. The distribution of the main bacterial species in the milk samples varied depending on farms and their characteristics. Out of the 146 strains identified, L. lactis was the dominant species (60% of strains), followed by Enterococcus (38%) of which Enterococcus faecalis and Enterococcus faecium. Within the species L. lactis, L. lactis subsp lactis was detected more frequently than L. lactis subsp cremoris (74% vs. 26%). The predominance of L. lactis subsp cremoris was linked to geographical area studied. It appears that the animals' environment plays a role in the balance between the dominance of L. lactis and enterococci in raw goats' milk. The separation between the milking parlor and the goat shed (vs no separation) and only straw in the bedding (vs straw and hay) seems to promote L. lactis in the milk (vs enterococci). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance.

    Science.gov (United States)

    Holman, Devin B; Chénier, Martin R

    2015-11-01

    Antimicrobials have been used in swine production at subtherapeutic levels since the early 1950s to increase feed efficiency and promote growth. In North America, a number of antimicrobials are available for use in swine. However, the continuous administration of subtherapeutic, low concentrations of antimicrobials to pigs also provides selective pressure for antimicrobial-resistant bacteria and resistance determinants. For this reason, subtherapeutic antimicrobial use in livestock remains a source of controversy and concern. The swine gut microbiota demonstrates a number of changes in response to antimicrobial administration depending on the dosage, duration of treatment, age of the pigs, and gut location that is sampled. Both culture-independent and -dependent studies have also shown that the swine gut microbiota contains a large number of antimicrobial resistance determinants even in the absence of antimicrobial exposure. Heavy metals, such as zinc and copper, which are often added at relatively high doses to swine feed, may also play a role in maintaining antimicrobial resistance and in the stability of the swine gut microbiota. This review focuses on the use of antimicrobials in swine production, with an emphasis on the North American regulatory context, and their effect on the swine gut microbiota and on antimicrobial resistance determinants in the gut microbiota.

  6. Epidemiology of antimicrobial resistance and the effect of interventions in food-producing animals

    NARCIS (Netherlands)

    Dorado Garcia, A.|info:eu-repo/dai/nl/372621023

    2016-01-01

    This thesis explores the animal-human interface of the emerging antimicrobial resistance (AMR) problem. It focuses on two relevant bacterial species imposing a burden for human health: methicillin-resistant Staphylococcus aureus (MRSA) and (extended-spectrum beta-lactamase (ESBL)/AmpC-producing)

  7. Vertebrate Herbivore Browsing on Neighboring Forage Species Increases the Growth and Dominance of Siberian Alder Across a Latitudinal Transect in Northern Alaska.

    Science.gov (United States)

    McNeill, E. M.; Ruess, R. W.

    2017-12-01

    Vertebrate herbivores strongly influence plant growth and architecture, biogeochemical cycling, and successional dynamics in boreal and arctic ecosystems. One of the most notable impacts of vertebrate herbivory is on the growth and spread of alder, a chemically-defended, N-fixing shrub whose distribution in the Alaskan arctic has expanded dramatically over the past 60 years. Although herbivore effects on thin-leaf alder are well described for interior Alaskan floodplains, no work has been conducted on the effects of herbivores on Siberian alder (Alnus viridis spp fruticosa), despite the increasing importance of this species to high latitude ecosystems. We characterized browsing by snowshoe hares, moose, and willow ptarmigan on dominant shrub species across topo-edaphic sequences within 5 ecoregions along a 600 km latitudinal transect extending from interior Alaska to the North Slope. Ptarmigan browsed wind-blown lowland and alpine sites devoid of trees in all regions; moose browsed predominantly willow species in hardwood and mixed forests and were absent north of the Brooks Range; snowshoe hares selected habitats and forage based on their local density and vulnerability to predators. Browsing intensity on Siberian alder was either undetectable or low, limited primarily to hare browsing on young ramets in the northern boreal forest where hare density relative to forage availability is highest. Overall, alder height growth was positively correlated with levels of herbivory on competing shrub species. Our data support the hypothesis that vertebrate herbivore browsing is indirectly augmenting the growth, dominance, and possible spread of Siberian alder throughout its northern Alaskan range. Given the potential high rates of N-fixation inputs by Siberian alder, we believe herbivores are also having strong indirect effects on biogeochemical cycling and possibly C storage in these landscapes.

  8. Metagenomic analysis of the microbial community in fermented grape marc reveals that Lactobacillus fabifermentans is one of the dominant species: insights into its genome structure

    DEFF Research Database (Denmark)

    Campanaro, Stefano; Treu, Laura; Vendramin, Veronica

    2014-01-01

    species after 30 days of incubation and made it possible to identify those species that are able to grow in that extreme environment. The genome sequence of Lactobacillus fabifermentans, one of the dominant species identified, was then analyzed using shotgun sequencing and comparative genomics....... The results revealed that it is one of the largest genomes among the Lactobacillus sequenced and is characterized by a large number of genes involved in carbohydrate utilization and in the regulation of gene expression. The genome was shaped through a large number of gene duplication events, while lateral...... gene transfer contributed to a lesser extent with respect to other Lactobacillus species. According to genomic analysis, its carbohydrate utilization pattern and ability to form biofilm are the main genetic traits linked to the adaptation the species underwent permitting it to grow in fermenting grape...

  9. Antimicrobial Peptides in Reptiles

    Science.gov (United States)

    van Hoek, Monique L.

    2014-01-01

    Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development. PMID:24918867

  10. Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation

    Science.gov (United States)

    Janeček, Štěpán; Lepš, Jan

    2005-09-01

    The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.

  11. Bold or cautious : behavioural characteristics and dominance in great tits

    NARCIS (Netherlands)

    Verbeek, M.

    1998-01-01

    Social dominance affects territory acquisition, reproduction and survival in many species. It plays a major role in the life of an individual, and has important consequences for its fitness. Several factors that can influence dominance relationships between individuals have been well

  12. Resistance profiles to antimicrobial agents in bacteria isolated from acute endodontic infections: systematic review and meta-analysis.

    Science.gov (United States)

    Lang, Pauline M; Jacinto, Rogério C; Dal Pizzol, Tatiane S; Ferreira, Maria Beatriz C; Montagner, Francisco

    2016-11-01

    Infected root canal or acute apical abscess exudates can harbour several species, including Fusobacterium, Porphyromonas, Prevotella, Parvimonas, Streptococcus, Treponema, Olsenella and not-yet cultivable species. A systematic review and meta-analysis was performed to assess resistance rates to antimicrobial agents in clinical studies that isolated bacteria from acute endodontic infections. Electronic databases and the grey literature were searched up to May 2015. Clinical studies in humans evaluating the antimicrobial resistance of primary acute endodontic infection isolates were included. PRISMA guidelines were followed. A random-effect meta-analysis was employed. The outcome was described as the pooled resistance rates for each antimicrobial agent. Heterogeneity and sensitivity analyses were performed. Subgroup analyses were conducted based upon report or not of the use of antibiotics prior to sampling as an exclusion factor (subgroups A and B, respectively). Data from seven studies were extracted. Resistance rates for 15 different antimicrobial agents were evaluated (range, 3.5-40.0%). Lower resistance rates were observed for amoxicillin/clavulanic acid and amoxicillin; higher resistance rates were detected for tetracycline. Resistance rates varied according to previous use of an antimicrobial agent as demonstrated by the subgroup analyses. Heterogeneity was observed for the resistance profiles of penicillin G in subgroup A and for amoxicillin, clindamycin, metronidazole and tetracycline in subgroup B. Sensitivity analyses demonstrated that resistance rates changed for metronidazole, clindamycin, tetracycline and amoxicillin. These findings suggest that clinical isolates had low resistance to β-lactams. Further well-designed studies are needed to clarify whether the differences in susceptibility among the antimicrobial agents may influence clinical responses to treatment. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights

  13. Antimicrobial Stewardship and Urinary Tract Infections

    Directory of Open Access Journals (Sweden)

    Lilian M. Abbo

    2014-05-01

    Full Text Available Urinary tract infections are the most common bacterial infections encountered in ambulatory and long-term care settings in the United States. Urine samples are the largest single category of specimens received by most microbiology laboratories and many such cultures are collected from patients who have no or questionable urinary symptoms. Unfortunately, antimicrobials are often prescribed inappropriately in such patients. Antimicrobial use, whether appropriate or inappropriate, is associated with the selection for antimicrobial-resistant organisms colonizing or infecting the urinary tract. Infections caused by antimicrobial-resistant organisms are associated with higher rates of treatment failures, prolonged hospitalizations, increased costs and mortality. Antimicrobial stewardship consists of avoidance of antimicrobials when appropriate and, when antimicrobials are indicated, use of strategies to optimize the selection, dosing, route of administration, duration and timing of antimicrobial therapy to maximize clinical cure while limiting the unintended consequences of antimicrobial use, including toxicity and selection of resistant microorganisms. This article reviews successful antimicrobial stewardship strategies in the diagnosis and treatment of urinary tract infections.

  14. Antimicrobial effect of medical textiles containing bioactive fibres.

    Science.gov (United States)

    Mariscal, A; Lopez-Gigosos, R M; Carnero-Varo, M; Fernandez-Crehuet, J

    2011-02-01

    Over the last few years, the textile industry has developed different methods for obtaining fabrics and fibres with an antimicrobial action for use in hospital environments and for other purposes. This study evaluates the antimicrobial action of Bioactive(®)-treated fabric (BTF), a commercially available textile containing silver for use in healthcare environments. Unlike other biocides used in hospital fabrics, the prolonged use of silver has not been related to the appearance of resistant bacteria or cross-resistance to antibiotics, in spite of being extensively used in some treatments. Thirty-three hospital strains of bacteria were tested. This study showed the capacity of BTF for significantly reducing the number of microorganisms present, compared with the reduction observed in control fabrics (CF). The antimicrobial action of BTF was expressed as log(10) reduction (LR) from an initial inoculum of about 10(5) colony-forming units (cfu). According to the bacterial species, an LR of between 2.6 and 5.0, and 4.1 and 5.0 (5.0 indicating total inhibition of bacterial growth) were observed, respectively, after 24 and 48 h for BTF. Acinetobacter strains were the most resistant to CF after 72 h (0.8 LR). All of the microorganisms, except two strains of Enterococcus faecalis, were totally inhibited after 72 h on BTF.

  15. Antimicrobial (Drug) Resistance

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin Antimicrobial (Drug) Resistance Go to Information for Researchers ► Credit: ... and infectious diseases. Why Is the Study of Antimicrobial (Drug) Resistance a Priority for NIAID? Over time, ...

  16. spa typing and antimicrobial resistance of Staphylococcus aureus from healthy humans, pigs and dogs in Tanzania.

    Science.gov (United States)

    Katakweba, Abdul Sekemani; Muhairwa, Amandus Pachificus; Espinosa-Gongora, Carmen; Guardabassi, Luca; Mtambo, Madundo M A; Olsen, John Elmerdahl

    2016-02-28

    Staphylococcus aureus is an opportunistic pathogen causing infections in humans and animals. Here we report for the first time the prevalence of nasal carriage, spa typing and antimicrobial resistance of S. aureus in a Tanzanian livestock community. Nasal swabs were taken from 100 humans, 100 pigs and 100 dogs in Morogoro Municipal. Each swab was enriched in Mueller Hinton broth with 6.5% NaCl and subcultured on chromogenic agar for S. aureus detection. Presumptive S. aureus colonies were confirmed to the species level by nuc PCR and analysed by spa typing. Antimicrobial susceptibility patterns were determined by disc diffusion method. S. aureus was isolated from 22% of humans, 4% of pigs and 11% of dogs. A total of 21 spa types were identified: 13, 7 and 1 in human, dogs, and pigs, respectively. Three spa types (t314, t223 and t084) were shared between humans and dogs. A novel spa type (t10779) was identified in an isolate recovered from a colonized human. Antimicrobials tested revealed resistance to ampicillin in all isolates, moderate resistances to other antimicrobials with tetracycline resistance being the most frequent. S. aureus carrier frequencies in dogs and humans were within the expected range and low in pigs. The S. aureus spa types circulating in the community were generally not shared by different hosts and majority of types belonged to known clones. Besides ampicillin resistance, moderate levels of antimicrobial resistance were observed irrespective of the host species from which the strains were isolated.

  17. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis

    OpenAIRE

    da Cunha, Marcos Guilherme; Franchin, Marcelo; Galv?o, L?viaC?maradeCarvalho; de Ruiz, AnaL?ciaTascaG?is; de Carvalho, Jo?o Ernesto; Ikegaki, Masarahu; de Alencar, Severino Matias; Koo, Hyun; Rosalen, Pedro Luiz

    2013-01-01

    Abstract Background Geopropolis is a type of propolis containing resin, wax, and soil, collected by threatened stingless bee species native to tropical countries and used in folk medicine. However, studies concerning the biological activity and chemical composition of geopropolis are scarce. In this study, we evaluated the antimicrobial and antiproliferative activity of the ethanolic extract of geopropolis (EEGP) collected by Melipona sc...

  18. Antimicrobial activity of four medicinal plants widely used in Persian folk medicine

    Directory of Open Access Journals (Sweden)

    A. Hamedi

    2015-12-01

    Full Text Available Background and objectives: Commiphora habessinica (O.Berg Engl. (Burseraceae, Boswellia sacra Flueck (Burseraceae, Phoenix dactylifera L. (Arecaceae, and Doronicum glaciale (Wulfen Nyman (Asteraceae are of ethnomedicinal importance in Persian folk medicine and are widely used to treat infectious diseases. The aim of the present study was to investigate the antimicrobial properties of these herbal medicines to prevent misadministration. Methods: Antifungal and antibacterial (Gram-positive and Gram-negative activities of the petroleum ether, dichloromethane and ethanol fractions obtained from oleo-gum-resin of C. habessinica and B. sacra, spathe of P. dactylifera and roots of D. glaciale were evaluated against standard species and clinical antibiotic resistant isolates using broth microdilution method. The fractions were tested at concentrations of 0.5 to 256 µg/mL.Results: The petroleum ether fraction of C. habessinica oleo-gum-resin exhibited the most anti-Candida activity with MIC50 of 0.5-16 µg/mL. The growth of C. glabrata and C. tropicalis was inhibited by the ethanol fraction of C. habessinica oleo-gum-resin with MIC50 of 1-16 μg/mL. C. glabrata was the most susceptible species. Among the tested fractions, only the petroleum ether fraction of C. habessinica oleo-gum-resin had an inhibitory effect on Aspergillus spp. with a MIC50 of 8-32 µg/mL. None of the fractions exhibited antimicrobial activity against the Gram-positive and Gram-negative bacteria at concentrations of 0.5 to 256 µg/mL. Conclusions: The sensitivity of fungi and bacteria to natural antimicrobials varies widely within species and it is essential to consider the sensitivity of the strains to prevent resistance.

  19. Binary combination of epsilon-poly-L-lysine and isoeugenol affect progression of spoilage microbiota in fresh turkey meat, and delay onset of spoilage in Pseudomonas putida challenged meat.

    Science.gov (United States)

    Hyldgaard, Morten; Meyer, Rikke L; Peng, Min; Hibberd, Ashley A; Fischer, Jana; Sigmundsson, Arnar; Mygind, Tina

    2015-12-23

    Proliferation of microbial population on fresh poultry meat over time elicits spoilage when reaching unacceptable levels, during which process slime production, microorganism colony formation, negative organoleptic impact and meat structure change are observed. Spoilage organisms in raw meat, especially Gram-negative bacteria can be difficult to combat due to their cell wall composition. In this study, the natural antimicrobial agents ε-poly-L-lysine (ε-PL) and isoeugenol were tested individually and in combinations for their activities against a selection of Gram-negative strains in vitro. All combinations resulted in additive interactions between ε-PL and isoeugenol towards the bacteria tested. The killing efficiency of different ratios of the two antimicrobial agents was further evaluated in vitro against Pseudomonas putida. Subsequently, the most efficient ratio was applied to a raw turkey meat model system which was incubated for 96 h at spoilage temperature. Half of the samples were challenged with P. putida, and the bacterial load and microbial community composition was followed over time. CFU counts revealed that the antimicrobial blend was able to lower the amount of viable Pseudomonas spp. by one log compared to untreated samples of challenged turkey meat, while the single compounds had no effect on the population. However, the compounds had no effect on Pseudomonas spp. CFU in unchallenged meat. Next-generation sequencing offered culture-independent insight into population diversity and changes in microbial composition of the meat during spoilage and in response to antimicrobial treatment. Spoilage of unchallenged turkey meat resulted in decreasing species diversity over time, regardless of whether the samples received antimicrobial treatment. The microbiota composition of untreated unchallenged meat progressed from a Pseudomonas spp. to a Pseudomonas spp., Photobacterium spp., and Brochothrix thermosphacta dominated food matrix on the expense of low

  20. Antimicrobial susceptibility of porcine Brachyspira hyodysenteriae and Brachyspira pilosicoli isolated in Sweden between 1990 and 2010

    Science.gov (United States)

    2012-01-01

    Background The anaerobic spirochetes Brachyspira hyodysenteriae and Brachyspira pilosicoli cause diarrheal diseases in pigs. Their fastidious nature has hampered standardization of methods for antimicrobial susceptibility testing. For monitoring of antimicrobial susceptibility wild type cutoff values are needed to define where the wild type distribution of MICs ends and no approved cutoffs are available for Brachyspira spp. In this study antimicrobial susceptibility data for both species (in total 906 isolates) were compiled and analyzed and wild type cut off values for B. hyodysenteriae proposed. Methods The MICs of tiamulin, valnemulin, tylosin, tylvalosin, doxycycline and lincomycin were determined by broth dilution in brain heart infusion broth supplemented with 10% fetal calf serum. Results The compiled MICs from the broth dilution tests of the B. hyodysenteriae type strain, B78T (ATCC® 27164T), showed that the method yields reproducible results. In an international perspective the frequencies of isolates with decreased antimicrobial susceptibility were low among both B. hyodysenteriae and B. pilosicoli. However, in B. pilosicoli a constant level of 10-15% isolates with tiamulin MICs >4 μg/ml was detected between 2002 and 2010 and in B. hyodysenteriae a gradual increase in tiamulin MICs was seen between 1990 and 2003 although this increase has ceased during the last years. The wild type cutoff values proposed for B. hyodysenteriae are: tiamulin >0.25 μg/ml, valnemulin >0.125 μg/ml, tylosin >16 μg/ml, tylvalosin >1 μg/ml, lincomycin >1 μg/ml and doxycycline >0.5 μg/ml. Conclusions The broth dilution method used in this study has over the years generated tightly grouped MIC populations for the field isolates and reproducible results for the control strain B78T and is therefore a suitable antimicrobial susceptibility test method for monitoring of Brachyspira spp. Here we propose wild type cutoff values for six antimicrobial agents for B. hyodysenteriae

  1. Antimicrobial susceptibility of porcine Brachyspira hyodysenteriae and Brachyspira pilosicoli isolated in Sweden between 1990 and 2010.

    Science.gov (United States)

    Pringle, Märit; Landén, Annica; Unnerstad, Helle Ericsson; Molander, Benedicta; Bengtsson, Björn

    2012-09-21

    The anaerobic spirochetes Brachyspira hyodysenteriae and Brachyspira pilosicoli cause diarrheal diseases in pigs. Their fastidious nature has hampered standardization of methods for antimicrobial susceptibility testing. For monitoring of antimicrobial susceptibility wild type cutoff values are needed to define where the wild type distribution of MICs ends and no approved cutoffs are available for Brachyspira spp. In this study antimicrobial susceptibility data for both species (in total 906 isolates) were compiled and analyzed and wild type cut off values for B. hyodysenteriae proposed. The MICs of tiamulin, valnemulin, tylosin, tylvalosin, doxycycline and lincomycin were determined by broth dilution in brain heart infusion broth supplemented with 10% fetal calf serum. The compiled MICs from the broth dilution tests of the B. hyodysenteriae type strain, B78T (ATCC® 27164T), showed that the method yields reproducible results. In an international perspective the frequencies of isolates with decreased antimicrobial susceptibility were low among both B. hyodysenteriae and B. pilosicoli. However, in B. pilosicoli a constant level of 10-15% isolates with tiamulin MICs >4 μg/ml was detected between 2002 and 2010 and in B. hyodysenteriae a gradual increase in tiamulin MICs was seen between 1990 and 2003 although this increase has ceased during the last years. The wild type cutoff values proposed for B. hyodysenteriae are: tiamulin >0.25 μg/ml, valnemulin >0.125 μg/ml, tylosin >16 μg/ml, tylvalosin >1 μg/ml, lincomycin >1 μg/ml and doxycycline >0.5 μg/ml. The broth dilution method used in this study has over the years generated tightly grouped MIC populations for the field isolates and reproducible results for the control strain B78T and is therefore a suitable antimicrobial susceptibility test method for monitoring of Brachyspira spp. Here we propose wild type cutoff values for six antimicrobial agents for B. hyodysenteriae tested by broth dilution based on MIC

  2. Antimicrobial susceptibility of porcine Brachyspira hyodysenteriae and Brachyspira pilosicoli isolated in Sweden between 1990 and 2010

    Directory of Open Access Journals (Sweden)

    Pringle Märit

    2012-09-01

    Full Text Available Abstract Background The anaerobic spirochetes Brachyspira hyodysenteriae and Brachyspira pilosicoli cause diarrheal diseases in pigs. Their fastidious nature has hampered standardization of methods for antimicrobial susceptibility testing. For monitoring of antimicrobial susceptibility wild type cutoff values are needed to define where the wild type distribution of MICs ends and no approved cutoffs are available for Brachyspira spp. In this study antimicrobial susceptibility data for both species (in total 906 isolates were compiled and analyzed and wild type cut off values for B. hyodysenteriae proposed. Methods The MICs of tiamulin, valnemulin, tylosin, tylvalosin, doxycycline and lincomycin were determined by broth dilution in brain heart infusion broth supplemented with 10% fetal calf serum. Results The compiled MICs from the broth dilution tests of the B. hyodysenteriae type strain, B78T (ATCC® 27164T, showed that the method yields reproducible results. In an international perspective the frequencies of isolates with decreased antimicrobial susceptibility were low among both B. hyodysenteriae and B. pilosicoli. However, in B. pilosicoli a constant level of 10-15% isolates with tiamulin MICs >4 μg/ml was detected between 2002 and 2010 and in B. hyodysenteriae a gradual increase in tiamulin MICs was seen between 1990 and 2003 although this increase has ceased during the last years. The wild type cutoff values proposed for B. hyodysenteriae are: tiamulin >0.25 μg/ml, valnemulin >0.125 μg/ml, tylosin >16 μg/ml, tylvalosin >1 μg/ml, lincomycin >1 μg/ml and doxycycline >0.5 μg/ml. Conclusions The broth dilution method used in this study has over the years generated tightly grouped MIC populations for the field isolates and reproducible results for the control strain B78T and is therefore a suitable antimicrobial susceptibility test method for monitoring of Brachyspira spp. Here we propose wild type cutoff values for six antimicrobial

  3. Antimicrobial polymers.

    Science.gov (United States)

    Jain, Anjali; Duvvuri, L Sailaja; Farah, Shady; Beyth, Nurit; Domb, Abraham J; Khan, Wahid

    2014-12-01

    Better health is basic requirement of human being, but the rapid growth of harmful pathogens and their serious health effects pose a significant challenge to modern science. Infections by pathogenic microorganisms are of great concern in many fields such as medical devices, drugs, hospital surfaces/furniture, dental restoration, surgery equipment, health care products, and hygienic applications (e.g., water purification systems, textiles, food packaging and storage, major or domestic appliances etc.) Antimicrobial polymers are the materials having the capability to kill/inhibit the growth of microbes on their surface or surrounding environment. Recently, they gained considerable interest for both academic research and industry and were found to be better than their small molecular counterparts in terms of enhanced efficacy, reduced toxicity, minimized environmental problems, resistance, and prolonged lifetime. Hence, efforts have focused on the development of antimicrobial polymers with all desired characters for optimum activity. In this Review, an overview of different antimicrobial polymers, their mechanism of action, factors affecting antimicrobial activity, and application in various fields are given. Recent advances and the current clinical status of these polymers are also discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Antimicrobial Susceptibility and Genotypic Characteristic of Campylobacter spp. Isolates from Free-Living Birds in Poland.

    Science.gov (United States)

    Krawiec, Marta; Woźniak-Biel, Anna; Bednarski, Michał; Wieliczko, Alina

    2017-11-01

    Campylobacter spp. is the most commonly reported, bacterial cause of human foodborne infection worldwide. Commercial poultry and free-living birds are natural reservoirs of three particular species: Campylobacter jejuni, Campylobacter coli, and Campylobacter lari. The aim of this study was to determine the genotypic characteristics and antibiotic susceptibility of 43 Campylobacter strains, obtained from free-living birds, in Poland. In total, 700 birds were examined. The strains were isolated from 43 birds (6.14%) from the feces of 7 wild bird species: Mallard ducks Anas platyrhynchos (29 positive/121 tested), great cormorants Phalacrocorax carbo (5/77), velvet scoters Melanitta fusca (4/30), tawny owls Strix aluco (2/5), common buzzard Buteo buteo (1/3), rook Corvus frugilegus (1/6), and Eurasian tree sparrow Passer montanus (1/30). Thirty-eight (88.37%) of obtained strains belonged to C. jejuni and five (11.63%) to C. coli. Other 428 examined birds from different bird species were Campylobacter negative. The antimicrobial susceptibility to nine antimicrobials was also studied in investigated isolates of Campylobacter spp. Sixteen of the examined strains (37.21% of all positive samples) showed susceptibility to all of the nine antimicrobials. Moreover, the prevalence of selected virulence genes, such as flaA, cadF, ceuE, virB11, cdtA, cdtB, and cdtC were all analyzed. The virulence gene that was found most frequently in total number of Campylobacter strains was ceuE (72.10%) and other genes, such as flaA, cadF, cdtA, cdtB, and cdtC, were found in over 60% of all examined strains. Variable antimicrobial susceptibility and the presence of different virulence genes of examined strains, isolated from free-living birds, suggest that special attention should be given to wild birds and any potential approaches to the control of antibiotic-resistant Campylobacter should be discussed.

  5. Antimicrobial susceptibility profiles of gram-negative bacteria causing infections collected across India during 2014–2016: Study for monitoring antimicrobial resistance trend report

    Directory of Open Access Journals (Sweden)

    Balaji Veeraraghavan

    2018-01-01

    Full Text Available Background: The emergence of antibiotic resistance among bacterial pathogens in the hospital and community has increased the concern to the health-care providers due to the limited treatment options. Surveillance of antimicrobial resistance (AMR in frequently isolated bacterial pathogens causing severe infections is of great importance. The data generated will be useful for the clinicians to decide empiric therapy on the local epidemiological resistance profile of the antimicrobial agents. This study aims to monitor the distribution of bacterial pathogen and their susceptibility pattern to the commonly used antimicrobial agents. Materials and Methods: This study includes Gram-negative bacilli collected from intra-abdominal, urinary tract and respiratory tract infections during 2014–2016. Isolates were collected from seven hospitals across India. All the study isolates were characterised up to species level, and minimum inhibitory concentration was determined for a wide range of antimicrobials included in the study panel. The test results were interpreted as per standard Clinical Laboratory Standards Institute guidelines. Results: A total of 2731 isolates of gram-negative bacteria were tested during study period. The most frequently isolated pathogens were 44% of Escherichia coli (n = 1205 followed by 25% of Klebsiella pneumoniae (n = 676 and 11% of Pseudomonas aeruginosa (n = 308. Among the antimicrobials tested, carbapenems were the most active, followed by amikacin and piperacillin/tazobactam. The rate of extended-spectrum beta-lactamase (ESBL-positive isolates were ranged from 66%–77% in E. coli to 61%–72% in K. pneumoniae, respectively. Overall, colistin retains its activity in > 90% of the isolates tested and appear promising. Conclusion: Increasing rates of ESBL producers have been noted, which is alarming. Further, carbapenem resistance was also gradually increasing, which needs much attention. Overall, this study data show that

  6. Antimicrobial susceptibilities of Proteus mirabilis: a longitudinal nationwide study from the Taiwan surveillance of antimicrobial resistance (TSAR) program.

    Science.gov (United States)

    Wang, Jann-Tay; Chen, Pei-Chen; Chang, Shan-Chwen; Shiau, Yih-Ru; Wang, Hui-Ying; Lai, Jui-Fen; Huang, I-Wen; Tan, Mei-Chen; Lauderdale, Tsai-Ling Yang

    2014-09-05

    Longitudinal nationwide data on antimicrobial susceptibility in Proteus mirabilis from different sources are rare. The effects of the revised Clinical and Laboratory Standards Institute (CLSI) β-lactam breakpoints on susceptibility rates and on detecting extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase-producers in this species are also seldom evaluated. The present study analyzed data from the Taiwan Surveillance of Antimicrobial Resistance program to address these issues. Isolates were collected biennially between 2002 and 2012 from 25 to 28 hospitals in Taiwan. Minimum inhibitory concentrations (MIC) were determined by reference broth microdilution method. All isolates with aztreonam, ceftazidime, or cefotaxime MIC ≥ 2 mg/L were checked for the presence of ESBL by CLSI confirmatory test and subjected to ESBL and AmpC β-lactamases gene detection by PCR. Univariate and multivariate analyses were performed. Between 2002 and 2012, a total of 1157 P. mirabilis were studied. Susceptibility to cefotaxime, ceftazidime, and ciprofloxacin decreased significantly during the past decade, from 92.6% to 81.7%, 100% to 95.2%, and 80.1% to 53.8%, respectively (P mirabilis from Taiwan in the past decade. The prevalence of ESBL remained stable but AmpC β-lactamase-producing P. mirabilis increased significantly. Cefotaxime was a better surrogate than ceftazidime for predicting the presence of these β-lactamases. Continuous surveillance on antimicrobial resistance and associated resistance mechanisms in P. mirabilis is warranted.

  7. Animation of Antimicrobial Resistance

    Science.gov (United States)

    ... Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin ...

  8. Essential oil constituents and antimicrobial activity of Pycnocycla bashagardiana Mozaff. from Iran.

    Science.gov (United States)

    Alizadeh, Ardalan; Abdollahzadeh, Hamid

    2017-09-01

    Pycnocycla bashagardiana is a rare endemic and endangered species that has been used in folkloric medicine in Southern Iran. This study aimed to evaluate the essential oil constituents and antimicrobial activity of wild and cultivated p. bashagardiana. The aerial parts of wild and cultivated plants were collected from two provinces of Iran. The essential oil was isolated by hydrodistillation and analyzed by a combination of capillary GC and GC-MS. The main components in wild plants were myristicin (39.12%), (E)-β-ocimene (21.97%), sabinene (15.0%) and cis-iso-miristicin (2.67%) and in cultivated plants, (E)-β-ocimene (55.40%), myristicin (18.27%), (Z)-β-ocimene (12.47%) and cis-iso-miristicin (2.94%) were the main constituents in essential oil. The in vitro antimicrobial activity of the essential oil of P. bashagardiana were studied against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Candida albicans for the first time. The results showed that the oil exhibited strong antimicrobial activity against all the tested pathogens.

  9. Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

    Directory of Open Access Journals (Sweden)

    Dongxia Li

    2015-05-01

    Full Text Available A total of 59 lactic acid bacteria (LAB strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L. plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971T, Micrococcus luteus ATCC 4698T and Escherichia coli ATCC 11775T were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C, but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0, but became inactive under neutral and alkaline condition (pH 7.0 to 9.0. In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

  10. Pure and Oxidized Copper Materials as Potential Antimicrobial Surfaces for Spaceflight Activities

    Science.gov (United States)

    Hahn, C.; Hans, M.; Hein, C.; Mancinelli, R. L.; Mücklich, F.; Wirth, R.; Rettberg, P.; Hellweg, C. E.; Moeller, R.

    2017-12-01

    Microbial biofilms can lead to persistent infections and degrade a variety of materials, and they are notorious for their persistence and resistance to eradication. During long-duration space missions, microbial biofilms present a danger to crew health and spacecraft integrity. The use of antimicrobial surfaces provides an alternative strategy for inhibiting microbial growth and biofilm formation to conventional cleaning procedures and the use of disinfectants. Antimicrobial surfaces contain organic or inorganic compounds, such as antimicrobial peptides or copper and silver, that inhibit microbial growth. The efficacy of wetted oxidized copper layers and pure copper surfaces as antimicrobial agents was tested by applying cultures of Escherichia coli and Staphylococcus cohnii to these metallic surfaces. Stainless steel surfaces were used as non-inhibitory control surfaces. The production of reactive oxygen species and membrane damage increased rapidly within 1 h of exposure on pure copper surfaces, but the effect on cell survival was negligible even after 2 h of exposure. However, longer exposure times of up to 4 h led to a rapid decrease in cell survival, whereby the survival of cells was additionally dependent on the exposed cell density. Finally, the release of metal ions was determined to identify a possible correlation between copper ions in suspension and cell survival. These measurements indicated a steady increase of free copper ions, which were released indirectly by cells presumably through excreted complexing agents. These data indicate that the application of antimicrobial surfaces in spaceflight facilities could improve crew health and mitigate material damage caused by microbial contamination and biofilm formation. Furthermore, the results of this study indicate that cuprous oxide layers were superior to pure copper surfaces related to the antimicrobial effect and that cell density is a significant factor that influences the time dependence of

  11. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy

    International Nuclear Information System (INIS)

    Chen, Zhuo; Zhou, Shanyong; Chen, Jincan; Li, Linsen; Hu, Ping; Chen, Song; Huang, Mingdong

    2014-01-01

    Bacterial infection is a common clinical problem. The emergence of antibiotic resistant bacteria posts a severe challenge to medical practice worldwide. Photodynamic antimicrobial chemotherapy (PACT) uses laser light at specific wavelength to activate oxygen molecule in the human tissue into reactive oxygen species as antimicrobial agent. This activation of oxygen by laser light is mediated through a photosensitizer. Two key properties for potent photosensitizer are its absorbance of light in the infrared region (630–700 nm), which promotes tissue penetration depth, and the selective accumulation on bacteria instead of human tissue. We herein report a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys) 5 ) and its antimicrobial effects in vitro and in an animal infection model. This photosensitizer has strong capability to kill bacteria at 670 nm. Chemically, it is a water-soluble and cationic photosensitizer carrying positive charge under physiological pH, and can specifically target to bacteria which usually bears negative charges on its surface. Compared with anionic ZnPc counterparts, ZnPc-(Lys) 5 shows a higher phototoxicity toward bacteria. PACT studies of ZnPc-(Lys) 5 in experimental infection animal model showed a significant bacteria inhibition compared to controls, and high selectivity of ZnPc-(Lys) 5 toward bacteria. These findings suggest ZnPc-(Lys) 5 is a promising antimicrobial photosensitizer for the treatment of infectious diseases. - Highlights: • Photodynamic antimicrobial chemotherapy (PACT) with water-soluble zinc phthalocyanine derivative offers a promising measure to deal with antibiotic resistance of bacteria. • The use of portable LED light sources that are battery-powered and with low cost may make possible the deployment of systems that can be used for wound decontamination. • ZnPc-(Lys) 5 is a potent photosensitizer for treatment of infectious diseases

  12. An effective zinc phthalocyanine derivative for photodynamic antimicrobial chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhuo, E-mail: zchen@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Zhou, Shanyong; Chen, Jincan [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Li, Linsen [Department of Biochemistry, Shenyang Medical College, Shenyang, Liaoning 110034 (China); Hu, Ping; Chen, Song [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Mingdong, E-mail: mhuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry and Danish-Chinese Centre for Proteases and Cancer, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2014-08-01

    Bacterial infection is a common clinical problem. The emergence of antibiotic resistant bacteria posts a severe challenge to medical practice worldwide. Photodynamic antimicrobial chemotherapy (PACT) uses laser light at specific wavelength to activate oxygen molecule in the human tissue into reactive oxygen species as antimicrobial agent. This activation of oxygen by laser light is mediated through a photosensitizer. Two key properties for potent photosensitizer are its absorbance of light in the infrared region (630–700 nm), which promotes tissue penetration depth, and the selective accumulation on bacteria instead of human tissue. We herein report a zinc phthalocyanine derivative, pentalysine β-carbonylphthalocyanine zinc (ZnPc-(Lys){sub 5}) and its antimicrobial effects in vitro and in an animal infection model. This photosensitizer has strong capability to kill bacteria at 670 nm. Chemically, it is a water-soluble and cationic photosensitizer carrying positive charge under physiological pH, and can specifically target to bacteria which usually bears negative charges on its surface. Compared with anionic ZnPc counterparts, ZnPc-(Lys){sub 5} shows a higher phototoxicity toward bacteria. PACT studies of ZnPc-(Lys){sub 5} in experimental infection animal model showed a significant bacteria inhibition compared to controls, and high selectivity of ZnPc-(Lys){sub 5} toward bacteria. These findings suggest ZnPc-(Lys){sub 5} is a promising antimicrobial photosensitizer for the treatment of infectious diseases. - Highlights: • Photodynamic antimicrobial chemotherapy (PACT) with water-soluble zinc phthalocyanine derivative offers a promising measure to deal with antibiotic resistance of bacteria. • The use of portable LED light sources that are battery-powered and with low cost may make possible the deployment of systems that can be used for wound decontamination. • ZnPc-(Lys){sub 5} is a potent photosensitizer for treatment of infectious diseases.

  13. Improved antimicrobial activity of Pediococcus acidilactici against Salmonella Gallinarum by UV mutagenesis and genome shuffling.

    Science.gov (United States)

    Han, Geon Goo; Song, Ahn Ah; Kim, Eun Bae; Yoon, Seong-Hyun; Bok, Jin-Duck; Cho, Chong-Su; Kil, Dong Yong; Kang, Sang-Kee; Choi, Yun-Jaie

    2017-07-01

    Pediococcus acidilactici is a widely used probiotic, and Salmonella enterica serovar Gallinarum (SG) is a significant pathogen in the poultry industry. In this study, we improved the antimicrobial activity of P. acidilactici against SG using UV mutation and genome shuffling (GS). To improve antimicrobial activity against SG, UV mutagenesis was performed against wild-type P. acidilactici (WT), and five mutants showed improved antimicrobial activity. To further improve antimicrobial activity, GS was performed on five UV mutants. Following GS, four mutants showed improved antimicrobial activity compared with the UV mutants and WT. The antimicrobial activity of GS1 was highest among the mutants; however, the activity was reduced when the culture supernatant was treated with proteinase K, suggesting that the improved antimicrobial activity is due to a proteinous substance such as bacteriocin. To validate the activity of GS1 in vivo, we designed multi-species probiotics and performed broiler feeding experiments. Groups consisted of no treatment (NC), avilamycin-treated (PC), probiotic group 1 containing WT (T1), and probiotic group 2 containing GS1 (T2). In broiler feeding experiments, coliform bacteria were significantly reduced in T2 compared with NC, PC, and T1. The cecal microbiota was modulated and pathogenic bacteria were reduced by GS1 oral administration. In this study, GS1 showed improved antimicrobial activity against SG in vitro and reduced pathogenic bacteria in a broiler feeding experiment. These results suggest that GS1 can serve as an efficient probiotic, as an alternative to antibiotics in the poultry industry.

  14. Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils.

    Science.gov (United States)

    Martins, Maria do Rosário; Arantes, Silvia; Candeias, Fátima; Tinoco, Maria Teresa; Cruz-Morais, Júlio

    2014-01-01

    Schinus molle L. has been used in folk medicine as antibacterial, antiviral, topical antiseptic, antifungal, antioxidant, anti-inflammatory, anti-tumoural as well as antispasmodic and analgesic; however, there are few studies of pharmacological and toxicological properties of Schinus molle essential oils. The aim of this study was to evaluate the antioxidant and antimicrobial activities of Schinus molle leaf and fruit essential oils, correlated with their chemical composition and evaluate their acute toxicity. The chemical composition of Schinus molle leaf and fruit essential oils were evaluated by GC-FID and GC-MS. Antioxidant properties were determined using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical and β-carotene/linoleic acid methods. Antimicrobial properties were evaluated by the agar disc diffusion method and minimal inhibitory concentration assay. Toxicity in Artemia salina and acute toxicity with behavioural screening in mice were evaluated. The dominant compounds found in leaf and fruit essential oils (EOs) were monoterpene hydrocarbons, namely α-phellandrene, β-phellandrene, β-myrcene, limonene and α-pinene. EOs showed low scavenging antioxidant activity by the DPPH free radical method and a higher activity by the β-carotene/linoleic acid method. Antimicrobial activity of EOs was observed for Gram+, Gram- pathogenic bacteria and food spoilage fungi. EOs showed totoxicity for Artemia salina and lower toxicity in Swiss mice. The result showed that EOs of leaves and fruits of Schinus molle demonstrated antioxidant and antimicrobial properties, suggesting their potential use in food or pharmaceutical industries. © 2013 Published by Elsevier Ireland Ltd.

  15. Antimicrobial activity of Eucalyptus camaldulensis essential oils and their interactions with conventional antimicrobial agents against multi-drug resistant Acinetobacter baumannii.

    Science.gov (United States)

    Knezevic, Petar; Aleksic, Verica; Simin, Natasa; Svircev, Emilija; Petrovic, Aleksandra; Mimica-Dukic, Neda

    2016-02-03

    Traditional herbal medicine has become an important issue on the global scale during the past decade. Among drugs of natural origin, special place belongs to essential oils, known as strong antimicrobial agents that can be used to combat antibiotic-resistant bacteria. Eucalyptus camaldulensis leaves are traditional herbal remedy used for various purposes, including treatment of infections. The aim of this study was to determine antimicrobial potential of two E. camaldulensis essential oils against multi-drug resistant (MDR) Acinetobacter baumannii wound isolates and to examine possible interactions of essential oils with conventional antimicrobial agents. Chemical composition of essential oils was determined by gas chromatography-mass spectrometry analysis (GC-MS). MIC values of essential oils against A. baumannii strains were estimated by modified broth microdilution method. The components responsible for antimicrobial activity were detected by bioautographic analysis. The potential synergy between the essential oils and antibiotics (ciprofloxacin, gentamicin and polymyxin B) was examined by checkerboard method and time kill curve. The dominant components of both essential oils were spatulenol, cryptone, p-cimene, 1,8-cineole, terpinen-4-ol and β-pinene. The detected MICs for the E. camaldulensis essential oils were in range from 0.5 to 2 μl mL(-1). The bioautographic assay confirmed antibacterial activity of polar terpene compounds. In combination with conventional antibiotics (ciprofloxacin, gentamicin and polymyxin B), the examined essential oils showed synergistic antibacterial effect in most of the cases, while in some even re-sensitized MDR A. baumannii strains. The synergistic interaction was confirmed by time-kill curves for E. camaldulensis essential oil and polymyxin B combination which reduced bacterial count under detection limit very fast, i.e. after 6h of incubation. The detected anti-A. baumannii activity of E. camaldulensis essential oils

  16. Antimicrobial activity of Nigerian medicinal plants

    Science.gov (United States)

    Anyanwu, Madubuike Umunna; Okoye, Rosemary Chinazam

    2017-01-01

    Antimicrobial resistance (AMR) is currently one of the major threats facing mankind. The emergence and rapid spread of multi- and pan-drug-resistant organisms (such as vancomycin-, methicillin-, extended-spectrum β-lactam-, carbapenem- and colistin-resistant organisms) has put the world in a dilemma. The health and economic burden associated with AMR on a global scale are dreadful. Available antimicrobials have been misused and are almost ineffective with some of these drugs associated with dangerous side effects in some individuals. Development of new, effective, and safe antimicrobials is one of the ways by which AMR burden can be reduced. The rate at which microorganisms develop AMR mechanisms outpaces the rate at which new antimicrobials are being developed. Medicinal plants are potential sources of new antimicrobial molecules. There is renewed interest in antimicrobial activities of phytochemicals. Nigeria boasts of a huge heritage of medicinal plants and there is avalanche of researches that have been undertaken to screen antimicrobial activities of these plants. Scientific compilation of these studies could provide useful information on the antimicrobial properties of the plants. This information can be useful in the development of new antimicrobial drugs. This paper reviews antimicrobial researches that have been undertaken on Nigerian medicinal plants. PMID:28512606

  17. Few vertebrate species dominate the Borrelia burgdorferi s.l. life cycle

    Science.gov (United States)

    Hofmeester, T. R.; Coipan, E. C.; van Wieren, S. E.; Prins, H. H. T.; Takken, W.; Sprong, H.

    2016-04-01

    Background. In the northern hemisphere, ticks of the Ixodidae family are vectors of diseases such as Lyme borreliosis, Rocky Mountain spotted fever and tick-borne encephalitis. Most of these ticks are generalists and have a three-host life cycle for which they are dependent on three different hosts for their blood meal. Finding out which host species contribute most in maintaining ticks and the pathogens they transmit, is imperative in understanding the drivers behind the dynamics of a disease. Methods. We performed a systematic review to identify the most important vertebrate host species for Ixodes ricinus and Borrelia burgdorferi s.l. as a well-studied model system for tick-borne diseases. We analyzed data from 66 publications and quantified the relative contribution for 15 host species. Review results. We found a positive correlation between host body mass and tick burdens for the different stages of I. ricinus. We show that nymphal burdens of host species are positively correlated with infection prevalence with B. burgdorferi s.l., which is again positively correlated with the realized reservoir competence of a host species for B. burgdorferi s.l. Our quantification method suggests that only a few host species, which are amongst the most widespread species in the environment (rodents, thrushes and deer), feed the majority of I. ricinus individuals and that rodents infect the majority of I. ricinus larvae with B. burgdorferi s.l. Discussion. We argue that small mammal-transmitted Borrelia spp. are maintained due to the high density of their reservoir hosts, while bird-transmitted Borrelia spp. are maintained due to the high infection prevalence of their reservoir hosts. Our findings suggest that Ixodes ricinus and Borrelia burgdorferi s.l. populations are maintained by a few widespread host species. The increase in distribution and abundance of these species, could be the cause for the increase in Lyme borreliosis incidence in Europe in recent decades.

  18. Antimicrobial potential of Eucalyptus globulus against biofilms of Staphylococcus aureus isolated from bovine mastitis

    OpenAIRE

    Gomes, F. I.; Martins, Natália; Ferreira, Isabel C. F. R.; Henriques, Mariana

    2016-01-01

    Staphylococcus aureus are among the most common species isolated from bovine mastitis. The pathogenesis of this bacterium is facilitated by a number of virulence factors, including the ability to adhere to abiotic surfaces and/or host tissues often leading to biofilms' formation. From the clinical perspective, the most important feature of Staphytococcus species' biofilms is their high tolerance to the conventional antimicrobial therapy. So, the increasing number of bovine m...

  19. Controversies in Antimicrobial Stewardship: Focus on New Rapid Diagnostic Technologies and Antimicrobials

    Directory of Open Access Journals (Sweden)

    Eric Wenzler

    2016-01-01

    Full Text Available Antimicrobial stewardship programs (ASPs are challenged with ensuring appropriate antimicrobial use while minimizing expenditures. ASPs have consistently demonstrated improved patient outcomes and significant cost reductions but are continually required to justify the costs of their existence and interventions due to the silo mentality often adopted by hospital administrators. As new technologies and antimicrobials emerge, ASPs are in a constant tug-of-war between providing optimal clinical outcomes and ensuring cost containment. Additionally, robust data on cost-effectiveness of new rapid diagnostic technologies and antimicrobials with subsequent ASP interventions to provide justification are lacking. As the implementation of an ASP will soon be mandatory for acute care hospitals in the United States, ASPs must find ways to justify novel interventions to align themselves with healthcare administrators. This review provides a framework for the justification of implementing a rapid diagnostic test or adding a new antimicrobial to formulary with ASP intervention, reviews approaches to demonstrating cost-effectiveness, and proposes methods for which ASPs may reduce healthcare expenditures via alternative tactics.

  20. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... Animal & Veterinary Cosmetics Tobacco Products Animal & Veterinary Home Animal & Veterinary Safety & Health Antimicrobial Resistance Animation of Antimicrobial Resistance Share Tweet Linkedin Pin ...

  1. Molecular characterization and antimicrobial susceptibility of Acinetobacter baumannii isolates obtained from two hospital outbreaks in Los Angeles County, California, USA.

    Science.gov (United States)

    Warner, Wayne A; Kuang, Shan N; Hernandez, Rina; Chong, Melissa C; Ewing, Peter J; Fleischer, Jen; Meng, Jia; Chu, Sheena; Terashita, Dawn; English, L'Tanya; Chen, Wangxue; Xu, H Howard

    2016-05-04

    Antibiotic resistant strains of Acinetobacter baumannii have been responsible for an increasing number of nosocomial infections including bacteremia and ventilator-associated pneumonia. In this study, we analyzed 38 isolates of A. baumannii obtained from two hospital outbreaks in Los Angeles County for the molecular epidemiology, antimicrobial susceptibility and resistance determinants. Pulsed field gel electrophoresis, tri-locus multiplex PCR and multi-locus sequence typing (Pasteur scheme) were used to examine clonal relationships of the outbreak isolates. Broth microdilution method was used to determine antimicrobial susceptibility of these isolates. PCR and subsequent DNA sequencing were employed to characterize antibiotic resistance genetic determinants. Trilocus multiplex PCR showed these isolates belong to Global Clones I and II, which were confirmed to ST1 and ST2, respectively, by multi-locus sequence typing. Pulsed field gel electrophoresis analysis identified two clonal clusters, one with 20 isolates (Global Clone I) and the other with nine (Global Clone II), which dominated the two outbreaks. Antimicrobial susceptibility testing using 14 antibiotics indicated that all isolates were resistant to antibiotics belonging to four or more categories of antimicrobial agents. In particular, over three fourth of 38 isolates were found to be resistant to both imipenem and meropenem. Additionally, all isolates were found to be resistant to piperacillin, four cephalosporin antibiotics, ciprofloxacin and levofloxacin. Resistance phenotypes of these strains to fluoroquinolones were correlated with point mutations in gyrA and parC genes that render reduced affinity to target proteins. ISAba1 was detected immediately upstream of the bla OXA-23 gene present in those isolates that were found to be resistant to both carbapenems. Class 1 integron-associated resistance gene cassettes appear to contribute to resistance to aminoglycoside antibiotics. The two outbreaks were

  2. Antimicrobial compounds in tears.

    Science.gov (United States)

    McDermott, Alison M

    2013-12-01

    The tear film coats the cornea and conjunctiva and serves several important functions. It provides lubrication, prevents drying of the ocular surface epithelia, helps provide a smooth surface for refracting light, supplies oxygen and is an important component of the innate defense system of the eye providing protection against a range of potential pathogens. This review describes both classic antimicrobial compounds found in tears such as lysozyme and some more recently identified such as members of the cationic antimicrobial peptide family and surfactant protein-D as well as potential new candidate molecules that may contribute to antimicrobial protection. As is readily evident from the literature review herein, tears, like all mucosal fluids, contain a plethora of molecules with known antimicrobial effects. That all of these are active in vivo is debatable as many are present in low concentrations, may be influenced by other tear components such as the ionic environment, and antimicrobial action may be only one of several activities ascribed to the molecule. However, there are many studies showing synergistic/additive interactions between several of the tear antimicrobials and it is highly likely that cooperativity between molecules is the primary way tears are able to afford significant antimicrobial protection to the ocular surface in vivo. In addition to effects on pathogen growth and survival some tear components prevent epithelial cell invasion and promote the epithelial expression of innate defense molecules. Given the protective role of tears a number of scenarios can be envisaged that may affect the amount and/or activity of tear antimicrobials and hence compromise tear immunity. Two such situations, dry eye disease and contact lens wear, are discussed here. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Personality predicts social dominance in male domestic fowl.

    Directory of Open Access Journals (Sweden)

    Anna Favati

    Full Text Available Individuals in social species commonly form dominance relationships, where dominant individuals enjoy greater access to resources compared to subordinates. A range of factors such as sex, age, body size and prior experiences has to varying degrees been observed to affect the social status an individual obtains. Recent work on animal personality (i.e. consistent variation in behavioural responses of individuals demonstrates that personality can co-vary with social status, suggesting that also behavioural variation can play an important role in establishment of status. We investigated whether personality could predict the outcome of duels between pairs of morphologically matched male domestic fowl (Gallus gallus domesticus, a species where individuals readily form social hierarchies. We found that males that more quickly explored a novel arena, or remained vigilant for a longer period following the playback of a warning call were more likely to obtain a dominant position. These traits were uncorrelated to each other and were also uncorrelated to aggression during the initial part of the dominance-determining duel. Our results indicate that several behavioural traits independently play a role in the establishment of social status, which in turn can have implications for the reproductive success of different personality types.

  4. Antimicrobial blue light: a drug-free approach for inactivating pathogenic microbes

    Science.gov (United States)

    Wang, Ying; Dai, Tianhong

    2018-02-01

    Due to the growing global threat of antibiotic resistance, there is a critical need for the development of alternative therapeutics for infectious diseases. Antimicrobial blue light (aBL), as an innovative non-antibiotic approach, has attracted increasing attention. This paper discussed the basic concepts of aBL and recent findings in the studies of aBL. It is commonly hypothesized that the antimicrobial property of aBL is attributed to the presence of endogenous photosensitizing chromophores in microbial cells, which produce cytotoxic reactive oxygen species upon light irradiation. A wide range of important microbes are found to be susceptible to aBL inactivation. Studies have also shown there exist therapeutic windows where microbes are selectively inactivated by aBL while host cells are preserved. The combination of aBL with some other agents result in synergistically improved antimicrobial efficacy. Future efforts should be exerted on the standardization of study design for evaluating aBL efficacy, further elucidation of the mechanism of action, optimization of the technical parameters, and translation of this technique to clinic.

  5. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... More in Antimicrobial Resistance National Antimicrobial Resistance Monitoring System ... If you need help accessing information in different file formats, see Instructions for Downloading ...

  6. Domination, Eternal Domination, and Clique Covering

    Directory of Open Access Journals (Sweden)

    Klostermeyer William F.

    2015-05-01

    Full Text Available Eternal and m-eternal domination are concerned with using mobile guards to protect a graph against infinite sequences of attacks at vertices. Eternal domination allows one guard to move per attack, whereas more than one guard may move per attack in the m-eternal domination model. Inequality chains consisting of the domination, eternal domination, m-eternal domination, independence, and clique covering numbers of graph are explored in this paper.

  7. [First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans/ Anaerobic Subcommittee of the Asociación Argentina de Microbiología].

    Science.gov (United States)

    Legaria, María C; Bianchini, Hebe M; Castello, Liliana; Carloni, Graciela; Di Martino, Ana; Fernández Canigia, Liliana; Litterio, Mirta; Rollet, Raquel; Rossetti, Adelaida; Predari, Silvia C

    2011-01-01

    Through time, anaerobic bacteria have shown good susceptibility to clinically useful antianaerobic agents. Nevertheless, the antimicrobial resistance profile of most of the anaerobic species related to severe infections in humans has been modified in the last years and different kinds of resistance to the most active agents have emerged, making their effectiveness less predictable. With the aim of finding an answer and for the purpose of facilitating the detection of anaerobic antimicrobial resistance, the Anaerobic Subcommittee of the Asociación Argentina de Microbiología developed the First Argentine consensus guidelines for in vitro antimicrobial susceptibility testing of clinically relevant anaerobic bacteria in humans. This document resulted from the compatibilization of the Clinical and Laboratory Standards Institute recommendations, the international literature and the work and experience of the Subcommittee. The Consensus document provides a brief taxonomy review, and exposes why and when anaerobic antimicrobial susceptibility tests should be conducted, and which antimicrobial agents can be used according to the species involved. The recommendations on how to perform, read and interpret in vitro anaerobic antimicrobial susceptibility tests with each method are exposed. Finally, the antibiotic susceptibility profile, the classification of antibiotics according to their in vitro activities, the natural and acquired mechanisms of resistance, the emerging resistance and the regional antibiotic resistance profile of clinically relevant anaerobic species are shown.

  8. Microbiological diagnosis and antimicrobial sensitivity profiles in diseased free-living raptors.

    Science.gov (United States)

    Vidal, Anna; Baldomà, Laia; Molina-López, Rafael A; Martin, Marga; Darwich, Laila

    2017-08-01

    Free-living raptors (birds of prey) can act as reservoirs of potentially zoonotic agents, but they also can be affected by microorganisms as target hosts. In this retrospective study, microbiological results (n = 663) and antibiotic sensitivity profiles (n = 108) of bacterial isolates were analysed from diseased free-living raptors. Sixty-nine percent of cases (n = 457) yielded bacteria: 58% were in pure culture and 42% were of different species. Remarkably, samples from necropsies (47%) had higher percentage of pure isolations than those obtained from clinical (31%) samples (P raptors (P 3 antimicrobials. Detection in wildlife of antimicrobial-resistant pathogens that might be significant at the animal-human-ecosystem interface is of great relevance under the 'One Health' approach.

  9. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity.

    Science.gov (United States)

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-10-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, monoesterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeability enhancing activity was demonstrated using intestinal Caco-2 monolayers through transepithelial electrical resistance (TEER) and permeability studies. The synthesized compounds, namely lactose palmitoleate (URB1076) and lactose nervonate (URB1077), were shown to exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Antimicrobial Drugs in the Home

    Centers for Disease Control (CDC) Podcasts

    Survey participants in the United Kingdom admitted keeping leftover antimicrobial drugs for future use and taking them without medical advice. Dr. J. Todd Weber, director of CDC's Office of Antimicrobial Resistance, advises against the practice, which can be dangerous and can promote antimicrobial drug resistance.

  11. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis

    Science.gov (United States)

    Nakatsuji, Teruaki; Chen, Tiffany H.; Narala, Saisindhu; Chun, Kimberly A.; Two, Aimee M.; Yun, Tong; Shafiq, Faiza; Kotol, Paul F.; Bouslimani, Amina; Melnik, Alexey V.; Latif, Haythem; Kim, Ji-Nu; Lockhart, Alexandre; Artis, Keli; David, Gloria; Taylor, Patricia; Streib, Joanne; Dorrestein, Pieter C.; Grier, Alex; Gill, Steven R.; Zengler, Karsten; Hata, Tissa R.; Leung, Donald Y. M.; Gallo, Richard L.

    2017-01-01

    The microbiome can promote or disrupt human health by influencing both adaptive and innate immune functions. We tested whether bacteria that normally reside on human skin participate in host defense by killing Staphylococcus aureus, a pathogen commonly found in patients with atopic dermatitis (AD) and an important factor that exacerbates this disease. High-throughput screening for antimicrobial activity against S.aureus was performed on isolates of coagulase-negative Staphylococcus (CoNS) collected from the skin of healthy and AD subjects. CoNS strains with antimicrobial activity were common on the normal population but rare on AD subjects. A low frequency of strains with antimicrobial activity correlated with colonization by S.aureus. The antimicrobial activity was identified as previously unknown antimicrobial peptides (AMPs) produced by CoNS species including Staphylococcus epidermidis and Staphylococcus hominis. These AMPs were strain-specific, highly potent, selectively killed S.aureus, and synergized with the human AMP LL-37. Application of these CoNS strains to mice confirmed their defense function in vivo relative to application of nonactive strains. Strikingly, reintroduction of antimicrobial CoNS strains to human subjects with AD decreased colonization by S.aureus. These findings show how commensal skin bacteria protect against pathogens and demonstrate how dysbiosis of the skin microbiome can lead to disease. PMID:28228596

  12. DAMPD: A manually curated antimicrobial peptide database

    KAUST Repository

    Seshadri Sundararajan, Vijayaraghava

    2011-11-21

    The demand for antimicrobial peptides (AMPs) is rising because of the increased occurrence of pathogens that are tolerant or resistant to conventional antibiotics. Since naturally occurring AMPs could serve as templates for the development of new anti-infectious agents to which pathogens are not resistant, a resource that contains relevant information on AMP is of great interest. To that extent, we developed the Dragon Antimicrobial Peptide Database (DAMPD, http://apps.sanbi.ac.za/dampd) that contains 1232 manually curated AMPs. DAMPD is an update and a replacement of the ANTIMIC database. In DAMPD an integrated interface allows in a simple fashion querying based on taxonomy, species, AMP family, citation, keywords and a combination of search terms and fields (Advanced Search). A number of tools such as Blast, ClustalW, HMMER, Hydrocalculator, SignalP, AMP predictor, as well as a number of other resources that provide additional information about the results are also provided and integrated into DAMPD to augment biological analysis of AMPs. The Author(s) 2011. Published by Oxford University Press.

  13. DAMPD: A manually curated antimicrobial peptide database

    KAUST Repository

    Seshadri Sundararajan, Vijayaraghava; Gabere, Musa Nur; Pretorius, Ashley; Adam, Saleem; Christoffels, Alan; Lehvaslaiho, Minna; Archer, John A.C.; Bajic, Vladimir B.

    2011-01-01

    The demand for antimicrobial peptides (AMPs) is rising because of the increased occurrence of pathogens that are tolerant or resistant to conventional antibiotics. Since naturally occurring AMPs could serve as templates for the development of new anti-infectious agents to which pathogens are not resistant, a resource that contains relevant information on AMP is of great interest. To that extent, we developed the Dragon Antimicrobial Peptide Database (DAMPD, http://apps.sanbi.ac.za/dampd) that contains 1232 manually curated AMPs. DAMPD is an update and a replacement of the ANTIMIC database. In DAMPD an integrated interface allows in a simple fashion querying based on taxonomy, species, AMP family, citation, keywords and a combination of search terms and fields (Advanced Search). A number of tools such as Blast, ClustalW, HMMER, Hydrocalculator, SignalP, AMP predictor, as well as a number of other resources that provide additional information about the results are also provided and integrated into DAMPD to augment biological analysis of AMPs. The Author(s) 2011. Published by Oxford University Press.

  14. Oral administration of antimicrobials increase antimicrobial resistance in E. coli from chicken--a systematic review.

    Science.gov (United States)

    Simoneit, C; Burow, E; Tenhagen, B-A; Käsbohrer, A

    2015-01-01

    Antimicrobials play an important role in animal and human health care. It was the aim of this systematic review to assess the effects of oral administration of antimicrobials on the development of antimicrobial resistance (AMR) in Escherichia coli (E. coli) from chickens. Moreover, the effects of the administration of more than one antimicrobial and of different dosages were studied. Literature was searched in November 2012 from the electronic databases ISI Web of Science, PubMed, Scopus and a national literature database (DIMDI) as well as the database ProQuest LLC. The search was updated in March 2014. Original studies describing a treatment (A) and a control group of either non-treatment (C) or initial value (0) and determining AMR in E. coli at different sample points (SP) were included. The literature search resulted in 35 full text articles on the topic, seven (20%) of which contained sufficient information on the administered antimicrobial and the impact of treatment on AMR. Most papers described the use of more than one antimicrobial, several dosages, controls (non-treatment or pre-treatment) and measured AMR at different SPs leading to a total of 227 SPs on the impact of the use of antimicrobials on AMR in chickens. 74% of the SPs (168/227) described a higher AMR-rate in E. coli from treated animals than from controls. After the administration of a single antimicrobial, AMR increased at 72% of the SPs. Administration of more than one antimicrobial increased AMR at 82% of the SPs. Higher dosages were associated with similar or higher AMR rates. The limited number of studies for each antimicrobial agent and the high variability in the resistance effect call for more well designed studies on the impact of oral administration on AMR development and spread. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance.

    Science.gov (United States)

    Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M N; Hu, Hongbo; Wang, Wei; Zhang, Xuehong

    2017-10-01

    In recent years, the antimicrobial resistance (AMR) or multidrug resistance (MDR) has become a serious health concern and major challenging issue, worldwide. After decades of negligence, the AMR has now captured global attention. The increasing number of antibiotic-resistant strains has threatened the achievements of science and medicine since it inactivates conventional antimicrobial therapeutics. Scientists are trying to respond to AMR/MDR threat by exploring innovative platforms and new therapeutic strategies to tackle infections from these resistant strains and bypass treatment limitations related to these pathologies. The present review focuses on the utilization of bio-inspired novel constructs and their potential applications as novel antimicrobial agents. The first part of the review describes plant-based biological macromolecules containing an immense variety of secondary metabolites, which could be potentially used as alternative strategies to combat antimicrobial resistance. The second part discusses the potential of metal-based macromolecules as effective antimicrobial platforms for preventing infections from resistant strains. The third part comprehensively elucidates how nanoparticles, in particular, metal-integrated nanoparticles can overcome this AMR or MDR issue. Towards the end, information is given with critical concluding remarks, gaps, and finally envisioned with future considerations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Comparative performance of a panel of commercially available antimicrobial nanocoatings in Europe

    Directory of Open Access Journals (Sweden)

    Molling JW

    2014-11-01

    Full Text Available Johan W Molling, Jacques W Seezink, Birgit EJ Teunissen, Inhua Muijrers-Chen, Paul JA Borm Zuyd University of Applied Sciences, Heerlen, the Netherlands Background: Bacterial resistance against the classic antibiotics is posing an increasing challenge for the prevention and treatment of infections in health care environments. The introduction of antimicrobial nanocoatings with active ingredients provides alternative measures for active killing of microorganisms, through a preventive hygiene approach. Purpose: The purpose of this study was to investigate the antimicrobial activity of a panel of antimicrobial coatings available on the European market. Methods: A comparative, biased selection of commercially available antimicrobial coatings was tested for antimicrobial efficiency. Suppliers were contacted to deliver their coatings on glass and/or stainless steel substrates. In total, 23 coatings from eleven suppliers were received, which were investigated for their effect on the growth of Escherichia coli, using the International Organization for Standardization (ISO 22196 protocol. Results: The majority of nanomaterial-containing coatings (n=13 contained nanosilver (n=12, while only one had photocatalytic TiO2 as the active particle. The differences in antimicrobial activity among all of the coatings, expressed as log reduction values, varied between 1.3 and 6.6, while the variation within the nanomaterial-based group was between 2.0 and 6.2. Although nanosilver coatings were on average very effective in reducing the number of viable bacteria after challenge, the strongest log reduction (6.6 was seen with a coating that has immobilized, covalently bound quaternary ammonium salt in its matrix. Besides these two compounds, coatings containing TiO2, poly(dimethylsiloxane, triclosan, or zinc pyrithione evoked 100% killing of E. coli. Conclusion: Our findings indicate that nanosilver dominates the nanoparticle-based coatings and performs adequately

  17. Antimicrobial use and antimicrobial susceptibility in Escherichia coli on small- and medium-scale pig farms in north-eastern Thailand

    Directory of Open Access Journals (Sweden)

    G. Ström

    2017-07-01

    Full Text Available Abstract Background Intensification of livestock production seen in many low- and middle-income countries is often believed to be associated with increased use of antimicrobials, and may hence contribute to the emergence of antimicrobial resistance. The aim of this study was to map antimicrobial use on small- (n = 25 and medium-scale (n = 27 pig farms in north-eastern Thailand, and to compare antimicrobial susceptibility of commensal Escherichia coli isolated from sows on these farms. Methods Information regarding pig husbandry and antimicrobial treatment regimens was obtained by the use of semi-structured questionnaires. Faecal samples were collected from three healthy sows at each farm, and Escherichia coli was cultured and analysed for antimicrobial susceptibility using the broth microdilution method. Multilevel regression models were used to compare antimicrobial susceptibility between isolates from small- and medium-scale farms. Results All farms included in the study administered antimicrobials to their sows. Small-scale farmers most commonly (64% decided themselves when to give antimicrobials and the majority (60% bought the medicines at the local store or pharmacy, whereas farmers on medium-scale farms always discussed antimicrobial treatment with a veterinarian. Medium-scale farms used a greater diversity of antimicrobials than small-scale farms and did also administer antimicrobials in feed to a higher extent. High levels of antimicrobial resistance to several critically important antimicrobials for human medicine (including ciprofloxacin, streptomycin and ampicillin were found in isolates from both small- and medium-scale farms. Resistance levels were significantly (P < 0.05 higher in isolates from medium-scale farms for several of the antimicrobials tested, as well as the level of multidrug-resistance (P = 0.026. Conclusion The routines regarding access and administration of antimicrobials differed between the small- and

  18. Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials.

    Science.gov (United States)

    Vo, Duc-Thang; Sabrina, Sabrina; Lee, Cheng-Kang

    2017-04-01

    Carboxymethyl chitosan (CMCS) was known to have a much better antimicrobial activity than chitosan due to the increased cationic -NH 3 + groups resulted from the intra- and intermolecular interactions between the carboxyl and amino groups. CMCS was grafted onto the surface of silica coated magnetic nanoparticles (MNPs) to obtain magnetically retrievable and deliverable antimicrobial nanoparticles (MNPs@CMCS). The presence of carboxylate groups in CMCS not only enhanced antimicrobial activity but also enabled Ag ions chelating ability to induce the in situ formation of Ag nanoparticles (AgNPs). The deposition of AgNPs on the surface of MNPs@CMCS could significantly increase its antimicrobial activity against planktonic cells due to the dual action of CMCS and AgNPs. Due to its high magnetism, the as-prepared MNPs@CMCS-Ag could be efficiently delivered into an existing biofilm under the guidance of an applied magnetic field. Without direct contact, the Ag ions and/or radical oxygen species (ROS) released from the deposited Ag nanoparticles could effectively kill the bacteria embedded in the extracellular polymeric substances (EPS) matrix of biofilm. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Animation of Antimicrobial Resistance

    Medline Plus

    Full Text Available ... search Popular ... produced a nine-minute animation explaining how antimicrobial resistance both emerges and proliferates among bacteria. Over time, the use of antimicrobial drugs will ...

  20. Ecological interactions among Saccharomyces cerevisiae strains: insight into the dominance phenomenon.

    Science.gov (United States)

    Pérez-Torrado, Roberto; Rantsiou, Kalliopi; Perrone, Benedeta; Navarro-Tapia, Elisabeth; Querol, Amparo; Cocolin, Luca

    2017-03-07

    This study investigates the behaviour of Saccharomyces cerevisiae strains, in order to obtain insight into the intraspecies competition taking place in mixed populations of this species. Two strains of S. cerevisiae, one dominant and one non-dominant, were labelled and mixed, and individual fermentations were set up to study the transcriptomes of the strains by means of RNA-seq. The results obtained suggest that cell-to-cell contact and aggregation, which are driven by the expression of genes that are associated with the cell surface, are indispensable conditions for the achievement of dominance. Observations on mixed aggregates, made up of cells of both strains, which were detected by means of flow cytometry, have confirmed the transcriptomic data. Furthermore, overexpression of the SSU1 gene, which encodes for a transporter that confers resistance to sulphites, provides an ecological advantage to the dominant strain. A mechanistic model is proposed that sheds light on the dominance phenomenon between different strains of the S. cerevisiae species. The collected data suggest that cell-to-cell contact, together with differential sulphite production and resistance is important in determining the dominance of one strain over another.

  1. Engineered Chimeric Peptides as Antimicrobial Surface Coating Agents toward Infection-Free Implants.

    Science.gov (United States)

    Yazici, Hilal; O'Neill, Mary B; Kacar, Turgay; Wilson, Brandon R; Oren, E Emre; Sarikaya, Mehmet; Tamerler, Candan

    2016-03-02

    Prevention of bacterial colonization and consequent biofilm formation remains a major challenge in implantable medical devices. Implant-associated infections are not only a major cause of implant failures but also their conventional treatment with antibiotics brings further complications due to the escalation in multidrug resistance to a variety of bacterial species. Owing to their unique properties, antimicrobial peptides (AMPs) have gained significant attention as effective agents to combat colonization of microorganisms. These peptides have been shown to exhibit a wide spectrum of activities with specificity to a target cell while having a low tendency for developing bacterial resistance. Engineering biomaterial surfaces that feature AMP properties, therefore, offer a promising approach to prevent implant infections. Here, we engineered a chimeric peptide with bifunctionality that both forms a robust solid-surface coating while presenting antimicrobial property. The individual domains of the chimeric peptides were evaluated for their solid-binding kinetics to titanium substrate as well as for their antimicrobial properties in solution. The antimicrobial efficacy of the chimeric peptide on the implant material was evaluated in vitro against infection by a variety of bacteria, including Streptococcus mutans, Staphylococcus. epidermidis, and Escherichia coli, which are commonly found in oral and orthopedic implant related surgeries. Our results demonstrate significant improvement in reducing bacterial colonization onto titanium surfaces below the detectable limit. Engineered chimeric peptides with freely displayed antimicrobial domains could be a potential solution for developing infection-free surfaces by engineering implant interfaces with highly reduced bacterial colonization property.

  2. Study of in vitro antimicrobial and antiproliferative activities of selected Saharan plants.

    Science.gov (United States)

    Palici, Ionut F; Liktor-Busa, Erika; Zupkó, István; Touzard, Blaise; Chaieb, Mohamed; Urbán, Edit; Hohmann, Judit

    2015-12-01

    The aim of the present study was the evaluation of the antimicrobial and antiproliferative activities of selected Saharan species, which are applied in the traditional medicine but not studied thoroughly from chemical and pharmacological point of view. The studied plants, namely Anthyllis henoniana, Centropodia forskalii, Cornulaca monacantha, Ephedra alata var. alenda, Euphorbia guyoniana, Helianthemum confertum, Henophyton deserti, Moltkiopsis ciliata and Spartidium saharae were collected from remote areas of North Africa, especially from the Tunisian region of Sahara. After drying and applying the appropriate extraction methods, the plant extracts were tested in antimicrobial screening assay, performed on 19 Gram-positive and -negative strains of microbes. The inhibition zones produced by plant extracts were determined by disc-diffusion method. Remarkable antibacterial activities were exhibited by extracts of Ephedra alata var. alenda and Helianthemum confertum against B. subtilis, M. catarrhalis and methicillin-resistant and non-resistant S. aureus. Minimum inhibitory concentrations of these two species were also determined. Antiproliferative effects of the extracts were evaluated against 4 human adherent cell lines (HeLa, A431, A2780 and MCF7). Notable cell growth inhibition was found for extract of Helianthemum confertum and Euphorbia guyoniana. Our results provided data for selection of some plant species for further detailed pharmacological and phytochemical examinations.

  3. Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China.

    Science.gov (United States)

    Pang, Hui; Li, Guilian; Zhao, Xiuqin; Liu, Haican; Wan, Kanglin; Yu, Ping

    2015-01-01

    Several species of rapidly growing mycobacteria (RGM) are now recognized as human pathogens. However, limited data on effective drug treatments against these organisms exists. Here, we describe the species distribution and drug susceptibility profiles of RGM clinical isolates collected from four southern Chinese provinces from January 2005 to December 2012. Clinical isolates (73) were subjected to in vitro testing with 31 antimicrobial agents using the cation-adjusted Mueller-Hinton broth microdilution method. The isolates included 55 M. abscessus, 11 M. fortuitum, 3 M. chelonae, 2 M. neoaurum, and 2 M. septicum isolates. M. abscessus (75.34%) and M. fortuitum (15.07%), the most common species, exhibited greater antibiotic resistance than the other three species. The isolates had low resistance to amikacin, linezolid, and tigecycline, and high resistance to first-line antituberculous agents, amoxicillin-clavulanic acid, rifapentine, dapsone, thioacetazone, and pasiniazid. M. abscessus and M. fortuitum were highly resistant to ofloxacin and rifabutin, respectively. The isolates showed moderate resistance to the other antimicrobial agents. Our results suggest that tigecycline, linezolid, clofazimine, and cefmetazole are appropriate choices for M. abscessus infections. Capreomycin, sulfamethoxazole, tigecycline, clofazimine, and cefmetazole are potentially good choices for M. fortuitum infections. Our drug susceptibility data should be useful to clinicians.

  4. Drug Susceptibility Testing of 31 Antimicrobial Agents on Rapidly Growing Mycobacteria Isolates from China

    Directory of Open Access Journals (Sweden)

    Hui Pang

    2015-01-01

    Full Text Available Objectives. Several species of rapidly growing mycobacteria (RGM are now recognized as human pathogens. However, limited data on effective drug treatments against these organisms exists. Here, we describe the species distribution and drug susceptibility profiles of RGM clinical isolates collected from four southern Chinese provinces from January 2005 to December 2012. Methods. Clinical isolates (73 were subjected to in vitro testing with 31 antimicrobial agents using the cation-adjusted Mueller-Hinton broth microdilution method. The isolates included 55 M. abscessus, 11 M. fortuitum, 3 M. chelonae, 2 M. neoaurum, and 2 M. septicum isolates. Results. M. abscessus (75.34% and M. fortuitum (15.07%, the most common species, exhibited greater antibiotic resistance than the other three species. The isolates had low resistance to amikacin, linezolid, and tigecycline, and high resistance to first-line antituberculous agents, amoxicillin-clavulanic acid, rifapentine, dapsone, thioacetazone, and pasiniazid. M. abscessus and M. fortuitum were highly resistant to ofloxacin and rifabutin, respectively. The isolates showed moderate resistance to the other antimicrobial agents. Conclusions. Our results suggest that tigecycline, linezolid, clofazimine, and cefmetazole are appropriate choices for M. abscessus infections. Capreomycin, sulfamethoxazole, tigecycline, clofazimine, and cefmetazole are potentially good choices for M. fortuitum infections. Our drug susceptibility data should be useful to clinicians.

  5. Comparative Review of Antimicrobial Resistance in Humans and Nonhuman Primates.

    Science.gov (United States)

    Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Habing, Gregory G

    2018-04-02

    Antimicrobial resistance (AMR) presents serious threats to human and animal health. Although AMR of pathogens is often evaluated independently between humans and animals, comparative analysis of AMR between humans and animals is necessary for zoonotic pathogens. Major surveillance systems monitor AMR of zoonotic pathogens in humans and food animals, but comprehensive AMR data in veterinary medicine is not diligently monitored for most animal species with which humans commonly contact, including NHP. The objective of this review is to provide a complete report of the prevalences of AMR among zoonotic bacteria that present the greatest threats to NHP, occupational, and public health. High prevalences of AMR exist among Shigella, Campylobacter, and Yersinia, including resistance to antimicrobials important to public health, such as macrolides. Despite improvements in regulations, standards, policies, practices, and zoonotic awareness, occupational exposures to and illnesses due to zoonotic pathogens continue to be reported and, given the documented prevalences of AMR, constitute an occupational and public health risk. However, published literature is sparse, thus indicating the need for veterinarians to proactively monitor AMR in dangerous zoonotic bacteria, to enable veterinarians to make more informed decisions to maximize antimicrobial therapy and minimize occupational risk.

  6. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil

    Science.gov (United States)

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity. PMID:26000025

  7. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil.

    Science.gov (United States)

    Novy, Pavel; Davidova, Hana; Serrano-Rojero, Cecilia Suqued; Rondevaldova, Johana; Pulkrabek, Josef; Kokoska, Ladislav

    2015-01-01

    Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae), is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47%) as the main constituent followed by thymol (7.97%), myristic acid (4.71%), linalool (4.65%), and anethole (4.09%). The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity.

  8. Composition and Antimicrobial Activity of Euphrasia rostkoviana Hayne Essential Oil

    Directory of Open Access Journals (Sweden)

    Pavel Novy

    2015-01-01

    Full Text Available Eyebright, Euphrasia rostkoviana Hayne (Scrophulariaceae, is a medicinal plant traditionally used in Europe for the treatment of various health disorders, especially as eyewash to treat eye ailments such as conjunctivitis and blepharitis that can be associated with bacterial infections. Some Euphrasia species have been previously reported to contain essential oil. However, the composition and bioactivity of E. rostkoviana oil are unknown. Therefore, in this study, we investigated the chemical composition and antimicrobial activity of the eyebright essential oil against some organisms associated with eye infections: Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Staphylococcus aureus, S. epidermidis, Pseudomonas aeruginosa, and Candida albicans. GC-MS analysis revealed more than 70 constituents, with n-hexadecanoic acid (18.47% as the main constituent followed by thymol (7.97%, myristic acid (4.71%, linalool (4.65%, and anethole (4.09%. The essential oil showed antimicrobial effect against all organisms tested with the exception of P. aeruginosa. The best activity was observed against all Gram-positive bacteria tested with the minimum inhibitory concentrations of 512 µg/mL. This is the first report on the chemical composition of E. rostkoviana essential oil and its antimicrobial activity.

  9. Dominant obligate anaerobes revealed in lower respiratory tract infection in horses by 16S rRNA gene sequencing.

    Science.gov (United States)

    Kinoshita, Yuta; Niwa, Hidekazu; Katayama, Yoshinari; Hariu, Kazuhisa

    2014-04-01

    Obligate anaerobes are important etiological agents in pneumonia or pleuropneumonia in horses, because they are isolated more commonly from ill horses that have died or been euthanized than from those that survive. We performed bacterial identification and antimicrobial susceptibility testing for obligate anaerobes to establish effective antimicrobial therapy. We used 16S rRNA gene sequencing to identify 58 obligate anaerobes and compared the results with those from a phenotypic identification kit. The identification results of 16S rRNA gene sequencing were more reliable than those of the commercial kit. We concluded that genera Bacteroides and Prevotella-especially B. fragilis and P. heparinolytica-are dominant anaerobes in lower respiratory tract infection in horses; these organisms were susceptible to metronidazole, imipenem and clindamycin.

  10. A European study on the relationship between antimicrobial use and antimicrobial resistance

    NARCIS (Netherlands)

    Bronzwaer, SLAM; Cars, O; Buchholz, U; Molstad, S; Goettsch, W; Veldhuijzen, IK; Kool, JL; Sprenger, MJW; Degener, JE

    In Europe, antimicrobial resistance has been monitored since 1998 by the European Antimicrobial Resistance Surveillance System (EARSS). We examined the relationship between penicillin nonsusceptibility of invasive isolates of Streptococcus pneumoniae and antibiotic sales. Information was collected

  11. A high-throughput microfluidic dental plaque biofilm system to visualize and quantify the effect of antimicrobials

    Science.gov (United States)

    Nance, William C.; Dowd, Scot E.; Samarian, Derek; Chludzinski, Jeffrey; Delli, Joseph; Battista, John; Rickard, Alexander H.

    2013-01-01

    Objectives Few model systems are amenable to developing multi-species biofilms in parallel under environmentally germane conditions. This is a problem when evaluating the potential real-world effectiveness of antimicrobials in the laboratory. One such antimicrobial is cetylpyridinium chloride (CPC), which is used in numerous over-the-counter oral healthcare products. The aim of this work was to develop a high-throughput microfluidic system that is combined with a confocal laser scanning microscope (CLSM) to quantitatively evaluate the effectiveness of CPC against oral multi-species biofilms grown in human saliva. Methods Twenty-four-channel BioFlux microfluidic plates were inoculated with pooled human saliva and fed filter-sterilized saliva for 20 h at 37°C. The bacterial diversity of the biofilms was evaluated by bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). The antimicrobial/anti-biofilm effect of CPC (0.5%–0.001% w/v) was examined using Live/Dead stain, CLSM and 3D imaging software. Results The analysis of biofilms by bTEFAP demonstrated that they contained genera typically found in human dental plaque. These included Aggregatibacter, Fusobacterium, Neisseria, Porphyromonas, Streptococcus and Veillonella. Using Live/Dead stain, clear gradations in killing were observed when the biofilms were treated with CPC between 0.5% and 0.001% w/v. At 0.5% (w/v) CPC, 90% of the total signal was from dead/damaged cells. Below this concentration range, less killing was observed. In the 0.5%–0.05% (w/v) range CPC penetration/killing was greatest and biofilm thickness was significantly reduced. Conclusions This work demonstrates the utility of a high-throughput microfluidic–CLSM system to grow multi-species oral biofilms, which are compositionally similar to naturally occurring biofilms, to assess the effectiveness of antimicrobials. PMID:23800904

  12. Distribution and antimicrobial potential of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L.

    Science.gov (United States)

    Mishra, Vineet Kumar; Singh, Garima; Passari, Ajit Kumar; Yadav, Mukesh Kumar; Gupta, Vijai Kumar; Singh, Bhim Pratap

    2016-03-01

    Distributions of endophytic fungi associated with ethnomedicinal plant Melastoma malabathricum L. was studied and 91 isolates belonging to 18 genera were recovered. The isolates were distributed to sordariomycetes (62.63%), dothideomycetes (19.78%), eurotiomycetes (7.69%), zygomycetes (4.19%), agaricomycetes (1.09%), and mycelia sterilia (4.39%). Based on colony morphology and examination of spores, the isolates were classified into 18 taxa, of which Colletotrichum, Phomopsis and Phoma were dominant, their relative frequencies were 23.07%, 17.58% and 12.08% respectively. The colonization rate of endophytic fungi was determined and found to be significantly higher in leaf segments (50.76%), followed by root (41.53%) and stem tissues (27.69%). All the isolates were screened for antimicrobial activity and revealed that 26.37% endophytic fungi were active against one or more pathogens. Twenty four isolates showing significant antimicrobial activity were identified by sequencing the ITS1-5.8S-ITS2 region of rRNA gene. Results indicated that endophytic fungi associated with leaf were functionally versatile as they showed antimicrobial activity against most of the tested pathogens. The endophytic fungi Diaporthe phaseolorum var. meridionalis (KF193982) inhibited all the tested bacterial pathogens, whereas, Penicillium chermesinum (KM405640) displayed most significant antifungal activity. This seems to be the first hand report to understand the distribution and antimicrobial ability of endophytic fungi from ethno-medicinal plant M. malabathricum.

  13. Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes†

    Science.gov (United States)

    Vera, D. Mariano A.; Haynes, Mark H; Ball, Anthony R.; Dai, D. Tianhong; Astrakas, Christos; Kelso, Michael J; Hamblin, Michael R; Tegos, George P.

    2012-01-01

    Conventional antimicrobial strategies have become increasingly ineffective due to the emergence of multidrug resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered the exploration of alternative treatments and unconventional approaches towards controlling microbial infections. Photodynamic therapy was originally established as an anti-cancer modality and is currently used in the treatment of age related macular degeneration. The concept of photodynamic inactivation requires cell exposure to light energy, typically wavelengths in the visible region that causes the excitation of photosensitizer molecules either exogenous or endogenous, which results in the production of reactive oxygen species. ROS produce cell inactivation and death through modification of intracellular components. The versatile characteristics of PDT prompted its investigation as an anti-infective discovery platform. Advances in understanding of microbial physiology have shed light on a series of pathways, and phenotypes that serve as putative targets for antimicrobial drug discovery. Investigations of these phenotypic elements in concert with PDT have been reported focused on multidrug efflux systems, biofilms, virulence and pathogenesis determinants. In many instances the results are promising but only preliminary and require further investigation. This review discusses the different antimicrobial PDT strategies and highlights the need for highly informative and comprehensive discovery approaches. PMID:22242675

  14. Diversity, evolution and medical applications of insect antimicrobial peptides

    Science.gov (United States)

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged

    2016-01-01

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus. We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides. The article is part of the themed issue ‘Evolutionary ecology of arthropod antimicrobial peptides’. PMID:27160593

  15. Diversity, evolution and medical applications of insect antimicrobial peptides.

    Science.gov (United States)

    Mylonakis, Eleftherios; Podsiadlowski, Lars; Muhammed, Maged; Vilcinskas, Andreas

    2016-05-26

    Antimicrobial peptides (AMPs) are short proteins with antimicrobial activity. A large portion of known AMPs originate from insects, and the number and diversity of these molecules in different species varies considerably. Insect AMPs represent a potential source of alternative antibiotics to address the limitation of current antibiotics, which has been caused by the emergence and spread of multidrug-resistant pathogens. To get more insight into AMPs, we investigated the diversity and evolution of insect AMPs by mapping their phylogenetic distribution, allowing us to predict the evolutionary origins of selected AMP families and to identify evolutionarily conserved and taxon-specific families. Furthermore, we highlight the use of the nematode Caenorhabditis elegans as a whole-animal model in high-throughput screening methods to identify AMPs with efficacy against human pathogens, including Acinetobacter baumanii and methicillin-resistant Staphylococcus aureus We also discuss the potential medical applications of AMPs, including their use as alternatives for conventional antibiotics in ectopic therapies, their combined use with antibiotics to restore the susceptibility of multidrug-resistant pathogens, and their use as templates for the rational design of peptidomimetic drugs that overcome the disadvantages of therapeutic peptides.The article is part of the themed issue 'Evolutionary ecology of arthropod antimicrobial peptides'. © 2016 The Authors.

  16. A review on using essential oil of Labiatae species in food products

    Directory of Open Access Journals (Sweden)

    M. Kazeminia

    2017-04-01

    Full Text Available Background: Medicinal herbs have been widely used due to antimicrobial, antioxidant properties and less harmful than of chemical composition. The carcinogenic effects of chemical compounds has increased the use of medicinal plants. Also proven carcinogenic chemical composition, the importance of the use of medicinal plants has increased. Objective: This study was performed on the application of the Lamiaceae family plants in the food industry. Methods: In this study, a review of 428 studies about functional properties essential oil of Lamiaceae family plants in the food industry from 2006 to 2016 (a decade, were studied. The information was collected with referred to databases Pub Med, Science Direct, Elsevier, SID, MagIran, Civilica, the World Health Organization, Food and Agriculture Organization of the United Nations based on keywords essential oil, Lamiaceae species, antioxidant activity and antimicrobial effect. Findings: In the past, Lamiaciae family herbs just used as flavoring agents in some dairy products (yogurt drink and yogurt. With the passage of time and advancement of science, the importance of protecting this species was appeared as far as antimicrobial and antioxidant prevailed on the taste and smell of this species. Conclusion: According to the previous studies, Lamiaceae family essential oil can be applied as an antimicrobial and antioxidant agent in food or packing material. It seems Lamiaceae family essential oil and extracts can reduce and prevent the growth of pathogenic microbes in food, but further studies are recommended.

  17. Association Between Antimicrobial Resistance in Escherichia coli Isolates from Food Animals and Blood Stream Isolates from Humans in Europe: An Ecological Study

    DEFF Research Database (Denmark)

    Vieira, Antonio; Collignon, Peter; Aarestrup, Frank Møller

    2011-01-01

    Background: In addition to medical antimicrobial usage, the use of antimicrobials in food animals contributes to the occurrence of resistance among some bacterial species isolated from infections in humans. Recently, several studies have indicated that a large proportion of Escherichia coli causing...... infections in humans, especially those resistant to antimicrobials, have an animal origin.Methods: We analyzed the correlation between the prevalence of antimicrobial resistance in E. coli isolates from blood stream infections in humans and in E. coli isolates from poultry, pigs, and cattle between 2005...... and 2008 for 11 countries, using available surveillance data. We also assessed the correlation between human antimicrobial usage and the occurrence of resistance in E. coli isolates from blood stream infections.Results: Strong and significant correlations between prevalences of resistance to ampicillin (r...

  18. In vitro anti-microbial activity of extracts from the callus cultures of some Nigella species

    Czech Academy of Sciences Publication Activity Database

    Landa, P.; Maršík, Petr; Vaněk, Tomáš; Rada, V.; Kokoška, L.

    2006-01-01

    Roč. 61, č. 3 (2006), s. 285-288 ISSN 0006-3088 R&D Projects: GA ČR(CZ) GA525/02/0257; GA MŠk(CZ) 1P04OC926.001 Institutional research plan: CEZ:AV0Z40550506 Keywords : Nigella * callus culture * antimicrobial activity Subject RIV: CC - Organic Chemistry Impact factor: 0.213, year: 2006

  19. Antimicrobial Resistance of Faecal Escherichia coli Isolates from Pig Farms with Different Durations of In-feed Antimicrobial Use.

    Science.gov (United States)

    Gibbons, J F; Boland, F; Egan, J; Fanning, S; Markey, B K; Leonard, F C

    2016-05-01

    Antimicrobial use and resistance in animal and food production are of concern to public health. The primary aims of this study were to determine the frequency of resistance to 12 antimicrobials in Escherichia coli isolates from 39 pig farms and to identify patterns of antimicrobial use on these farms. Further aims were to determine whether a categorization of farms based on the duration of in-feed antimicrobial use (long-term versus short-term) could predict the occurrence of resistance on these farms and to identify the usage of specific antimicrobial drugs associated with the occurrence of resistance. Escherichia coli were isolated from all production stages on these farms; susceptibility testing was carried out against a panel of antimicrobials. Antimicrobial prescribing data were collected, and farms were categorized as long term or short term based on these. Resistance frequencies and antimicrobial use were tabulated. Logistic regression models of resistance to each antimicrobial were constructed with stage of production, duration of antimicrobial use and the use of 5 antimicrobial classes included as explanatory variables in each model. The greatest frequencies of resistance were observed to tetracycline, trimethoprim/sulphamethoxazole and streptomycin with the highest levels of resistance observed in isolates from first-stage weaned pigs. Differences in the types of antimicrobial drugs used were noted between long-term and short-term use farms. Categorization of farms as long- or short-term use was sufficient to predict the likely occurrence of resistance to 3 antimicrobial classes and could provide an aid in the control of resistance in the food chain. Stage of production was a significant predictor variable in all models of resistance constructed and did not solely reflect antimicrobial use at each stage. Cross-selection and co-selection for resistance was evident in the models constructed, and the use of trimethoprim/sulphonamide drugs in particular was

  20. Comparative synthesis and antimicrobial action of silver nanoparticles and silver nitrate

    International Nuclear Information System (INIS)

    Mosselhy, Dina A.; El-Aziz, Mohamed Abd; Hanna, Magdy; Ahmed, Mohamed A.; Husien, Mona M.; Feng, Qingling

    2015-01-01

    The high wave of antibiotic bacterial resistance has addressed an importance for administration of different antibacterial agents, as silver nanoparticles (Ag NPs). However, many investigators still suffer conflict in the mechanistic antimicrobial action of Ag NPs and Ag + ions. In this regard, our study investigated the comparative antimicrobial action of different sizes of Ag NPs as 8 (nAg1) and 29 (nAg2) nm, in comparison with silver nitrate (AgNO 3 ) against five different bacterial species; Aeromonas hydrophila (A. hydrophila), Pseudomonas putida (Ps. putida), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) using agar diffusion assay and minimum inhibitory concentration (MIC). The key role of the size of nanomaterials was detected, as the smaller Ag NPs (nAg1) showed more antimicrobial action than the larger particles. Transmission electron microscopy (TEM) studies demonstrated the different mechanistic antibacterial actions of Ag NPs and AgNO 3 . The effect of combining Ag NPs with antibiotics was also investigated. Synergistic effect of combining Ag NPs with ampicillin was detected against S. aureus, in a size-dependent manner as well. To summarize, our results point towards the major role played by the size of Ag NPs in their antimicrobial effects and the different toxic mechanisms of actions induced by Ag NPs and AgNO 3

  1. Comparative synthesis and antimicrobial action of silver nanoparticles and silver nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Mosselhy, Dina A. [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering (China); El-Aziz, Mohamed Abd; Hanna, Magdy [Cairo University, Department of Fish Diseases and Management, Faculty of Veterinary Medicine (Egypt); Ahmed, Mohamed A. [Cairo University, Material Science Laboratory (1), Physics Department, Faculty of Science (Egypt); Husien, Mona M. [Animal Health Research Institute, Microbiological Unit, Fish Diseases Department (Egypt); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [Tsinghua University, State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering (China)

    2015-12-15

    The high wave of antibiotic bacterial resistance has addressed an importance for administration of different antibacterial agents, as silver nanoparticles (Ag NPs). However, many investigators still suffer conflict in the mechanistic antimicrobial action of Ag NPs and Ag{sup +} ions. In this regard, our study investigated the comparative antimicrobial action of different sizes of Ag NPs as 8 (nAg1) and 29 (nAg2) nm, in comparison with silver nitrate (AgNO{sub 3}) against five different bacterial species; Aeromonas hydrophila (A. hydrophila), Pseudomonas putida (Ps. putida), Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Bacillus subtilis (B. subtilis) using agar diffusion assay and minimum inhibitory concentration (MIC). The key role of the size of nanomaterials was detected, as the smaller Ag NPs (nAg1) showed more antimicrobial action than the larger particles. Transmission electron microscopy (TEM) studies demonstrated the different mechanistic antibacterial actions of Ag NPs and AgNO{sub 3}. The effect of combining Ag NPs with antibiotics was also investigated. Synergistic effect of combining Ag NPs with ampicillin was detected against S. aureus, in a size-dependent manner as well. To summarize, our results point towards the major role played by the size of Ag NPs in their antimicrobial effects and the different toxic mechanisms of actions induced by Ag NPs and AgNO{sub 3}.

  2. Comparative synthesis and antimicrobial action of silver nanoparticles and silver nitrate

    Science.gov (United States)

    Mosselhy, Dina A.; El-Aziz, Mohamed Abd; Hanna, Magdy; Ahmed, Mohamed A.; Husien, Mona M.; Feng, Qingling

    2015-12-01

    The high wave of antibiotic bacterial resistance has addressed an importance for administration of different antibacterial agents, as silver nanoparticles (Ag NPs). However, many investigators still suffer conflict in the mechanistic antimicrobial action of Ag NPs and Ag+ ions. In this regard, our study investigated the comparative antimicrobial action of different sizes of Ag NPs as 8 (nAg1) and 29 (nAg2) nm, in comparison with silver nitrate (AgNO3) against five different bacterial species; Aeromonas hydrophila ( A. hydrophila), Pseudomonas putida ( Ps. putida), Escherichia coli ( E. coli), Staphylococcus aureus ( S. aureus), and Bacillus subtilis ( B. subtilis) using agar diffusion assay and minimum inhibitory concentration (MIC). The key role of the size of nanomaterials was detected, as the smaller Ag NPs (nAg1) showed more antimicrobial action than the larger particles. Transmission electron microscopy (TEM) studies demonstrated the different mechanistic antibacterial actions of Ag NPs and AgNO3. The effect of combining Ag NPs with antibiotics was also investigated. Synergistic effect of combining Ag NPs with ampicillin was detected against S. aureus, in a size-dependent manner as well. To summarize, our results point towards the major role played by the size of Ag NPs in their antimicrobial effects and the different toxic mechanisms of actions induced by Ag NPs and AgNO3.

  3. Phenolic profile and antimicrobial activities to selected microorganisms of some wild medical plant from Slovakia

    Directory of Open Access Journals (Sweden)

    Lukáš Hleba

    2014-08-01

    Full Text Available Objective: To investigate the chemical composition and antimicrobial activity of the methanol extracts of Tussilago farfara (T. farfara, Equisetum arvense, Sambucus nigra (S. nigra and Aesculus hippocastanum. Methods: The antimicrobial activities of the extracts against Enterococcus raffinosus, Escherichia coli, Lactobacillus rhamnosus, Pseudomonas aeruginosa, Serratia rubidaea, Saccharomyces cerevisiae and Staphylococcus epidermis were determined by the microbroth dilution method according to Clinical and Laboratory Standards Institute, while the concentrations of main phenolic acids and flavonoids in the form of trimethylsilyl ethers were analysed using gas chromatography-mass spectrometry. The probit analysis was used for statistical evaluation. Results: Of the 4 plant tested, all extracts showed a significant antimicrobial activity against one or more species of examined microorganisms. The most active antimicrobial plant extract was gathered from T. farfara, followed by Aesculus hippocastanum and Equisetum arvense. The extract from S. nigra showed no antimicrobial effects. The flavonoids quercetin and kaempferol, as well as several phenolic acids (p-hydroxybenzoic acid, gallic acid, ferulic acid and caffeic acid were identified in all extracts. The highest concentrations of bioactive compounds were detected in the extracts of T. farfara (9 587.6 µg/mg quercetin and 4 875.3 µg/mg caffeic acid as well as S. nigra (4788.8 µg/mg kaempferol. Conclusions: We can state that the methanolic plant extract of T. farfara showed the strongest antimicrobial activity against Saccharomyces cerevisiae as well as other tested microorganisms. At the same time, a good antimicrobial activity was found in the other medical plant extracts as well. No antimicrobial effect of the S. nigra extract was found with respect to the growth of Pseudomonas aeruginosa, Enterococcus raffinosus and Saccharomyces cerevisiae.

  4. Suggested guidelines for using systemic antimicrobials in bacterial skin infections: part?2? antimicrobial choice, treatment regimens and compliance

    OpenAIRE

    Beco, L.; Guagu?re, E.; M?ndez, C. Lorente; Noli, C.; Nuttall, T.; Vroom, M.

    2013-01-01

    Systemic antimicrobials are critically important in veterinary healthcare, and resistance is a major concern. Antimicrobial stewardship will be important in maintaining clinical efficacy by reducing the development and spread of antimicrobial resistance. Bacterial skin infections are one of the most common reasons for using systemic antimicrobials in dogs and cats. Appropriate management of these infections is, therefore, crucial in any policy for responsible antimicrobial use. The goals of t...

  5. Antimicrobial and enzymatic activity of anemophilous fungi of a public university in Brazil

    Directory of Open Access Journals (Sweden)

    LAUREANA V. SOBRAL

    2017-10-01

    Full Text Available ABSTRACT To the fungal microbiota the UFPE and biotechnological potential enzymatic and antimicrobial production. Air conditioned environments were sampled using a passive sedimentation technique, the air I ratio and the presence of aflatoxigenic strains evaluated for ANVISA. Icelles were to determine the enzymatic activity of lipase, amylase and protease metabolic liquids to determine antimicrobial activity. Diversity was observed in all CAV environments, CFU/m3 ranged from 14 to 290 and I/E ratio from 0.1 to 1.5. The of the fungal genera were: Aspergillus (50%, Penicillium (21%, Talaromyces (14%, Curvularia and Paecilomyces (7% each. Aspergillus sydowii (Bainier & Sartory Thom & Church presented enzymatic activity and the Talaromyces purpureogenus Samson, Yilmaz, Houbraken, Spierenb., Seifert, Peterson, Varga & Frisvad presented antibacterial activity against all bacteria that all environments present fungal species biodiversity no toxigenic or pathogenic fungi were found, according to ANVISA legislation for conditioned environments and airborne filamentous fungi present potential for enzymatic and antimicrobial activity.

  6. The antimicrobial action of resveratrol against Listeria monocytogenes in food-based models and its antibiofilm properties.

    Science.gov (United States)

    Ferreira, Susana; Domingues, Fernanda

    2016-10-01

    Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural phytoalexin synthesized by plants in response to stress. This compound has several beneficial documented properties, namely anti-inflammatory, antioxidant, neuroprotective and antimicrobial activities. In this study the antimicrobial activity of resveratrol against Listeria monocytogenes and Listeria innocua was investigated. Resveratrol had a minimum inhibitory concentration of 200 µg mL(-1) for the tested strains, with time-kill curves demonstrating bacteriostatic activity. Inhibition of biofilm formation was also assessed, with resveratrol strongly inhibiting biofilm formation by both species even at subinhibitory concentrations. Overall, resveratrol showed antimicrobial properties on planktonic cells and on biofilm formation ability. Considering the potential use of resveratrol as a food preservative, the antimicrobial efficacy of resveratrol in food was studied in milk, lettuce leaf model and chicken juice. Resveratrol retained greater efficacy in both lettuce leaf model and chicken juice, but milk had a negative impact on its antilisterial activity, indicating a possible reduction of resveratrol availability in milk. This study reinforces resveratrol as an antimicrobial agent, pointing out its antibiofilm activity and its potential use as preservative in some food matrices. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Usage of antimicrobials and occurrence of antimicrobial resistance among bacteria from mink

    DEFF Research Database (Denmark)

    Pedersen, Karl; Hammer, Anne Sofie; Sørensen, Charlotte Mark

    2009-01-01

    , whereas resistance to other antimicrobials was rare. All P aeruginosa were sensitive to gentamicin and colistin and sensitive or intermediate to enrofloxacin. whereas most isolates were resistant to all other antimicrobials. All P. multocida and haemolytic streptococci were sensitive to penicillin...

  8. Antibiotic susceptibility of enterobacteriaceae species isolated from mastitic milk in Algeria

    Directory of Open Access Journals (Sweden)

    R Saidi

    2014-12-01

    Conclusions: We conclude that Enterobacteriaceae species from bovine milk presented significantly distinct antimicrobial resistance profiles, evaluated by phenotypic test, which has implications for treatment and management decisions.

  9. Expression of recombinant Arabian camel lactoferricin-related peptide in Pichia pastoris and its antimicrobial identification.

    Science.gov (United States)

    Chahardooli, Mahmood; Niazi, Ali; Aram, Farzaneh; Sohrabi, Seyyed Mohsen

    2016-01-30

    Lactoferricin (LFcin) is a strong cationic peptide released from the N-terminus of lactoferrin by gastric pepsin digestion. LFcin has some important properties, including high antimicrobial activity. To date, lactoferricins have been isolated and characterised from various animal species, but not from camel. The aim of this study was to characterise and express recombinant camel lactoferricin (LFcinC) in Pichia pastoris and investigate its antimicrobial activity. After methanol induction, LFcinC was expressed and secreted into a culture broth medium and the results determined by concentrated supernatant culture medium showed high antimicrobial activity against the following microorganisms: Escherichia coli PTCC 1330 (ATCC 8739), Staphylococcus aureus PTCC 1112 (ATCC 6538), Pseudomonas aeruginosa PTCC 1074 (ATCC 9027), Bacillus subtilis PTCC 1023 (ATCC 6633), and Candida albicans PTCC 5027 (ATCC 10231). Thermal stability was clarified with antibacterial activity against Escherichia coli PTCC 1330 (ATCC 8739). Results confirmed that camel lactoferricin had suitable antimicrobial activity and its production by Pichia pastoris can be used for recombinant production. © 2015 Society of Chemical Industry.

  10. Use of large-scale veterinary data for the investigation of antimicrobial prescribing practices in equine medicine.

    Science.gov (United States)

    Welsh, C E; Parkin, T D H; Marshall, J F

    2017-07-01

    As antimicrobial resistant bacterial strains continue to emerge and spread in human and animal populations, understanding prescription practices is key in benchmarking current performance and setting goals. Antimicrobial prescription (AP) in companion veterinary species is widespread, but is neither monitored nor restricted in the USA and Canada. The veterinary use of certain antimicrobial classes is discouraged in some countries, in the hope of preserving efficacy for serious human infections. The aim of this study was to ascertain the rate of prescription of a number of 'reserved' antimicrobials in a first-opinion US and Canadian horse cohort, and identify trends in their empirical use. Retrospective cohort study. A large convenience sample of electronic medical records (2006-2012) was interrogated using text mining to identify enrofloxacin, clarithromycin and ceftiofur prescriptions. Time series analysis and logistic regression were used to identify trends and risk factors for prescription. Prescription of these antimicrobials as a first-line intervention, without culture and sensitivity testing (CST), was common in this population. Enrofloxacin prescriptions were found to increase over the study period, and there was evidence of either a reducing, or static trend in the proportion of reserved APs informed by CST. Dose adequacy could not be included due to the nature of the data used. Empirical use of reserved antimicrobials was common in this population, and further advice and guidance should be issued to first-opinion veterinarians to safeguard antimicrobial efficacy. © 2016 EVJ Ltd.

  11. Antimicrobial properties and death-inducing mechanisms of saccharomycin, a biocide secreted by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Branco, Patrícia; Francisco, Diana; Monteiro, Margarida

    2017-01-01

    . cerevisiae strains also secrete natural biocide fractions during alcoholic fermentation, although at different levels, which correlates with the antagonistic effect exerted against non-Saccharomyces yeasts. We, therefore, term this biocide saccharomycin. The native AMPs were purified by gel......-filtration chromatography and its antimicrobial activity was compared to that exhibited by chemically synthesized analogues (AMP1 and AMP2/3). Results show that the antimicrobial activity of the native AMPs is significantly higher than that of the synthetic analogues (AMP1 and AMP2/3), but a conjugated action of the two...... species during alcoholic fermentations....

  12. Cationic Antimicrobial Polymers and Their Assemblies

    Science.gov (United States)

    Carmona-Ribeiro, Ana Maria; de Melo Carrasco, Letícia Dias

    2013-01-01

    Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs). The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications. PMID:23665898

  13. Cationic Antimicrobial Polymers and Their Assemblies

    Directory of Open Access Journals (Sweden)

    Ana Maria Carmona-Ribeiro

    2013-05-01

    Full Text Available Cationic compounds are promising candidates for development of antimicrobial agents. Positive charges attached to surfaces, particles, polymers, peptides or bilayers have been used as antimicrobial agents by themselves or in sophisticated formulations. The main positively charged moieties in these natural or synthetic structures are quaternary ammonium groups, resulting in quaternary ammonium compounds (QACs. The advantage of amphiphilic cationic polymers when compared to small amphiphilic molecules is their enhanced microbicidal activity. Besides, many of these polymeric structures also show low toxicity to human cells; a major requirement for biomedical applications. Determination of the specific elements in polymers, which affect their antimicrobial activity, has been previously difficult due to broad molecular weight distributions and random sequences characteristic of radical polymerization. With the advances in polymerization control, selection of well defined polymers and structures are allowing greater insight into their structure-antimicrobial activity relationship. On the other hand, antimicrobial polymers grafted or self-assembled to inert or non inert vehicles can yield hybrid antimicrobial nanostructures or films, which can act as antimicrobials by themselves or deliver bioactive molecules for a variety of applications, such as wound dressing, photodynamic antimicrobial therapy, food packing and preservation and antifouling applications.

  14. The risk of some veterinary antimicrobial agents on public health associated with antimicrobial resistance and their molecular basis

    OpenAIRE

    Haihong Hao; Zahid Iqbal; Yulian Wang; Guyue Cheng; Zong-Hui Yuan

    2016-01-01

    The risk of antimicrobial agents used in food-producing animals on public health associated with antimicrobial resistance continues to be a current topic of discussion as related to animal and human public health. In the present review, resistance monitoring data and risk assessment result of some important antimicrobial agents were cited to elucidate the possible association of antimicrobial use in food animals and antimicrobial resistance in human. From the selected examples, it was obvious...

  15. Antimicrobial resistance of Enterococcus faecium strains isolated from commercial probiotic products used in cattle and swine.

    Science.gov (United States)

    Amachawadi, Raghavendra G; Giok, Felicia; Shi, Xiaorong; Soto, Jose; Narayanan, Sanjeev K; Tokach, Mike D; Apley, Mike D; Nagaraja, T G

    2018-04-03

    Probiotics, an antibiotic alternative, are widely used as feed additives for performance benefits in cattle and swine production systems. Among bacterial species contained in probiotics, Enterococcus faecium is common. Antimicrobial resistance (AMR), particularly multidrug resistance, is a common trait among enterococci because of their propensity to acquire resistance and horizontally transfer AMR genes. Also, E. faecium is an opportunistic pathogen, and in the United States, it is the second most common nosocomial pathogen. There has been no published study on AMR and virulence potential in E. faecium contained in probiotic products used in cattle and swine in the United States. Therefore, our objectives were to determine phenotypic susceptibilities or resistance to antimicrobials, virulence genes (asa1, gelE, cylA, esp, and hyl) and assess genetic diversity of E. faecium isolated from commercial products. Twenty-two commercially available E. faecium-based probiotic products used in cattle (n = 13) and swine (n = 9) were procured and E. faecium was isolated and species confirmed. Antimicrobial susceptibility testing to determine minimum inhibitory concentrations was done by micro-broth dilution method using National Antimicrobial Resistance Monitoring Systems Gram-positive Sensititre panel plate (CMV3AGPF), and categorization of strains as susceptible or resistant was as per Clinical Laboratory and Standards Institute's guidelines. E. faecium strains from 7 products (3 for swine and 4 for cattle) were pan-susceptible to the 16 antimicrobials tested. Strains from 15 products (6 for swine and 9 for cattle) exhibited resistance to at least one antimicrobial and a high proportion of strains was resistant to lincomycin (10/22), followed by tetracycline (4/22), daptomycin (4/22), ciprofloxacin (4/22), kanamycin (3/22), and penicillin (2/22). Four strains were multidrug resistant, with resistant phenotypes ranging from 3 to 6 antimicrobials or class. None of the E

  16. Jellyfish blooms in China: Dominant species, causes and consequences

    International Nuclear Information System (INIS)

    Dong Zhijun; Liu Dongyan; Keesing, John K.

    2010-01-01

    Three jellyfish species, Aurelia aurita, Cyanea nozakii and Nemopilema nomurai, form large blooms in Chinese seas. We report on the distribution and increasing incidence of jellyfish blooms and their consequences in Chinese coastal seas and analyze their relationship to anthropogenically derived changes to the environment in order to determine the possible causes. A. aurita, C. nozakii and N. nomurai form blooms in the temperate Chinese seas including the northern East China Sea, Yellow Sea and Bohai Sea. N. nomurai forms offshore blooms while the other two species bloom mainly in inshore areas. Eutrophication, overfishing, habitat modification for aquaculture and climate change are all possible contributory factors facilitating plausible mechanisms for the proliferation of jellyfish blooms. In the absence of improvement in coastal marine ecosystem health, jellyfish blooms could be sustained and may even spread from the locations in which they now occur.

  17. Antimicrobial susceptibility of Brachyspira spp. isolated from commercial laying hens and free-living wild mallards (Anas platyrhynchos).

    Science.gov (United States)

    Jansson, Désirée S; Pringle, Märit

    2011-08-01

    In vitro antimicrobial susceptibility to tylosin, valnemulin, tiamulin, doxycycline, lincomycin and ampicillin was investigated by broth dilution in 48 Brachyspira spp. isolates from commercial laying hens (n=30) and free-living wild mallards (Anas platyrhynchos) (n=18). Presumed pathogens (Brachyspira alvinipulli, Brachyspira intermedia, Brachyspira pilosicoli), commensals (Brachyspira murdochii, Brachyspira innocens, "Brachyspira pulli"), and isolates of undetermined species affiliation were included. The laying hens had not been exposed to therapeutic levels of antimicrobials for at least 50 weeks before sampling, and low levels of environmental antimicrobial exposure were presumed in mallards. No isolates with decreased susceptibility to tylosin, valnemulin, tiamulin or doxycycline were found. Decreased susceptibility to lincomycin (minimum inhibitory concentration 16 µg/ml) was detected in two isolates (Brachyspira sp.) from laying hens. Five isolates showed decreased susceptibility to ampicillin (minimum inhibitory concentration 16 to >32 µg/ml), including two "B. pulli" and one B. alvinipulli from laying hens, and isolates of B. pilosicoli and "B. pulli" from mallards. Decreased susceptibility to ampicillin was associated with β-lactamase activity in four isolates. A new variant of a class D β-lactamase gene designated bla (oxa-192) was identified in a B. pilosicoli isolate of mallard origin. This is the first time the genetic basis for antimicrobial resistance is described in Brachyspira spp. from a free-living wild bird. Isolates displaying decreased susceptibility to ampicillin were accompanied by fully susceptible isolates of the same species or other genotypes within three laying hen flocks. This underlines the need for performing antimicrobial susceptibility tests on single clones/genotypes, and to analyse multiple isolates from the same flock.

  18. Genomic and functional techniques to mine the microbiome for novel antimicrobials and antimicrobial resistance genes.

    Science.gov (United States)

    Adu-Oppong, Boahemaa; Gasparrini, Andrew J; Dantas, Gautam

    2017-01-01

    Microbial communities contain diverse bacteria that play important roles in every environment. Advances in sequencing and computational methodologies over the past decades have illuminated the phylogenetic and functional diversity of microbial communities from diverse habitats. Among the activities encoded in microbiomes are the abilities to synthesize and resist small molecules, yielding antimicrobial activity. These functions are of particular interest when viewed in light of the public health emergency posed by the increase in clinical antimicrobial resistance and the dwindling antimicrobial discovery and approval pipeline, and given the intimate ecological and evolutionary relationship between antimicrobial biosynthesis and resistance. Here, we review genomic and functional methods that have been developed for accessing the antimicrobial biosynthesis and resistance capacity of microbiomes and highlight outstanding examples of their applications. © 2016 New York Academy of Sciences.

  19. Occurrence of 3 Bordetella species during an outbreak of cough illness in Ohio: epidemiology, clinical features, laboratory findings and antimicrobial susceptibility.

    Science.gov (United States)

    Spicer, Kevin B; Salamon, Doug; Cummins, Carol; Leber, Amy; Rodgers, Loren E; Marcon, Mario J

    2014-07-01

    An increase in laboratory diagnosis of pertussis was noted in central Ohio during 2010. Diagnosis was made using a polymerase chain reaction assay targeting the multicopy insertion sequence IS481, which is found in both Bordetella pertussis (Bp) and Bordetella holmesii (Bh). An increase in specimens testing positive for Bordetella parapertussis (Bpp) using insertion sequence IS1001 was also noted. Nasopharyngeal swab specimens submitted April 1, 2010, to March 31, 2011, were tested using a multiplex polymerase chain reaction assay for Bp/Bh (IS481) and Bpp followed by singleplex assays for Bp and Bh. A subgroup of specimens was also cultured for Bordetella species, and antimicrobial susceptibility testing was performed on recovered organisms. Demographic and clinical features were compared for patients with Bp, Bh and Bpp. Of 520 IS481-positive specimens, 214 (41.1%) were positive for Bp, 79 (15.2%) were positive for Bh and 5 (1.0%) were positive for both Bp and Bh; 222 (42.7%) were negative for both targets. An additional 220 specimens were positive for Bpp. Among a sample of 155 IS481-positive specimens, 40, 15 and 0 were culture positive for Bp, Bh and Bpp, respectively. Among a sample of 55 BparaIS1001-positive (Bpp) specimens, 22, 0 and 0 were culture positive for Bpp, Bp and Bh, respectively. All Bordetella species were susceptible to macrolide antibiotics. Patients with Bh were older than patients with Bp, who were older than those positive for Bpp (mean ages: 12.0, 8.0 and 4.2 years, respectively; P Bpp and 100 negative for Bordetella species), but did not differ statistically among the groups (χ = 5.1, P = 0.17). All 3 Bordetella species, Bp, Bh and Bpp, were detected during on outbreak of pertussis-like cough illness. There were noted differences in age and seasonality, but clinical features at the time of presentation did not allow clear differentiation of these infections. All Bordetella species recovered from culture and tested were susceptible in

  20. Antimicrobial resistance in the Bacteroides fragilis group in faecal samples from patients receiving broad-spectrum antibiotics

    DEFF Research Database (Denmark)

    Møller Hansen, Kia Cirkeline; Ferløv-Schwensen, Simon Andreas; Henriksen, Daniel Pilsgaard

    2017-01-01

    Members of the Bacteroides fragilis group are opportunistic pathogens and cause severe infections including bacteraemia. As increased levels of antimicrobial resistance in B. fragilis group bacteria can be detected years after administration of specific antibiotics, monitoring antimicrobial...... susceptibility in the gut microbiota could be important. The objectives of this study were to 1) investigate the distribution of species and the occurrence of reduced antimicrobial susceptibility in the B. fragilis group from patients treated at departments with a high level of antibiotic use, 2) to determine...... the prevalence of the carbapenem resistance gene cfiA in B. fragilis in this patient group, and 3) to determine the association between previous antibiotic treatment and reduced susceptibility to clindamycin, meropenem, metronidazole, and piperacillin-tazobactam. Consecutive faecal samples (n = 197) were...

  1. Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment.

    Science.gov (United States)

    Gómez, Diego; Azón, Ester; Marco, Noelia; Carramiñana, Juan J; Rota, Carmina; Ariño, Agustín; Yangüela, Javier

    2014-09-01

    A total of 336 Listeria isolates from ready-to-eat (RTE) meat products and meat-processing environments, consisting of 206 Listeria monocytogenes, and 130 Listeria innocua isolates, were characterized by disc diffusion assay and minimum inhibitory concentration (MIC) values for antimicrobial susceptibility against twenty antimicrobials. Resistance to one or two antimicrobials was observed in 71 L. monocytogenes isolates (34.5%), and 56 L. innocua isolates (43.1%). Multidrug resistance was identified in 24 Listeria isolates, 18 belonging to L. innocua (13.9%) and 6 to L. monocytogenes (2.9%). Oxacillin resistance was the most common resistance phenotype and was identified in 100% Listeria isolates. A medium prevalence of resistance to clindamycin (39.3% isolates) and low incidence of resistance to tetracycline (3.9% isolates) were also detected. Listeria isolates from RTE meat products displayed higher overall antimicrobial resistance (31.3%) than those from the environment (13.4%). All the strains assayed were sensitive to the preferred antibiotics used to treat listeriosis. Results showed that although antimicrobial resistance in L. monocytogenes still occurs at a low prevalence, L. innocua can form a reservoir of resistance genes which may transfer between bacterial species, including transference to organisms capable of causing disease in humans. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Behavioral approach to appropriate antimicrobial prescribing in hospitals: the Dutch Unique Method for Antimicrobial Stewardship (DUMAS) participatory intervention study.

    NARCIS (Netherlands)

    Sikkens, J.J.; Agtmael, M.A. van; Peters, E.J.G.; Lettinga, K.D.; Kuip, M. van der; Vandenbroucke-Grauls, C.M.J.E.; Wagner, C.; Kramer, M.H.H.

    2017-01-01

    Importance: Inappropriate antimicrobial prescribing leads to antimicrobial resistance and suboptimal clinical outcomes. Changing antimicrobial prescribing is a complex behavioral process that is not often taken into account in antimicrobial stewardship programs. Objective: To examine whether an

  3. The rhizospheres of traditional medicinal plants in Panxi, China, host a diverse selection of actinobacteria with antimicrobial properties.

    Science.gov (United States)

    Zhao, Ke; Penttinen, Petri; Chen, Qiang; Guan, Tongwei; Lindström, Kristina; Ao, Xiaoling; Zhang, Lili; Zhang, Xiaoping

    2012-06-01

    Actinobacteria are a prolific source of antibiotics. Since the rate of discovery of novel antibiotics is decreasing, actinobacteria from unique environments need to be explored. In particular, actinobacterial biocontrol strains from medicinal plants need to be studied as they can be a source of potent antibiotics. We combined culture-dependent and culture-independent methods in analyzing the actinobacterial diversity in the rhizosphere of seven traditional medicinal plant species from Panxi, China, and assessed the antimicrobial activity of the isolates. Each of the plant species hosted a unique set of actinobacterial strains. Out of the 64 morphologically distinct isolates, half were Streptomyces sp., eight were Micromonospora sp., and the rest were members of 18 actinobacterial genera. In particular, Ainsliaea henryi Diels. hosted a diverse selection of actinobacteria, although the 16S ribosomal RNA (rRNA) sequence identity ranges of the isolates and of the 16S rRNA gene clone library were not congruent. In the clone library, 40% of the sequences were related to uncultured actinobacteria, emphasizing the need to develop isolation methods to assess the full potential of the actinobacteria. All Streptomyces isolates showed antimicrobial activity. While the antimicrobial activities of the rare actinobacteria were limited, the growth of Escherichia coli, Verticillium dahliae, and Fusarium oxysporum were inhibited only by rare actinobacteria, and strains related to Saccharopolyspora shandongensis and Streptosporangium roseum showed broad antimicrobial activity.

  4. Antimicrobial Treatments and Efficacy

    Science.gov (United States)

    To limit exposure to indoor biological contamination a risk-management approach which employs various antimicrobial treatments can effectively control contaminants and reduce exposure. Antimicrobial treatment of biological contaminants, especially mold in buildings, it is often n...

  5. Net Primary Production and Carbon Stocks for Subarctic Mesic-Dry Tundras with Contrasting Microtopography, Altitude, and Dominant Species

    DEFF Research Database (Denmark)

    Campioli, Matteo; Michelsen, Anders; Demey, A

    2009-01-01

    Mesic-dry tundras are widespread in the Arctic but detailed assessments of net primary production (NPP) and ecosystem carbon (C) stocks are lacking. We addressed this lack of knowledge by determining the seasonal dynamics of aboveground vascular NPP, annual NPP, and whole-ecosystem C stocks in five...... mesic-dry tundras in Northern Sweden with contrasting microtopography, altitude, and dominant species. Those measurements were paralleled by the stock assessments of nitrogen (N), the limiting nutrient. The vascular production was determined by harvest or in situ growing units, whereas the nonvascular...... hermaphroditum is more productive than Cassiope tetragona vegetation. Although the large majority of the apical NPP occurred in early-mid season (85%), production of stems and evergreen leaves proceeded until about 2 weeks before senescence. Most of the vascular vegetation was belowground (80%), whereas most...

  6. Workshop report: the 2012 antimicrobial agents in veterinary medicine: exploring the consequences of antimicrobial drug use: a 3-D approach.

    Science.gov (United States)

    Martinez, M; Blondeau, J; Cerniglia, C E; Fink-Gremmels, J; Guenther, S; Hunter, R P; Li, X-Z; Papich, M; Silley, P; Soback, S; Toutain, P-L; Zhang, Q

    2014-02-01

    Antimicrobial resistance is a global challenge that impacts both human and veterinary health care. The resilience of microbes is reflected in their ability to adapt and survive in spite of our best efforts to constrain their infectious capabilities. As science advances, many of the mechanisms for microbial survival and resistance element transfer have been identified. During the 2012 meeting of Antimicrobial Agents in Veterinary Medicine (AAVM), experts provided insights on such issues as use vs. resistance, the available tools for supporting appropriate drug use, the importance of meeting the therapeutic needs within the domestic animal health care, and the requirements associated with food safety and food security. This report aims to provide a summary of the presentations and discussions occurring during the 2012 AAVM with the goal of stimulating future discussions and enhancing the opportunity to establish creative and sustainable solutions that will guarantee the availability of an effective therapeutic arsenal for veterinary species. © Published (2014). This article is a U.S. Government work and is in the public domain in the USA.

  7. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons

    International Nuclear Information System (INIS)

    Zhang, Yuping; Zhang, Chiqian; Parker, David B.; Snow, Daniel D.; Zhou, Zhi; Li, Xu

    2013-01-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3 × 10 −1 copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. - Highlights: • Partitioning of antimicrobials between water and sludge is compound specific. • Antimicrobial resistance genes occurred in both water and sludge. • The ARG abundance varied more substantially in swine lagoons than in cattle ponds. • Correlations between ARGs and antimicrobials are system dependent

  8. Occurrence of antimicrobials and antimicrobial resistance genes in beef cattle storage ponds and swine treatment lagoons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuping; Zhang, Chiqian [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States); Parker, David B. [USDA Meat Animal Research Center, Clay Center, NE (United States); Snow, Daniel D. [Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, NE (United States); Zhou, Zhi [Department of Civil and Environmental Engineering, National University of Singapore (Singapore); Li, Xu, E-mail: xuli@unl.edu [Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE (United States)

    2013-10-01

    Livestock manure treatment and storage structures are potential environmental sources of antimicrobials and antimicrobial resistance genes (ARGs). In this study, the occurrence of antimicrobials and ARGs was investigated in the water and the sludge compartments of beef cattle storage ponds and swine lagoons. Analysis was focused on two families of antimicrobials (sulfonamide and tetracycline) and the corresponding ARGs (sul1, sul2, tetO, tetQ and tetX). Results showed that the pseudo-partitioning coefficients of tetracyclines were higher than those of sulfonamides, suggesting different distributions of these two classes of antimicrobials between water and sludge. The ARGs tested were detected in nearly all ponds and lagoons, with the highest relative abundance in sul2 at 6.3 × 10{sup −1} copies per 16S rRNA gene. A positive correlation was observed between total sul genes and total sulfonamides in water while the correlation was negative in sludge. No significant correlation was found between total tet genes and total tetracyclines in either water or sludge, but significant correlations were observed for certain individual tet genes. Ammonia concentrations strongly correlated with all ARGs except tetX. This study provided quantitative information on the occurrence of antimicrobials and ARGs in the liquid and solid compartments of typical manure treatment and storage structures. - Highlights: • Partitioning of antimicrobials between water and sludge is compound specific. • Antimicrobial resistance genes occurred in both water and sludge. • The ARG abundance varied more substantially in swine lagoons than in cattle ponds. • Correlations between ARGs and antimicrobials are system dependent.

  9. Ash properties of some dominant Greek forest species

    International Nuclear Information System (INIS)

    Liodakis, S.; Katsigiannis, G.; Kakali, G.

    2005-01-01

    The elemental and chemical wood ash compositions of six dominant Greek fuels was investigated using a variety of techniques, including thermal gravimetric analysis (TG), differential thermal analysis (DTA), atomic absorption spectroscopy (AAS) and X-ray diffraction (XRD). In addition, the alkalinity of wood ash was determined by titration. The ash was prepared by combustion at low (600 deg. C), middle (800 deg. C) and high temperatures (1000 deg. C). The ash composition is very important because thousands of hectares of wildlands are burned annually in Greece. The resulting deposits affect soil properties (i.e., pH) and provide a source of inorganic constituents (i.e., Ca, K, Na, Mg, etc.), while the most soluble compounds (i.e., sodium and potassium hydroxides and carbonates) do not persist through the wet season. The samples selected were: Pinus halepensis (Aleppo pine), Pinus brutia (Calabrian pine), Olea europaea (Olive), Cupressus sempervirens (Italian cypress), Pistacia lentiscus (Mastic tree), Quercus coccifera (Holly oak)

  10. Ash properties of some dominant Greek forest species

    Energy Technology Data Exchange (ETDEWEB)

    Liodakis, S. [Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Engineering, National Technical University of Athens (NTUA), 9 Iroon Polytechniou Street, Athens 157 73 (Greece)]. E-mail: liodakis@central.ntua.gr; Katsigiannis, G. [Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Engineering, National Technical University of Athens (NTUA), 9 Iroon Polytechniou Street, Athens 157 73 (Greece); Kakali, G. [Laboratory of Inorganic and Analytical Chemistry, Department of Chemical Engineering, National Technical University of Athens (NTUA), 9 Iroon Polytechniou Street, Athens 157 73 (Greece)

    2005-10-15

    The elemental and chemical wood ash compositions of six dominant Greek fuels was investigated using a variety of techniques, including thermal gravimetric analysis (TG), differential thermal analysis (DTA), atomic absorption spectroscopy (AAS) and X-ray diffraction (XRD). In addition, the alkalinity of wood ash was determined by titration. The ash was prepared by combustion at low (600 deg. C), middle (800 deg. C) and high temperatures (1000 deg. C). The ash composition is very important because thousands of hectares of wildlands are burned annually in Greece. The resulting deposits affect soil properties (i.e., pH) and provide a source of inorganic constituents (i.e., Ca, K, Na, Mg, etc.), while the most soluble compounds (i.e., sodium and potassium hydroxides and carbonates) do not persist through the wet season. The samples selected were: Pinus halepensis (Aleppo pine), Pinus brutia (Calabrian pine), Olea europaea (Olive), Cupressus sempervirens (Italian cypress), Pistacia lentiscus (Mastic tree), Quercus coccifera (Holly oak)

  11. Antibiotics sensitivity profile of proteus species associated with ...

    African Journals Online (AJOL)

    Antibiotics sensitivity profile of proteus species associated with specific infections at University of Ilorin Teaching Hospital, Ilorin. ... Results of the antimicrobial sensitivity testing showed that Imipenem and Piperacillin antibiotics were the most effective against Proteus sppwith each having 100%, followed by Ceftazidime ...

  12. Antimicrobial activity and some phytochemical analysis of two extracts Vinca minor L.

    Directory of Open Access Journals (Sweden)

    Grujić Sandra M.

    2014-01-01

    Full Text Available This study investigated the antimicrobial activity as well as some phytochemical analysis of ethanol and diethyl ether extracts from plant species Vinca minor L. In vitro antimicrobial activity of extracts was studied on 20 strains of microorganisms (16 bacteria and four yeasts. Testing was performed by microdilution method and minimum inhibitory concentration (MIC and minimum microbicidal concentration (MMC were determined. The strongest antimicrobial activity was detected on G+ bacteria of the genus Bacillus. Tested G- bacteria and yeasts were not sensitive to the action of the extracts or the sensitivity was insignificant. Phytochemical analysis involved determining the amount of total phenolics, flavonoids and tannins, as well as the determination of antioxidant activity monitoring capability to neutralize free radicals (DPPH and the reductive potential. Phytochemical examination indicates that the total phenolic compounds were more in the ethanolic extract and the content of flavonoids and tannins marginally higher in the diethyl ether extract. The antioxidant activity (DPPH of the ethanolic extract of V. minor was significantly stronger as compared to the diethyl ether extract, and the reduction potential was approximately the same.

  13. Antimicrobial resistances do not affect colonization parameters of intestinal E. coli in a small piglet group

    Directory of Open Access Journals (Sweden)

    Schierack Peter

    2009-10-01

    Full Text Available Abstract Background Although antimicrobial resistance and persistence of resistant bacteria in humans and animals are major health concerns worldwide, the impact of antimicrobial resistance on bacterial intestinal colonization in healthy domestic animals has only been rarely studied. We carried out a retrospective analysis of the antimicrobial susceptibility status and the presence of resistance genes in intestinal commensal E. coli clones from clinically healthy pigs from one production unit with particular focus on effects of pheno- and/or genotypic resistance on different nominal and numerical intestinal colonization parameters. In addition, we compared the occurrence of antimicrobial resistance phenotypes and genotypes with the occurrence of virulence associated genes typical for extraintestinal pathogenic E. coli. Results In general, up to 72.1% of all E. coli clones were resistant to ampicillin, chloramphenicol, kanamycin, streptomycin, sulfamethoxazole or tetracycline with a variety of different resistance genes involved. There was no significant correlation between one of the nominal or numerical colonization parameters and the absence or presence of antimicrobial resistance properties or resistance genes. However, there were several statistically significant associations between the occurrence of single resistance genes and single virulence associated genes. Conclusion The demonstrated resistance to the tested antibiotics might not play a dominant role for an intestinal colonization success in pigs in the absence of antimicrobial drugs, or cross-selection of other colonization factors e.g. virulence associated genes might compensate "the cost of antibiotic resistance". Nevertheless, resistant strains are not outcompeted by susceptible bacteria in the porcine intestine. Trial Registration The study was approved by the local animal welfare committee of the "Landesamt für Arbeitsschutz, Gesundheitsschutz und technische Sicherheit" Berlin

  14. Antimicrobial use in long-term-care facilities

    NARCIS (Netherlands)

    Nicolle, LE; Bentley, DW; Garibaldi, R; Neuhaus, EG; Smith, PW

    There is intense antimicrobial use in long-term-care facilities (LTCFs), and studies repeatedly document that much of this use is inappropriate. The current crisis in antimicrobial resistance, which encompasses the LTCF, heightens concerns of antimicrobial use. Attempts to improve antimicrobial use

  15. Antimicrobial activity of Anonna mucosa (Jacq. grown in vivo and obtained by in vitroculture

    Directory of Open Access Journals (Sweden)

    Thiago José de Souza Barboza

    2015-09-01

    Full Text Available Brazilian flora includes numerous species of medicinal importance that can be used to develop new drugs. Plant tissue culture offers strategies for conservation and use of these species allowing continuous production of plants and bioactive substances. Annona mucosa has produced substances such as acetogenins and alkaloids that exhibit antimicrobial activities. The widespread use of antibiotics has led to an increase in multidrug-resistant bacteria, which represents a serious risk of infection. In view of this problem, the aim of this work was to evaluate the antibacterial potential of extracts of A. mucosa obtained by in vitro techniques and also cultured under in vivo conditions. Segments from seedlings were inoculated onto different culture media containing the auxin picloram and the cytokinin kinetin at different concentrations. The calluses obtained were used to produce cell suspension cultures. The materials were subjected to methanol extraction and subsequent fractionation in hexane and dichloromethane. The antimicrobial activity against 20 strains of clinical relevance was evaluated by the macrodilution method at minimum inhibitory and minimum bactericidal concentrations. The extracts showed selective antimicrobial activity, inhibiting the growth of Streptococcus pyogenes and Bacillus thuringiensis at different concentrations. The plant tissue culture methods produced plant materials with antibacterial properties, as well as in vivo grown plants. The antibacterial activity of material obtained through biotechnological procedures of A. mucosa is reported here for the first time.

  16. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal Salmonella from meat sold at wet markets and supermarkets in Vietnam.

    Science.gov (United States)

    Nhung, Nguyen Thi; Van, Nguyen Thi Bich; Cuong, Nguyen Van; Duong, Truong Thi Quy; Nhat, Tran Thi; Hang, Tran Thi Thu; Nhi, Nguyen Thi Hong; Kiet, Bach Tuan; Hien, Vo Be; Ngoc, Pham Thi; Campbell, James; Thwaites, Guy; Carrique-Mas, Juan

    2018-02-02

    Excessive antimicrobial usage and deficiencies in hygiene in meat production systems may result in undesirable human health hazards, such as the presence of antimicrobial drug residues and non-typhoidal Salmonella (NTS), including antimicrobial resistant (AMR) NTS. Recently, Vietnam has witnessed the emergence of integrated intensive animal production systems, coexisting with more traditional, locally-sourced wet markets. To date no systematic studies have been carried out to compare health hazards in beef, pork and chicken in different production systems. We aimed to: (1) estimate the prevalence of antimicrobial residues in beef, pork and chicken meat; (2) investigate the prevalence and levels of NTS contamination; and (3) investigate serovar distribution and AMR against critically important antimicrobials by animal species and type of retail (wet market vs. supermarket) in Vietnam. Fresh pork, beef and chicken meat samples (N=357) sourced from wet markets and supermarkets in Ho Chi Minh City (HCMC), Hanoi and Dong Thap were screened for antimicrobial residues by PremiTest, and were further investigated by Charm II. Samples from HCMC (N=113) were cultured using ISO 6579:2002/Amd 1:2007. NTS bacteria were quantified using a minimum probable number (MPN) technique. NTS isolates were assigned to serovar by Multilocus Sequence Typing (MLST), and were investigated for their phenotypic susceptibility against 32 antimicrobials. A total of 26 (7.3%) samples tested positive by PremiTest (9.5% beef, 4.1% pork and 8.4% chicken meat). Sulfonamides, tetracyclines and macrolides were detected by Charm in 3.1%, 2.8% and 2.0% samples, respectively. Overall, meat samples from wet markets had a higher prevalence of residues than those from supermarkets (9.6% vs. 2.6%) (p=0.016). NTS were isolated from 68.4% samples from HCMC. Chicken samples from wet markets had by far the highest NTS counts (median 3.2 logMPN/g). NTS isolates displayed high levels of resistance against quinolones

  17. Antimicrobial Drugs in the Home

    Centers for Disease Control (CDC) Podcasts

    2006-10-19

    Survey participants in the United Kingdom admitted keeping leftover antimicrobial drugs for future use and taking them without medical advice. Dr. J. Todd Weber, director of CDC's Office of Antimicrobial Resistance, advises against the practice, which can be dangerous and can promote antimicrobial drug resistance.  Created: 10/19/2006 by Emerging Infectious Diseases.   Date Released: 10/26/2006.

  18. Reliable estimation of antimicrobial use and its evolution between 2010 and 2013 in French swine farms.

    Science.gov (United States)

    Hémonic, Anne; Chauvin, Claire; Delzescaux, Didier; Verliat, Fabien; Corrégé, Isabelle

    2018-01-01

    There has been a strong implication of both the French swine industry and the national authorities on reducing the use of antimicrobials in swine production since 2010. The annual monitoring of antimicrobial sales by the French Veterinary Medicines Agency (Anses-ANMV) provides estimates but not detailed figures on actual on-farm usage of antimicrobials in swine production. In order to provide detailed information on the 2010 and 2013 antimicrobial use in the French swine industry, the methodology of cross-sectional retrospective study on a representative sample of at least 150 farms has been elected. The analysis of the collected data shows a strong and significant decrease in antimicrobial exposure of pigs between 2010 and 2013. Over three years, the average number of days of treatment significantly decreased by 29% in suckling piglets and by 19% in weaned piglets. In fattening pigs, the drop (- 29%) was not statistically significant. Only usage in sows did increase over that period (+ 17%, non-significant), which might be associated with the transition to group-housing of pregnant sows that took place at the time. Also, over that period, the use of third- and fourth generation cephalosporins in suckling piglets decreased by 89%, and by 82% in sows, which confirms that the voluntary moratorium on these classes of antimicrobials decided at the end of 2010 has been effectively implemented. The methodology of random sampling of farms appears as a precise and robust tool to monitor antimicrobial use within a production animal species, able to fulfil industry and national authorities' objectives and requirements to assess the outcome of concerted efforts on antimicrobial use reduction. It demonstrates that the use of antimicrobials decreased in the French swine industry between 2010 and 2013, including the classes considered as critical for human medicine.

  19. Self-stratifying antimicrobial coatings

    NARCIS (Netherlands)

    Yagci, M.B.

    2012-01-01

    Today, antimicrobial polymers/coatings are widely used in various areas, such as biomedical devices, pharmaceuticals, hospital buildings, textiles, food processing, and contact lenses, where sanitation is needed. Such wide application facilities have made antimicrobial materials very attractive for

  20. Antimicrobial and antioxidative activity of various leaf extracts of Amphoricarpos vis. (Asteraceae taxa

    Directory of Open Access Journals (Sweden)

    Gavrilović Milan

    2016-01-01

    Full Text Available The antimicrobial and antioxidative activities of diethyl ether, 80% methanol and 50% acetone extracts of the leaves of three Amphoricarpos taxa (Asteraceae; A. neumayerianus, A. autariatus ssp. autariatus and A. autariatus ssp. bertisceus from the Balkan Peninsula were investigated. The antimicrobial activity was determined by the broth microdilution assay against eight bacterial and eight fungal species. The in vitro antioxidative activity was assessed by the DPPH assay. The total phenolic and flavonoid contents were also determined. The most sensitive bacterial species were Bacillus cereus and Staphylococcus aureus. The best antibacterial potential was obtained for the methanol extract of A. neumayerianus, while the diethyl ether extract of this species showed the lowest effect. In general, the tested extracts showed higher activity than the commercial antibiotics streptomycin and ampicillin. Also, all micromycetes were sensitive to the tested extracts. The most sensitive was Trichoderma viride. The highest and lowest antifungal effect was determined in A. a. ssp. autariatus for the diethyl ether and acetone extracts, respectively. The highest total phenolic and flavonoid contents were determined in the methanol extract of A. a. autariatus. The best antioxidative activity was demonstrated by the methanol extract of A. a. ssp. autariatus as comparing to matching extracts from the other two taxa.