WorldWideScience

Sample records for speciated fine particulate

  1. Fine particulate matter (PM) and organic speciation of fireplace emissions

    International Nuclear Information System (INIS)

    Purvis, C.R.; McCrillis, R.C.; Kariher, P.H.

    2000-01-01

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an ongoing project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10 microm (PM10) consist primarily of a mixture of organic compounds that have condensed into droplets; therefore, the size distribution and total mass are influenced by temperature of the sample during its collection. During the series 1 tests (15 tests), the dilution tunnel used to cool and dilute the stack gases gave an average mixed gas temperature of 47.3 C and an average dilution ration of 4.3. Averages for the PM2.5 (particles <2.5 microm) and PM10 fractions were 74 and 84%, respectively. For the series 2 tests, the dilution tunnel was modified, reducing the average mixed gas temperatures to 33.8 C and increasing the average dilution ratio to 11.0 in tests completed to date. PM2.5 and PM10 fractions were 83 and 91%, respectively. Since typical winter-time mixed gas temperatures would usually be less than 10 C, these size fraction results probably represent the lower bound; the PM10 and PM2.5 size fraction results might be higher at typical winter temperatures. The particles collected on the first stage were light gray and appeared to include inorganic ash. Particles collected on the remainder of the stages were black and appeared to be condensed organics because there was noticeable lateral bleeding of the collected materials into the filter substrate. Total particulate emission rates ranged from 10.3 to 58.4 g/h; corresponding emission factors ranged from 3.3 to 14.9 g/kg of dry wood burned. A wide range of Environmental Protection Agency (EPA) Method 8270 semivolatile organic compounds were found in the emissions; of the 17 target compounds quantified, major constituents are phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, and naphthalene

  2. FINE PARTICULATE MATTER (PM) AND ORGANIC SPECIATION OF FIREPLACE EMISSIONS

    Science.gov (United States)

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an on-going project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10?m (PM10) con...

  3. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Glenn England; Oliver Chang; Stephanie Wien

    2002-02-14

    This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

  4. NICKEL SPECIATION OF URBAN PARTICULATE MATTER

    Energy Technology Data Exchange (ETDEWEB)

    Kevin C. Galbreath; Charlene R. Crocker; Carolyn M. Nyberg; Frank E. Huggins; Gerald P. Huffman

    2003-10-01

    A four-step sequential Ni extraction method, summarized in Table AB-1, was evaluated for identifying and quantifying the Ni species occurring in urban total suspended particulate (TSP) matter and fine particulate matter (<10 {micro}m [PM{sub 10}] and <2.5 {micro}m [PM{sub 2.5}] in aerodynamic diameter). The extraction method was originally developed for quantifying soluble, sulfidic, elemental, and oxidic forms of Ni that may occur in industrial atmospheres. X-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) spectroscopy were used to evaluate the Ni species selectivity of the extraction method. Uncertainties in the chemical speciation of Ni in urban PM{sub 10} and PM{sub 2.5} greatly affect inhalation health risk estimates, primarily because of the large variability in acute, chronic, and cancer-causing effects for different Ni compounds.

  5. Characterization and speciation of fine particulate matter inside the public transport buses running on bio-diesel.

    Science.gov (United States)

    2009-09-01

    Air pollution with respect to particulate matter was investigated in Toledo, Ohio, USA, a : city of approximately 300,000, in 2009. Two study buses were selected to reflect typical : exposure conditions of passengers while traveling in the bus. Monit...

  6. Advanced Fine Particulate Characterization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson; Lingbu Kong; Alexander Azenkeng; Jason Laumb; Robert Jensen; Edwin Olson; Jill MacKenzie; A.M. Rokanuzzaman

    2007-01-31

    The characterization and control of emissions from combustion sources are of significant importance in improving local and regional air quality. Such emissions include fine particulate matter, organic carbon compounds, and NO{sub x} and SO{sub 2} gases, along with mercury and other toxic metals. This project involved four activities including Further Development of Analytical Techniques for PM{sub 10} and PM{sub 2.5} Characterization and Source Apportionment and Management, Organic Carbonaceous Particulate and Metal Speciation for Source Apportionment Studies, Quantum Modeling, and High-Potassium Carbon Production with Biomass-Coal Blending. The key accomplishments included the development of improved automated methods to characterize the inorganic and organic components particulate matter. The methods involved the use of scanning electron microscopy and x-ray microanalysis for the inorganic fraction and a combination of extractive methods combined with near-edge x-ray absorption fine structure to characterize the organic fraction. These methods have direction application for source apportionment studies of PM because they provide detailed inorganic analysis along with total organic and elemental carbon (OC/EC) quantification. Quantum modeling using density functional theory (DFT) calculations was used to further elucidate a recently developed mechanistic model for mercury speciation in coal combustion systems and interactions on activated carbon. Reaction energies, enthalpies, free energies and binding energies of Hg species to the prototype molecules were derived from the data obtained in these calculations. Bimolecular rate constants for the various elementary steps in the mechanism have been estimated using the hard-sphere collision theory approximation, and the results seem to indicate that extremely fast kinetics could be involved in these surface reactions. Activated carbon was produced from a blend of lignite coal from the Center Mine in North Dakota and

  7. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  8. Fine particulate pollution and asthma exacerbations.

    Science.gov (United States)

    Bouazza, Naïm; Foissac, Frantz; Urien, Saik; Guedj, Romain; Carbajal, Ricardo; Tréluyer, Jean-Marc; Chappuy, Hélène

    2017-12-19

    As the results from epidemiological studies about the impact of outdoor air pollution on asthma in children are heterogeneous, our objective was to investigate the association between asthma exacerbation in children and exposure to air pollutants. A database of 1 264 585 paediatric visits during the 2010-2015 period to the emergency rooms from 20 emergency departments (EDs) of 'Assistance Publique Hôpitaux de Paris (APHP)', the largest hospital group in Europe, was used. A total of 47 107 visits were classified as asthma exacerbations. Concentration of air pollutants (nitrogen dioxide, ozone, fine particulate matter (PM) with an aerodynamic diameter smaller than 10  µm (PM 10 ) and 2.5 µm (PM 2.5 )), as well as meteorological data, evolution of respiratory syncytial virus infection and pollen exposition, were collected on an hourly or daily basis for the same period using institutional databases. To assess the association between air pollution and asthma, mixed-effects quasi-Poisson regression modelling was performed. The only compound independently associated with ED visits for asthma was PM 2.5 (Ppollutants. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  9. The variability in iron speciation in size fractionated residual oil fly ash particulate matter (ROFA PM).

    Science.gov (United States)

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2016-08-15

    Ambient particulate matter (PM) containing iron can catalyze Fenton reaction leading to the production of reactive oxygen species in cells. It can also catalyze atmospheric redox reaction. These reactions are governed by the physicochemical characteristics of iron in ambient PM. As a surrogate for ambient PM, we prepared residual oil fly ash PM (ROFA PM) in a practical fire tube boiler firing residual oils with varying sulfur and ash contents. The ROFA particles were resolved into fine PM or PM2.5 (aerodynamic diameter (AD)iron speciation in PM2.5+ was ascertained using X-ray absorption spectroscopy and leaching method while that in PM2.5 was reported earlier. The results of both studies are compared to get an insight into the variability in the iron speciation in different size fractions. The results show the predominance of ferric sulfate, with a minor spinal ferrite in both PM (i.e. ZnxNi1-xFe2O4 in PM2.5, ZnFe2O4 in PM2.5+). The iron solubility in ROFA PM depends on its speciation, mode of incorporation of iron into particle's carbonaceous matrix, the grade and composition of oils, and pH of the medium. The soluble fraction of iron in PM is critical in assessing its interaction with the biological systems and its toxic potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    Science.gov (United States)

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  11. Deposition of Suspended Fine Particulate Matter in a Library

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Mašková, Ludmila; Zíková, Naděžda; Ondráčková, Lucie; Ondráček, Jakub

    2013-01-01

    Roč. 1, 3 April (2013) ISSN 2050-7445 R&D Projects: GA MK DF11P01OVV020 Keywords : fine particulate matter * deposition * brownian diffusion Subject RIV: CF - Physical ; Theoretical Chemistry http://www.heritagesciencejournal.com/content/1/1/7

  12. Distribution spatiale intra-urbaine des particules fines : monitoring ...

    African Journals Online (AJOL)

    SARAH

    30 sept. 2014 ... En outre, l'accumulation des particules fines est faible pendant un mois pluvieux par rapport à un mois sec ..... benjamina, et la structure (tige, branches) des arborées ... par Zhang et al., (2006) sur des feuilles de Pinus pumila.

  13. Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry

    International Nuclear Information System (INIS)

    Osan, Janos; Meirer, Florian; Groma, Veronika; Toeroek, Szabina; Ingerle, Dieter; Streli, Christina; Pepponi, Giancarlo

    2010-01-01

    The health effects of aerosol depend on the size distribution and the chemical composition of the particles. Heavy metals of anthropogenic origin are bound to the fine aerosol fraction (PM 2.5 ). The composition and speciation of aerosol particles can be variable in time, due to the time-dependence of anthropogenic sources as well as meteorological conditions. Synchrotron-radiation total reflection X-ray fluorescence (SR-TXRF) provides very high sensitivity for characterization of atmospheric particulate matter. X-ray absorption near-edge structure (XANES) spectrometry in conjunction with TXRF detection can deliver speciation information on heavy metals in aerosol particles collected directly on the reflector surface. The suitability of TXRF-XANES for copper and zinc speciation in size-fractionated atmospheric particulate matter from a short sampling period is presented. For high size resolution analysis, atmospheric aerosol particles were collected at different urban and rural locations using a 7-stage May cascade impactor having adapted for sampling on Si wafers. The thin stripe geometry formed by the particulate matter deposited on the May-impactor plates is ideally suited to SR-TXRF. Capabilities of the combination of the May-impactor sampling and TXRF-XANES measurements at HASYLAB Beamline L to Cu and Zn speciation in size-fractionated atmospheric particulate matter are demonstrated. Information on Cu and Zn speciation could be performed for elemental concentrations as low as 140 pg/m 3 . The Cu and Zn speciation in the different size fraction was found to be very distinctive for samples of different origin. Zn and Cu chemical state typical for soils was detected only in the largest particles studied (2-4 μm fraction). The fine particles, however, contained the metals of interest in the sulfate and nitrate forms.

  14. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter ...

    Science.gov (United States)

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10% and 30% moisture content on a wet basis) in a forced-draft fan stove, and (iv) wood in a natural-draft rocket cookstove. LPG combustion had the highest thermal efficiency (~57%) and the lowest PAH emissions per unit fuel energy, resulting in the lowest PAH emissions per useful energy delivered (MJd). The average benzo[a]pyrene (B[a]P) emission factor for LPG was 0.842 µg/MJd; the emission rate was 0.043 µg/min. The highest PAH emissions were from wood burning in the natural-draft stove (209-700 µg B[a]P/MJd). PAH emissions from kerosene were significantly lower than those from the wood burning in the natural-draft cookstove, but higher than those from LPG. It is expected that in rural regions where LPG and kerosene are unavailable or unaffordable, the forced-draft fan stove may be an alternative because its emission factor (5.17-8.07 µg B[a]P/MJd) and emission rate (0.52-0.57 µg/min) are similar to kerosene (5.36 µg B[a]P/MJd and 0.45 µg/min). Compared with wood combustion emissions, LPG stoves emit less total PAH emissions and less fractions of high molecular weight PAHs. Relatively large variations in PAH emissions from LPG call for additional future tests to identify the major

  15. Ultra fine particulates. Small particulates with large consequences?; Ultrafijn stof. Kleine deeltjes met grote gevolgen?

    Energy Technology Data Exchange (ETDEWEB)

    Hensema, A.; Keuken, M.; Kooter, I.; Verbeek, R.; Van Vugt, M. [TNO Science and Industry, Delft (Netherlands)

    2009-02-15

    The concentrations of ultra fine particles (and elementary carbon) have increased significantly near traffic routes. The amount of ultra fine particles (and the chemical composition of particulate matter) are related to traffic emissions and are therefore relevant to the established health effects. Better insight in the effectiveness of particulate matter policy requires more attention for ultra fine particles than just maintaining the standards for PM2,5 and PM10. [mk]. [Dutch] De concentraties van ultrafijne deeltjes (en elementair koolstof) zijn fors verhoogd in de buurt van verkeerswegen. Het aantal ultrafijne deeltjes (en de chemische samenstelling van fijnstof) gerelateerd aan verkeersemissies lijkt daarom relevant voor de vastgestelde gezondheidseffecten. Voor een beter inzicht in de effectiviteit van het fijnstofbeleid is meer aandacht nodig voor ultrafijne deeltjes dan alleen handhaving van de normen voor PM2,5 en PM10.

  16. Mercury speciation and fine particle size distribution on combustion of Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Wang, Shuxiao; Hao, Jiming [Tsinghua Univ., Beijing (China). Dept. of Environmental Science and Engineering and State Key Joint Lab. of Environment Simulation and Pollution Control; Daukoru, Michael; Torkamani, Sarah; Biswas, Pratim [Washington Univ., St. Louis, MO (United States). Aerosol and Air Quality Research Lab.

    2013-07-01

    Coal combustion is the dominant anthropogenic mercury emission source of the world. Electrostatic precipitator (ESP) can remove almost all the particulate mercury (Hg{sub p}), and wet flue gas desulfurization (WFGD) can retain a large part of the gaseous oxidized mercury (Hg{sup 2+}). Only a small percentage of gaseous elemental mercury (Hg{sup 0}) can be abated by the air pollution control devices (APCDs). Therefore, the mercury behavior across APCDs largely depends on the mercury speciation in the flue gas exhausting from the coal combustor. To better understand the formation process of three mercury species, i.e. Hg{sup 0}, Hg{sup 2+} and Hg{sub p}, in gaseous phase and fine particles, bench-scale measurements for the flue gas exhausting from combustion of different types of coal in a drop-tube furnace set-up, were carried out. It was observed that with the limitation of reaction kinetics, higher mercury concentration in flue gas will lead to lower Hg{sup 2+} proportion. The concentration of chlorine has the opposite effect, not as significantly as that of mercury though. With the chlorine concentration increasing, the proportion of Hg{sup 2+} increases. Combusting the finer coal powder results in the formation of more Hg{sup 2+}. Mineral composition of coal and coal particle size has a great impact on fine particle formation. Al in coal is in favor of finer particle formation, while Fe in coal can benefit the formation of larger particles. The coexistence of Al and Si can strengthen the particle coagulation process. This process can also be improved by the feeding of more or finer coal powder. The oxy-coal condition can make for both the mercury oxidation process and the metal oxidation in the fine particle formation process.

  17. Spatial and temporal variability in urban fine particulate matter concentrations

    International Nuclear Information System (INIS)

    Levy, Jonathan I.; Hanna, Steven R.

    2011-01-01

    Identification of hot spots for urban fine particulate matter (PM 2.5 ) concentrations is complicated by the significant contributions from regional atmospheric transport and the dependence of spatial and temporal variability on averaging time. We focus on PM 2.5 patterns in New York City, which includes significant local sources, street canyons, and upwind contributions to concentrations. A literature synthesis demonstrates that long-term (e.g., one-year) average PM 2.5 concentrations at a small number of widely-distributed monitoring sites would not show substantial variability, whereas short-term (e.g., 1-h) average measurements with high spatial density would show significant variability. Statistical analyses of ambient monitoring data as a function of wind speed and direction reinforce the significance of regional transport but show evidence of local contributions. We conclude that current monitor siting may not adequately capture PM 2.5 variability in an urban area, especially in a mega-city, reinforcing the necessity of dispersion modeling and methods for analyzing high-resolution monitoring observations. - Highlights: →Fine particulate matter (PM 2.5 ) hot spots are hard to identify in urban areas. → Literature conclusions about PM 2.5 hot spots depend on study design and methods. → Hot spots are more likely for short-term concentrations at high spatial density. → Statistical methods illustrate local source impacts beyond regional transport. → Dispersion models and high-resolution monitors are both needed to find hot spots. - Fine particulate matter can vary spatially within large urban areas, in spite of the significant contribution from regional atmospheric transport.

  18. Organic speciation of size-segregated atmospheric particulate matter

    Science.gov (United States)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources

  19. Fine particulate matter in acute exacerbation of COPD

    Directory of Open Access Journals (Sweden)

    Lei eNi

    2015-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress, immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden.

  20. Electromagnetic characterization of fine-scale particulate composite materials

    International Nuclear Information System (INIS)

    Talbot, P.; Konn, A.M.; Brosseau, C.

    2002-01-01

    We report the results of the composition and frequency-dependent complex permittivity and permeability of ZnO and γ-Fe 2 O 3 composites prepared by powder pressing. The electromagnetic properties of these materials exhibit a strong dependence on the powder size of the starting materials. In the microwave frequency range, the permittivity and permeability show nonlinear variations with volume fraction of Fe 2 O 3 . As the particle size decreases from a few micrometers to a few tens of nanometers, the data indicate that local mesostructural factors such as shape anisotropy, porosity and possible effect of the binder are likely to be intertwined in the understanding of electromagnetic properties of fine-scale particulate composite materials

  1. [Health evaluation of fine particulate matter in indoor air].

    Science.gov (United States)

    2008-11-01

    When evaluating the health effects of indoor air fine particulate matter, the indoor dynamics as well as the physical, chemical and biological properties of fine particles have to be considered. The indoor air fraction PM2.5 largely stems from outdoor air. Accordingly, the German Working Group on Indoor Guideline Values of the Federal Environmental Agency and the States' Health Authorities also recommends WHO's (2006) 24-hour mean guideline value of 25 microg PM2,5 per cubic meter for indoor air evaluation. In contrast to PM2.5, coarse particles (PM10) in schools, kindergartens and dwellings show much higher indoor air concentrations. Additional sources indoors have to be assumed. Because of the different composition of indoor air compared to outdoor air and due to the lack of dose-response relationships of coarse particles in indoor air, the health effects of indoor air PM10 can not be evaluated yet. Sufficient and consistent ventilation is an indispensable basis to reduce PM concentrations in indoor spaces. Furthermore, known sources of PM indoors should be detected consequently and subsequently minimized.

  2. Chemical Composition of Fine Particulate Matter and Life Expectancy

    Science.gov (United States)

    Dominici, Francesca; Wang, Yun; Correia, Andrew W.; Ezzati, Majid; Pope, C. Arden; Dockery, Douglas W.

    2016-01-01

    Background In a previous study, we provided evidence that a decline in fine particulate matter (PM2.5) air pollution during the period between 2000 and 2007 was associated with increased life expectancy in 545 counties in the United States. In this article, we investigated which chemical constituents of PM2.5 were the main drivers of the observed association. Methods We estimated associations between temporal changes in seven major components of PM2.5 (ammonium, sulfate, nitrate, elemental carbon matter, organic carbon matter, sodium, and silicon) and temporal changes in life expectancy in 95 counties between 2002 and 2007. We included US counties that had adequate chemical components of PM2.5 mass data across all seasons. We fitted single pollutant and multiple pollutant linear models, controlling for available socioeconomic, demographic, and smoking variables and stratifying by urban and nonurban counties. Results In multiple pollutant models, we found that: (1) a reduction in sulfate was associated with an increase in life expectancy; and (2) reductions in ammonium and sodium ion were associated with increases in life expectancy in nonurban counties only. Conclusions Our findings suggest that recent reductions in long-term exposure to sulfate, ammonium, and sodium ion between 2002 and 2007 are associated with improved public health. PMID:25906366

  3. Urban tree effects on fine particulate matter and human health

    Science.gov (United States)

    David J. Nowak

    2014-01-01

    Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...

  4. Quantification of trace elements and speciation of iron in atmospheric particulate matter

    Science.gov (United States)

    Upadhyay, Nabin

    Trace metal species play important roles in atmospheric redox processes and in the generation of oxidants in cloud systems. The chemical impact of these elements on atmospheric and cloud chemistry is dependent on their occurrence, solubility and speciation. First, analytical protocols have been developed to determine trace elements in particulate matter samples collected for carbonaceous analysis. The validated novel protocols were applied to the determination of trace elements in particulate samples collected in the remote marine atmosphere and urban areas in Arizona to study air pollution issues. The second part of this work investigates on solubility and speciation in environmental samples. A detailed study on the impact of the nature and strength of buffer solutions on solubility and speciation of iron lead to a robust protocol, allowing for comparative measurements in matrices representative of cloud water conditions. Application of this protocol to samples from different environments showed low iron solubility (less than 1%) in dust-impacted events and higher solubility (5%) in anthropogenically impacted urban samples. In most cases, Fe(II) was the dominant oxidation state in the soluble fraction of iron. The analytical protocol was then applied to investigate iron processing by fogs. Field observations showed that only a small fraction (1%) of iron was scavenged by fog droplets for which each of the soluble and insoluble fraction were similar. A coarse time resolution limited detailed insights into redox cycling within fog system. Overall results suggested that the major iron species in the droplets was Fe(1I) (80% of soluble iron). Finally, the occurrence and sources of emerging organic pollutants in the urban atmosphere were investigated. Synthetic musk species are ubiquitous in the urban environment (less than 5 ng m-3) and investigations at wastewater treatment plants showed that wastewater aeration basins emit a substantial amount of these species to

  5. Research on chromium and arsenic speciation in atmospheric particulate matter: short review

    Science.gov (United States)

    Nocoń, Katarzyna; Rogula-Kozłowska, Wioletta; Widziewicz, Kamila

    2018-01-01

    Atmospheric particulate matter (PM) plays an important role in the distribution of elements in the environment. The PM-bound elements penetrates into the other elements of the environment, in two basic forms - those dissolved in the atmospheric precipitation and those permanently bound to PM particles. Those forms differs greatly in their mobility, thus posing a potential threat to living organisms. They can also be an immediate threat, while being inhaled. Chromium (Cr) and arsenic (As) belong to the group of elements whose certain chemical states exhibit toxic properties, that is Cr(VI) and As(III). Thus, recognition of the actual threat posed by Cr and As in the environment, including those present in PM, is possible only through the in depth speciation analysis. Research on the Cr and As speciation in PM, more than the analogous studies of their presence in other compartments of the environment, have been undertaken quite rarely. Hence the knowledge on the speciation of PM-bound As and Cr is still limited. The state of knowledge in the field of PM-bound Cr and As is presented in the paper. The issues related to the characterization and occurrence of Cr and As species in PM, the share of Cr and As species mass in different PM size fractions, and in PM of different origin is also summarized. The analytical techniques used in the speciation analysis of PM-bound Cr and As are also discussed. In the existing literature there is no data on the physical characteristics of Cr and As (bound to a different PM size fractions), and thus it still lack of data needed for a comprehensive assessment of the actual environmental and health threat posed by airborne Cr and As.

  6. Smog episodes, fine particulate pollution and mortality in China.

    Science.gov (United States)

    Zhou, Maigeng; He, Guojun; Fan, Maoyong; Wang, Zhaoxi; Liu, Yang; Ma, Jing; Ma, Zongwei; Liu, Jiangmei; Liu, Yunning; Wang, Linhong; Liu, Yuanli

    2015-01-01

    Starting from early January 2013, northern China was hit by multiple prolonged and severe smog events which were characterized by extremely high-level concentrations of ambient fine particulate matter (PM2.5) with hourly peaks of PM2.5 over 800 µg/m(3). However, the consequences of this severe air pollution are largely unknown. This study investigates the acute effect of the smog episodes and PM2.5 on mortality for both urban and rural areas in northern China. We collected PM2.5, mortality, and meteorological data for 5 urban city districts and 2 rural counties in Beijing, Tianjin and Hebei Province of China from January 1, 2013 through December 31, 2013. We employed the generalized additive models to estimate the associations between smog episodes or PM2.5 and daily mortality for each district/county. Without any meteorological control, the smog episodes are positively and statistically significantly associated with mortality in 5 out of 7 districts/counties. However, the findings are sensitive to the meteorological factors. After controlling for temperature, humidity, dew point and wind, the statistical significance disappears in all urban districts. In contrast, the smog episodes are consistently and statistically significantly associated with higher total mortality and mortality from cardiovascular/respiratory diseases in the two rural counties. In Ji County, a smog episode is associated with 6.94% (95% Confidence Interval, -0.20 to 14.58) increase in overall mortality, and in Ci County it is associated with a 19.26% (95% CI, 6.66-33.34) increase in overall mortality. The smog episodes kill people primarily through its impact on cardiovascular and respiratory diseases. On average, a smog episode is associated with 11.66% (95% CI, 3.12-20.90) increase in cardiovascular and respiratory mortality in Ji County, and it is associated with a 22.23% (95% CI, 8.11-38.20) increase in cardiovascular and respiratory mortality in Ci County. A 10 μg/m(3) increase in PM2

  7. Diagnostic Air Quality Model Evaluation of Source-Specific Primary and Secondary Fine Particulate Carbon

    Science.gov (United States)

    Ambient measurements of 78 source-specific tracers of primary and secondary carbonaceous fine particulate matter collected at four midwestern United States locations over a full year (March 2004–February 2005) provided an unprecedented opportunity to diagnostically evaluate...

  8. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique

    International Nuclear Information System (INIS)

    Chan, K.L.; Jiang, S.Y.N.; Ning, Z.

    2016-01-01

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R 2  > 0.999) and low detection limit (0.06 μg L −1 ) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. - Highlights: • Dispersive absorption spectroscopic technique for trace level ferrous detection. • The spectral fitting retrieval improved the measurement precision and stability. • Extremely low detection limit was achieved for aqueous ferrous measurement. • Iron in size segregated particulate matters shows seasonal characteristic. • More active role of iron was found in fine particles compared to coarse particles.

  9. Speciation of water soluble iron in size segregated airborne particulate matter using LED based liquid waveguide with a novel dispersive absorption spectroscopic measurement technique

    Energy Technology Data Exchange (ETDEWEB)

    Chan, K.L. [Meteorological Institute, Ludwig Maximilian University of Munich, Munich (Germany); School of Energy and Environment, City University of Hong Kong (Hong Kong); Jiang, S.Y.N. [School of Energy and Environment, City University of Hong Kong (Hong Kong); Ning, Z., E-mail: zhining@cityu.edu.hk [School of Energy and Environment, City University of Hong Kong (Hong Kong); Guy Carpenter Climate Change Centre, City University of Hong Kong (Hong Kong)

    2016-03-31

    In this study, we present the development and evaluation of a dispersive absorption spectroscopic technique for trace level soluble ferrous detection. The technique makes use of the broadband absorption spectra of the ferrous-ferrozine complex with a novel spectral fitting algorithm to determine soluble ferrous concentrations in samples and achieves much improved measurement precision compared to conventional methods. The developed method was evaluated by both model simulations and experimental investigations. The results demonstrated the robustness of the method against the spectral fluctuation, wavelength drift and electronic noise, while achieving excellent linearity (R{sup 2} > 0.999) and low detection limit (0.06 μg L{sup −1}) for soluble ferrous detection. The developed method was also used for the speciation of soluble iron in size segregated atmospheric aerosols. The measurement was carried out during Spring and Summer in typical urban environment in Hong Kong. The measured total iron concentrations are in good agreement compared to conventional Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) measurements. Investigation on ambient particulate matter samples shows the size dependent characteristic of iron speciation in the atmosphere with a more active role of fine particles in transforming between ferrous and ferric. The method demonstrated in this study provides a cost and time effective approach for the speciation of iron in ambient aerosols. - Highlights: • Dispersive absorption spectroscopic technique for trace level ferrous detection. • The spectral fitting retrieval improved the measurement precision and stability. • Extremely low detection limit was achieved for aqueous ferrous measurement. • Iron in size segregated particulate matters shows seasonal characteristic. • More active role of iron was found in fine particles compared to coarse particles.

  10. Particulate matter speciation profiles for light-duty gasoline vehicles in the United States.

    Science.gov (United States)

    Sonntag, Darrell B; Baldauf, Richard W; Yanca, Catherine A; Fulper, Carl R

    2014-05-01

    Representative profiles for particulate matter particles less than or equal to 2.5 microm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the US. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data. PM2.5 speciation profiles were

  11. Redox speciation of particulate iron and manganese during river/ocean mixing

    International Nuclear Information System (INIS)

    Zaw, M.; Szymczak, R.; Payne, T.

    2000-01-01

    Full text: A synchrotron radiation experiment was performed at the Australian National Beamline Facility (Photon Factory, Tsukuba, Japan) to investigate changes in the physico-chemical nature of particles during estuarine mixing. X-ray absorption near edge structure spectra (XANES) analysis was used to determine solid-state redox speciation of iron and manganese throughout the river/ocean salinity transects. Particles (>0.4μm) collected using clean techniques were stored under nitrogen during TROPICS Project expeditions to the Fly and Sepik Rivers, PNG. Results indicated that initially, particulate manganese was mostly present as Mn(IV) and Mn(III) compounds with some surface-adsorbed Mn(II). Similarly, iron was present as particulate Fe(III) and Fe(II/III) compounds with some adsorbed Fe(II). During river-ocean mixing, the proportions of both Mn(II) and Fe(III) significantly increased. These observations maybe due to increasing photochemical activity in the river plume, surface-sorption of reduced species related to the estuarine residence time of particles, or enhanced scavenging of ocean-sourced elements. Copyright (2000) American Chemical Society

  12. Speciation of 210Po and 210Pb in air particulates determined by sequential extraction

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Al-Karfan, K.; Khalili, H.; Hassan, M.

    2006-01-01

    Speciation of 210 Po and 210 Pb in air particulates of two Syrian phosphate sites with different climate conditions has been studied. The sites are the mines and Tartous port at the Mediterranean Sea. Air filters were collected during September 2000 until February 2002 and extracted chemically using different selective fluids in an attempt to identify the different forms of these two radionuclides. The results have shown that the inorganic and insoluble 21 Po and 21 Pb (attached to silica and soluble in mineral acids) portion was found to be high in both sites and reached a maximum value of 94% and 77% in the mine site and Tartous port site, respectively. In addition, only 24% of 21 Pb in air particulates was found to be associated with organic materials probably produced from the incomplete burning of fuel vehicle and similar activities. Moreover, the 210 Po/ 21- Pb activity ratio in air particulates was higher than that in all samples at both sites and varied between 3.85 in November 2000 at Tartous port site and 20 in April 2001 at the mine area. These activity ratios were also higher than the natural levels. The 210 Po/ 210 Pb activity ratio was also determined in each portion resulting from the selective extraction and found to be higher than that in most samples. The sources of 210 Po excess in these portions are discussed. Soil suspension, which is common in the dry climate dominant in the area, sea water spray and heating of phosphate ores were considered; polonium is more volatile than the lead compounds at even moderate temperature. Furthermore, variations in the chemical forms of 210 Po and 210 Pb during the year were also investigated. However, the results of this study can also be utilized for dose assessment to phosphate industry workers

  13. Speciation of 210Po and 210Pb in air particulates determined by sequential extraction.

    Science.gov (United States)

    Al-Masri, M S; Al-Karfan, K; Khalili, H; Hassan, M

    2006-01-01

    Speciation of (210)Po and (210)Pb in air particulates of two Syrian phosphate sites with different climate conditions has been studied. The sites are the mines and Tartous port at the Mediterranean Sea. Air filters were collected during September 2000 until February 2002 and extracted chemically using different selective fluids in an attempt to identify the different forms of these two radionuclides. The results have shown that the inorganic and insoluble (210)Po and (210)Pb (attached to silica and soluble in mineral acids) portion was found to be high in both sites and reached a maximum value of 94% and 77% in the mine site and Tartous port site, respectively. In addition, only 24% of (210)Pb in air particulates was found to be associated with organic materials probably produced from the incomplete burning of fuel vehicle and similar activities. Moreover, the (210)Po/(210)Pb activity ratio in air particulates was higher than that in all samples at both sites and varied between 3.85 in November 2000 at Tartous port site and 20 in April 2001 at the mine area. These activity ratios were also higher than the natural levels. The (210)Po/(210)Pb activity ratio was also determined in each portion resulting from the selective extraction and found to be higher than that in most samples. The sources of (210)Po excess in these portions are discussed. Soil suspension, which is common in the dry climate dominant in the area, sea water spray and heating of phosphate ores were considered; polonium is more volatile than the lead compounds at even moderate temperature. Furthermore, variations in the chemical forms of (210)Po and (210)Pb during the year were also investigated. However, the results of this study can also be utilized for dose assessment to phosphate industry workers.

  14. Bioaccessibility and Speciation of Potential Toxicants in Some Geogenic Sources of Atmospheric Particulate Matter

    Science.gov (United States)

    Morman, S. A.; Wolf, R. E.; Plumlee, G.; Reynolds, R. L.

    2008-12-01

    The correlation of exposure to particulate matter (PM) and increased morbidity and mortality was established in the 1970's. Research focused on elucidating mechanisms of action (i.e. particle size, composition, and biodurability), has generally examined anthropogenic sources such as solid or liquid combustion byproducts of fossil fuels, byproducts from the smelting of metal ores, and commercial/industrial mineral dusts (asbestos, crystalline silica. metal dusts). While many studies exist on agricultural exposures to inorganic dust, far fewer have examined health issues related to particulate matter contributions from rural, non-agricultural dusts or other geogenic sources. Geogenic PM (produced by natural processes such as volcanic ash, volcanic fog (vog), dusts from dry lakes or glacial deposits, smoke and windborne ash from wildfires, and dusts containing various soil pathogens) and geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities such as dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices etc.) are increasingly recognized as potential agents of toxicity and disease, via both environmental and occupational exposures. Surface sediment on some dry lake beds may contribute significant amounts of mineral dusts to the atmospheric load. For example, Owens Lake (a dry lake in southern California) has been a major source of PM10 (particulate matter less than 10 micrometers) dust in the United States. Dusts from dry and drying saline lakes may contain high concentrations of metals, such as arsenic, with known human health toxicity. Wildfires, consuming over nine million acres in 2007, also contribute significant amounts of particulate matter in addition to their other hazards. Designed to estimate the bioaccessibility of metals in soils, dusts and other environmental materials by measuring the reactivity of the

  15. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China.

    Science.gov (United States)

    Xiong, Qiulin; Zhao, Wenji; Gong, Zhaoning; Zhao, Wenhui; Tang, Tao

    2015-09-22

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office) and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office) of the study area. Correspondingly, PM₁ (particulate matter with aerodynamic diameter smaller than 1.0 um) concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  16. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    Directory of Open Access Journals (Sweden)

    Qiulin Xiong

    2015-09-01

    Full Text Available Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  17. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications

    Science.gov (United States)

    Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar

    2017-07-01

    Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.

  18. 75 FR 55711 - Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate Matter and Ozone...

    Science.gov (United States)

    2010-09-14

    ...: (919) 541-0824; e-mail address: [email protected] . SUPPLEMENTARY INFORMATION: The proposed Transport... (i.e., section V.D.4.a (75 FR 45307-9)) that discusses in detail the proposed Transport Rule trading...-9201-6] RIN 2060-AP50 Federal Implementation Plans To Reduce Interstate Transport of Fine Particulate...

  19. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  20. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Pope III, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. [Brigham Young University, Provo, UT (United States)

    2003-03-06

    A study was conducted to the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality. Vital status and cause of death data were collected by the American Cancer Society as part of the Cancer Prevention II study, an ongoing prospective mortality study, which enrolled approximately 1.2 million adults in 1982. Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). The risk factor data for approximately 500 000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998. Fine particulate and sulfur oxide-related pollution were found to be associated with all-cause, lung cancer, and cardiopulmonary mortality. Each 10-{mu}g/m{sup 3} elevation in fine particulate air pollution was associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Measures of coarse particle fraction and total suspended particles were not consistently associated with mortality. It was concluded that long-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality. 31 refs., 5 figs., 2 tabs.

  1. 77 FR 31262 - Approval and Promulgation of Implementation Plans; Kentucky; Louisville; Fine Particulate Matter...

    Science.gov (United States)

    2012-05-25

    ... otherwise protected. The www.regulations.gov Web site is an ``anonymous access'' system, which means EPA... Inventory AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY: EPA is proposing to approve the fine particulate matter (PM 2.5 ) 2002 base year emissions inventory, portion of the State...

  2. Integrated indoor and outdoor exposure assessment framework for fine particulate matter pollution

    DEFF Research Database (Denmark)

    McKone, Thomas E; Hodas, Natasha; Apte, Joshua S.

    2016-01-01

    The 2010 Global Burden of Disease report demonstrates that fine particulate matter (PM2.5) pollution is the major environmental contributor to mortality. Exposures outdoors (ambient) and indoors (household) contribute almost qually to this burden. Unfortunately, the health impacts from exposure t...

  3. Carbonaceous material in fine particulate matter (PM10) of urban areas

    International Nuclear Information System (INIS)

    Brocco, Domenico; Leonardi, Vittorio; Maso; Marco; Prignani, Patrizia

    2006-01-01

    Total carbon (TC), elemental carbon (EC) and organic carbon (OC) in the fine particulate matter (PM10) were measured in the urban areas of Rome and Marino (Castelli Romani) by means a thermal method with a non-dispersive infrared detector (NDIR). The results showed that carbonaceous material constitutes 30-40% of the total aerosols in Rome and about 20% in Marino [it

  4. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Directory of Open Access Journals (Sweden)

    Richard Toro Araya

    2014-01-01

    Full Text Available Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007, concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August and warm (September to February seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41% than in the warm season (44 ± 18%. On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3 and the United States Environmental Protection Agency standard (15 µg/m3 for fine particulate matter.

  5. Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.

  6. Nitrogen and Carbon Leaching in Repacked Sandy Soil with Added Fine Particulate Biochar

    DEFF Research Database (Denmark)

    Bruun, Esben W.; Petersen, Carsten; Strobel, Bjarne W.

    2012-01-01

    Biochar amendment to soil may affect N turnover and retention, and may cause translocation of dissolved and particulate C. We investigated effects of three fine particulate biochars made of wheat (Triticum aestivum L.) straw (one by slow pyrolysis and two by fast pyrolysis) on N and C leaching from...... repacked sandy soil columns (length: 51 cm). Biochar (2 wt%), ammonium fertilizer (NH4+, amount corresponding to 300 kg N ha-1) and an inert tracer (bromide) were added to a 3-cm top layer of sandy loam, and the columns were then irrigated with constant rate (36 mm d-1) for 15 d. The total amount...... of leachate came to about 3.0 water filled pore volumes (WFPVs). Our study revealed a high mobility of labile C components originating from the fine particulate fast pyrolysis biochar. This finding highlights a potential risk of C leaching coupled with the use of fast pyrolysis biochars for soil amendment...

  7. Tackling the problem of fine particulate (HAP) collection

    Energy Technology Data Exchange (ETDEWEB)

    Parker, K.; Sanyal, A.

    2000-07-01

    With increasing concern over the emission of hazardous air pollutants (HAPs), measures are being considered to limit their discharge from many industrial sources. The main thrust o the proposed legislation is towards the power generators, because of their potentially large mass emissions, but also at specific targets, such as incinerators. Legislation already exists governing the emission of heavy metals, etc., from various types of incineration process and regulations controlling the emission of pM 2.5 material are proposed for the US. Provided the HAPs are in a solid particulate phase then their collection can be accomplished by correctly designed and operated control systems, such as electrostatic precipitators and bag filters. There are, however, other HAP species which are usually in a gaseous phase at normal back end temperatures, such as elemental mercury, dioxins, furans, etc. These need special consideration and equipment in order to satisfy the proposed regulations. one of the difficulties facing the designers and operators of processes giving rise to these species is the accurate measurement of these trace elements and predicting the uncontrolled emission level in order to size the collection system such as to remain in compliance. The options for the effective collection of these normally gaseous phase pollutants will be examined; these methods will include combined wet and dry collection, absorption and carbon injection systems. Finally, whichever system is finally considered and adopted, in order to satisfy and proposed regulations, will add significant capital and operating cost to the overall installation.

  8. Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran

    Science.gov (United States)

    Arhami, Mohammad; Hosseini, Vahid; Zare Shahne, Maryam; Bigdeli, Mostafa; Lai, Alexandra; Schauer, James J.

    2017-03-01

    Frequent air pollution episodes have been reported for Tehran, Iran, mainly because of critically high levels of fine particulate matter (PM2.5). The composition and sources of these particles are poorly known, so this study aims to identify the major components and heavy metals in PM2.5 along with their seasonal trends and associated sources. 24-hour PM2.5 samples were collected at a main residential station every 6 days for a full year from February 2014 to February 2015. The samples were analyzed for ions, organic carbon (including water-soluble and insoluble portions), elemental carbon (EC), and all detectable elements. The dominant mass components, which were determined by means of chemical mass closure, were organic matter (35%), dust (25%), non-sea salt sulfate (11%), EC (9%), ammonium (5%), and nitrate (2%). Organic matter and EC together comprised 44% of fine PM on average (increased to >70% in the colder season), which reflects the significance of anthropogenic urban sources (i.e. vehicles). The contributions of different components varied considerably throughout the year, particularly the dust component that varied from 7% in the cold season to 56% in the hot and dry season. Principal component analyses were applied, resulting in 5 major source factors that explained 85% of the variance in fine PM. Factor 1, representing soil dust, explained 53%; Factor 2 denotes heavy metals mainly found in industrial sources and accounted for 18%; and rest of factors, mainly representing combustion sources, explained 14% of the variation. The levels of major heavy metals were further evaluated, and their trends showed considerable increases during cold seasons. The results of this study provide useful insight to fine PM in Tehran, which could help in identifying their health effects and sources, and also adopting effective control strategies.

  9. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects.

    Science.gov (United States)

    Mukherjee, Arideep; Agrawal, Madhoolika

    Fine particulate matter (PM) in the ambient air is implicated in a variety of human health issues throughout the globe. Regulation of fine PM in the atmosphere requires information on the dimension of the problem with respect to variations in concentrations and sources. To understand the current status of fine particles in the atmosphere and their potential harmful health effects in different regions of the world this review article was prepared based on peer-reviewed scientific papers, scientific reports, and database from government organizations published after the year 2000 to evaluate the global scenario of the PM 2.5 (particles levels and exceedances of national and international standards were several times higher in Asian countries, while levels in Europe and USA were mostly well below the respective standards. Vehicular traffic has a significant influence on PM 2.5 levels in urban areas; followed by combustion activities (biomass, industrial, and waste burning) and road dust. In urban atmosphere, fine particles are mostly associated with different health effects with old aged people, pregnant women, and more so children being the most susceptible ones. Fine PM chemical constituents severely effect health due to their carcinogenic or mutagenic nature. Most of the research indicated an exceedance of fine PM level of the standards with a diverse array of health effects based on PM 2.5 chemical constituents. Emission reduction policies with epidemiological studies are needed to understand the benefits of sustainable control measures for fine PM mitigation.

  10. Theoretical analysis and experimental evaluation of small cyclone separator to remove fine particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Han Gyul; Kim, Hong Seok [Seoul Nat' l Univ., Seoul (Korea, Republic of)

    2013-01-15

    A cyclone separator has been widely used in various industrial processes for removing fine particulate matter because it is easy to fabricate, cost effective, and adaptable to extremely harsh conditions. However, owing to the complex flow field in cyclones, a complete understanding of the detailed mechanisms of particulate removal has not yet been gained. In this study, a theoretical analysis was performed for calculating the collection efficiency and cut off size in cyclones by taking into account the effects of geometrical and flow parameters. The collection efficiency and cut off size values predicted by the theoretical model showed good agreement with experimental measurements for particles with a diameter of 0.5-30{mu}m. It was also revealed that the surface friction, along with the flow and geometrical parameters, has a significant effect on the cyclone performance.

  11. Artificial neural network forecast application for fine particulate matter concentration using meteorological data

    Directory of Open Access Journals (Sweden)

    M. Memarianfard

    2017-09-01

    Full Text Available Most parts of the urban areas are faced with the problem of floating fine particulate matter. Therefore, it is crucial to estimate the amounts of fine particulate matter concentrations through the urban atmosphere. In this research, an artificial neural network technique was utilized to model the PM2.5 dispersion in Tehran City. Factors which are influencing the predicted value consist of weather-related and air pollution-related data, i.e. wind speed, humidity, temperature, SO2, CO, NO2, and PM2.5 as target values. These factors have been considered in 19 measuring stations (zones over urban area across Tehran City during four years, from March 2011 to March 2015. The results indicate that the network with hidden layer including six neurons at training epoch 113, has the best performance with the lowest error value (MSE=0.049438 on considering PM2.5 concentrations across metropolitan areas in Tehran. Furthermore, the “R” value for regression analysis of training, validation, test, and all data are 0.65898, 0.6419, 0.54027, and 0.62331, respectively. This study also represents the artificial neural networks have satisfactory implemented for resolving complex patterns in the field of air pollution.

  12. Global chemical composition of ambient fine particulate matter for exposure assessment.

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  13. Winter fine particulate air quality in Cranbrook, British Columbia, 1973 to 1999

    International Nuclear Information System (INIS)

    McDonald, L.E.

    2001-06-01

    Fine particulate levels in Cranbrook, BC, are analyzed and reported based on monitoring records which began in 1973. Prior to 1988 the sampler collected all particle sizes, but was subsequently replaced with a selective size inlet to capture only PM 1 0 particles or smaller. A mathematical relationship was produced and used to convert historical total suspended particulates measurements to PM 1 0. It was determined that only monitoring records obtained during the winter months could be reliably converted in this fashion; however, that was not a problem since the winter months happen to correspond to the highest levels of fine particulates. Results of the analysis showed increased levels of PM 1 0 from the early 1970s to the early 1980s; during this time average and maximum annual PM 1 0 levels in Cranbrook were higher than those in Los Angeles in 1999. Winter PM 1 0 levels began to fall through the late 1980s and early 1990s. The lowest average and maximum (18 microgram/cubic metre and 47 microgram/cubic metre, respectively) was recorded in the winter of 1996/1997. Worst conditions were recorded in 1980/1981 when 15 of 21 samples exceeded the current provincial PM 1 0 air quality objective of 50 microgram/cubic metre. In the five winters between 1994/1995 and 1998/1999 only three of 109 samples exceeded the provincial objective. There appears to be no correlation between known changes in industrial and mobile sources of pollutants and historical patterns of fine particulate air pollution in Cranbrook, BC. Observation and experience over three decades suggest that the major source of PM 1 0 in Cranbrook was combustion of wood for home heating. The most probable major cause of the improvements in winter air quality was identified as the gradual conversion from wood to natural gas fired appliances through the 1980s and the 1990s. The 115 per cent increase in the cost of natural gas in the last two years unfortunately, will again make wood an attractive alternative

  14. Source contributions of fine particulate matter during one winter haze episodes in Xi'an, China

    Science.gov (United States)

    Yang, X.; Wu, Q.

    2017-12-01

    Long-term exposure to high levels of fine particulate matter (PM2.5) is found to be associated with adverse effects on human health, ecological environment and climate change. Identification the major source regions of fine particulate matter are essential to proposing proper joint prevention and control strategies for heavy haze mitigation. In this work, the Comprehensive Air Quality Model with extensions (CAMx) together with the Particulate Source Apportionment Technology (PSAT) and the Weather Research and Forecast Model (WRF), have been applied to analyze the major source regions of PM2.5 in Xi'an during the heavy haze episodes in winter (29, December, 2016 - 5 January 2017), and the framework of the model system is shown in Fig. 1. Firstly, according to the model evaluation of the daily PM2.5 concentrations for the two months, the model has well performance, and the fraction of predictions within a factor of 2 of the observations (FAC2) is 84%, while the correlation coefficient (R) is 0.80 in Xi'an. By using the PSAT in CAMx model, a detailed source region contribution matrix is derived for all points within the Xi'an region and its six surrounding areas, and long-range regional transport. The results show that the local emission in Xi'an is the mainly sources at downtown area, which contributing 72.9% as shown in Fig.2, and the contribution rate of transportations between adjacent areas depends on wind direction. Meanwhile, three different suburban areas selected for detailed analysis in fine particles sources. Comparing to downtown area, the sources of suburban areas are more multiply, and the transportations make the contribution 40%-82%. In the suburban areas, regional inflows play an important role in the fine particles concentrations, indicating a strong need for regional joint emission control efforts. The results enhance the quantitative understanding of the PM2.5 source regions and provide a basis for policymaking to advance the control of pollution

  15. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Charles E. Kolb

    2008-03-31

    This project was one of three collaborating grants designed to understand the atmospheric chemistry and aerosol particle microphysics impacting air quality in the Mexico City Metropolitan Area (MCMA) and its urban plume. The overall effort, titled MCMA- 2006, focused on: 1) the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles and 2) the measurement and analysis of secondary oxidants and secondary fine particular matter (PM) production, with particular emphasis on secondary organic aerosol (SOA). MCAM-2006 pursued it goals through three main activities: 1) performance and publication of detailed analyses of extensive MCMA trace gas and fine PM measurements made by the collaborating groups and others during earlier MCMA field campaigns in 2002 and 2003; 2) deployment and utilization of extensive real-time trace gas and fine PM instrumentation at urban and downwind MCMA sites in support of the MAX-Mex/MILAGRO field measurements in March, 2006; and, 3) analyses of the 2006 MCMA data sets leading to further publications that are based on new data as well as insights from analysis and publication of the 2002/2003 field data. Thirteen archival publications were coauthored with other MCMA-2003 participants. Documented findings included a significantly improved speciated emissions inventory from on-road vehicles, a greatly enhanced understanding of the sources and atmospheric loadings of volatile organic compounds, a unique analysis of the high fraction of ambient formaldehyde from primary emission sources, a much more extensive knowledge of the composition, size distributions and atmospheric mass loadings of both primary and secondary fine PM, including the fact that the rate of MCMA SOA production greatly exceeded that predicted by current atmospheric models, and evaluations of significant errors that can arise from standard air quality monitors for ozone and nitrogen

  16. Predictors of indoor fine particulate matter in infants' bedrooms in Denmark.

    Science.gov (United States)

    Raaschou-Nielsen, Ole; Sørensen, Mette; Hertel, Ole; Chawes, Bo L K; Vissing, Nadja; Bønnelykke, Klaus; Bisgaard, Hans

    2011-01-01

    Particulate matter (PM) in ambient air is responsible for adverse health effects in adults and children. Relatively little is known about the concentrations, sources and health effects of PM in indoor air. To identify sources of fine PM in infants' bedrooms. We conducted 1122 measurements of fine PM (PM(2.5) and black smoke) in the bedrooms of 389 infants and registered indoor activities and characteristics of the house. We used mixed models to identify and quantify associations between predictors and concentrations. The concentration of PM(2.5) was 2.8 times (95% confidence interval [CI], 1.4-5.5 times) higher in houses where people smoked; the concentration increased by 19% (95% CI, 15-23%) per doubling of the amount of tobacco smoked and decreased by 16% (95% CI, 9-27%) per 5-m increase in the distance between the smoking area and the infant's bedroom. Frying without a range hood was associated with a 32% (95% CI, 12-54%) higher PM(2.5) concentration per time per day, whereas frying with use of a range hood did not increase the concentration in the infant's bedroom. Use of a fireplace, stove, candles or vacuum-cleaner, interior rebuilding or renovation, local traffic, inner city residence and cold season increased the fine PM concentration. Open windows decreased the PM(2.5) concentration in homes with smokers but increased the concentration in non-smoking homes. We identified several sources of fine PM in infants' bedrooms. The concentrations can be reduced by use of a range hood for frying, by not using candles, a fireplace or a stove, by increasing the distance between the bedroom and the smoking area and by opening windows in houses of smokers. Smoking is a strong predictor of fine PM in infants' bedrooms and should be avoided. Copyright © 2010 Elsevier Inc. All rights reserved.

  17. Trimethylsilyl derivatives of organic compounds in source samples and in atmospheric fine particulate matter.

    Science.gov (United States)

    Nolte, Christopher G; Schauer, James J; Cass, Glen R; Simoneit, Bernd R T

    2002-10-15

    Source sample extracts of vegetative detritus, motor vehicle exhaust, tire dust paved road dust, and cigarette smoke have been silylated and analyzed by GC-MS to identify polar organic compounds that may serve as tracers for those specific emission sources of atmospheric fine particulate matter. Candidate molecular tracers were also identified in atmospheric fine particle samples collected in the San Joaquin Valley of California. A series of normal primary alkanols, dominated by even carbon-numbered homologues from C26 to C32, the secondary alcohol 10-nonacosanol, and some phytosterols are prominent polar compounds in the vegetative detritus source sample. No new polar organic compounds are found in the motor vehicle exhaust samples. Several hydrogenated resin acids are present in the tire dust sample, which might serve as useful tracers for those sources in areas that are heavily impacted by motor vehicle traffic. Finally, the alcohol and sterol emission profiles developed for all the source samples examined in this project are scaled according to the ambient fine particle mass concentrations attributed to those sources by a chemical mass balance receptor model that was previously applied to the San Joaquin Valley to compute the predicted atmospheric concentrations of individual alcohols and sterols. The resulting underprediction of alkanol concentrations at the urban sites suggests that alkanols may be more sensitive tracers for natural background from vegetative emissions (i.e., waxes) than the high molecular weight alkanes, which have been the best previously available tracers for that source.

  18. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks

    International Nuclear Information System (INIS)

    Taner, Simge; Pekey, Beyhan; Pekey, Hakan

    2013-01-01

    Cooking is a significant source of indoor particulate matter that can cause adverse health effects. In this study, a 5-stage cascade impactor was used to collect particulate matter from 14 restaurants that cooked with charcoal in Kocaeli, the second largest city in Turkey. A total of 24 elements were quantified using ICP-MS. All of the element contents except for Mn were higher for fine particles (PM 2.5 ) than coarse particles (PM >2.5 ), and the major trace elements identified in the PM 2.5 included V, Se, Zn, Cr, As, Cu, Ni, and Pb. Principle component analysis (PCA) and enrichment factor (EF) calculations were used to determine the sources of PM 2.5 . Four factors that explained over 77% of the total variance were identified by the PCA. These factors included charcoal combustion, indoor activities, crustal components, and road dust. The Se, As, Cd, and V contents in the PM 2.5 were highly enriched (EF > 100). The health risks posed by the individual metals were calculated to assess the potential health risks associated with inhaling the fine particles released during charcoal cooking. The total hazard quotient (total HQ) for a PM 2.5 of 4.09 was four times greater than the acceptable limit (i.e., 1.0). In addition, the excess lifetime cancer risk (total ELCR) for PM 2.5 was 1.57 × 10 −4 , which is higher than the acceptable limit of 1.0 × 10 −6 . Among all of the carcinogenic elements present in the PM 2.5 , the cancer risks resulting from Cr(VI) and As exposure were the highest (i.e., 1.16 × 10 −4 and 3.89 × 10 −5 , respectively). Overall, these results indicate that the lifetime cancer risk associated with As and Cr(VI) exposure is significant at selected restaurants, which is of concern for restaurant workers. - Highlights: • Particulate emissions from charcoal combustion in the BBQ restaurants were studied. • Vanadium, Se, Zn, Cr and As were found as high concentrations in PM 2.5 . • Charcoal combustion and indoor activities were the

  19. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks

    Energy Technology Data Exchange (ETDEWEB)

    Taner, Simge; Pekey, Beyhan, E-mail: bpekey@kocaeli.edu.tr; Pekey, Hakan

    2013-06-01

    Cooking is a significant source of indoor particulate matter that can cause adverse health effects. In this study, a 5-stage cascade impactor was used to collect particulate matter from 14 restaurants that cooked with charcoal in Kocaeli, the second largest city in Turkey. A total of 24 elements were quantified using ICP-MS. All of the element contents except for Mn were higher for fine particles (PM{sub 2.5}) than coarse particles (PM{sub >2.5}), and the major trace elements identified in the PM{sub 2.5} included V, Se, Zn, Cr, As, Cu, Ni, and Pb. Principle component analysis (PCA) and enrichment factor (EF) calculations were used to determine the sources of PM{sub 2.5}. Four factors that explained over 77% of the total variance were identified by the PCA. These factors included charcoal combustion, indoor activities, crustal components, and road dust. The Se, As, Cd, and V contents in the PM{sub 2.5} were highly enriched (EF > 100). The health risks posed by the individual metals were calculated to assess the potential health risks associated with inhaling the fine particles released during charcoal cooking. The total hazard quotient (total HQ) for a PM{sub 2.5} of 4.09 was four times greater than the acceptable limit (i.e., 1.0). In addition, the excess lifetime cancer risk (total ELCR) for PM{sub 2.5} was 1.57 × 10{sup −4}, which is higher than the acceptable limit of 1.0 × 10{sup −6}. Among all of the carcinogenic elements present in the PM{sub 2.5}, the cancer risks resulting from Cr(VI) and As exposure were the highest (i.e., 1.16 × 10{sup −4} and 3.89 × 10{sup −5}, respectively). Overall, these results indicate that the lifetime cancer risk associated with As and Cr(VI) exposure is significant at selected restaurants, which is of concern for restaurant workers. - Highlights: • Particulate emissions from charcoal combustion in the BBQ restaurants were studied. • Vanadium, Se, Zn, Cr and As were found as high concentrations in PM{sub 2.5}.

  20. Indoor inhalation intake fractions of fine particulate matter: Review of influencing factors

    DEFF Research Database (Denmark)

    Hodas, Natasha; Loh, Miranda; Shin, Hyeong-Moo

    2016-01-01

    Exposure to fine particulate matter (PM2.5) is a major contributor to the global human disease burden. The indoor environment is of particular importance when considering the health effects associated with PM2.5 exposures because people spend the majority of their time indoors and PM2.5 exposures...... per unit mass emitted indoors are two to three orders of magnitude larger than exposures to outdoor emissions. Variability in indoor PM2.5 intake fraction (iFin,total), which is defined as the integrated cumulative intake of PM2.5 per unit of emission, is driven by a combination of building......-specific, human-specific, and pollutant-specific factors. Due to a limited availability of data characterizing these factors, however, indoor emissions and intake of PM2.5 are not commonly considered when evaluating the environmental performance of product life cycles. With the aim of addressing this barrier...

  1. Health effects from indoor and outdoor exposure to fine particulate matter in life cycle impact assessment

    DEFF Research Database (Denmark)

    Fantke, Peter; McKone, T.E.; Jolliet, Olivier

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  2. Characterizing health impacts from indoor and outdoor exposure to fine particulates

    DEFF Research Database (Denmark)

    Vigon, Bruce; Fantke, Peter; McKone, Thomas E

    2016-01-01

    Exposure to fine particulate matter (PM2.5) pollution is a major contributor to human disease burden as continuously shown in the Global Burden of Disease study series. Exposures to PM2.5 concentration outdoors and indoors contribute almost equally to this burden. Despite the importance, health...... impacts from exposure to PM2.5 are often excluded from life cycle impact assessment (LCIA) characterization profiles. This is in large part because of the lack of well-vetted harmonized guidance about how to consistently assess the exposures and impacts of indoor and outdoor emissions of PM2.5 and its...... precursors. We present a framework for calculating characterization factors for indoor and outdoor emissions of primary PM2.5 and secondary PM2.5 precursors, and a roadmap for further refining this modelling framework for operational use in LCIA. The framework was developed over the last three years...

  3. Fine particulate matter estimated by mathematical model and hospitalizations for pneumonia and asthma in children

    Directory of Open Access Journals (Sweden)

    Ana Cristina Gobbo César

    2016-03-01

    Full Text Available Abstract Objective: To estimate the association between exposure to fine particulate matter with an aerodynamic diameter <2.5 microns (PM2.5 and hospitalizations for pneumonia and asthma in children. Methods: An ecological study of time series was performed, with daily indicators of hospitalization for pneumonia and asthma in children up to 10 years of age, living in Taubaté (SP and estimated concentrations of PM2.5, between August 2011 and July 2012. A generalized additive model of Poisson regression was used to estimate the relative risk, with lag zero up to five days after exposure; the single pollutant model was adjusted by the apparent temperature, as defined from the temperature and relative air humidity, seasonality and weekday. Results: The values of the relative risks for hospitalization for pneumonia and asthma were significant for lag 0 (RR=1.051, 95%CI; 1.016 to 1.088; lag 2 (RR=1.066, 95%CI: 1.023 to 1.113; lag 3 (RR=1.053, 95%CI: 1.015 to 1.092; lag 4 (RR=1.043, 95%CI: 1.004 to 1.088 and lag 5 (RR=1.061, 95%CI: 1.018 to 1.106. The increase of 5mcg/m3 in PM2.5 contributes to increase the relative risk for hospitalization from 20.3 to 38.4 percentage points; however, the reduction of 5µg/m3 in PM2.5 concentration results in 38 fewer hospital admissions. Conclusions: Exposure to PM2.5 was associated with hospitalizations for pneumonia and asthma in children younger than 10 years of age, showing the role of fine particulate matter in child health and providing subsidies for the implementation of preventive measures to decrease these outcomes.

  4. Sensitivity analyses of factors influencing CMAQ performance for fine particulate nitrate.

    Science.gov (United States)

    Shimadera, Hikari; Hayami, Hiroshi; Chatani, Satoru; Morino, Yu; Mori, Yasuaki; Morikawa, Tazuko; Yamaji, Kazuyo; Ohara, Toshimasa

    2014-04-01

    Improvement of air quality models is required so that they can be utilized to design effective control strategies for fine particulate matter (PM2.5). The Community Multiscale Air Quality modeling system was applied to the Greater Tokyo Area of Japan in winter 2010 and summer 2011. The model results were compared with observed concentrations of PM2.5 sulfate (SO4(2-)), nitrate (NO3(-)) and ammonium, and gaseous nitric acid (HNO3) and ammonia (NH3). The model approximately reproduced PM2.5 SO4(2-) concentration, but clearly overestimated PM2.5 NO3(-) concentration, which was attributed to overestimation of production of ammonium nitrate (NH4NO3). This study conducted sensitivity analyses of factors associated with the model performance for PM2.5 NO3(-) concentration, including temperature and relative humidity, emission of nitrogen oxides, seasonal variation of NH3 emission, HNO3 and NH3 dry deposition velocities, and heterogeneous reaction probability of dinitrogen pentoxide. Change in NH3 emission directly affected NH3 concentration, and substantially affected NH4NO3 concentration. Higher dry deposition velocities of HNO3 and NH3 led to substantial reductions of concentrations of the gaseous species and NH4NO3. Because uncertainties in NH3 emission and dry deposition processes are probably large, these processes may be key factors for improvement of the model performance for PM2.5 NO3(-). The Community Multiscale Air Quality modeling system clearly overestimated the concentration of fine particulate nitrate in the Greater Tokyo Area of Japan, which was attributed to overestimation of production of ammonium nitrate. Sensitivity analyses were conducted for factors associated with the model performance for nitrate. Ammonia emission and dry deposition of nitric acid and ammonia may be key factors for improvement of the model performance.

  5. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    Science.gov (United States)

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  6. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds.

    Science.gov (United States)

    Ng, Chee-Loon; Kai, Fuu-Ming; Tee, Ming-Hui; Tan, Nicholas; Hemond, Harold F

    2018-01-18

    Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic) capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5) and volatile organic compounds (VOCs). For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  7. Estimating Anthropogenic Emissions of Hydrogen Chloride and Fine Particulate Chloride in China

    Science.gov (United States)

    Fu, X.; Wang, T.; Wang, S.; Zhang, L.

    2017-12-01

    Nitryl chloride (ClNO2) can significantly impact the atmospheric photochemistry via photolysis and subsequent reactions of chlorine radical with other gases. The formation of ClNO2 in the atmosphere is sensitive to the emissions of chlorine-containing particulates from oceanic and anthropogenic sources. For China, the only available anthropogenic chlorine emission inventory was compiled for the year 1990 with a coarse resolution of 1 degree. In this study, we developed an up-to-date anthropogenic inventory of hydrogen chloride (HCl) and fine particulate chloride (Cl-) emissions in China for the year 2014, including coal burning, industrial processes, biomass burning and waste burning. Bottom-up and top-down methodologies were combined. Detailed local data (e.g. Cl content in coal, control technologies, etc.) were collected and applied. In order to improve the spatial resolution of emissions, detailed point source information were collected for coal-fired power plants, cement factories, iron & steel factories and waste incineration factories. Uncertainties of this emission inventory and their major causes were analyzed using the Monte Carlo method. This work enables better quantification of the ClNO2 production and impact over China.

  8. A Prototype Sensor for In Situ Sensing of Fine Particulate Matter and Volatile Organic Compounds

    Directory of Open Access Journals (Sweden)

    Chee-Loon Ng

    2018-01-01

    Full Text Available Air pollution exposure causes seven million deaths per year, according to the World Health Organization. Possessing knowledge of air quality and sources of air pollution is crucial for managing air pollution and providing early warning so that a swift counteractive response can be carried out. An optical prototype sensor (AtmOptic capable of scattering and absorbance measurements has been developed to target in situ sensing of fine particulate matter (PM2.5 and volatile organic compounds (VOCs. For particulate matter testing, a test chamber was constructed and the emission of PM2.5 from incense burning inside the chamber was measured using the AtmOptic. The weight of PM2.5 particles was collected and measured with a filter to determine their concentration and the sensor signal-to-concentration correlation. The results of the AtmOptic were also compared and found to trend well with the Dylos DC 1100 Pro air quality monitor. The absorbance spectrum of VOCs emitted from various laboratory chemicals and household products as well as a two chemical mixtures were recorded. The quantification was demonstrated, using toluene as an example, by calibrating the AtmOptic with compressed gas standards containing VOCs at different concentrations. The results demonstrated the sensor capabilities in measuring PM2.5 and volatile organic compounds.

  9. Control of fine particulate (PM2.5) emissions from restaurant operations.

    Science.gov (United States)

    Whynot, J; Quinn, G; Perryman, P; Votlucka, P

    1999-09-01

    This paper describes efforts to reduce particulate matter (PM) emissions from restaurant operations, including application of an existing control method to a new equipment type. Commercial charbroiling in the South Coast Air Basin results in emissions of approximately 10 tons/day of fine particulate matter (PM2.5) and 1.3 tons/day of volatile organic compounds (VOCs). Over a seven-year period, the South Coast Air Quality Management District worked with industry to develop test methods for measuring emissions from various cooking operations, evaluate control technologies, and develop a rule to reduce these emissions. Of the two basic types of charbroilers--chain-driven and underfired--underfired produce four times the emissions when equivalent amounts of product are cooked. Cost-effective control technology is currently available only for chain-driven charbroilers. The application of flameless catalytic oxidizers to chain-driven charbroilers was found to effectively reduce emissions by at least 83% and is cost-effective. The catalysts have been used worldwide at restaurants for several years. Research efforts are underway to identify control options for underfired charbroilers. Implementation of Rule 1138, Control of Emissions from Restaurant Operations, adopted November 14, 1997, will result in reductions of 0.5 tons/day of PM2.5 and 0.2 tons/day of VOCs. Future rules will result in reductions from underfired charbroilers and possibly other restaurant equipment when cost-effective solutions are available.

  10. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India

    Directory of Open Access Journals (Sweden)

    Ramachandran Prasannavenkatesh

    2015-01-01

    Full Text Available Research outcomes from the epidemiological studies have found that the course (PM10 and the fine particulate matter (PM2.5 are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013–January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  11. Assessment of Population Exposure to Coarse and Fine Particulate Matter in the Urban Areas of Chennai, India.

    Science.gov (United States)

    Prasannavenkatesh, Ramachandran; Andimuthu, Ramachandran; Kandasamy, Palanivelu; Rajadurai, Geetha; Kumar, Divya Subash; Radhapriya, Parthasarathy; Ponnusamy, Malini

    2015-01-01

    Research outcomes from the epidemiological studies have found that the course (PM10) and the fine particulate matter (PM2.5) are mainly responsible for various respiratory health effects for humans. The population-weighted exposure assessment is used as a vital decision-making tool to analyze the vulnerable areas where the population is exposed to critical concentrations of pollutants. Systemic sampling was carried out at strategic locations of Chennai to estimate the various concentration levels of particulate pollution during November 2013-January 2014. The concentration of the pollutants was classified based on the World Health Organization interim target (IT) guidelines. Using geospatial information systems the pollution and the high-resolution population data were interpolated to study the extent of the pollutants at the urban scale. The results show that approximately 28% of the population resides in vulnerable locations where the coarse particulate matter exceeds the prescribed standards. Alarmingly, the results of the analysis of fine particulates show that about 94% of the inhabitants live in critical areas where the concentration of the fine particulates exceeds the IT guidelines. Results based on human exposure analysis show the vulnerability is more towards the zones which are surrounded by prominent sources of pollution.

  12. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Lezama-pacheco, Juan S.; Conradson, Steven D.; Clark, David L.

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO 2+x -type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO 2+x , and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO 2+x would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  13. SOURCE SAMPLING FINE PARTICULATE MATTER: A KRAFT PROCESS RECOVERY BOILER AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2

    Science.gov (United States)

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  14. Health effects of fine particulate matter in life cycle impact assessment: findings from the Basel Guidance Workshop

    DEFF Research Database (Denmark)

    Fantke, Peter; Jolliet, Olivier; Evans, John S.

    2015-01-01

    Purpose Fine particulate matter (PM2.5) is considered to be one of the most important environmental factors contributing to the global human disease burden. However, due to the lack of broad consensus and harmonization in the life cycle assessment (LCA) community, there is no clear guidance on ho...

  15. Origin of fine carbonaceous particulate matter in the Western Mediterranean Basin: fossil versus modern sources

    Science.gov (United States)

    Cruz Minguillón, María.; Perron, Nolwenn; Querol, Xavier; Szidat, Sönke; Fahrni, Simon; Wacker, Lukas; Reche, Cristina; Cusack, Michael; Baltensperger, Urs; Prévôt, André S. H.

    2010-05-01

    The present work was carried out in the frame of the international field campaign DAURE (Determination of the sources of atmospheric Aerosols in Urban and Rural Environments in the western Mediterranean). The objective of this campaign is to study the aerosol pollution episodes occurring at regional scale during winter and summer in the Western Mediterranean Basin. As part of this campaign, this work focuses on identifying the origin of fine carbonaceous aerosols. To this end, fine particulate matter (PM1) samples were collected during two different seasons (February-March and July 2009) at two sites: an urban site (Barcelona, NE Spain) and a rural European Supersite for Atmospheric Aerosol Research (Montseny, NE Spain). Subsequently, 14C analyses were carried out on these samples, both in the elemental carbon (EC) fraction and the organic carbon (OC) fraction, in order to distinguish between modern carbonaceous sources (biogenic emissions and biomass burning emissions) and fossil carbonaceous sources (mainly road traffic). Preliminary results from the winter period show that 40% of the OC at Barcelona has a fossil origin whereas at Montseny this percentage is 30%. These values can be considered as unexpected given the nature of the sites. Nevertheless, the absolute concentrations of fossil OC at Barcelona and Montseny differ by a factor of 2 (the first being higher), since the total OC at Montseny is lower than at Barcelona. Further evaluation of results and comparison with other measurements carried out during the campaign are required to better evaluate the origin of the fine carbonaceous matter in the Western Mediterranean Basin. Acknowledgements: Spanish Ministry of Education and Science, for a Postdoctoral Grant awarded to M.C. Minguillón in the frame of Programa Nacional de Movilidad de Recursos Humanos del Plan nacional de I-D+I 2008-2011. Spanish Ministry of Education and Science, for the Acción Complementaria DAURE CGL2007-30502-E/CLI.

  16. Fine particulate matter components and mortality in Greater Houston: Did the risk reduce from 2000 to 2011?

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Suyang; Zhang, Kai, E-mail: Kai.Zhang@uth.tmc.edu

    2015-12-15

    Fine particulate matter (less than 2.5 μm in aerodynamic diameter; PM{sub 2.5}) pollution poses a major environmental threat in Greater Houston due to rapid economic growth and the numerous PM{sub 2.5} sources including ports, vehicles, and the largest petrochemical industry in the United States (U.S.). Our objectives were to estimate the short-term associations between the PM{sub 2.5} components and mortality during 2000–2011, and evaluate whether these associations have changed over time. A total of 333,317 deaths were included in our assessment, with an average of 76 deaths per day. We selected 17 PM{sub 2.5} components from the U.S. Environmental Protection Agency's Chemical Speciation Network, and then applied Poisson regression models to assess the associations between the PM{sub 2.5} components and mortality. Additionally, we repeated our analysis for two consecutive periods: 2000–2005 and 2006–2011. Interquartile range increases in ammonium (0.881 μg/m{sup 3}), nitrate (0.487 μg/m{sup 3}), sulfate (2.245 μg/m{sup 3}), and vanadium (0.004 μg/m{sup 3}) were associated with an increased risk in mortality of 0.69% (95% confidence interval (CI): 0.26, 1.12%), 0.38% (95% CI: 0.11, 0.66%), 0.61% (95% CI: 0.15, 1.06%), and 0.58% (95% CI: 0.12, 1.04%), respectively. Seasonal analysis suggested that the associations were strongest during the winter months. The association between PM{sub 2.5} mass and mortality decreased during 2000–2011, however, the PM{sub 2.5} components showed no notable changes in mortality risk over time. Our study indicates that the short-term associations between PM{sub 2.5} and mortality differ across the PM{sub 2.5} components and suggests that future air pollution control measures should not only focus on mass but also pollutant sources. - Highlights: • PM{sub 2.5} concentrations were associated with increased mortality risk. • A few major PM{sub 2.5} components were associated with increased mortality risk.

  17. Fine particulate matter components and mortality in Greater Houston: Did the risk reduce from 2000 to 2011?

    International Nuclear Information System (INIS)

    Liu, Suyang; Zhang, Kai

    2015-01-01

    Fine particulate matter (less than 2.5 μm in aerodynamic diameter; PM_2_._5) pollution poses a major environmental threat in Greater Houston due to rapid economic growth and the numerous PM_2_._5 sources including ports, vehicles, and the largest petrochemical industry in the United States (U.S.). Our objectives were to estimate the short-term associations between the PM_2_._5 components and mortality during 2000–2011, and evaluate whether these associations have changed over time. A total of 333,317 deaths were included in our assessment, with an average of 76 deaths per day. We selected 17 PM_2_._5 components from the U.S. Environmental Protection Agency's Chemical Speciation Network, and then applied Poisson regression models to assess the associations between the PM_2_._5 components and mortality. Additionally, we repeated our analysis for two consecutive periods: 2000–2005 and 2006–2011. Interquartile range increases in ammonium (0.881 μg/m"3), nitrate (0.487 μg/m"3), sulfate (2.245 μg/m"3), and vanadium (0.004 μg/m"3) were associated with an increased risk in mortality of 0.69% (95% confidence interval (CI): 0.26, 1.12%), 0.38% (95% CI: 0.11, 0.66%), 0.61% (95% CI: 0.15, 1.06%), and 0.58% (95% CI: 0.12, 1.04%), respectively. Seasonal analysis suggested that the associations were strongest during the winter months. The association between PM_2_._5 mass and mortality decreased during 2000–2011, however, the PM_2_._5 components showed no notable changes in mortality risk over time. Our study indicates that the short-term associations between PM_2_._5 and mortality differ across the PM_2_._5 components and suggests that future air pollution control measures should not only focus on mass but also pollutant sources. - Highlights: • PM_2_._5 concentrations were associated with increased mortality risk. • A few major PM_2_._5 components were associated with increased mortality risk. • Associations were generally strongest in winter in Greater

  18. Organic and inorganic speciation of particulate matter formed during different combustion phases in an improved cookstove.

    Science.gov (United States)

    Leavey, Anna; Patel, Sameer; Martinez, Raul; Mitroo, Dhruv; Fortenberry, Claire; Walker, Michael; Williams, Brent; Biswas, Pratim

    2017-10-01

    Residential solid fuel combustion in cookstoves has established health impacts including bladder and lung cancers, cataracts, low birth weight, and pneumonia. The chemical composition of particulate matter (PM) from 4 commonly-used solid fuels (coal, dung, ambient/dry applewood, and oakwood pellets), emitted from a gasifier cookstove, as well as propane, were examined. Temporal changes between the different cookstove burn-phases were also explored. Normalized concentrations of non-refractory PM 1 , total organics, chloride, ammonium, nitrate, sulfate, and 41 particle-phase polycyclic aromatic hydrocarbons (PAHs) were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a Thermal desorption Aerosol Gas chromatograph (TAG), respectively. Coal demonstrated the highest fraction of organic matter in its particulate emission composition (98%), followed by dung (94%). Coal and dung also demonstrated the highest numbers and concentrations of PAHs. While dry applewood emitted ten times lower organic matter compared to ambient applewood, a higher fraction of these organics was composed of PAHs, especially the more toxic ones such as benzo(a)pyrene (9.63ng/L versus 0.04ng/L), and benzo(b)fluoranthene (31.32ng/L versus 0.19ng/L). Data from the AMS demonstrated no clear trends for any of the combustion fuels over the different combustion phases unlike the previously reported trends observed for the physical characteristics. Of the solid fuels, pellets demonstrated the lowest emissions. Emissions from propane were below the quantification limit of the instruments. This work highlights the benefits of incorporating additional metrics into the cookstove evaluation process, thus enriching the existing PM data inventory. Copyright © 2017. Published by Elsevier Inc.

  19. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine

  20. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2006-04-02

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0

  1. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport

  2. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine

  3. Ultra High Efficiency ESP for Fine Particulate and Air Toxics Control

    International Nuclear Information System (INIS)

    Srinivasachar, Srivats; Pease, Benjamin R.; Porle, Kjell; Mauritzson, Christer; Haythornthwaite, Sheila

    1997-01-01

    Nearly ninety percent of U.S. coal-fired utility boilers are equipped with electrostatic precipitators (ESP). Cost effective retrofittable ESP technologies are the only means to accomplish Department of Energy's (DOE) goal of a major reduction in fine particulate and air toxic emissions from coal-fired power plants. Particles in the size range of 0.1 to 5 (micro)m typically escape ESPs. Metals, such as arsenic, cadmium, lead, molybdenum and antimony, concentrate on these particles. This is the main driver for improved fine particulate control. Vapor phase emissions of mercury, selenium and arsenic are also of major concern. Current dry ESPs, which operate at temperatures greater than 280 F, provide little control for vapor phase toxics. The need for inherent improvement to ESPs has to be considered keeping in perspective the current trend towards the use of low sulfur coals. Switching to low sulfur coals is the dominant approach for SO 2 emission reduction in the utility industry. Low sulfur coals generate high resistivity ash, which can cause an undesirable phenomenon called ''back corona.'' Higher particulate emissions occur if there is back corona in the ESP. Results of the pilot-scale testing identified the ''low temperature ESP'' concept to have the biggest impact for the two low sulfur coals investigated. Lowering the flue gas temperature to 220 F provided the maximum impact in terms of decreased emissions. Intermediate operating temperatures (reduction from 340 to 270 F) also gave significant ESP performance improvement. A significant reduction in particulate emissions was also noted when the flue gas humidity was increased (temperature held constant) from the baseline condition for these moderately high resistivity ash coals. Independent control of flue gas humidity and temperature was an important and a notable element in this project. Mercury emissions were also measured as a function of flue gas temperature. Mercury emissions decreased as the flue gas

  4. Exposure to fine particulate, black carbon, and particle number concentration in transportation microenvironments

    Science.gov (United States)

    Morales Betancourt, R.; Galvis, B.; Balachandran, S.; Ramos-Bonilla, J. P.; Sarmiento, O. L.; Gallo-Murcia, S. M.; Contreras, Y.

    2017-05-01

    This research determined intake dose of fine particulate matter (PM2.5), equivalent black carbon (eBC), and number of sub-micron particles (Np) for commuters in Bogotá, Colombia. Doses were estimated through measurements of exposure concentration, a surrogate of physical activity, as well as travel times and speeds. Impacts of travel mode, traffic load, and street configuration on dose and exposure were explored. Three road segments were selected because of their different traffic loads and composition, and dissimilar street configuration. The transport modes considered include active modes (walking and cycling) and motorized modes (bus, car, taxi, and motorcycle). Measurements were performed simultaneously in the available modes at each road segment. High average eBC concentrations were observed throughout the campaign, ranging from 20 to 120 μgm-3 . Commuters in motorized modes experienced significantly higher exposure concentrations than pedestrians and bicyclists. The highest average concentrations of PM2.5, eBC , and Np were measured inside the city's Bus Rapid Transit (BRT) system vehicles. Pedestrians and bicycle users in an open street configuration were exposed to the lowest average concentrations of PM2.5 and eBC , six times lower than those experienced by commuters using the BRT in the same street segment. Pedestrians experienced the highest particulate matter intake dose in the road segments studied, despite being exposed to lower concentrations than commuters in motorized modes. Average potential dose of PM2.5 and eBC per unit length traveled were nearly three times higher for pedestrians in a street canyon configuration compared to commuters in public transport. Slower travel speed and elevated inhalation rates dominate PM dose for pedestrians. The presence of dedicated bike lanes on sidewalks has a significant impact on reducing the exposure concentration for bicyclists compared to those riding in mixed traffic lanes. This study proposes a simple

  5. Quantifying the sources of ozone, fine particulate matter, and regional haze in the Southeastern United States.

    Science.gov (United States)

    Odman, M Talat; Hu, Yongtao; Russell, Armistead G; Hanedar, Asude; Boylan, James W; Brewer, Patricia F

    2009-07-01

    A detailed sensitivity analysis was conducted to quantify the contributions of various emission sources to ozone (O3), fine particulate matter (PM2.5), and regional haze in the Southeastern United States. O3 and particulate matter (PM) levels were estimated using the Community Multiscale Air Quality (CMAQ) modeling system and light extinction values were calculated from modeled PM concentrations. First, the base case was established using the emission projections for the year 2009. Then, in each model run, SO2, primary carbon (PC), NH3, NO(x) or VOC emissions from a particular source category in a certain geographic area were reduced by 30% and the responses were determined by calculating the difference between the results of the reduced emission case and the base case. The sensitivity of summertime O3 to VOC emissions is small in the Southeast and ground-level NO(x) controls are generally more beneficial than elevated NO(x) controls (per unit mass of emissions reduced). SO2 emission reduction is the most beneficial control strategy in reducing summertime PM2.5 levels and improving visibility in the Southeast and electric generating utilities are the single largest source of SO2. Controlling PC emissions can be very effective locally, especially in winter. Reducing NH3 emissions is an effective strategy to reduce wintertime ammonium nitrate (NO3NH4) levels and improve visibility; NO(x) emissions reductions are not as effective. The results presented here will help the development of specific emission control strategies for future attainment of the National Ambient Air Quality Standards in the region.

  6. Characterization of Fine Particulate Matter in Sharjah, United Arab Emirates Using Complementary Experimental Techniques

    Directory of Open Access Journals (Sweden)

    Nasser M. Hamdan

    2018-04-01

    Full Text Available Airborne particulate matter (PM pollutants were sampled from an urban background site in Sharjah, United Arab Emirates. The fine fraction (PM2.5 (particulates with aerodynamic diameters of less than 2.5 μm was collected on 47-mm Teflon filters and analyzed using a combined set of non-destructive techniques in order to provide better understanding of the sources of pollutants and their interaction during transport in the atmosphere. These techniques included gravimetric analysis, equivalent black carbon (EBC, X-ray fluorescence, scanning electron microscopy, and X-ray diffraction. Generally, the PM2.5 concentrations are within the limits set by the World Health Organization (WHO and the United States (US Environmental Protection Agency. The EBC content is in the range of 10–12% of the total PM concentration (2–4 µg m−3, while S (as ammonium sulfate, Ca (as calcite, gypsum, and calcium carbonate, Si (as quartz, Fe, and Al were the major sources of PM pollution. EBC, ammonium sulfate, Zn, V, and Mn originate from anthropogenic sources such as fossil fuel burning, traffic, and industrial emissions. Natural elements such as Ca, Fe, Al, Si, and Ti are due to natural sources such as crustal materials (enhanced during dust episodes and sea salts. The average contribution of natural sources in the total PM2.5 mass concentration over the sampling period is about 40%, and the contribution of the secondary inorganic compounds is about 27% (mainly ammonium sulfate in our case. The remaining 22% is assumed to be secondary organic compounds.

  7. Trends in the elemental composition of fine particulate matter in Santiago, Chile, from 1998 to 2003.

    Science.gov (United States)

    Sax, Sonja N; Koutrakis, Petros; Rudolph, Pablo A Ruiz; Cereceda-Balic, Francisco; Gramsch, Ernesto; Oyola, Pedro

    2007-07-01

    Santiago, Chile, is one of the most polluted cities in South America. As a response, over the past 15 yr, numerous pollution reduction programs have been implemented by the environmental authority, Comisión Nacional del Medio Ambiente. This paper assesses the effectiveness of these interventions by examining the trends of fine particulate matter (PM(2.5)) and its associated elements. Daily fine particle filter samples were collected in Santiago at a downtown location from April 1998 through March 2003. Additionally, meteorological variables were measured continuously. Annual average concentrations of PM(2.5) decreased only marginally, from 41.8 microg/m3 for the 1998-1999 period to 35.4 microg/m3 for the 2002-2003 period. PM(2.5) concentrations exceeded the annual U.S. Environmental Protection Agency standard of 15 microg/m3. Also, approximately 20% of the daily samples exceeded the old standard of 65 microg/m3, whereas approximately half of the samples exceeded the new standard of 35 microg/m3 (effective in 2006). Mean PM(2.5) levels measured during the cold season (April through September) were three times higher than those measured in the warm season (October through March). Particulate mass and elemental concentration trends were investigated using regression models, controlling for year, month, weekday, wind speed, temperature, and relative humidity. The results showed significant decreases for Pb, Br, and S concentrations and minor but still significant decreases for Ni, Al, Si, Ca, and Fe. The larger decreases were associated with specific remediation policies implemented, including the removal of lead from gasoline, the reduction of sulfur levels in diesel fuel, and the introduction of natural gas. These results suggest that the pollution reduction programs, especially the ones related to transport, have been effective in reducing various important components of PM(2.5). However, particle mass and other associated element levels remain high, and it is thus

  8. Fine Particulate Pollution and Source Apportionment in the Urban Centers for Africa, Asia and Latin America

    Science.gov (United States)

    Guttikunda, S. K.; Johnson, T. M.; Procee, P.

    2004-12-01

    Fossil fuel combustion for domestic cooking and heating, power generation, industrial processes, and motor vehicles are the primary sources of air pollution in the developing country cities. Over the past twenty years, major advances have been made in understanding the social and economic consequences of air pollution. In both industrialized and developing countries, it has been shown that air pollution from energy combustion has detrimental impacts on human health and the environment. Lack of information on the sectoral contributions to air pollution - especially fine particulates, is one of the typical constraints for an effective integrated urban air quality management program. Without such information, it is difficult, if not impossible, for decision makers to provide policy advice and make informed investment decisions related to air quality improvements in developing countries. This also raises the need for low-cost ways of determining the principal sources of fine PM for a proper planning and decision making. The project objective is to develop and verify a methodology to assess and monitor the sources of PM, using a combination of ground-based monitoring and source apportionment techniques. This presentation will focus on four general tasks: (1) Review of the science and current activities in the combined use of monitoring data and modeling for better understanding of PM pollution. (2) Review of recent advances in atmospheric source apportionment techniques (e.g., principal component analysis, organic markers, source-receptor modeling techniques). (3) Develop a general methodology to use integrated top-down and bottom-up datasets. (4) Review of a series of current case studies from Africa, Asia and Latin America and the methodologies applied to assess the air pollution and its sources.

  9. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Energy Technology Data Exchange (ETDEWEB)

    Molina, Luisa T.; Molina, Mario J.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavaka, Miguel; Velasco, Erik

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation. The measurement phase of the MILAGRO Campaign was successfully completed in March 2006 with excellent participation from the international scientific community and outstanding cooperation from the Mexican government agencies and institutions. The project reported here was led by the Massachusetts Institute of Technology/Molina Center for Energy and the Environment (MIT/MCE2) team and coordinated with DOE/ASP-funded collaborators at Aerodyne Research Inc., University of Colorado at Boulder and Montana State University. Currently 24 papers documenting the findings from this project have been published. The results from the project have improved significantly our understanding of the meteorological and photochemical processes contributing to the formation of ozone, secondary aerosols and other pollutants. Key findings from the MCMA-2003 include a vastly improved speciated emissions inventory from on

  10. One year online chemical speciation of submicron particulate matter (PM1) sampled at a French industrial and coastal site

    Science.gov (United States)

    Zhang, Shouwen; Riffault, Véronique; Dusanter, Sébastien; Augustin, Patrick; Fourmentin, Marc; Delbarre, Hervé

    2015-04-01

    The harbor of Dunkirk (Northern France) is surrounded by different industrial plants (metallurgy, petrochemistry, food processing, power plant, etc.), which emit gaseous and particulate pollutants such as Volatile Organic Compounds (VOCs), oxides of nitrogen (NOx) and sulfur (SO2), and submicron particles (PM1). These emissions are poorly characterized and their impact on neighboring urban areas has yet to be assessed. Studies are particularly needed in this type of complex environments to get a better understanding of PM1sources, especially from the industrial sector, their temporal variability, and their transformation. Several instruments, capable of real-time measurements (temporal resolution ≤ 30 min), were deployed at a site located downwind from the industrial area of Dunkirk for a one-year duration (July 2013-September 2014). An Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer monitored the main chemical species in the non-refractory submicron particles and black carbon, respectively. Concomitant measurements of trace gases and wind speed and direction were also performed. This dataset was analyzed considering four wind sectors, characteristics of marine, industrial, industrial-urban, and urban influences, and the different seasons. We will present a descriptive analysis of PM1, showing strong variations of ambient concentrations, as well as evidences of SO2 to SO4 gas-particle conversion when industrial plumes reached the monitoring site. The organic fraction measured by ACSM (37% of the total mass on average) was analyzed using a source-receptor model based on Positive Matrix Factorization (PMF) to identify chemical signatures of main emission sources and to quantify the contribution of each source to the PM1 budget given the wind sector. Four main factors were identified: hydrocarbon organic aerosol (HOA), oxygenated organic aerosol (OOA), biomass burning organic aerosol (BBOA) and cooking-like organic aerosol (COA). Overall, the total PM

  11. Fine particulate matter air pollution and cognitive function among U.S. older adults.

    Science.gov (United States)

    Ailshire, Jennifer A; Clarke, Philippa

    2015-03-01

    There is growing interest in understanding how exposures in the residential environment relate to cognitive function in older adults. The goal of this study is to determine if neighborhood-level exposure to fine particulate matter air pollution (PM2.5) is associated with cognitive function in a diverse, national sample of older U.S. adults. We use cross-sectional data on non-Hispanic black and white men and women aged 55 and older from the 2001/2002 Americans' Changing Lives Study (N = 780). EPA air monitoring data were linked to respondents using census tract identifiers. Cognitive function was assessed with tests of working memory and orientation. Negative binomial regression models were used to examine the association between PM2.5 and the number of errors on the cognitive assessment. Older adults living in areas with high concentrations of PM2.5 had an error rate 1.5 times greater than those exposed to lower concentrations, net of individual and neighborhood-level demographic and socioeconomic characteristics. This study adds to a growing body of research demonstrating the importance of air pollution to cognitive function in older adults. Improvements to air quality may be an important mechanism for reducing age-related cognitive decline. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. An update on mortality in Denmark caused by fine particulate matter air pollution

    DEFF Research Database (Denmark)

    Bønløkke, Jakob Hjort; Andersen, Mikael Skou; Brandt, Jørgen

    Introduction In terms of effects on mortality fine particulate matter (PM2.5) is considered the most important component of air polllution. Several international studies have investigated the effect size. It is estimated that overall mortality increases 6% per 10µg/m3 increase in annual PM2.......5 and that PM2.5 affects global mortality signficantly (Hoek, 2013). The first attempt to describe the size of the effects of PM2.5 in Denmark were published in 2002 (Raaschou-Nielsen, 2002). At that time only PM10 data were available and only with a great deal of uncertainty. Since then the knowledge of PM2...... to what extent the changes in estimates of mortality from PM2.5 exposure over the years is due to changes in population and in pollution and to what extent they are due to improved models. Methods Several methods of calculation were compared for the year 2012. First the method used in 2002 in which...

  13. Estimation of Fine Particulate Matter in Taipei Using Landuse Regression and Bayesian Maximum Entropy Methods

    Directory of Open Access Journals (Sweden)

    Yi-Ming Kuo

    2011-06-01

    Full Text Available Fine airborne particulate matter (PM2.5 has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS, the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME method. The resulting epistemic framework can assimilate knowledge bases including: (a empirical-based spatial trends of PM concentration based on landuse regression, (b the spatio-temporal dependence among PM observation information, and (c site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan from 2005–2007.

  14. Estimation of fine particulate matter in Taipei using landuse regression and bayesian maximum entropy methods.

    Science.gov (United States)

    Yu, Hwa-Lung; Wang, Chih-Hsih; Liu, Ming-Che; Kuo, Yi-Ming

    2011-06-01

    Fine airborne particulate matter (PM2.5) has adverse effects on human health. Assessing the long-term effects of PM2.5 exposure on human health and ecology is often limited by a lack of reliable PM2.5 measurements. In Taipei, PM2.5 levels were not systematically measured until August, 2005. Due to the popularity of geographic information systems (GIS), the landuse regression method has been widely used in the spatial estimation of PM concentrations. This method accounts for the potential contributing factors of the local environment, such as traffic volume. Geostatistical methods, on other hand, account for the spatiotemporal dependence among the observations of ambient pollutants. This study assesses the performance of the landuse regression model for the spatiotemporal estimation of PM2.5 in the Taipei area. Specifically, this study integrates the landuse regression model with the geostatistical approach within the framework of the Bayesian maximum entropy (BME) method. The resulting epistemic framework can assimilate knowledge bases including: (a) empirical-based spatial trends of PM concentration based on landuse regression, (b) the spatio-temporal dependence among PM observation information, and (c) site-specific PM observations. The proposed approach performs the spatiotemporal estimation of PM2.5 levels in the Taipei area (Taiwan) from 2005-2007.

  15. Fossil and nonfossil carbon in fine particulate matter: A study of five European cities

    Science.gov (United States)

    Glasius, Marianne; La Cour, Agnete; Lohse, Christian

    2011-06-01

    Fossil carbon in particulate matter comes from anthropogenic use and combustion of fossil fuels, while nonfossil carbon may originate from both biogenic (e.g., pollen, plant debris, fungal spores, and biogenic secondary organic aerosol (SOA)) and anthropogenic sources (e.g., cooking and residential wood combustion). We investigated the relative contributions of fossil and nonfossil sources to fine carbonaceous aerosols in five European cities by radiocarbon analysis of aerosol samples collected at four types of sites in 2002-2004. The average fraction of nonfossil carbon was 43 ± 11%, with the lowest fraction, 36 ± 7%, at urban curbside sites and the highest fraction, 54 ± 11%, at rural background sites, farthest away from the impact of man-made emissions. Generally, fossil carbon concentrations at urban curbside sites are elevated in comparison to background sites, which is expected because of their proximity to vehicular emissions. Contrary to what might be expected, the concentration of nonfossil carbon is also higher at curbside than at background sites. This may be attributable to differences between site categories in levels of primary biological aerosols, brake and tire wear in resuspended road dust, biofuels, emissions from cooking and residential wood combustion, or processes such as anthropogenic enhancement of biogenic SOA and increased partitioning of semivolatile compounds into the aerosol phase at urban sites. The exact causes should be investigated by future detailed source analyses.

  16. Impact of agricultural emission reductions on fine-particulate matter and public health

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2017-10-01

    Full Text Available A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine-particulate matter (PM2.5, with a focus on Europe, North America, East and South Asia. Simulations reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, notably of ammonia (NH3 released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases. Conversely, over Europe and North America, aerosol formation is not immediately limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5 concentrations over the latter regions, especially when emissions are abated systematically. Our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. Further, it is shown that a 50 % reduction of agricultural emissions could prevent the mortality attributable to air pollution by  ∼ 250 000 people yr−1 worldwide, amounting to reductions of 30, 19, 8 and 3 % over North America, Europe, East and South Asia, respectively. A theoretical 100 % reduction could even reduce the number of deaths globally by about 800 000 per year.

  17. Temporal Patterns in Fine Particulate Matter Time Series in Beijing: A Calendar View

    Science.gov (United States)

    Liu, Jianzheng; Li, Jie; Li, Weifeng

    2016-08-01

    Extremely high fine particulate matter (PM2.5) concentration has become synonymous to Beijing, the capital of China, posing critical challenges to its sustainable development and leading to major public health concerns. In order to formulate mitigation measures and policies, knowledge on PM2.5 variation patterns should be obtained. While previous studies are limited either because of availability of data, or because of problematic a priori assumptions that PM2.5 concentration follows subjective seasonal, monthly, or weekly patterns, our study aims to reveal the data on a daily basis through visualization rather than imposing subjective periodic patterns upon the data. To achieve this, we conduct two time-series cluster analyses on full-year PM2.5 data in Beijing in 2014, and provide an innovative calendar visualization of PM2.5 measurements throughout the year. Insights from the analysis on temporal variation of PM2.5 concentration show that there are three diurnal patterns and no weekly patterns; seasonal patterns exist but they do not follow a strict temporal division. These findings advance current understanding on temporal patterns in PM2.5 data and offer a different perspective which can help with policy formulation on PM2.5 mitigation.

  18. Impact of agricultural emission reductions on fine-particulate matter and public health

    Science.gov (United States)

    Pozzer, Andrea; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; de Meij, Alexander; Lelieveld, Jos

    2017-10-01

    A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine-particulate matter (PM2.5), with a focus on Europe, North America, East and South Asia. Simulations reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, notably of ammonia (NH3) released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases. Conversely, over Europe and North America, aerosol formation is not immediately limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5 concentrations over the latter regions, especially when emissions are abated systematically. Our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. Further, it is shown that a 50 % reduction of agricultural emissions could prevent the mortality attributable to air pollution by ˜ 250 000 people yr-1 worldwide, amounting to reductions of 30, 19, 8 and 3 % over North America, Europe, East and South Asia, respectively. A theoretical 100 % reduction could even reduce the number of deaths globally by about 800 000 per year.

  19. Cost-effective reduction of fine primary particulate matter emissions in Finland

    International Nuclear Information System (INIS)

    Karvosenoja, Niko; Klimont, Zbigniew; Tohka, Antti; Johansson, Matti

    2007-01-01

    Policies to reduce adverse health impacts of fine particulate matter (PM 2.5 ) require information on costs of abatement and associated costs. This paper explores the potential for cost-efficient control of anthropogenic primary PM 2.5 emissions in Finland. Based on a Kyoto-compliant energy projection, two emission control scenarios for 2020 were developed. 'Baseline' assumes implementation of PM controls in compliance with existing legislation. 'Reduction' assumes ambitious further reductions. Emissions for 2020 were estimated at 26 and 18.6 Gg a -1 for 'Baseline' and 'Reduction', respectively. The largest abatement potential, 3.0 Gg a -1 , was calculated for power plants and industrial combustion. The largest potential with marginal costs below 5000 Euro MG(PM 2.5 ) -1 was for domestic wood combustion, 1.7 Gg a -1 . For traffic the potential was estimated at 1.0 Gg a -1 , but was associated with high costs. The results from this paper are used in the policy-driven national integrated assessment modeling that explores cost-efficient reductions of the health impacts of PM

  20. Characteristics and oxidative stress on rats and traffic policemen of ambient fine particulate matter from Shenyang.

    Science.gov (United States)

    Ma, Mingyue; Li, Shuyin; Jin, Huanrong; Zhang, Yumin; Xu, Jia; Chen, Dongmei; Kuimin, Chen; Yuan, Zhou; Xiao, Chunling

    2015-09-01

    Fine particulate matter (PM2.5) pollution is becoming serious in China. This study aimed to investigate the impact of PM2.5 on DNA damage in Shenyang city. The concentration and composition of PM2.5 in traffic policemen's working sites including fields and indoor offices were obtained. Blood samples of field and office policemen were collected to detect DNA damage by Comet assay. Rats were used to further analyzing the oxidative DNA damage. The average concentration of PM2.5 in exposed group was significantly higher than that in control group. Composition analysis revealed that toxic heavy metal and polycyclic aromatic hydrocarbon substances were main elements of this PM2.5. DNA damage in field policemen was significantly higher than those in non-field group. Moreover, animal studies confirmed the oxidative DNA damage induced by PM2.5. Taken together, high DNA damages are found in the Shenyang traffic policemen and rats exposed to high level of airborne PM2.5. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Source areas and chemical composition of fine particulate matter in the Pearl River Delta region of China

    Science.gov (United States)

    Hagler, G. S. W.; Bergin, M. H.; Salmon, L. G.; Yu, J. Z.; Wan, E. C. H.; Zheng, M.; Zeng, L. M.; Kiang, C. S.; Zhang, Y. H.; Lau, A. K. H.; Schauer, J. J.

    Fine particulate matter (PM 2.5) was measured for 4 months during 2002-2003 at seven sites located in the rapidly developing Pearl River Delta region of China, an area encompassing the major cities of Hong Kong, Shenzhen and Guangzhou. The 4-month average fine particulate matter concentration ranged from 37 to 71 μg m -3 in Guangdong province and from 29 to 34 μg m -3 in Hong Kong. Main constituents of fine particulate mass were organic compounds (24-35% by mass) and sulfate (21-32%). With sampling sites strategically located to monitor the regional air shed patterns and urban areas, specific source-related fine particulate species (sulfate, organic mass, elemental carbon, potassium and lead) and daily surface winds were analyzed to estimate influential source locations. The impact of transport was investigated by categorizing 13 (of 20 total) sampling days by prevailing wind direction (southerly, northerly or low wind-speed mixed flow). The vicinity of Guangzhou is determined to be a major source area influencing regional concentrations of PM 2.5, with levels observed to increase by 18-34 μg m -3 (accounting for 46-56% of resulting particulate levels) at sites immediately downwind of Guangzhou. The area near Guangzhou is also observed to heavily impact downwind concentrations of lead. Potassium levels, related to biomass burning, appear to be controlled by sources in the northern part of the Pearl River Delta, near rural Conghua and urban Guangzhou. Guangzhou appears to contribute 5-6 μg m -3 of sulfate to downwind locations. Guangzhou also stands out as a significant regional source of organic mass (OM), adding 8.5-14.5 μg m -3 to downwind concentrations. Elemental carbon is observed to be strongly influenced by local sources, with highest levels found in urban regions. In addition, it appears that sources outside of the Pearl River Delta contribute a significant fraction of overall fine particulate matter in Hong Kong and Guangdong province. This is evident

  2. Long-Term Exposure to Fine Particulate Matter: Association with Nonaccidental and Cardiovascular Mortality in the Agricultural Health Study Cohort

    OpenAIRE

    Weichenthal, Scott; Villeneuve, Paul J.; Burnett, Richard T.; van Donkelaar, Aaron; Martin, Randall V.; Jones, Rena R.; DellaValle, Curt T.; Sandler, Dale P.; Ward, Mary H.; Hoppin, Jane A.

    2014-01-01

    Background: Few studies have examined the relationship between long-term exposure to ambient fine particulate matter (PM2.5) and nonaccidental mortality in rural populations. Objective: We examined the relationship between PM2.5 and nonaccidental and cardiovascular mortality in the U.S. Agricultural Health Study cohort. Methods: The cohort (n = 83,378) included farmers, their spouses, and commercial pesticide applicators residing primarily in Iowa and North Carolina. Deaths occurring between ...

  3. SOURCE SIGNATURES OF FINE PARTICULATE MATTER FROM PETROLEUM REFINING AND FUEL USE

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman; Frank E. Huggins; Naresh Shah; Artur Braun; Yuanzhi Chen; J. David Robertson; Joseph Kyger; Adel F. Sarofim; Ronald J. Pugmire; Henk L.C. Meuzelaar; JoAnn Lighty

    2003-07-31

    The molecular structure and microstructure of a suite of fine particulate matter (PM) samples produced by the combustion of residual fuel oil and diesel fuel were investigated by an array of analytical techniques. Some of the more important results are summarized below. Diesel PM (DPM): A small diesel engine test facility was used to generate a suite of diesel PM samples from different fuels under engine load and idle conditions. C XANES, {sup 13}C NMR, XRD, and TGA were in accord that the samples produced under engine load conditions contained more graphitic material than those produced under idle conditions, which contained a larger amount of unburned diesel fuel and lubricating oil. The difference was enhanced by the addition of 5% of oxygenated compounds to the reference fuel. Scanning transmission x-ray micro-spectroscopy (STXM) was able to distinguish particulate regions rich in C=C bonds from regions rich in C-H bonds with a resolution of {approx}50 nm. The former are representative of more graphitic regions and the latter of regions rich in unburned fuel and oil. The dominant microstructure observed by SEM and TEM consisted of complex chain-like structures of PM globules {approx}20-100 nm in mean diameter, with a high fractal dimension. High resolution TEM revealed that the graphitic part of the diesel soot consisted of onion-like structures made up of graphene layers. Typically 3-10 graphene layers make up the ''onion rings'', with the layer spacing decreasing as the number of layers increases. ROFA PM: Residual oil fly ash (ROFA) PM has been analyzed by a new approach that combines XAFS spectroscopy with selective leaching procedures. ROFA PM{sub 2.5} and PM{sub 2.5+} produced in combustion facilities at the U.S. EPA National Risk Management Research Laboratory (NRML) were analyzed by XAFS before and after leaching with water, acid (1N HCl), and pentane. Both water and acid leaching removed most of the metal sulfates, which were the

  4. World Trade Center fine particulate matter causes respiratory tract hyperresponsiveness in mice.

    Science.gov (United States)

    Gavett, Stephen H; Haykal-Coates, Najwa; Highfill, Jerry W; Ledbetter, Allen D; Chen, Lung Chi; Cohen, Mitchell D; Harkema, Jack R; Wagner, James G; Costa, Daniel L

    2003-06-01

    Pollutants originating from the destruction of the World Trade Center (WTC) in New York City on 11 September 2001 have been reported to cause adverse respiratory responses in rescue workers and nearby residents. We examined whether WTC-derived fine particulate matter [particulate matter with a mass median aerodynamic diameter mice to contribute to the risk assessment of WTC-derived pollutants. Samples of WTC PM2.5 were derived from settled dust collected at several locations around Ground Zero on 12 and 13 September 2001. Aspirated samples of WTC PM2.5 induced mild to moderate degrees of pulmonary inflammation 1 day after exposure but only at a relatively high dose (100 microg). This response was not as great as that caused by 100 microg PM2.5 derived from residual oil fly ash (ROFA) or Washington, DC, ambient air PM [National Institute of Standards and Technology, Standard Reference Material (SRM) 1649a]. However, this same dose of WTC PM2.5 caused airway hyperresponsiveness to methacholine aerosol comparable to that from SRM 1649a and to a greater degree than that from ROFA. Mice exposed to lower doses by aspiration or inhalation exposure did not develop significant inflammation or hyperresponsiveness. These results show that exposure to high levels of WTC PM2.5 can promote mechanisms of airflow obstruction in mice. Airborne concentrations of WTC PM2.5 that would cause comparable doses in people are high (approximately 425 microg/m3 for 8 hr) but conceivable in the aftermath of the collapse of the towers when rescue and salvage efforts were in effect. We conclude that a high-level exposure to WTC PM2.5 could cause pulmonary inflammation and airway hyperresponsiveness in people. The effects of chronic exposures to lower levels of WTC PM2.5, the persistence of any respiratory effects, and the effects of coarser WTC PM are unknown and were not examined in these studies. Degree of exposure and respiratory protection, individual differences in sensitivity to WTC PM2

  5. Regulatory T Cells Protect Fine Particulate Matter-Induced Inflammatory Responses in Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Wen-cai Zhang

    2014-01-01

    Full Text Available Objective. To investigate the role of CD4+CD25+ T cells (Tregs in protecting fine particulate matter (PM- induced inflammatory responses, and its potential mechanisms. Methods. Human umbilical vein endothelial cells (HUVECs were treated with graded concentrations (2, 5, 10, 20, and 40 µg/cm2 of suspension of fine particles for 24h. For coculture experiment, HUVECs were incubated alone, with CD4+CD25− T cells (Teff, or with Tregs in the presence of anti-CD3 monoclonal antibodies for 48 hours, and then were stimulated with or without suspension of fine particles for 24 hours. The expression of adhesion molecules and inflammatory cytokines was examined. Results. Adhesion molecules, including vascular cell adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1, and inflammatory cytokines, such as interleukin (IL- 6 and IL-8, were increased in a concentration-dependent manner. Moreover, the adhesion of human acute monocytic leukemia cells (THP-1 to endothelial cells was increased and NF-κB activity was upregulated in HUVECs after treatment with fine particles. However, after Tregs treatment, fine particles-induced inflammatory responses and NF-κB activation were significantly alleviated. Transwell experiments showed that Treg-mediated suppression of HUVECs inflammatory responses impaired by fine particles required cell contact and soluble factors. Conclusions. Tregs could attenuate fine particles-induced inflammatory responses and NF-κB activation in HUVECs.

  6. Charge-Spot Model for Electrostatic Forces in Simulation of Fine Particulates

    Science.gov (United States)

    Walton, Otis R.; Johnson, Scott M.

    2010-01-01

    . Adhesive image-charge forces acting on charged particles touching conducting surfaces can be up to 50 times stronger if the charge is located in discrete spots on the particle surface instead of being distributed uniformly over the surface of the particle, as is assumed by most other models. Besides being useful in modeling particulates in space and distant objects, this modeling technique is useful for electrophotography (used in copiers) and in simulating the effects of static charge in the pulmonary delivery of fine dry powders.

  7. Fine particulate air pollution and hospital visits for asthma in Beijing, China

    International Nuclear Information System (INIS)

    Tian, Yaohua; Xiang, Xiao; Juan, Juan; Sun, Kexin; Song, Jing; Cao, Yaying; Hu, Yonghua

    2017-01-01

    Data on fine particulate matter (PM 2.5 ) in China were first announced in 2013. The primary objective of this study was to evaluate the acute effects of PM 2.5 on asthma morbidity in Beijing, China. A total of 978,658 asthma hospital visits consisting of 928,607 outpatient visits, 40,063 emergency room visits and 9988 hospital admissions from January 1, 2010, to June 30, 2012, were identified from the Beijing Medical Claim Data for Employees. A generalized additive Poisson model was applied to explore the association between PM 2.5 and health service use. The mean daily PM 2.5 concentration was 99.5 μg/m 3 with a range from 7.2 μg/m 3 to 492.8 μg/m 3 . Ambient PM 2.5 concentration was significantly associated with increased use of asthma-related health services. Every 10 μg/m 3 increase in PM 2.5 concentration on the same day was significantly associated with a 0.67% (95% CI, 0.53%–0.81%), 0.65% (95% CI, 0.51%–0.80%), and 0.49% (95% CI, 0.35%–0.64%) increase in total hospital visits, outpatient visits and emergency room visits, respectively. The exposure–response association between PM 2.5 concentration and hospital visits for asthma exacerbations was approximately linear. In conclusion, this study found that short-term elevations in PM 2.5 concentration may increase the risk of asthma exacerbations. Our findings contribute to the limited scientific literature concerning the acute effects of PM 2.5 on asthma morbidity outcomes in developing countries. - Graphical abstract: The exposure-response curve of 3-day (lag0–2) moving average fine particulate matter (PM 2.5 ) concentrations and hospital visits for asthma between January 1, 2010, and June 30, 2012, in Beijing, China. Note: The X-axis is the 3-day (lag0–2) moving average PM 2.5 concentrations (μg/m 3 ). Y-axis is the predicted log (relative risk (RR)), after adjusting for temperature, relative humidity, day of week, public holiday, and calendar time, is shown by the solid line, and the dotted

  8. Local and regional sources of fine and coarse particulate matter based on traffic and background monitoring

    Science.gov (United States)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2014-05-01

    The aim of this study was to identify local and exogenous sources affecting particulate matter (PM) levels in five major cities of Northern Europe namely: London, Paris, Hamburg, Copenhagen and Stockholm. Besides local emissions, PM profile at urban and suburban areas of the European Union (EU) is also influenced by regional PM sources due to atmospheric transport, thus geographical city distribution is of a great importance. At each city, PM10, PM2.5, NO2, SO2, CO and O3 air pollution data from two air pollution monitoring stations of the EU network were used. Different background characteristics of the selected two sampling sites at each city facilitated comparisons, providing a more exact analysis of PM sources. Four source apportionment methods: Pearson correlations among the levels of particulates and gaseous pollutants, characterisation of primal component analysis components, long-range transport analysis and extrapolation of PM size distribution ratios were applied. In general, fine (PM2.5) and coarse (PM10) particles were highly correlated, thus common sources are suggested. Combustion-originated gaseous pollutants (CO, NO2, SO2) were strongly associated to PM10 and PM2.5, primarily at areas severely affected by traffic. On the contrary, at background stations neighbouring important natural sources of particles or situated in suburban areas with rural background, natural emissions of aerosols were indicated. Series of daily PM2.5/PM10 ratios showed that minimum fraction values were detected during warm periods, due to higher volumes of airborne biogenic PM coarse, mainly at stations with important natural sources of particles in their vicinity. Hybrid single-particle Lagrangian integrated trajectory model was used, in order to extract 4-day backward air mass trajectories that arrived in the five cities which are under study during days with recorded PM10 exceedances. At all five cities, a significantly large fraction of those trajectories were classified

  9. Cause-specific stillbirth and exposure to chemical constituents and sources of fine particulate matter.

    Science.gov (United States)

    Ebisu, Keita; Malig, Brian; Hasheminassab, Sina; Sioutas, Constantinos; Basu, Rupa

    2018-01-01

    The stillbirth rate in the United States is relatively high, but limited evidence is available linking stillbirth with fine particulate matter (PM 2.5 ), its chemical constituents and sources. In this study, we explored associations between cause-specific stillbirth and prenatal exposures to those pollutants with using live birth and stillbirth records from eight California locations during 2002-2009. ICD-10 codes were used to identify cause of stillbirth from stillbirth records. PM 2.5 total mass and chemical constituents were collected from ambient monitors and PM 2.5 sources were quantified using Positive Matrix Factorization. Conditional logistic regression was applied using a nested case-control study design (N = 32,262). We found that different causes of stillbirth were associated with different PM 2.5 sources and/or chemical constituents. For stillbirths due to fetal growth, the odds ratio (OR) per interquartile range increase in gestational age-adjusted exposure to PM 2.5 total mass was 1.23 (95% confidence interval (CI): 1.06, 1.44). Similar associations were found with resuspended soil (OR=1.25, 95% CI: 1.10, 1.42), and secondary ammonium sulfate (OR=1.45, 95% CI: 1.18, 1.78). No associations were found between any pollutants and stillbirths caused by maternal complications. This study highlighted the importance of investigating cause-specific stillbirth and the differential toxicity levels of specific PM 2.5 sources and chemical constituents. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Role of oxidative stress and DNA hydroxymethylation in the neurotoxicity of fine particulate matter

    International Nuclear Information System (INIS)

    Wei, Hongying; Feng, Yan; Liang, Fan; Cheng, Wei; Wu, Xiaomeng; Zhou, Ren; Wang, Yan

    2017-01-01

    Highlights: • Oxidative stress-mediated neurocytotoxicity and DNA hydroxymethylation abnormalities involved in neuronal pathology of PM 2.5 . • PM 2.5 particles and toxic compounds adsorbed on the particle caused different types of neurocytotoxicity. • DNA hydroxymethylation abnormalities participated in PM 2.5 -induced impairments in neurite outgrowth and synapse formation. - Abstract: Epidemiological studies have implicated fine particulate matter (PM 2.5 ) as a risk factor for neurodegenerative diseases and neurodevelopmental disorders. However, the underlying molecular mechanisms and the influences of different components remain largely elusive. Here, we extended our previous work to investigate the role of oxidative stress and DNA hydroxymethylation in neuronal pathology of PM 2.5 . We found PM 2.5 and its extracts (water-soluble extracts, organic extracts and carbon core component) differentially caused cell cycle arrest, cell apoptosis and the cell proliferation inhibition in neuronal cells. These effects were mechanistically related to each other and oxidative stress, suggesting PM 2.5 and toxic compounds adsorbed on the particles may cause different types of brain damages. In addition, PM 2.5 and its organic extracts increased global DNA hydroxymethylation and gene-specific DNA hydroxymethylation of neuronal genes, and subsequently interfered with their mRNA expression. The impairments in neuronal progression characterized with decreased length of neurite and reduced mRNA expression of neuronal markers and synaptic markers. The blocking effects of antioxidants demonstrated the involvement of oxidative stress-mediated hydroxymethylation abnormalities in PM 2.5 -induced defects in neurite outgrowth and synapse formation. Our results first revealed the role of oxidative stress-mediated abnormal DNA hydroxymethylation in neuronal impairments of PM 2.5 , and thoroughly evaluated the neurocytotoxicity of different components.

  11. Household Air Pollution: Sources and Exposure Levels to Fine Particulate Matter in Nairobi Slums

    Directory of Open Access Journals (Sweden)

    Kanyiva Muindi

    2016-07-01

    Full Text Available With 2.8 billion biomass users globally, household air pollution remains a public health threat in many low- and middle-income countries. However, little evidence on pollution levels and health effects exists in low-income settings, especially slums. This study assesses the levels and sources of household air pollution in the urban slums of Nairobi. This cross-sectional study was embedded in a prospective cohort of pregnant women living in two slum areas—Korogocho and Viwandani—in Nairobi. Data on fuel and stove types and ventilation use come from 1058 households, while air quality data based on the particulate matters (PM2.5 level were collected in a sub-sample of 72 households using the DustTrak™ II Model 8532 monitor. We measured PM2.5 levels mainly during daytime and using sources of indoor air pollutions. The majority of the households used kerosene (69.7% as a cooking fuel. In households where air quality was monitored, the mean PM2.5 levels were high and varied widely, especially during the evenings (124.6 µg/m3 SD: 372.7 in Korogocho and 82.2 µg/m3 SD: 249.9 in Viwandani, and in households using charcoal (126.5 µg/m3 SD: 434.7 in Korogocho and 75.7 µg/m3 SD: 323.0 in Viwandani. Overall, the mean PM2.5 levels measured within homes at both sites (Korogocho = 108.9 µg/m3 SD: 371.2; Viwandani = 59.3 µg/m3 SD: 234.1 were high. Residents of the two slums are exposed to high levels of PM2.5 in their homes. We recommend interventions, especially those focusing on clean cookstoves and lighting fuels to mitigate indoor levels of fine particles.

  12. Impacts of Intercontinental Transport of Anthropogenic Fine Particulate Matter on Human Mortality

    Science.gov (United States)

    Anenberg, Susan C.; West, J. Jason; Hongbin, Yu; Chin, Mian; Schulz, Michael; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Fiore, Arlene; hide

    2014-01-01

    Fine particulate matter with diameter of 2.5 microns or less (PM2.5) is associated with premature mortality and can travel long distances, impacting air quality and health on intercontinental scales. We estimate the mortality impacts of 20 % anthropogenic primary PM2.5 and PM2.5 precursor emission reductions in each of four major industrial regions (North America, Europe, East Asia, and South Asia) using an ensemble of global chemical transport model simulations coordinated by the Task Force on Hemispheric Transport of Air Pollution and epidemiologically-derived concentration-response functions. We estimate that while 93-97 % of avoided deaths from reducing emissions in all four regions occur within the source region, 3-7 % (11,500; 95 % confidence interval, 8,800-14,200) occur outside the source region from concentrations transported between continents. Approximately 17 and 13 % of global deaths avoided by reducing North America and Europe emissions occur extraregionally, owing to large downwind populations, compared with 4 and 2 % for South and East Asia. The coarse resolution global models used here may underestimate intraregional health benefits occurring on local scales, affecting these relative contributions of extraregional versus intraregional health benefits. Compared with a previous study of 20 % ozone precursor emission reductions, we find that despite greater transport efficiency for ozone, absolute mortality impacts of intercontinental PM2.5 transport are comparable or greater for neighboring source-receptor pairs, due to the stronger effect of PM2.5 on mortality. However, uncertainties in modeling and concentration-response relationships are large for both estimates.

  13. Metal composition of fine particulate air pollution and acute changes in cardiorespiratory physiology

    International Nuclear Information System (INIS)

    Cakmak, Sabit; Dales, Robert; Kauri, Lisa Marie; Mahmud, Mamun; Van Ryswyk, Keith; Vanos, Jennifer; Liu, Ling; Kumarathasan, Premkumari; Thomson, Errol; Vincent, Renaud; Weichenthal, Scott

    2014-01-01

    Background: Studying the physiologic effects of components of fine particulate mass (PM 2.5 ) could contribute to a better understanding of the nature of toxicity of air pollution. Objectives: We examined the relation between acute changes in cardiovascular and respiratory function, and PM 2.5 -associated-metals. Methods: Using generalized linear mixed models, daily changes in ambient PM 2.5 -associated metals were compared to daily changes in physiologic measures in 59 healthy subjects who spent 5-days near a steel plant and 5-days on a college campus. Results: Interquartile increases in calcium, cadmium, lead, strontium, tin, vanadium and zinc were associated with statistically significant increases in heart rate of 1–3 beats per minute, increases of 1–3 mmHg in blood pressure and/or lung function decreases of up to 4% for total lung capacity. Conclusion: Metals contained in PM 2.5 were found to be associated with acute changes in cardiovascular and respiratory physiology. - Highlights: • We measured daily lung function, heart rate and blood pressure in 61 subjects. • Study sites were adjacent to a steel plant and on a college campus. • PM 2.5 -associated metal concentrations were measured daily at each site. • On days of higher metal concentrations, physiologic variables slightly deteriorated. • Some metal components may contribute to the toxicity of PM 2.5 . - Several PM 2.5 metals were associated with acute changes in cardiovascular or respiratory physiology. Given the evidence of source specificity, our study provides novel information

  14. Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults.

    Science.gov (United States)

    An, R; Xiang, X

    2015-12-01

    There is mounting evidence documenting the adverse health effects of short- and long-term exposure to ambient fine particulate matter (PM2.5) air pollution, but population-based evidence linking PM2.5 and health behaviour remains lacking. This study examined the relationship between ambient PM2.5 air pollution and leisure-time physical inactivity among US adults 18 years of age and above. Retrospective data analysis. Participant-level data (n = 2,381,292) from the Behavioral Risk Factor Surveillance System 2003-2011 surveys were linked with Wide-ranging Online Data for Epidemiologic Research air quality data by participants' residential county and interview month/year. Multilevel logistic regressions were performed to examine the effect of ambient PM2.5 air pollution on participants' leisure-time physical inactivity, accounting for various individual and county-level characteristics. Regressions were estimated on the overall sample and subsamples stratified by sex, age cohort, race/ethnicity and body weight status. One unit (μg/m(3)) increase in county monthly average PM2.5 concentration was found to be associated with an increase in the odds of physical inactivity by 0.46% (95% confidence interval = 0.34%-0.59%). The effect was similar between the sexes but to some extent (although not always statistically significant) larger for younger adults, Hispanics, and overweight/obese individuals compared with older adults, non-Hispanic whites or African Americans, and normal weight individuals, respectively. Ambient PM2.5 air pollution is found to be associated with a modest but measurable increase in individuals' leisure-time physical inactivity, and the relationship tends to differ across population subgroups. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  15. Fine particulate air pollution and hospital visits for asthma in Beijing, China.

    Science.gov (United States)

    Tian, Yaohua; Xiang, Xiao; Juan, Juan; Sun, Kexin; Song, Jing; Cao, Yaying; Hu, Yonghua

    2017-11-01

    Data on fine particulate matter (PM 2.5 ) in China were first announced in 2013. The primary objective of this study was to evaluate the acute effects of PM 2.5 on asthma morbidity in Beijing, China. A total of 978,658 asthma hospital visits consisting of 928,607 outpatient visits, 40,063 emergency room visits and 9988 hospital admissions from January 1, 2010, to June 30, 2012, were identified from the Beijing Medical Claim Data for Employees. A generalized additive Poisson model was applied to explore the association between PM 2.5 and health service use. The mean daily PM 2.5 concentration was 99.5 μg/m 3 with a range from 7.2 μg/m 3 to 492.8 μg/m 3 . Ambient PM 2.5 concentration was significantly associated with increased use of asthma-related health services. Every 10 μg/m 3 increase in PM 2.5 concentration on the same day was significantly associated with a 0.67% (95% CI, 0.53%-0.81%), 0.65% (95% CI, 0.51%-0.80%), and 0.49% (95% CI, 0.35%-0.64%) increase in total hospital visits, outpatient visits and emergency room visits, respectively. The exposure-response association between PM 2.5 concentration and hospital visits for asthma exacerbations was approximately linear. In conclusion, this study found that short-term elevations in PM 2.5 concentration may increase the risk of asthma exacerbations. Our findings contribute to the limited scientific literature concerning the acute effects of PM 2.5 on asthma morbidity outcomes in developing countries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fine Particulate Air Pollution and Daily Mortality. A Nationwide Analysis in 272 Chinese Cities.

    Science.gov (United States)

    Chen, Renjie; Yin, Peng; Meng, Xia; Liu, Cong; Wang, Lijun; Xu, Xiaohui; Ross, Jennifer A; Tse, Lap A; Zhao, Zhuohui; Kan, Haidong; Zhou, Maigeng

    2017-07-01

    Evidence concerning the acute health effects of air pollution caused by fine particulate matter (PM 2.5 ) in developing countries is quite limited. To evaluate short-term associations between PM 2.5 and daily cause-specific mortality in China. A nationwide time-series analysis was performed in 272 representative Chinese cities from 2013 to 2015. Two-stage Bayesian hierarchical models were applied to estimate regional- and national-average associations between PM 2.5 concentrations and daily cause-specific mortality. City-specific effects of PM 2.5 were estimated using the overdispersed generalized additive models after adjusting for time trends, day of the week, and weather conditions. Exposure-response relationship curves and potential effect modifiers were also evaluated. The average of annual mean PM 2.5 concentration in each city was 56 μg/m 3 (minimum, 18 μg/m 3 ; maximum, 127 μg/m 3 ). Each 10-μg/m 3 increase in 2-day moving average of PM 2.5 concentrations was significantly associated with increments in mortality of 0.22% from total nonaccidental causes, 0.27% from cardiovascular diseases, 0.39% from hypertension, 0.30% from coronary heart diseases, 0.23% from stroke, 0.29% from respiratory diseases, and 0.38% from chronic obstructive pulmonary disease. There was a leveling off in the exposure-response curves at high concentrations in most, but not all, regions. The associations were stronger in cities with lower PM 2.5 levels or higher temperatures, and in subpopulations with elder age or less education. This nationwide investigation provided robust evidence of the associations between short-term exposure to PM 2.5 and increased mortality from various cardiopulmonary diseases in China. The magnitude of associations was lower than those reported in Europe and North America.

  17. Ozone, Fine Particulate Matter, and Chronic Lower Respiratory Disease Mortality in the United States.

    Science.gov (United States)

    Hao, Yongping; Balluz, Lina; Strosnider, Heather; Wen, Xiao Jun; Li, Chaoyang; Qualters, Judith R

    2015-08-01

    Short-term effects of air pollution exposure on respiratory disease mortality are well established. However, few studies have examined the effects of long-term exposure, and among those that have, results are inconsistent. To evaluate long-term association between ambient ozone, fine particulate matter (PM2.5, particles with an aerodynamic diameter of 2.5 μm or less), and chronic lower respiratory disease (CLRD) mortality in the contiguous United States. We fit Bayesian hierarchical spatial Poisson models, adjusting for five county-level covariates (percentage of adults aged ≥65 years, poverty, lifetime smoking, obesity, and temperature), with random effects at state and county levels to account for spatial heterogeneity and spatial dependence. We derived county-level average daily concentration levels for ambient ozone and PM2.5 for 2001-2008 from the U.S. Environmental Protection Agency's down-scaled estimates and obtained 2007-2008 CLRD deaths from the National Center for Health Statistics. Exposure to ambient ozone was associated with an increased rate of CLRD deaths, with a rate ratio of 1.05 (95% credible interval, 1.01-1.09) per 5-ppb increase in ozone; the association between ambient PM2.5 and CLRD mortality was positive but statistically insignificant (rate ratio, 1.07; 95% credible interval, 0.99-1.14). This study links air pollution exposure data with CLRD mortality for all 3,109 contiguous U.S. counties. Ambient ozone may be associated with an increased rate of death from CLRD in the contiguous United States. Although we adjusted for selected county-level covariates and unobserved influences through Bayesian hierarchical spatial modeling, the possibility of ecologic bias remains.

  18. Temporal evolution of cadmium, copper and lead concentration in the Venice Lagoon water in relation with the speciation and dissolved/particulate partition.

    Science.gov (United States)

    Morabito, Elisa; Radaelli, Marta; Corami, Fabiana; Turetta, Clara; Toscano, Giuseppa; Capodaglio, Gabriele

    2018-04-01

    In order to study the role of sediment re-suspension and deposition versus the role of organic complexation, we investigated the speciation of cadmium (Cd), copper (Cu) and lead (Pb) in samples collected in the Venice Lagoon during several campaigns from 1992 to 2006. The increment in Cd and Pb concentration in the dissolved phases, observed in the central and northern basins, can be linked to important alterations inside the lagoon caused by industrial and urban factors. The study focuses on metal partition between dissolved and particulate phases. The analyses carried out in different sites illustrate the complex role of organic matter in the sedimentation process. While Cd concentration in sediments can be correlated with organic matter, no such correlation can be established in the case of Pb, whose particulate concentration is related only to the dissolved concentration. In the case of Cu, the role of organic complexation remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    Science.gov (United States)

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  20. Acute effects of fine particulate air pollution on ST segment height: A longitudinal study

    Directory of Open Access Journals (Sweden)

    Wu Rongling

    2010-11-01

    Full Text Available Abstract Background The mechanisms for the relationship between particulate air pollution and cardiac disease are not fully understood. Air pollution-induced myocardial ischemia is one of the potentially important mechanisms. Methods We investigate the acute effects and the time course of fine particulate pollution (PM2.5 on myocardium ischemic injury as assessed by ST-segment height in a community-based sample of 106 healthy non-smokers. Twenty-four hour beat-to-beat electrocardiogram (ECG data were obtained using a high resolution 12-lead Holter ECG system. After visually identifying and removing all the artifacts and arrhythmic beats, we calculated beat-to-beat ST-height from ten leads (inferior leads II, III, and aVF; anterior leads V3 and V4; septal leads V1 and V2; lateral leads I, V5, and V6,. Individual-level 24-hour real-time PM2.5 concentration was obtained by a continuous personal PM2.5 monitor. We then calculated, on a 30-minute basis, the corresponding time-of-the-day specific average exposure to PM2.5 for each participant. Distributed lag models under a linear mixed-effects models framework were used to assess the regression coefficients between 30-minute PM2.5 and ST-height measures from each lead; i.e., one lag indicates a 30-minute separation between the exposure and outcome. Results The mean (SD age was 56 (7.6 years, with 41% male and 74% white. The mean (SD PM2.5 exposure was 14 (22 μg/m3. All inferior leads (II, III, and aVF and two out of three lateral leads (I and V6, showed a significant association between higher PM2.5 levels and higher ST-height. Most of the adverse effects occurred within two hours after PM2.5 exposure. The multivariable adjusted regression coefficients β (95% CI of the cumulative effect due to a 10 μg/m3 increase in Lag 0-4 PM2.5 on ST-I, II, III, aVF and ST-V6 were 0.29 (0.01-0.56 μV, 0.79 (0.20-1.39 μV, 0.52 (0.01-1.05 μV, 0.65 (0.11-1.19 μV, and 0.58 (0.07-1.09 μV, respectively, with all p

  1. Source Apportionment of Primary and Secondary Fine Particulate Matter in China

    Science.gov (United States)

    Hu, J.; Zhang, H.; Ying, Q.

    2015-12-01

    In the past few decades, China have been facing extreme particulate matter (PM) pollution problems due to the combination of fast increase of population, industrialization, urbanization and associated energy consumption and lagging of sufficient emission control measures. Studies have identified the major components of fine PM (PM2.5) in China include primary PM (which is directly emitted into the atmosphere), sulfate and nitrate (which are mainly secondary PM, i.e., formed from gaseous precursors), and organic aerosols (which can be primary or secondary). Contributions of different source sectors to the different PM components are substantially different; therefore source apportionment of these components can provide critical information needed for policy makers to design effective emission control strategies. In the current study, a source-oriented version of the Community Multiscale Air Quality (CMAQ) model that directly tracks the contributions from multiple emission sources to primary and secondary PM2.5 is developed, and then applied to determine the regional contributions of power, industry, transportation and residential sectors to primary PM, nitrate and sulfate concentrations in China. Four months in 2012-2013 are simulated to predict the seasonal variations of source contributions. Model predictions are evaluated with ambient measured concentrations. The source-oriented CMAQ model is capable of reproducing most of the available PM10 and PM2.5 mass, and PM2.5 EC, POC, nitrate and sulfate observations. Predicted source contributions for EC also generally agree with to the source contributions estimated by receptor models reported in previous studies. Model predictions suggest residential is a major contributor to primary PM (30-70%) in the spring and winter, and industrial contributes 40-60% of primary PM in the summer and fall; Transportation is an important source for EC (20-30%); Power sector is the dominating source of nitrate and sulfate in both

  2. Impact of Agricultural Emission Reductions on Fine Particulate Matter and Public Health

    Science.gov (United States)

    Pozzer, A.; Tsimpidi, A.; Karydis, V.; De Meij, A.; Lelieveld, J.

    2017-12-01

    A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine particulate matter (PM2.5), with a focus on Europe, North America, South and East Asia. Hypothetical reduction of agricultural emission of 50%, 66% and 100% have been simulated and compared with the reference simulation. The simulations results reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, and this effect can almost be exclusively explain by the reduction of ammonia (NH3) emissions, released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases, although the relative reduction is very low (below 13% for a full removal of agricultural emissions) . Conversely, over Europe and North America, aerosol formation is not directly limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5concentrations over the latter regions, especially when emissions are abated systematically and an ammonia limited regions of aerosol growth is reached. Further, our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. It is calculated that ammonia emission controls could reduce the particle pH up to 1.5 pH-units in East Asia during winter, and more than 1.7 pH-units in South Asia, theoretically assuming complete agricultural emission removal, which could have repercussions for the reactive uptake of gases from the gas phase and the outgassing of relative weak acids. It is finally shown that a 50% reduction of agricultural emissions could prevent the mortality attributable to air pollution by 250 thousands people per year worldwide, amounting to reductions of 30%, 19% , 8% and 3% over North America, Europe and South Asia and East Asia, respectively

  3. Fine Particulate Matter Pollution and Risk of Community-Acquired Sepsis.

    Science.gov (United States)

    Sarmiento, Elisa J; Moore, Justin Xavier; McClure, Leslie A; Griffin, Russell; Al-Hamdan, Mohammad Z; Wang, Henry E

    2018-04-21

    While air pollution has been associated with health complications, its effect on sepsis risk is unknown. We examined the association between fine particulate matter (PM 2.5 ) air pollution and risk of sepsis hospitalization. We analyzed data from the 30,239 community-dwelling adults in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) cohort linked with satellite-derived measures of PM 2.5 data. We defined sepsis as a hospital admission for a serious infection with ≥2 systemic inflammatory response (SIRS) criteria. We performed incidence density sampling to match sepsis cases with 4 controls by age (±5 years), sex, and race. For each matched group we calculated mean daily PM 2.5 exposures for short-term (30-day) and long-term (one-year) periods preceding the sepsis event. We used conditional logistic regression to evaluate the association between PM 2.5 exposure and sepsis, adjusting for education, income, region, temperature, urbanicity, tobacco and alcohol use, and medical conditions. We matched 1386 sepsis cases with 5544 non-sepsis controls. Mean 30-day PM 2.5 exposure levels (Cases 12.44 vs. Controls 12.34 µg/m³; p = 0.28) and mean one-year PM 2.5 exposure levels (Cases 12.53 vs. Controls 12.50 µg/m³; p = 0.66) were similar between cases and controls. In adjusted models, there were no associations between 30-day PM 2.5 exposure levels and sepsis (4th vs. 1st quartiles OR: 1.06, 95% CI: 0.85⁻1.32). Similarly, there were no associations between one-year PM 2.5 exposure levels and sepsis risk (4th vs. 1st quartiles OR: 0.96, 95% CI: 0.78⁻1.18). In the REGARDS cohort, PM 2.5 air pollution exposure was not associated with risk of sepsis.

  4. Airborne fine particulate matter induces an upregulation of endothelin receptors on rat bronchi

    International Nuclear Information System (INIS)

    Wang, Rong; Xiao, Xue; Cao, Lei; Shen, Zhen-xing; Lei, Ying; Cao, Yong-xiao

    2016-01-01

    Airborne fine particulate matter (PM2.5) is a risk factor for respiratory diseases. However, little is known about the effects of PM2.5 on bronchi. The present study investigated the effect of airborne PM2.5 on rat bronchi and the underlying mechanisms. Isolated rat bronchial segments were cultured for 24 h. Endothelin (ET) receptor-mediated contractile responses were recorded using a wire myograph. The mRNA and protein expression levels of ET receptors were studied using quantitative real-time PCR, Western blotting, and immunohistochemistry. The results demonstrated that ET A and ET B receptor agonists induced remarkable contractile responses on fresh and cultured bronchial segments. PM2.5 (1.0 or 3.0 μg/ml) significantly enhanced ET A and ET B receptor-mediated contractile responses in bronchi with a markedly increased maximal contraction compared to the DMSO or fresh groups. PM2.5 increased the mRNA and protein expression levels of ET A and ET B receptors. U0126 (a MEK1/2 inhibitor) and SB203580 (a p38 inhibitor) significantly suppressed PM2.5-induced increases in ET B receptor-mediated contractile responses, mRNA and protein levels. SP600125 (a JNK inhibitor) and SB203580 significantly abrogated the PM2.5-induced enhancement of ET A receptor-mediated contraction and receptor expression. In conclusion, PM2.5 upregulates ET receptors in bronchi. ET B receptor upregulation is associated with MEK1/2 and p38 pathways, and the upregulation of ET A receptor is involved in JNK and p38 pathways. - Highlights: • Airborne PM2.5 induces bronchial hyperreactivity mediated with endothelin ET B and ET A receptors in rats. • PM2.5 increases mRNA and protein expressions of endothelin ET B and ET A receptors in bronchi. • The upregulation of ET B receptor is associated with MEK1/2 and p38 pathways. • The upregulation of ET A receptor is involved in JNK and p38 pathways. • The research provides novel understanding for PM2.5-associated respiratory diseases.

  5. Exposure to Fine Particulate Matter Leads to Rapid Heart Rate Variability Changes

    Directory of Open Access Journals (Sweden)

    Michael Riediker

    2018-01-01

    Full Text Available Introduction: Heart Rate Variability (HRV reflects the adaptability of the heart to internal and external stimuli. Reduced HRV is a predictor of post-infarction mortality. We previously found in road maintenance workers HRV-increases several hours after exposure to fine particulate matter (PM2.5. This seemed to conflict with studies where PM-exposure acutely reduced HRV. We therefore assessed whether time from exposure to HRV-assessment could explain the differences observed.Methods: On five non-consecutive days, workers carried nephelometers providing 1-min-interval PM2.5-exposure. Five-min HRV-intervals of SDNN (Standard Deviation of Normal to Normal beat intervals and pNN50 (Percentage of the interval differences exceeding 50 ms were extracted from 24-h electrocardiograms (ECGs. Following 60 min PM2.5-exposure, changes in HRV-parameters were assessed during 120-min visually and by regression analysis with control for time at work, at home, and during the night using autoregressive integrating moving average (ARIMA models to account for autocorrelation of the time-series. Additional controls included changing the time windows and including body mass index (BMI and age in the models.Result: Pattern analysis of 12,669 data points showed high modulation of mean, standard deviation (SD, and time trend of HRV (SDNN and pNN50 at low, and much reduced modulation at high PM2.5-exposures. The time trend following exposure was highly symmetrical, resembling a funnel plot. Regression analysis showed significant associations of decreasing SDNN and pNN50 (average, SD, and absolute value of time trend with increasing PM2.5-exposure, which remained significant when controlling for activity phases. Changing time windows did not change the pattern of response. Including BMI and age did not change the results.Conclusions: The reduced modulation of HRV following PM2.5-exposure is striking. It suggests strong interference with homeostatic controls. Such an

  6. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation

    Science.gov (United States)

    Wang, Liwei; Wang, Xinfeng; Gu, Rongrong; Wang, Hao; Yao, Lan; Wen, Liang; Zhu, Fanping; Wang, Weihao; Xue, Likun; Yang, Lingxiao; Lu, Keding; Chen, Jianmin; Wang, Tao; Zhang, Yuanghang; Wang, Wenxing

    2018-03-01

    Filter samples of fine particulate matters were collected at four sites in northern China (urban, rural, and mountain) in summer and winter, and the contents of nine nitrated phenols were quantified in the laboratory with the use of ultra-high-performance liquid chromatography coupled with mass spectrometry. During the sampling periods, the concentrations of particulate nitrated phenols exhibited distinct temporal and spatial variation. On average, the total concentration of particulate nitrated phenols in urban Jinan in the wintertime reached 48.4 ng m-3, and those in the summertime were 9.8, 5.7, 5.9, and 2.5 ng m-3 in urban Jinan, rural Yucheng and Wangdu, and Mt. Tai, respectively. The elevated concentrations of nitrated phenols in wintertime and in urban areas demonstrate the apparent influences of anthropogenic sources. The positive matrix factorization receptor model was then applied to determine the origins of particulate nitrated phenols in northern China. The five major source factors were traffic, coal combustion, biomass burning, secondary formation, and aged coal combustion plume. Among them, coal combustion played a vital role, especially at the urban site in the wintertime, with a contribution of around 55 %. In the summertime, the observed nitrated phenols were highly influenced by aged coal combustion plumes at all of the sampling sites. Meanwhile, in remote areas, contributions from secondary formation were significant. Further correlation analysis indicates that nitrosalicylic acids were produced mostly from secondary formation that was dominated by NO2 nitration.

  7. Temporal variations of fine and coarse particulate matter sources in Jeddah, Saudi Arabia.

    Science.gov (United States)

    Lim, Chris C; Thurston, George D; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M; Alkhalaf, Abdulrahman K; Brocato, Jason; Chen, Lung Chi; Costa, Max

    2018-02-01

    This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (aerodynamic diameter Saudi Arabia. Air quality samples were collected over 1 yr, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM 2.5 (21.9 μg/m 3 ) and PM 10 (107.8 μg/m 3 ) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM 2.5 (10 μg/m 3 ) and PM 10 (20 μg/m 3 ), respectively. Similar to other Middle Eastern locales, PM 2.5-10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM 10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM 2.5 and PM 2.5-10 : (1) soil/road dust, (2) incineration, and (3) traffic; and for PM 2.5 only, (4) residual oil burning. Soil/road dust accounted for a major portion of both the PM 2.5 (27%) and PM 2.5-10 (77%) mass, and the largest source contributor for PM 2.5 was from residual oil burning (63%). Temporal variations of PM 2.5-10 and PM 2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency) and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM 2.5 and PM 2.5-10 masses in this city may have implications regarding the toxicity of these particles versus those in the Western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. Temporal variations of fine and coarse PM mass, elemental constituents, and sources were examined in Jeddah, Saudi Arabia, for the first time. The main source

  8. Ozone co-exposure modifies cardiac function responses to fine and ultrafine particulate matter in mice

    Science.gov (United States)

    There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mortality. Although the data supporting these findings are increasingly more convincing, the immediate impact of PM inhala...

  9. Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women.

    Science.gov (United States)

    Honda, Trenton; Eliot, Melissa N; Eaton, Charles B; Whitsel, Eric; Stewart, James D; Mu, Lina; Suh, Helen; Szpiro, Adam; Kaufman, Joel D; Vedal, Sverre; Wellenius, Gregory A

    2017-08-01

    Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM 2.5 ), respirable (PM 10 ), and course (PM 10-2.5 ) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM 2.5 , PM 10 , and PM 10-2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM 2.5 and PM 10 fractions. The association between PM 2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Exposure to Ambient Fine Particulate Air Pollution in Utero as a Risk Factor for Child Stunting in Bangladesh.

    Science.gov (United States)

    Goyal, Nihit; Canning, David

    2017-12-23

    Pregnant mothers in Bangladesh are exposed to very high and worsening levels of ambient air pollution. Maternal exposure to fine particulate matter has been associated with low birth weight at much lower levels of exposure, leading us to suspect the potentially large effects of air pollution on stunting in children in Bangladesh. We estimate the relationship between exposure to air pollution in utero and child stunting by pooling outcome data from four waves of the nationally representative Bangladesh Demographic and Health Survey conducted between 2004 and 2014, and calculating children's exposure to ambient fine particulate matter in utero using high resolution satellite data. We find significant increases in the relative risk of child stunting, wasting, and underweight with higher levels of in utero exposure to air pollution, after controlling for other factors that have been found to contribute to child anthropometric failure. We estimate the relative risk of stunting in the second, third, and fourth quartiles of exposure as 1.074 (95% confidence interval: 1.014-1.138), 1.150 (95% confidence interval: 1.069-1.237, and 1.132 (95% confidence interval: 1.031-1.243), respectively. Over half of all children in Bangladesh in our sample were exposed to an annual ambient fine particulate matter level in excess of 46 µg/m³; these children had a relative risk of stunting over 1.13 times that of children in the lowest quartile of exposure. Reducing air pollution in Bangladesh could significantly contribute to the Sustainable Development Goal of reducing child stunting.

  11. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    Science.gov (United States)

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production

  12. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    Science.gov (United States)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e

  13. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    Science.gov (United States)

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  14. Approximation of personal exposure to fine particulate matters (PM2.5) during cooking using solid biomass fuels in the kitchens of rural West Bengal, India.

    Science.gov (United States)

    Nayek, Sukanta; Padhy, Pratap Kumar

    2018-03-27

    More than 85% of the rural Indian households use traditional solid biofuels (SBFs) for daily cooking. Burning of the easily available unprocessed solid fuels in inefficient earthen cooking stoves produce large quantities of particulate matters. Smaller particulates, especially with aerodynamic diameter of 2.5 μm or less (PM 2.5 ), largely generated during cooking, are considered to be health damaging in nature. In the present study, kitchen level exposure of women cooks to fine particulate matters during lunch preparation was assessed considering kitchen openness as surrogate to the ventilation condition. Two-way ANCOVA analysis considering meal quantity as a covariate revealed no significant interaction between the openness and the seasons explaining the variability of the personal exposure to the fine particulate matters in rural kitchen during cooking. Multiple linear regression analysis revealed the openness as the only significant predictor for personal exposure to the fine particulate matters. In the present study, the annual average fine particulate matter exposure concentration was found to be 974 μg m -3 .

  15. Chemical characteristics and source apportionment of fine particulate organic carbon in Hong Kong during high particulate matter episodes in winter 2003

    Science.gov (United States)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Schauer, James J.; Yuan, Zibing; Lau, Alexis K. H.; Louie, Peter K. K.

    2013-02-01

    PM2.5 samples were collected at six general stations and one roadside station in Hong Kong in two periods of high particulate matter (PM) in 2003 (27 October-4 November and 30 November-13 December). The highest PM2.5 reached 216 μg m- 3 during the first high PM period and 113 μg m- 3 during the second high PM period. Analysis of synoptic weather conditions identified individual sampling days under dominant influence of one of three types of air masses, that is, local, regional and long-range transported (LRT) air masses. Roadside samples were discussed separately due to heavy influences from vehicular emissions. This research examines source apportionment of fine organic carbon (OC) and contribution of secondary organic aerosol on high PM days under different synoptic conditions. Six primary OC (POC) sources (vehicle exhaust, biomass burning, cooking, cigarette smoke, vegetative detritus, and coal combustion) were identified on the basis of characteristic organic tracers. Individual POC source contributions were estimated using chemical mass balance model. In the roadside and the local samples, OC was dominated by the primary sources, accounting for more than 74% of OC. In the samples influenced by regional and LRT air masses, secondary OC (SOC), which was approximated to be the difference between the total measured OC and the apportioned POC, contributed more than 54% of fine OC. SOC was highly correlated with water-soluble organic carbon and sulfate, consistent with its secondary nature.

  16. Species of fine particulate matter and the risk of preterm birth

    Science.gov (United States)

    Particulate matter (PM) has been variably associated with preterm birth (PTB), but the roles of PM species have been less studied. We estimated risk of birth in 4 preterm categories (risks reported as PTBs per 106 pregnancies; PTB categories = gestational age of 20-27; 28-31; 32-...

  17. Characteristics of Fine Particulate Carbonaceous Aerosol at Two Remote Sites in Central Asia

    Science.gov (United States)

    Central Asia is a relatively understudied region of the world in terms of characterizing ambient particulate matter (PM) and quantifying source impacts of PM at receptor locations, although it is speculated to have an important role as a source region for long-range transport of ...

  18. Observations of fine particulate nitrated phenols in four sites in northern China: concentrations, source apportionment, and secondary formation

    Directory of Open Access Journals (Sweden)

    L. Wang

    2018-03-01

    Full Text Available Filter samples of fine particulate matters were collected at four sites in northern China (urban, rural, and mountain in summer and winter, and the contents of nine nitrated phenols were quantified in the laboratory with the use of ultra-high-performance liquid chromatography coupled with mass spectrometry. During the sampling periods, the concentrations of particulate nitrated phenols exhibited distinct temporal and spatial variation. On average, the total concentration of particulate nitrated phenols in urban Jinan in the wintertime reached 48.4 ng m−3, and those in the summertime were 9.8, 5.7, 5.9, and 2.5 ng m−3 in urban Jinan, rural Yucheng and Wangdu, and Mt. Tai, respectively. The elevated concentrations of nitrated phenols in wintertime and in urban areas demonstrate the apparent influences of anthropogenic sources. The positive matrix factorization receptor model was then applied to determine the origins of particulate nitrated phenols in northern China. The five major source factors were traffic, coal combustion, biomass burning, secondary formation, and aged coal combustion plume. Among them, coal combustion played a vital role, especially at the urban site in the wintertime, with a contribution of around 55 %. In the summertime, the observed nitrated phenols were highly influenced by aged coal combustion plumes at all of the sampling sites. Meanwhile, in remote areas, contributions from secondary formation were significant. Further correlation analysis indicates that nitrosalicylic acids were produced mostly from secondary formation that was dominated by NO2 nitration.

  19. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model.

    Science.gov (United States)

    Singh, Nandita; Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, Tirthankar

    2017-04-01

    Fine particulates (PM 2.5 ) constitute dominant proportion of airborne particulates and have been often associated with human health disorders, changes in regional climate, hydrological cycle and more recently to food security. Intrinsic properties of particulates are direct function of sources. This initiates the necessity of conducting a comprehensive review on PM 2.5 sources over South Asia which in turn may be valuable to develop strategies for emission control. Particulate source apportionment (SA) through receptor models is one of the existing tool to quantify contribution of particulate sources. Review of 51 SA studies were performed of which 48 (94%) were appeared within a span of 2007-2016. Almost half of SA studies (55%) were found concentrated over few typical urban stations (Delhi, Dhaka, Mumbai, Agra and Lahore). Due to lack of local particulate source profile and emission inventory, positive matrix factorization and principal component analysis (62% of studies) were the primary choices, followed by chemical mass balance (CMB, 18%). Metallic species were most regularly used as source tracers while use of organic molecular markers and gas-to-particle conversion were minimum. Among all the SA sites, vehicular emissions (mean ± sd: 37 ± 20%) emerged as most dominating PM 2.5 source followed by industrial emissions (23 ± 16%), secondary aerosols (22 ± 12%) and natural sources (20 ± 15%). Vehicular emissions (39 ± 24%) also identified as dominating source for highly polluted sites (PM 2.5 >100 μgm -3 , n = 15) while site specific influence of either or in combination of industrial, secondary aerosols and natural sources were recognized. Source specific trends were considerably varied in terms of region and seasonality. Both natural and industrial sources were most influential over Pakistan and Afghanistan while over Indo-Gangetic plain, vehicular, natural and industrial emissions appeared dominant. Influence of vehicular emission was

  20. INJECTING FASTENING LOESS SOILS GROZNY FINE PARTICULATE MATTER SUCH AS «MIKRODUR»

    Directory of Open Access Journals (Sweden)

    S-A. Y. Murtazaev

    2014-01-01

    Full Text Available The paper is devoted to the actual problem of development and implementation of effective ways to increase the bearing capacity of foundations of buildings and structures by impregnating the soil very finely dispersed binders such as "Mikrodur", turning it into a constructive element of the structure.The article shows that the use of a fine binder improves impervious properties strengthened by arrays, resistance to aggressive influences, hardening in a negative temperature, the strength development, etc. 

  1. Fine Particulate Matter Air Pollution and Cognitive Function Among Older US Adults

    OpenAIRE

    Ailshire, Jennifer A.; Crimmins, Eileen M.

    2014-01-01

    Existing research on the adverse health effects of exposure to pollution has devoted relatively little attention to the potential impact of ambient air pollution on cognitive function in older adults. We examined the cross-sectional association between residential concentrations of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) and cognitive function in older adults. Using hierarchical linear modeling, we analyzed data from the 2004 Health and Retirement Study, a large...

  2. Chemical Composition and Emission Sources of the Fine Particulate Matters in a Southeast Asian Mega City (Dhaka, Bangladesh)

    Science.gov (United States)

    Salam, Abdus

    2016-04-01

    Air pollution has significant impact on human health, climate change, agriculture, visibility reduction, and also on the atmospheric chemistry. There are many studies already reported about the direct relation of the human mortality and morbidity with the increase of the atmospheric particulate matters. Especially, fine particulate matters can easily enter into the human respiratory system and causes many diseases. Particulate matters have the properties to absorb the solar radiation and impact on the climate. Dhaka, Bangladesh is a densely populated mega-city in the world. About 16 million inhabitants are living within an area of 360 square kilometers. Air quality situation has been degrading due to unplanned growth, increasing vehicles, severe traffic jams, brick kilns, industries, construction, and also transboundary air pollution. A rapidly growing number of vehicles has worsen the air quality in spite of major policy interventions, e.g., ban of two-stroke and three-wheeled vehicles, phase out of 20 years old vehicles, conversion to compressed natural gas (CNGs), etc. Introduction of CNGs to reduce air pollution was not the solution for fine particles at all, as evidence shows that CNGs and diesel engines are the major sources of fine particles. High concentration of the air pollutants in Dhaka city such as PM, carbonaceous species (black and organic carbon), CO, etc. has already been reported. PM2.5 mass, chemical composition (e.g., BC, OC, SO42-, NO3-, trace elements, etc.), aerosol Optical Depth (AOD) and emission sources of our recent measurements at the highly polluted south East Asian Mega city (Dhaka) Bangladesh will be presented in the conference. PM2.5 samples were collected on filters with Digital PM2.5 sampler (Switzerland) and Air photon, USA. BC was measured from filters (with thermal and optical method) and also real time with an Aethalometer AE42 (Magee Scitific., USA). Water soluble ions were determined from filters with ion chromatogram. AOD

  3. Changes to the structure of blood clots formed in the presence of fine particulate matter

    International Nuclear Information System (INIS)

    Metassan, Sofian; Routledge, Michael N; Ariens, Robert A S; Scott, D Julian

    2009-01-01

    Both long-term and short-term exposure (one to two hours) to particulate matter are associated with morbidity and mortality caused by cardiovascular diseases. The underlying mechanisms leading to cardiovascular events are unclear, however, changes to blood coagulability upon exposure to ultrafine particulate matter (UFPM, the smallest of which can enter the circulation) is a plausible mechanism. Objectives: This study aims to investigate the direct effects of particulate matter on fibrin polymerization, lateral aggregation and the formation of fibrin network structure. Methods: Standard Urban Particulate Matter (PM) was suspended in Tris buffer centrifuged and filtered with <200nm filter to obtain ultrafine PM or their water-soluble components. Purified normal fibrinogen was made to clot by adding thrombin and calcium chloride in the presence of varying concentrations of PM. Permeation properties (Darcy constant [Ks]) and turbidity of clots were measured to investigate the effects on flow-rate, pore size, and fibrin polymerization. In addition, confocal microscopy was performed to study detailed clot structure. Results: Total PM increased the Ks of clots in a dose dependant manner (Ks = 4.4, 6.9 and 13.2 x 10-9 cm2 for 0, 50 and 100 |ag/ml total PM concentrations, respectively). Filtered PM also produced a significant increase in Ks at PM concentration of 17 |ag/ml. Final turbidity measurements at 20min were obtained for varying concentrations of PM. Maximum optical density (OD) for 1 mg/ml fibrinogen at 0, 50, 100 and 200 |ag/ml total PM concentrations were 0.39, 0.42, 0.45 and 0.46, respectively. The maximum OD for 0, 17, 34 and 68 |ag/ml filtered PM concentrations were 0.39, 0.42 0.47 and 0.51, respectively, suggesting an increase in fibre diameter with increasing particulate concentration. The lag phase was significantly shorter and the rate of polymerisation was significantly faster in the presence of 68 |ag/ml filtered PM. Confocal microscopy results showed

  4. Predictors of indoor fine particulate matter in infants' bedrooms in Denmark

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, Ole; Sørensen, Mette; Hertel, Ole

    2011-01-01

    conducted 1122 measurements of fine PM (PM2.5 and black smoke) in the bedrooms of 389 infants and registered indoor activities and characteristics of the house. We used mixed models to identify and quantify associations between predictors and concentrations. Results The concentration of PM2.5 was 2.8 times....... Frying without a range hood was associated with a 32% (95% CI, 12–54%) higher PM2.5 concentration per time per day, whereas frying with use of a range hood did not increase the concentration in the infant’s bedroom. Use of a fireplace, stove, candles or vacuum-cleaner, interior rebuilding or renovation......, local traffic, inner city residence and cold season increased the fine PM concentration. Open windows decreased the PM2.5 concentration in homes with smokers but increased the concentration in non-smoking homes. Conclusions We identified several sources of fine PM in infants’ bedrooms...

  5. Association of fine particulate matter from different sources with daily mortality in six US cities

    Energy Technology Data Exchange (ETDEWEB)

    Laden, F.; Neas, L.M.; Dockery, D.W.; Schwartz, J. [Harvard University, Boston, MA (USA). School of Medicine, Brigham & Womens Hospital

    2000-07-01

    In this study, the authors use the elemental composition of size-fractionated particles to identify several distinct source-related fractions of fine particles and examined the association of these fractions with daily mortality in each of six US cities. Using specific rotation factor analysis for each city, a silicon factor classified as soil and crustal material, a lead factor classified as motor vehicle exhaust, a selenium factor representing coal combustion, and up to two additional factors were identified. Daily counts of deaths from National Center for Health Statistics records were extracted and city-specific associations of mortality with each source factor were estimated. Combined effect estimates were calculated as the inverse variance weighted mean of the city-specific estimates. Results indicated that combustion particles in the fine fraction from mobile and coal combustion sources, but not fine crustal particles, are associated with increased mortality.

  6. Emissions of fine particulate nitrated phenols from the burning of five common types of biomass.

    Science.gov (United States)

    Wang, Xinfeng; Gu, Rongrong; Wang, Liwei; Xu, Wenxue; Zhang, Yating; Chen, Bing; Li, Weijun; Xue, Likun; Chen, Jianmin; Wang, Wenxing

    2017-11-01

    Nitrated phenols are among the major constituents of brown carbon and affect both climates and ecosystems. However, emissions from biomass burning, which comprise one of the most important primary sources of atmospheric nitrated phenols, are not well understood. In this study, the concentrations and proportions of 10 nitrated phenols, including nitrophenols, nitrocatechols, nitrosalicylic acids, and dinitrophenol, in fine particles from biomass smoke were determined under three different burning conditions (flaming, weakly flaming, and smoldering) with five common types of biomass (leaves, branches, corncob, corn stalk, and wheat straw). The total abundances of fine nitrated phenols produced by biomass burning ranged from 2.0 to 99.5 μg m -3 . The compositions of nitrated phenols varied with biomass types and burning conditions. 4-nitrocatechol and methyl nitrocatechols were generally most abundant, accounting for up to 88-95% of total nitrated phenols in flaming burning condition. The emission ratios of nitrated phenols to PM 2.5 increased with the completeness of combustion and ranged from 7 to 45 ppmm and from 239 to 1081 ppmm for smoldering and flaming burning, respectively. The ratios of fine nitrated phenols to organic matter in biomass burning aerosols were comparable to or lower than those in ambient aerosols affected by biomass burning, indicating that secondary formation contributed to ambient levels of fine nitrated phenols. The emission factors of fine nitrated phenols from flaming biomass burning were estimated based on the measured mass fractions and the PM 2.5 emission factors from literature and were approximately 0.75-11.1 mg kg -1 . According to calculations based on corn and wheat production in 31 Chinese provinces in 2013, the total estimated emission of fine nitrated phenols from the burning of corncobs, corn stalks, and wheat straw was 670 t. This work highlights the apparent emission of methyl nitrocatechols from biomass burning and

  7. SOURCE SAMPLING FINE PARTICULATE MATTER--INSTITUTIONAL OIL-FIRED BOILER

    Science.gov (United States)

    EPA seeks to understand the correlation between ambient fine PM and adverse human health effects, and there are no reliable emission factors to use for estimating PM2.5 or NH3. The most common source of directly emitted PM2.5 is incomplete combustion of fossil or biomass fuels. M...

  8. The measurement of the charging properties of fine particulate materials in pneumatic suspension

    International Nuclear Information System (INIS)

    Armour-Chelu, D.I.

    1998-11-01

    This document describes a programme of work that was designed to develop an improved understanding of the electrostatic charging properties of particulate materials with a view to applying this knowledge to the measurement of particulate concentrations in air-solid suspensions. An extensive literature review has been carried out. Some eighty published works were found and these concentrated on indirect charge measurement, the measurement of the two-phase pipe flow parameters, and on finding suitable models to explain tile work function given to insulators during metal to insulator contact. These areas are covered well in the field of electrostatics but data currently available in the area of programme of work being described here is very, limited, and so it is proposed that this research project will aim to improve such understanding. A test facility was developed to provide information from the flow of a particulate material under known conditions (particle velocity, suspension density). This test facility utilised three sensing probes, each with discrete charge amplifier units, at specific locations: one at the beginning and two further down the pipeline being utilised. Hence, the charging tendencies of any material were observed using this facility. The results obtained from this facility show the charging tendency of three particulate materials under various flow conditions. Signal processing techniques were developed to infer the suspension density for each flow condition and to estimate average particle velocity. Further analysis of the data resulted in tile derivation of a power spectral estimate for some of the flow conditions. This estimate was considered with the particle size distribution, as well as the estimate of tile average particle velocity, and there is a linkage. The main material selected for this programme was aluminium hydroxide. This was tested at environmental temperatures of 19 and 30 deg. C with relative humidity (RH) levels of 35, 45, and

  9. Emissions of fine particulate nitrated phenols from the burning of five common types of biomass

    International Nuclear Information System (INIS)

    Wang, Xinfeng; Gu, Rongrong; Wang, Liwei; Xu, Wenxue; Zhang, Yating; Chen, Bing; Li, Weijun; Xue, Likun; Chen, Jianmin; Wang, Wenxing

    2017-01-01

    Nitrated phenols are among the major constituents of brown carbon and affect both climates and ecosystems. However, emissions from biomass burning, which comprise one of the most important primary sources of atmospheric nitrated phenols, are not well understood. In this study, the concentrations and proportions of 10 nitrated phenols, including nitrophenols, nitrocatechols, nitrosalicylic acids, and dinitrophenol, in fine particles from biomass smoke were determined under three different burning conditions (flaming, weakly flaming, and smoldering) with five common types of biomass (leaves, branches, corncob, corn stalk, and wheat straw). The total abundances of fine nitrated phenols produced by biomass burning ranged from 2.0 to 99.5 μg m −3 . The compositions of nitrated phenols varied with biomass types and burning conditions. 4-nitrocatechol and methyl nitrocatechols were generally most abundant, accounting for up to 88–95% of total nitrated phenols in flaming burning condition. The emission ratios of nitrated phenols to PM 2.5 increased with the completeness of combustion and ranged from 7 to 45 ppmm and from 239 to 1081 ppmm for smoldering and flaming burning, respectively. The ratios of fine nitrated phenols to organic matter in biomass burning aerosols were comparable to or lower than those in ambient aerosols affected by biomass burning, indicating that secondary formation contributed to ambient levels of fine nitrated phenols. The emission factors of fine nitrated phenols from flaming biomass burning were estimated based on the measured mass fractions and the PM 2.5 emission factors from literature and were approximately 0.75–11.1 mg kg −1 . According to calculations based on corn and wheat production in 31 Chinese provinces in 2013, the total estimated emission of fine nitrated phenols from the burning of corncobs, corn stalks, and wheat straw was 670 t. This work highlights the apparent emission of methyl nitrocatechols from biomass burning

  10. Association of Exposure to Fine Particulate Matter and Risk Factors of Non-Communicable Diseases in Children and Adolescents

    Directory of Open Access Journals (Sweden)

    Parinaz Poursafa

    2017-10-01

    Full Text Available Background: Risk factors of non-communicable disease (NCD origin from early life, and exposure to environmental pollutant may be a predisposing factor. This study aimed to investigate the association of air quality index (AQI and fine particulate matter (PM2.5 with some NCD risk factors in a sample of Iranian children and adolescents. Materials and Methods: This cross-sectional study was conducted in 2014 to 2016 among children and adolescents, aged 6-18 years, in Isfahan, Iran. Physical examination, including weight, height, and blood pressure, was conducted by standard methods. Fasting blood sample was obtained for fasting blood glucose, total cholesterol, high density lipoprotein-cholesterol, low-density lipoprotein- cholesterol, and triglycerides. The mean AQI and PM2.5 values from the study time till one year prior to the survey were used. Multiple linear regression analysis was conducted for the association of AQI and PM2.5 with other variables. Results: Participants consisted of 186 children and adolescents with mean (SD age of 10.52(2.38 years. Exposure to higher level of PM2.5 had significant associations with higher levels of systolic blood pressure, low-density lipoprotein cholesterol, and triglycerides. It also had positive relationship with other risk factors and inverse association with low-density lipoprotein cholesterol (LDL-C, but these associations were not statistically significant. The corresponding figures were not significant for AQI. Conclusion: At current study results showed that exposure to higher levels of fine particulates was associated with some NCD risk factors in children and adolescents. Early life prevention of NCDs can lead to large reductions in disease risk; adverse effects of ambient pollutants should be considered in this regard.

  11. The relationship between fine particulate matter (PM2.5) and schizophrenia severity.

    Science.gov (United States)

    Eguchi, Rika; Onozuka, Daisuke; Ikeda, Kouji; Kuroda, Kenji; Ieiri, Ichiro; Hagihara, Akihito

    2018-04-23

    Although particulate matter (PM) is reported to affect the rate of emergency admissions for schizophrenia, no study has examined the relationship between particulate matter less than 2.5 μm in diameter (PM 2.5 ) and the severity of schizophrenia. We obtained data on patients with schizophrenia at a psychiatric hospital, and on air pollution in Sakai, Japan between Feb 1, 2013 and April 30, 2016. Multivariate logistic regression analyses were used to estimate the relationship between PM 2.5 concentrations and scores on the Brief Psychiatric Rating Scale (BPRS) of schizophrenia patients at admission, with a lag of up to 7 days. During the study period, there were 1193 schizophrenia cases. The odds ratio (OR) for a BPRS score ≥ 50 at admission was 1.05 [95% confidence interval 1.00-1.10] and the effect of PM 2.5 concentration was significant for lag period of 2 days. The ORs associated with PM 2.5 concentration increased substantially for patients over 65 years of age. Ambient PM 2.5 concentration was associated with exacerbation of schizophrenia. Our results suggest that protection for several days should be considered for controlling PM 2.5 -related schizophrenia, especially among elderly patients.

  12. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    Directory of Open Access Journals (Sweden)

    Longxiang Li

    Full Text Available Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.

  13. Measurement of emissions of fine particulate organic matter from Chinese cooking

    Science.gov (United States)

    He, Ling-Yan; Hu, Min; Huang, Xiao-Feng; Yu, Ben-De; Zhang, Yuan-Hang; Liu, De-Quan

    Cooking emissions may contribute significantly to atmospheric organic particles in urban environment in China, and thus need to be examined first for its chemical compositions and characteristics. The particulate organic emissions of the two cooking styles of Chinese cuisine, that is, Hunan Cooking and Cantonese Cooking, were characterized in Shenzhen. More than half of the PM 2.5 mass is due to organic compounds, and over 90 species of organic compounds were identified and quantified, accounting for 26.1% of bulk organic particle mass and 20.7% of PM 2.5. Fatty acids, diacids and steroids were the major organic compounds emitted from both styles of cooking. Of the quantified organic mass, over 90% was fatty acids. The mass of organic species, and the molecular distribution of n-alkanes and PAHs indicated the dissimilarities between the two different cooking styles, but generally the major parts of the organic particulate emissions of the two restaurants were similar, showing less difference than between Chinese and American cooking.

  14. Respiratory disease and particulate air pollution in Santiago Chile: contribution of erosion particles from fine sediments.

    Science.gov (United States)

    Garcia-Chevesich, Pablo A; Alvarado, Sergio; Neary, Daniel G; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-04-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. SOURCE SAMPLING FINE PARTICULATE MATTER: A KRAFT PROCESS HOGGED FUEL BOILER AT A PULP AND PAPER FACILITY, VOLUMES 1 AND 2

    Science.gov (United States)

    Fine particulate matter of aerodynamic diameter 2.5 m or less (PM-2.5) has been found harmful to human health, and a National Ambient Air Quality Standard for PM-2.5 was promulgated by the U.S. Environmental Protection Agency in July 1997. A national network of ambient monitorin...

  16. A conditional Poisson analysis of fine particulate matter and U.S. Medicare hospitalization, 1999-2010, by individual-level chronic health conditions.

    Science.gov (United States)

    Background/Aim: A previous analysis suggested that U.S. counties with higher county-level prevalence of chronic conditions had stronger associations of mortality with fine particulate matter (PM2.5). This study assesses the modification of the effect of PM2.5 on daily hospitaliz...

  17. 40 CFR Appendix L to Part 50 - Reference Method for the Determination of Fine Particulate Matter as PM2.5 in the Atmosphere

    Science.gov (United States)

    2010-07-01

    ... and 1000 W/m2 solar radiation intensity. 7.4.8.2 The ambient temperature sensor shall be of such a... measurement of the mass concentration of fine particulate matter having an aerodynamic diameter less than or... matter specified in § 50.7 and § 50.13 of this part are met. The measurement process is considered to be...

  18. In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

    NARCIS (Netherlands)

    Beekmann, M.; Prévôt, A.S.H.; Drewnick, F.; Sciare, J.; Pandis, S.N.; Denier van der Gon, H.A.C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; Weiden-Reinmüller, S.L. von der; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q.J.; Michoud, V.; Slowik, J.G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J.L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.

    2015-01-01

    A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions.

  19. Assessment of Zn bioavailability: XAFS study on speciation of zinc-particulate organic matter associations in polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Harfouche, M; Borca, C; Grolimund, D [Swiss Light Source, Institut Paul Scherrer, Villigen (Switzerland); Labanowski, J [UMR CNRS 6008, Laboratoire de Chimie et Microbiologie de l' Eau, Universite de Poitiers (France); Farges, F [USM 201 and CNRS UMR 7202, Museum National d' Histoire Naturelle, Paris (France); Hullebusch, E van [Laboratoire Geomateriaux et Environnement, Universite de Paris-Est (France); Oort, F van, E-mail: messaoud.harfouche@psi.c, E-mail: vanoort@versailles.inra.f [UR INRA 251, Physico-chimie et Ecotoxicologie des Sols d Agrosystemes Contamines, Versailles (France)

    2009-11-15

    We present a study about the behavior of Zn in agricultural soils polluted 100-50 years ago by metallurgical fallout and used nowadays for corn production. Such type of soil concerns an area of several km{sup 2} around former metallurgical complex in Northern France. Despite the moderated metal amounts of these soils, the metals deposited over the agricultural area still indirectly expose nowadays populations through the food chain. In contrast to the most contaminated industrial site, these more distant agricultural areas have been less studied. The study was focused on Zn, a relative mobile metal element, since its predominant occurrence in the surface horizon of sandy textured soils, fifty years after cessation of metallurgical activity suggests its immobilization due to specific soil mechanisms. To evaluate how Zn is associated to POM, Zn K-edge XAFS spectra were collected at 293 K at the SLS on beamlines superXAS and microXAS, using Si(111) monochromators and solid state Ge detectors. Energetic resolution is ca. 2 eV at 9 KeV. Lateral resolution varied from ca. 1 mm{sup 2} to 15 micron{sup 2}. Spectra were normalized with the XAFS 3.0 software. We studied different POM size fractions isolated from soils. The largest POM particles correspond to recent leaves or roots fragments. The finest POM particles correspond to decomposition by-products. The results revealed a multiple and heterogeneous speciation of Zn with POM. We observed that little interactions from next-nearest neighbors around Zn. We concluded that most of the Zn tends to be located in the POM matrix as a Zn-organic speciation. We also collected macroscopic EXAFS data on selected intact POM particles probed at the micron scale. The results show that the remaining Zn-distribution related to inorganic (hot-spots), possibly franklinite-type, is minor compared to the Zn-organic speciation. Such observations will help to better understand the mechanisms that regulate the bioavailability and

  20. Emissions from residential energy use dominate exposure to ambient fine particulate matter in India

    Science.gov (United States)

    Conibear, L.; Butt, E. W.; Knote, C. J.; Arnold, S.; Spracklen, D. V.

    2017-12-01

    Exposure to ambient particulate matter of less than 2.5 µm in diameter (PM2.5) is a leading cause of disease burden in India. Information on the source contributions to the burden of disease attributable to ambient PM2.5 exposure is critical to support the national and sub-national control of air pollution. Previous studies analysing the contributions of different emission sectors to disease burden in India have been limited by coarse model resolutions and a lack of extensive PM2.5 observations before 2016. We use a regional numerical weather prediction model online-coupled with chemistry, evaluated against extensive surface observations, to make the first high resolution study of the contributions of seven emission sectors to the disease burden associated with ambient PM2.5 exposure in India. We find that residential energy use is the dominant contributing emission sector. Removing air pollution emissions from residential energy use would reduce population-weighted annual mean ambient PM2.5 concentrations by 52%, reducing the number of premature mortalities caused by exposure to ambient PM2.5 by 26%, equivalent to 268,000 (95% uncertainty interval (95UI): 167,000-360,000) lives every year. The smaller fractional reduction in mortality burden is due to the non-linear exposure-response relationship at the high PM2.5 concentrations observed across India and consequently large reductions in emissions are required to reduce the health burden from ambient PM2.5 exposure in India. Keywords: ambient air quality, India, residential energy use, health impact, particulate matter, WRF-Chem

  1. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    Science.gov (United States)

    Nie, Dongyang; Chen, Mindong; Ge, Xinlei; Zhang, Kai; Ge, Pengxiang

    2018-01-01

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5) over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits. PMID:29584626

  2. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing

    Directory of Open Access Journals (Sweden)

    Dongyang Nie

    2018-03-01

    Full Text Available Particulate matter (PM air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM2.5 over Nanjing were analyzed using hourly and daily averaged PM2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER model was applied to assess premature mortality, years of life lost (YLL attributable to PM2.5, and mortality benefits due to PM2.5 reductions. The concentrations of PM2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF, stroke was the major cause of death, followed by ischemic heart disease (IHD, lung cancer (LC and chronic obstructive pulmonary disease (COPD. The estimated total deaths in Nanjing due to PM2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM2.5 concentrations meet the World Health Organization (WHO Air Quality Guidelines (AQG of 10 μg/m3, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  3. Characterization of Fine Particulate Matter and Associated Health Burden in Nanjing.

    Science.gov (United States)

    Nie, Dongyang; Chen, Mindong; Wu, Yun; Ge, Xinlei; Hu, Jianlin; Zhang, Kai; Ge, Pengxiang

    2018-03-27

    Particulate matter (PM) air pollution has become a serious environmental problem in Nanjing and poses great health risks to local residents. In this study, characteristics of particulate matter with an aerodynamic diameter less than 2.5 μm (PM 2.5 ) over Nanjing were analyzed using hourly and daily averaged PM 2.5 concentrations and meteorological parameters collected from nine national monitoring sites during the period of March 2014 to February 2017. Then, the integrated exposure-response (IER) model was applied to assess premature mortality, years of life lost (YLL) attributable to PM 2.5 , and mortality benefits due to PM 2.5 reductions. The concentrations of PM 2.5 varied among hours, seasons and years, which can be explained by differences in emission sources, secondary formations and meteorological conditions. The decreased ratio of PM 2.5 to CO suggested that secondary contributions decreased while the relative contributions of vehicle exhaust increased from increased CO data. According to the values of attributable fractions (AF), stroke was the major cause of death, followed by ischemic heart disease (IHD), lung cancer (LC) and chronic obstructive pulmonary disease (COPD). The estimated total deaths in Nanjing due to PM 2.5 were 12,055 and 10,771, leading to 98,802 and 87,647 years of life lost in 2014 and 2015, respectively. The elderly and males had higher health risks than youngsters and females. When the PM 2.5 concentrations meet the World Health Organization (WHO) Air Quality Guidelines (AQG) of 10 μg/m³, 84% of the premature deaths would be avoided, indicating that the Nanjing government needs to adopt more stringent measure to reduce PM pollution and enhance the health benefits.

  4. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    Directory of Open Access Journals (Sweden)

    T. Jayarathne

    2018-02-01

    Full Text Available Fine particulate matter (PM2.5 was collected in situ from peat smoke during the 2015 El Niño peat fire episode in Central Kalimantan, Indonesia. Twenty-one PM samples were collected from 18 peat fire plumes that were primarily smoldering with modified combustion efficiency (MCE values of 0.725–0.833. PM emissions were determined and chemically characterized for elemental carbon (EC, organic carbon (OC, water-soluble OC, water-soluble ions, metals, and organic species. Fuel-based PM2.5 mass emission factors (EFs ranged from 6.0 to 29.6 g kg−1 with an average of 17.3 ± 6.0 g kg−1. EC was detected only in 15 plumes and comprised  ∼ 1 % of PM mass. Together, OC (72 %, EC (1 %, water-soluble ions (1 %, and metal oxides (0.1 % comprised 74 ± 11 % of gravimetrically measured PM mass. Assuming that the remaining mass is due to elements that form organic matter (OM; i.e., elements O, H, N an OM-to-OC conversion factor of 1.26 was estimated by linear regression. Overall, chemical speciation revealed the following characteristics of peat-burning emissions: high OC mass fractions (72 %, primarily water-insoluble OC (84 ± 11 %C, low EC mass fractions (1 %, vanillic to syringic acid ratios of 1.9, and relatively high n-alkane contributions to OC (6.2 %C with a carbon preference index of 1.2–1.6. Comparison to laboratory studies of peat combustion revealed similarities in the relative composition of PM but greater differences in the absolute EF values. The EFs developed herein, combined with estimates of the mass of peat burned, are used to estimate that 3.2–11 Tg of PM2.5 was emitted to atmosphere during the 2015 El Niño peatland fire event in Indonesia. Combined with gas-phase measurements of CO2, CO, CH4, and volatile organic carbon from Stockwell et al. (2016, it is determined that OC and EC accounted for 2.1 and 0.04 % of total carbon emissions, respectively. These in situ EFs can be used to

  5. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    Science.gov (United States)

    Jayarathne, Thilina; Stockwell, Chelsea E.; Gilbert, Ashley A.; Daugherty, Kaitlyn; Cochrane, Mark A.; Ryan, Kevin C.; Putra, Erianto I.; Saharjo, Bambang H.; Nurhayati, Ati D.; Albar, Israr; Yokelson, Robert J.; Stone, Elizabeth A.

    2018-02-01

    Fine particulate matter (PM2.5) was collected in situ from peat smoke during the 2015 El Niño peat fire episode in Central Kalimantan, Indonesia. Twenty-one PM samples were collected from 18 peat fire plumes that were primarily smoldering with modified combustion efficiency (MCE) values of 0.725-0.833. PM emissions were determined and chemically characterized for elemental carbon (EC), organic carbon (OC), water-soluble OC, water-soluble ions, metals, and organic species. Fuel-based PM2.5 mass emission factors (EFs) ranged from 6.0 to 29.6 g kg-1 with an average of 17.3 ± 6.0 g kg-1. EC was detected only in 15 plumes and comprised ∼ 1 % of PM mass. Together, OC (72 %), EC (1 %), water-soluble ions (1 %), and metal oxides (0.1 %) comprised 74 ± 11 % of gravimetrically measured PM mass. Assuming that the remaining mass is due to elements that form organic matter (OM; i.e., elements O, H, N) an OM-to-OC conversion factor of 1.26 was estimated by linear regression. Overall, chemical speciation revealed the following characteristics of peat-burning emissions: high OC mass fractions (72 %), primarily water-insoluble OC (84 ± 11 %C), low EC mass fractions (1 %), vanillic to syringic acid ratios of 1.9, and relatively high n-alkane contributions to OC (6.2 %C) with a carbon preference index of 1.2-1.6. Comparison to laboratory studies of peat combustion revealed similarities in the relative composition of PM but greater differences in the absolute EF values. The EFs developed herein, combined with estimates of the mass of peat burned, are used to estimate that 3.2-11 Tg of PM2.5 was emitted to atmosphere during the 2015 El Niño peatland fire event in Indonesia. Combined with gas-phase measurements of CO2, CO, CH4, and volatile organic carbon from Stockwell et al. (2016), it is determined that OC and EC accounted for 2.1 and 0.04 % of total carbon emissions, respectively. These in situ EFs can be used to improve the

  6. Fine particulate matter air pollution and cognitive function among older US adults.

    Science.gov (United States)

    Ailshire, Jennifer A; Crimmins, Eileen M

    2014-08-15

    Existing research on the adverse health effects of exposure to pollution has devoted relatively little attention to the potential impact of ambient air pollution on cognitive function in older adults. We examined the cross-sectional association between residential concentrations of particulate matter with aerodynamic diameter of 2.5 μm or less (PM2.5) and cognitive function in older adults. Using hierarchical linear modeling, we analyzed data from the 2004 Health and Retirement Study, a large, nationally representative sample of US adults aged 50 years or older. We linked participant data with 2000 US Census tract data and 2004 census tract-level annual average PM2.5 concentrations. Older adults living in areas with higher PM2.5 concentrations had worse cognitive function (β = -0.26, 95% confidence interval: -0.47, -0.05) even after adjustment for community- and individual-level social and economic characteristics. Results suggest that the association is strongest for the episodic memory component of cognitive function. This study adds to a growing body of research highlighting the importance of air pollution to cognitive function in older adults. Improving air quality in large metropolitan areas, where much of the aging US population resides, may be an important mechanism for reducing age-related cognitive decline. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Modeling Of In-Vehicle Human Exposure to Ambient Fine Particulate Matter

    Science.gov (United States)

    Liu, Xiaozhen; Frey, H. Christopher

    2012-01-01

    A method for estimating in-vehicle PM2.5 exposure as part of a scenario-based population simulation model is developed and assessed. In existing models, such as the Stochastic Exposure and Dose Simulation model for Particulate Matter (SHEDS-PM), in-vehicle exposure is estimated using linear regression based on area-wide ambient PM2.5 concentration. An alternative modeling approach is explored based on estimation of near-road PM2.5 concentration and an in-vehicle mass balance. Near-road PM2.5 concentration is estimated using a dispersion model and fixed site monitor (FSM) data. In-vehicle concentration is estimated based on air exchange rate and filter efficiency. In-vehicle concentration varies with road type, traffic flow, windspeed, stability class, and ventilation. Average in-vehicle exposure is estimated to contribute 10 to 20 percent of average daily exposure. The contribution of in-vehicle exposure to total daily exposure can be higher for some individuals. Recommendations are made for updating exposure models and implementation of the alternative approach. PMID:23101000

  8. Ambient fine particulate matter in China: Its negative impacts and possible countermeasures.

    Science.gov (United States)

    Qi, Zihan; Chen, Tingjia; Chen, Jiang; Qi, Xiaofei

    2018-03-01

    In recent decades, China has experienced rapid economic development accompanied by increasing concentrations of ambient PM 2.5 , particulate matter of less than 2.5 μm in diameter. PM 2.5 is now believed to be a carcinogen, causing higher lung cancer risks and generating losses to the economy and society. This meta-analysis evaluates the losses generated by ambient PM 2.5 in Suzhou from 2014 to 2016 and predicts losses at different concentrations. Estimations of total losses in Beijing, Shanghai, Hangzhou, Guangzhou, Dalian, and Xiamen are also presented, with a total national loss in 2015. The authors then demonstrate that lowering ambient PM 2.5 concentrations would be a realistic way for China to reduce the evaluated social losses in the short term. Possible legal measures are listed for lowering ambient PM 2.5 concentrations. The present findings quantify the economic effects of ambient PM 2.5 due to the increased incidence rate and mortality rate of lung cancer. Lowering ambient PM 2.5 concentrations would be the most realistic way for China to reduce tghe evaluated social losses in the short term. Possible legal measures for lowering ambient PM 2.5 concentrations to reduce the total losses are identified.

  9. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments

    International Nuclear Information System (INIS)

    Garcia-Chevesich, Pablo A.; Alvarado, Sergio; Neary, Daniel G.; Valdes, Rodrigo; Valdes, Juan; Aguirre, Juan José; Mena, Marcelo; Pizarro, Roberto; Jofré, Paola; Vera, Mauricio; Olivares, Claudio

    2014-01-01

    Air pollution in Santiago is a serious problem every winter, causing thousands of cases of breathing problems within the population. With more than 6 million people and almost two million vehicles, this large city receives rainfall only during winters. Depending on the frequency of storms, statistics show that every time it rains, air quality improves for a couple of days, followed by extreme levels of air pollution. Current regulations focus mostly on PM10 and PM2.5, due to its strong influence on respiratory diseases. Though more than 50% of the ambient PM10s in Santiago is represented by soil particles, most of the efforts have been focused on the remaining 50%, i.e. particulate material originating from fossil and wood fuel combustion, among others. This document emphasizes the need for the creation of erosion/sediment control regulations in Chile, to decrease respiratory diseases on Chilean polluted cities. - We emphasize the urgent need to implement erosion and sediment control politics in Santiago, to decrease PM10 concentrations in the city's air, based on the US experience

  10. Assessing the spatial and temporal variability of fine particulate matter components in Israeli, Jordanian, and Palestinian cities

    Science.gov (United States)

    Sarnat, Jeremy A.; Moise, Tamar; Shpund, Jacob; Liu, Yang; Pachon, Jorge E.; Qasrawi, Radwan; Abdeen, Ziad; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Schauer, James J.

    2010-07-01

    This manuscript presents results from an extensive, multi-country comparative monitoring study of fine particulate matter (PM 2.5) and its primary chemical components in Israeli, Jordanian and Palestinian cities. This study represented the first time that researchers from these countries have worked together to examine spatial and temporal relationships for PM 2.5 and its major components among the study sites. The findings indicated that total PM 2.5 mass was relatively homogenous among many of the 11 sites as shown from strong between-site correlations. Mean annual concentrations ranged from 19.9 to 34.9 μg m -3 in Haifa and Amman, respectively, and exceeded accepted international air quality standards for annual PM 2.5 mass. Similarity of total mass was largely driven by SO 42- and crustal PM 2.5 components. Despite the close proximity of the seven, well correlated sites with respect to PM 2.5, there were pronounced differences among the cities for EC and, to a lesser degree, OC. EC, in particular, exhibited spatiotemporal trends that were indicative of strong local source contributions. Interestingly, there were moderate to strong EC correlations ( r > 0.65) among the large metropolitan cities, West Jerusalem, Tel Aviv and Amman. For these relatively large cities, (i.e., West Jerusalem, Tel Aviv and Amman), EC sources from the fleet of buses and cars typical for many urban areas predominate and likely drive spatiotemporal EC distributions. As new airshed management strategies and public health interventions are implemented throughout the Middle East, our findings support regulatory strategies that target integrated regional and local control strategies to reduce PM 2.5 mass and specific components suspected to drive adverse health effects of particulate matter exposure.

  11. Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals

    Science.gov (United States)

    Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel

    2014-01-01

    To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.

  12. Prenatal fine particulate exposure and early childhood asthma: Effect of maternal stress and fetal sex.

    Science.gov (United States)

    Lee, Alison; Leon Hsu, Hsiao-Hsien; Mathilda Chiu, Yueh-Hsiu; Bose, Sonali; Rosa, Maria José; Kloog, Itai; Wilson, Ander; Schwartz, Joel; Cohen, Sheldon; Coull, Brent A; Wright, Robert O; Wright, Rosalind J

    2018-05-01

    The impact of prenatal ambient air pollution on child asthma may be modified by maternal stress, child sex, and exposure dose and timing. We prospectively examined associations between coexposure to prenatal particulate matter with an aerodynamic diameter of less than 2.5 microns (PM 2.5 ) and maternal stress and childhood asthma (n = 736). Daily PM 2.5 exposure during pregnancy was estimated using a validated satellite-based spatiotemporally resolved prediction model. Prenatal maternal negative life events (NLEs) were dichotomized around the median (high: NLE ≥ 3; low: NLE stress and child sex. Bayesian distributed lag interaction models identified a critical window of exposure (19-23 weeks' gestation, cumulative odds ratio, 1.15; 95% CI, 1.03-1.26; per interquartile range [1.7 μg/m 3 ] increase in prenatal PM 2.5 level) during which children concomitantly exposed to prenatal PM 2.5 and maternal stress had increased risk of asthma. No significant association was seen in children born to women reporting low prenatal stress. When examining modifying effects of prenatal stress and fetal sex, we found that boys born to mothers with higher prenatal stress were most vulnerable (19-21 weeks' gestation; cumulative odds ratio, 1.28; 95% CI, 1.15-1.41; per interquartile range increase in PM 2.5 ). Prenatal PM 2.5 exposure during sensitive windows is associated with increased risk of child asthma, especially in boys concurrently exposed to elevated maternal stress. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. The molecular distribution of fine particulate organic matter emitted from Western-style fast food cooking

    Science.gov (United States)

    Zhao, Yunliang; Hu, Min; Slanina, Sjaak; Zhang, Yuanhang

    The emissions from food cooking could be a significant contributor to atmospheric particulate organic matter (POM) and its chemical composition would vary with different cooking styles. In this study, the chemical composition of POM emitted from Western-style fast food cooking was investigated. A total of six PM 2.5 samples was collected from a commercial restaurant and determined by gas chromatography-mass spectrometry (GC-MS). It is found that the total amount of quantified compounds of per mg POM in Western-style fast food cooking is much higher than that in Chinese cooking. The predominant homologue is fatty acids, accounting for 78% of total quantified POM, with the predominant one being palmitic acid. Dicarboxylic acids display the second highest concentration in the quantified homologues with hexanedioic acid being predominant, followed by nonanedioic acid. Cmax of n-alkanes occurs at C25, but they still appear relative higher concentrations at C29 and C31. In addition, both levoglucosan and cholesterol are quantified. The relationship of concentrations of unsaturated fatty acids (C16 and C18) with a double bond at C9 position and C9 acids indicates the reduction of the unsaturated fatty acids in the emissions could form the C9 acids. Moreover, the nonlinear fit indicates that other C9 species or other compounds are also produced, except for the C9 acids. The potential candidates of tracers for the emissions from Western-fast food cooking could be: tetradecanoic acid, hexadecanoic acid, octadecanoic acid, 9-octadecenoic acid, nonanal, lactones, levoglucosan, hexanedioic acid and nonanedioic acid.

  14. Pregnancy and Lifetime Exposure to Fine Particulate Matter and Infant Mortality in Massachusetts, 2001-2007.

    Science.gov (United States)

    Son, Ji-Young; Lee, Hyung Joo; Koutrakis, Petros; Bell, Michelle L

    2017-12-01

    Many studies have found associations between particulate matter having an aerodynamic diameter of ≤2.5 μm (PM2.5) and adult mortality. Comparatively few studies evaluated particles and infant mortality, although infants and children are particularly vulnerable to pollution. Moreover, existing studies mostly focused on short-term exposure to larger particles. We investigated PM2.5 exposure during pregnancy and lifetime and postneonatal infant mortality. The study included 465,682 births with 385 deaths in Massachusetts (2001-2007). Exposures were estimated from PM2.5-prediction models based on satellite imagery. We applied extended Cox proportional hazards modeling with time-dependent covariates to total, respiratory, and sudden infant death syndrome mortality. Exposure was calculated from birth to death (or end of eligibility for outcome, at age 1 year) and pregnancy (gestation and each trimester). Models adjusted for sex, birth weight, gestational length, season of birth, temperature, relative humidity, and maternal characteristics. Hazard ratios for total, respiratory, and sudden infant death syndrome mortality per-interquartile-range increase (1.3 μg/m3) in lifetime PM2.5 exposure were 2.66 (95% confidence interval (CI): 2.11, 3.36), 3.14 (95% CI: 2.39, 4.13), and 2.50 (95% CI: 1.56, 4.00), respectively. We did not observe a statistically significant relationship between gestational exposure and mortality. Our findings provide supportive evidence that lifetime exposure to PM2.5 increases risk of infant mortality. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Fine Particulate Matter in Urban Environments: A Trigger of Respiratory Symptoms in Sensitive Children

    Directory of Open Access Journals (Sweden)

    Daniel Dunea

    2016-12-01

    Full Text Available The overall objective of this research was to study children’s respiratory illness levels in Targoviste (Romania in relationship to the outdoor concentrations of airborne particulate matter with an aerodynamic diameter below 2.5 µm (PM2.5. We monitored and analysed the PM2.5 concentrations according to a complex experimental protocol. The health trial was conducted over three months (October–December 2015 and required the active cooperation of the children’s parents to monitor carefully the respiratory symptoms of the child, i.e., coughing, rhinorrhoea, wheezing, and fever, as well as their outdoor program. We selected the most sensitive children (n = 25; age: 2–10 years with perturbed respiratory health, i.e., wheezing, asthma, and associated symptoms. The estimated average PM2.5 doses were 0.8–14.5 µg·day−1 for weekdays, and 0.4–6.6 µg·day−1 for the weekend. The frequency and duration of the symptoms decreased with increasing age. The 4- to 5-year old children recorded the longest duration of symptoms, except for rhinorrhoea, which suggested that this age interval is the most vulnerable to exogenous trigger agents (p < 0.01 compared to the other age groups. PM2.5 air pollution was found to have a direct positive correlation with the number of wheezing episodes (r = 0.87; p < 0.01 in November 2015. Monitoring of wheezing occurrences in the absence of fever can provide a reliable assessment of the air pollution effect on the exacerbation of asthma and respiratory disorders in sensitive children.

  16. Chemical characterization and sources of personal exposure to fine particulate matter in the general population of Guangzhou, China

    Science.gov (United States)

    Chen, Xiao-Cui; Jahn, Heiko J.; Engling, Guenter; Ward, Tony J.; Kraemer, Alexander; Ho, Kin-Fai; Hung-Lam Yim, Steve; Chan, Chuen-Yu

    2017-04-01

    Fine particulate matter pollution severely deteriorates the environmental conditions and negatively impacts human health in the Chinese megacity Guangzhou. Concurrent ambient and personal measurements of fine particulate matter (PM2.5) were conducted in Guangzhou, China. Personal-to-ambient (P-C) relationships of PM2.5 chemical components were determined and sources of personal PM2.5 exposure were evaluated using principal component analysis along with a mixed-effects model. Water-soluble inorganic ions (mainly secondary inorganic ions) and anhydrosugars exhibited median personal-to-ambient (P/C) ratios < 1 accompanied by strong P-C correlations, indicating that these constituents in personal PM2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca2+) showed median P/C ratios greater than unity, which indicated that among subjects who spent a great amount of time indoors, aside from particles of ambient origin, individual's total exposure to PM2.5 includes contributions of non-ambient exposure while indoors and outdoors (e.g., local traffic, indoor sources, personal activities). SO42- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO42- in the urban area of Guangzhou. EC, Ca2+, and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca2+ to personal PM2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient

  17. Fine-scale estimation of carbon monoxide and fine particulate matter concentrations in proximity to a road intersection by using wavelet neural network with genetic algorithm

    Science.gov (United States)

    Wang, Zhanyong; Lu, Feng; He, Hong-di; Lu, Qing-Chang; Wang, Dongsheng; Peng, Zhong-Ren

    2015-03-01

    At road intersections, vehicles frequently stop with idling engines during the red-light period and speed up rapidly in the green-light period, which generates higher velocity fluctuation and thus higher emission rates. Additionally, the frequent changes of wind direction further add the highly variable dispersion of pollutants at the street scale. It is, therefore, very difficult to estimate the distribution of pollutant concentrations using conventional deterministic causal models. For this reason, a hybrid model combining wavelet neural network and genetic algorithm (GA-WNN) is proposed for predicting 5-min series of carbon monoxide (CO) and fine particulate matter (PM2.5) concentrations in proximity to an intersection. The proposed model is examined based on the measured data under two situations. As the measured pollutant concentrations are found to be dependent on the distance to the intersection, the model is evaluated in three locations respectively, i.e. 110 m, 330 m and 500 m. Due to the different variation of pollutant concentrations on varied time, the model is also evaluated in peak and off-peak traffic time periods separately. Additionally, the proposed model, together with the back-propagation neural network (BPNN), is examined with the measured data in these situations. The proposed model is found to perform better in predictability and precision for both CO and PM2.5 than BPNN does, implying that the hybrid model can be an effective tool to improve the accuracy of estimating pollutants' distribution pattern at intersections. The outputs of these findings demonstrate the potential of the proposed model to be applicable to forecast the distribution pattern of air pollution in real-time in proximity to road intersection.

  18. Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients

    Science.gov (United States)

    Siponen, Taina; Yli-Tuomi, Tarja; Aurela, Minna; Dufva, Hilkka; Hillamo, Risto; Hirvonen, Maija-Riitta; Huttunen, Kati; Pekkanen, Juha; Pennanen, Arto; Salonen, Iiris; Tiittanen, Pekka; Salonen, Raimo O; Lanki, Timo

    2015-01-01

    Objective To compare short-term effects of fine particles (PM2.5; aerodynamic diameter <2.5 µm) from different sources on the blood levels of markers of systemic inflammation. Methods We followed a panel of 52 ischaemic heart disease patients from 15 November 2005 to 21 April 2006 with clinic visits in every second week in the city of Kotka, Finland, and determined nine inflammatory markers from blood samples. In addition, we monitored outdoor air pollution at a fixed site during the study period and conducted a source apportionment of PM2.5 using the Environmental Protection Agency's model EPA PMF 3.0. We then analysed associations between levels of source-specific PM2.5 and markers of systemic inflammation using linear mixed models. Results We identified five source categories: regional and long-range transport (LRT), traffic, biomass combustion, sea salt, and pulp industry. We found most evidence for the relation of air pollution and inflammation in LRT, traffic and biomass combustion; the most relevant inflammation markers were C-reactive protein, interleukin-12 and myeloperoxidase. Sea salt was not positively associated with any of the inflammatory markers. Conclusions Results suggest that PM2.5 from several sources, such as biomass combustion and traffic, are promoters of systemic inflammation, a risk factor for cardiovascular diseases. PMID:25479755

  19. Fine particulate air pollution and its components in association with cause-specific emergency admissions

    Directory of Open Access Journals (Sweden)

    Koutrakis Petros

    2009-12-01

    Full Text Available Abstract Background Although the association between exposure to particulate matter and health is well established, there remains uncertainty as to whether certain chemical components are more harmful than others. We explored whether the association between cause-specific hospital admissions and PM2.5 was modified by PM2.5 chemical composition. Methods We estimated the association between daily PM2.5 and emergency hospital admissions for cardiac causes (CVD, myocardial infarction (MI, congestive heart failure (CHF, respiratory disease, and diabetes in 26 US communities, for the years 2000-2003. Using meta-regression, we examined how this association was modified by season- and community-specific PM2.5 composition, controlling for seasonal temperature as a surrogate for ventilation. Results For a 10 μg/m3 increase in 2-day averaged PM2.5 concentration we found an increase of 1.89% (95% CI: 1.34- 2.45 in CVD, 2.25% (95% CI: 1.10- 3.42 in MI, 1.85% (95% CI: 1.19- 2.51 in CHF, 2.74% (95% CI: 1.30- 4.2 in diabetes, and 2.07% (95% CI: 1.20- 2.95 in respiratory admissions. The association between PM2.5 and CVD admissions was significantly modified when the mass was high in Br, Cr, Ni, and Na+, while mass high in As, Cr, Mn, OC, Ni, and Na+ modified MI, and mass high in As, OC, and SO42- modified diabetes admissions. For these species, an interquartile range increase in their relative proportion was associated with a 1-2% additional increase in daily admissions per 10 μg/m3 increase in mass. Conclusions We found that PM2.5 mass higher in Ni, As, and Cr, as well as Br and OC significantly increased its effect on hospital admissions. This result suggests that particles from industrial combustion sources and traffic may, on average, have greater toxicity.

  20. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances.

    Science.gov (United States)

    Czech, Hendryk; Miersch, Toni; Orasche, Jürgen; Abbaszade, Gülcin; Sippula, Olli; Tissari, Jarkko; Michalke, Bernhard; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Jokiniemi, Jorma; Zimmermann, Ralf

    2018-01-15

    Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Water-soluble ions measured in fine particulate matter next to cement works

    Science.gov (United States)

    Galindo, N.; Yubero, E.; Nicolás, J. F.; Crespo, J.; Pastor, C.; Carratalá, A.; Santacatalina, M.

    2011-04-01

    PM2.5 samples were collected for one year in a suburban area close to an industrial complex formed by two cement factories and some quarries in southeastern Spain. Samples were analyzed by ion chromatography to determine the concentrations of major inorganic ions: Cl -, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+. The average PM2.5 concentration (17.6 μg m -3) was within the interval reported for other Mediterranean suburban environments. Concentration peaks were registered during both winter and summer, concurrently with maxima levels of nitrate and sulfate, due to stagnation conditions and African dust episodes, respectively. Sulfate was found to be a main contributor to PM2.5 aerosol mass (4.2 μg m -3, 24%), followed by nitrate and ammonium (1.5 μg m -3, 9% each one). Correlation analyses demonstrated that fine sulfate was present as (NH 4) 2SO 4, CaSO 4 and Na 2SO 4 since ammonium concentrations were not high enough to neutralize both anions. The mean concentration of calcium (1.0 μg m -3), an element commonly found in the coarse fraction, was higher than those found in other locations of the Mediterranean basin. Additionally, the lowest levels were registered during summer, in contrast with previous findings. This was attributed to resuspension and transport of mineral dust from the neighboring quarries and cement plants during fall and winter, which was supported by the results of the CPF analysis. Atmospheric levels of potassium and chloride (0.28 and 0.51 μg m -3 annual average, respectively) also seemed to be affected by cement works, as suggested by correlation and CPF analyses. In the case of Cl -, a marked seasonality was observed, with mean winter concentrations considerably higher than summer ones, indicating a clear prevalence of anthropogenic sources over sea spray emissions.

  2. The Impact of Multipollutant Clusters on the Association Between Fine Particulate Air Pollution and Microvascular Function.

    Science.gov (United States)

    Ljungman, Petter L; Wilker, Elissa H; Rice, Mary B; Austin, Elena; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros; Benjamin, Emelia J; Vita, Joseph A; Mitchell, Gary F; Vasan, Ramachandran S; Hamburg, Naomi M; Mittleman, Murray A

    2016-03-01

    Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003 to 2008. In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction P value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% confidence interval: 4.6%, 33%) higher baseline pulse amplitude per 5 μg/m and days with high contributions of oil and wood combustion with 16% (95% confidence interval: 0.2%, 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil, and wood combustion was associated with higher baseline pulse amplitude but not hyperemic response. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences.

  3. More than 500 million Chinese urban residents (14% of the global urban population) are imperiled by fine particulate hazard.

    Science.gov (United States)

    He, Chunyang; Han, Lijian; Zhang, Robin Q

    2016-11-01

    China's urbanization and the subsequent public vulnerability to degenerated environment is important to global public health. Among the environmental problems, fine particulate (PM 2.5 ) pollution has become a serious hazard in rapidly urbanizing China. However, quantitative information remains inadequate. We thus collected PM 2.5 concentrations and population census records, to illustrate the spatial patterns and changes in the PM 2.5 hazard levels in China, and to quantify public vulnerability to the hazard during 2000-2010, following the air quality standards of World Health Organization. We found that 28% (2.72 million km 2 ) of China's territory, including 78% of cities (154 cities) with a population of >1 million, was exposed to PM 2.5 hazard in 2010; a 15% increase (1.47 million km 2 ) from 2000 to 2010. The hazards potentially impacted the health of 72% of the total population (942 million) in 2010, including 70% of the young (206 million) and 76% of the old (71 million). This was a significant increase from the 42% of total the population (279 million) exposed in 2000. Of the total urban residents, 76% (501 million) were affected in 2010. Along with PM 2.5 concentration increase, massive number of rural to urban migration also contributed greatly to China's urban public health vulnerability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Identification and characterization of fine and coarse particulate matter sources in a middle-European urban environment

    International Nuclear Information System (INIS)

    Kertesz, Zs.; Szoboszlai, Z.; Angyal, A.; Dobos, E.; Borbely-Kiss, I.

    2010-01-01

    In this work a source apportionment study is presented which aimed to characterize the PM 2.5 and PM 2.5-10 sources in the urban area of Debrecen, East-Hungary by using streaker samples, IBA methods and positive matrix factorization (PMF) analysis. Samples of fine (PM 2.5 ) and coarse (PM 2.5-10 ) urban particulate matter were collected with 2 h time resolution in the frame of five sampling campaigns during 2007-2009 in different seasons in the downtown of Debrecen. Elemental concentrations from Al to Pb of over 1000 samples were obtained by particle induced X-ray emission (PIXE); concentrations of black carbon (BC) were determined with a smoke stain reflectometer. On this data base source apportionment was carried out by using the PMF method. Seven factors were identified for both size fractions, including soil dust, traffic, secondary aerosol - sulphates, domestic heating, oil combustion, agriculture and an unknown factor enriched with chlorine. Seasonal and daily variation of the different factors was studied as well as their dependence on meteorological parameters. Besides determining the time patterns characteristic to the city, several emission episodes were identified including a Saharan dust intrusion on 21st-24th May, 2008.

  5. Exposure to fine particulate matter in the air alters placental structure and the renin-angiotensin system.

    Directory of Open Access Journals (Sweden)

    Sônia de Fátima Soto

    Full Text Available Female Wistar rats were exposed to filtered air (F or to concentrated fine particulate matter (P for 15 days. After mating, the rats were divided into four groups and again exposed to F or P (FF, FP, PF, PP beginning on day 6 of pregnancy. At embryonic day 19, the placenta was collected. The placental structure, the protein and gene expression of TGFβ1, VEGF-A, and its receptor Flk-1 and RAS were evaluated by indirect ELISA and quantitative real-time PCR.Exposure to P decreased the placental mass, size, and surface area as well as the TGFβ1, VEGF-A and Flk-1 content. In the maternal portion of the placenta, angiotensin II (AngII and its receptors AT1 (AT1R and AT2 (AT2R were decreased in the PF and PP groups. In the fetal portion of the placenta, AngII in the FP, PF and PP groups and AT2R in the PF and PP groups were decreased, but AT1R was increased in the FP group. VEGF-A gene expression was lower in the PP group than in the FF group.Exposure to pollutants before and/or during pregnancy alters some characteristics of the placenta, indicating a possible impairment of trophoblast invasion and placental angiogenesis with possible consequences for the maternal-fetal interaction, such as a limitation of fetal nutrition and growth.

  6. Air quality at outdoor community events: findings from fine particulate (PM2.5) sampling at festivals in Edmonton, Alberta.

    Science.gov (United States)

    Collins, Damian; Parsons, Marc; Zinyemba, Chaka

    2014-01-01

    Exposure to fine particulate matter (PM2.5) is associated with a broad range of health risks. This study assessed the impacts of cooking smoke and environmental tobacco smoke on air quality at outdoor community events in Edmonton, Alberta (Canada). Data were collected at three festivals in July-August 2011 using a portable real-time airborne particle monitor. The pooled mean PM2.5 level was 12.41 μg/m(3). Peak readings varied from 52 to 1877 μg/m(3). Mean PM2.5 near food stalls was 35.42 μg/m(3), which exceeds the WHO limit for 24 h exposure. Mean PM2.5 levels with smokers present were 16.39 μg/m(3) (all points) and 9.64 μg/m(3) (excluding points near food stalls). Although some smokers withdrew from common spaces, on average 20 smokers/hour were observed within 3 m. Extending smoking bans would improve air quality and address related concerns. However, food preparation is a more pressing area for policy action to reduce PM2.5 exposure at these community events.

  7. An association between fine particulate matter (PM2.5) levels and emergency ambulance dispatches for cardiovascular diseases in Japan.

    Science.gov (United States)

    Ichiki, Toshihiro; Onozuka, Daisuke; Kamouchi, Masahiro; Hagihara, Akihito

    2016-11-01

    The aim of this study is to determine whether short-term exposure to fine particulate matter (PM 2.5 ) is associated with emergency ambulance dispatches for cardiovascular diseases in Japan. The nationwide data on emergency dispatches of ambulance for cardiovascular diseases classified as I00-I99 by International Classification of Diseases-10th revision in 30 Japanese prefectures between April 1 and December 31, in 2010 were analyzed. Data on weather variability including PM 2.5 , temperature and relative humidity were acquired from ambient air pollution monitoring stations. Conditional Poisson regression models were used to estimate the prefecture-specific effects of PM 2.5 on morbidity, and adjust for confounding factors. A meta-analysis was then applied to pool estimates at the 30-prefecture level. A total of 160,566 emergency ambulance dispatches for cardiovascular diseases were reported during the study period. The risk of emergency ambulance dispatch for cardiovascular diseases significantly increased with an increase in the exposure to PM 2.5 in Fukuoka and Iwate Prefectures. However, we found no statistically significant associations between PM 2.5 and emergency ambulance dispatches in the pooled analysis (odds ratio 1.00, 95 % confidence interval 0.99-1.00). Heterogeneity was not observed between prefectures (Cochran Q test, p = 0.187, I 2  = 18.4 %). Exposure to PM 2.5 is not associated with overall emergency ambulance dispatches for cardiovascular diseases in Japan.

  8. Impact of natural gas development in the Marcellus and Utica shales on regional ozone and fine particulate matter levels

    Science.gov (United States)

    Roohani, Yusuf H.; Roy, Anirban A.; Heo, Jinhyok; Robinson, Allen L.; Adams, Peter J.

    2017-04-01

    The Marcellus and Utica shale formations have recently been the focus of intense natural gas development and production, increasing regional air pollutant emissions. Here we examine the effects of these emissions on regional ozone and fine particulate matter (PM2.5) levels using the chemical transport model, CAMx, and estimate the public health costs with BenMAP. Simulations were performed for three emissions scenarios for the year 2020 that span a range potential development storylines. In areas with the most gas development, the 'Medium Emissions' scenario, which corresponds to an intermediate level of development and widespread adoption of new equipment with lower emissions, is predicted to increase 8-hourly ozone design values by up to 2.5 ppbv and average annual PM2.5 concentrations by as much as 0.27 μg/m3. These impacts could range from as much as a factor of two higher to a factor of three lower depending on the level of development and the adoption of emission controls. Smaller impacts (e.g. 0.1-0.5 ppbv of ozone, depending on the emissions scenario) are predicted for non-attainment areas located downwind of the Marcellus region such as New York City, Philadelphia and Washington, DC. Premature deaths for the 'Medium Emissions' scenario are predicted to increase by 200-460 annually. The health impacts as well as the changes in ozone and PM2.5 were all driven primarily by NOx emissions.

  9. Spatiotemporal Changes in Fine Particulate Matter Pollution and the Associated Mortality Burden in China between 2015 and 2016

    Directory of Open Access Journals (Sweden)

    Luwei Feng

    2017-10-01

    Full Text Available In recent years, research on the spatiotemporal distribution and health effects of fine particulate matter (PM2.5 has been conducted in China. However, the limitations of different research scopes and methods have led to low comparability between regions regarding the mortality burden of PM2.5. A kriging model was used to simulate the distribution of PM2.5 in 2015 and 2016. Relative risk (RR at a specified PM2.5 exposure concentration was estimated with an integrated exposure–response (IER model for different causes of mortality: lung cancer (LC, ischaemic heart disease (IHD, cerebrovascular disease (stroke and chronic obstructive pulmonary disease (COPD. The population attributable fraction (PAF was adopted to estimate deaths attributed to PM2.5. 72.02% of cities experienced decreases in PM2.5 from 2015 to 2016. Due to the overall decrease in the PM2.5 concentration, the total number of deaths decreased by approximately 10,658 per million in 336 cities, including a decrease of 1400, 1836, 6312 and 1110 caused by LC, IHD, stroke and COPD, respectively. Our results suggest that the overall PM2.5 concentration and PM2.5-related deaths exhibited decreasing trends in China, although air quality in local areas has deteriorated. To improve air pollution control strategies, regional PM2.5 concentrations and trends should be fully considered.

  10. Study on the Relationship between the Inhalable Fine Particulate Matter of Xuanwei Coal Combustion and Lung Cancer

    Directory of Open Access Journals (Sweden)

    Jiapeng YANG

    2015-07-01

    Full Text Available Background and objective The high incidence of lung cancer in Xuanwei, China, has become an important restricting factor for livelihood development, thus exerting local social and economic impacts. Coal is the main fuel of the local community and also the main source of indoor pollution. This study aims to explore the coal combustion inhalable fine particulate matter (PM2.5 and its component output differences in different areas of Xuanwei, Yunnan. Moreover, the aim of this study is to investigate the relationship between inhalation of fine particles and high incidence of local lung cancer. Methods For combustion test, coal mines designated as C1, K7 and M30 were collected from LaoLin Colliery of Laibing Town, Huchang Colliery of Baoshan Town, and Taiping Colliery of Wenxing Town in Xuanwei, respectively. PM2.5 of indoor air was weighed, analyzed for elemental composition, and morphologically compared. The pathological specimen of lung cancer patients in Xuanwei who underwent operation was observed through electron microscope. Results The PM2.5 concentrations in indoor air were (8.244 ±1.460 mg/m3 (C1, (5.066±0.984 mg/m3 (K7, and (5.071±1.460 mg/m3 (M30. The differences among pairwise comparisons were statistically significant (P=0.029. The filter impurities of C1 coal seam primarily include Si- and O-enriched compounds. Moreover, three membranes that comprised other elements, including C, S, and Si, were observed. These membranes were evident from the aggregation of silica and a Ca-Al membrane. Compared with that of other coal seams, C1 coal generated a mass of impurities, in which several particles have irregular shape. We found nanoscale fine particles in some specimens of Xuanwei lung cancer patients. Conclusion The produced combustion of C1 coal was different from that of K7 and M30 coal. PM2.5 composition may be associated with the high local incidence of lung cancer.

  11. Discharge modulates stream metabolism dependence on fine particulate organic carbon in a Mediterranean WWTP-influenced stream

    Science.gov (United States)

    Drummond, J. D.; Bernal, S.; Meredith, W.; Schumer, R.; Martí Roca, E.

    2017-12-01

    Waste water treatment plant (WWTP) effluents constitute point source inputs of fine sediment, nutrients, carbon, and microbes to stream ecosystems. A range of responses to these inputs may be observed in recipient streams, including increases in respiration rates, which augment CO2 emissions to the atmosphere. Yet, little is known about which fractions of organic carbon (OC) contribute the most to stream metabolism in WWTP-influenced streams. Fine particulate OC (POC) represents ca. 40% of the total mass of OC in river networks, and is generally more labile than dissolved OC. Therefore, POC inputs from WWTPs could contribute disproportionately to higher rates of heterotrophic metabolism by stream microbial communities. The aim of this study was to investigate the influence of POC inputs from a WWTP effluent on the metabolism of a Mediterranean stream over a wide range of hydrologic conditions. We hypothesized that POC inputs would have a positive effect on respiration rates, and that the response to POC availability would be larger during low flows when the dilution capacity of the recipient stream is negligible. We focused on the easily resuspended fine sediment near the sediment-water interface (top 3 cm), as this region is a known hot spot for biogeochemical processes. For one year, samples of resuspended sediment were collected bimonthly at 7 sites from 0 to 800 m downstream of the WWTP point source. We measured total POC, organic matter (OM) content (%), and the associated metabolic activity of the resuspended sediment using the resazurin-resorufin smart tracer system as a proxy for aerobic ecosystem respiration. Resuspended sediment showed no difference in total POC over the year, while the OM content increased with decreasing discharge. This result together with the decreasing trend of total POC observed downstream of the point source during autumn after a long dry period, suggests that the WWTP effluent was the main contributor to stream POC. Furthermore

  12. Short-term exposure to ambient fine particulate matter (PM2,5 and PM10) and the risk of heart rhythm abnormalities and stroke.

    Science.gov (United States)

    Kowalska, Małgorzata; Kocot, Krzysztof

    2016-09-28

    Results of epidemiological studies suggest a significant impact of ambient particulate matter air pollution (PM10 and PM2,5) on the health of the population. Increased level of these pollutants is connected with increased rate of daily mortality and hospitalizations due to cardiovascular diseases. Among analyzed health effects, heart arrhythmias and stroke are mentioned most frequently. The aim of the study was to present the current knowledge of potential influence of the exposure to fine particulate matter on the presence of arrhythmias and strokes. Subject literature review suggests, that there is a link between short-term exposure to fine dust and the occurrence of arrhythmias. Results of previous studies indicates that this exposure may lead to significant electrophysiological changes in heart, resulting in higher susceptibility to cardiac rhythm abnormalities. In case of stroke, a stronger correlation between number of hospitalizations and death cases and exposure to fine dust was seen for ischaemic stroke than for haemorhhagic stroke. In addition, a significantly more harmful impact of the exposure to ultra particles (particles of aerodynamic diameter below 2,5 μm) has been confirmed. Among important mechanisms responsible for observed health impact of particulate matter there are: induction and intensification of inflammation, increased oxidative stress, increased autonomic nervous system activity, vasoconstriction, rheological changes and endothelial dysfunction. Among people of higher susceptibility to fine dust negative health impact are: elderly (over 65 years old), obese people, patients with respiratory and cardiovascular diseases, patients with diabetes and those with coagulation disorders. For further improvement of general health status, actions aimed at reducing the risk associated with fine dust and at the same time at continuing studies to clarify the biological mechanisms explaining the influence of fine dust on human health are necessary.

  13. Short-term exposure to ambient fine particulate matter (PM2,5 and PM10 and the risk of heart rhythm abnormalities and stroke

    Directory of Open Access Journals (Sweden)

    Małgorzata Kowalska

    2016-09-01

    Full Text Available Results of epidemiological studies suggest a significant impact of ambient particulate matter air pollution (PM10 and PM2,5 on the health of the population. Increased level of these pollutants is connected with increased rate of daily mortality and hospitalizations due to cardiovascular diseases. Among analyzed health effects, heart arrhythmias and stroke are mentioned most frequently. The aim of the study was to present the current knowledge of potential influence of the exposure to fine particulate matter on the presence of arrhythmias and strokes. Subject literature review suggests, that there is a link between short-term exposure to fine dust and the occurrence of arrhythmias. Results of previous studies indicates that this exposure may lead to significant electrophysiological changes in heart, resulting in higher susceptibility to cardiac rhythm abnormalities. In case of stroke, a stronger correlation between number of hospitalizations and death cases and exposure to fine dust was seen for ischaemic stroke than for haemorhhagic stroke. In addition, a significantly more harmful impact of the exposure to ultra particles (particles of aerodynamic diameter below 2,5 μm has been confirmed. Among important mechanisms responsible for observed health impact of particulate matter there are: induction and intensification of inflammation, increased oxidative stress, increased autonomic nervous system activity, vasoconstriction, rheological changes and endothelial dysfunction. Among people of higher susceptibility to fine dust negative health impact are: elderly (over 65 years old, obese people, patients with respiratory and cardiovascular diseases, patients with diabetes and those with coagulation disorders. For further improvement of general health status, actions aimed at reducing the risk associated with fine dust and at the same time at continuing studies to clarify the biological mechanisms explaining the influence of fine dust on human health

  14. Response of fine particulate matter concentrations to changes of emissions and temperature in Europe

    Directory of Open Access Journals (Sweden)

    A. G. Megaritis

    2013-03-01

    Full Text Available PMCAMx-2008, a three dimensional chemical transport model (CTM, was applied in Europe to quantify the changes in fine particle (PM2.5 concentration in response to different emission reductions as well as to temperature increase. A summer and a winter simulation period were used, to investigate the seasonal dependence of the PM2.5 response to 50% reductions of sulfur dioxide (SO2, ammonia (NH3, nitrogen oxides (NOx, anthropogenic volatile organic compounds (VOCs and anthropogenic primary organic aerosol (POA emissions and also to temperature increases of 2.5 and 5 K. Reduction of NH3 emissions seems to be the most effective control strategy for reducing PM2.5, in both periods, resulting in a decrease of PM2.5 up to 5.1 μg m−3 and 1.8 μg m−3 (5.5% and 4% on average during summer and winter respectively, mainly due to reduction of ammonium nitrate (NH4NO3 (20% on average in both periods. The reduction of SO2 emissions decreases PM2.5 in both periods having a significant effect over the Balkans (up to 1.6 μg m−3 during the modeled summer period, mainly due to decrease of sulfate (34% on average over the Balkans. The anthropogenic POA control strategy reduces total OA by 15% during the modeled winter period and 8% in the summer period. The reduction of total OA is higher in urban areas close to its emissions sources. A slight decrease of OA (8% in the modeled summer period and 4% in the modeled winter period is also predicted after a 50% reduction of VOCs emissions due to the decrease of anthropogenic SOA. The reduction of NOx emissions reduces PM2.5 (up to 3.4 μg m−3 during the summer period, due to a decrease of NH4NO3, causing although an increase of ozone concentration in major urban areas and over Western Europe. Additionally, the NOx control strategy actually increases PM2.5 levels during the winter period, due to more oxidants becoming available to react with SO2 and VOCs. The increase of temperature results in a decrease of PM2

  15. Health impact assessment of particulate pollution in Tallinn using fine spatial resolution and modeling techniques

    Directory of Open Access Journals (Sweden)

    Kimmel Veljo

    2009-03-01

    Full Text Available Abstract Background Health impact assessments (HIA use information on exposure, baseline mortality/morbidity and exposure-response functions from epidemiological studies in order to quantify the health impacts of existing situations and/or alternative scenarios. The aim of this study was to improve HIA methods for air pollution studies in situations where exposures can be estimated using GIS with high spatial resolution and dispersion modeling approaches. Methods Tallinn was divided into 84 sections according to neighborhoods, with a total population of approx. 390 000 persons. Actual baseline rates for total mortality and hospitalization with cardiovascular and respiratory diagnosis were identified. The exposure to fine particles (PM2.5 from local emissions was defined as the modeled annual levels. The model validation and morbidity assessment were based on 2006 PM10 or PM2.5 levels at 3 monitoring stations. The exposure-response coefficients used were for total mortality 6.2% (95% CI 1.6–11% per 10 μg/m3 increase of annual mean PM2.5 concentration and for the assessment of respiratory and cardiovascular hospitalizations 1.14% (95% CI 0.62–1.67% and 0.73% (95% CI 0.47–0.93% per 10 μg/m3 increase of PM10. The direct costs related to morbidity were calculated according to hospital treatment expenses in 2005 and the cost of premature deaths using the concept of Value of Life Year (VOLY. Results The annual population-weighted-modeled exposure to locally emitted PM2.5 in Tallinn was 11.6 μg/m3. Our analysis showed that it corresponds to 296 (95% CI 76528 premature deaths resulting in 3859 (95% CI 10236636 Years of Life Lost (YLL per year. The average decrease in life-expectancy at birth per resident of Tallinn was estimated to be 0.64 (95% CI 0.17–1.10 years. While in the polluted city centre this may reach 1.17 years, in the least polluted neighborhoods it remains between 0.1 and 0.3 years. When dividing the YLL by the number of

  16. Short-term Effect of Fine Particulate Matter on Children?s Hospital Admissions and Emergency Department Visits for Asthma: A Systematic Review and Meta-analysis

    OpenAIRE

    Lim, Hyungryul; Kwon, Ho-Jang; Lim, Ji-Ae; Choi, Jong Hyuk; Ha, Mina; Hwang, Seung-Sik; Choi, Won-Jun

    2016-01-01

    Objectives: No children-specified review and meta-analysis paper about the short-term effect of fine particulate matter (PM2.5) on hospital admissions and emergency department visits for asthma has been published. We calculated more precise pooled effect estimates on this topic and evaluated the variation in effect size according to the differences in study characteristics not considered in previous studies. Methods: Two authors each independently searched PubMed and EMBASE for relevant studi...

  17. Monitoring the effects of disposal of fine sediments from maintenance dredging on suspended particulate matter concentration in the Belgian nearshore area

    OpenAIRE

    Fettweis, M.; Baeye, M.; Francken, F.; Lauwaert, B.; Van den Eynde, D.; Van Lancker, V.; Martens, C.; Michielsen, T.

    2012-01-01

    The impact of continuous disposal of fine-grained sediments from maintenance dredging works on the suspended particulate matter concentration in a shallow nearshore turbidity maximum was investigated during dredging experiment (port of Zeebrugge, southern North Sea). Before, during and after the experiment monitoring of SPM concentration using OBS and ADV altimetry was carried out at a location 5 km west of the disposal site. A statistical analysis, based on the concept of populations and sub...

  18. Monitoring the effects of disposal of fine sediments from maintenance dredging on suspended particulate matter concentration in the Belgian nearshore area (southern North Sea)

    OpenAIRE

    Fettweis, M.; Baeye, M.; Francken, F.; Lauwaert, B.; Van den Eynde, D.; Van Lancker, V.; Martens, C.; Michielsen, T.

    2011-01-01

    The impact of continuous disposal of fine-grained sediments from maintenance dredging works on the suspended particulate matter concentration in a shallow nearshore turbidity maximum was investigated during dredging experiment (port of Zeebrugge, southern North Sea). Before, during and after the experiment monitoring of SPM concentration using OBS and ADV altimetry was carried out at a location 5 km west of the disposal site. A statistical analysis, based on the concept of populations and sub...

  19. Using National Ambient Air Quality Standards for fine particulate matter to assess regional wildland fire smoke and air quality management.

    Science.gov (United States)

    Schweizer, Don; Cisneros, Ricardo; Traina, Samuel; Ghezzehei, Teamrat A; Shaw, Glenn

    2017-10-01

    Wildland fire is an important ecological process in the California Sierra Nevada. Personal accounts from pre-20th century describe a much smokier environment than present day. The policy of suppression beginning in the early 20th century and climate change are contributing to increased megafires. We use a single particulate monitoring site at the wildland urban interface to explore impacts from prescribed, managed, and full suppression wildland fires from 2006 to 2015 producing a contextual assessment of smoke impacts over time at the landscape level. Prescribed fire had little effect on local fine particulate matter (PM 2.5 ) air quality with readings typical of similar non-fire times; hourly and daily good to moderate Air Quality Index (AQI) for PM 2.5 , maximum hourly concentrations 21-103 μg m -3 , and mean concentrations between 7.7 and 13.2 μg m -3 . Hourly and daily AQI was typically good or moderate during managed fires with 3 h and one day reaching unhealthy while the site remained below National Ambient Air Quality Standards (NAAQS), with maximum hourly concentrations 27-244 μg m -3 , and mean concentrations 6.7-11.7 μg m -3 . The large high intensity fire in this area created the highest short term impacts (AQI unhealthy for 4 h and very unhealthy for 1 h), 11 unhealthy for sensitive days, and produced the only annual value (43.9 μg m -3 ) over the NAAQS 98th percentile for PM 2.5 (35 μg m -3 ). Pinehurst remained below the federal standards for PM 2.5 when wildland fire in the local area was managed to 7800 ha (8-22% of the historic burn area). Considering air quality impacts from smoke using the NAAQS at a landscape level over time can give land and air managers a metric for broader evaluation of smoke impacts particularly when assessing ecologically beneficial fire. Allowing managers to control the amount and timing of individual wildland fire emissions can help lessen large smoke impacts to public health from a megafire

  20. A persisting secondhand smoke hazard in urban public places: results from fine particulate (PM2.5) air sampling.

    Science.gov (United States)

    Wilson, Nick; Edwards, Richard; Parry, Rhys

    2011-03-04

    To assess the need for additional smokefree settings, by measuring secondhand smoke (SHS) in a range of public places in an urban setting. Measurements were made in Wellington City during the 6-year period after the implementation of legislation that made indoor areas of restaurants and bars/pubs smokefree in December 2004, and up to 20 years after the 1990 legislation making most indoor workplaces smokefree. Fine particulate levels (PM2.5) were measured with a portable real-time airborne particle monitor. We collated data from our previously published work involving random sampling, purposeful sampling and convenience sampling of a wide range of settings (in 2006) and from additional sampling of selected indoor and outdoor areas (in 2007-2008 and 2010). The "outdoor" smoking areas of hospitality venues had the highest particulate levels, with a mean value of 72 mcg/m3 (range of maximum values 51-284 mcg/m3) (n=20 sampling periods). These levels are likely to create health hazards for some workers and patrons (i.e., when considered in relation to the WHO air quality guidelines). National survey data also indicate that these venues are the ones where SHS exposure is most frequently reported by non-smokers. Areas inside bars that were adjacent to "outdoor" smoking areas also had high levels, with a mean of 54 mcg/m3 (range of maximum values: 18-239 mcg/m3, for n=13 measurements). In all other settings mean levels were lower (means: 2-22 mcg/m3). These other settings included inside traditional style pubs/sports bars (n=10), bars (n=18), restaurants (n=9), cafes (n=5), inside public buildings (n=15), inside transportation settings (n=15), and various outdoor street/park settings (n=22). During the data collection in all settings made smokefree by law, there was only one occasion of a person observed smoking. The results suggest that compliance in pubs/bars and restaurants has remained extremely high in this city in the nearly six years since implementation of the

  1. Long-Term Fine Particulate Matter Exposure and Major Depressive Disorder in a Community-Based Urban Cohort

    Science.gov (United States)

    Kim, Kyoung-Nam; Lim, Youn-Hee; Bae, Hyun Joo; Kim, Myounghee; Jung, Kweon; Hong, Yun-Chul

    2016-01-01

    Background: Previous studies have associated short-term air pollution exposure with depression. Although an animal study showed an association between long-term exposure to particulate matter ≤ 2.5 μm (PM2.5) and depression, epidemiological studies assessing the long-term association are scarce. Objective: We aimed to determine the association between long-term PM2.5 exposure and major depressive disorder (MDD). Methods: A total of 27,270 participants 15–79 years of age who maintained an address within the same districts in Seoul, Republic of Korea, throughout the entire study period (between 2002 and 2010) and without a previous MDD diagnosis were analyzed. We used three district-specific exposure indices as measures of long-term PM2.5 exposure. Cox proportional hazards models adjusted for potential confounding factors and measured at district and individual levels were constructed. We further conducted stratified analyses according to underlying chronic diseases such as diabetes mellitus, cardiovascular disease, and chronic obstructive pulmonary disease. Results: The risk of MDD during the follow-up period (2008–2010) increased with an increase of 10 μg/m3 in PM2.5 in 2007 [hazard ratio (HR) = 1.44; 95% CI: 1.17, 1.78], PM2.5 between 2007 and 2010 (HR = 1.59; 95% CI: 1.02, 2.49), and 12-month moving average of PM2.5 until an event or censor (HR = 1.47; 95% CI: 1.14, 1.90). The association between long-term PM2.5 exposure and MDD was greater in participants with underlying chronic diseases than in participants without these diseases. Conclusion: Long-term PM2.5 exposure increased the risk of MDD among the general population. Individuals with underlying chronic diseases are more vulnerable to long-term PM2.5 exposure. Citation: Kim KN, Lim YH, Bae HJ, Kim M, Jung K, Hong YC. 2016. Long-term fine particulate matter exposure and major depressive disorder in a community-based urban cohort. Environ Health Perspect 124:1547–1553; http://dx.doi.org/10

  2. Source apportionment of fine particulate matter in China in 2013 using a source-oriented chemical transport model.

    Science.gov (United States)

    Shi, Zhihao; Li, Jingyi; Huang, Lin; Wang, Peng; Wu, Li; Ying, Qi; Zhang, Hongliang; Lu, Li; Liu, Xuejun; Liao, Hong; Hu, Jianlin

    2017-12-01

    China has been suffering high levels of fine particulate matter (PM 2.5 ). Designing effective PM 2.5 control strategies requires information about the contributions of different sources. In this study, a source-oriented Community Multiscale Air Quality (CMAQ) model was applied to quantitatively estimate the contributions of different source sectors to PM 2.5 in China. Emissions of primary PM 2.5 and gas pollutants of SO 2 , NO x , and NH 3 , which are precursors of particulate sulfate, nitrate, and ammonium (SNA, major PM 2.5 components in China), from eight source categories (power plants, residential sources, industries, transportation, open burning, sea salt, windblown dust and agriculture) were separately tracked to determine their contributions to PM 2.5 in 2013. Industrial sector is the largest source of SNA in Beijing, Xi'an and Chongqing, followed by agriculture and power plants. Residential emissions are also important sources of SNA, especially in winter when severe pollution events often occur. Nationally, the contributions of different source sectors to annual total PM 2.5 from high to low are industries, residential sources, agriculture, power plants, transportation, windblown dust, open burning and sea salt. Provincially, residential sources and industries are the major anthropogenic sources of primary PM 2.5 , while industries, agriculture, power plants and transportation are important for SNA in most provinces. For total PM 2.5 , residential and industrial emissions are the top two sources, with a combined contribution of 40-50% in most provinces. The contributions of power plants and agriculture to total PM 2.5 are about 10%, respectively. Secondary organic aerosol accounts for about 10% of annual PM 2.5 in most provinces, with higher contributions in southern provinces such as Yunnan (26%), Hainan (25%) and Taiwan (21%). Windblown dust is an important source in western provinces such as Xizang (55% of total PM 2.5 ), Qinghai (74%), Xinjiang (59

  3. Chemical characterization and toxicity assessment of fine particulate matters emitted from the combustion of petrol and diesel fuels.

    Science.gov (United States)

    Wu, Di; Zhang, Fei; Lou, Wenhao; Li, Dan; Chen, Jianmin

    2017-12-15

    Fuel consumption is one of the major contributors to air pollution worldwide. Plenty of studies have demonstrated that the diesel and petrol exhaust fine particulate matters (FPMs) are associated with increases of various diseases. However, the influences of different fuel types and their chemical components on toxicity have been less investigated. In this study, four kinds of fuels that widely used in China were burned in a laboratory simulation, and the FPMs were collected and analyzed. Transmission electron microscopy showed that black carbon was mainly soot with a dendritic morphology. For light diesel oil, marine heavy diesel oil, 93 octane petrol and 97 octane petrol diesel oil, the emission factors of FPMs were 3.05±0.29, 3.21±0.54, 2.36±0.33, and 2.28±0.25g/kg fuel, respectively. And the emission factors for the "16 US EPA" PAHs of FPM were 0.45±0.20, 0.80±0.22, 1.00±0.20, and 1.05±0.19mg/g FPMs, respectively. Fe is the most abundant metal in these FPMs, and the emission factors of FPMs were 2.58±1.70, 4.45±0.11, 8.18±0.58, and 9.24±0.17mg/g FPMs, respectively. We ranked the cytotoxicity of the FPMs emission from fuels combustion: marine heavy diesel oil>97 octane petrol>93 octane petrol>light diesel oil, and the genotoxicity of FPMs emission from fuels combustion: marine heavy diesel oil>light diesel oil>93 octane petrol>97 octane petrol. Significant correlations were found between PAH concentrations and reactive oxygen species (ROS) generation. Our results demonstrated that fuels exhaust FPMs have strong association with ROS activity, cytotoxicity and genotoxicity. These results indicated that fuels exhaust FPMs pose a potentially serious health, and emphasized the importance of assessing the health risks posed by the particulate pollutants in vehicle exhausts. Copyright © 2017. Published by Elsevier B.V.

  4. The Effect of Economic Growth, Urbanization, and Industrialization on Fine Particulate Matter (PM2.5) Concentrations in China.

    Science.gov (United States)

    Li, Guangdong; Fang, Chuanglin; Wang, Shaojian; Sun, Siao

    2016-11-01

    Rapid economic growth, industrialization, and urbanization in China have led to extremely severe air pollution that causes increasing negative effects on human health, visibility, and climate change. However, the influence mechanisms of these anthropogenic factors on fine particulate matter (PM 2.5 ) concentrations are poorly understood. In this study, we combined panel data and econometric methods to investigate the main anthropogenic factors that contribute to increasing PM 2.5 concentrations in China at the prefecture level from 1999 to 2011. The results showed that PM 2.5 concentrations and three anthropogenic factors were cointegrated. The panel Fully Modified Least Squares and panel Granger causality test results indicated that economic growth, industrialization, and urbanization increased PM 2.5 concentrations in the long run. The results implied that if China persists in its current development pattern, economic growth, industrialization and urbanization will inevitably lead to increased PM 2.5 emissions in the long term. Industrialization was the principal factor that affected PM 2.5 concentrations for the total panel, the industry-oriented panel and the service-oriented panel. PM 2.5 concentrations can be reduced at the cost of short-term economic growth and industrialization. However, reducing the urbanization level is not an efficient way to decrease PM 2.5 pollutions in the short term. The findings also suggest that a rapid reduction of PM 2.5 concentrations relying solely on adjusting these anthropogenic factors is difficult in a short-term for the heavily PM 2.5 -polluted panel. Moreover, the Chinese government will have to seek much broader policies that favor a decoupling of these coupling relationships.

  5. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    Science.gov (United States)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  6. Prolonged continuous exposure to high fine particulate matter associated with cardiovascular and respiratory disease mortality in Beijing, China

    Science.gov (United States)

    Wang, Jinfeng; Yin, Qian; Tong, Shilu; Ren, Zhoupeng; Hu, Maogui; Zhang, Hongrui

    2017-11-01

    Although many studies examined the effects of fine particulate matter (PM2.5) on the deaths of cardiovascular disease (CVD) and respiratory disease (RD), few research has paid attention to the effects of prolonged continuous exposure to high PM2.5 pollution. This study estimated the excess risks (ER) of CVD and RD mortalities associated with prolonged continuous exposure to high PM2.5 pollution for the whole population and specific subsociodemographic groups in Beijing, which is the capital city of China with over 20 million residents and having severe PM2.5 pollution problems. Our results suggested that when high PM2.5 pollution occurred continuously, at various thresholds and durations, the adverse effects on CVD and RD mortalities varied significantly. The CVD mortality risks in association with prolonged continuous high PM2.5 pollution exposure were more serious for single individuals (including unmarried, divorced, and widowed), illiterate and outdoor workers than for other specific subsociodemographic groups. When the daily PM2.5 concentration higher than 105 μg/m3 consecutively occurs, at the ninth day, the ERs of CVD death for single individuals, illiterate and outdoor workers groups reached to 45% (95% CI: 22, 71), 51% (95% CI: 28, 79) and 53% (95% CI: 29, 82) respectively. On the other hand, prolonged continuous high PM2.5 pollution level appeared to contribute a higher proportion of RD deaths among illiterate and outdoor workers, but less significant for the other specific subsociodemographic groups. When the duration with daily PM2.5 pollution higher than 115 μg/m3 reached to six days, the ERs for outdoor workers and illiterate attributed to prolonged continuous PM2.5 pollution exposure increased 36% (95% CI: 5, 76) and 49% (95% CI: 16, 91) respectively.

  7. Impact of biogenic emission uncertainties on the simulated response of ozone and fine particulate matter to anthropogenic emission reductions.

    Science.gov (United States)

    Hogrefe, Christian; Isukapalli, Sastry S; Tang, Xiaogang; Georgopoulos, Panos G; He, Shan; Zalewsky, Eric E; Hao, Winston; Ku, Jia-Yeong; Key, Tonalee; Sistla, Gopal

    2011-01-01

    The role of emissions of volatile organic compounds and nitric oxide from biogenic sources is becoming increasingly important in regulatory air quality modeling as levels of anthropogenic emissions continue to decrease and stricter health-based air quality standards are being adopted. However, considerable uncertainties still exist in the current estimation methodologies for biogenic emissions. The impact of these uncertainties on ozone and fine particulate matter (PM2.5) levels for the eastern United States was studied, focusing on biogenic emissions estimates from two commonly used biogenic emission models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emissions Inventory System (BEIS). Photochemical grid modeling simulations were performed for two scenarios: one reflecting present day conditions and the other reflecting a hypothetical future year with reductions in emissions of anthropogenic oxides of nitrogen (NOx). For ozone, the use of MEGAN emissions resulted in a higher ozone response to hypothetical anthropogenic NOx emission reductions compared with BEIS. Applying the current U.S. Environmental Protection Agency guidance on regulatory air quality modeling in conjunction with typical maximum ozone concentrations, the differences in estimated future year ozone design values (DVF) stemming from differences in biogenic emissions estimates were on the order of 4 parts per billion (ppb), corresponding to approximately 5% of the daily maximum 8-hr ozone National Ambient Air Quality Standard (NAAQS) of 75 ppb. For PM2.5, the differences were 0.1-0.25 microg/m3 in the summer total organic mass component of DVFs, corresponding to approximately 1-2% of the value of the annual PM2.5 NAAQS of 15 microg/m3. Spatial variations in the ozone and PM2.5 differences also reveal that the impacts of different biogenic emission estimates on ozone and PM2.5 levels are dependent on ambient levels of anthropogenic emissions.

  8. Spatiotemporal prediction of fine particulate matter using high resolution satellite images in the southeastern U.S 2003–2011

    Science.gov (United States)

    Lee, Mihye; Kloog, Itai; Chudnovsky, Alexandra; Lyapustin, Alexei; Wang, Yujie; Melly, Steven; Coull, Brent; Koutrakis, Petros; Schwartz, Joel

    2016-01-01

    Numerous studies have demonstrated that fine particulate matter (PM2.5, particles smaller than 2.5 μm in aerodynamic diameter) is associated with adverse health outcomes. The use of ground monitoring stations of PM2.5 to assess personal exposure; however, induces measurement error. Land use regression provides spatially resolved predictions but land use terms do not vary temporally. Meanwhile, the advent of satellite-retrieved aerosol optical depth (AOD) products have made possible to predict the spatial and temporal patterns of PM2.5 exposures. In this paper, we used AOD data with other PM2.5 variables such as meteorological variables, land use regression, and spatial smoothing to predict daily concentrations of PM2.5 at a 1 km2 resolution of the southeastern United States including the seven states of Georgia, North Carolina, South Carolina, Alabama, Tennessee, Mississippi, and Florida for the years from 2003 through 2011. We divided the study area into 3 regions and applied separate mixed-effect models to calibrate AOD using ground PM2.5 measurements and other spatiotemporal predictors. Using 10-fold cross-validation, we obtained out of sample R2 values of 0.77, 0.81, and 0.70 with the square root of the mean squared prediction errors (RMSPE) of 2.89, 2.51, and 2.82 μg/m3 for regions 1, 2, and 3, respectively. The slopes of the relationships between predicted PM2.5 and held out measurements were approximately 1 indicating no bias between the observed and modeled PM2.5 concentrations. Predictions can be used in epidemiological studies investigating the effects of both acute and chronic exposures to PM2.5. Our model results will also extend the existing studies on PM2.5 which have mostly focused on urban areas due to the paucity of monitors in rural areas. PMID:26082149

  9. Indoor-outdoor concentrations of fine particulate matter in school building microenvironments near a mine tailing deposit

    Directory of Open Access Journals (Sweden)

    Leonardo Martínez

    2016-11-01

    Full Text Available Indoor air quality in school classrooms is a major pediatric health concern because children are highly susceptible to adverse effects from xenobiotic exposure. Fine particulate matter (PM2.5 emitted from mining waste deposits within and near cities in northern Chile is a serious environmental problem. We measured PM2.5 in school microenvironments in urban areas of Chañaral, a coastal community whose bay is contaminated with mine tailings. PM2.5 levels were measured in six indoor and outdoor school environments during the summer and winter of 2012 and 2013. Measurements were taken during school hours on two consecutive days. Indoor PM2.5 concentrations were 12.53–72.38 μg/m3 in the summer and 21.85–100.53 μg/m3 in winter, while outdoor concentrations were 11.86–181.73 μg/m3 in the summer and 21.50–93.07 μg/m3 in winter. Indoor/outdoor ratios were 0.17–2.76 in the summer and 0.64–4.49 in winter. PM2.5 levels were higher in indoor microenvironments during the winter, at times exceeding national and international recommendations. Our results demonstrate that indoor air quality Chañaral school microenvironments is closely associated with outdoor air pollution attributable to the nearby mine tailings. Policymakers should enact environmental management strategies to minimize further environmental damage and mitigate the risks that this pollution poses for pediatric health.

  10. Hydrocarbons and heavy metals in fine particulates in oil field air: possible impacts on production of natural silk.

    Science.gov (United States)

    Devi, Gitumani; Devi, Arundhuti; Bhattacharyya, Krishna Gopal

    2016-02-01

    Analyses of fine particulates (PM2.5) from the upper Assam oil fields of India indicated considerable presence of higher hydrocarbons (C22-C35) and heavy metals, Cd, Co, Cr, Cu, Ni, Pb, and Zn. This has raised serious concern for the sustainability of the exotic Muga (Antheraea assama) silk production, which has been a prime activity of a large number of people living in the area. The Muga worm feeds on the leaves of Machilus bombycina plant, and the impacts of air quality on its survival were further investigated by analyzing the leaves of the plant, the plantation soil, and the Muga cocoons. PM2.5 content in the air was much more during the winter due to near calm conditions and high humidity. Fourier transform infrared (FTIR), thermogravimetric analysis (TGA), and gas chromatography-mass spectrometer (GC-MS) analysis of PM2.5 showed the presence of higher alkanes (C22-C35) that could be traced to crude oil. Cr, Ni, and Zn were found in higher concentrations in PM2.5, M. bombycina leaves, and the plantation soil indicating a common origin. The winter has been the best period for production of the silk cocoons, and the unhealthy air during this period is likely to affect the production, which is already reflected in the declining yield of Muga cocoons from the area. SEM and protein analyses of the Muga silk fiber produced in the oil field area have exhibited the deteriorating quality of the silk. This is the first report from India on hydrocarbons and associated metals in PM2.5 collected from an oil field and on their possible effects on production of silk by A. assama.

  11. Impact of ambient fine particulate matter air pollution on health behaviors: a longitudinal study of university students in Beijing, China.

    Science.gov (United States)

    An, R; Yu, H

    2018-03-19

    Poor air quality has become a national public health concern in China. This study examines the impact of ambient fine particulate matter (PM 2.5 ) air pollution on health behaviors among college students in Beijing, China. Prospective cohort study. Health surveys were repeatedly administered among 12,000 newly admitted students at Tsinghua University during 2012-2015 over their freshman year. Linear individual fixed-effect regressions were performed to estimate the impacts of ambient PM 2.5 concentration on health behaviors among survey participants, adjusting for various time-variant individual characteristics and environmental measures. Ambient PM 2.5 concentration was found to be negatively associated with time spent on walking, vigorous physical activity and sedentary behavior in the last week, but positively associated with time spent on nighttime/daytime sleep among survey participants. An increase in the ambient PM 2.5 concentration by one standard deviation (36.5 μg/m³) was associated with a reduction in weekly total minutes of walking by 7.3 (95% confidence interval [CI] = 5.3-9.4), a reduction in weekly total minutes of vigorous physical activity by 10.1 (95% CI = 8.5-11.7), a reduction in daily average hours of sedentary behavior by 0.06 (95% CI = 0.02-0.10) but an increase in daily average hours of nighttime/daytime sleep by 1.07 (95% CI = 1.04-1.11). Ambient PM 2.5 air pollution was inversely associated with physical activity level but positively associated with sleep duration among college students. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently called to reduce air pollution level in China's urban areas. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  12. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan.

    Science.gov (United States)

    Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen

    2016-07-01

    To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM2.5) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM2.5, the sampling days were classified into high PM2.5 concentration event days (PM2.5>35 μg m(-3)) and non-event days (PM2.5<35 μg m(-3)). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl(-) and NO3(-) increased when a high PM2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM2.5 concentration event days. In order to reduction of high PM2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Neighborhood social stressors, fine particulate matter air pollution, and cognitive function among older U.S. adults.

    Science.gov (United States)

    Ailshire, Jennifer; Karraker, Amelia; Clarke, Philippa

    2017-01-01

    A growing number of studies have found a link between outdoor air pollution and cognitive function among older adults. Psychosocial stress is considered an important factor determining differential susceptibility to environmental hazards and older adults living in stressful neighborhoods may be particularly vulnerable to the adverse health effects of exposure to hazards such as air pollution. The objective of this study is to determine if neighborhood social stress amplifies the association between fine particulate matter air pollution (PM 2.5 ) and poor cognitive function in older, community-dwelling adults. We use data on 779 U.S. adults ages 55 and older from the 2001/2002 wave of the Americans' Changing Lives study. We determined annual average PM 2.5 concentration in 2001 in the area of residence by linking respondents with EPA air monitoring data using census tract identifiers. Cognitive function was measured using the number of errors on the Short Portable Mental Status Questionnaire (SPMSQ). Exposure to neighborhood social stressors was measured using perceptions of disorder and decay and included subjective evaluations of neighborhood upkeep and the presence of deteriorating/abandoned buildings, trash, and empty lots. We used negative binomial regression to examine the interaction of neighborhood perceived stress and PM 2.5 on the count of errors on the cognitive function assessment. We found that the association between PM 2.5 and cognitive errors was stronger among older adults living in high stress neighborhoods. These findings support recent theoretical developments in environmental health and health disparities research emphasizing the synergistic effects of neighborhood social stressors and environmental hazards on residents' health. Those living in socioeconomically disadvantaged neighborhoods, where social stressors and environmental hazards are more common, may be particularly susceptible to adverse health effects of social and physical

  14. Cardiovascular effects in patrol officers are associated with fine particulate matter from brake wear and engine emissions

    Directory of Open Access Journals (Sweden)

    Herbst Margaret C

    2004-12-01

    Full Text Available Abstract Background Exposure to fine particulate matter air pollutants (PM2.5 affects heart rate variability parameters, and levels of serum proteins associated with inflammation, hemostasis and thrombosis. This study investigated sources potentially responsible for cardiovascular and hematological effects in highway patrol troopers. Results Nine healthy young non-smoking male troopers working from 3 PM to midnight were studied on four consecutive days during their shift and the following night. Sources of in-vehicle PM2.5 were identified with variance-maximizing rotational principal factor analysis of PM2.5-components and associated pollutants. Two source models were calculated. Sources of in-vehicle PM2.5 identified were 1 crustal material, 2 wear of steel automotive components, 3 gasoline combustion, 4 speed-changing traffic with engine emissions and brake wear. In one model, sources 1 and 2 collapsed to a single source. Source factors scores were compared to cardiac and blood parameters measured ten and fifteen hours, respectively, after each shift. The "speed-change" factor was significantly associated with mean heart cycle length (MCL, +7% per standard deviation increase in the factor score, heart rate variability (+16%, supraventricular ectopic beats (+39%, % neutrophils (+7%, % lymphocytes (-10%, red blood cell volume MCV (+1%, von Willebrand Factor (+9%, blood urea nitrogen (+7%, and protein C (-11%. The "crustal" factor (but not the "collapsed" source was associated with MCL (+3% and serum uric acid concentrations (+5%. Controlling for potential confounders had little influence on the effect estimates. Conclusion PM2.5 originating from speed-changing traffic modulates the autonomic control of the heart rhythm, increases the frequency of premature supraventricular beats and elicits pro-inflammatory and pro-thrombotic responses in healthy young men.

  15. Impact of Oxidant Gases on the Relationship between Outdoor Fine Particulate Air Pollution and Nonaccidental, Cardiovascular, and Respiratory Mortality.

    Science.gov (United States)

    Weichenthal, Scott; Pinault, Lauren L; Burnett, Richard T

    2017-11-27

    Outdoor fine particulate air pollution (PM 2.5 ) is known to increase mortality risk and is recognized as an important contributor to global disease burden. However, less is known about how oxidant gases may modify the chronic health effects of PM 2.5 . In this study, we examined how the oxidant capacity of O 3 and NO 2 (using a redox-weighted average, O x ) may modify the relationship between PM 2.5 and mortality in the 2001 Canadian Census Health and Environment Cohort. In total, 2,448,500 people were followed over a 10.6-year period. Each 3.86 µg/m 3 increase in PM 2.5 was associated with nonaccidental (Hazard Ratio (HR) = 1.095, 95% CI: 1.077, 1.112), cardiovascular (HR = 1.088, 95% CI: 1.059, 1.118), and respiratory mortality (HR = 1.110, 95% CI: 1.051, 1.171) in the highest tertile of O x whereas weaker/null associations were observed in the middle and lower tertiles. Analysis of joint non-linear concentration-response relationships for PM 2.5 and O x suggested threshold concentrations between approximately 23 and 25 ppb with O x concentrations above these values strengthening PM 2.5 -mortality associations. Overall, our findings suggest that oxidant gases enhance the chronic health risks of PM 2.5 . In some areas, reductions in O x concentrations may have the added benefit of reducing the public health impacts of PM 2.5 even if mass concentrations remain unchanged.

  16. Hearing Schedule and List of Speakers for the Public Hearing on Revisions to FIPs to Reduce Interstate Transport of Fine Particulate Matter and Ozone – October 28, 2011, Washington, D.C.

    Science.gov (United States)

    List of Speakers and Hearing Schedule for the October 28 Public Hearing on the proposed Revisions to the Federal Implementation Plans to Reduce Interstate Transport of Fine Particulate Matter and Ozone.

  17. Polycyclic aromatic hydrocarbon in fine particulate matter emitted from burning kerosene, liquid petroleum gas, and wood fuels in household cookstoves

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes all data in figures in the manuscript and supporting information for the publication entitled "Particulate polycyclic aromatic hydrocarbon...

  18. US EPA's SPECIATE 4.4 Database: Development and Uses

    Science.gov (United States)

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, volatile o...

  19. Assessing the impact of fine particulate matter (PM2.5) on respiratory-cardiovascular chronic diseases in the New York City Metropolitan area using Hierarchical Bayesian Model estimates

    Science.gov (United States)

    An enhanced research paradigm is presented to address the spatial and temporal gaps in fine particulate matter (PM2.5) measurements and generate realistic and representative concentration fields for use in epidemiological studies of human exposure to ambient air particulate conce...

  20. Two Model-Based Methods for Policy Analyses of Fine Particulate Matter Control in China: Source Apportionment and Source Sensitivity

    Science.gov (United States)

    Li, X.; Zhang, Y.; Zheng, B.; Zhang, Q.; He, K.

    2013-12-01

    Anthropogenic emissions have been controlled in recent years in China to mitigate fine particulate matter (PM2.5) pollution. Recent studies show that sulfate dioxide (SO2)-only control cannot reduce total PM2.5 levels efficiently. Other species such as nitrogen oxide, ammonia, black carbon, and organic carbon may be equally important during particular seasons. Furthermore, each species is emitted from several anthropogenic sectors (e.g., industry, power plant, transportation, residential and agriculture). On the other hand, contribution of one emission sector to PM2.5 represents contributions of all species in this sector. In this work, two model-based methods are used to identify the most influential emission sectors and areas to PM2.5. The first method is the source apportionment (SA) based on the Particulate Source Apportionment Technology (PSAT) available in the Comprehensive Air Quality Model with extensions (CAMx) driven by meteorological predictions of the Weather Research and Forecast (WRF) model. The second method is the source sensitivity (SS) based on an adjoint integration technique (AIT) available in the GEOS-Chem model. The SA method attributes simulated PM2.5 concentrations to each emission group, while the SS method calculates their sensitivity to each emission group, accounting for the non-linear relationship between PM2.5 and its precursors. Despite their differences, the complementary nature of the two methods enables a complete analysis of source-receptor relationships to support emission control policies. Our objectives are to quantify the contributions of each emission group/area to PM2.5 in the receptor areas and to intercompare results from the two methods to gain a comprehensive understanding of the role of emission sources in PM2.5 formation. The results will be compared in terms of the magnitudes and rankings of SS or SA of emitted species and emission groups/areas. GEOS-Chem with AIT is applied over East Asia at a horizontal grid

  1. Spatiotemporal Prediction of Fine Particulate Matter Using High-Resolution Satellite Images in the Southeastern US 2003-2011

    Science.gov (United States)

    Lee, Mihye; Kloog, Itai; Chudnovsky, Alexandra; Lyapustin, Alexei; Wang, Yujie; Melly, Steven; Coull, Brent; Koutrakis, Petros; Schwartz, Joel

    2016-01-01

    Numerous studies have demonstrated that fine particulate matter (PM(sub 2.5), particles smaller than 2.5 micrometers in aerodynamic diameter) is associated with adverse health outcomes. The use of ground monitoring stations of PM(sub 2.5) to assess personal exposure, however, induces measurement error. Land-use regression provides spatially resolved predictions but land-use terms do not vary temporally. Meanwhile, the advent of satellite-retrieved aerosol optical depth (AOD) products have made possible to predict the spatial and temporal patterns of PM(sub 2.5) exposures. In this paper, we used AOD data with other PM(sub 2.5) variables, such as meteorological variables, land-use regression, and spatial smoothing to predict daily concentrations of PM(sub 2.5) at a 1 sq km resolution of the Southeastern United States including the seven states of Georgia, North Carolina, South Carolina, Alabama, Tennessee, Mississippi, and Florida for the years from 2003 to 2011. We divided the study area into three regions and applied separate mixed-effect models to calibrate AOD using ground PM(sub 2.5) measurements and other spatiotemporal predictors. Using 10-fold cross-validation, we obtained out of sample R2 values of 0.77, 0.81, and 0.70 with the square root of the mean squared prediction errors of 2.89, 2.51, and 2.82 cu micrograms for regions 1, 2, and 3, respectively. The slopes of the relationships between predicted PM2.5 and held out measurements were approximately 1 indicating no bias between the observed and modeled PM(sub 2.5) concentrations. Predictions can be used in epidemiological studies investigating the effects of both acute and chronic exposures to PM(sub 2.5). Our model results will also extend the existing studies on PM(sub 2.5) which have mostly focused on urban areas because of the paucity of monitors in rural areas.

  2. In Utero Exposure to Fine Particulate Matter Causes Hypertension Due to Impaired Renal Dopamine D1 Receptor in Offspring

    Directory of Open Access Journals (Sweden)

    Zhengmeng Ye

    2018-03-01

    Full Text Available Background/Aims: Adverse environment in utero can modulate adult phenotypes including blood pressure. Fine particulate matter (PM2.5 exposure in utero causes hypertension in the offspring, but the exact mechanisms are not clear. Renal dopamine D1 receptor (D1R, regulated by G protein-coupled receptor kinase type 4 (GRK4, plays an important role in the regulation of renal sodium transport and blood pressure. In this present study, we determined if renal D1R dysfunction is involved in PM2.5–induced hypertension in the offspring. Methods: Pregnant Sprague–Dawley rats were given an oropharyngeal drip of PM2.5 (1.0 mg/kg at gestation day 8, 10, and 12. The blood pressure, 24-hour sodium excretion, and urine volume were measured in the offspring. The expression levels of GRK4 and D1R were determined by immunoblotting. The phosphorylation of D1R was investigated using immunoprecipitation. Plasma malondialdehyde and superoxide dismutase levels were also measured in the offspring. Results: As compared with saline-treated dams, offspring of PM2.5-treated dams had increased blood pressure, impaired sodium excretion, and reduced D1R-mediated natriuresis and diuresis, accompanied by decreased renal D1R expression and GRK4 expression. The impaired renal D1R function and increased GRK4 expression could be caused by increased reactive oxidative stress (ROS induced by PM2.5 exposure. Administration of tempol, a redox-cycling nitroxide, for 4 weeks in the offspring of PM2.5-treated dam normalized the decreased renal D1R expression and increased renal D1R phosphorylation and GRK4 expression. Furthermore, tempol normalized the increased renal expression of c-Myc, a transcription factor that regulates GRK4 expression. Conclusions: In utero exposure to PM2.5 increases ROS and GRK4 expression, impairs D1R-mediated sodium excretion, and increases blood pressure in the offspring. These studies suggest that normalization of D1R function may be a target for the

  3. The association between ambient fine particulate air pollution and physical activity: a cohort study of university students living in Beijing.

    Science.gov (United States)

    Yu, Hongjun; Yu, Miao; Gordon, Shelby Paige; Zhang, Ruiling

    2017-10-05

    Air pollution has become a substantial environmental issue affecting human health and health-related behavior in China. Physical activity is widely accepted as a method to promote health and well-being and is potentially influenced by air pollution. Previous population-based studies have focused on the impact of air pollution on physical activity in the U.S. using a cross-sectional survey method; however, few have examined the impact on middle income countries such as China using follow-up data. The purpose of this study is to examine the impact of ambient fine particulate matter (PM 2.5 ) air pollution on physical activity among freshmen students living in Beijing by use of follow-up data. We conducted 4 follow-up health surveys on 3445 freshmen students from Tsinghua University from 2012 to 2013 and 2480 freshmen completed all 4 surveys. Linear individual fixed-effect regressions were performed based on repeated-measure physical activity-related health behaviors and ambient PM 2.5 concentrations among the follow-up participants. An increase in ambient PM 2.5 concentration by one standard deviation (44.72 μg/m 3 ) was associated with a reduction in 22.32 weekly minutes of vigorous physical activity (95% confidence interval [CI] = 24.88-19.77), a reduction in 10.63 weekly minutes of moderate physical activity (95% CI = 14.61-6.64), a reduction in 32.45 weekly minutes of moderate to vigorous physical activity (MVPA) (95% CI = 37.63-27.28), and a reduction in 226.14 weekly physical activity MET-minute scores (95% CI = 256.06-196.21). The impact of ambient PM 2.5 concentration on weekly total minutes of moderate physical activity tended to be greater among males than among females. Ambient PM 2.5 air pollution significantly discouraged physical activity among Chinese freshmen students living in Beijing. Future studies are warranted to replicate study findings in other Chinese cities and universities, and policy interventions are urgently needed to reduce air

  4. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in Taoyuan, Taiwan

    International Nuclear Information System (INIS)

    Chuang, Ming-Tung; Chen, Yu-Chieh; Lee, Chung-Te; Cheng, Chung-Hao; Tsai, Yu-Jen; Chang, Shih-Yu; Su, Zhen-Sen

    2016-01-01

    To investigate the characteristics and contributions of the sources of fine particulate matter with a size of up to 2.5 μm (PM 2.5 ) during the period when pollution events could easily occur in Taoyuan aerotropolis, Taiwan, this study conducted sampling at three-day intervals from September 2014 to January 2015. Based on the mass concentration of PM 2.5 , the sampling days were classified into high PM 2.5 concentration event days (PM 2.5 >35 μg m −3 ) and non-event days (PM 2.5 <35 μg m −3 ). In addition, the chemical species, including water-soluble inorganic ions, carbonaceous components, and metal elements, were analyzed. The sources of pollution and their contributions were estimated using the positive matrix factorization (PMF) model. Furthermore, the effect of the weather type on the measurement results was also explored based on wind field conditions. The mass fractions of Cl − and NO 3 − increased when a high PM 2.5 concentration event occurred, and they were also higher under local emitted conditions than under long range transported conditions, indicating that secondary nitrate aerosols were the major increasing local species that caused high PM 2.5 concentration events. Seven sources of pollution could be distinguished using the PMF model on the basis of the characteristics of the species. Industrial emissions, coal combustion/urban waste incineration, and local emissions from diesel/gasoline vehicles were the main sources that contributed to pollution on high PM 2.5 concentration event days. In order to reduction of high PM 2.5 concentration events, the control of diesel and gasoline vehicle emission is important and should be given priority. - Highlights: • The mass fractions of NH 4 + , K + , Cl − and NO 3 − increased during PM 2.5 event days. • Reduction of coal combustion/urban waste incineration emissions should be prioritized. • The control of vehicle emission is important in the locally emitted periods. • Secondary

  5. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing, China, in 2013.

    Directory of Open Access Journals (Sweden)

    Qin Xu

    Full Text Available Heavy fine particulate matter (PM2.5 air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV for total and cause-specific respiratory diseases in urban areas in Beijing.Daily counts of respiratory ERV from Jan 1 to Dec 31, 2013, were obtained from ten general hospitals located in urban areas in Beijing. Concurrently, data on PM2.5 were collected from the Beijing Environmental Protection Bureau, including 17 ambient air quality monitoring stations. A generalized-additive model was used to explore the respiratory effects of PM2.5, after controlling for confounding variables. Subgroup analyses were also conducted by age and gender.A total of 92,464 respiratory emergency visits were recorded during the study period. The mean daily PM2.5 concentration was 102.1±73.6 μg/m3. Every 10 μg/m3 increase in PM2.5 concentration at lag0 was associated with an increase in ERV, as follows: 0.23% for total respiratory disease (95% confidence interval [CI]: 0.11%-0.34%, 0.19% for upper respiratory tract infection (URTI (95%CI: 0.04%-0.35%, 0.34% for lower respiratory tract infection (LRTI (95%CI: 0.14%-0.53% and 1.46% for acute exacerbation of chronic obstructive pulmonary disease (AECOPD (95%CI: 0.13%-2.79%. The strongest association was identified between AECOPD and PM2.5 concentration at lag0-3 (3.15%, 95%CI: 1.39%-4.91%. The estimated effects were robust after adjusting for SO2, O3, CO and NO2. Females and people 60 years of age and older demonstrated a higher risk of respiratory disease after PM2.5 exposure.PM2.5 was significantly associated with respiratory ERV, particularly for URTI, LRTI and AECOPD in Beijing. The susceptibility to PM2.5 pollution varied by gender and age.

  6. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing, China, in 2013.

    Science.gov (United States)

    Xu, Qin; Li, Xia; Wang, Shuo; Wang, Chao; Huang, Fangfang; Gao, Qi; Wu, Lijuan; Tao, Lixin; Guo, Jin; Wang, Wei; Guo, Xiuhua

    2016-01-01

    Heavy fine particulate matter (PM2.5) air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV) for total and cause-specific respiratory diseases in urban areas in Beijing. Daily counts of respiratory ERV from Jan 1 to Dec 31, 2013, were obtained from ten general hospitals located in urban areas in Beijing. Concurrently, data on PM2.5 were collected from the Beijing Environmental Protection Bureau, including 17 ambient air quality monitoring stations. A generalized-additive model was used to explore the respiratory effects of PM2.5, after controlling for confounding variables. Subgroup analyses were also conducted by age and gender. A total of 92,464 respiratory emergency visits were recorded during the study period. The mean daily PM2.5 concentration was 102.1±73.6 μg/m3. Every 10 μg/m3 increase in PM2.5 concentration at lag0 was associated with an increase in ERV, as follows: 0.23% for total respiratory disease (95% confidence interval [CI]: 0.11%-0.34%), 0.19% for upper respiratory tract infection (URTI) (95%CI: 0.04%-0.35%), 0.34% for lower respiratory tract infection (LRTI) (95%CI: 0.14%-0.53%) and 1.46% for acute exacerbation of chronic obstructive pulmonary disease (AECOPD) (95%CI: 0.13%-2.79%). The strongest association was identified between AECOPD and PM2.5 concentration at lag0-3 (3.15%, 95%CI: 1.39%-4.91%). The estimated effects were robust after adjusting for SO2, O3, CO and NO2. Females and people 60 years of age and older demonstrated a higher risk of respiratory disease after PM2.5 exposure. PM2.5 was significantly associated with respiratory ERV, particularly for URTI, LRTI and AECOPD in Beijing. The susceptibility to PM2.5 pollution varied by gender and age.

  7. NAAQS Designated Area Polygons - Fine Particulate Matter (24-Hr, PM-2.5), Region 9, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — Designated Areas for Particulate Matter < 2.5 microns, according to the 24-Hour National Ambient Air Quality Standards (NAAQS). Nonattainment areas are geographic...

  8. Polycyclic Aromatic Hydrocarbons in Fine Particulate Matter Emitted from Burning Kerosene, Liquid Petroleum Gas, and Wood Fuels in Household Cookstoves

    Science.gov (United States)

    This study measured polycyclic aromatic hydrocarbon (PAH) composition in particulate matter emissions from residential cookstoves. A variety of fuel and cookstove combinations were examined, including: (i) liquid petroleum gas (LPG), (ii) kerosene in a wick stove, (iii) wood (10%...

  9. An Automated Heart Rate Detection Platform in Wild-Type Zebrafish for Cardiotoxicity Screening of Fine Particulate Matter Air Pollution

    Science.gov (United States)

    Exposure to air pollution-derived particulate matter (PM) causes adverse cardiovascular health outcomes, with increasing evidence implicating soluble components of PM; however, the enormous number of unique PM samples from different air sheds far exceeds the capacity of conventio...

  10. Effects of particulate air pollution on human health. Statement of the German Society of Pneumology (DGP) on the discussion about fine particulate air pollution; Partikulaere Luftverunreinigung und ihre Folgen fuer die menschliche Gesundheit. Stellungnahme der deutschen Gesellschaft fuer Pneumologie (DGP) zur aktuellen Feinstaub-Diskussion

    Energy Technology Data Exchange (ETDEWEB)

    Voshaar, T.H. [Krankenhaus Bethanien, Moers (Germany). Zentrum fuer Schlafmedizin und Heimbeatmung; Heyder, J. [GSF Inst. fuer Inhalationsbiologie, Neuherberg/Muenchen (Germany); Koehler, D. [Fachkrankenhaus Kloster Grafschaft, Schmallenberg (Germany); Krug, N. [Fraunhofer-Inst. Toxikologie und Experimentelle Medizin, Hannover (Germany); Nowak, D. [Inst. und Poliklinik fuer Arbeits- und Umweltmedizin, Ludwig-Maximilians-Univ., Muenchen (Germany); Scheuch, G. [Inamed GmbH, Muenchen-Gauting und Gemuenden/Wohra (Germany); Schulz, H. [GSF Inst. fuer Inhalationsbiologie, Neuherberg/Muenchen (Germany); Witt, C. [Charite-Universitaetsklinik, Schwerpunkt Pneumologie, Berlin (Germany)

    2005-07-01

    The statement of the German Society of Pneumology (DGP) on the discussion about fine particulate air pollution reviews recent research on the matter: effects of particulates depending on particle size, abundance indoor and outdoor, tobacco smoke, diesel soot particles, health hazards especially for children, epidemiology, toxicological studies, aerosols. (uke)

  11. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

    Science.gov (United States)

    Zhang, Yunjiang; Tang, Lili; Croteau, Philip L.; Favez, Olivier; Sun, Yele; Canagaratna, Manjula R.; Wang, Zhuang; Couvidat, Florian; Albinet, Alexandre; Zhang, Hongliang; Sciare, Jean; Prévôt, André S. H.; Jayne, John T.; Worsnop, Douglas R.

    2017-12-01

    A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM) was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5) composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1) species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium) measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9) with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA). The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1-2.5 µm. On average, NR-PM1-2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs) being the two largest contributors (26 and 27 %, respectively). Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3) concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.

  12. Association between ambient fine particulate matter and preterm birth or term low birth weight: An updated systematic review and meta-analysis

    International Nuclear Information System (INIS)

    Li, Xiangyu; Huang, Shuqiong; Jiao, Anqi; Yang, Xuhao; Yun, Junfeng; Wang, Yuxin; Xue, Xiaowei; Chu, Yuanyuan; Liu, Feifei; Liu, Yisi; Ren, Meng

    2017-01-01

    An increasing number of studies have been conducted to determine a possible linkage between maternal exposure to ambient fine particulate matter and effects on the developing human fetus that can lead to adverse birth outcomes, but, the present results are not consistent. A total of 23 studies published before July 2016 were collected and analyzed and the mean value of reported exposure to fine particulate matter (PM 2.5 ) ranged from 1.82 to 22.11 We found a significantly increased risk of preterm birth with interquartile range increase in PM 2.5 exposure throughout pregnancy (odds ratio (OR) = 1.03; 95% conditional independence (CI): 1.01–1.05). The pooled OR for the association between PM 2.5 exposure, per interquartile range increment, and term low birth weight throughout pregnancy was 1.03 (95% CI: 1.02–1.03). The pooled ORs for the association between PM 2.5 exposure per 10 increment, and term low birth weight and preterm birth were 1.05 (95% CI: 0.98–1.12) and 1.02 (95% CI: 0.93–1.12), respectively throughout pregnancy. There is a significant heterogeneity in most meta-analyses, except for pooled OR per interquartile range increase for term low birth weight throughout pregnancy. We here show that maternal exposure to fine particulate air pollution increases the risk of preterm birth and term low birth weight. However, the effect of exposure time needs to be further explored. In the future, prospective cohort studies and personal exposure measurements needs to be more widely utilized to better characterize the relationship between ambient fine particulate exposure and adverse birth outcomes. - Highlights: • The results had shorter intervals indicate and smaller heterogeneity by using IQR increment increase as selected standard. • The manuscript included the latest research results and updated the previous systematic review and meta-analysis. - Meta-analysis of preterm birth and term low birth weight of PM 2.5

  13. Determinants of exposure to fine particulate matter (PM 2.5) for waiting passengers at bus stops

    Science.gov (United States)

    Hess, Daniel Baldwin; Ray, Paul David; Stinson, Anne E.; Park, JiYoung

    2010-12-01

    This research evaluates commuter exposure to particulate matter during pre-journey commute segments for passengers waiting at bus stops by investigating 840 min of simultaneous exposure levels, both inside and outside seven bus shelters in Buffalo, New York. A multivariate regression model is used to estimate the relation between exposure to particulate matter (PM 2.5 measured in μg m -3) and three vectors of determinants: time and location, physical setting and placement, and environmental factors. Four determinants have a statistically significant effect on particulate matter: time of day, passengers' waiting location, land use near the bus shelter, and the presence of cigarette smoking at the bus shelter. Model results suggest that exposure to PM 2.5 inside a bus shelter is 2.63 μg m -3 (or 18 percent) higher than exposure outside a bus shelter, perhaps due in part to the presence of cigarette smoking. Morning exposure levels are 6.51 μg m -3 (or 52 percent) higher than afternoon levels. Placement of bus stops can affect exposure to particulate matter for those waiting inside and outside of shelters: air samples at bus shelters located in building canyons have higher particulate matter than bus shelters located near open space.

  14. Metabarcoding-based fungal diversity on coarse and fine particulate organic matter in a first-order stream in Nova Scotia, Canada [version 2; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Christian Wurzbacher

    2016-02-01

    Full Text Available Most streams receive substantial inputs of allochthonous organic material in the form of leaves and twigs (CPOM, coarse particulate organic matter. Mechanical and biological processing converts this into fine particulate organic matter (FPOM. Other sources of particles include flocculated dissolved matter and soil particles. Fungi are known to play a role in the CPOM conversion process, but the taxonomic affiliations of these fungi remain poorly studied. The present study seeks to shed light on the composition of fungal communities on FPOM and CPOM as assessed in a natural stream in Nova Scotia, Canada. Maple leaves were exposed in a stream for four weeks and their fungal community evaluated through pyrosequencing. Over the same period, four FPOM size fractions were collected by filtration and assessed. Particles had much lower ergosterol contents than leaves, suggesting major differences in the extent of fungal colonization. Pyrosequencing documented a total of 821 fungal operational taxonomic units (OTU, of which 726 were exclusive to particles and 47 to leaf samples. Most fungal phyla were represented, including yeast lineages (e.g., Taphrinaceae and Saccharomycotina, Basidiomycota, Chytridiomycota and Cryptomycota, but several classes of Pezizomycontina (Ascomycota dominated. Cluster dendrograms clearly separated fungal communities from leaves and from particles. Characterizing fungal communities may shed some light on the processing pathways of fine particles in streams and broadens our view of the phylogenetic composition of fungi in freshwater ecosystems.

  15. Report on fine particulates and ozone in Quebec in connection with the Canada Wide Standard : 2009 report

    International Nuclear Information System (INIS)

    Busque, D.; Bisson, M.; Paradis, J.; Proulx, M.; Guay, M.

    2010-05-01

    In June 2000, the federal and provincial governments, with the exception of Quebec, adopted a Canada Wide Standard (CWS) for particulates and ozone and set out to reduce these pollutants by 2010. Although Quebec was not a signatory to the CWS, it acts in coherence with the other governments regarding these air quality standards. Ozone and particulates are the main precursors to smog and are known to cause health and environmental problems. Ozone forms when nitrogen oxides and volatile organic compounds (VOCs) chemically react, particularly during hot sunny days. The CWS is a strategy to reduce the risk of these pollutants to public health and the environment. In order to apply this standard, Quebec must verify conformity for regions with a population of more than 100,000, which includes 6 regions, notably Montreal, Quebec City, Gatineau, the Saguenay, Sherbrooke and Trois Rivieres. Results of a 2008 study showed that air quality in Gatineau and 3 subregions of Montreal exceeded the allow limit of 65 ppb for ozone. However, ozone concentrations in Quebec City, the Saguenay, Sherbrooke and Trois Rivieres were under the allowable limits. Results of the 2008 study showed that particulate concentration in all regions were blow the allowable limits. This document revealed that there has been an improvement in air quality in terms of ozone and particulates since 2005. Most regions in Quebec were under the allowable limits projected for 2010. 7 refs., 1 tab., 6 figs., 6 appendices.

  16. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2017-12-01

    Full Text Available A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5 composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1 species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9 with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA. The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1–2.5 µm. On average, NR-PM1−2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs being the two largest contributors (26 and 27 %, respectively. Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3 concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.

  17. Dearborn GC-MS organic speciation data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ambient particulate matter organic speciation data from July - August, 2011. This dataset is associated with the following publication: Lynam, M., T. Dvonch, J....

  18. Long-Term Exposure to Fine Particulate Matter and Breast Cancer Incidence in the Danish Nurse Cohort Study

    DEFF Research Database (Denmark)

    Andersen, Zorana J; Ravnskjaer, Line; Andersen, Klaus Kaae

    BACKGROUND: An association between air pollution and breast cancer risk has been suggested but evidence is sparse and inconclusive. METHODS: We included 22,877 female nurses from the Danish Nurse cohort who were recruited in 1993 or 1999, and followed them for incidence of breast cancer (N=1......,145) until 2013 in the Danish Cancer Register. We estimated annual mean concentrations of particulate matter with diameter nurses' residences since 1990 using an atmospheric chemistry transport model. We examined the association between...

  19. Quality and Reputation: The Indirect Effect of Fine Particulate Matter on Health through Individuals' Life-style

    OpenAIRE

    Cinzia Di Novi

    2011-01-01

    Limited literature has been published on the association between environmental health indicators, life-style habits and ambient air pollution. We have examined the association of asthma prevalence and the amount of health investment with daily mean concentrations of particulate matter (PM) with a mass median aerodynamic diameter less than 2.5 mm (PM 2.5 ) in 16 metropolitan areas in U.S. using the Behavioral Risk Factor Surveillance System (2001) data in conjunction with the Air Quality Syste...

  20. EPAs SPECIATE 4.4 Database: Development and Uses

    Science.gov (United States)

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of source category-specific particulate matter (PM), volatile organic gas, and other gas speciation profiles of air pollutant emissions. Abt Associates, Inc. developed SPECIATE 4.4 through a collaborat...

  1. Associations of acute exposure to fine and coarse particulate matter and mortality among older people in Tokyo, Japan.

    Science.gov (United States)

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-01-15

    Recent studies have reported adverse health effects of short-term exposure to coarse particles independent of particulate matter less than 2.5 μm in diameter (PM2.5), but evidence in Asian countries is limited. We therefore evaluated associations between short-term exposure to particulate matter (PM) and mortality among older people in Tokyo, Japan. We used a time-stratified, case-crossover design. Study participants included 664,509 older people (≥65 years old) in the 23 urbanized wards of the Tokyo Metropolitan Government, who died between January 2002 and December 2013. We obtained PM2.5 and suspended particulate matter (SPM; PMPM7-2.5 by subtracting PM2.5 from SPM to account for coarse particles. We then used conditional logistic regression to estimate odds ratios (ORs) and 95 confidence intervals (CIs). Same-day PM2.5 and PM7-2.5 were independently associated with all-cause and cause-specific mortality related to cardiovascular and respiratory diseases; for example, both pollutants were positively associated with increased risk of all-cause mortality even after simultaneous adjustment for each pollutant: OR of 1.006 (95% CI: 1.003, 1.009) for PM2.5 and 1.016 (95% CI: 1.011, 1.022) for PM7-2.5. Even below concentrations stipulated by the Japanese air quality guidelines for PM2.5 and SPM (PM7), we observed adverse health effects. This study provides further evidence that acute exposure to PM2.5 and coarse particles is associated with increased risk of mortality among older people. Rigorous evaluation of air quality guidelines for daily average PM2.5 and larger particles should be continued. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Aircraft measurements to characterize polluted winter boundary layers: Overview of twin otter flights during the Utah Winter Fine Particulate Matter Study

    Science.gov (United States)

    Brown, S. S.; Baasandorj, M.; Franchin, A.; Middlebrook, A. M.; Goldberger, L.; Thornton, J. A.; Dube, W. P.; McDuffie, E. E.; Womack, C.; Fibiger, D. L.; Moravek, A.; Clark, J. C.; Murphy, J. G.; Mitchell, R.

    2017-12-01

    Winter air pollution is a significant public health concern. In many regions of the U.S., Europe and Asia, wintertime particulate matter concentrations exceed national and / or international air quality standards. Winter air pollution also represents a scientific challenge because these events occur during stagnation events in shallow, vertically stratified boundary layers whose composition is difficult to probe from surface level measurements. Chemical processes responsible for the conversion of primary emissions to secondary pollutants such as ammonium nitrate aerosol vary with height above ground level. Sources of oxidants are poorly understood and may result from both local chemical production and mixing between shallow inversion layers and background air. During the Utah Winter Fine Particulate Study (UWFPS) in January - February 2017, the NOAA twin otter executed 23 research flights with a payload designed to characterize the formation of ammonium nitrate aerosol in three mountain valleys of northern Utah (Salt Lake, Cache, and Utah). These valleys are subject to periodic episodes of winter aerosol pollution well in excess of U.S. national ambient air quality standards. This presentation will describe the measurement strategy of the twin otter flights to address the specific features of aerosol pollution within winter boundary layer of this region. This strategy is relevant to understanding the broader issue of winter air pollution in other regions and potentially to the design of future studies. The presentation will summarize findings from UWFPS related to boundary layer structure, emissions and chemical processes responsible for ammonium nitrate aerosol in this region.

  3. Redox/methylation mediated abnormal DNA methylation as regulators of ambient fine particulate matter-induced neurodevelopment related impairment in human neuronal cells

    Science.gov (United States)

    Wei, Hongying; Liang, Fan; Meng, Ge; Nie, Zhiqing; Zhou, Ren; Cheng, Wei; Wu, Xiaomeng; Feng, Yan; Wang, Yan

    2016-09-01

    Fine particulate matter (PM2.5) has been implicated as a risk factor for neurodevelopmental disorders including autism in children. However, the underlying biological mechanism remains unclear. DNA methylation is suggested to be a fundamental mechanism for the neuronal responses to environmental cues. We prepared whole particle of PM2.5 (PM2.5), water-soluble extracts (Pw), organic extracts (Po) and carbon core component (Pc) and characterized their chemical constitutes. We found that PM2.5 induced significant redox imbalance, decreased the levels of intercellular methyl donor S-adenosylmethionine and caused global DNA hypomethylation. Furthermore, PM2.5 exposure triggered gene-specific promoter DNA hypo- or hypermethylation and abnormal mRNA expression of autism candidate genes. PM2.5-induced DNA hypermethylation in promoter regions of synapse related genes were associated with the decreases in their mRNA and protein expression. The inhibiting effects of antioxidative reagents, a methylation-supporting agent and a DNA methyltransferase inhibitor demonstrated the involvement of redox/methylation mechanism in PM2.5-induced abnormal DNA methylation patterns and synaptic protein expression. The biological effects above generally followed a sequence of PM2.5 ≥ Pwo > Po > Pw > Pc. Our results implicated a novel epigenetic mechanism for the neurodevelopmental toxicity of particulate air pollution, and that eliminating the chemical components could mitigate the neurotoxicity of PM2.5.

  4. Long-term exposure to fine particulate matter and incidence of diabetes in the Danish Nurse Cohort

    DEFF Research Database (Denmark)

    Hansen, Anne Busch; Ravnskjær, Line; Loft, Steffen

    2016-01-01

    AIMS/HYPOTHESIS: It has been suggested that air pollution may increase the risk of type 2 diabetes but data on particulate matter with diameter PM2.5) are inconsistent. We examined the association between long-term exposure to PM2.5 and diabetes incidence. METHODS: We used the Danish Nurse...... Cohort with 28,731 female nurses who at recruitment in 1993 or 1999 reported information on diabetes prevalence and risk factors, and obtained data on incidence of diabetes from National Diabetes Register until 2013. We estimated annual mean concentrations of PM2.5, particulate matter with diameter ... diabetes. We detected a significant positive association between PM2.5 and diabetes incidence (hazard ratio; 95% confidence interval: 1.11; 1.02-1.22 per interquartile range of 3.1μg/m(3)), and weaker associations for PM10 (1.06; 0.98-1.14 per 2.8μg/m(3)), NO2 (1.05; 0.99-1.12 per 7.5μg/m(3)), and NOx (1...

  5. Online molecular characterization of fine particulate matter in Port Angeles, WA: Evidence for a major impact from residential wood smoke

    Science.gov (United States)

    Gaston, Cassandra J.; Lopez-Hilfiker, Felipe D.; Whybrew, Lauren E.; Hadley, Odelle; McNair, Fran; Gao, Honglian; Jaffe, Daniel A.; Thornton, Joel A.

    2016-08-01

    We present on-line molecular composition measurements of wintertime particulate matter (PM) during 2014 using an iodide-adduct high-resolution, time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) coupled to a Filter Inlet for Gases and AEROsols (FIGAERO). These measurements were part of an intensive effort to characterize PM in the region with a focus on ultrafine particle sources. The technique was used to detect and quantify different classes of wood burning tracers, including levoglucosan, methoxyphenols, and nitrocatechols, among other compounds in near real-time. During the campaign, particulate mass concentrations of compounds with the same molecular composition as levoglucosan ranged from 0.002 to 19 μg/m3 with a median mass concentration of 0.9 μg/m3. Wood burning markers, in general, showed a strong diurnal pattern peaking at night and in the early morning. This diurnal profile combined with cold, stagnant conditions, wind directions from predominantly residential areas, and observations of lower combustion efficiency at night support residential wood burning as a dominant source of wintertime PM in Port Angeles. This finding has implications for improving wintertime air quality in the region by encouraging the use of high efficiency wood-burning stoves or other cleaner home heating options throughout the relevant domain.

  6. Chemical constituents of fine particulate air pollution and pulmonary function in healthy adults: The Healthy Volunteer Natural Relocation study

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Shaowei; Deng, Furong; Hao, Yu [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China); Shima, Masayuki [Department of Public Health, Hyogo College of Medicine, Hyogo (Japan); Wang, Xin; Zheng, Chanjuan; Wei, Hongying; Lv, Haibo; Lu, Xiuling; Huang, Jing; Qin, Yu [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China); Guo, Xinbiao, E-mail: guoxb@bjmu.edu.cn [Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing (China)

    2013-09-15

    Highlights: • Study subjects relocated between areas with different air pollution contents. • PM{sub 2.5} showed the most consistent inverse associations with pulmonary function. • Cu, Cd, As and Sn were consistently associated with reduced pulmonary function. • Carbonaceous fractions, SO{sub 4}{sup 2−} and Sb were also associated with pulmonary function. • Sources may include traffic, industry, coal burning, and long range transported dust. -- Abstract: The study examined the associations of 32 chemical constituents of particulate matter with an aerodynamic diameter ≤2.5 μm (PM{sub 2.5}) with pulmonary function in a panel of 21 college students. Study subjects relocated from a suburban area to an urban area with changing ambient air pollution levels and contents in Beijing, China, and provided daily morning/evening peak expiratory flow (PEF) and forced expiratory volume in 1 s (FEV{sub 1}) measurements over 6 months in three study periods. There were significant reductions in evening PEF and morning/evening FEV{sub 1} associated with various air pollutants and PM{sub 2.5} constituents. Four PM{sub 2.5} constituents (copper, cadmium, arsenic and stannum) were found to be most consistently associated with the reductions in these pulmonary function measures. These findings provide clues for the respiratory effects of specific particulate chemical constituents in the context of urban air pollution.

  7. Air quality in the Kootenays: fine particulate (PM10) airborne metals and sulphur dioxide levels, 1993-1999

    International Nuclear Information System (INIS)

    2000-09-01

    Air quality monitoring data collected in the Kootenays over a seven year period from 1993 to 1999 are summarized in an effort to inform the public about air quality in the Kootenays and to assist them in understanding air quality monitoring results. Data includes hourly (TEOM) and weekly (NAPS) data for particulate matter (PM 1 0) airborne metals (arsenic, cadmium, lead and zinc) and sulphur dioxide. Analysis of monitoring data showed that particulate matter levels remained constant in most communities, with Johnson Lake and Slocan reporting the lowest levels, while Golden had the highest values during this period. Trail-Butler Park showed a clear declining trend in PM 1 0. Airborne metals and sulphur dioxide levels have decreased in the Kootenays during the seven year period, with only occasional exceedances of both Level A and B air quality objectives in some communities. The report includes a detailed description of the sampling methodology and the analyzed results for PM 1 0, airborne metals and sulphur dioxide for 10 communities in the region. 6 refs., 1 tab., 16 figs., 1 map

  8. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California

    International Nuclear Information System (INIS)

    Basu, Rupa; Harris, Maria; Sie, Lillian; Malig, Brian; Broadwin, Rachel; Green, Rochelle

    2014-01-01

    Relationships between prenatal exposure to fine particles (PM 2.5 ) and birth weight have been observed previously. Few studies have investigated specific constituents of PM 2.5 , which may identify sources and major contributors of risk. We examined the effects of trimester and full gestational prenatal exposures to PM 2.5 mass and 23 PM 2.5 constituents on birth weight among 646,296 term births in California between 2000 and 2006. We used linear and logistic regression models to assess associations between exposures and birth weight and risk of low birth weight (LBW; 2.5 mass and several PM 2.5 constituents were significantly associated with reductions in term birth weight. The largest reductions in birth weight were associated with exposure to vanadium, sulfur, sulfate, iron, elemental carbon, titanium, manganese, bromine, ammonium, zinc, and copper. Several of these PM 2.5 constituents were associated with increased risk of term LBW. Reductions in birth weight were generally larger among younger mothers and varied by race/ethnicity. Exposure to specific constituents of PM 2.5 , especially traffic-related particles, sulfur constituents, and metals, were associated with decreased birth weight in California. -- Highlights: • Examine full gestational and trimester fine particle and its constituents on term birth weight. • Fine particles and several of its constituents associated with birth weight reductions. • Largest reductions for traffic-related particles, sulfur constituents, and metals. • Greater birth weight reductions for younger mothers, and varied by race/ethnicity

  9. Mass concentration, composition and sources of fine and coarse particulate matter in Tijuana, Mexico, during Cal-Mex campaign

    Science.gov (United States)

    Minguillón, María Cruz; Campos, Arturo Alberto; Cárdenas, Beatriz; Blanco, Salvador; Molina, Luisa T.; Querol, Xavier

    2014-05-01

    This work was carried out in the framework of the Cal-Mex project, which focuses on investigating the atmosphere along Mexico-California border region. Sampling was carried out at two sites located in Tijuana urban area: Parque Morelos and Metales y Derivados. PM2.5 and PM10 24 h samples were collected every three days from 17th May 2010 to 27th June 2010, and were used for gravimetric and chemical analyses (major and minor elements, inorganic ions, organic and elemental carbon) of PM. A subsequent Positive Matrix Factorization (PMF) analysis was performed. PM2.5 and PM10 average concentrations during Cal-Mex were relatively lower compared to usual annual averages. Trace elements concentrations recorded in the present study were lower than those recorded in Mexico City in 2006, with the exception of Pb at Metales y Derivados, attributed to the influence of a specific industrial source, which also includes As, Cd and Tl. Apart from this industrial source, both urban sites were found to be affected by similar sources with respect to bulk PM. Fine PM (PM2.5) was mainly apportioned by fueloil and biomass combustion and secondary aerosols, and road traffic. Coarse PM (PM2.5-10) was mainly apportioned by a mineral source (sum of road dust resuspension, construction emissions and natural soil) and fresh and aged sea salt. The road traffic was responsible for more than 60% of the fine elemental carbon and almost 40% of the fine organic matter.

  10. A novel high efficiency fine particulate and mercury control device. Final report for the Department of Energy Contract Number DE-FG02-95ER81968

    Energy Technology Data Exchange (ETDEWEB)

    None

    1999-05-05

    This Phase II SBIR program was conducted to demonstrate the ability of a circulating fluidized bed (CFB) of flyash to cause particle agglomeration and consequent reduction in the quantity of fine particulate emissions from the system. Another objective was to show that carbon addition to the bed would result in the removal of mercury compounds from the flue gas at carbon utilization levels significantly better than duct injection of activated carbon. The pilot-scale testing was carried out in 1997. The pilot-scale fluid bed reactor was a 1000 CFM system, drawing gas from a slipstream of the exhaust of a 325 MW coal-fired boiler. Flue gas for the pilot unit was drawn downstream of the air preheater and returned to the same unit. Particle agglomeration testing was carried out for which the parameters of gas flow rate and water evaporation rate were varied, and the particle size distribution leaving the fluid bed system was monitored. The bed was able to cause a reduction in total particulate concentration by a factor of 10 and in fine particulate concentration by a factor of 5, and it was found that the best agglomeration of particles was obtained with simultaneous water spray evaporation. Tests were then carried out in which activated carbon was added to the fluid bed for mercury adsorption. Carbon addition in the bed was shown to yield both higher Hg removal and higher carbon utilization than normal carbon addition with the bed. The fluid bed fly ash alone, without the injection of activated carbon, will capture 50% of the inlet Hg vapor. A total of 80% removal of Hg vapor is achieved with the addition to the bed of 1000 g iodine impregnated activated carbon per gram of inlet Hg. The ability of the fluid bed to capture SO{sub 2} and HCl was also evaluated, using hydrated lime added to the bed. It was found that the fluid bed alone, without lime injection, removed 16% of the SO{sub 2}. Complete utilization of hydrated lime is achieved for SO{sub 2} removal at mole

  11. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    Science.gov (United States)

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  12. Acute exposure to fine and coarse particulate matter and infant mortality in Tokyo, Japan (2002-2013).

    Science.gov (United States)

    Yorifuji, Takashi; Kashima, Saori; Doi, Hiroyuki

    2016-05-01

    Few studies have evaluated the effect of short-term exposure to particulate matter (PM) less than 2.5μm in diameter (PM2.5) or to coarse particles on infant mortality. We evaluated the association between short-term exposure to PM and infant mortality in Japan and assessed whether adverse health effects were observable at PM concentrations below Japanese air quality guidelines. We used a time-stratified, case-crossover design. The participants included 2086 infants who died in the 23 urbanized wards of the Tokyo Metropolitan Government between January 2002 and December 2013. We obtained measures of PM2.5 and suspended particulate matter (SPM; PMPM7-2.5 by subtracting PM2.5 from SPM. We then used conditional logistic regression to analyze the data. Same-day PM2.5 was associated with increased risks of infant and postneonatal mortality, especially for mortality related to respiratory causes. For a 10μg/m(3) increase in PM2.5, the odds ratios were 1.06 (95% confidence interval: 1.01-1.12) for infant mortality and 1.10 (1.02-1.19) for postneonatal mortality. PM7-2.5 was also associated with an increased risk of postneonatal mortality, independent of PM2.5. Even when PM2.5 and SPM concentrations were below Japanese air quality guidelines, we observed adverse health effects. This study provides further evidence that acute exposure to PM2.5 and coarse particles (PM7-2.5) is associated with an increased risk of infant mortality. Further, rigorous evaluation of air quality guidelines for daily average PM2.5 and larger particles is needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. EPA’s SPECIATE 4.4 Database:Development and Uses

    Science.gov (United States)

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  14. Short-term Associations between Fine and Coarse Particulate Matter and Hospitalizations in Southern Europe: Results from the MED-PARTICLES Project

    Science.gov (United States)

    Samoli, Evangelia; Alessandrini, Ester; Cadum, Ennio; Ostro, Bart; Berti, Giovanna; Faustini, Annunziata; Jacquemin, Benedicte; Linares, Cristina; Pascal, Mathilde; Randi, Giorgia; Ranzi, Andrea; Stivanello, Elisa; Forastiere, Francesco

    2013-01-01

    Background: Evidence on the short-term effects of fine and coarse particles on morbidity in Europe is scarce and inconsistent. Objectives: We aimed to estimate the association between daily concentrations of fine and coarse particles with hospitalizations for cardiovascular and respiratory conditions in eight Southern European cities, within the MED-PARTICLES project. Methods: City-specific Poisson models were fitted to estimate associations of daily concentrations of particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10), and their difference (PM2.5–10) with daily counts of emergency hospitalizations for cardiovascular and respiratory diseases. We derived pooled estimates from random-effects meta-analysis and evaluated the robustness of results to co-pollutant exposure adjustment and model specification. Pooled concentration–response curves were estimated using a meta-smoothing approach. Results: We found significant associations between all PM fractions and cardiovascular admissions. Increases of 10 μg/m3 in PM2.5, 6.3 μg/m3 in PM2.5–10, and 14.4 μg/m3 in PM10 (lag 0–1 days) were associated with increases in cardiovascular admissions of 0.51% (95% CI: 0.12, 0.90%), 0.46% (95% CI: 0.10, 0.82%), and 0.53% (95% CI: 0.06, 1.00%), respectively. Stronger associations were estimated for respiratory hospitalizations, ranging from 1.15% (95% CI: 0.21, 2.11%) for PM10 to 1.36% (95% CI: 0.23, 2.49) for PM2.5 (lag 0–5 days). Conclusions: PM2.5 and PM2.5–10 were positively associated with cardiovascular and respiratory admissions in eight Mediterranean cities. Information on the short-term effects of different PM fractions on morbidity in Southern Europe will be useful to inform European policies on air quality standards. Citation: Stafoggia M, Samoli E, Alessandrini E, Cadum E, Ostro B, Berti G, Faustini A, Jacquemin B, Linares C, Pascal M, Randi G, Ranzi A, Stivanello E, Forastiere F, the MED-PARTICLES Study Group. 2013. Short

  15. Effects of fine particulate matter and its constituents on low birth weight among full-term infants in California

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Rupa, E-mail: Rupa.Basu@oehha.ca.gov [California Office of Environmental Health Hazard Assessment, Air Pollution Epidemiology Section, Oakland, CA (United States); Harris, Maria [School of Public Health, Boston University, Boston, MA (United States); Sie, Lillian [School of Public Health, University of California, Berkeley, CA (United States); Malig, Brian; Broadwin, Rachel; Green, Rochelle [California Office of Environmental Health Hazard Assessment, Air Pollution Epidemiology Section, Oakland, CA (United States)

    2014-01-15

    Relationships between prenatal exposure to fine particles (PM{sub 2.5}) and birth weight have been observed previously. Few studies have investigated specific constituents of PM{sub 2.5}, which may identify sources and major contributors of risk. We examined the effects of trimester and full gestational prenatal exposures to PM{sub 2.5} mass and 23 PM{sub 2.5} constituents on birth weight among 646,296 term births in California between 2000 and 2006. We used linear and logistic regression models to assess associations between exposures and birth weight and risk of low birth weight (LBW; <2500 g), respectively. Models were adjusted for individual demographic characteristics, apparent temperature, month and year of birth, region, and socioeconomic indicators. Higher full gestational exposures to PM{sub 2.5} mass and several PM{sub 2.5} constituents were significantly associated with reductions in term birth weight. The largest reductions in birth weight were associated with exposure to vanadium, sulfur, sulfate, iron, elemental carbon, titanium, manganese, bromine, ammonium, zinc, and copper. Several of these PM{sub 2.5} constituents were associated with increased risk of term LBW. Reductions in birth weight were generally larger among younger mothers and varied by race/ethnicity. Exposure to specific constituents of PM{sub 2.5}, especially traffic-related particles, sulfur constituents, and metals, were associated with decreased birth weight in California. -- Highlights: • Examine full gestational and trimester fine particle and its constituents on term birth weight. • Fine particles and several of its constituents associated with birth weight reductions. • Largest reductions for traffic-related particles, sulfur constituents, and metals. • Greater birth weight reductions for younger mothers, and varied by race/ethnicity.

  16. Estimation of exposure to fine particulate air pollution using GIS-based modeling approach in an urban area in Tehran

    Directory of Open Access Journals (Sweden)

    M. Memarianfard

    2016-10-01

    Full Text Available In many industrialized areas, the highest concentration of particulate matter, as a major concern on public health, is being felt worldwide problem. Since the air pollution assessment and its evaluation with considering spatial dispersion analysis because of various factors are complex, in this paper, GIS-based modeling approach was utilized to zoning PM2.5 dispersion over Tehran, during one year, from 21 March 2014 to 20 March 2015. The RBF method was applied to obtain the zoning maps and determining the highest concentration of PM2.5 in the 22 Tehran’s regions for each season. The RMSEmin values according to the number of neighbors and types of functions in the radial basis function method, including completely regularized spline, Spline with tension, Multiquadric function, Inverse multiquadric function, and Thin-plate spline  for each month have been assessed. By performing analysis on the errors, the numbers of neighbors were estimated. The numbers of neighbors in the model for each function were varied from 2 to 30. The results indicate that the models with 3 and 4 neighbors have the best performance with the lowest RMSE values with using RBF method. The highest PM2.5 concentrations have been occurred in the summer and winter especially at the center, south, and in some cases at northeast of the city.

  17. Reduction of fine airborne particulates (PM3) in a small city centre office, by altering electrostatic forces.

    Science.gov (United States)

    Richardson, G; Harwood, D J; Eick, S A; Dobbs, F; Rosén, K G

    2001-03-26

    A two stage intervention study was carried out to establish the degree to which a newly developed, electrostatic air cleaning (EAC) system can improve indoor air quality (IAQ) by reducing the number of airborne fine particles. The IAQ and how employees in a city centre office (49 m2) perceived it, was monitored from May until November 1998. The number of fine particles, PM3 (0.3-3.0 microm); number of coarse particles, PM7 (3.0-7.0 microm); number of small positive and negative air ions; relative humidity and temperature were recorded in and out of doors. To assess the employees' perception of any changes in their work environment, a questionnaire was completed. Number of particles, relative humidity and temperature were also recorded in a nearby office, equipped with an identical air processor, where no interventions were made. The results from the first intervention (Stage 1), comparing number of airborne particles outdoors to indoors, gave a 19% reduction for PM3 and a 67% reduction for PM7 (P PM7 from outdoors and the removal of PM7 created indoors was achieved by optimizing the existing air moving equipment. The results from the second intervention (Stage 2--with EAC units installed) comparing indoor to outdoor values, gave a further reduction in PM3 of 21% (P PM7 (P > 0.05). Therefore, at the end of Stage 2, the total reductions in particles from outdoors to indoors were 40% for PM3 and 70% for PM7 (P PM7. The questionnaire indicated an improvement in the IAQ, as perceived by the employees. The results suggest that the EAC system is effective in reducing PM3 and thereby improving IAQ in an urban office.

  18. Characteristics of fine particulate matter and its sources in an industrialized coastal city, Ningbo, Yangtze River Delta, China

    Science.gov (United States)

    Wang, Weifeng; Yu, Jie; Cui, Yang; He, Jun; Xue, Peng; Cao, Wan; Ying, Hongmei; Gao, Wenkang; Yan, Yingchao; Hu, Bo; Xin, Jinyuan; Wang, Lili; Liu, Zirui; Sun, Yang; Ji, Dongsheng; Wang, Yuesi

    2018-05-01

    Chemical information is essential in understanding the characteristics of airborne particles, and effectively controlling airborne particulate matter pollution, but it remains unclear in some regions due to the scarcity of measurement data. In the present study, 92 daily PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 μm) samples as well as historical observation data of air pollutants were collected in urban Ningbo, one of important industrial cities in the coastal area of the Yangtze River Delta, China in autumn and winter (from Nov. 2014 to Feb. 2015). Various chemical species in PM2.5 were determined including water soluble ions, organic and elemental carbon and elements. Positive matrix factorization model, cluster analysis of back trajectories, potential source contribution function (PSCF) model and concentration-weighted trajectory (CWT) model were used for identifying sources, apportioning contributions from each source and tracking potential areas of sources. The results showed the PM2.5 concentration has been reducing; nonetheless, the concentrations of PM2.5 are still much higher than the World Health Organization guideline with high PM2.5 concentrations observed in autumn and winter for the past few years. During the sampling period, the average PM2.5 mass concentration was 77 μg/m3 with the major components of OC, NO3-, SO42 -, NH4+ and EC, accounting for 24.7, 18.8, 14.5, 11.8 and 6.4% in the total mass concentration, respectively. When the aerosol pollution got worse during the sampling period, the NO3-, SO42 - and NH4+ concentrations increased accordingly and NO3- appeared to increase at fastest rate. SO42 - transported from industrial areas led to slight difference in spatial distribution of SO42 - in Ningbo. More secondary organic carbon was formed and the enrichment factor values of Cu, Ag, Cd, Sn and Pb increased with the degradation of air quality. Ten types of sources were identified for PM2.5 in the autumn and winter of

  19. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES).

    Science.gov (United States)

    Chudnovsky, Alexandra A; Lee, Hyung Joo; Kostinski, Alex; Kotlov, Tanya; Koutrakis, Petros

    2012-09-01

    Although ground-level PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) monitoring sites provide accurate measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual observations, R2 = 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies. The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 x 4-km resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS) 10-km product has the potential to capture PM2.5 variability within the urban domain.

  20. Fine particulate air pollution and premature atrial contractions: The REasons for Geographic And Racial Differences in Stroke study.

    Science.gov (United States)

    O'Neal, Wesley T; Soliman, Elsayed Z; Efird, Jimmy T; Judd, Suzanne E; Howard, Virginia J; Howard, George; McClure, Leslie A

    2017-05-01

    Several reports have suggested that particulate matter (PM) exposure increases the risk for atrial arrhythmias. However, data from large-scale epidemiologic studies supporting this hypothesis are lacking. We examined the association of PM <2.5 μm in diameter (PM 2.5 ) concentration with premature atrial contractions (PACs) in 26,609 (mean age=65±9.4 years; 55% female; 41% black) participants from the REGARDS (REasons for Geographic And Racial Differences in Stroke) study. Estimates of short- (2 weeks) and long-term (1 year) PM 2.5 exposure were computed before each participant's baseline visit using geographic information system data on the individual level at the coordinates of study participants' residences. PACs were identified from baseline electrocardiograms. A total of 2140 (8.2%) participants had evidence of PACs on the baseline electrocardiogram. Short-term PM 2.5 (per 10 μg/m 3 ) exposure was not associated with PACs (OR=1.09, 95% CI=0.98, 1.23). Increases in long-term PM 2.5 (per 10 μg/m 3 ) were associated with PACs (OR=1.40, 95% CI=1.10, 1.78). Interactions were not detected for short- and long-term PM 2.5 exposure by age, sex, or race. Long- but not short-term PM 2.5 exposure is associated with PACs. This suggests a role for long-term PM 2.5 exposure in initiating supraventricular arrhythmias that are triggered by PACs.

  1. Composition and source apportionment of fine particulate matter during extended calm periods in the city of Rijeka, Croatia

    Science.gov (United States)

    Ivošević, T.; Orlić, I.; Bogdanović Radović, I.; Čargonja, M.; Stelcer, E.

    2017-09-01

    In the city of Rijeka, Croatia, an extended, two-year aerosol pollution monitoring campaign was recently completed. During that period, 345 samples of fine fraction of aerosols were collected on stretched Teflon filters. All samples were analyzed by Ion Beam Analysis techniques Proton Induced X-ray Emission and Proton Induced γ-Ray Emission and concentrations of 22 elements were determined. Concentrations of black carbon were determined by Laser Integrated Plate Method. For the Bay of Kvarner, where the city of Rijeka is located, long periods of calm weather are common. As a consequence, during these periods, air pollution is steadily increasing. To pin-point and characterize local, mostly anthropogenic, air pollution sources, only samples collected during the extended calm periods were used in this work. As a cut-off wind speed, speed of 1.5 m/s was used. In that way, out of all 345 samples, only 188 were selected. Those samples were statistically evaluated by means of positive matrix factorization. Results show that from all anthropogenic sources (vehicles, secondary sulphates, smoke, heavy oil combustion, road dust, industry Fe and port activities) only secondary sulphates and heavy oil combustion were significantly higher (40% and 50%, respectively) during calm periods. On the other hand, natural components of aerosol pollution such as soil and sea salts, (typically present in concentrations of 1.4% and 9%, respectively) are practically non-existent for calm weather conditions.

  2. Urban airborne matter in central and southern Chile: Effects of meteorological conditions on fine and coarse particulate matter

    Science.gov (United States)

    Yáñez, Marco A.; Baettig, Ricardo; Cornejo, Jorge; Zamudio, Francisco; Guajardo, Jorge; Fica, Rodrigo

    2017-07-01

    Air pollution is one of the major global environmental problems affecting human health and life quality. Many cities of Chile are heavily polluted with PM2.5 and PM10, mainly in the cold season, and there is little understanding of how the variation in particle matter differs between cities and how this is affected by the meteorological conditions. The objective of this study was to assess the effect of meteorological variables on respirable particulate matter (PM) of the main cities in the central-south valley of Chile during the cold season (May to August) between 2014 and 2016. We used hourly PM2.5 and PMcoarse (PM10- PM2.5) information along with wind speed, temperature and relative humidity, and other variables derived from meteorological parameters. Generalized additive models (GAMs) were fitted for each of the eight cities selected, covering a latitudinal range of 929 km, from Santiago to Osorno. Great variation in PM was found between cities during the cold months, and that variation exhibited a marked latitudinal pattern. Overall, the more northerly cities tended to be less polluted in PM2.5 and more polluted in PMcoarse than the more southerly cities, and vice versa. The results show that other derived variables from meteorology were better related with PM than the use of traditional daily means. The main variables selected with regard to PM2.5 content were mean wind speed and minimum temperature (negative relationship). Otherwise, the main variables selected with regard to PMcoarse content were mean wind speed (negative), and the daily range in temperature (positive). Variables derived from relative humidity contributed differently to the models, having a higher effect on PMcoarse than PM2.5, and exhibiting both negative and positive effects. For the different cities the deviance explained by the GAMs ranged from 37.6 to 79.1% for PM2.5 and from 18.5 to 63.7% for PMcoarse. The percentage of deviance explained by the models for PM2.5 exhibited a

  3. In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity

    Science.gov (United States)

    Beekmann, M.; Prévôt, A. S. H.; Drewnick, F.; Sciare, J.; Pandis, S. N.; Denier van der Gon, H. A. C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q. J.; Michoud, V.; Slowik, J. G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J. L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.

    2015-08-01

    A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE chemistry transport models. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions constituted less than 20 % in winter and 40 % in summer of carbonaceous fine PM, unexpectedly small for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e., from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only being partially responsible for its own average and peak PM levels has important implications for air pollution regulation policies.

  4. In-situ, satellite measurement and model evidence for a~dominant regional contribution to fine particulate matter levels in the Paris Megacity

    Science.gov (United States)

    Beekmann, M.; Prévôt, A. S. H.; Drewnick, F.; Sciare, J.; Pandis, S. N.; Denier van der Gon, H. A. C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; Rodriguez, E.; Beirle, S.; Zotter, P.; von der Weiden-Reinmüller, S.-L.; Bressi, M.; Fountoukis, C.; Petetin, H.; Szidat, S.; Schneider, J.; Rosso, A.; El Haddad, I.; Megaritis, A.; Zhang, Q. J.; Michoud, V.; Slowik, J. G.; Moukhtar, S.; Kolmonen, P.; Stohl, A.; Eckhardt, S.; Borbon, A.; Gros, V.; Marchand, N.; Jaffrezo, J. L.; Schwarzenboeck, A.; Colomb, A.; Wiedensohler, A.; Borrmann, S.; Lawrence, M.; Baklanov, A.; Baltensperger, U.

    2015-03-01

    A detailed characterization of air quality in Paris (France), a megacity of more than 10 million inhabitants, during two one month intensive campaigns and from additional one year observations, revealed that about 70% of the fine particulate matter (PM) at urban background is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in-situ measurements during short intensive and longer term campaigns, aerosol optical depth (AOD) measurements from ENVISAT, and modeling results from PMCAMx and CHIMERE. While advection of sulfate is well documented for other megacities, there was surprisingly high contribution from long-range transport for both nitrate and organic aerosol. The origin of organic PM was investigated by a comprehensive analysis of aerosol mass spectrometer (AMS), radiocarbon and tracer measurements during two intensive campaigns. Primary fossil fuel combustion emissions contributed less than 20% in winter and 40% in summer to carbonaceous fine PM, unexpectedly little for a megacity. Cooking activities and, during winter, residential wood burning are the major primary organic PM sources. This analysis suggests that the major part of secondary organic aerosol is of modern origin, i.e. from biogenic precursors and from wood burning. Black carbon concentrations are on the lower end of values encountered in megacities worldwide, but still represent an issue for air quality. These comparatively low air pollution levels are due to a combination of low emissions per inhabitant, flat terrain, and a meteorology that is in general not conducive to local pollution build-up. This revised picture of a megacity only controlling part of its own average and peak PM levels has important implications for air pollution regulation policies.

  5. Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

    Science.gov (United States)

    Haberzettl, Petra; McCracken, James P; Bhatnagar, Aruni; Conklin, Daniel J

    2016-06-01

    Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1(+)/Sca-1(+) cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Copyright © 2016 the American Physiological Society.

  6. The Impact of Multi-pollutant Clusters on the Association between Fine Particulate Air Pollution and Microvascular Function

    Science.gov (United States)

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Austin, Elena; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Benjamin, Emelia J.; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.

    2016-01-01

    Background Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. Methods We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003-2008. Results In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction p value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% CI 4.6%; 33%) higher baseline pulse amplitude per 5 μg/m3 and days with high contributions of oil and wood combustion with 16% (95% CI 0.2%; 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. Conclusions PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil and wood combustion was associated with higher baseline pulse amplitude but not PAT ratio. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences. PMID:26562062

  7. The attributable risk of chronic obstructive pulmonary disease due to ambient fine particulate pollution among older adults.

    Science.gov (United States)

    Lin, Hualiang; Qian, Zhengmin Min; Guo, Yanfei; Zheng, Yang; Ai, Siqi; Hang, Jian; Wang, Xiaojie; Zhang, Lingli; Liu, Tao; Guan, Weijie; Li, Xing; Xiao, Jianpeng; Zeng, Weilin; Xian, Hong; Howard, Steven W; Ma, Wenjun; Wu, Fan

    2018-04-01

    The linkage between ambient fine particle pollution (PM 2.5 ) and chronic obstructive pulmonary disease (COPD) and the attributable risk remained largely unknown. This study determined the cross-sectional association between ambient PM 2.5 and prevalence of COPD among adults ≥50 years of age. We surveyed 29,290 participants aged 50 years and above in this study. The annual average concentrations of PM 2.5 derived from satellite data were used as the exposure indicator. A mixed effect model was applied to determine the associations and the burden of COPD attributable to PM 2.5. RESULTS: Among the participants, 1872 (6.39%) were classified as COPD cases. Our analysis observed a threshold concentration of 30 μg/m 3 in the PM 2.5 -COPD association, above which we found a linear positive exposure-response association between ambient PM 2.5 and COPD. The odds ratio (OR) for each 10 μg/m 3 increase in ambient PM 2.5 was 1.21(95% CI: 1.13, 1.30). Stratified analyses suggested that males, older subjects (65 years and older) and those with lower education attainment might be the vulnerable subpopulations. We further estimated that about 13.79% (95% CI: 7.82%, 21.62%) of the COPD cases could be attributable to PM 2.5 levels higher than 30 μg/m 3 in the study population. Our analysis indicates that ambient PM 2.5 exposure could increase the risk of COPD and accounts for a substantial fraction of COPD among the study population. Copyright © 2018. Published by Elsevier Ltd.

  8. The influence of model spatial resolution on simulated ozone and fine particulate matter for Europe: implications for health impact assessments

    Science.gov (United States)

    Fenech, Sara; Doherty, Ruth M.; Heaviside, Clare; Vardoulakis, Sotiris; Macintyre, Helen L.; O'Connor, Fiona M.

    2018-04-01

    We examine the impact of model horizontal resolution on simulated concentrations of surface ozone (O3) and particulate matter less than 2.5 µm in diameter (PM2.5), and the associated health impacts over Europe, using the HadGEM3-UKCA chemistry-climate model to simulate pollutant concentrations at a coarse (˜ 140 km) and a finer (˜ 50 km) resolution. The attributable fraction (AF) of total mortality due to long-term exposure to warm season daily maximum 8 h running mean (MDA8) O3 and annual-average PM2.5 concentrations is then calculated for each European country using pollutant concentrations simulated at each resolution. Our results highlight a seasonal variation in simulated O3 and PM2.5 differences between the two model resolutions in Europe. Compared to the finer resolution results, simulated European O3 concentrations at the coarse resolution are higher on average in winter and spring (˜ 10 and ˜ 6 %, respectively). In contrast, simulated O3 concentrations at the coarse resolution are lower in summer and autumn (˜ -1 and ˜ -4 %, respectively). These differences may be partly explained by differences in nitrogen dioxide (NO2) concentrations simulated at the two resolutions. Compared to O3, we find the opposite seasonality in simulated PM2.5 differences between the two resolutions. In winter and spring, simulated PM2.5 concentrations are lower at the coarse compared to the finer resolution (˜ -8 and ˜ -6 %, respectively) but higher in summer and autumn (˜ 29 and ˜ 8 %, respectively). Simulated PM2.5 values are also mostly related to differences in convective rainfall between the two resolutions for all seasons. These differences between the two resolutions exhibit clear spatial patterns for both pollutants that vary by season, and exert a strong influence on country to country variations in estimated AF for the two resolutions. Warm season MDA8 O3 levels are higher in most of southern Europe, but lower in areas of northern and eastern Europe when

  9. Exposure to fine particulate matter and hospital admissions due to pneumonia: Effects on the number of hospital admissions and its costs.

    Science.gov (United States)

    Patto, Nicole Vargas; Nascimento, Luiz Fernando Costa; Mantovani, Katia Cristina C; Vieira, Luciana C P F S; Moreira, Demerval S

    2016-07-01

    Given that respiratory diseases are a major cause of hospitalization in children, the objectives of this study are to estimate the role of exposure to fine particulate matter in hospitalizations due to pneumonia and a possible reduction in the number of these hospitalizations and costs. An ecological time-series study was developed with data on hospitalization for pneumonia among children under 10 years of age living in São José do Rio Preto, state of São Paulo, using PM2.5 concentrations estimated using a mathematical model. We used Poisson regression with a dependent variable (hospitalization) associated with PM2.5 concentrations and adjusted for effective temperature, seasonality and day of the week, with estimates of reductions in the number of hospitalizations and costs. 1,161 children were admitted to hospital between October 1st, 2011, and September 30th, 2013; the average concentration of PM2.5 was 18.7 µg/m3 (≈32 µg/m3 of PM10) and exposure to this pollutant was associated with hospitalization four and five days after exposure. A 10 µg/m3 decrease in concentration would imply 256 less hospital admissions and savings of approximately R$ 220,000 in a medium-sized city.

  10. Reduced in vitro toxicity of fine particulate matter collected during the 2008 Summer Olympic Games in Beijing: the roles of chemical and biological components.

    Science.gov (United States)

    Shang, Yu; Zhu, Tong; Lenz, Anke-Gabriele; Frankenberger, Birgit; Tian, Feng; Chen, Chenyong; Stoeger, Tobias

    2013-10-01

    Beijing has implemented systematic air pollution control legislation to reduce particulate emissions and improve air quality during the 2008 Summer Olympics, but whether the toxicity of fine fraction of particles (PM(2.5)) would be changed remains unclear. In present study we compared in vitro biological responses of PM(2.5) collected before and during the Olympics and tried to reveal possible correlations between its chemical components and toxicological mechanism(s). We measured cytotoxicity, cytokines/chemokines, and related gene expressions in murine alveolar macrophages, MH-S, after treated with 20 PM(2.5) samples. Significant, dose-dependent effects on cell viability, cytokine/chemokine release and mRNA expressions were observed. The cytotoxicity caused at equal mass concentration of PM(2.5) was notably reduced (p<0.05) by control measures, and significant association was found for viability and elemental zinc in PM(2.5). Endotoxin content in PM(2.5) correlated with all of the eight detected cytokines/chemokines; elemental and organic carbon correlated with four; arsenic and chromium correlated with six and three, respectively; iron and barium showed associations with two; nickel, magnesium, potassium, and calcium showed associations with one. PM(2.5) toxicity in Beijing was substantially dependent on its chemical components, and lowering the levels of specific components in PM(2.5) during the 2008 Olympics resulted in reduced biological responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Sources and oxidative potential of water-soluble humic-like substances (HULISWS in fine particulate matter (PM2.5 in Beijing

    Directory of Open Access Journals (Sweden)

    Y. Ma

    2018-04-01

    Full Text Available Water-soluble humic-like substances (HULISWS are a major redox-active component of ambient fine particulate matter (PM2.5; however, information on their sources and associated redox activity is limited. In this study, HULISWS mass concentration, various HULISWS species, and dithiothreitol (DTT activity of HULISWS were quantified in PM2.5 samples collected during a 1-year period in Beijing. Strong correlation was observed between HULISWS and DTT activity; both exhibited higher levels during the heating season than during the nonheating season. Positive matrix factorization analysis of both HULISWS and DTT activity was performed. Four combustion-related sources, namely coal combustion, biomass burning, waste incineration, and vehicle exhausts, and one secondary factor were resolved. In particular, waste incineration was identified as a source of HULISWS for the first time. Biomass burning and secondary aerosol formation were the major contributors ( >  59 % to both HULISWS and associated DTT activity throughout the year. During the nonheating season, secondary aerosol formation was the most important source, whereas during the heating season, the predominant contributor was biomass burning. The four combustion-related sources accounted for  >  70 % of HULISWS and DTT activity, implying that future reduction in PM2.5 emissions from combustion activities can substantially reduce the HULISWS burden and their potential health impact in Beijing.

  12. Semivolatile Organic Compounds (SOCs) in Fine Particulate Matter (PM2.5) during Clear, Fog, and Haze Episodes in Winter in Beijing, China.

    Science.gov (United States)

    Wang, Ting; Tian, Mi; Ding, Nan; Yan, Xiao; Chen, She-Jun; Mo, Yang-Zhi; Yang, Wei-Qiang; Bi, Xin-Hui; Wang, Xin-Ming; Mai, Bi-Xian

    2018-05-01

    Few efforts have been made to elucidate the influence of weather conditions on the fate of semivolatile organic compounds (SOCs). Here, daily fine particulate matter (PM 2.5 ) during clear, haze, and fog episodes collected in the winter in Beijing, China was analyzed for polycyclic aromatic hydrocarbons (PAHs), brominated flame retardants (BFRs), and organophosphate flame retardants (OPFRs). The total concentrations of PAHs, OPFRs, and BFRs had medians of 45.1 ng/m 3 and 1347 and 46.7 pg/m 3 , respectively. The temporal pattern for PAH concentrations was largely dependent on coal combustion for residential heating. OPFR compositions that change during colder period were related to enhanced indoor emissions due to heating. The mean concentrations of SOCs during haze and fog days were 2-10 times higher than those during clear days. We found that BFRs with lower octanol and air partition coefficients tended to increase during haze and fog episodes, be removed from PM 2.5 during clear episodes, or both. For PAHs and OPFRs, pollutants that are more recalcitrant to degradation were prone to accumulate during haze and fog days. The potential source contribution function (PSCF) model indicated that southern and eastern cities were major source regions of SOCs at this site.

  13. Sources and oxidative potential of water-soluble humic-like substances (HULISWS) in fine particulate matter (PM2.5) in Beijing

    Science.gov (United States)

    Ma, Yiqiu; Cheng, Yubo; Qiu, Xinghua; Cao, Gang; Fang, Yanhua; Wang, Junxia; Zhu, Tong; Yu, Jianzhen; Hu, Di

    2018-04-01

    Water-soluble humic-like substances (HULISWS) are a major redox-active component of ambient fine particulate matter (PM2.5); however, information on their sources and associated redox activity is limited. In this study, HULISWS mass concentration, various HULISWS species, and dithiothreitol (DTT) activity of HULISWS were quantified in PM2.5 samples collected during a 1-year period in Beijing. Strong correlation was observed between HULISWS and DTT activity; both exhibited higher levels during the heating season than during the nonheating season. Positive matrix factorization analysis of both HULISWS and DTT activity was performed. Four combustion-related sources, namely coal combustion, biomass burning, waste incineration, and vehicle exhausts, and one secondary factor were resolved. In particular, waste incineration was identified as a source of HULISWS for the first time. Biomass burning and secondary aerosol formation were the major contributors ( > 59 %) to both HULISWS and associated DTT activity throughout the year. During the nonheating season, secondary aerosol formation was the most important source, whereas during the heating season, the predominant contributor was biomass burning. The four combustion-related sources accounted for > 70 % of HULISWS and DTT activity, implying that future reduction in PM2.5 emissions from combustion activities can substantially reduce the HULISWS burden and their potential health impact in Beijing.

  14. Modeling of episodic particulate matter events using a 3-D air quality model with fine grid: Applications to a pair of cities in the US/Mexico border

    Science.gov (United States)

    Choi, Yu-Jin; Hyde, Peter; Fernando, H. J. S.

    High (episodic) particulate matter (PM) events over the sister cities of Douglas (AZ) and Agua Prieta (Sonora), located in the US-Mexico border, were simulated using the 3D Eulerian air quality model, MODELS-3/CMAQ. The best available input information was used for the simulations, with pollution inventory specified on a fine grid. In spite of inherent uncertainties associated with the emission inventory as well as the chemistry and meteorology of the air quality simulation tool, model evaluations showed acceptable PM predictions, while demonstrating the need for including the interaction between meteorology and emissions in an interactive mode in the model, a capability currently unavailable in MODELS-3/CMAQ when dealing with PM. Sensitivity studies on boundary influence indicate an insignificant regional (advection) contribution of PM to the study area. The contribution of secondary particles to the occurrence of high PM events was trivial. High PM episodes in the study area, therefore, are purely local events that largely depend on local meteorological conditions. The major PM emission sources were identified as vehicular activities on unpaved/paved roads and wind-blown dust. The results will be of immediate utility in devising PM mitigation strategies for the study area, which is one of the US EPA-designated non-attainment areas with respect to PM.

  15. Aqueous speciation and the importance of particulate phase in hydro-geochemistry behaviour of U,Th and REE from uranium mine and Morro do Ferro, Pocos de Caldas - Brazil

    International Nuclear Information System (INIS)

    Jesus, Honerio Coutinho de

    1996-04-01

    This work, which was realized within the Natural Analogue Project Pocos de Caldas, had as its main objective the study of the colloidal behavior of U, Th, REE and some other elements of geochemical interest, in surface and groundwaters from the Osamu Utsumi mine and the Morro do ferro in Pocos de Caldas, Minas Gerais. Ultrafiltration techniques with flat membranes of different molecular mass exclusion limits (100 K, 10 K e 1K daltons) were used for this purpose. In addition, suspended matter (>0,45 μm), retained during pre-filtering of the waters, was analysed mineralogically and chemically (U, Th, REE, isotopic composition of U and Th, etc). Studies of the chemical composition of colloidal particles (<0,45 μm) and their size distributions were performed using ESCA and SEM, respectively. In addition, speciation studies by means of the MINEQL computation program were made to obtain information about the principal complexed species of relevant elements and the formation of solid phases. All the above mentioned investigations were aimed at better understanding of the migration and sorption behavior of U, Th and REE in both environments. The data obtained in this work indicate a low importance of particulate phases (colloids or suspended particles) for the migration behavior of U, Th and REE in waters from the Osumu Utsumi uranium mine and the Morro do ferro. However, these particles, composed mainly of ferric oxyhydrates and humic compounds, play an important role in sorption and immobilization processes. (author)

  16. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    Science.gov (United States)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  17. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM: particulate matter characteristics during fall and winter seasons in Hong Kong

    Directory of Open Access Journals (Sweden)

    C. Sun

    2016-02-01

    Full Text Available Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA, characterized by application of Positive Matrix Factorization (PMF, and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  18. Understanding Spatiotemporal Variability of Fine Particulate Matter in an Urban Environment Using Combined Fixed and Mobile Measurements

    Science.gov (United States)

    Sullivan, R.; Pryor, S. C.; Barthelmie, R. J.; Filippelli, G. M.

    2013-12-01

    Acute and chronic exposure to elevated levels of aerosol particles represents a well-documented threat to public health. This is especially true in urban areas where in situ emissions elevate concentrations above regional background levels and population density is high, exposing a greater number of people to unhealthy air. The EPA's evaluation of compliance with National Ambient Air Quality Standards (NAAQS) for ambient fine particle (PM 2.5) concentrations in a city is frequently based on a limited number of observing stations and daily average concentrations. For example, data from only three locations indicates that Indianapolis (a city of nearly 1 million people) fails the NAAQS for PM2.5. However, the true population exposure exhibits spatial and temporal variability and thus is not adequately represented by long-term measurements. Thus, since 2011 we have conducted additional highly time-resolved PM2.5 measurements at four additional stations within Indianapolis. Analyses of these data indicate: ● PM2.5 concentrations in the city are an average of over 4 micrograms per cubic meter above a non-urban regionally representative site. ● A distinct diurnal cycle of PM2.5 concentrations in the city with a daily maximum in concentrations and higher outliers typically occurring during the morning hours (approx. 0700-0900 LST) and a daily minimum in concentrations and fewer outliers occurring in the afternoon (approx. 1400-1800 LST). ● Highest concentrations typically occur during weekdays. This hebdomadal pattern was amplified in proximity to the main interstate junction through the center of the city. ● PM2.5 concentrations thus exhibit similar timescales of variability to carbon monoxide, of which over 90% derives from the mobile sector, indicating a strong signature from motor vehicles. An additional mode of variability in PM2.5 as observed in power spectra equates to synoptic time scales (four days up to two weeks). ● On average wind speeds during

  19. Effects of the Ambient Fine Particulate Matter on Public Awareness of Lung Cancer Risk in China: Evidence from the Internet-Based Big Data Platform.

    Science.gov (United States)

    Yang, Hongxi; Li, Shu; Sun, Li; Zhang, Xinyu; Hou, Jie; Wang, Yaogang

    2017-10-03

    In October 2013, the International Agency for Research on Cancer classified the particulate matter from outdoor air pollution as a group 1 carcinogen and declared that particulate matter can cause lung cancer. Fine particular matter (PM 2.5 ) pollution is becoming a serious public health concern in urban areas of China. It is essential to emphasize the importance of the public's awareness and knowledge of modifiable risk factors of lung cancer for prevention. The objective of our study was to explore the public's awareness of the association of PM 2.5 with lung cancer risk in China by analyzing the relationship between the daily PM 2.5 concentration and searches for the term "lung cancer" on an Internet big data platform, Baidu. We collected daily PM 2.5 concentration data and daily Baidu Index data in 31 Chinese capital cities from January 1, 2014 to December 31, 2016. We used Spearman correlation analysis to explore correlations between the daily Baidu Index for lung cancer searches and the daily average PM 2.5 concentration. Granger causality test was used to analyze the causal relationship between the 2 time-series variables. In 23 of the 31 cities, the pairwise correlation coefficients (Spearman rho) between the daily Baidu Index for lung cancer searches and the daily average PM 2.5 concentration were positive and statistically significant (P<.05). However, the correlation between the daily Baidu Index for lung cancer searches and the daily average PM 2.5 concentration was poor (all r 2 s <.1). Results of Granger causality testing illustrated that there was no unidirectional causality from the daily PM 2.5 concentration to the daily Baidu Index for lung cancer searches, which was statistically significant at the 5% level for each city. The daily average PM 2.5 concentration had a weak positive impact on the daily search interest for lung cancer on the Baidu search engine. Well-designed awareness campaigns are needed to enhance the general public's awareness of

  20. Estimating source-attributable health impacts of ambient fine particulate matter exposure: global premature mortality from surface transportation emissions in 2005

    International Nuclear Information System (INIS)

    Chambliss, S E; Zeinali, M; Minjares, R; Silva, R; West, J J

    2014-01-01

    Exposure to ambient fine particular matter (PM 2.5 ) was responsible for 3.2 million premature deaths in 2010 and is among the top ten leading risk factors for early death. Surface transportation is a significant global source of PM 2.5 emissions and a target for new actions. The objective of this study is to estimate the global and national health burden of ambient PM 2.5 exposure attributable to surface transportation emissions. This share of health burden is called the transportation attributable fraction (TAF), and is assumed equal to the proportional decrease in modeled ambient particulate matter concentrations when surface transportation emissions are removed. National population-weighted TAFs for 190 countries are modeled for 2005 using the MOZART-4 global chemical transport model. Changes in annual average concentration of PM 2.5 at 0.5 × 0.67 degree horizontal resolution are based on a global emissions inventory and removal of all surface transportation emissions. Global population-weighted average TAF was 8.5 percent or 1.75 μg m −3 in 2005. Approximately 242 000 annual premature deaths were attributable to surface transportation emissions, dominated by China, the United States, the European Union and India. This application of TAF allows future Global Burden of Disease studies to estimate the sector-specific burden of ambient PM 2.5 exposure. Additional research is needed to capture intraurban variations in emissions and exposure, and to broaden the range of health effects considered, including the effects of other pollutants. (letter)

  1. Predicting residential indoor concentrations of nitrogen dioxide, fine particulate matter, and elemental carbon using questionnaire and geographic information system based data

    Science.gov (United States)

    Baxter, Lisa K.; Clougherty, Jane E.; Paciorek, Christopher J.; Wright, Rosalind J.; Levy, Jonathan I.

    Previous studies have identified associations between traffic-related air pollution and adverse health effects. Most have used measurements from a few central ambient monitors and/or some measure of traffic as indicators of exposure, disregarding spatial variability and factors influencing personal exposure-ambient concentration relationships. This study seeks to utilize publicly available data (i.e., central site monitors, geographic information system, and property assessment data) and questionnaire responses to predict residential indoor concentrations of traffic-related air pollutants for lower socioeconomic status (SES) urban households. As part of a prospective birth cohort study in urban Boston, we collected indoor and outdoor 3-4 day samples of nitrogen dioxide (NO 2) and fine particulate matter (PM 2.5) in 43 low SES residences across multiple seasons from 2003 to 2005. Elemental carbon (EC) concentrations were determined via reflectance analysis. Multiple traffic indicators were derived using Massachusetts Highway Department data and traffic counts collected outside sampling homes. Home characteristics and occupant behaviors were collected via a standardized questionnaire. Additional housing information was collected through property tax records, and ambient concentrations were collected from a centrally located ambient monitor. The contributions of ambient concentrations, local traffic and indoor sources to indoor concentrations were quantified with regression analyses. PM 2.5 was influenced less by local traffic but had significant indoor sources, while EC was associated with traffic and NO 2 with both traffic and indoor sources. Comparing models based on covariate selection using p-values or a Bayesian approach yielded similar results, with traffic density within a 50 m buffer of a home and distance from a truck route as important contributors to indoor levels of NO 2 and EC, respectively. The Bayesian approach also highlighted the uncertanity in the

  2. Short-term population-based non-linear concentration-response associations between fine particulate matter and respiratory diseases in Taipei (Taiwan): a spatiotemporal analysis.

    Science.gov (United States)

    Yu, Hwa-Lung; Chien, Lung-Chang

    2016-01-01

    Fine particulate matter respiratory disease remain inconsistent. The short-term, population-based association between the respiratory clinic visits of children and PM2.5 exposure levels were investigated by considering both the spatiotemporal distributions of ambient pollution and clinic visit data. We applied a spatiotemporal structured additive regression model to examine the concentration-response (C-R) association between children's respiratory clinic visits and PM2.5 concentrations. This analysis was separately performed on three respiratory disease categories that were selected from the Taiwanese National Health Insurance database, which includes 41 districts in the Taipei area of Taiwan from 2005 to 2007. The findings reveal a non-linear C-R pattern of PM2.5, particularly in acute respiratory infections. However, a PM2.5 increase at relatively lower levels can elevate the same-day respiratory health risks of both preschool children (increase from 0.76 to 7.44 μg/m(3), and in schoolchildren, same-day health risks rise when concentrations increase from 0.76 to 7.52 μg/m(3). Changes in PM2.5 levels generally exhibited no significant association with same-day respiratory risks, except in instances where PM2.5 levels are extremely high, and these occurrences do exhibit a significant positive influence on respiratory health that is especially notable in schoolchildren. A significant high relative rate of respiratory clinic visits are concentrated in highly populated areas. We highlight the non-linearity of the respiratory health effects of PM2.5 on children to investigate this population-based association. The C-R relationship in this study can provide a highly valuable alternative for assessing the effects of ambient air pollution on human health.

  3. Satellite-based estimates of long-term exposure to fine particulate matter are associated with C-reactive protein in 30 034 Taiwanese adults.

    Science.gov (United States)

    Zhang, Zilong; Chang, Ly-Yun; Lau, Alexis K H; Chan, Ta-Chien; Chieh Chuang, Yuan; Chan, Jimmy; Lin, Changqing; Kai Jiang, Wun; Dear, Keith; Zee, Benny C Y; Yeoh, Eng-Kiong; Hoek, Gerard; Tam, Tony; Qian Lao, Xiang

    2017-08-01

    Particulate matter (PM) air pollution is associated with the risk of cardiovascular morbidity and mortality. However, the biological mechanism underlying the associations remains unclear. Atherosclerosis, the underlying pathology of cardiovascular disease, is a chronic inflammatory process. We therefore investigated the association of long-term exposure to fine PM (PM2.5) with C-reactive protein (CRP), a sensitive marker of systemic inflammation, in a large Taiwanese population. Participants were from a large cohort who participated in a standard medical examination programme with measurements of high-sensitivity CRP between 2007 and 2014. We used a spatiotemporal model to estimate 2-year average PM2.5 exposure at each participant's address, based on satellite-derived aerosol optical depth data. General regression models were used for baseline data analysis and mixed-effects linear regression models were used for repeated data analysis to investigate the associations between PM2.5 exposure and CRP, adjusting for a wide range of potential confounders. In this population of 30 034 participants with 39 096 measurements, every 5 μg/m3 PM2.5 increment was associated with a 1.31% increase in CRP [95% confidence interval (CI): 1.00%, 1.63%) after adjusting for confounders. For those participants with repeated CRP measurements, no significant changes were observed between the first and last measurements (0.88 mg/l vs 0.89 mg/l, P = 0.337). The PM2.5 concentrations remained stable over time between 2007 and 2014. Long-term exposure to PM2.5 is associated with increased level of systemic inflammation, supporting the biological link between PM2.5 air pollution and deteriorating cardiovascular health. Air pollution reduction should be an important strategy to prevent cardiovascular disease. © The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association

  4. Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: stress response and extracellular to intracellular HSP70 ratio analysis.

    Science.gov (United States)

    Goettems-Fiorin, Pauline Brendler; Grochanke, Bethânia Salamoni; Baldissera, Fernanda Giesel; Dos Santos, Analu Bender; Homem de Bittencourt, Paulo Ivo; Ludwig, Mirna Stela; Rhoden, Claudia Ramos; Heck, Thiago Gomes

    2016-12-01

    Exposure to fine particulate matter (PM 2.5 ) air pollution is a risk factor for type 2 diabetes (T2DM). We argue whether the potentiating effect of PM 2.5 over the development of T2DM in high-fat diet (HFD)-fed mice would be related to modification in cell stress response, particularly in antioxidant defenses and 70-kDa heat shock proteins (HSP70) status. Male mice were fed standard chow or HFD for 12 weeks and then randomly exposed to daily nasotropic instillation of PM 2.5 for additional 12 weeks under the same diet schedule, divided into four groups (n = 14-15 each): Control, PM 2.5 , HFD, and HFD + PM 2.5 were evaluated biometric and metabolic profiles of mice, and cellular stress response (antioxidant defense and HSP70 status) of metabolic tissues. Extracellular to intracellular HSP70 ratio ([eHSP72]/[iHSP70]), viz. H-index, was then calculated. HFD + PM 2.5 mice presented a positive correlation between adiposity, increased body weight and glucose intolerance, and increased glucose and triacylglycerol plasma levels. Pancreas exhibited lower iHSP70 expression, accompanied by 3.7-fold increase in the plasma to pancreas [eHSP72]/[iHSP70] ratio. Exposure to PM 2.5 markedly potentiated metabolic dysfunction in HFD-treated mice and promoted relevant alteration in cell stress response assessed by [eHSP72]/[iHSP70], a relevant biomarker of chronic low-grade inflammatory state and T2DM risk.

  5. Exercise Training under Exposure to Low Levels of Fine Particulate Matter: Effects on Heart Oxidative Stress and Extra-to-Intracellular HSP70 Ratio

    Directory of Open Access Journals (Sweden)

    Aline Sfalcin Mai

    2017-01-01

    Full Text Available Fine particulate matter (PM2.5 promotes heart oxidative stress (OS and evokes anti-inflammatory responses observed by increased intracellular 70 kDa heat shock proteins (iHSP70. Furthermore, PM2.5 increases the levels of these proteins in extracellular fluids (eHSP70, which have proinflammatory roles. We investigated whether moderate and high intensity training under exposure to low levels of PM2.5 modifies heart OS and the eHSP70 to iHSP70 ratio (H-index, a biomarker of inflammatory status. Male mice (n=32, 30 days old, were divided into six groups for 12 weeks: control (CON, moderate (MIT and high intensity training (HIT, exposure to 5 μg of PM2.5 daily (PM2.5, and moderate and high intensity training exposed to PM2.5 (MIT + PM2.5 and HIT + PM2.5 groups. The CON and PM2.5 groups remained sedentary. The MIT + PM2.5 group showed higher heart lipid peroxidation levels than the MIT and PM2.5 groups. HIT and HIT + PM2.5 showed higher heart lipid peroxidation levels and lower eHSP70 and H-index levels compared to sedentary animals. No alterations were found in heart antioxidant enzyme activity or iHSP70 levels. Moderate exercise training under exposure to low levels of PM2.5 induces heart OS but does not modify eHSP70 to iHSP70 ratio (H-index. High intensity exercise training promotes anti-inflammatory profile despite exposure to low levels of PM2.5.

  6. Short-term effects of ambient fine particulate matter pollution on hospital visits for chronic obstructive pulmonary disease in Beijing, China.

    Science.gov (United States)

    Tian, Yaohua; Xiang, Xiao; Juan, Juan; Song, Jing; Cao, Yaying; Huang, Chao; Li, Man; Hu, Yonghua

    2018-02-27

    Little is known about the effect of ambient fine particulate matter (PM 2.5 ) on chronic obstructive pulmonary disease (COPD) in China. The objective of this study was to explore the short-term effects of PM 2.5 on outpatient and inpatient visits for COPD in Beijing, China. A total of 3,503,313 outpatient visits and 126,982 inpatient visits for COPD between January 1, 2010, and June 30, 2012, were identified from the Beijing Medical Claim Data for Employees. A generalized additive Poisson model was applied to estimate the percentage change with 95% confidence interval (CI) in hospital visits for COPD in relation to an interquartile range (IQR) (90.8 μg/m 3 ) increase in PM 2.5 concentrations. Short-term exposure to PM 2.5 was significantly associated with increased use of COPD-related health services. There were clear exposure-response associations of PM 2.5 with COPD outpatient and inpatient visits. An IQR increase in the concurrent day PM 2.5 concentrations was significantly associated with a 2.38% (95% CI, 2.22%-2.53%) and 6.03% (95% CI, 5.19%-6.87%) increase in daily outpatient visits and inpatient visits, respectively. Elderly people were more sensitive to the adverse effects. The estimated risk was higher during the warm season compared to the cool season. Short-term exposure to PM 2.5 was associated with increased risk of hospital visits for COPD. Our findings contributed to the limited evidence concerning the effects of ambient PM 2.5 on COPD morbidity in developing countries.

  7. Do causal concentration-response functions exist? A critical review of associational and causal relations between fine particulate matter and mortality.

    Science.gov (United States)

    Cox, Louis Anthony Tony

    2017-08-01

    Concentration-response (C-R) functions relating concentrations of pollutants in ambient air to mortality risks or other adverse health effects provide the basis for many public health risk assessments, benefits estimates for clean air regulations, and recommendations for revisions to existing air quality standards. The assumption that C-R functions relating levels of exposure and levels of response estimated from historical data usefully predict how future changes in concentrations would change risks has seldom been carefully tested. This paper critically reviews literature on C-R functions for fine particulate matter (PM2.5) and mortality risks. We find that most of them describe historical associations rather than valid causal models for predicting effects of interventions that change concentrations. The few papers that explicitly attempt to model causality rely on unverified modeling assumptions, casting doubt on their predictions about effects of interventions. A large literature on modern causal inference algorithms for observational data has been little used in C-R modeling. Applying these methods to publicly available data from Boston and the South Coast Air Quality Management District around Los Angeles shows that C-R functions estimated for one do not hold for the other. Changes in month-specific PM2.5 concentrations from one year to the next do not help to predict corresponding changes in average elderly mortality rates in either location. Thus, the assumption that estimated C-R relations predict effects of pollution-reducing interventions may not be true. Better causal modeling methods are needed to better predict how reducing air pollution would affect public health.

  8. Fine particulate air pollution and all-cause mortality within the Harvard Six-Cities Study: variations in risk by period of exposure.

    Science.gov (United States)

    Villeneuve, Paul J; Goldberg, Mark S; Krewski, Daniel; Burnett, Richard T; Chen, Yue

    2002-11-01

    We used Poisson regression methods to examine the relation between temporal changes in the levels of fine particulate air pollution (PM(2.5)) and the risk of mortality among participants of the Harvard Six Cities longitudinal study. Our analyses were based on 1430 deaths that occurred between 1974 and 1991 in a cohort that accumulated 105,714 person-years of follow-up. For each city, indices of PM(2.5) were derived using daily samples. Individual level data were collected on several risk factors including: smoking, education, body mass index (BMI), and occupational exposure to dusts. Time-dependent indices of PM(2.5) were created across 13 calendar periods (/= 1990) to explore whether recent or chronic exposures were more important predictors of mortality. The relative risk (RR) of mortality calculated using Poisson regression based on average city-specific exposures that remained constant during follow-up was 1.31 [95% confidence interval (CI) = 1.12-1.52] per 18.6 microg/m(3) of PM(2.5). This result was similar to the risk calculated using the Cox model (RR = 1.26, 95% CI = 1.08-1.46). The RR of mortality was attenuated when the Poisson regression model included a time-dependent estimate of exposure (RR = 1.19, 95% CI = 1.04-1.36). There was little variation in RR across time-dependent indices of PM(2.5). The attenuated risk of mortality that was observed with a time-dependent index of PM(2.5) is due to the combined influence of city-specific variations in mortality rates and decreasing levels of air pollution that occurred during follow-up. The RR of mortality associated with PM(2.5) did not depend on when exposure occurred in relation to death, possibly because of little variation between the time-dependent city-specific exposure indices.

  9. Fine-scale genetic mapping of a hybrid sterility factor between Drosophila simulans and D. mauritiana: the varied and elusive functions of "speciation genes"

    Directory of Open Access Journals (Sweden)

    Lemos Bernardo

    2010-12-01

    Full Text Available Abstract Background Hybrid male sterility (HMS is a usual outcome of hybridization between closely related animal species. It arises because interactions between alleles that are functional within one species may be disrupted in hybrids. The identification of genes leading to hybrid sterility is of great interest for understanding the evolutionary process of speciation. In the current work we used marked P-element insertions as dominant markers to efficiently locate one genetic factor causing a severe reduction in fertility in hybrid males of Drosophila simulans and D. mauritiana. Results Our mapping effort identified a region of 9 kb on chromosome 3, containing three complete and one partial coding sequences. Within this region, two annotated genes are suggested as candidates for the HMS factor, based on the comparative molecular characterization and public-source information. Gene Taf1 is partially contained in the region, but yet shows high polymorphism with four fixed non-synonymous substitutions between the two species. Its molecular functions involve sequence-specific DNA binding and transcription factor activity. Gene agt is a small, intronless gene, whose molecular function is annotated as methylated-DNA-protein-cysteine S-methyltransferase activity. High polymorphism and one fixed non-synonymous substitution suggest this is a fast evolving gene. The gene trees of both genes perfectly separate D. simulans and D. mauritiana into monophyletic groups. Analysis of gene expression using microarray revealed trends that were similar to those previously found in comparisons between whole-genome hybrids and parental species. Conclusions The identification following confirmation of the HMS candidate gene will add another case study leading to understanding the evolutionary process of hybrid incompatibility.

  10. Fine-scale genetic mapping of a hybrid sterility factor between Drosophila simulans and D. mauritiana: the varied and elusive functions of "speciation genes".

    Science.gov (United States)

    Araripe, Luciana O; Montenegro, Horácio; Lemos, Bernardo; Hartl, Daniel L

    2010-12-14

    Hybrid male sterility (HMS) is a usual outcome of hybridization between closely related animal species. It arises because interactions between alleles that are functional within one species may be disrupted in hybrids. The identification of genes leading to hybrid sterility is of great interest for understanding the evolutionary process of speciation. In the current work we used marked P-element insertions as dominant markers to efficiently locate one genetic factor causing a severe reduction in fertility in hybrid males of Drosophila simulans and D. mauritiana. Our mapping effort identified a region of 9 kb on chromosome 3, containing three complete and one partial coding sequences. Within this region, two annotated genes are suggested as candidates for the HMS factor, based on the comparative molecular characterization and public-source information. Gene Taf1 is partially contained in the region, but yet shows high polymorphism with four fixed non-synonymous substitutions between the two species. Its molecular functions involve sequence-specific DNA binding and transcription factor activity. Gene agt is a small, intronless gene, whose molecular function is annotated as methylated-DNA-protein-cysteine S-methyltransferase activity. High polymorphism and one fixed non-synonymous substitution suggest this is a fast evolving gene. The gene trees of both genes perfectly separate D. simulans and D. mauritiana into monophyletic groups. Analysis of gene expression using microarray revealed trends that were similar to those previously found in comparisons between whole-genome hybrids and parental species. The identification following confirmation of the HMS candidate gene will add another case study leading to understanding the evolutionary process of hybrid incompatibility.

  11. Speciation and Health Risks of Atmospheric Nanoparticulates

    Science.gov (United States)

    Nguyen, Kennedy

    Exposure to air pollution causes several adverse health effects such as asthma, respiratory disease, cardiovascular disease, cancer, and premature death; and the San Joaquin Valley is one of the most heavily polluted regions in the US. The mountains that surround the valley allow air pollution, including particulate matter, to remain stagnant, prolonging the exposure of valley populations to it. The primary sources of particulate matter for this region are aluminosilicate dust from agricultural activities, and soot emissions from diesel trucks and vehicular traffic. A substantial fraction of emitted material is nanoparticulate matter (testing in cell culture studies, and correlation of particulate properties and sources with their negative health impacts. These results can help identify the sources of air pollution to prioritize for mitigation for the greatest health benefit. In addition, further chemical speciation can help monitor the results of such mitigation efforts. Here, natural particulate matter samples from Merced and Fresno, two cities in the San Joaquin Valley, were analyzed. Ultrafine particles present were 40 to 50 nm in diameter and mostly composed of aluminum, silicon, oxygen, and iron hydroxide. XAS data confirmed the presence of the aluminosilicate as smectite clay and the iron hydroxide as ferrihydrite. Furthermore, a chemical speciation study investigated industrial emissions of air particulate matter. Samples were analyzed using electron microscopy for elemental composition and size distribution, and found to contain fine metal particulates (lead and iron) that can lead to lung inflammation. From characterization data, in order to create a simplified proxy particle system for cell culture studies, amorphous silica particles were synthesized using a modified Stober Synthesis and coated with iron hydroxide. A range of iron hydroxide concentrations (0.06 to 1.63 mmol of iron per gram of silica) were used to test the effect of iron contamination on

  12. Impact of 2000–2050 climate change on fine particulate matter (PM2.5 air quality inferred from a multi-model analysis of meteorological modes

    Directory of Open Access Journals (Sweden)

    D. J. Jacob

    2012-12-01

    Full Text Available Studies of the effect of climate change on fine particulate matter (PM2.5 air quality using general circulation models (GCMs show inconsistent results including in the sign of the effect. This reflects uncertainty in the GCM simulations of the regional meteorological variables affecting PM2.5. Here we use the CMIP3 archive of data from fifteen different IPCC AR4 GCMs to obtain improved statistics of 21st-century trends in the meteorological modes driving PM2.5 variability over the contiguous US. We analyze 1999–2010 observations to identify the dominant meteorological modes driving interannual PM2.5 variability and their synoptic periods T. We find robust correlations (r > 0.5 of annual mean PM2.5 with T, especially in the eastern US where the dominant modes represent frontal passages. The GCMs all have significant skill in reproducing present-day statistics for T and we show that this reflects their ability to simulate atmospheric baroclinicity. We then use the local PM2.5-to-period sensitivity (dPM2.5/dT from the 1999–2010 observations to project PM2.5 changes from the 2000–2050 changes in T simulated by the 15 GCMs following the SRES A1B greenhouse warming scenario. By weighted-average statistics of GCM results we project a likely 2000–2050 increase of ~ 0.1 μg m−3 in annual mean PM2.5 in the eastern US arising from less frequent frontal ventilation, and a likely decrease albeit with greater inter-GCM variability in the Pacific Northwest due to more frequent maritime inflows. Potentially larger regional effects of 2000–2050 climate change on PM2.5 may arise from changes in temperature, biogenic emissions, wildfires, and vegetation, but are still unlikely to affect annual PM2.5 by more than 0.5 μg m−3.

  13. Polycyclic aromatic hydrocarbon components contribute to the mitochondria-antiapoptotic effect of fine particulate matter on human bronchial epithelial cells via the aryl hydrocarbon receptor

    Directory of Open Access Journals (Sweden)

    Baeza-Squiban Armelle

    2010-07-01

    Full Text Available Abstract Background Nowadays, effects of fine particulate matter (PM2.5 are well-documented and related to oxidative stress and pro-inflammatory response. Nevertheless, epidemiological studies show that PM2.5 exposure is correlated with an increase of pulmonary cancers and the remodeling of the airway epithelium involving the regulation of cell death processes. Here, we investigated the components of Parisian PM2.5 involved in either the induction or the inhibition of cell death quantified by different parameters of apoptosis and delineated the mechanism underlying this effect. Results In this study, we showed that low levels of Parisian PM2.5 are not cytotoxic for three different cell lines and primary cultures of human bronchial epithelial cells. Conversely, a 4 hour-pretreatment with PM2.5 prevent mitochondria-driven apoptosis triggered by broad spectrum inducers (A23187, staurosporine and oligomycin by reducing the mitochondrial transmembrane potential loss, the subsequent ROS production, phosphatidylserine externalization, plasma membrane permeabilization and typical morphological outcomes (cell size decrease, massive chromatin and nuclear condensation, formation of apoptotic bodies. The use of recombinant EGF and specific inhibitor led us to rule out the involvement of the classical EGFR signaling pathway as well as the proinflammatory cytokines secretion. Experiments performed with different compounds of PM2.5 suggest that endotoxins as well as carbon black do not participate to the antiapoptotic effect of PM2.5. Instead, the water-soluble fraction, washed particles and organic compounds such as polycyclic aromatic hydrocarbons (PAH could mimic this antiapoptotic activity. Finally, the activation or silencing of the aryl hydrocarbon receptor (AhR showed that it is involved into the molecular mechanism of the antiapoptotic effect of PM2.5 at the mitochondrial checkpoint of apoptosis. Conclusions The PM2.5-antiapoptotic effect in addition

  14. Chemical characterization and sources of personal exposure to fine particulate matter (PM2.5) in the megacity of Guangzhou, China.

    Science.gov (United States)

    Chen, Xiao-Cui; Jahn, Heiko J; Engling, Guenter; Ward, Tony J; Kraemer, Alexander; Ho, Kin-Fai; Yim, S H L; Chan, Chuen-Yu

    2017-12-01

    Concurrent ambient and personal measurements of fine particulate matter (PM 2.5 ) were conducted in eight districts of Guangzhou during the winter of 2011. Personal-to-ambient (P-C) relationships of PM 2.5 chemical components were determined and sources of personal PM 2.5 exposures were evaluated using principal component analysis and a mixed-effects model. Water-soluble inorganic ions (e.g., SO 4 2- , NO 3 - , NH 4 + , C 2 O 4 2- ) and anhydrosugars (e.g., levoglucosan, mannosan) exhibited median personal-to-ambient (P/C) ratios personal PM 2.5 were significantly affected by ambient sources. Conversely, elemental carbon (EC) and calcium (Ca 2+ ) showed median P/C ratios greater than unity, illustrating significant impact of local traffic, indoor sources, and/or personal activities on individual's exposure. SO 4 2- displayed very low coefficient of divergence (COD) values coupled with strong P-C correlations, implying a uniform distribution of SO 4 2- in the urban area of Guangzhou. EC, Ca 2+ , and levoglucosan were otherwise heterogeneously distributed across individuals in different districts. Regional air pollution (50.4 ± 0.9%), traffic-related particles (8.6 ± 0.7%), dust-related particles (5.8 ± 0.7%), and biomass burning emissions (2.0 ± 0.2%) were moderate to high positive sources of personal PM 2.5 exposure in Guangzhou. The observed positive and significant contribution of Ca 2+ to personal PM 2.5 exposure, highlighting indoor sources and/or personal activities, were driving factors determining personal exposure to dust-related particles. Considerable discrepancies (COD values ranging from 0.42 to 0.50) were shown between ambient concentrations and personal exposures, indicating caution should be taken when using ambient concentrations as proxies for personal exposures in epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Saccharide Composition in Fine and Coarse Particulate Matter and Soils in Central Arizona and Use of Saccharides as Molecular Markers for Source Apportionment

    Science.gov (United States)

    Jia, Y.; Clements, A.; Fraser, M.

    2009-04-01

    The desert southwestern United States routinely exceeds health-based standards for coarse particulate matter [1]. PM10 concentrations are high in both urban and rural areas and are believed to originate from fugitive dust emissions from agricultural fields and roads and soil erosion from the surrounding desert locations. Soil together with its associated biota contains a complex mixture of biogenic detritus, including plant detritus, airborne microbes comprised of bacteria, viruses, spores of lichens and fungi, small algae, and protozoan cysts [4][5], which can mostly become airborne when winds are strong enough and soil dry enough to be re-entrained into the atmosphere [3]. Other potential sources to PM10 may include primary biological aerosol particles (PBAPs), given a multitude of flower, grass, and fungal species that thrive in the Sonoran desert and actively release pollens and spores throughout the year [2]. However, because soil and fugitive dust is also believed to contain a large number of these biological particles and is considered as a secondary host of PBAPs [3] [4], the role and contribution of PBAPs as a direct ambient PM source in the desert southwest have not been clearly stated or investigated. In an effort to identify and assess the relative contribution of these and other major PM sources in the southwestern US region, and particularly to assess the contribution from soil and fugitive dust, a series of ambient PM samples and soil samples were collected in Higley, AZ, USA, a suburb of the Phoenix metropolitan area which has seen rapid urban sprawl onto agricultural lands. Because of their suggested ability to track biologically important organic materials from natural environment [4][6][7][8][9][10], saccharides were chosen as the key compounds to trace the release of soil dusts into the atmosphere, and to elucidate other major sources that contribute to the PM levels in this location in the arid southwestern US. To this end, saccharide compounds

  16. Omega-3 Fatty Acid Attenuates Cardiovascular Effects in Healthy Older Volunteers Exposed to Concentrated Ambient Fine and UltrafineParticulate Matter

    Science.gov (United States)

    Rationale: Ambient particulate matter (PM) exposure has been associated with adverse cardiovascular effects. A recent epidemiology study reported that omega-3 polyunsaturated fatty acid (fish oil) supplementation blunted the response of study participants to PM. Our study was des...

  17. Influence of fossil-fuel power plant emissions on the surface fine particulate matter in the Seoul Capital Area, South Korea.

    Science.gov (United States)

    Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae

    2016-09-01

    The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle

  18. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering

    International Nuclear Information System (INIS)

    Gu Dongdong; Shen Yifu; Zhao Long; Xiao Jun; Wu Peng; Zhu Yongbing

    2007-01-01

    This paper presents a detailed investigation into the influence of the rare earth (RE) oxide (La 2 O 3 ) addition upon the densification and the resultant microstructural characteristics of the submicron WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. It is found that the relative density of the laser sintered sample with 1 wt.% La 2 O 3 addition increased by 11.5% as compared with the sample without RE addition. The addition of RE element favored the microstructural refinement and improved the particulate dispersion homogeneity and the particulate/matrix interfacial coherence. The metallurgical functions of the RE element in improving the sinterability were also addressed. It shows that due to the unique properties of RE element such as high surface activity and large atomic radius, the addition of trace RE element can decrease the surface tension of the melt, resist the grain growth coarsening and increase the heterogeneous nucleation rate during laser sintering

  19. Preliminary analysis of variability in concentration of fine particulate matter - PM1.0, PM2.5 and PM10 in area of Poznań city

    Directory of Open Access Journals (Sweden)

    Sówka Izabela

    2018-01-01

    Full Text Available It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10 in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 – 8.7-69.6 μg/m3, PM2.5 – 2.2-88.5 μg/m3, PM1.0 – 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10, 1.2-40.3 μg/m3 (PM2.5 and 2.7-10.4 (PM1.0 in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street, -0.53 and -0.53 (Szymanowskiego Street, for PM2.5: -0.60 and -0.53 (Jana Pawła II Street and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street.

  20. Proposal for a European standard dealing with measuring methods for fine particulate emissions of solid-fuel fired furnaces; Vorschlag einer europaeischen Staubmessnorm fuer Feststoff-Feuerstaetten - Ausarbeitung und Untersuchung eines Typenpruef-Messverfahrens fuer Staubemissionen

    Energy Technology Data Exchange (ETDEWEB)

    Gaegauf, Ch. [Oekozentrum, Langenbruck (Switzerland); Griffin, T. [Fachhochschule Nordwestschweiz/ITFE, Muttenz (Switzerland)

    2007-10-15

    The European standards for type testing of solid fuel burning appliances require only the measurement of carbon monoxide emissions. Many European countries urge the standardisation committees to establish standards for the regulation of fine particulate emissions from flue gases since they face exceeding threshold values of particulate matter in the ambient air. The Technical Committee CEN/TC 295 for the standardisation of solid fuel burning appliances assigned the Centre for Appropriate Technology in Langenbruck, Switzerland with the development of a European Technical Specification (CEN TS) for the determination of particulate emission. The new draft of the TS is based on constant volume sampling (CVS) of the entire flue gas flow in a dilution tunnel. The scientific research has been done in the Swiss test laboratory for solid fuel burning appliances and boilers at the University of Applied Sciences, in Basle. The TS is designed in such a way that it can be integrated into the test cycles required by various European standards. The investigation covered work on parameters such as dilution factor, sampling temperature and isokinetics. Tests with a wood log burning appliance and a pellet stove showed that emissions in the dilution tunnel were between 7% and 26% for the pellet stove and from 40% up to 160% higher if they were sampled directly from the stack using heated gravimetric filters. It was demonstrated that the differences between the emissions seen in the dilution tunnel and those from the stack increased along with increasing levels of incomplete combustion. (author)

  1. Fine particulate matter measurements in Swiss restaurants, cafés and bars: what is the effect of spatial separation between smoking and non-smoking areas?

    NARCIS (Netherlands)

    Huss, A.; Kooijman, C.; Breuer, M.; Bohler, P.; Zund, T.; Wenk, S.; Roosli, M.

    2010-01-01

    We performed 124 measurements of particulate matter (PM(2.5)) in 95 hospitality venues such as restaurants, bars, cafés, and a disco, which had differing smoking regulations. We evaluated the impact of spatial separation between smoking and non-smoking areas on mean PM(2.5) concentration, taking

  2. Near-road enhancement and solubility of fine and coarse particulate matter trace elements near a major interstate in Detroit, Michigan

    Science.gov (United States)

    Communities near major roadways are disproportionately affected by traffic-related air pollution which can contribute to adverse health outcomes. The specific role of particulate matter (PM) from traffic sources is not fully understood due to complex emissions processes and physi...

  3. Ozone co-exposure modifies cardiac responses to fine and ultrafine ambient particulate matter in mice: concordance of electrocardiogram and mechanical responses

    Science.gov (United States)

    BackgroundStudies have shown a relationship between air pollution and increased risk of cardiovascular morbidity and mortality. Due to the complexity of ambient air pollution composition, recent studies have examined the effects of co-exposure, particularly particulate matter (PM...

  4. Atmospheric speciation of mercury in two contrasting Southeastern US airsheds

    Science.gov (United States)

    Gabriel, Mark C.; Williamson, Derek G.; Brooks, Steve; Lindberg, Steve

    Simultaneous measurement of gaseous elemental, reactive gaseous, and fine particulate mercury took place in Tuscaloosa AL, (urban airshed) and Cove Mountain, TN (non-urban airshed) during the summers of 2002 and 2003. The objective of this research was to (1) summarize the temporal distribution of each mercury specie at each site and compare to other speciation data sets developed by other researchers and (2) provide insight into urban and non-urban mercury speciation effects using various statistical methods. Average specie concentrations were as follows: 4.05 ng m -3 (GEM), 13.6 pg m -3 (RGM), 16.4 pg m -3 (Hg-p) for Tuscaloosa; 3.20 ng m -3 (GEM), 13.6 pg m -3 (RGM), 9.73 pg m -3 (Hg-p) for Cove Mountain. As a result of urban airshed impacts, short periods of high concentration for all mercury species was common in Tuscaloosa. At Cove Mountain a consistent mid-day rise and evening drop for mercury species was found. This pattern was primarily the result of un-impacted physical boundary layer movement, although, other potential impacts were ambient photochemistry and air-surface exchange of mercury. Meteorological parameters that are known to heavily impact mercury speciation were similar for the study period for Tuscaloosa and Cove Mountain except for wind speed (m s -1), which was higher at Cove Mountain. For both sites statistically significant ( p<0.0001), inverse relationships existed between wind speed and Hg 0 concentration. A weaker windspeed-Hg 0 correlation existed for Tuscaloosa. By analyzing Hg concentration—wind speed magnitude change at both sites it was found that wind speed at Cove Mountain had a greater influence on Hg 0 concentration variability than Tuscaloosa by a factor of 3. Using various statistical tests, we concluded that the nature of Tuscaloosa's atmospheric mercury speciation was the result of typical urban airshed impacts. Cove Mountain showed atmospheric mercury speciation characteristics indicative of a non-urban area along with

  5. Synchrotron speciation data for zero-valent iron nanoparticles: Linear combination fitting table(#6) and figure(#9), and extended x-ray absorption fine structure figure(#10) and table(#7)

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data set encompasses a complete analysis of synchrotron speciation data for 5 iron nanoparticle samples (P1, P2, P3, S1, S2, and metallic iron) to include...

  6. Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree

    Directory of Open Access Journals (Sweden)

    Lixin Li

    2014-09-01

    Full Text Available Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate

  7. Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree

    Science.gov (United States)

    Li, Lixin; Losser, Travis; Yorke, Charles; Piltner, Reinhard

    2014-01-01

    Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation

  8. Fast inverse distance weighting-based spatiotemporal interpolation: a web-based application of interpolating daily fine particulate matter PM2:5 in the contiguous U.S. using parallel programming and k-d tree.

    Science.gov (United States)

    Li, Lixin; Losser, Travis; Yorke, Charles; Piltner, Reinhard

    2014-09-03

    Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse distance weighting (IDW)-based spatiotemporal interpolation methods, in order to assess the trend of daily PM2.5 concentration for the contiguous United States over the year of 2009, at both the census block group level and county level. Traditionally, when handling spatiotemporal interpolation, researchers tend to treat space and time separately and reduce the spatiotemporal interpolation problems to a sequence of snapshots of spatial interpolations. In this paper, PM2.5 data interpolation is conducted in the continuous space-time domain by integrating space and time simultaneously, using the so-called extension approach. Time values are calculated with the help of a factor under the assumption that spatial and temporal dimensions are equally important when interpolating a continuous changing phenomenon in the space-time domain. Various IDW-based spatiotemporal interpolation methods with different parameter configurations are evaluated by cross-validation. In addition, this study explores computational issues (computer processing speed) faced during implementation of spatiotemporal interpolation for huge data sets. Parallel programming techniques and an advanced data structure, named k-d tree, are adapted in this paper to address the computational challenges. Significant computational improvement has been achieved. Finally, a web-based spatiotemporal IDW-based interpolation application is designed and implemented where users can visualize and animate spatiotemporal interpolation

  9. Chemical characterization of outdoor and subway fine (PM(2.5-1.0)) and coarse (PM(10-2.5)) particulate matter in Seoul (Korea) by computer-controlled scanning electron microscopy (CCSEM).

    Science.gov (United States)

    Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M

    2015-02-13

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%-60% (by weight) of fine particulate matter larger than 1 µm (PM(2.5-1.0)) in outdoor samples and 18% of PM2.5-1.0 in subway samples. Iron-containing particles accounted for only 3%-6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM(10-2.5)) with soil/road dust particles dominating outdoor samples (66%-83%) and iron-containing particles contributing most to subway PM(10-2.5) (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM(10-2.5) than PM(2.5-1.0). Also as expected, the mass fraction of iron-containing particles was substantially less in PM(10-2.5) than in PM(2.5-1.0). Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM(2.5-1.0) and PM(10-2.5) simultaneously and by composition at multiple locations.

  10. Fine scale distributions of porosity and particulate excess 210Pb, organic carbon and CaCO3 in surface sediments of the deep equatorial Pacific

    International Nuclear Information System (INIS)

    Jahnke, R.A.; Emerson, S.R.; Cochran, J.K.; Hirschberg, D.J.

    1986-01-01

    Sediment samples were recovered from the central equatorial Pacific Ocean, sectioned at 1-mm intervals, and analyzed for porosity, organic carbon, excess 210 Pb and CaCO 3 . Steep porosity gradients were measured in the upper 1 cm of the sediment column with extremely high values observed near the sediment surface. Similarly, particulate organic carbon contents are highest at the sediment surface, decrease sharply in the upper 1 cm, and are relatively constant between 1 and 5 cm. CaCO 3 values, on the other hand, are lowest at the sediment surface and increase to a constant value below 5-10 mm depth. At the carbonate ooze sites, excess 210 Pb is present throughout the upper 5 cm of the sediments suggesting relatively rapid particle mixing rates. However, extremely high excess 210 Pb activities (> 100 dpm/g) are observed at the sediment surface with sharp gradients present in the upper 1 cm which would suggest slow rates of mixing. This apparent contradiction along with the major features of the CaCO 3 and particulate organic carbon profiles can be explained by a particle-selective feeding mechanism in which organic carbon, excess 210 Pb-enriched particles are preferentially maintained at the sediment surface via ingestion and defecation by benthic organisms. (orig.)

  11. Air quality in the Kootenays: fine particulate (PM{sub 1}0) airborne metals and sulphur dioxide levels, 1993-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    Air quality monitoring data collected in the Kootenays over a seven year period from 1993 to 1999 are summarized in an effort to inform the public about air quality in the Kootenays and to assist them in understanding air quality monitoring results. Data includes hourly (TEOM) and weekly (NAPS) data for particulate matter (PM{sub 1}0) airborne metals (arsenic, cadmium, lead and zinc) and sulphur dioxide. Analysis of monitoring data showed that particulate matter levels remained constant in most communities, with Johnson Lake and Slocan reporting the lowest levels, while Golden had the highest values during this period. Trail-Butler Park showed a clear declining trend in PM{sub 1}0. Airborne metals and sulphur dioxide levels have decreased in the Kootenays during the seven year period, with only occasional exceedances of both Level A and B air quality objectives in some communities. The report includes a detailed description of the sampling methodology and the analyzed results for PM{sub 1}0, airborne metals and sulphur dioxide for 10 communities in the region. 6 refs., 1 tab., 16 figs., 1 map.

  12. Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode.

    Science.gov (United States)

    Kleeman, Michael J; Riddle, Sarah G; Robert, Michael A; Jakober, Chris A; Fine, Phillip M; Hays, Michael D; Schauer, James J; Hannigan, Michael P

    2009-01-15

    Size-resolved samples of airborne particulate matter (PM) collected during a severe winter pollution episode at three sites in the San Joaquin Valley of California were extracted with organic solvents and analyzed for detailed organic compounds using GC-MS. Six particle size fractions were characterized with diameter (Dp) < 1.8 microm; the smallest size fraction was 0.056 < Dp < 0.1 microm which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Source profiles for ultrafine particles developed during previous studies were applied to the measurements at each sampling site to calculate source contributions to organic carbon (OC) and elemental carbon (EC) concentrations. Ultrafine EC concentrations ranged from 0.03 microg m(-3) during the daytime to 0.18 microg m(-3) during the nighttime. Gasoline fuel, diesel fuel, and lubricating oil combustion products accounted for the majority of the ultrafine EC concentrations, with relatively minor contributions from biomass combustion and meat cooking. Ultrafine OC concentrations ranged from 0.2 microg m(-3) during the daytime to 0.8 microg m(-3) during the nighttime. Wood combustion was found to be the largest source of ultrafine OC. Meat cooking was also identified as a significant potential source of PM0.1 mass but further study is required to verify the contributions from this source. Gasoline fuel, diesel fuel, and lubricating oil combustion products made minor contributions to PM0.1 OC mass. Total ultrafine particulate matter concentrations were dominated by contributions from wood combustion and meat cooking during the current study. Future inhalation exposure studies may wish to target these sources as potential causes of adverse health effects.

  13. Combined effects of exposure to dim light at night and fine particulate matter on C3H/HeNHsd mice.

    Science.gov (United States)

    Hogan, Matthew K; Kovalycsik, Taylor; Sun, Qinghua; Rajagopalan, Sanjay; Nelson, Randy J

    2015-11-01

    Air and light pollution contribute to fetal abnormalities, increase prevalence of cancer, metabolic and cardiorespiratory diseases, and central nervous system (CNS) disorders. A component of air pollution, particulate matter, and the phenomenon of dim light at night (dLAN) both result in neuroinflammation, which has been implicated in several CNS disorders. The combinatorial role of these pollutants on health outcomes has not been assessed. Male C3H/HeNHsd mice, with intact melatonin production, were used to model humans exposed to circadian disruption by dLAN and contaminated environmental air. We hypothesized exposure to 2.5 μm of particulate matter (PM2.5) and dLAN (5lx) combines to upregulate neuroinflammatory cytokine expression and alter hippocampal morphology compared to mice exposed to filtered air (FA) and housed under dark nights (LD). We also hypothesized that exposure to PM2.5 and dLAN provokes anxiety-like and depressive-like responses. For four weeks, four groups of mice were simultaneously exposed to ambient concentrated PM2.5 or FA and/or dLAN or LD. Following exposure, mice underwent several behavioral assays and hippocampi were collected for qPCR and morphological analyses. Our results are generally comparable to previous PM2.5 and dLAN reports conducted on mice and implicate PM2.5 and dLAN as potential factors contributing to depression and anxiety. Short-term exposure to PM2.5 and dLAN upregulated neuroinflammatory cytokines and altered CA1 hippocampal structural changes, as well as provoked depressive-like responses (anhedonia). However, combined, PM2.5 and dLAN exposure did not have additive effects, as hypothesized, suggesting a ceiling effect of neuroinflammation may exist in response to multiple pollutants. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Speciated Elemental and Isotopic Characterization of Atmospheric Aerosols - Recent Advances

    Science.gov (United States)

    Shafer, M.; Majestic, B.; Schauer, J.

    2007-12-01

    Detailed elemental, isotopic, and chemical speciation analysis of aerosol particulate matter (PM) can provide valuable information on PM sources, atmospheric processing, and climate forcing. Certain PM sources may best be resolved using trace metal signatures, and elemental and isotopic fingerprints can supplement and enhance molecular maker analysis of PM for source apportionment modeling. In the search for toxicologically relevant components of PM, health studies are increasingly demanding more comprehensive characterization schemes. It is also clear that total metal analysis is at best a poor surrogate for the bioavailable component, and analytical techniques that address the labile component or specific chemical species are needed. Recent sampling and analytical developments advanced by the project team have facilitated comprehensive characterization of even very small masses of atmospheric PM. Historically; this level of detail was rarely achieved due to limitations in analytical sensitivity and a lack of awareness concerning the potential for contamination. These advances have enabled the coupling of advanced chemical characterization to vital field sampling approaches that typically supply only very limited PM mass; e.g. (1) particle size-resolved sampling; (2) personal sampler collections; and (3) fine temporal scale sampling. The analytical tools that our research group is applying include: (1) sector field (high-resolution-HR) ICP-MS, (2) liquid waveguide long-path spectrophotometry (LWG-LPS), and (3) synchrotron x-ray absorption spectroscopy (sXAS). When coupled with an efficient and validated solubilization method, the HR-ICP-MS can provide quantitative elemental information on over 50 elements in microgram quantities of PM. The high mass resolution and enhanced signal-to-noise of HR-ICP-MS significantly advance data quality and quantity over that possible with traditional quadrupole ICP-MS. The LWG-LPS system enables an assessment of the soluble

  15. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications.

    Science.gov (United States)

    Lippmann, Morton

    2014-04-01

    Recent investigations on PM2.5 constituents' effects in community residents have substantially enhanced our knowledge on the impacts of specific components, especially the HEI-sponsored National Particle Toxicity Component (NPACT) studies at NYU and UW-LRRI that addressed the impact of long-term PM2.5 exposure on cardiovascular disease (CVD) effects. NYU's mouse inhalation studies at five sites showed substantial variations in aortic plaque progression by geographic region that was coherent with the regional variation in annual IHD mortality in the ACS-II cohort, with both the human and mouse responses being primarily attributable to the coal combustion source category. The UW regressions of associations of CVD events and mortality in the WHI cohort, and of CIMT and CAC progression in the MESA cohort, indicated that [Formula: see text] had stronger associations with CVD-related human responses than OC, EC, or Si. The LRRI's mice had CVD-related biomarker responses to [Formula: see text]. NYU also identified components most closely associated with daily hospital admissions (OC, EC, Cu from traffic and Ni and V from residual oil). For daily mortality, they were from coal combustion ([Formula: see text], Se, and As). While the recent NPACT research on PM2.5 components that affect CVD has clearly filled some major knowledge gaps, and helped to define remaining uncertainties, much more knowledge is needed on the effects in other organ systems if we are to identify and characterize the most effective and efficient means for reducing the still considerable adverse health impacts of ambient air PM. More comprehensive speciation data are needed for better definition of human responses.

  16. Dose-dependent relationship between prenatal exposure to fine particulates and exhaled carbon monoxide in non-asthmatic children. A population-based birth cohort study

    Directory of Open Access Journals (Sweden)

    Wiesław A. Jędrychowski

    2013-02-01

    Full Text Available Objectives: The main goal of the study was to assess possible association between fetal exposure to fi ne particulate matter (PM2.5 and exhaled carbon monoxide (eCO measured in non-asthmatic children. Material and Methods: The subjects include 118 children taking part in an ongoing population-based birth cohort study in Kraków. Personal samplers of PM2.5 were used to measure fi ne particle mass in the fetal period and carbon monoxide (CO in exhaled breath from a single exhalation effort at the age of 7. In the statistical analysis of the effect of prenatal PM2.5 exposure on eCO, a set of potential confounders, such as environmental tobacco smoke (ETS, city residence area, sensitization to house dust allergens and the occurrence of respiratory symptoms monitored over the seven-year follow-up was considered. Results: The level of eCO did not correlate with the self-reported ETS exposure recorded over the follow-up, however, there was a positive signifi cant relationship with the prenatal PM2.5 exposure (non-parametric trend p = 0.042. The eCO mean level was higher in atopic children (geometric mean = 2.06 ppm, 95% CI: 1.58–2.66 ppm than in non-atopic ones (geometric mean = 1.57 ppm, 95% CI: 1.47–1.73 ppm and the difference was statistically signifi cant (p = 0.036. As for the respiratory symptoms, eCO values were associated positively only with the cough severity score recorded in the follow-up (nonparametric trend p = 0.057. In the nested multivariable linear regression model, only the effects of prenatal PM2.5 and cough severity recorded in the follow-up were related to eCO level. The prenatal PM2.5 exposure represented 5.1%, while children’s cough represented only 2.6% of the eCO variability. Conclusion: Our study suggests that elevated eCO in non-asthmatic children may result from oxidative stress experienced in the fetal period and that heme oxygenase (HO activity in body tissues may be programmed in the fetal period by the exposure to

  17. Short-term effects of fine particulate air pollution on cardiovascular hospital emergency room visits: a time-series study in Beijing, China.

    Science.gov (United States)

    Su, Chang; Breitner, Susanne; Schneider, Alexandra; Liu, Liqun; Franck, Ulrich; Peters, Annette; Pan, Xiaochuan

    2016-05-01

    The link between particulate matter (PM) and cardiovascular morbidity has been investigated in numerous studies. Less evidence exists, however, about how age, gender and season may modify this relationship. The aim of this study was to evaluate the association between ambient PM2.5 (PM ≤ 2.5 µm) and daily hospital emergency room visits (ERV) for cardiovascular diseases in Beijing, China. Moreover, potential effect modification by age, gender, season, air mass origin and the specific period with 2008 Beijing Olympic were investigated. Finally, the temporal lag structure of PM2.5 has also been explored. Daily counts of cardiovascular ERV were obtained from the Peking University Third Hospital from January 2007 to December 2008. Concurrently, data on PM2.5, PM10 (PM ≤ 10 µm), nitrogen dioxide and sulfur dioxide concentrations were obtained from monitoring networks and a fixed monitoring station. Poisson regression models adjusting for confounders were used to estimate immediate, delayed and cumulative air pollution effects. The temporal lag structure was also estimated using polynomial distributed lag (PDL) models. We calculated the relative risk (RR) for overall cardiovascular disease ERV as well as for specific causes of disease; and also investigated the potential modifying effect of age, gender, season, air mass origin and the period with 2008 Beijing Olympics. We observed adverse effects of PM2.5 on cardiovascular ERV--an IQR increase (68 μg/m(3)) in PM2.5 was associated with an overall RR of 1.022 (95% CI 0.990-1.057) obtained from PDL model. Strongest effects of PM2.5 on cardiovascular ERV were found for a lag of 7 days; the respective estimate was 1.012 (95% CI 1.002-1.022). The effects were more pronounced in females and in spring. Arrhythmia and cerebrovascular diseases showed a stronger association with PM2.5. We also found stronger PM-effects for stagnant and southern air masses and the period of Olympics modified the air pollution effects. We

  18. Isolating the Meteorological Impact of 21st Century GHG Warming on the Removal and Atmospheric Loading of Anthropogenic Fine Particulate Matter Pollution at Global Scale

    Science.gov (United States)

    Xu, Yangyang; Lamarque, Jean-François

    2018-03-01

    Particulate matter with the diameter smaller than 2.5 μm (PM2.5) poses health threats to human population. Regardless of efforts to regulate the pollution sources, it is unclear how climate change caused by greenhouse gases (GHGs) would affect PM2.5 levels. Using century-long ensemble simulations with Community Earth System Model 1 (CESM1), we show that, if the anthropogenic emissions would remain at the level in the year 2005, the global surface concentration and atmospheric column burden of sulfate, black carbon, and primary organic carbon would still increase by 5%-10% at the end of 21st century (2090-2100) due to global warming alone. The decrease in the wet removal flux of PM2.5, despite an increase in global precipitation, is the primary cause of the increase in the PM2.5 column burden. Regionally over North America and East Asia, a shift of future precipitation toward more frequent heavy events contributes to weakened wet removal fluxes. Our results suggest climate change impact needs to be accounted for to define the future emission standards necessary to meet air quality standard.

  19. Inhibition of the WNT/β-catenin pathway by fine particulate matter in haze: Roles of metals and polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Lee, Kang-Yun; Cao, Jun-Ji; Lee, Chii-Hong; Hsiao, Ta-Chih; Yeh, Chi-Tai; Huynh, Thanh-Tuan; Han, Yong-Ming; Li, Xiang-Dong; Chuang, Kai-Jen; Tian, Linwei; Ho, Kin-Fai; Chuang, Hsiao-Chi

    2015-05-01

    Air pollution might have a great impact on pulmonary health, but biological evidence in response to particulate matter less than 2.5 μm in size (PM2.5) has been lacking. Physicochemical characterization of haze PM2.5 collected from Beijing, Xian and Hong Kong was performed. Biological pathways were identified by proteomic profiling in mouse lungs, suggesting that WNT/β-catenin is important in the response to haze PM2.5. Suppression of β-catenin levels, activation of caspase-3 and alveolar destruction, as well as IL-6, TNF-α and IFN-γ production, were observed in the lungs. The inhibition of β-catenin, TCF4 and cyclin D1 was observed in vitro in response to haze PM2.5. The inhibition of WNT/β-catenin signaling, apoptosis-related results (caspase-3 and alveolar destruction), and inflammation, particularly including caspase-3 and alveolar destruction, were more highly associated with polycyclic aromatic hydrocarbons in haze PM2.5. In conclusion, decreased WNT/β-catenin expression modulated by haze PM2.5 could be involved in alveolar destruction and inflammation during haze episodes.

  20. Association of Short-Term Exposure to Ambient Fine Particulate Matter with Skin Symptoms in Schoolchildren: A Panel Study in a Rural Area of Western Japan

    Directory of Open Access Journals (Sweden)

    Masanari Watanabe

    2017-03-01

    Full Text Available Numerous studies have unmasked the deleterious effects of particulate matter less than 2.5 μm (PM2.5 on health. However, epidemiologic evidence focusing on the effects of PM2.5 on skin health remains limited. An important aspect of Asian dust (AD in relationship to health is the amount of PM2.5 contained therein. Several studies have demonstrated that AD can aggravate skin symptoms. The current study aimed to investigate the effects of short-term exposure to PM2.5 and AD particles on skin symptoms in schoolchildren. A total of 339 children recorded daily skin symptom scores during February 2015. Light detection and ranging were used to calculate AD particle size. Generalized estimating equation logistic regression analyses were used to estimate the associations among skin symptoms and the daily levels of PM2.5 and AD particles. Increases in the levels of PM2.5 and AD particles were not related to an increased risk of skin symptom events, with increases of 10.1 μg/m3 in PM2.5 and 0.01 km−1 in AD particles changing odds ratios by 1.03 and 0.99, respectively. These results suggest that short-term exposure to PM2.5 and AD does not impact skin symptoms in schoolchildren.

  1. Indoor and Outdoor Exposure to Ultrafine, Fine and Microbiologically Derived Particulate Matter Related to Cardiovascular and Respiratory Effects in a Panel of Elderly Urban Citizens

    Directory of Open Access Journals (Sweden)

    Dorina Gabriela Karottki

    2015-02-01

    Full Text Available To explore associations of exposure to ambient and indoor air particulate and bio-aerosol pollutants with cardiovascular and respiratory disease markers, we utilized seven repeated measurements from 48 elderly subjects participating in a 4-week home air filtration study. Microvascular function (MVF, lung function, blood leukocyte counts, monocyte adhesion molecule expression, C-reactive protein, Clara cell protein (CC16 and surfactant protein-D (SPD were examined in relation to exposure preceding each measurement. Exposure assessment included 48-h urban background monitoring of PM10, PM2.5 and particle number concentration (PNC, weekly measurements of PM2.5 in living- and bedroom, 24-h measurements of indoor PNC three times, and bio-aerosol components in settled dust on a 2-week basis. Statistically significant inverse associations included: MVF with outdoor PNC; granulocyte counts with PM2.5; CD31 expression with dust fungi; SPD with dust endotoxin. Significant positive associations included: MVF with dust bacteria; monocyte expression of CD11 with PM2.5 in the bedroom and dust bacteria and endotoxin, CD31 expression with dust serine protease; serum CC16 with dust NAGase. Multiple comparisons demand cautious interpretation of results, which suggest that outdoor PNC have adverse effects on MVF, and outdoor and indoor PM2.5 and bio-aerosols are associated with markers of inflammation and lung cell integrity.

  2. Chemical Characterization of Outdoor and Subway Fine (PM2.5–1.0) and Coarse (PM10–2.5) Particulate Matter in Seoul (Korea) by Computer-Controlled Scanning Electron Microscopy (CCSEM)

    Science.gov (United States)

    Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M.

    2015-01-01

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%–60% (by weight) of fine particulate matter larger than 1 µm (PM2.5–1.0) in outdoor samples and 18% of PM2.5–1.0 in subway samples. Iron-containing particles accounted for only 3%–6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM10–2.5) with soil/road dust particles dominating outdoor samples (66%–83%) and iron-containing particles contributing most to subway PM10–2.5 (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM10–2.5 than PM2.5–1.0. Also as expected, the mass fraction of iron-containing particles was substantially less in PM10–2.5 than in PM2.5–1.0. Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM2.5–1.0 and PM10-2.5 simultaneously and by composition at multiple locations. PMID:25689348

  3. Chemical Characterization of Outdoor and Subway Fine (PM2.5–1.0 and Coarse (PM10–2.5 Particulate Matter in Seoul (Korea by Computer-Controlled Scanning Electron Microscopy (CCSEM

    Directory of Open Access Journals (Sweden)

    Sang-Hoon Byeon

    2015-02-01

    Full Text Available Outdoor and indoor (subway samples were collected by passive sampling in urban Seoul (Korea and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX. Soil/road dust particles accounted for 42%–60% (by weight of fine particulate matter larger than 1 µm (PM2.5–1.0 in outdoor samples and 18% of PM2.5–1.0 in subway samples. Iron-containing particles accounted for only 3%–6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM10–2.5 with soil/road dust particles dominating outdoor samples (66%–83% and iron-containing particles contributing most to subway PM10–2.5 (44%. As expected, soil/road dust particles comprised a greater mass fraction of PM10–2.5 than PM2.5–1.0. Also as expected, the mass fraction of iron-containing particles was substantially less in PM10–2.5 than in PM2.5–1.0. Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM2.5–1.0 and PM10-2.5 simultaneously and by composition at multiple locations.

  4. Measurement of fine particulate matter water-soluble inorganic species and precursor gases in the Alberta Oil Sands Region using an improved semicontinuous monitor.

    Science.gov (United States)

    Hsu, Yu-Mei; Clair, Thomas A

    2015-04-01

    The ambient ion monitor-ion chromatography (AIM-IC) system, which provides hourly measurements of the main chemical components of PM2.5 (particulate matter with an aerodynamic diametergases, was evaluated and deployed from May to July 2011 and April to December 2013 in the Athabasca Oil Sands Region (AOSR) of northeastern Alberta, Canada. The collection efficiencies for the gas-phase SO2 and HNO3 using the cellulose membrane were 96% and 100%, respectively, and the collection efficiency of NH3 using the nylon membrane was 100%. The AIM-IC was compared with a collocated annular denuder sampling system (ADSS) and a Federal Reference Method (FRM) Partisol PM2.5 sampler. The correlation coefficients of SO4(2-) concentrations between the AIM-IC and ADSS and between the AIM-IC and the Partisol PM2.5 sampler were 0.98 and 0.95, respectively. The comparisons also showed no statistically significant difference between the measurement sets, suggesting that the AIM-IC measurements of the PM2.5 chemical composition are comparable to the ADSS and Partisol PM2.5 methods. NH3 concentration in the summer (mean±standard deviation, 1.9±0.7 µg m(-3)) was higher than in the winter (1.3±0.9 µg m(-3)). HNO3 and NO3- concentrations were generally low in the AOSR, and especially in the winter months. NH4+ (0.94±0.96 µg m(-3)) and SO4(2-) (0.58±0.93 µg m(-3)) were the major ionic species of PM2.5. Direct SO2 emissions from oil sands processing operations influenced ambient particulate NH4+ and SO4(2-) values, with hourly concentrations of NH4+ and SO4(2-) measured downwind (~30 km away from the stack) at 10 and 28 µg m(-3). During the regional forest fire event in 2011, high concentrations of NO3-, NH4+, HNO3, NH3, and PM2.5 were observed and the corresponding maximum hourly concentrations were 31, 15, 9.6, 89, and >450 (the upper limit of PM2.5 measurement) µg m(-3), suggesting the formation of NH4NO3. The AOSR in Canada is one of the most scrutinized industrial regions in the

  5. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse particulate matter in urban ambient air.

    Science.gov (United States)

    Han, Inkyu; Symanski, Elaine; Stock, Thomas H

    2017-03-01

    Exposure to ambient particulate matter (PM) is known as a significant risk factor for mortality and morbidity due to cardiorespiratory causes. Owing to increased interest in assessing personal and community exposures to PM, we evaluated the feasibility of employing a low-cost portable direct-reading instrument for measurement of ambient air PM exposure. A Dylos DC 1700 PM sensor was collocated with a Grimm 11-R in an urban residential area of Houston Texas. The 1-min averages of particle number concentrations for sizes between 0.5 and 2.5 µm (small size) and sizes larger than 2.5 µm (large size) from a DC 1700 were compared with the 1-min averages of PM 2.5 (aerodynamic size less than 2.5 µm) and coarse PM (aerodynamic size between 2.5 and 10 µm) concentrations from a Grimm 11-R. We used a linear regression equation to convert DC 1700 number concentrations to mass concentrations, utilizing measurements from the Grimm 11-R. The estimated average DC 1700 PM 2.5 concentration (13.2 ± 13.7 µg/m 3 ) was similar to the average measured Grimm 11-R PM 2.5 concentration (11.3 ± 15.1 µg/m 3 ). The overall correlation (r 2 ) for PM 2.5 between the DC 1700 and Grimm 11-R was 0.778. The estimated average coarse PM concentration from the DC 1700 (5.6 ± 12.1 µg/m 3 ) was also similar to that measured with the Grimm 11-R (4.8 ± 16.5 µg/m 3 ) with an r 2 of 0.481. The effects of relative humidity and particle size on the association between the DC 1700 and the Grimm 11-R results were also examined. The calculated PM mass concentrations from the DC 1700 were close to those measured with the Grimm 11-R when relative humidity was less than 60% for both PM 2.5 and coarse PM. Particle size distribution was more important for the association of coarse PM between the DC 1700 and Grimm 11-R than it was for PM 2.5 . The performance of a low-cost particulate matter (PM) sensor was evaluated in an urban residential area. Both PM 2.5 and coarse PM (PM 10-2.5 ) mass concentrations

  6. Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study.

    Science.gov (United States)

    Panni, Tommaso; Mehta, Amar J; Schwartz, Joel D; Baccarelli, Andrea A; Just, Allan C; Wolf, Kathrin; Wahl, Simone; Cyrys, Josef; Kunze, Sonja; Strauch, Konstantin; Waldenberger, Melanie; Peters, Annette

    2016-07-01

    Epidemiological studies have reported associations between particulate matter (PM) concentrations and cancer and respiratory and cardiovascular diseases. DNA methylation has been identified as a possible link but so far it has only been analyzed in candidate sites. We studied the association between DNA methylation and short- and mid-term air pollution exposure using genome-wide data and identified potential biological pathways for additional investigation. We collected whole blood samples from three independent studies-KORA F3 (2004-2005) and F4 (2006-2008) in Germany, and the Normative Aging Study (1999-2007) in the United States-and measured genome-wide DNA methylation proportions with the Illumina 450k BeadChip. PM concentration was measured daily at fixed monitoring stations and three different trailing averages were considered and regressed against DNA methylation: 2-day, 7-day and 28-day. Meta-analysis was performed to pool the study-specific results. Random-effect meta-analysis revealed 12 CpG (cytosine-guanine dinucleotide) sites as associated with PM concentration (1 for 2-day average, 1 for 7-day, and 10 for 28-day) at a genome-wide Bonferroni significance level (p ≤ 7.5E-8); 9 out of these 12 sites expressed increased methylation. Through estimation of I2 for homogeneity assessment across the studies, 4 of these sites (annotated in NSMAF, C1orf212, MSGN1, NXN) showed p > 0.05 and I2 F4, and the Normative Aging Study. Environ Health Perspect 124:983-990; http://dx.doi.org/10.1289/ehp.1509966.

  7. Evaluation of cellular effects of fine particulate matter from combustion of solid fuels used for indoor heating on the Navajo Nation using a stratified oxidative stress response model

    Science.gov (United States)

    Li, Ning; Champion, Wyatt M.; Imam, Jemal; Sidhu, Damansher; Salazar, Joseph R.; Majestic, Brian J.; Montoya, Lupita D.

    2018-06-01

    Communities in the Navajo Nation face public health burdens caused in part by the combustion of wood and coal for indoor heating using stoves that are old or in disrepair. Wood and coal combustion emits particulate matter (PM) with aerodynamic diameter combustion-derived PM2.5 on Navajo Nation residents. This study tested the hypothesis that PM2.5 generated from solid fuel combustion in stoves commonly used by Navajo residents would induce stratified oxidative stress responses ranging from activation of antioxidant defense to inflammation and cell death in mouse macrophages (RAW 264.7). PM2.5 emitted from burning Ponderosa Pine (PP) and Utah Juniper (UJ) wood and Black Mesa (BM) and Fruitland (FR) coal in a stove representative of those widely used by Navajo residents were collected, and their aqueous suspensions used for cellular exposure. PM from combustion of wood had significantly more elemental carbon (EC) (15%) and soluble Ni (0.0029%) than the samples from coal combustion (EC: 3%; Ni: 0.0019%) and was also a stronger activator of antioxidant enzyme heme oxygenase-1 (11-fold increase vs. control) than that from coal (5-fold increase). Only PM from PP-wood (12-fold) and BM-coal (3-fold) increased the release of inflammatory cytokine tumor necrosis factor alpha. Among all samples, PP-wood consistently had the strongest oxidative stress and inflammatory effects. PM components, i.e. low-volatility organic carbon, EC, Cu, Ni and K were positively correlated with the cellular responses. Results showed that, at the concentrations tested, emissions from all fuels did not have significant cytotoxicity. These findings suggest that PM2.5 emitted from combustion of wood and coal commonly used by Navajo residents may negatively impact the health of this community.

  8. Spatiotemporal Association of Real-Time Concentrations of Black Carbon (BC with Fine Particulate Matters (PM2.5 in Urban Hotspots of South Korea

    Directory of Open Access Journals (Sweden)

    Sungroul Kim

    2017-11-01

    Full Text Available We evaluated the spatiotemporal distributions of black carbon (BC and particulate matters with aerodynamic diameters of less than 2.5 m (PM2.5 concentrations at urban diesel engine emission (DEE hotspots of South Korea. Concentrations of BC and PM2.5 were measured at the entrance gate of two diesel bus terminals and a train station, in 2014. Measurements were conducted simultaneously at the hotspot (Site 1 and at its adjacent, randomly selected, residential areas, apartment complex near major roadways, located with the same direction of 300 m (Site 2 and 500 m (Site 3 away from Site 1 on 4 different days over the season, thrice per day; morning (n = 120 measurements for each day and site, evening (n = 120, and noon (n = 120. The median (interquartile range PM2.5 ranged from 12.6 (11.3–14.3 to 60.1 (47.0–76.0 μg/m3 while those of BC concentrations ranged from 2.6 (1.9–3.7 to 6.3 (4.2–10.3 μg/m3. We observed a strong relationship of PM2.5 concentrations between sites (slopes 0.89–0.9, the coefficient of determination 0.89–0.96 while the relationship for BC concentrations between sites was relatively weak (slopes 0.76–0.85, the coefficient of determination 0.54–0.72. PM2.5 concentrations were changed from 4% to 140% by unit increase of BC concentration, depending on site and time while likely supporting the necessity of monitoring of BC as well as PM2.5, especially at urban DEE related hotspot areas.

  9. Estimation of disease burdens on preterm births and low birth weights attributable to maternal fine particulate matter exposure in Shanghai, China.

    Science.gov (United States)

    Liu, Anni; Qian, Naisi; Yu, Huiting; Chen, Renjie; Kan, Haidong

    2017-12-31

    Studies have shown that maternal exposure to particulate matter ≤2.5μm in aerodynamic diameter (PM 2.5 ) was associated with adverse birth outcomes such as preterm birth (PTB) and low birth weight (LBW). However, the burdens of PTB and LBW attributable to PM 2.5 were rarely evaluated, especially in developing countries. To estimate the burdens of PTBs and LBWs attributable to outdoor PM 2.5 in Shanghai, China. We collected annual-average PM 2.5 concentrations, concentration-response relationships between PM 2.5 exposure during pregnancy and PTBs and LBWs, rates of PTB and LBW, number of live births, and population sizes in grids of 10km×10km in Shanghai in 2013. Then, they were combined to estimate the odds ratios (ORs), relative risks (RRs), attributable fractions (AFs), and numbers of PTBs and LBWs associated with PM 2.5 exposure. The population-weighted annual-average concentration of PM 2.5 in Shanghai was 56.19μg/m 3 in 2013. According to the first-class limit of PM 2.5 (15μg/m 3 ) in the Ambient Air Quality Standards of China, the weighted RRs of PTBs or LBWs associated with PM 2.5 in Shanghai were 1.49 [95% confidence interval (CI): 1.16-1.80] and 1.31 (95% CI: 1.04-1.67), respectively. There might be 32.61% (95% CI: 13.93%-44.42%) or 4160 (95% CI: 1778-5667) PTBs and 23.36% (95% CI: 3.86%-40.02%) or 1882 (95% CI: 311-3224) LBWs attributable to PM 2.5 exposure. The estimates varied appreciably among different districts of Shanghai. Our analysis suggested that outdoor PM 2.5 air pollution might have led to considerable burdens of PTBs and LBWs in Shanghai, China. Copyright © 2017. Published by Elsevier B.V.

  10. Estimation of Satellite-Based SO42- and NH4+ Composition of Ambient Fine Particulate Matter Over China Using Chemical Transport Model

    Science.gov (United States)

    Si, Y.; Li, S.; Chen, L.; Yu, C.; Zhu, W.

    2018-04-01

    follows: winter > summer > autumn > spring. High concentrations of these species were concentrated in the NCP and SCB, originating from coal-fired power plants and agricultural activities, respectively. Efforts to reduce sulfur dioxide (SO2) emissions have yielded remarkable results since the government has adopted stricter control measures in recent years. Moreover, ammonia emissions should be controlled while reducing the concentration of sulfur, nitrogen and particulate matter. This study provides an assessment of the population's exposure to certain chemical components.

  11. Interactive effects of specific fine particulate matter compositions and airborne pollen on frequency of clinic visits for pollinosis in Fukuoka, Japan.

    Science.gov (United States)

    Phosri, Arthit; Ueda, Kayo; Tasmin, Saira; Kishikawa, Reiko; Hayashi, Masahiko; Hara, Keiichiro; Uehara, Yamato; Phung, Vera Ling Hui; Yasukouchi, Shusuke; Konishi, Shoko; Honda, Akiko; Takano, Hirohisa

    2017-07-01

    Previous studies have revealed the interactive effects of airborne pollen and particulate matter on the daily consultations for pollinosis, but it is uncertain which compositions are responsible. This study aimed to investigate the interactive effects of specific PM 2.5 compositions and airborne pollen on the daily number of clinic visits for pollinosis in Fukuoka. We obtained daily data on pollen concentrations, PM 2.5 compositions, PM 2.5 mass, gaseous pollutants (SO 2 , NO 2 , CO, and O 3 ), and weather variables monitored in Fukuoka between February and April, 2002-2012. In total, 73,995 clinic visits for pollinosis were made at 10 clinics in Fukuoka Prefecture during the study period. A time-stratified case-crossover design was applied to examine the interactive effects. The concentrations of PM 2.5 and its compositions were stratified into low (85th percentile) levels, and the association between airborne pollen and daily clinic visits for pollinosis was analyzed within each level. We found a significant interaction between specific PM 2.5 compositions and airborne pollen. Specifically, the odds ratio of daily clinic visits for pollinosis per interquartile increase in pollen concentration (39.8 grains/cm 2 ) at the average cumulative lag of 0 and 2 days during high levels of non-sea-salt Ca 2+ was 1.446 (95% CI: 1.323-1.581), compared to 1.075 (95% CI: 1.067-1.083) when only moderate levels were observed. This result remained significant when other air pollutants were incorporated into the model and was fairly persistent even when different percentile cut-off points were used. A similar interaction was found when we stratified the data according to non-sea-salt SO 4 2- levels. This finding differed from estimates made according to PM 2.5 and NO 3 - levels, which predicted that the effects of pollen were strongest in the lower levels. Associations between airborne pollen and daily clinic visits for pollinosis could be enhanced by high levels of specific PM 2

  12. Personal exposure measurements of school-children to fine particulate matter (PM2.5) in winter of 2013, Shanghai, China.

    Science.gov (United States)

    Zhang, Lijun; Guo, Changyi; Jia, Xiaodong; Xu, Huihui; Pan, Meizhu; Xu, Dong; Shen, Xianbiao; Zhang, Jianghua; Tan, Jianguo; Qian, Hailei; Dong, Chunyang; Shi, Yewen; Zhou, Xiaodan; Wu, Chen

    2018-01-01

    The aim of this study was to perform an exposure assessment of PM2.5 (particulate matter less than 2.5μm in aerodynamic diameter) among children and to explore the potential sources of exposure from both indoor and outdoor environments. In terms of real-time exposure measurements of PM2.5, we collected data from 57 children aged 8-12 years (9.64 ± 0.93 years) in two schools in Shanghai, China. Simultaneously, questionnaire surveys and time-activity diaries were used to estimate the environment at home and daily time-activity patterns in order to estimate the exposure dose of PM2.5 in these children. Principle component regression analysis was used to explore the influence of potential sources of PM2.5 exposure. All the median personal exposure and microenvironment PM2.5 concentrations greatly exceeded the daily 24-h PM2.5 Ambient Air Quality Standards of China, the USA, and the World Health Organization (WHO). The median Etotal (the sum of the PM2.5 exposure levels in different microenvironment and fractional time) of all students was 3014.13 (μg.h)/m3. The concentration of time-weighted average (TWA) exposure of all students was 137.01 μg/m3. The median TWA exposure level during the on-campus period (135.81 μg/m3) was significantly higher than the off-campus period (115.50 μg/m3, P = 0.013 < 0.05). Besides ambient air pollution and meteorological conditions, storey height of the classroom and mode of transportation to school were significantly correlated with children's daily PM2.5 exposure. Children in the two selected schools were exposed to high concentrations of PM2.5 in winter of 2013 in Shanghai. Their personal PM2.5 exposure was mainly associated with ambient air conditions, storey height of the classroom, and children's transportation mode to school.

  13. Short-term effect of fine particulate air pollution on daily mortality: a case-crossover study in a tropical city, Kaohsiung, Taiwan.

    Science.gov (United States)

    Tsai, Shang-Shyue; Chen, Chih-Cheng; Yang, Chun-Yuh

    2014-01-01

    Many studies have examined the short-term effects of air pollution on frequency of daily mortality over the past two decades. However, information on the relationship between levels of fine particles (PM(2.5)) and daily mortality is relatively sparse due to limited availability of monitoring data. Further the results are inconsistent. This study was undertaken to determine whether there was an association between PM(2.5) levels and daily mortality rate in Kaohsiung, Taiwan, a large industrial city with a tropical climate. Daily mortality rate, air pollution parameters, and weather data for Kaohsiung were obtained for the period from 2006 through 2008. The relative risk of daily mortality occurrence was estimated using a time-stratified case-crossover approach, controlling for (1) weather variables, (2) day of the week, (3) seasonality, and (4) long-term time trends. For the single-pollutant model (without adjustment for other pollutants), no significant effects were found between PM(2.5) and frequency of daily mortality on warm days (≥25°C). On cool days, PM(2.5) showed significant correlation with increased risk of mortality rate for all causes and circulatory diseases in single-pollutant model. There was no indication of an association between PM(2.5) and deaths due to respiratory diseases. The relationship appeared to be stronger on cool days. This study provided evidence of associations between short-term exposure to PM(2.5) and elevated risk of death for all cause and circulatory diseases.

  14. Stability under irradiation of a fine dispersion of oxides in a ferritic matrix; Stabilite sous irradiation de particules d'oxydes finement dispersees dans des alliages ferritiques

    Energy Technology Data Exchange (ETDEWEB)

    Monnet, I

    1999-07-01

    Oxide dispersion strengthened (ODS) ferritic-martensitic steels are being considered for high temperature, high fluence nuclear applications, like fuel pin cladding in Fast Breeder Reactors. ODS alloys offer improved out of pile strength characteristics at temperature above 550 deg.C and ferritic-martensitic matrix is highly swelling resistant. A clad in an ODS ferritic steel, call DY (Fe-13Cr-1,5Mo+TiO{sub 2}+Y{sub 2}O{sub 3}) has been irradiated in the experimental reactor Phenix. Under irradiation oxide dissolution occurs. Microstructural observations indicated that oxide evolution is correlated with the dose and consist in four phenomena: the interfaces of oxide particles with the matrix become irregular, the uniform distribution of the finest oxide (< 20 nm) disappear, the modification of oxide composition, and a halo of fine oxides appear around the larger oxides. The use of such a material requires a study of oxide stability under irradiation, since the oxide particles provide the desired mechanical properties. The study is based on two types of alloys, the DY and four ferritic steels Fe-9Cr-1Mo reinforced by Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3}, MgO or MgAl{sub 2}O{sub 4}. These materials were irradiated with charged particles in order to gain a better understanding of the mechanisms of dissolution. Irradiation with 1 MeV Helium does not induce any modification, neither in the chemical modification of the particles nor in their spatial and size distribution. Since most of the energy of helium ions is lost by inelastic interaction, this result proves that this kind of interaction does not induce oxide dissolution. Irradiation with 1 MeV or 1.2 MeV electrons leads to a significant dissolution with a radius decrease proportional to the dose. These experiments prove that oxide dissolution can be induced by Frenkel pairs alone, provided that metallic atoms are displaced. The comparison between irradiation with ions (displacements cascades) and electrons (Frenkel

  15. Methods for Investigating Mercury Speciation, Transport, Methylation, and Bioaccumulation in Watersheds Affected by Historical Mining

    Science.gov (United States)

    Alpers, C. N.; Marvin-DiPasquale, M. C.; Fleck, J.; Ackerman, J. T.; Eagles-Smith, C.; Stewart, A. R.; Windham-Myers, L.

    2016-12-01

    Many watersheds in the western U.S. have mercury (Hg) contamination from historical mining of Hg and precious metals (gold and silver), which were concentrated using Hg amalgamation (mid 1800's to early 1900's). Today, specialized sampling and analytical protocols for characterizing Hg and methylmercury (MeHg) in water, sediment, and biota generate high-quality data to inform management of land, water, and biological resources. Collection of vertically and horizontally integrated water samples in flowing streams and use of a Teflon churn splitter or cone splitter ensure that samples and subsamples are representative. Both dissolved and particulate components of Hg species in water are quantified because each responds to different hydrobiogeochemical processes. Suspended particles trapped on pre-combusted (Hg-free) glass- or quartz-fiber filters are analyzed for total mercury (THg), MeHg, and reactive divalent mercury. Filtrates are analyzed for THg and MeHg to approximate the dissolved fraction. The sum of concentrations in particulate and filtrate fractions represents whole water, equivalent to an unfiltered sample. This approach improves upon analysis of filtered and unfiltered samples and computation of particulate concentration by difference; volume filtered is adjusted based on suspended-sediment concentration to minimize particulate non-detects. Information from bed-sediment sampling is enhanced by sieving into multiple size fractions and determining detailed grain-size distribution. Wet sieving ensures particle disaggregation; sieve water is retained and fines are recovered by centrifugation. Speciation analysis by sequential extraction and examination of heavy mineral concentrates by scanning electron microscopy provide additional information regarding Hg mineralogy and geochemistry. Biomagnification of MeHg in food webs is tracked using phytoplankton, zooplankton, aquatic and emergent vegetation, invertebrates, fish, and birds. Analysis of zooplankton in

  16. Uranium Speciation and Bioavailability in Aquatic Systems: An Overview

    Directory of Open Access Journals (Sweden)

    Scott J. Markich

    2002-01-01

    Full Text Available The speciation of uranium (U in relation to its bioavailability is reviewed for surface waters (fresh- and seawater and their sediments. A summary of available analytical and modeling techniques for determining U speciation is also presented. U(VI is the major form of U in oxic surface waters, while U(IV is the major form in anoxic waters. The bioavailability of U (i.e., its ability to bind to or traverse the cell surface of an organism is dependent on its speciation, or physicochemical form. U occurs in surface waters in a variety of physicochemical forms, including the free metal ion (U4+ or UO22+ and complexes with inorganic ligands (e.g., uranyl carbonate or uranyl phosphate, and humic substances (HS (e.g., uranyl fulvate in dissolved, colloidal, and/or particulate forms. Although the relationship between U speciation and bioavailability is complex, there is reasonable evidence to indicate that UO22+ and UO2OH+ are the major forms of U(VI available to organisms, rather than U in strong complexes (e.g., uranyl fulvate or adsorbed to colloidal and/or particulate matter. U(VI complexes with inorganic ligands (e.g., carbonate or phosphate and HS apparently reduce the bioavailability of U by reducing the activity of UO22+ and UO2OH+. The majority of studies have used the results from thermodynamic speciation modeling to support these conclusions. Time-resolved laser-induced fluorescence spectroscopy is the only analytical technique able to directly determine specific U species, but is limited in use to freshwaters of low pH and ionic strength. Nearly all of the available information relating the speciation of U to its bioavailability has been derived using simple, chemically defined experimental freshwaters, rather than natural waters. No data are available for estuarine or seawater. Furthermore, there are no available data on the relationship between U speciation and bioavailability in sediments. An understanding of this relationship has been

  17. Fine Particulate Matter and Cardiovascular Disease ...

    Science.gov (United States)

    Background Adverse cardiovascular events have been linked with PM2.5 exposure obtained primarily from air quality monitors, which rarely co-locate with participant residences. Modeled PM2.5 predictions at finer resolution may more accurately predict residential exposure; however few studies have compared results across different exposure assessment methods. Methods We utilized a cohort of 5679 patients who had undergone a cardiac catheterization between 2002–2009 and resided in NC. Exposure to PM2.5 for the year prior to catheterization was estimated using data from air quality monitors (AQS), Community Multiscale Air Quality (CMAQ) fused models at the census tract and 12 km spatial resolutions, and satellite-based models at 10 km and 1 km resolutions. Case status was either a coronary artery disease (CAD) index >23 or a recent myocardial infarction (MI). Logistic regression was used to model odds of having CAD or an MI with each 1-unit (μg/m3) increase in PM2.5, adjusting for sex, race, smoking status, socioeconomic status, and urban/rural status. Results We found that the elevated odds for CAD>23 and MI were nearly equivalent for all exposure assessment methods. One difference was that data from AQS and the census tract CMAQ showed a rural/urban difference in relative risk, which was not apparent with the satellite or 12 km-CMAQ models. Conclusions

  18. Preparation of spherical fine particulate pigments within water-in-oil emulsions and their properties. (II). ; Formation mechanism and characteristic of spherical fine particulate pigment of tartrazine. W/O emulsion wo mochiita kyujo biryushi ganryo no chosei to seishitsu(dai 2 ho). ; Kiiro 4 go kyujo biryushi ganryo no seisei kiko to tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Imai, T.; Iwano, K.; Hotta, H.; Takano, S.; Tsutsumi, H. (Kao Corporation, Tokyo (Japan))

    1991-12-20

    The previous report explained that an excellent spherical particulate pigment with a grain size of 0.5 mm or less can be obtained by preparing multinuclear aluminum lakes from acidic dyes and multinuclear aluminum salt using water droplets in a W/O emulsion as reaction fields. This paper describes preparing pigments varying the charging concentrations of the pigments in a W/O emulsion and the droplet particle size to discuss the mechanism of forming the pigments. As a result, it was found that the particle sizes in the produced pigments have a clear correlation with the charging concentrations of the pigments and the droplet particle sizes in the W/O emulsion. A pigment produced in the W/O emulsion forms only in its own droplets, and reflects its particle sizes. Films dispersed with pigments having different particle sizes were prepared to discuss their tinting abilities, whereas it was clarified that the smaller the particle size, the higher the tinting ability and the higher saturation in colored paint films. 6 refs., 9 figs., 3 tabs.

  19. 40 CFR 230.21 - Suspended particulates/turbidity.

    Science.gov (United States)

    2010-07-01

    ... Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.21 Suspended particulates/turbidity. (a) Suspended particulates in the aquatic ecosystem consist of fine-grained mineral particles..., and man's activities including dredging and filling. Particulates may remain suspended in the water...

  20. Arsenic speciation results

    Data.gov (United States)

    U.S. Environmental Protection Agency — Linear combination fitting results of synchrotron data to determine arsenic speciation in soil samples. This dataset is associated with the following publication:...

  1. Chemical Speciation - General Information

    Science.gov (United States)

    This page includes general information about the Chemical Speciation Network that is not covered on the main page. Commonly visited documents, including calendars, site lists, and historical files for the program are listed here

  2. Searching for speciation genes

    DEFF Research Database (Denmark)

    Holt, Benjamin George; Côté, Isabelle M; Emerson, Brent C

    2011-01-01

    Closely related species that show clear phenotypic divergence, but without obvious geographic barriers, can provide opportunities to study how diversification can occur when opportunities for allopatric speciation are limited. We examined genetic divergence in the coral reef fish genus Hypoplectrus...

  3. The EU network on trace element speciation in full swing

    DEFF Research Database (Denmark)

    Cornelis, R.; Camara, C.; Ebdon, L.

    2000-01-01

    health and hygiene. The network covers a number of important issues including organotin compounds, chromium and nickel species, chemical characterisation of environmental and industrial particulate samples, risk assessment, selenium and a series of other essential and toxic elements in food, as well......The EC-funded thematic network 'Speciation 21' links scientists in analytical chemistry working in method development for the chemical speciation of trace elements, and potential users from industry and representatives of legislative agencies, in the field of environment, food and occupational...

  4. Uranium speciation in plants

    International Nuclear Information System (INIS)

    Guenther, A.; Bernhard, G.; Geipel, G.; Reich, T.; Rossberg, A.; Nitsche, H.

    2003-01-01

    Detailed knowledge of the nature of uranium complexes formed after the uptake by plants is an essential prerequisite to describe the migration behavior of uranium in the environment. This study focuses on the determination of uranium speciation after uptake of uranium by lupine plants. For the first time, time-resolved laser-induced fluorescence spectroscopy and X-ray absorption spectroscopy were used to determine the chemical speciation of uranium in plants. Differences were detected between the uranium speciation in the initial solution (hydroponic solution and pore water of soil) and inside the lupine plants. The oxidation state of uranium did not change and remained hexavalent after it was taken up by the lupine plants. The chemical speciation of uranium was identical in the roots, shoot axis, and leaves and was independent of the uranium speciation in the uptake solution. The results indicate that the uranium is predominantly bound as uranyl(VI) phosphate to the phosphoryl groups. Dandelions and lamb's lettuce showed uranium speciation identical to lupine plants. (orig.)

  5. Impacts of 2000-2050 Climate Change on Fine Particulate Matter (PM2.5) Air Quality in China Based on Statistical Projections Using an Ensemble of Global Climate Models

    Science.gov (United States)

    Leung, D. M.; Tai, A. P. K.; Shen, L.; Moch, J. M.; van Donkelaar, A.; Mickley, L. J.

    2017-12-01

    Fine particulate matter (PM2.5) air quality is strongly dependent on not only on emissions but also meteorological conditions. Here we examine the dominant synoptic circulation patterns that control day-to-day PM2.5 variability over China. We perform principal component (PC) analysis on 1998-2016 NCEP/NCAR Reanalysis I daily meteorological fields to diagnose distinct synoptic meteorological modes, and perform PC regression on spatially interpolated 2014-2016 daily mean PM2.5 concentrations in China to identify modes dominantly explaining PM2.5 variability. We find that synoptic systems, e.g., cold-frontal passages, maritime inflow and frontal precipitation, can explain up to 40% of the day-to-day PM2.5 variability in major metropolitan regions in China. We further investigate how annually changing frequencies of synoptic systems, as well as changing local meteorology, drive interannual PM2.5 variability. We apply a spectral analysis on the PC time series to obtain the 1998-2016 annual median synoptic frequency, and use a forward-selection multiple linear regression (MLR) model of satellite-derived 1998-2015 annual mean PM2.5 concentrations on local meteorology and synoptic frequency, selecting predictors that explain the highest fraction of interannual PM2.5 variability while guarding against multicollinearity. To estimate the effect of climate change on future PM2.5 air quality, we project a multimodel ensemble of 15 CMIP5 models under the RCP8.5 scenario on the PM2.5-to-meteorology sensitivities derived for the present-day from the MLR model. Our results show that climate change could be responsible for increases in PM2.5 of more than 25 μg m-3 in northwestern China and 10 mg m-3 in northeastern China by the 2050s. Increases in synoptic frequency of cold-frontal passages cause only a modest 1 μg m-3 decrease in PM2.5 in North China Plain. Our analyses show that climate change imposes a significant penalty on air quality over China and poses serious threat on

  6. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  7. Exposure to the elemental carbon, organic carbon, nitrate and sulfate fractions of fine particulate matter and risk of preterm birth in New Jersey, Ohio, and Pennsylvania (2000-2005).

    Science.gov (United States)

    BACKGROUND: Particulate matter ≤2.5 µm in aerodynamic diameter (PM2.5) has been consistently associated with preterm birth (PTB) to varying degrees, but roles of PM2.5 species have been less studied.OBJECTIVE:We estimated risk differences (RD) of PTB (reported per 106 pregnancies...

  8. Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry

    Science.gov (United States)

    Jia, Jia; Cheng, Shuiyuan; Yao, Sen; Xu, Tiebing; Zhang, Tingting; Ma, Yuetao; Wang, Hongliang; Duan, Wenjiao

    2018-06-01

    As one of the highest energy consumption and pollution industries, the iron and steel industry is regarded as a most important source of particulate matter emission. In this study, chemical components of size-segregated particulate matters (PM) emitted from different manufacturing units in iron and steel industry were sampled by a comprehensive sampling system. Results showed that the average particle mass concentration was highest in sintering process, followed by puddling, steelmaking and then rolling processes. PM samples were divided into eight size fractions for testing the chemical components, SO42- and NH4+ distributed more into fine particles while most of the Ca2+ was concentrated in coarse particles, the size distribution of mineral elements depended on the raw materials applied. Moreover, local database with PM chemical source profiles of iron and steel industry were built and applied in CMAQ modeling for simulating SO42- and NO3- concentration, results showed that the accuracy of model simulation improved with local chemical source profiles compared to the SPECIATE database. The results gained from this study are expected to be helpful to understand the components of PM in iron and steel industry and contribute to the source apportionment researches.

  9. Chemical speciation of radionuclides migrating in groundwaters

    International Nuclear Information System (INIS)

    Robertson, D.; Schilk, A.; Abel, K.; Lepel, E.; Thomas, C.; Pratt, S.; Cooper, E.; Hartwig, P.; Killey, R.

    1994-04-01

    In order to more accurately predict the rates and mechanisms of radionuclide migration from low-level waste disposal facilities via groundwater transport, ongoing studies are being conducted at field sites at Chalk River Laboratories to identify and characterize the chemical speciation of mobile, long-lived radionuclides migrating in groundwaters. Large-volume water sampling techniques are being utilized to separate and concentrate radionuclides into particular, cationic, anionic, and nonionic chemical forms. Most radionuclides are migrating as soluble, anionic species that appear to be predominantly organoradionuclide complexes. Laboratory studies utilizing anion exchange chromatography have separated several anionically complexed radionuclides, e.g., 60 Co and 106 Ru, into a number of specific compounds or groups of compounds. Further identification of the anionic organoradionuclide complexes is planned utilizing high resolution mass spectrometry. Large-volume ultra-filtration experiments are characterizing the particulate forms of radionuclides being transported in these groundwaters

  10. TEMPORAL VARIABILITY IN PHYSICAL SPECIATION OF METALS DURING A WINTER RAIN-ON-SNOW EVENT

    Science.gov (United States)

    Particulate matter in urban rivers transports a significant fraction of pollutants, changes rapidly during storm events and is difficult to characterize. In this study, the physical speciation of trace metals and organic carbon in an urban river and upstream headwaters site in To...

  11. Chromium fractionation and speciation in natural waters.

    Science.gov (United States)

    Pereira, Catarinie Diniz; Techy, João Gabriel; Ganzarolli, Edgard Moreira; Quináia, Sueli Pércio

    2012-05-01

    It is common for leather industries to dump chromium-contaminated effluent into rivers and other bodies of water. Thus, it is crucial to know the impacts caused by this practice to the environment. A study on chromium partitioning and speciation, with determination at trace levels, was carried out in a potentially contaminated creek. Chromium fractionation and speciation was performed using a flow-injection preconcentration system and detection by flame atomic absorption spectrometry. High levels of this element were found in the particulate material (449-9320 mg kg(-1)), which indicates its compatibility with this fraction. The concentration of Cr(iii) in the water samples collected ranged from 5.2-105.2 μg L(-1). Cr(vi) was always below of the DL (0.3 μg L(-1)). Chromium accumulation observed in the sediment (873-1691 mg kg(-1)) may confirm contamination due to the long term release of contaminated effluents in the creek.

  12. Arsenic Speciation in Groundwater: Role of Thioanions

    Science.gov (United States)

    The behavior of arsenic in groundwater environments is fundamentally linked to its speciation. Understanding arsenic speciation is important because chemical speciation impacts reactivity, bioavailability, toxicity, and transport and fate processes. In aerobic environments arsen...

  13. Hitchhiking to speciation.

    Directory of Open Access Journals (Sweden)

    Daven C Presgraves

    Full Text Available The modern evolutionary synthesis codified the idea that species exist as distinct entities because intrinsic reproductive barriers prevent them from merging together. Understanding the origin of species therefore requires understanding the evolution and genetics of reproductive barriers between species. In most cases, speciation is an accident that happens as different populations adapt to different environments and, incidentally, come to differ in ways that render them reproductively incompatible. As with other reproductive barriers, the evolution and genetics of interspecific hybrid sterility and lethality were once also thought to evolve as pleiotripic side effects of adaptation. Recent work on the molecular genetics of speciation has raised an altogether different possibility-the genes that cause hybrid sterility and lethality often come to differ between species not because of adaptation to the external ecological environment but because of internal evolutionary arms races between selfish genetic elements and the genes of the host genome. Arguably one of the best examples supporting a role of ecological adaptation comes from a population of yellow monkey flowers, Mimulus guttatus, in Copperopolis, California, which recently evolved tolerance to soil contaminants from copper mines and simultaneously, as an incidental by-product, hybrid lethality in crosses with some off-mine populations. However, in new work, Wright and colleagues show that hybrid lethality is not a pleiotropic consequence of copper tolerance. Rather, the genetic factor causing hybrid lethality is tightly linked to copper tolerance and spread to fixation in Copperopolis by genetic hitchhiking.

  14. Speciation analysis of radionuclides

    International Nuclear Information System (INIS)

    Salbu, B.

    2010-01-01

    Full text: Naturally occurring and artificially produced radionuclides in the environment can be present in different physico-chemical forms (i. e. radionuclide species) varying in size (nominal molecular mass), charge properties and valence, oxidation state, structure and morphology, density, complexing ability etc. Low molecular mass (LMM) species are believed to be mobile and potentially bioavailable, while high molecular mass (HMM) species such as colloids, polymers, pseudocolloids and particles are considered inert. Due to time dependent transformation processes such as mobilization of radionuclide species from solid phases or interactions of mobile and reactive radionuclide species with components in soils and sediments, however, the original distribution of radionuclides deposited in ecosystems will change over time and influence the ecosystem behaviour. To assess the environmental impact from radionuclide contamination, information on radionuclide species deposited, interactions within affected ecosystems and the time-dependent distribution of radionuclide species influencing mobility and biological uptake is essential. The development of speciation techniques to characterize radionuclide species in waters, soils and sediments should therefore be essential for improving the prediction power of impact and risk assessment models. The present paper reviews fractionation techniques which should be utilised for radionuclide speciation purposes. (author)

  15. Metal speciation and potential bioavailability changes during discharge and neutralisation of acidic drainage water.

    Science.gov (United States)

    Simpson, Stuart L; Vardanega, Christopher R; Jarolimek, Chad; Jolley, Dianne F; Angel, Brad M; Mosley, Luke M

    2014-05-01

    The discharge of acid drainage from the farm irrigation areas to the Murray River in South Australia represents a potential risk to water quality. The drainage waters have low pH (2.9-5.7), high acidity (up to 1190 mg L(-1) CaCO3), high dissolved organic carbon (10-40 mg L(-1)), and high dissolved Al, Co, Ni and Zn (up to 55, 1.25, 1.30 and 1.10 mg L(-1), respectively) that represent the greatest concern relative to water quality guidelines (WQGs). To provide information on bioavailability, changes in metal speciation were assessed during mixing experiments using filtration (colloidal metals) and Chelex-lability (free metal ions and weak inorganic metal complexes) methods. Following mixing of drainage and river water, much of the dissolved aluminium and iron precipitated. The concentrations of other metals generally decreased conservatively in proportion to the dilution initially, but longer mixing periods caused increased precipitation or adsorption to particulate phases. Dissolved Co, Mn and Zn were typically 95-100% present in Chelex-labile forms, whereas 40-70% of the dissolved nickel was Chelex-labile and the remaining non-labile fraction of dissolved nickel was associated with fine colloids or complexed by organic ligands that increased with time. Despite the different kinetics of precipitation, adsorption and complexation reactions, the dissolved metal concentrations were generally highly correlated for the pooled data sets, indicating that the major factors controlling the concentrations were similar for each metal (pH, dilution, and time following mixing). For dilutions of the drainage waters of less than 1% with Murray River water, none of the metals should exceed the WQGs. However, the high concentrations of metals associated with fine precipitates within the receiving waters may represent a risk to some aquatic organisms. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Fine Particle Matter (PM2.5) Design Value

    Data.gov (United States)

    U.S. Environmental Protection Agency — Fine particulate matter or PM2.5 (total mass of particles below 2.5 micron is diameter) is known to cause adverse health effects in humans.See the following websites...

  17. Particulate emissions from biodiesel fuelled CI engines

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Gupta, Tarun; Shukla, Pravesh C.; Dhar, Atul

    2015-01-01

    Highlights: • Physical and chemical characterization of biodiesel particulates. • Toxicity of biodiesel particulate due to EC/OC, PAHs and BTEX. • Trace metals and unregulated emissions from biodiesel fuelled diesel engines. • Influence of aftertreatment devices and injection strategy on biodiesel particulates. • Characterization of biodiesel particulate size-number distribution. - Abstract: Compression ignition (CI) engines are the most popular prime-movers for transportation sector as well as for stationary applications. Petroleum reserves are rapidly and continuously depleting at an alarming pace and there is an urgent need to find alternative energy resources to control both, the global warming and the air pollution, which is primarily attributed to combustion of fossil fuels. In last couple of decades, biodiesel has emerged as the most important alternative fuel candidate to mineral diesel. Numerous experimental investigations have confirmed that biodiesel results in improved engine performance, lower emissions, particularly lower particulate mass emissions vis-à-vis mineral diesel and is therefore relatively more environment friendly fuel, being renewable in nature. Environmental and health effects of particulates are not simply dependent on the particulate mass emissions but these change depending upon varying physical and chemical characteristics of particulates. Particulate characteristics are dependent on largely unpredictable interactions between engine technology, after-treatment technology, engine operating conditions as well as fuel and lubricating oil properties. This review paper presents an exhaustive summary of literature on the effect of biodiesel and its blends on exhaust particulate’s physical characteristics (such as particulate mass, particle number-size distribution, particle surface area-size distribution, surface morphology) and chemical characteristics (such as elemental and organic carbon content, speciation of polyaromatic

  18. Patterns of plant speciation in the Cape floristic region.

    Science.gov (United States)

    van der Niet, Timotheüs; Johnson, Steven D

    2009-04-01

    Plant species have accumulated in the Cape region of southern Africa to a much greater degree than in areas of equivalent size in the rest of the subcontinent. Although this could be a consequence simply of lower extinction rates in the Cape, most researchers have invoked high rates of ecological speciation, driven by unique aspects of the Cape environment, as the primary explanation for this richness. To assess these ideas, we analyzed the frequencies of ecological shifts among 188 sister species pairs obtained from molecular phylogenies of eight Cape clades. Ecological shifts were evident in 80% of sister species pairs, with general habitat, pollinator, and fire-survival strategy shifts being especially frequent. Contrary to an established idea that shifts in soil type are frequently associated with speciation of Cape taxa, these shifts were relatively rare, occurring in just 17% of species pairs. More cases of sister species divergence are accompanied solely by floral than by vegetative diversification, suggesting an important role for pollinator-driven speciation. In an analysis of two large orchid genera that have radiated in both the Cape and the rest of southern Africa, the frequency of ecological shifts (general habitat, soil type, altitude and flowering time), did not differ between sister species pairs in the Cape region and those outside it. Despite suggestions that Cape plants tend to have small range sizes and show fine-scale patterns of speciation, range size did not differ significantly between species in the Cape and those outside it. We conclude that ecological speciation is likely to have been important for radiation of the Cape flora, but there is no evidence as yet for special "Cape" patterns of ecological speciation.

  19. Speciation of trace elements in the environmental studies

    International Nuclear Information System (INIS)

    Reddy, A.V.R.

    2012-01-01

    Elements present at trace levels, often referred as trace elements, play an important role in the environment and in the functioning of life on our planet. Trace elements in environment present as free metal ions or incorporated into colloids or attached to particulate matter or exist in different physical and chemical forms. It is well established that some elements are highly toxic and some are essential, but can become toxic at higher doses. It is also now known that the forms of elements (speciation) and their amounts are more important than the chemical dose of the elements as their interaction depends on different species. For example, Cr(VI) ions are considered far more toxic than Cr(III), whereas As(III) is more toxic than As(V). Similarly, in the case of mercury, both methylmercury and inorganic mercury are toxic but they show different levels of toxicity. Thus the adverse effects depend on the nature of species of the elements and therefore speciation studies are of paramount importance in many areas like toxicology, environmental chemistry and geochemisty. In view of this, speciation studies is a challenge to analytical chemists as the measurement methodologies have to be carefully developed, validated and applied. The grand challenge is to obtain quality data ensuring traceability, as the data obtained will be used in modeling for predicting the environmental impacts. In this talk importance of speciation and challenges to environmental analytical chemists will be discussed along with the following three speciation studies on Cr, U and Hg which were carried out in our laboratories

  20. Anne Fine

    Directory of Open Access Journals (Sweden)

    Philip Gaydon

    2015-04-01

    Full Text Available An interview with Anne Fine with an introduction and aside on the role of children’s literature in our lives and development, and our adult perceptions of the suitability of childhood reading material. Since graduating from Warwick in 1968 with a BA in Politics and History, Anne Fine has written over fifty books for children and eight for adults, won the Carnegie Medal twice (for Goggle-Eyes in 1989 and Flour Babies in 1992, been a highly commended runner-up three times (for Bill’s New Frock in 1989, The Tulip Touch in 1996, and Up on Cloud Nine in 2002, been shortlisted for the Hans Christian Andersen Award (the highest recognition available to a writer or illustrator of children’s books, 1998, undertaken the positon of Children’s Laureate (2001-2003, and been awarded an OBE for her services to literature (2003. Warwick presented Fine with an Honorary Doctorate in 2005. Philip Gaydon’s interview with Anne Fine was recorded as part of the ‘Voices of the University’ oral history project, co-ordinated by Warwick’s Institute of Advanced Study.

  1. Emission factors and chemical characterisation of fine particulate emissions from modern and old residential biomass heating systems determined for typical load cycles; Emissionsfaktoren und chemische Charakterisierung von Feinstaubemissionen moderner und alter Biomasse-Kleinfeuerungen ueber typische Tageslastverlaeufe

    Energy Technology Data Exchange (ETDEWEB)

    Kelz, Joachim [BIOENERGY 2020+ GmbH, Graz (Austria); Brunner, Thomas; Obernberger, Ingwald [BIOENERGY 2020+ GmbH, Graz (Austria); Technische Universitaet Graz, Institut fuer Prozess- und Partikeltechnik, Graz (Austria); BIOS BIOENERGIESYSTEME GmbH, Graz (Austria)

    2012-12-15

    It is already well known that there are significant differences regarding the emissions, especially particulate matter (PM) emissions, of old and modern as well as automatically and not automatically controlled biomass based residential heating systems. This concerns their magnitude as well as their chemical composition. In order to investigate emission factors for particulate emissions and the chemical compositions of the PM emissions over typical whole day operation cycles, a project on the determination and characterisation of PM emissions from the most relevant small-scale biomass combustion systems was performed at the BIOENERGY 2020+ GmbH, Graz, Austria, in cooperation with the Institute for Process and Particle Engineering, Graz University of Technology. The project was based on test stand measurements, during which relevant operation parameters (gaseous emissions, boiler load, flue gas temperature, combustion chamber temperature etc.) as well as PM emissions have been measured and PM samples have been taken and forwarded to chemical analyses. Firstly, typical whole day operation cycles for residential biomass combustion systems were specified for the test runs. Thereby automatically fed and automatically controlled boilers, manually fed and automatically controlled boilers as well as manually fed stoves were distinguished. The results show a clear correlation between the gaseous emissions (CO and OGC) and the PM{sub 1} emissions. It is indicated that modern biomass combustion systems emit significantly less gaseous and PM emissions than older technologies (up to a factor of 100). Moreover, automatically fed systems emit much less gaseous and PM emissions than manually fed batch-combustion systems. PM emissions from modern and automatically controlled systems mainly consist of alkaline metal salts, while organic aerosols and soot dominate the composition of aerosols from old and not automatically controlled systems. As an important result comprehensive data

  2. Transformation of metals speciation in a combined landfill leachate treatment

    International Nuclear Information System (INIS)

    Wu Yanyu; Zhou Shaoqi; Chen Dongyu; Zhao Rong; Li Huosheng; Lin Yiming

    2011-01-01

    Landfill leachate was treated by a combined sequential batch reactor (SBR), coagulation, Fenton oxidation and biological aerated filter (BAF) technology. The metals in treatment process were fractionated into three fractions: particulate and colloidal (size charge filtration), free ion/labile (cation exchange) and non-labile fractions. Fifty percent to 66% Cu, Ni, Zn, Mn, Pb and Cd were present as particulate/colloidal matter in raw leachate, whereas Cr was present 94.9% as non-labile complexes. The free ion/labile fractions of Ni, Zn, Mg, Mn, Pb and Cd increased significantly after treatment except Cr. Fifty-nine percent to 100% of Al was present mainly as particulate/colloidal matter > 0.45 μm and the remaining portions were predicted as non-labile complexes except in coagulation effluent. The speciation of Fe varied significantly in various individual processes. Visual MINTEQ simulation showed that 95-100% colloidal species for Cu, Cd and Pb were present as metal-humic complexes even with the lower dissolved organic carbon. Optimum agreements for the free ion/labile species were within acidic solution, whereas under-estimated in alkaline effluents. Overestimated particulate/colloidal fraction consisted with the hypothesis that a portion of colloids in fraction < 0.45 μm were considered as dissolved. - Research Highlights: → Metals in various landfill leachate treatments were size charge fractionated and the speciation transformations were compared. → Species predictions of metals were simulated by Visual MINTEQ model. → Optimum agreements for the free ion/labile species were within acidic solution. → Predictions of colloidal species agree with experimental data well in alkaline solution.

  3. Characterization of iron speciation in urban and rural single particles using XANES spectroscopy and micro X-ray fluorescence measurements: investigating the relationship between speciation and fractional iron solubility

    OpenAIRE

    Oakes, M.; Weber, R. J.; Lai, B.; Russell, A.; Ingall, E. D.

    2012-01-01

    Soluble iron in fine atmospheric particles has been identified as a public health concern by participating in reactions that generate reactive oxygen species (ROS). The mineralogy and oxidation state (speciation) of iron have been shown to influence fractional iron solubility (soluble iron/total iron). In this study, iron speciation was determined in single particles at urban and rural sites in Georgia USA using synchrotron-based techniques, such as X-ray Absorption Near-Edge Structure (XANES...

  4. ADVANCED HYBRID PARTICULATE COLLECTOR

    Energy Technology Data Exchange (ETDEWEB)

    Ye Zhuang; Stanley J. Miller; Michelle R. Olderbak; Rich Gebert

    2001-12-01

    A new concept in particulate control, called an advanced hybrid particulate collector (AHPC), is being developed under funding from the U.S. Department of Energy. The AHPC combines the best features of electrostatic precipitators (ESPs) and baghouses in an entirely novel manner. The AHPC concept combines fabric filtration and electrostatic precipitation in the same housing, providing major synergism between the two methods, both in the particulate collection step and in transfer of dust to the hopper. The AHPC provides ultrahigh collection efficiency, overcoming the problem of excessive fine-particle emissions with conventional ESPs, and solves the problem of reentrainment and re-collection of dust in conventional baghouses. Phase I of the development effort consisted of design, construction, and testing of a 5.7-m{sup 3}/min (200-acfm) working AHPC model. Results from both 8-hr parametric tests and 100-hr proof-of-concept tests with two different coals demonstrated excellent operability and greater than 99.99% fine-particle collection efficiency. Since all of the developmental goals of Phase I were met, the approach was scaled up in Phase II to a size of 255 m{sup 3}/min (9000 acfm) (equivalent in size to 2.5 MW) and was installed on a slipstream at the Big Stone Power Plant. For Phase II, the AHPC at Big Stone Power Plant was operated continuously from late July 1999 until mid-December 1999. The Phase II results were highly successful in that ultrahigh particle collection efficiency was achieved, pressure drop was well controlled, and system operability was excellent. For Phase III, the AHPC was modified into a more compact configuration, and components were installed that were closer to what would be used in a full-scale commercial design. The modified AHPC was operated from April to July 2000. While operational results were acceptable during this time, inspection of bags in the summer of 2000 revealed some membrane damage to the fabric that appeared to be

  5. Individual-Level Concentrations of Fine Particulate Matter Chemical Components and Subclinical Atherosclerosis: A Cross-Sectional Analysis Based on 2 Advanced Exposure Prediction Models in the Multi-Ethnic Study of Atherosclerosis

    Science.gov (United States)

    Kim, Sun-Young; Sheppard, Lianne; Kaufman, Joel D.; Bergen, Silas; Szpiro, Adam A.; Larson, Timothy V.; Adar, Sara D.; Diez Roux, Ana V.; Polak, Joseph F.; Vedal, Sverre

    2014-01-01

    Long-term exposure to outdoor particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5) has been associated with cardiovascular morbidity and mortality. The chemical composition of PM2.5 that may be most responsible for producing these associations has not been identified. We assessed cross-sectional associations between long-term concentrations of PM2.5 and 4 of its chemical components (sulfur, silicon, elemental carbon, and organic carbon (OC)) and subclinical atherosclerosis, measured as carotid intima-media thickness (CIMT) and coronary artery calcium, between 2000 and 2002 among 5,488 Multi-Ethnic Study of Atherosclerosis participants residing in 6 US metropolitan areas. Long-term concentrations of PM2.5 components at participants' homes were predicted using both city-specific spatiotemporal models and a national spatial model. The estimated differences in CIMT associated with interquartile-range increases in sulfur, silicon, and OC predictions from the spatiotemporal model were 0.022 mm (95% confidence interval (CI): 0.014, 0.031), 0.006 mm (95% CI: 0.000, 0.012), and 0.026 mm (95% CI: 0.019, 0.034), respectively. Findings were generally similar using the national spatial model predictions but were often sensitive to adjustment for city. We did not find strong evidence of associations with coronary artery calcium. Long-term concentrations of sulfur and OC, and possibly silicon, were associated with CIMT using 2 distinct exposure prediction modeling approaches. PMID:25164422

  6. Caracterização do material particulado fino e grosso e composição da fração inorgânica solúvel em água em São José dos Campos (SP Caracterization of fine and coarse particulate matter and composition of the water-soluble inorganic fraction in São José dos Campos (SP

    Directory of Open Access Journals (Sweden)

    Patricia Alexandre de Souza

    2010-01-01

    Full Text Available Air samples of fine (PM2,5 and coarse (PM2,5-10 particulate matter were collected in São José dos Campos from February 2004 to February 2005. Average PM10 mass concentrations was 31.2 ± 14.0 μg m-3, half of which belonging to the PM2.5 fraction. Ammonium and SO4(2- were predominantly found in the fine fraction. Average (NH42SO4 concentration was estimated to be about 2.9 μg m-3. Chloride, Na+ and NO3- were mostly associated with PM2,5-10. Chloride deficits with respect to sea-salt Cl/Na ratio were found in both size fractions.

  7. X exceptionalism in Caenorhabditis speciation.

    Science.gov (United States)

    Cutter, Asher D

    2017-11-13

    Speciation genetics research in diverse organisms shows the X-chromosome to be exceptional in how it contributes to "rules" of speciation. Until recently, however, the nematode phylum has been nearly silent on this issue, despite the model organism Caenorhabditis elegans having touched most other topics in biology. Studies of speciation with Caenorhabditis accelerated with the recent discovery of species pairs showing partial interfertility. The resulting genetic analyses of reproductive isolation in nematodes demonstrate key roles for the X-chromosome in hybrid male sterility and inviability, opening up new understanding of the genetic causes of Haldane's rule, Darwin's corollary to Haldane's rule, and enabling tests of the large-X effect hypothesis. Studies to date implicate improper chromatin regulation of the X-chromosome by small RNA pathways as integral to hybrid male dysfunction. Sexual transitions in reproductive mode to self-fertilizing hermaphroditism inject distinctive molecular evolutionary features into the speciation process for some species. Caenorhabditis also provides unique opportunities for analysis in a system with XO sex determination that lacks a Y-chromosome, sex chromosome-dependent sperm competition differences and mechanisms of gametic isolation, exceptional accessibility to the development process and rapid experimental evolution. As genetic analysis of reproductive isolation matures with investigation of multiple pairs of Caenorhabditis species and new species discovery, nematodes will provide a powerful complement to more established study organisms for deciphering the genetic basis of and rules to speciation. © 2017 John Wiley & Sons Ltd.

  8. Emission factors of fine particulate matter, organic and elemental carbon, carbon monoxide, and carbon dioxide for four solid fuels commonly used in residential heating by the U.S. Navajo Nation.

    Science.gov (United States)

    Champion, Wyatt M; Connors, Lea; Montoya, Lupita D

    2017-09-01

    Most homes in the Navajo Nation use wood as their primary heating fuel, often in combination with locally mined coal. Previous studies observed health effects linked to this solid-fuel use in several Navajo communities. Emission factors (EFs) for common fuels used by the Navajo have not been reported using a relevant stove type. In this study, two softwoods (ponderosa pine and Utah juniper) and two high-volatile bituminous coals (Black Mesa and Fruitland) were tested with an in-use residential conventional wood stove (homestove) using a modified American Society for Testing and Materials/U.S. Environmental Protection Agency (ASTM/EPA) protocol. Filter sampling quantified PM 2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) and organic (OC) and elemental (EC) carbon in the emissions. Real-time monitoring quantified carbon monoxide (CO), carbon dioxide (CO 2 ), and total suspended particles (TSP). EFs for these air pollutants were developed and normalized to both fuel mass and energy consumed. In general, coal had significantly higher mass EFs than wood for all pollutants studied. In particular, coal emitted, on average, 10 times more PM 2.5 than wood on a mass basis, and 2.4 times more on an energy basis. The EFs developed here were based on fuel types, stove design, and operating protocols relevant to the Navajo Nation, but they could be useful to other Native Nations with similar practices, such as the nearby Hopi Nation. Indoor wood and coal combustion is an important contributor to public health burdens in the Navajo Nation. Currently, there exist no emission factors representative of Navajo homestoves, fuels, and practices. This study developed emission factors for PM 2.5 , OC, EC, CO, and CO 2 using a representative Navajo homestove. These emission factors may be utilized in regional-, national-, and global-scale health and environmental models. Additionally, the protocols developed and results presented here may inform on-going stove design of

  9. CHURCH, Category, and Speciation

    Directory of Open Access Journals (Sweden)

    Rinderknecht Jakob Karl

    2018-01-01

    Full Text Available The Roman Catholic definition of “church”, especially as applied to groups of Protestant Christians, creates a number of well-known difficulties. The similarly complex category, “species,” provides a model for applying this term so as to neither lose the centrality of certain examples nor draw a hard boundary to rule out border cases. In this way, it can help us to more adequately apply the complex ecclesiology of the Second Vatican Council. This article draws parallels between the understanding of speciation and categorization and the definition of Church since the council. In doing so, it applies the work of cognitive linguists, including George Lakoff, Zoltan Kovecses, Giles Fauconnier and Mark Turner on categorization. We tend to think of categories as containers into which we sort objects according to essential criteria. However, categories are actually built inductively by making associations between objects. This means that natural categories, including species, are more porous than we assume, but nevertheless bear real meaning about the natural world. Taxonomists dispute the border between “zebras” and “wild asses,” but this distinction arises out of genetic and evolutionary reality; it is not merely arbitrary. Genetic descriptions of species has also led recently to the conviction that there are four species of giraffe, not one. This engagement will ground a vantage point from which the Council‘s complex ecclesiology can be more easily described so as to authentically integrate its noncompetitive vision vis-a-vis other Christians with its sense of the unique place held by Catholic Church.

  10. Cancer: beyond speciation.

    Science.gov (United States)

    Vincent, Mark D

    2011-01-01

    A good account of the nature of cancer should provide not only a description of its consistent features, but also how they arise, how they are maintained, why conventional chemotherapy succeeds, and fails, and where to look for better targets. Cancer was once regarded as enigmatic and inexplicable; more recently, the "mutation theory," based on random alterations in a relatively small set of proto-oncogenes and tumor suppressor genes, has enjoyed widespread acceptance. The "mutation theory," however, is noticeable for its failure to explain the basis of differential chemosensitivity, for providing a paucity of targets, especially druggable ones, and for justifying the development of targeted therapies with, in general, disappointingly abbreviated clinical benefit. Furthermore, this theory has mistakenly predicted a widespread commonality of consistent genetic abnormalities across the range of cancers, whereas the opposite, that is, roiling macrogenomic instability, is generally the rule. In contrast, concerning what actually is consistent, that is, the suite of metabolic derangements common to virtually all, especially aggressive, cancers, the "Mutation Theory" has nothing to say. Other hypotheses merit serious consideration "aneuploidy theories" posit whole-genome instability and imbalance as causally responsible for the propagation of the tumor. Another approach, that is, "derepression atavism," suggests cancer results from the release of an ancient survival program, characterized by the emergence of remarkably primitive features such as unicellularity, fermentation, and immortality; existential goals are served by heuristic genomic instability coupled with host-to-tumor biomass interconversion, mediated by the Warburg effect, a major component of the program. Carcinogenesis is here seen as a process of de-speciation; however, genomic nonrestabilization raises issues as to where on the tree of life cancers belong, as a genuinely alternative modus vivendi

  11. CONCAWE effluent speciation project

    Energy Technology Data Exchange (ETDEWEB)

    Leonards, P.; Comber, M.; Forbes, S.; Whale, G.; Den Haan, K.

    2010-09-15

    In preparation for the implementation of the EU REACH regulation, a project was undertaken to transfer the high-resolution analytical method for determining hydrocarbon blocks in petroleum products by comprehensive two-dimensional gas chromatography (GCxGC) to a laboratory external to the petroleum industry (Institute for Environmental Studies (IVM) of the VU University of Amsterdam). The method was validated and used for the analysis of petroleum hydrocarbons extracted from refinery effluents. The report describes the technology transfer and the approaches used to demonstrate the successful transfer and application of the GCxGC methodology from analysing petroleum products to the quantitative determination of hydrocarbon blocks in refinery effluents. The report describes all the methods used for all the determinations on the effluent samples along with an overview of the results obtained which are presented in summary tables and graphs. These data have significantly improved CONCAWE's knowledge of what refineries emit in their effluents. A total of 111 Effluent Discharge Samples from 105 CONCAWE refineries in Europe were obtained in the period June 2008 to March 2009. These effluents were analysed for metals, standard effluent parameters (including COD, BOD), oil in water, BTEX and volatile organic compounds. The hydrocarbon speciation determinations and other hydrocarbon analyses are also reported. The individual refinery analytical results are included into this report, coded as per the CONCAWE system. These data will be, individually, communicated to companies and refineries. The report demonstrates that it is feasible to conduct a research programme to investigate the fate and effects of hydrocarbon blocks present in discharged refinery effluents.

  12. Sympatric Speciation in Threespine Stickleback: Why Not?

    Directory of Open Access Journals (Sweden)

    Daniel I. Bolnick

    2011-01-01

    Full Text Available Numerous theoretical models suggest that sympatric speciation is possible when frequency-dependent interactions such as intraspecific competition drive disruptive selection on a trait that is also subject to assortative mating. Here, I review recent evidence that both conditions are met in lake populations of threespine stickleback (Gasterosteus aculeatus. Nonetheless, sympatric speciation appears to be rare or absent in stickleback. If stickleback qualitatively fit the theoretical requirements for sympatric speciation, why do they not undergo sympatric speciation? I present simulations showing that disruptive selection and assortative mating in stickleback, though present, are too weak to drive speciation. Furthermore, I summarize empirical evidence that disruptive selection in stickleback drives other forms of evolutionary diversification (plasticity, increased trait variance, and sexual dimorphism instead of speciation. In conclusion, core assumptions of sympatric speciation theory seem to be qualitatively reasonable for stickleback, but speciation may nevertheless fail because of (i quantitative mismatches with theory and (ii alternative evolutionary outcomes.

  13. Fine chemistry

    International Nuclear Information System (INIS)

    Laszlo, P.

    1988-01-01

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included [fr

  14. Neutral Models with Generalised Speciation

    NARCIS (Netherlands)

    Haegeman, Bart; Etienne, Rampal S.

    Hubbell's neutral theory claims that ecological patterns such as species abundance distributions can be explained by a stochastic model based on simple assumptions. One of these assumptions, the point mutation assumption, states that every individual has the same probability to speciate. Etienne et

  15. Method and apparatus for removing volatile hydrocarbons from particulate soils

    International Nuclear Information System (INIS)

    Mendenhall, R.L.

    1992-01-01

    This patent describes an apparatus for heating solid particulate mineral compositions. It comprises: a counterflow ratable drum having a first end and an opposite second end, a first portion of the drum extending from the first end for a first length and having a first diameter along the first length, and a second portion of the drum secured to and extending from the first portion to the second end for a second length and having a second diameter along the second length, the second diameter being less than the first diameter, a burner adjacent the first end for introducing and directing hot gases of combustion into the first portion of the drum toward the second end, means for introducing particulate composition into the drum at the second end, means for directing the particulate composition along the drum from the second end toward the first end, and means for recovering composition at the first end, means for removing a gaseous mixture of organic volatiles, gases of combustion and fine particles of the particulate composition adjacent the second drum end, means for separating fine particles of the particulate composition from the gaseous mixture, and means for returning the separated fine particulate composition particles to the first portion of the drum

  16. Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000

    Science.gov (United States)

    Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.

    2005-01-01

    During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.

  17. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood and dung cooking fires, brick kilns, generators, trash and crop residue burning

    Science.gov (United States)

    Stone, Elizabeth; Jayarathne, Thilina; Stockwell, Chelsea; Christian, Ted; Bhave, Prakash; Siva Praveen, Puppala; Panday, Arnico; Adhikari, Sagar; Maharjan, Rashmi; Goetz, Doug; DeCarlo, Peter; Saikawa, Eri; Yokelson, Robert

    2016-04-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in situ characterization of widespread and under-sampled combustion sources. In Kathmandu and the Terai, southern Nepal's flat plains, samples of fine particulate matter (PM2.5) were collected from wood and dung cooking fires (n = 22), generators (n = 2), groundwater pumps (n = 2), clamp kilns (n = 3), zig-zag kilns (n = 3), trash burning (n = 4), one heating fire, and one crop residue fire. Co-located measurements of carbon dioxide, carbon monoxide, and volatile organic compounds allowed for the application of the carbon mass balance approach to estimate emission factors for PM2.5, elemental carbon, organic carbon, and water-soluble inorganic ions. Organic matter was chemically speciated using gas chromatography - mass spectrometry for polycyclic aromatic hydrocarbons, sterols, n-alkanes, hopanes, steranes, and levoglucosan, which accounted for 2-8% of the measured organic carbon. These data were used to develop molecular-marker based profiles for use in source apportionment modeling. This study provides quantitative emission factors for particulate matter and its constituents for many important combustion sources in Nepal and South Asia.

  18. Controlling particulate matter under the Clean Air Act: a menu of options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This document was prepared by STAPPA and ALAPCO to help US state and local air pollution control officials understand the effects of particulate matter (PM) on human health and air quality, the relative contribution of various sources to particulate emissions, and the effectiveness and costs of various approaches - including innovative ones - to minimizing these emissions. The document covers particulate matter with a nominal diameter of 10 microns ({mu}m) or less (PM{sub 10}), including `fine` PM of 2.5 microns or less in diameter (PM{sub 2.5}). Sections cover: the effects of particulate matter on human health; regulatory issues; characterization of particulate matter; emission control strategies for mobile sources (diesel engines, small nonroad engines, alternative fuels etc.), particulates from stationary sources (electric utilities, industry and commercial fuel combustion; mineral products industry, metallurgical industry etc.); particulates from area sources; and market-based strategies for controlling particulate matter. 2 apps.

  19. Chemical mass balance source apportionment of fine and PM10 in the Desert Southwest, USA

    Directory of Open Access Journals (Sweden)

    Andrea L. Clements

    2016-03-01

    Full Text Available The Desert Southwest Coarse Particulate Matter Study was undertaken in Pinal County, Arizona, to better understand the origin and impact of sources of fine and coarse particulate matter (PM in rural, arid regions of the U.S. southwestern desert. The desert southwest experiences some of the highest PM10 mass concentrations in the country. To augment previously reported results, 6-week aggregated organic speciation data that included ambient concentrations of n-alkanes, polycyclic aromatic hydrocarbons, organic acids, and saccharides were used in chemical mass balance modeling (CMB. A set of re-suspended soil samples were analyzed for specific marker species to provide locally-appropriate source profiles for the CMB analysis. These profiles, as well as previously collected plant and fungal spore profiles from the region, were combined with published source profiles for other relevant sources and used in the CMB analysis. The six new region-specific source profiles included both organic and inorganic species for four crustal material sources, one plant detritus source, and one fungal spore source.Results indicate that up to half of the ambient PM2.5 was apportioned to motor vehicles with the highest regional contribution observed in the small urban center of Casa Grande. Daily levels of apportioned crustal material accounted for up to 50% of PM2.5 mass with the highest contributions observed at the sites closest to active agricultural areas. Apportioned secondary PM, biomass burning, and road dust typically contributed less than 35% as a group to the apportioned PM2.5 mass. Crustal material was the primary source apportioned to PM10 and accounted for between 50–90% of the apportioned mass. Of the other sources apportioned to PM10, motor vehicles and road dust were the largest contributors at the urban and one of the rural sites, whereas road dust and meat cooking operations were the largest contributors at the other rural site.

  20. Feasibility of coupling a thermal/optical carbon analyzer to a quadrupole mass spectrometer for enhanced PM2.5 speciation.

    Science.gov (United States)

    Riggio, Gustavo M; Chow, Judith C; Cropper, Paul M; Wang, Xiaoliang; Yatavelli, Reddy L N; Yang, Xufei; Watson, John G

    2018-05-01

    A thermal/optical carbon analyzer (TOA), normally used for quantification of organic carbon (OC) and elemental carbon (EC) in PM 2.5 (fine particulate matter) speciation networks, was adapted to direct thermally evolved gases to an electron impact quadrupole mass spectrometer (QMS), creating a TOA-QMS. This approach produces spectra similar to those obtained by the Aerodyne aerosol mass spectrometer (AMS), but the ratios of the mass to charge (m/z) signals differ and must be remeasured using laboratory-generated standards. Linear relationships are found between TOA-QMS signals and ammonium (NH 4 + ), nitrate (NO 3 - ), and sulfate (SO 4 2- ) standards. For ambient samples, however, positive deviations are found for SO 4 2- , compensated by negative deviations for NO 3 - , at higher concentrations. This indicates the utility of mixed-compound standards for calibration or separate calibration curves for low and high ion concentrations. The sum of the QMS signals across all m/z after removal of the NH 4 + , NO 3 - , and SO 4 2- signals was highly correlated with the carbon content of oxalic acid (C₂H₂O₄) standards. For ambient samples, the OC derived from the TOA-QMS method was the same as the OC derived from the standard IMPROVE_A TOA method. This method has the potential to reduce complexity and costs for speciation networks, especially for highly polluted urban areas such as those in Asia and Africa. Ammonium, nitrate, and sulfate can be quantified by the same thermal evolution analysis applied to organic and elemental carbon. This holds the potential to replace multiple parallel filter samples and separate laboratory analyses with a single filter and a single analysis to account for a large portion of the PM 2.5 mass concentration.

  1. Airborne particulate matter in spacecraft

    Science.gov (United States)

    1988-01-01

    Acceptability limits and sampling and monitoring strategies for airborne particles in spacecraft were considered. Based on instances of eye and respiratory tract irritation reported by Shuttle flight crews, the following acceptability limits for airborne particles were recommended: for flights of 1 week or less duration (1 mg/cu m for particles less than 10 microns in aerodynamic diameter (AD) plus 1 mg/cu m for particles 10 to 100 microns in AD); and for flights greater than 1 week and up to 6 months in duration (0.2 mg/cu m for particles less than 10 microns in AD plus 0.2 mg/cu m for particles 10 to 100 microns in AD. These numerical limits were recommended to aid in spacecraft atmosphere design which should aim at particulate levels that are a low as reasonably achievable. Sampling of spacecraft atmospheres for particles should include size-fractionated samples of 0 to 10, 10 to 100, and greater than 100 micron particles for mass concentration measurement and elementary chemical analysis by nondestructive analysis techniques. Morphological and chemical analyses of single particles should also be made to aid in identifying airborne particulate sources. Air cleaning systems based on inertial collection principles and fine particle collection devices based on electrostatic precipitation and filtration should be considered for incorporation into spacecraft air circulation systems. It was also recommended that research be carried out in space in the areas of health effects and particle characterization.

  2. A possible link between particulate matter air pollution and type 2 diabetes

    NARCIS (Netherlands)

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  3. Pu speciation in actual and simulated aged wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lezama-pacheco, Juan S [Los Alamos National Laboratory; Conradson, Steven D [Los Alamos National Laboratory

    2008-01-01

    X-ray Absorption Fine Structure Spectroscopy (XAFS) at the Pu L{sub II/III} edge was used to determine the speciation of this element in (1) Hanford Z-9 Pu crib samples, (2) deteriorated waste resins from a chloride process ion-exchange purification line, and (3) the sediments from two Waste Isolation Pilot Plant Liter Scale simulant brine systems. The Pu speciation in all of these samples except one is within the range previously displayed by PuO{sub 2+x-2y}(OH){sub y}{center_dot}zH{sub 2}O compounds, which is expected based on the putative thermodynamic stability of this system for Pu equilibrated with excess H{sub 2}O and O{sub 2} under environmental conditions. The primary exception was a near neutral brine experiment that displayed evidence for partial substitution of the normal O-based ligands with Cl{sup -} and a concomitant expansion of the Pu-Pu distance relative to the much more highly ordered Pu near neighbor shell in PuO{sub 2}. However, although the Pu speciation was not necessarily unusual, the Pu chemistry identified via the history of these samples did exhibit unexpected patterns, the most significant of which may be that the presence of the Pu(V)-oxo species may decrease rather than increase the overall solubility of these compounds. Several additional aspects of the Pu speciation have also not been previously observed in laboratory-based samples. The molecular environmental chemistry of Pu is therefore likely to be more complicated than would be predicted based solely on the behavior of PuO{sub 2} under laboratory conditions.

  4. Airborne particulate discriminator

    Science.gov (United States)

    Creek, Kathryn Louise [San Diego, CA; Castro, Alonso [Santa Fe, NM; Gray, Perry Clayton [Los Alamos, NM

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  5. Report Task 2.3: Particulate waste and turbidity in (marine) RAS

    OpenAIRE

    Kals, J.; Schram, E.; Brummelhuis, E.B.M.; Bakel, van, B.

    2006-01-01

    Particulate waste management and removal is one of the most problematic parts of recirculation aquaculture systems (RAS). Particulate waste and thereby turbidity originates from three major sources: fish (faeces), feed and biofilm (heterotrophic bacteria and fungi). Based on size and density there are roughly four categories of particulate waste: settable, suspended, floatable and fine or dissolved solids. Specific problems related to high turbidity are a decreasing feed intake by fish, causi...

  6. Aspects of speciation in foodstuffs

    International Nuclear Information System (INIS)

    Crews, Helen M.

    2001-01-01

    Food is the primary source of trace elements for humans and it is now generally accepted that the bioavailability of a given element and its behaviour in the body depends upon its chemical form. This point was illustrated with the example of arsenic speciation in fish in which bioaccumulation takes place in the marine food chain, however, the species of arsenic ingested by man when the fish is consumed are not toxic. It was pointed out that species information will be vital in deciding upon realistic average dietary requirements for trace elements, particularly because both deficiency or excess of an element can have detrimental consequences on an individual's health. Two examples of speciation studies with food (Cd and Se) were presented and the importance of the use of label technology which will allow studies of target analytes at physiological levels, was stressed

  7. MODELING MONOMETHYLMERCURY AND TRIBUTYLTIN SPECIATION WITH EPA'S GEOCHEMICAL SPECIATION MODEL MINTEQA2

    Science.gov (United States)

    Given the complexity of the various, simultaneous (and competing) equilibrium reactions governing the speciation of ionic species in aquatic systems, EPA has developed and distributed the geochemical speciation model MINTEQA2 (Brown and Allison, 1987, Allison et al., 1991; Hydrog...

  8. INORGANIC ARSENIC SPECIATION IN THE ATMOSPHERE: STUDY IN ISFAHAN

    Directory of Open Access Journals (Sweden)

    A KALANTARI

    2000-06-01

    Full Text Available Introduction. Arsenic is one of the most hazardous elements that associate with airborne particulate matter in the atmosphere. Among the different species of arsenic, ASIII has the most toxic and carcinogenic property between any other kind of this element. Arsenic speciation is important in environmental studies. Methods. We collected 59 samples of airborne particulate matter from the atmosphere in Isfahan in a three months period by a high volume air sampler with a flow rate of 1 m3 min-1. Air particulates were collected on the paper filter (Whatman No.41. Four different digestive procedures were examined in order to find the best method. At last we chose digestion of filter with HCI (10-4N due to its feasibility, cost benefit and efficacy. Other methods that examined were digestion of filter with a mixture of HN03 and H2O2, with a mixture of HNO3 and H2O2 and with HCI (1 N. The determination of As3+ and As5+ concentrations were performed by hydrIde generation atomic absorption spectrometry. The effect of Ph on the absorption signal was also investigated in arsenic speciation. Results. Average of total saspended particles (TSP in July, August, and September 1998 were 223, 172, and 247 mg.m3 respectively. The recovery of arsenic from airborne particulate matter was almost the same for the different digestion methods. The concentration and volume of NaBH4 was optimized for determining of different species of arsenic. At pH=5, Asv didn't produce any absorption signal. So, the determination of ASm was carried out easilyat the above mentioned pH. The concentrations of total arsenic were determined in 47 samples. The mean concentrations of total arsenic in July, August and September were 3.31, 2.01 and 2.6, respectively. Discussion. More than 50 percent of total atmospheric arsenic exists as ASIII which is the most toxic and carcinogenic forms of this element. So, it is recommended to make a suitable policy for decreasing of this hazardous

  9. Characterization of fine aerosol and its inorganic components at two rural locations in New York State.

    Science.gov (United States)

    Sunder Raman, Ramya; Hopke, Philip K; Holsen, Thomas M

    2008-09-01

    Samples of PM(2.5) were collected to measure the concentrations of its chemical constituents at two rural locations, Potsdam and Stockton, NY from November 2002 to August 2005. These samples were collected on multiple filters at both sites, every third day for a 24-h interval with a speciation network sampler. The Teflo filters were analyzed for PM(2.5) mass by gravimetry, and elemental composition by X-ray fluorescence (XRF). Nylasorb filters and Teflo filters were leached with water and analyzed for anions and cations, respectively, by ion chromatography (IC). Fine particulate matter (PM(2.5)) mass and its inorganic component measurements were statistically characterized, and the temporal behavior of these species were assessed. Over the entire study period, PM(2.5) mass concentrations were lower at Potsdam (8.35 microg/m(3)) than at Stockton (10.24 microg/m(3)). At both locations, organic matter (OM) was the highest contributor to mass. Sulfate was the second highest contributor to mass at 27.0% at Potsdam, and 28.7% at Stockton. Nitrate contributions to mass of 8.9 and 9.5% at Potsdam and Stockton, respectively, were the third highest. At both locations, fine PM mass exhibited an annual cycle with a pronounced summer peak and indications of another peak during the winter, consistent with an overall increase in the rate of secondary aerosol formation during the summer, and increased partitioning of ammonium nitrate to the particle phase and condensation of other semi-volatiles during the winter, respectively. An ion-balance analysis indicated that at both locations, during the summers as well as in the winters, the aerosol was acidic. Lognormal frequency distribution fits to the measured mass concentrations on a seasonal basis indicated the overall increase in particle phase secondary aerosol (sulfate and SOA) concentrations during the summers compared to the winters at both locations.

  10. Relationship between indoor and outdoor carbonaceous particulates in roadside households

    Energy Technology Data Exchange (ETDEWEB)

    Funasaka, K.; Miyazaki, T.; Tsuruho, K. [Osaka City Institute of Public Health and Environmental Sciences (Japan); Tamura, K. [The National Institute for Minamata Disease, Kumamoto (Japan); Mizuno, T. [Mie University (Japan). Dept. of Chemistry for Materials; Kuroda, K. [Osaka City University Medical School (Japan). Dept. of Preventive Medicine and Environmental Health

    2000-07-01

    Concentrations of particulate matter (PM) and carbonaceous particulates in indoor and outdoor air at roadside private households were measured in Osaka, Japan. The particulate samples were collected on filters using a portable AND sampler capable of separating particles into three different size ranges: over 10 {mu}m, 2-10 {mu}m (coarse) and below 2 {mu}m (fine) in aerodynamic diameter. The filters were weighed and then analyzed for elemental carbon (EC) and organic carbon (OC) by thermal oxidation using a CHN CORDER. The results showed that indoor fine PM concentration is considerably affected by fine EC and the fine EC in indoor air is significantly correlated to that in outdoor air, r = 0.86 (n = 30, p < 0.001). A simple estimation from EC content ratio in diesel exhaust particles indicated that about 30% of indoor particulates of less than 10 {mu}m (PM10) were contributed from diesel exhaust. Additionally, the size characteristics of outdoor PM at roadside and background sites were examined using Andersen Cascade Impactors. (author)

  11. Evaluation of airborne particulate matter pollution in Kenitra City, Morocco

    Directory of Open Access Journals (Sweden)

    Abdelfettah Benchrif

    2013-04-01

    Full Text Available Two size fractions of atmospheric particulate matter < 2.5 µm and 2.5-10 µm were collected in Kenitra City from February 2007 to February 2008. The sampling was done using a Gent Stacked sampler on nuclepore polycarbonate filters and the collected filters were analyzed using Total Reflection X-Ray Fluorescence (TXRF and Atomic Absorption Spectroscopy (AAS. The particulate matter trends show higher concentrations during the summer as compared to other seasons. The highest concentrations were obtained for Ca in coarse particles and Fe for fine particles. However, the lowest concentrations were observed for Cd in both particulate sizes. The principal component analysis (PCA based on multivariate study enabled the identification of soil, road dust and traffic emissions as common sources for coarse and fine particles.

  12. Sanitary impact of the particulate atmospheric urban pollution; Impact sanitaire de la pollution atmospherique urbaine particulaire

    Energy Technology Data Exchange (ETDEWEB)

    Sentissi, M.

    1999-03-22

    The pollution of particulates origin is one of the principle actual problem relative to air quality. In France, the fine particulates come from industry and automobile traffic, especially, the diesel vehicles. The most worrying characteristic is their fineness, that allow them to stay in suspension during a long time and penetrate into pulmonary alveoli, with toxic elements at their surface such metals, acids, polycyclic aromatic hydrocarbons. The objective of this work is to take stock of epidemiology and toxicology studies evaluating the sanitary impact of particulates in suspension. (N.C.)

  13. DESIGN OF PARTICULATE MATERIAL COMPACTOR ROLLS DIAMETER

    Directory of Open Access Journals (Sweden)

    Peter Peciar

    2017-09-01

    Full Text Available At present, in a period of an industrial expansion great emphasis is placed on the environment. That means aiming for a reduced energy consumption, and also lessening dustiness from very fine powder material. This category also includes particulate material agglomeration processes. Because this process is very energy-intensive, it is necessary to correctly design these devices. The aim of this paper is to focus on a theoretical design of a production compactor with the rolls diameter for an experimental particulate material, based on Johanson’s theory and experimentally measured material properties. The material used for experimental measurements was an NPK-based industrial fertilizer consisting of several components. The results of this paper is the dependence of the ratio of the maximum compression pressure to the initial compression pressure from the rolls diameter of the proposed compactor.

  14. Uranium speciation in Fernald soils

    International Nuclear Information System (INIS)

    Morris, D.E.; Conradson, S.D.; Tait, C.D.; Chisholm-Brause, C.J.; Berg, J.; Musgrave, J.

    1992-01-01

    This report details progress made from January 1 to May 31, 1992 in this analytical support task to determine the speciation of uranium in contaminated soil samples from the Fernald Environmental Management Project site under the auspices of the Uranium in Soils Integrated Demonstration funded through the US DOE's Office of Technology Development. The authors' efforts have focused on characterization of soil samples collected by S.Y. Lee (Oak Ridge National Laboratory) from five locales at the Fernald site. These were chosen to sample a broad range of uranium source terms. On the basis of x-ray absorption spectroscopy data, they have determined that the majority of uranium (> 80--90%) exists in the hexavalent oxidation state for all samples examined. This is a beneficial finding from the perspective of remediation, because U(VI) species are more soluble in general than uranium species in other oxidation states. Optical luminescence data from many of the samples show the characteristic structured yellow-green emission from the uranyl (UO 2 2+ ) moiety. The luminescence data also suggest that much of the uranium in these soils is present as well-crystallized UO 2 2+ species. Some clear spectroscopic distinctions have been noted for several samples that illustrate significant differences in the speciation (1) from site to site, (2) within different horizons at the same site, and (3) within different size fractions of the soils in the same horizon at the same site. This marked heterogeneity in uranyl speciation suggests that several soil washing strategies may be necessary to reduce the total uranium concentrations within these soils to regulatory limits

  15. Speciation of Pb in industrially polluted soils

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ottosen, Lisbeth M.; Pedersen, Anne Juul

    2006-01-01

    This study was aimed at elucidating the importance of original Pb-speciation versus soil-characteristics to mobility and distribution of Pb in industrially polluted soils. Ten industrially polluted Danish surface soils were characterized and Pb speciation was evaluated through SEM-EDX studies...

  16. Speciated atmospheric mercury and its potential source in Guiyang, China

    Science.gov (United States)

    Fu, Xuewu; Feng, Xinbin; Qiu, Guangle; Shang, Lihai; Zhang, Hui

    2011-08-01

    Speciated atmospheric mercury (Hg) including gaseous elemental mercury (GEM), particulate Hg (PHg), and reactive gaseous Hg (RGM) were continuously measured at an urban site in Guiyang city, southwest China from August to December 2009. The averaged concentrations for GEM, PHg, and RGM were 9.72 ± 10.2 ng m -3, 368 ± 676 pg m -3, and 35.7 ± 43.9 pg m -3, respectively, which were all highly elevated compared to observations at urban sites in Europe and North America. GEM and PHg were characterized by similar monthly and diurnal patterns, with elevated levels in cold months and nighttime, respectively. In contrast, RGM did not exhibit clear monthly and diurnal variations. The variations of GEM, PHg, and RGM indicate the sampling site was significantly impacted by sources in the city municipal area. Sources identification implied that both residential coal burning and large point sources were responsible to the elevated GEM and PHg concentrations; whereas point sources were the major contributors to elevated RGM concentrations. Point sources played a different role in regulating GEM, PHg, and RGM concentrations. Aside from residential emissions, PHg levels was mostly affected by small-scale coal combustion boilers situated to the east of the sampling site, which were scarcely equipped or lacking particulate control devices; whereas point sources situated to the east, southeast, and southwest of the sampling played an important role on the distribution of atmospheric GEM and RGM.

  17. Advances in Ecological Speciation: an integrative approach.

    Science.gov (United States)

    Faria, Rui; Renaut, Sebastien; Galindo, Juan; Pinho, Catarina; Melo-Ferreira, José; Melo, Martim; Jones, Felicity; Salzburger, Walter; Schluter, Dolph; Butlin, Roger

    2014-02-01

    The role of natural selection in promoting reproductive isolation has received substantial renewed interest within the last two decades. As a consequence, the study of ecological speciation has become an extremely productive research area in modern evolutionary biology. Recent innovations in sequencing technologies offer an unprecedented opportunity to study the mechanisms involved in ecological speciation. Genome scans provide significant insights but have some important limitations; efforts are needed to integrate them with other approaches to make full use of the sequencing data deluge. An international conference 'Advances in Ecological Speciation' organized by the University of Porto (Portugal) aimed to review current progress in ecological speciation. Using some of the examples presented at the conference, we highlight the benefits of integrating ecological and genomic data and discuss different mechanisms of parallel evolution. Finally, future avenues of research are suggested to advance our knowledge concerning the role of natural selection in the establishment of reproductive isolation during ecological speciation. © 2013 John Wiley & Sons Ltd.

  18. Speciation analysis of radionuclides in the environment. NKS-B speciation project report 2007

    Energy Technology Data Exchange (ETDEWEB)

    Xiaolin Hou (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Aldahan, A. (Uppsala Univ., Dept. of Earth Science, Uppsala (Sweden)); Possnert, G. (Uppsala Univ., Tandem Lab., Uppsala (Sweden)); Lujaniene, G. (Institute of Physics, Vilnius (Lithuania)); Lehto, J. (Univ. of Helsinki, Dept. of Chemistry, Helsinki (Finland)); Salbu, B. (Norwegian Univ. of Life Sciences (UMB), AAs (Norway))

    2008-07-15

    This report describes the work carried out under the NUK-B project SPECIATION 2007. In 2007, the project partners had two meeting in April and November, organized a NUK seminar on speciation and hot particles. SPECIATION 2007 t mainly focused on two issues on speciation (1) further development of speciation methods for radionuclides, and (2) investigation of speciation of radionuclides in environment. The report summarized the work done in partners labs, which includes: (1) Further development on the speciation of 129I and 127I in water samples; (2) Speciation method for 129I and 127I in air; (3) Dynamic system for fractionation of Pu and Am in soil and sediment; (4) Investigation on Re-absorption of Pu during the fractionation of Pu in soil and sediment; (5) Speciation of 129I in North Sea surface water; (6) Partition of 137Cs and 129I in the Nordic lake sediment, pore-water and lake water; (7) Sequential extraction of Pu in soil, sediment and concrete samples, (8) Pu sorption to Mn and Fe oxides in the geological materials, (10) Investigation of the adsorbed species of lanthanides and actinides on clays surfaces. In addition, two review articles on the speciation of plutonium and iodine in environmental are planned to be submitted to an international journal for publication. (au)

  19. Speciation analysis of radionuclides in the environment. NKS-B speciation project report 2007

    International Nuclear Information System (INIS)

    Hou, Xiaolin; Aldahan, A.; Possnert, G.; Lujaniene, G.; Lehto, J.; Salbu, B.

    2008-07-01

    This report describes the work carried out under the NUK-B project SPECIATION 2007. In 2007, the project partners had two meeting in April and November, organized a NUK seminar on speciation and hot particles. SPECIATION 2007 t mainly focused on two issues on speciation (1) further development of speciation methods for radionuclides, and (2) investigation of speciation of radionuclides in environment. The report summarized the work done in partners labs, which includes: (1) Further development on the speciation of 129I and 127I in water samples; (2) Speciation method for 129I and 127I in air; (3) Dynamic system for fractionation of Pu and Am in soil and sediment; (4) Investigation on Re-absorption of Pu during the fractionation of Pu in soil and sediment; (5) Speciation of 129I in North Sea surface water; (6) Partition of 137Cs and 129I in the Nordic lake sediment, pore-water and lake water; (7) Sequential extraction of Pu in soil, sediment and concrete samples, (8) Pu sorption to Mn and Fe oxides in the geological materials, (10) Investigation of the adsorbed species of lanthanides and actinides on clays surfaces. In addition, two review articles on the speciation of plutonium and iodine in environmental are planned to be submitted to an international journal for publication. (au)

  20. Characterization of particulate amines

    International Nuclear Information System (INIS)

    Gundel, L.A.; Chang, S.G.; Clemenson, M.S.; Markowitz, S.S.; Novakov, T.

    1979-01-01

    The reduced nitrogen compounds associated with ambient particulate matter are chemically characterized by means of ESCA and proton activation analysis. Ambient particulate samples collected on silver filters in Berkeley, California were washed with water and organic solvents, and ESCA and proton activation analysis were performed in order to determine the composition of various nitrogen compounds and the total nitrogen content. It is found that 85% of the amines originally present in ambient particulate matter can be removed by water extraction, whereas the ammonium and nitrate are completely removed. An observed increase in ammonium ion in the extract, compared with its concentration in the original sample, coupled with the commensurate decrease in amine concentration, is attributed to the hydrolysis of amide groups, which may cause analytical methods based on extraction to yield erroneous results

  1. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    Science.gov (United States)

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used

  2. Microwave regenerated particulate trap

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, A.C. Jr.; Yonushonis, T.M. [Cummins Engine Co., Inc., Columbus, IN (United States); Haberkamp, W.C.; Mako, F.; Len, L.K,; Silberglitt, R.; Ahmed, I. [FM Technologies, Inc., Fairfax, VA (United States)

    1997-12-31

    It has been demonstrated that a fibrous particulate filter can extract particulate matter from the diesel exhaust. However, additional engineering efforts remains to achieve the design target of 90%. It has also be shown that with minor modifications magnetrons produced for home ovens can endure a simulated diesel operating environment. Much work remains to develop a robust product ready to complete extensive engine testing and evaluation. These efforts include: (1) additional environmental testing of magnetrons; (2) vibration testing of the filter in the housing; (3) evaluating alternative methods/designs to seal the center bore; and (4) determining the optimum coating thickness that provides sufficient structural integrity while maintaining rapid heating rates.

  3. Speciation Analysis of Radionuclides in the Environment - NSK-B SPECIATION project report 2009

    DEFF Research Database (Denmark)

    Hou, Xiaolin; Aldahan, Ala; Possnert, Göran

    . Speciation of radionuclides in soils and sediments includes: Sequential extraction of radionuclides in sediments and of trace elements in soil samples. Sequential extraction of radionuclides in aerosols and particles has also been performed. Further-more, sorption experiments have been performed......, sediments, particles); and (3) Intercomparison excise for speciation analysis of radionu-clides in soil and sediment. This report summarizes the work completed in the project partners’ laboratories, Method developments include: Development of an rapid and in-suit separation method for the speciation...... analysis of 129I in seawater samples; Development of a simple method for the speciation analysis of 129I in fresh water and seawater samples; Development of an on-line HPLC-ICP-MS method for the direct speciation analysis of 127I in water and leachate samples; Speciation of radionuclides in water includes...

  4. Speciation analysis of radionuclides in the environment - NSK-B SPECIATION project report 2009

    International Nuclear Information System (INIS)

    Hou, X.; Aldahan, A.; Possnert, G.; Lujaniene, G.; Lehto, J.; Skipperud, L.; Lind, O.C.; Salbu, B.

    2009-10-01

    The second stage of the NKS-B project SPECIATION was complemented in 2008-2009, which mainly focus on three aspects: (1) Further improvement and development of methods for speciation analysis of radionuclides; (2) Investigation of speciation of some radionuclides in the environment (water, sediments, particles); and (3) Intercomparison excise for speciation analysis of radionuclides in soil and sediment. This report summarizes the work completed in the project partners' laboratories. Method developments include: Development of an rapid and in-suit separation method for the speciation analysis of 129I in seawater samples; Development of a simple method for the speciation analysis of 129I in fresh water and seawater samples; Development of an on-line HPLC-ICP-MS method for the direct speciation analysis of 127I in water and leachate samples; Speciation of radionuclides in water includes: Speciation of 129I and 127I in time-series precipitation samples collected in Denmark 2001-2006 and its application for the investigation of geochemistry and atmospheric chemistry of iodine, Speciation of radionuclides in Ob and Yenisey Rivers, and Speciation of 129I and 127I in Lake Heimdalen water. Speciation of radionuclides in soils and sediments includes: Sequential extraction of radionuclides in sediments and of trace elements in soil samples. Sequential extraction of radionuclides in aerosols and particles has also been performed. Furthermore, sorption experiments have been performed to investigate the association of Pu, Am and Cs with different geological materials. The intercomparison exercises included sequential extraction of Pu, 137Cs, U, Th, and 129I in one soil and one sediment standard reference materials (NIST-4354, IAEA-375) and Pu in sediment collected from the Lake Heimdalen, Norway. (author)

  5. Speciation analysis of radionuclides in the environment - NSK-B SPECIATION project report 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)); Aldahan, A. (Uppsala Univ., Dept. of Earth Science (Sweden)); Possnert, G. (Uppsala Univ., Tandem Lab. (Sweden)); Lujaniene, G. (Univ. of Helsinki, Lab. of Radiochemistry (Finland)); Lehto, J. (Institute of Physics (Lithuania)); Skipperud, L.; Lind, O.C.; Salbu, B. (Norwegian Univ. of Life Sciences, Isotope Lab., AAs (Norway))

    2009-10-15

    The second stage of the NKS-B project SPECIATION was complemented in 2008-2009, which mainly focus on three aspects: (1) Further improvement and development of methods for speciation analysis of radionuclides; (2) Investigation of speciation of some radionuclides in the environment (water, sediments, particles); and (3) Intercomparison excise for speciation analysis of radionuclides in soil and sediment. This report summarizes the work completed in the project partners' laboratories. Method developments include: Development of an rapid and in-suit separation method for the speciation analysis of 129I in seawater samples; Development of a simple method for the speciation analysis of 129I in fresh water and seawater samples; Development of an on-line HPLC-ICP-MS method for the direct speciation analysis of 127I in water and leachate samples; Speciation of radionuclides in water includes: Speciation of 129I and 127I in time-series precipitation samples collected in Denmark 2001-2006 and its application for the investigation of geochemistry and atmospheric chemistry of iodine, Speciation of radionuclides in Ob and Yenisey Rivers, and Speciation of 129I and 127I in Lake Heimdalen water. Speciation of radionuclides in soils and sediments includes: Sequential extraction of radionuclides in sediments and of trace elements in soil samples. Sequential extraction of radionuclides in aerosols and particles has also been performed. Furthermore, sorption experiments have been performed to investigate the association of Pu, Am and Cs with different geological materials. The intercomparison exercises included sequential extraction of Pu, 137Cs, U, Th, and 129I in one soil and one sediment standard reference materials (NIST-4354, IAEA-375) and Pu in sediment collected from the Lake Heimdalen, Norway. (author)

  6. Characterizing Zinc Speciation in Soils from a Smelter-Affected Boreal Forest Ecosystem.

    Science.gov (United States)

    Hamilton, Jordan G; Farrell, Richard E; Chen, Ning; Feng, Renfei; Reid, Joel; Peak, Derek

    2016-03-01

    HudBay Minerals, Inc., has mined and/or processed Zn and Cu ore in Flin Flon, MB, Canada, since the 1930s. The boreal forest ecosystem and soil surrounding these facilities have been severely impacted by mixed metal contamination and HSO deposition. Zinc is one of the most prevalent smelter-derived contaminants and has been identified as a key factor that may be limiting revegetation. Metal toxicity is related to both total concentrations and speciation; therefore, X-ray absorption spectroscopy and X-ray fluorescence mapping were used to characterize Zn speciation in soils throughout the most heavily contaminated areas of the landscape. Zinc speciation was linked to two distinct soil types. Group I soils consist of exposed soils in weathered positions of bedrock outcrops with Zn present primarily as franklinite, a (ZnFeO) spinel mineral. Group II soils are stabilized by an invasive metal-tolerant grass species, with Zn found as a mixture of octahedral (Fe oxides) and tetrahedral Mn oxides) adsorption complexes with a franklinite component. Soil erosion influences Zn speciation through the redistribution of Zn and soil particulates from Group I landscape positions to Group II soils. Despite Group II soils having the highest concentrations of CaCl-extractable Zn, they support metal-tolerant plant growth. The metal-tolerant plants are probably preferentially colonizing these areas due to better soil and nutrient conditions as a result of soil deposition from upslope Group I areas. Zinc concentration and speciation appears to not influence the colonization by metal-tolerant grasses, but the overall soil properties and erosion effects prevent the revegetation by native boreal forest species. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  8. Radionuclide speciation in the environment: a review

    International Nuclear Information System (INIS)

    Moulin, V.; Moulin, C.

    2001-01-01

    Speciation determination is of prime importance to explain and evaluate the mobility, the toxicity and the risk resulting from the presence of trace elements in natural systems, in particular in the case of radionuclides, in the framework of environment and waste management purposes. The present paper will then focus more specifically on the physico-chemical speciation of radionuclides, and more particularly of actinides, in the environment, with emphasis on the behavior in solution: from a chemical point of view (with important ligands including colloidal phases) using experimental data and speciation calculations, as well as from a more technical point of view (with analytical methods for in situ speciation determination and thermodynamic data determination). A review of recent papers (mainly from CEA) is presented. (orig.)

  9. Pb speciation results in amended soils

    Data.gov (United States)

    U.S. Environmental Protection Agency — The dataset shows the distribution of Pb phases resulting from various amendments to change Pb speciation. This dataset is associated with the following publication:...

  10. Speciation of radionuclides in the environment

    International Nuclear Information System (INIS)

    Gunten, H.R. von; Benes, P.

    1994-02-01

    Methods for the determination of the speciation of radionuclides in aerosols, in aquatic solutions, in sediments, soils and rocks are reviewed. At present, most of the results about speciation are deduced from model calculations, model experiments, and separation of species (forms) of radionuclides, e.g., by sequential extraction procedures. Methods of direct determination of speciation of radionuclides (e.g. by laser induced spectroscopy) are in general not yet sensitive enough for a measurement of the very low concentrations of radionuclides in the environment. The methodological part of this paper is followed by a review of the very abundant literature about speciation of important radionuclides in the environment, i.e. in the atmosphere, hydrosphere and lithosphere. The review does not include the biosphere. Literature up to spring 1993 is included (with a few more recent additions). (author)

  11. Evolution: sympatric speciation the eusocial way

    DEFF Research Database (Denmark)

    Boomsma, Jacobus Jan; Nash, David Richard

    2014-01-01

    Sympatric speciation normally requires particular conditions of ecological niche differentiation. However, ant social parasites have been suspected to arise sympatrically, because (dis)loyalty to eusocial kin-structures induces disruptive selection for dispersal and inbreeding. A new study docume...

  12. Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-15

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) measures particle mass loading and chemical composition in real time for non-refractory sub-micron aerosol particles. The ACSM is designed for long-term unattended deployment and routine monitoring applications.

  13. Chemical speciation of radionuclides in contaminant plumes at the Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Champ, D.R.

    1986-01-01

    Experimental disposals of liquid and glassified wastes directly into the sands of the Perch Lake basin, Ontario, Canada, have resulted in the formation of well-defined subsurface contaminant plumes in the groundwater flow system. Using large volume water sampling techniques we have detected low concentrations of several long-lived radionuclides including isotopes of Pu, Am, Cm, Tc, I, Sr and Cs. The particulate and ionic speciation results from these studies support the conclusions of previous laboratory column studies that transport of radionuclides, particularly Cs and Pu, on particulates and/or colloids could be a significant mobilization mechanism in groundwater flow systems. We also propose, based on a comparison of the plume data with previous detailed studies on 60 Co that complexation reactions with natural as well as synthetic organic ligands can yield mobile anionic species of the actinides and lanthanides. Further detailed studies will be required to support this postulate. (author)

  14. Phosphorous Speciation in WTR-treated Biosolids Using XANES

    Science.gov (United States)

    Zhang, T. Q.; Huff, D.; Lin, Z.-Q.

    2009-04-01

    The concept of co-application of biosolids and drinking water treatment residues (DWTRs) represents an environmentally sustainable and economically sound strategy for the management of municipal solid wastes. This study demonstrated the effectiveness of reducing water-soluble P in biosolids-amended agricultural soil by the addition of DWTRs. Results showed that total P in soil leachate was significantly reduced during the initial 42-days of a 200-day greenhouse study when biosolids (50 g kg-1) were applied along with DWTRs (40 g kg-1). Particulate P was the dominant fraction of P in the soil leachate, which decreases with increasing DWTR application rate. The application of DWTRs does not significantly decrease the growth and yield of wheat (Triticum aestivum L.). The primary P chemical composition in biosolids include cupper phytate [Cu(IP6)6], barium phytate [Ba6IP6], and cupper phosphate [Cu3(PO4)2]. The addition of DWTRs to biosolids alternated the P speciation, and the P speciation change became significant with increasing the incubation time of the mixture of biosolids and DWTRs. The chemical component of Cu3(PO4)2 became non significant (<5%) with the addition of DWTRs. During the 14-day incubation time period, the proportion of P that was adsorbed on amorphous Fe(OH)3 increased substantially from 8 to 46% and Ba6IP6 increased steadily from 30 to 50%, while the proportion of Cu(IP6)6 decreased significantly from 53 to 5%. The amorphous Fe(OH)3-adsorbed P and Ba6IP6 formed the dominant P chemical components in the mixture of biosolids and DWTRs.

  15. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2012-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using highly sensitive and advanced laser-based spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been applied for the chemical speciation of actinide in aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. Development of TRLFS technology for the chemical speciation of actinides, Development of laser-induced photo-acoustic spectroscopy (LPAS) system, Application of LIBD technology to investigate dynamic behaviors of actinides dissolution reactions, Development of nanoparticle analysis technology in groundwater using LIBD, Chemical speciation of plutonium complexes by using a LWCC system, Development of LIBS technology for the quantitative analysis of actinides, Evaluation on the chemical reactions between actinides and humic substances, Spectroscopic speciation of uranium-ligand complexes in aqueous solution, Chemical speciation of actinides adsorbed on metal oxides surfaces

  16. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2010-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  17. Airborne Vertical Profiling of Mercury Speciation near Tullahoma, TN, USA

    Directory of Open Access Journals (Sweden)

    Steve Brooks

    2014-08-01

    Full Text Available Atmospheric transport and in situ oxidation are important factors influencing mercury concentrations at the surface and wet and dry deposition rates. Contributions of both natural and anthropogenic processes can significantly impact burdens of mercury on local, regional and global scales. To address these key issues in atmospheric mercury research, airborne measurements of mercury speciation and ancillary parameters were conducted over a region near Tullahoma, Tennessee, USA, from August 2012 to June 2013. Here, for the first time, we present vertical profiles of Hg speciation from aircraft for an annual cycle over the same location. These airborne measurements included gaseous elemental mercury (GEM, gaseous oxidized mercury (GOM and particulate bound mercury (PBM, as well as ozone (O3, sulfur dioxide (SO2, condensation nuclei (CN and meteorological parameters. The flights, each lasting ~3 h, were conducted typically one week out of each month to characterize seasonality in mercury concentrations. Data obtained from 0 to 6 km altitudes show that GEM exhibited a relatively constant vertical profile for all seasons with an average concentration of 1.38 ± 0.17 ng∙m−3. A pronounced seasonality of GOM was observed, with the highest GOM concentrations up to 120 pg∙m−3 in the summer flights and lowest (0–20 pg∙m−3 in the winter flights. Vertical profiles of GOM show the maximum levels at altitudes between 2 and 4 km. Limited PBM measurements exhibit similar levels to GOM at all altitudes. HYSPLIT back trajectories showed that the trajectories for elevated GOM (>70 pg∙m−3 or PBM concentrations (>30 pg∙m−3 were largely associated with air masses coming from west/northwest, while events with low GOM (<20 pg∙m−3 or PBM concentrations (<5 pg∙m−3 were generally associated with winds from a wider range of wind directions. This is the first set of speciated mercury vertical profiles collected in a single location over the course

  18. High diversity of fungi in air particulate matter.

    Science.gov (United States)

    Fröhlich-Nowoisky, Janine; Pickersgill, Daniel A; Després, Viviane R; Pöschl, Ulrich

    2009-08-04

    Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 microm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.

  19. Selfish X chromosomes and speciation.

    Science.gov (United States)

    Patten, Manus M

    2017-12-27

    In two papers published at about the same time almost thirty years ago, Frank (Evolution, 45, 1991a, 262) and Hurst and Pomiankowski (Genetics, 128, 1991, 841) independently suggested that divergence of meiotic drive systems-comprising genes that cheat meiosis and genes that suppress this cheating-might provide a general explanation for Haldane's rule and the large X-effect in interspecific hybrids. Although at the time, the idea was met with skepticism and a conspicuous absence of empirical support, the tide has since turned. Some of the clearest mechanistic explanations we have for hybrid male sterility involve meiotic drive systems, and several other cases of hybrid sterility are suggestive of a role for meiotic drive. In this article, I review these ideas and their descendants and catalog the current evidence for the meiotic drive model of speciation. In addition, I suggest that meiotic drive is not the only intragenomic conflict to involve the X chromosome and contribute to hybrid incompatibility. Sexually and parentally antagonistic selection pressures can also pit the X chromosome and autosomes against each other. The resulting intragenomic conflicts should lead to co-evolution within populations and divergence between them, thus increasing the likelihood of incompatibilities in hybrids. I provide a sketch of these ideas and interpret some empirical patterns in the light of these additional X-autosome conflicts. © 2017 John Wiley & Sons Ltd.

  20. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  1. INAA for the characterization of airborne particulate matter from the industrial area of Islamabad city

    International Nuclear Information System (INIS)

    Wasim, M.; Rahman, A.; Waheed, S.; Daud, M.; Ahmad, S.

    2003-01-01

    Air particulate matter (PM) was collected in two size fractions using stacked filter units (SFUs) provided by the International Atomic Energy Agency (IAEA) from the industrial area of Islamabad. Nucleopore polycarbonate filters were used for collecting from Oct 98 to Jun 99 the particulate matter in coarse and fine size fractions. The samples were characterized by the instrumental neutron activation analysis (INAA). About 33 elements were quantified using different irradiation and counting protocols. (author)

  2. How Facilitation May Interfere with Ecological Speciation

    Directory of Open Access Journals (Sweden)

    P. Liancourt

    2012-01-01

    Full Text Available Compared to the vast literature linking competitive interactions and speciation, attempts to understand the role of facilitation for evolutionary diversification remain scarce. Yet, community ecologists now recognize the importance of positive interactions within plant communities. Here, we examine how facilitation may interfere with the mechanisms of ecological speciation. We argue that facilitation is likely to (1 maintain gene flow among incipient species by enabling cooccurrence of adapted and maladapted forms in marginal habitats and (2 increase fitness of introgressed forms and limit reinforcement in secondary contact zones. Alternatively, we present how facilitation may favour colonization of marginal habitats and thus enhance local adaptation and ecological speciation. Therefore, facilitation may impede or pave the way for ecological speciation. Using a simple spatially and genetically explicit modelling framework, we illustrate and propose some first testable ideas about how, when, and where facilitation may act as a cohesive force for ecological speciation. These hypotheses and the modelling framework proposed should stimulate further empirical and theoretical research examining the role of both competitive and positive interactions in the formation of incipient species.

  3. Speciation of zinc in contaminated soils

    International Nuclear Information System (INIS)

    Stephan, Chadi H.; Courchesne, Francois; Hendershot, William H.; McGrath, Steve P.; Chaudri, Amar M.; Sappin-Didier, Valerie; Sauve, Sebastien

    2008-01-01

    The chemical speciation of zinc in soil solutions is critical to the understanding of its bioavailability and potential toxic effects. We studied the speciation of Zn in soil solution extracts from 66 contaminated soils representative of a wide range of field conditions in both North America and Europe. Within this dataset, we evaluated the links among the dissolved concentrations of zinc and the speciation of Zn 2+ , soil solution pH, total soil Zn, dissolved organic matter (DOM), soil organic matter (SOM) and the concentrations of different inorganic anions. The solid-liquid partitioning coefficient (K d ) for Zn ranged from 17 to 13,100 L kg -1 soil. The fraction of dissolved Zn bound to DOM varied from 60% to 98% and the soil solution free Zn 2+ varied from 40% to 60% of the labile Zn. Multiple regression equations to predict free Zn 2+ , dissolved Zn and the solid-liquid partitioning of Zn are given for potential use in environmental fate modeling and risk assessment. The multiple regressions also highlight some of the most important soil properties controlling the solubility and chemical speciation of zinc in contaminated soils. - We studied the relationships among the chemical speciation of Zn in soil solution extracts from 66 contaminated soils and various physicochemical properties of the soils

  4. Speciation by Symbiosis: the Microbiome and Behavior.

    Science.gov (United States)

    Shropshire, J Dylan; Bordenstein, Seth R

    2016-03-31

    Species are fundamental units of comparison in biology. The newly discovered importance and ubiquity of host-associated microorganisms are now stimulating work on the roles that microbes can play in animal speciation. We previously synthesized the literature and advanced concepts of speciation by symbiosis with notable attention to hybrid sterility and lethality. Here, we review recent studies and relevant data on microbes as players in host behavior and behavioral isolation, emphasizing the patterns seen in these analyses and highlighting areas worthy of additional exploration. We conclude that the role of microbial symbionts in behavior and speciation is gaining exciting traction and that the holobiont and hologenome concepts afford an evolving intellectual framework to promote research and intellectual exchange between disciplines such as behavior, microbiology, genetics, symbiosis, and speciation. Given the increasing centrality of microbiology in macroscopic life, microbial symbiosis is arguably the most neglected aspect of animal and plant speciation, and studying it should yield a better understanding of the origin of species. Copyright © 2016 Shropshire and Bordenstein.

  5. Measurement and analysis of ambient atmospheric particulate matter in urban and remote environments

    Science.gov (United States)

    Hagler, Gayle S. W.

    Atmospheric particulate matter pollution is a challenging environmental concern in both urban and remote locations worldwide. It is intrinsically difficult to control, given numerous anthropogenic and natural sources (e.g. fossil fuel combustion, biomass burning, dust, and seaspray) and atmospheric transport up to thousands of kilometers after production. In urban regions, fine particulate matter (particles with diameters under 2.5 mum) is of special concern for its ability to penetrate the human respiratory system and threaten cardiopulmonary health. A second major impact area is climate, with particulate matter altering Earth's radiative balance through scattering and absorbing solar radiation, modifying cloud properties, and reducing surface reflectivity after deposition in snow-covered regions. While atmospheric particulate matter has been generally well-characterized in populated areas of developed countries, particulate pollution in developing nations and remote regions is relatively unexplored. This thesis characterizes atmospheric particulate matter in locations that represent the extreme ends of the spectrum in terms of air pollution-the rapidly-developing and heavily populated Pearl River Delta Region of China, the pristine and climate-sensitive Greenland Ice Sheet, and a remote site in the Colorado Rocky Mountains. In China, fine particles were studied through a year-long field campaign at seven sites surrounding the Pearl River Delta. Fine particulate matter was analyzed for chemical composition, regional variation, and meteorological impacts. On the Greenland Ice Sheet and in the Colorado Rocky Mountains, the carbonaceous fraction (organic and elemental carbon) of particulate matter was studied in the atmosphere and snow pack. Analyses included quantifying particulate chemical and optical properties, assessing atmospheric transport, and evaluating post-depositional processing of carbonaceous species in snow.

  6. The Fine Structure Constant

    Indian Academy of Sciences (India)

    IAS Admin

    The article discusses the importance of the fine structure constant in quantum mechanics, along with the brief history of how it emerged. Al- though Sommerfelds idea of elliptical orbits has been replaced by wave mechanics, the fine struc- ture constant he introduced has remained as an important parameter in the field of ...

  7. Speciation of cadmium in seawater - a direct voltammetric approach

    International Nuclear Information System (INIS)

    Helmers, E.

    1994-01-01

    The present report deals with differential pulse anodic stripping voltammetry (DPASV) applied for the analysis of cadmium in open ocean seawater. Evaluation of different Cd species can generate information about distribution and speciation of Cd in the open ocean. Distribution of Cd was investigated in surface waters of the Atlantic Ocean over a wide geographical range as well as in the water column. Surface water sampling on board the research vessel Polarstern was performed from the bow boom of the ship as well as with a snorkel system which allowed continuous sample-taking. Two different Cd species could be differentiated in the voltammograms. UV-irradiation experiments allowed the identification of an inorganic and organic Cd form, the latter caused by the association between Cd and organic matter as e.g. humic substances (HS). Atlantic ocean surface seawater normally contains between 2 and 4 ng organically complexed Cd/kg and no detectable inorganic Cd. Some areas however showed readings of up to 14 ng inorganic Cd/kg in addition. Water column samples exhibited an enrichment of inorganic Cd by depth. Occurrence of inorganic Cd at the surface could be related to specific oceanographical conditions. Together with analytical results of trace metal contents in the particulate phases of surface seawater, new aspects could be established about the biogeochemical cycling of Cd in the sea. (orig.)

  8. Characteristics of mercury speciation in Minnesota rivers and streams

    Energy Technology Data Exchange (ETDEWEB)

    Balogh, Steven J. [Metropolitan Council Environmental Services, 2400 Childs Road, St. Paul, MN 55106-6724 (United States)], E-mail: steve.balogh@metc.state.mn.us; Swain, Edward B. [Minnesota Pollution Control Agency, 520 Lafayette Road, St. Paul, MN 55155-4194 (United States)], E-mail: edward.swain@state.mn.us; Nollet, Yabing H. [Metropolitan Council Environmental Services, 2400 Childs Road, St. Paul, MN 55106-6724 (United States)], E-mail: yabing.nollet@metc.state.mn.us

    2008-07-15

    Patterns of mercury (Hg) speciation were examined in four Minnesota streams ranging from the main-stem Mississippi River to small tributaries in the basin. Filtered phase concentrations of methylmercury (MeHg), inorganic Hg (IHg), and dissolved organic carbon (DOC) were higher in all streams during a major summertime runoff event, and DOC was enriched with MeHg but not with IHg. Particulate-phase MeHg and IHg concentrations generally increased with total suspended solids (TSS) concentrations but the event data did not diverge greatly from the non-event data, suggesting that sources of suspended sediments in these streams did not vary significantly between event and non-event samplings. The dissolved fractions (filtered concentration/unfiltered concentration) of both MeHg and IHg increased with increasing DOC concentrations, but varied inversely with TSS concentrations. While MeHg typically constitutes only a minor portion of the total Hg (THg) in these streams, this contribution is not constant and can vary greatly over time in response to watershed inputs. - Methylmercury and inorganic mercury concentrations in four Minnesota streams were characterized to determine controlling variables.

  9. Characteristics of mercury speciation in Minnesota rivers and streams

    International Nuclear Information System (INIS)

    Balogh, Steven J.; Swain, Edward B.; Nollet, Yabing H.

    2008-01-01

    Patterns of mercury (Hg) speciation were examined in four Minnesota streams ranging from the main-stem Mississippi River to small tributaries in the basin. Filtered phase concentrations of methylmercury (MeHg), inorganic Hg (IHg), and dissolved organic carbon (DOC) were higher in all streams during a major summertime runoff event, and DOC was enriched with MeHg but not with IHg. Particulate-phase MeHg and IHg concentrations generally increased with total suspended solids (TSS) concentrations but the event data did not diverge greatly from the non-event data, suggesting that sources of suspended sediments in these streams did not vary significantly between event and non-event samplings. The dissolved fractions (filtered concentration/unfiltered concentration) of both MeHg and IHg increased with increasing DOC concentrations, but varied inversely with TSS concentrations. While MeHg typically constitutes only a minor portion of the total Hg (THg) in these streams, this contribution is not constant and can vary greatly over time in response to watershed inputs. - Methylmercury and inorganic mercury concentrations in four Minnesota streams were characterized to determine controlling variables

  10. Speciation from photon to ion detection

    International Nuclear Information System (INIS)

    Moulin, C.

    2001-01-01

    New analytical techniques allowing to perform speciation in the framework of the nuclear fuel cycle are more and more needed. Among them, several laser-based analytical techniques present several advantages (non intrusive). Hence, Thermal Lensing (TL)/Photoacoustic (LIPAS), Time Resolved selective, sensitive Laser-Induced Fluorescence (TRLIF) have been used for actinides/lanthanides interaction and speciation studies in inorganic and organic matrices, Laser Ablation-Optical Emission Spectroscopy (LA-OES or LIBS) for direct studies on solids, liquids,... where in situ measurements (elemental or isotopic) are mandatory. In complementary to these photon-based methods, new ion detection methods such as ElectroSpray-Mass Spectrometry (ES-MS) seems promising for speciation studies. Principle, advantages and limitations as well as results obtained and trends for these different methods will be presented. (author)

  11. Anaerobic Digestion Alters Copper and Zinc Speciation.

    Science.gov (United States)

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  12. NewIn-situ synthesis method of magnesium matrix composites reinforced with TiC particulates

    Directory of Open Access Journals (Sweden)

    Zhang Xiuqing

    2006-12-01

    Full Text Available Magnesium matrix composites reinforced with TiC particulates was prepared using a new in-situ synthesis method of remelting and dilution technique. And measurements were performed on the composites. The results of x ray diffraction (XRD analysis confirmed that TiC particulates were synthesized during the sintering process, and they retained in magnesium matrix composites after the remelting and dilution processing. From the microstructure characterization and electron probe microanalysis (EPMA, we could see that fine TiC particulates distributed uniformly in the matrix material.

  13. Loss of speciation rate will impoverish future diversity

    OpenAIRE

    Rosenzweig, Michael L.

    2001-01-01

    Human activities have greatly reduced the amount of the earth's area available to wild species. As the area they have left declines, so will their rates of speciation. This loss of speciation will occur for two reasons: species with larger geographical ranges speciate faster; and loss of area drives up extinction rates, thus reducing the number of species available for speciation. Theory predicts steady states in species diversity, and fossils suggest that these have t...

  14. Airborne Particulate Threat Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  15. Speciation and bioavailability of lead in complementary medicines

    International Nuclear Information System (INIS)

    Bolan, S.; Naidu, R.; Kunhikrishnan, A.; Seshadri, B.; Ok, Y.S.; Palanisami, T.; Dong, M.; Clark, I.

    2016-01-01

    Complementary medicines have associated risks which include toxic heavy metal(loid) and pesticide contamination. The objective of this study was to examine the speciation and bioavailability of lead (Pb) in selected complementary medicines. Six herbal and six ayurvedic medicines were analysed for: (i) total heavy metal(loid) contents including arsenic (As), cadmium (Cd), Pb and mercury (Hg); (ii) speciation of Pb using sequential fractionation and extended x-ray absorption fine structure (EXAFS) techniques; and (iii) bioavailability of Pb using a physiologically-based in vitro extraction test (PBET). The daily intake of Pb through the uptake of these medicines was compared with the safety guidelines for Pb. The results indicated that generally ayurvedic medicines contained higher levels of heavy metal(loid)s than herbal medicines with the amount of Pb much higher than the other metal(loid)s. Sequential fractionation indicated that while organic-bound Pb species dominated the herbal medicines, inorganic-bound Pb species dominated the ayurvedic medicines. EXAFS data indicated the presence of various Pb species in ayurvedic medicines. This implies that Pb is derived from plant uptake and inorganic mineral input in herbal and ayurvedic medicines, respectively. Bioavailability of Pb was higher in ayurvedic than herbal medicines, indicating that Pb added as a mineral therapeutic input is more bioavailable than that derived from plant uptake. There was a positive relationship between soluble Pb fraction and bioavailability indicating that solubility is an important factor controlling bioavailability. The daily intake values for Pb as estimated by total and bioavailable metal(loid) contents are likely to exceed the safe threshold level in certain ayurvedic medicines. This research demonstrated that Pb toxicity is likely to result from the regular intake of these medicines which requires further investigation. - Highlights: • Pb species in complementary medicines was

  16. The development of chemical speciation analysis

    International Nuclear Information System (INIS)

    Martin, R.; Santana, J.L.; Lima, L.; De La Rosa, D.; Melchor, K.

    2003-01-01

    The knowledge of many metals species on the environmental, its bioaccumulation, quantification and its effect in human body has been studied by a wide researchers groups in the last two decades. The development of speciation analysis has an vertiginous advance close to the developing of novel analytical techniques. Separation and quantification at low level is a problem that's has been afford by a coupling of high resolution chromatographic techniques like HPLC and HRGC with a specific method of detection (ICP-MS or CV-AAS). This methodological approach make possible the success in chemical speciation nowadays

  17. Incidence and Speciation of Candida Species among Non-gravid ...

    African Journals Online (AJOL)

    This study investigated the incidence and speciation of Candida species among non-gravid young females, using commercially available chromogenic Candida speciation media (CHROM agar) for the identification/speciation of medically important yeast and yeastlike organisms in a routine clinical mycology laboratory.

  18. Particulate emissions from residential wood combustion

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Tarelho, Luis A. C.

    Residential wood combustion (RWC) in fireplaces and conventional appliances is the main contributor to fine particulate matter (PM2.5) emissions in Denmark and Portugal representing more than 30% of the total emissions [1;2]. Such estimations are uncertain concerning the wood consumption...... and official emission factors, not taking into account actual burning conditions in dwellings [3]. There is limited knowledge on the real-life performance and spatial distribution of existing appliance types. Few studies have been targeting to understand the influence of fuel operation habits on PM2...... the available estimations for Denmark and Portugal, suggesting a methodology to increase the accuracy of activity data and emission factors. This work is based on new studies carried out to quantify the PM2.5 emissions in daily life through field experiments in Danish dwellings and by considering typical...

  19. Actinide speciation in the environment

    International Nuclear Information System (INIS)

    Choppin, G.R.

    2007-01-01

    Nuclear test explosions and nuclear reactor wastes and accidents have released large amounts of radioactivity into the environment. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides are introduced into the aquatic system. Chemical speciation, oxidation state, redox reactions, and sorption characteristics are necessary in predicting solubility of the different actinides, their migration behaviors and their potential effects on marine biota. The most significant of these variables is the oxidation state of the metal ion as the simultaneous presence of more than one oxidation state for some actinides in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters, are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is much more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK sp ≥56) but which can be present in the pentavalent form in aqautic phases as colloidal material. The solubility of hexavalent UO 2 2+ in sea water is relatively high due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(OH)(CO 3 ) is the limiting species for the solubility of Am(III) in sea water. Thorium(IV) is present as Th(OH) 4 , in colloidal form. The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in natural waters which must be considered in assessing the environmental behavior of actinides. Much is understood about sorption of actinides on surfaces, the mode of migration of actinides in such waters and the potential effects of these radioactive species on marine biota, but much more understanding of the behavior of the actinides in the environment is

  20. Particulate matter and neutron activation analysis

    International Nuclear Information System (INIS)

    Otoshi, Tsunehiko

    2003-01-01

    In these years, economy of East Asian region is rapidly growing, and countries in this region are facing serious environmental problems. Neutron activation analysis is known as one of high-sensitive analytical method for multi elements. And it is a useful tool for environmental research, particularly for the study on atmospheric particulate matter that consists of various constituents. Elemental concentration represents status of air, such as emission of heavy metals from industries and municipal incinerators, transportation of soil derived elements more than thousands of kilometers, and so on. These monitoring data obtained by neutron activation analysis can be a cue to evaluate environment problems. Japanese government launched National Air Surveillance Network (NASN) employing neutron activation analysis in 1974, and the data has been accumulated at about twenty sampling sites. As a result of mitigation measure of air pollution sources, concentrations of elements that have anthropogenic sources decreased particularly at the beginning of the monitoring period. However, even now, concentrations of these anthropogenic elements reflect the characteristics of each sampling site, e.g. industrial/urban, rural, and remote. Soil derived elements have a seasonal variation because of the contribution of continental dust transported by strong westerly winds prevailing in winter and spring season. The health effects associated with trace elements in particulate matter have not been well characterized. However, there is increasing evidence that particulate air pollution, especially fine portion of particles in many different cities is associated with acute mortality. Neutron activation analysis is also expected to provide useful information to this new study field related to human exposures and health risk. (author)

  1. Atmospheric particulate pollution in Kenitra (Morocco)

    International Nuclear Information System (INIS)

    Zghaid, Mustapha; Noack, Yves; Boukla, Moussa; Benyaich, Fouad

    2009-01-01

    Cities of Morocco are exposed to a high atmospheric particulate pollution due to automobile traffic, industrialization, but also to soil dusts (in relation with aridity and desert proximity). Monitoring networks and data about air pollution still rare. The present study is a preliminary work about particulate and heavy metals pollution in Kenitra city. Aerosols had been collected with a PM10 sampler (Partisol), a dichotomous sampler (P M2.5 and P M2.5-10 fractions) and stacked filter unit (Gent type) with a fine fraction (below 2.5 um) and a coarse fraction. In summer, the average PM10 concentration is near 80 u g/N m 3 , above the EEC rule and OMS recommendations, but similar to some other african towns. The ratio P M2.5/PM 10 is low (below 0.5), with seasonal variation in relation with meteorology. The lead and nickel concentrations are also very low, in relation with the use of leaded gasoline and the oldness of many vehicles. This preliminary work reveals high levels of pollution (especially PM10, Pb and Ni) in the town of Kenitra. The major sources are traffic, soil dusts and resuspension of deposited particles. It is necessary to develop monitoring network and sanitary and and environmental impact studies in these cities [fr

  2. Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia, pulmonary inflammation in heart failure-prone rats

    Science.gov (United States)

    Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiologic events precipitating these outcomes remain poorly understood but may involve inflamm...

  3. The sedimentation of fine particles in liquid foams

    OpenAIRE

    Rouyer , Florence; Fritz , Christelle; Pitois , Olivier

    2010-01-01

    International audience; We investigate the sedimentation of fine particles in liquid channels of foams. The study combines numerical simulations with experiments performed in foams and in isolated vertical foam channels. Results show that particulate motion is controlled by the confinement parameter (l) and the mobility of the channel surfaces modelled by interfacial shear viscosity. Interestingly, whereas the position of the particle within the channel cross-section is expected to be a relev...

  4. Fine Arts Database (FAD)

    Data.gov (United States)

    General Services Administration — The Fine Arts Database records information on federally owned art in the control of the GSA; this includes the location, current condition and information on artists.

  5. Fine motor control

    Science.gov (United States)

    ... gross (large, general) motor control. An example of gross motor control is waving an arm in greeting. Problems ... out the child's developmental age. Children develop fine motor skills over time, by practicing and being taught. To ...

  6. Elemental Composition In Airborne Particulate Sample Of Bandung and Lembang Region In 1999

    International Nuclear Information System (INIS)

    Hidayat, Achmad

    2003-01-01

    Concentration of airborne particulate of Bandung higher than that of Lembang. The PM2.5 fraction was in the range of 4,3 μg/m 3 to 21,1 μg/m 3 for Bandung area, and 2,9 μg/m 3 to 19,2 μg/m 3 for Lembang area for 24 hours sampling time. The PM10 fraction of Bandung area was in the range of 12,1 μg/m 3 to 44, 1 μg/m 3 , where a s the PM10 fraction of Lembang area was in the range of 5,2 μg/m 3 to 30,6 μg/m 3 . The data much lower than that of National ambient air quality standard for 24 hours, 65 μg/m 3 and 150 μg/m 3 for PM2.5 fraction and PM10 fraction respectively. No clear correlation either concentration of fine or coarse particulate to rainfall. For teen elements, which were Al, Br, Ca, Ce, CI, Cr, Fe, I, Mn, Na, Sb, Sc, V and Zn, were detected. The elements of Br, Ce, CI, Cr, I, Sb and Zn were enriched in fine and coarse of Bandung and Lembang samples, where as AI, Ca, Mn, Na and V were not enriched. The special element of Fe was enriched in fine particulate of Lembang, where as in particulate of Bandung was not enriched. Analysis of coarse particulate samples indicated the similar results to fine particulate except for Ce. The results of analysis explained that pollutant source of Bandung and Lembang were the same. Some elements such as Br, CI and I possibly come from organic material burning; Br and CI could be from motor vehicle; Cr, and Zn could be from paint factory; Zn and Sb could be from refuse incineration; while Ce could be from electronic factory. The calculation results indicated that enrichment factor of elements in fine particulate higher than that of coarse particulate. Furthermore the enrichment factor of element in airborne particulate of Bandung area was higher than that of airborne particulate of Lembang

  7. Analyses of fine paste ceramics

    International Nuclear Information System (INIS)

    Sabloff, J.A.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics

  8. Analyses of fine paste ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Sabloff, J A [ed.

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  9. Radioactivity in fine papers

    International Nuclear Information System (INIS)

    Taylor, H.W.; Singh, B.

    1993-01-01

    The radioactivity of fine papers has been studied through γ-ray spectroscopy with an intrinsic Ge detector. Samples of paper from European and North American sources were found to contain very different amounts of 226 Ra and 232 Th. The processes which introduce radionuclides into paper are discussed. The radioactivity from fine papers makes only a small contribution to an individual's annual radiation dose; nevertheless it is easily detectable and perhaps, avoidable. (Author)