WorldWideScience

Sample records for spatiotemporal image correlation

  1. Spatio-Temporal Image Correlation Spectroscopy Measurements of Flow Demonstrated in Microfluidic Channels

    Science.gov (United States)

    Rossow, Molly; Mantulin, William W.; Gratton, Enrico

    2009-01-01

    Accurate blood flow measurements during surgery can improve the operations chance of success. We developed Near-infrared Spatio-Temporal Image Spectroscopy (NIR-STICS), which has the potential to make blood flow measurements that are difficult to accomplish with existing methods. Specifically, we propose the technique and we show feasibility on phantom measurements. NIR-STICS has the potential of measuring the fluid velocity in small blood vessels (less than 1mm in diameter) and of creating a map of blood flow rates over an area of approximately 1cm2. NIR-STICS employs near-infrared spectroscopy to probe inside blood vessel walls and spatio-temporal image correlation spectroscopy to directly—without the use of a model—extract fluid velocity from the fluctuations within an image. Here we present computer simulations and experiments on a phantom system that demonstrate the effectiveness of NIR-STICS. PMID:19405744

  2. Spatiotemporal image correlation spectroscopy measurements of flow demonstrated in microfluidic channels

    Science.gov (United States)

    Rossow, Molly; Mantulin, William W.; Gratton, Enrico

    2009-03-01

    Accurate blood flow measurements during surgery can improve an operation's chance of success. We developed near-infrared spatio-temporal image spectroscopy (NIR-STICS), which has the potential to make blood flow measurements that are difficult to accomplish with existing methods. Specifically, we propose the technique and we show feasibility on phantom measurements. NIR-STICS has the potential of measuring the fluid velocity in small blood vessels (less than 1 mm in diameter) and of creating a map of blood flow rates over an area of approximately 1 cm2. NIR-STICS employs near-infrared spectroscopy to probe inside blood vessel walls and spatiotemporal image correlation spectroscopy to directly-without the use of a model-extract fluid velocity from the fluctuations within an image. We present computer simulations and experiments on a phantom system that demonstrate the effectiveness of NIR-STICS.

  3. Easy monitoring of velocity fields in microfluidic devices using spatiotemporal image correlation spectroscopy.

    Science.gov (United States)

    Travagliati, Marco; Girardo, Salvatore; Pisignano, Dario; Beltram, Fabio; Cecchini, Marco

    2013-09-03

    Spatiotemporal image correlation spectroscopy (STICS) is a simple and powerful technique, well established as a tool to probe protein dynamics in cells. Recently, its potential as a tool to map velocity fields in lab-on-a-chip systems was discussed. However, the lack of studies on its performance has prevented its use for microfluidics applications. Here, we systematically and quantitatively explore STICS microvelocimetry in microfluidic devices. We exploit a simple experimental setup, based on a standard bright-field inverted microscope (no fluorescence required) and a high-fps camera, and apply STICS to map liquid flow in polydimethylsiloxane (PDMS) microchannels. Our data demonstrates optimal 2D velocimetry up to 10 mm/s flow and spatial resolution down to 5 μm.

  4. Reliability of fetal cardiac volumetry using spatiotemporal image correlation: assessment of in-vivo and in-vitro measurements

    NARCIS (Netherlands)

    Uittenbogaard, L.B.; Haak, M.C.; Tromp, C.H.N.; Terwee, C.B.; van Vugt, J.M.G.

    2010-01-01

    Objective To assess the reliability of measurement of fetal cardiac ventricular volume, stroke volume, and ejection fraction with four-dimensional ultrasound using spatiotemporal image correlation (STIC). Methods Volume datasets were collected from two sources: 24 from fetuses over a range of

  5. Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy

    International Nuclear Information System (INIS)

    Coppola, S; Pozzi, D; De Sanctis, S Candeloro; Caracciolo, G; Digman, M A; Gratton, E

    2013-01-01

    Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method for characterizing the mode of motion of nanocarriers and for quantifying their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP–DOPC/DNA (DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; DOPC: dioleoylphosphocholine) and DC-Chol–DOPE/DNA (DC-Chol: 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol; DOPE: dioleoylphosphatidylethanolamine) lipoplexes in CHO-K1 (CHO: Chinese hamster ovary) live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient: D ≈ 0.003 μm 2 s −1 ). In the cytosol, the lipoplexes’ motion was characterized by active transport with average velocity v ≈ 0.03 μm 2 s −1 and random motion. The method permitted us to generate an intracellular transport map showing several regions of concerted motion of lipoplexes. (paper)

  6. Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy

    Science.gov (United States)

    Coppola, S.; Pozzi, D.; Candeloro De Sanctis, S.; Digman, M. A.; Gratton, E.; Caracciolo, G.

    2013-03-01

    Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method for characterizing the mode of motion of nanocarriers and for quantifying their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP-DOPC/DNA (DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; DOPC: dioleoylphosphocholine) and DC-Chol-DOPE/DNA (DC-Chol: 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol; DOPE: dioleoylphosphatidylethanolamine) lipoplexes in CHO-K1 (CHO: Chinese hamster ovary) live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient: D ≈ 0.003 μm2 s-1). In the cytosol, the lipoplexes’ motion was characterized by active transport with average velocity v ≈ 0.03 μm2 s-1 and random motion. The method permitted us to generate an intracellular transport map showing several regions of concerted motion of lipoplexes.

  7. Four-dimensional ultrasonography of the fetal heart with spatiotemporal image correlation.

    Science.gov (United States)

    Gonçalves, Luís F; Lee, Wesley; Chaiworapongsa, Tinnakorn; Espinoza, Jimmy; Schoen, Mary Lou; Falkensammer, Peter; Treadwell, Marjorie; Romero, Roberto

    2003-12-01

    This study was undertaken to describe a new technique for the examination of the fetal heart using four-dimensional ultrasonography with spatiotemporal image correlation (STIC). Volume data sets of the fetal heart were acquired with a new cardiac gating technique (STIC), which uses automated transverse and longitudinal sweeps of the anterior chest wall. These volumes were obtained from 69 fetuses: 35 normal, 16 with congenital anomalies not affecting the cardiovascular system, and 18 with cardiac abnormalities. Dynamic multiplanar slicing and surface rendering of cardiac structures were performed. To illustrate the STIC technique, two representative volumes from a normal fetus were compared with volumes obtained from fetuses with the following congenital heart anomalies: atrioventricular septal defect, tricuspid stenosis, tricuspid atresia, and interrupted inferior vena cava with abnormal venous drainage. Volume datasets obtained with a transverse sweep were utilized to demonstrate the cardiac chambers, moderator band, interatrial and interventricular septae, atrioventricular valves, pulmonary veins, and outflow tracts. With the use of a reference dot to navigate the four-chamber view, intracardiac structures could be simultaneously studied in three orthogonal planes. The same volume dataset was used for surface rendering of the atrioventricular valves. The aortic and ductal arches were best visualized when the original plane of acquisition was sagittal. Volumes could be interactively manipulated to simultaneously visualize both outflow tracts, in addition to the aortic and ductal arches. Novel views of specific structures were generated. For example, the location and extent of a ventricular septal defect was imaged in a sagittal view of the interventricular septum. Furthermore, surface-rendered images of the atrioventricular valves were employed to distinguish between normal and pathologic conditions. Representative video clips were posted on the Journal's Web

  8. Standardization of the first-trimester fetal cardiac examination using spatiotemporal image correlation with tomographic ultrasound and color Doppler imaging.

    Science.gov (United States)

    Turan, S; Turan, O M; Ty-Torredes, K; Harman, C R; Baschat, A A

    2009-06-01

    The challenges of the first-trimester examination of the fetal heart may in part be overcome by technical advances in three-dimensional (3D) ultrasound techniques. Our aim was to standardize the first-trimester 3D imaging approach to the cardiac examination to provide the most consistent and accurate display of anatomy. Low-risk women with normal findings on first-trimester screening at 11 to 13 + 6 weeks had cardiac ultrasound using the following sequence: (1) identification of the four-chamber view; (2) four-dimensional (4D) volume acquisition with spatiotemporal image correlation (STIC) and color Doppler imaging (angle = 20 degrees, sweep 10 s); (3) offline, tomographic ultrasound imaging (TUI) analysis with standardized starting plane (four-chamber view), slice number and thickness; (4) assessment of fetal cardiac anatomy (four-chamber view, cardiac axis, size and symmetry, atrioventricular valves, great arteries and descending aorta) with and without color Doppler. 107 consecutive women (age, 16-42 years, body mass index 17.2-50.2 kg/m(2)) were studied. A minimum of three 3D volumes were obtained for each patient, transabdominally in 91.6%. Fetal motion artifact required acquisition of more than three volumes in 20%. The median time for TUI offline analysis was 100 (range, 60-240) s. Individual anatomic landmarks were identified in 89.7-99.1%. Visualization of all structures in one panel was observed in 91 patients (85%). Starting from a simple two-dimensional cardiac landmark-the four-chamber view-the standardized STIC-TUI technique enables detailed segmental cardiac evaluation of the normal fetal heart in the first trimester. (c) 2009 ISUOG.

  9. Spatiotemporal correlation of optical coherence tomography in-vivo images of rabbit airway for the diagnosis of edema

    Science.gov (United States)

    Kang, DongYel; Wang, Alex; Volgger, Veronika; Chen, Zhongping; Wong, Brian J. F.

    2015-07-01

    Detection of an early stage of subglottic edema is vital for airway management and prevention of stenosis, a life-threatening condition in critically ill neonates. As an observer for the task of diagnosing edema in vivo, we investigated spatiotemporal correlation (STC) of full-range optical coherence tomography (OCT) images acquired in the rabbit airway with experimentally simulated edema. Operating the STC observer on OCT images generates STC coefficients as test statistics for the statistical decision task. Resulting from this, the receiver operating characteristic (ROC) curves for the diagnosis of airway edema with full-range OCT in-vivo images were extracted and areas under ROC curves were calculated. These statistically quantified results demonstrated the potential clinical feasibility of the STC method as a means to identify early airway edema.

  10. Spatio-temporal image correlation spectroscopy and super-resolution microscopy to quantify molecular dynamics in T cells.

    Science.gov (United States)

    Ashdown, George W; Owen, Dylan M

    2018-02-02

    Many cellular processes are regulated by the spatio-temporal organisation of signalling complexes, cytoskeletal components and membranes. One such example is at the T cell immunological synapse where the retrograde flow of cortical filamentous (F)-actin from the synapse periphery drives signalling protein microclusters towards the synapse centre. The density of this mesh however, makes visualisation and analysis of individual actin fibres difficult due to the resolution limit of conventional microscopy. Recently, super-resolution methods such as structured illumination microscopy (SIM) have surpassed this resolution limit. Here, we apply SIM to better visualise the dense cortical actin meshwork in T cell synapses formed against activating, antibody-coated surfaces and image under total-internal reflection fluorescence (TIRF) illumination. To analyse the observed molecular flows, and the relationship between them, we apply spatio-temporal image correlation spectroscopy (STICS) and its cross-correlation variant (STICCS). We show that the dynamic cortical actin mesh can be visualised with unprecedented detail and that STICS/STICCS can output accurate, quantitative maps of molecular flow velocity and directionality from such data. We find that the actin flow can be disrupted using small molecule inhibitors of actin polymerisation. This combination of imaging and quantitative analysis may provide an important new tool for researchers to investigate the molecular dynamics at cellular length scales. Here we demonstrate the retrograde flow of F-actin which may be important for the clustering and dynamics of key signalling proteins within the plasma membrane, a phenomenon which is vital to correct T cell activation and therefore the mounting of an effective immune response. Copyright © 2018. Published by Elsevier Inc.

  11. Cortical Actin Flow in T Cells Quantified by Spatio-temporal Image Correlation Spectroscopy of Structured Illumination Microscopy Data.

    Science.gov (United States)

    Ashdown, George; Pandžić, Elvis; Cope, Andrew; Wiseman, Paul; Owen, Dylan

    2015-12-17

    Filamentous-actin plays a crucial role in a majority of cell processes including motility and, in immune cells, the formation of a key cell-cell interaction known as the immunological synapse. F-actin is also speculated to play a role in regulating molecular distributions at the membrane of cells including sub-membranous vesicle dynamics and protein clustering. While standard light microscope techniques allow generalized and diffraction-limited observations to be made, many cellular and molecular events including clustering and molecular flow occur in populations at length-scales far below the resolving power of standard light microscopy. By combining total internal reflection fluorescence with the super resolution imaging method structured illumination microscopy, the two-dimensional molecular flow of F-actin at the immune synapse of T cells was recorded. Spatio-temporal image correlation spectroscopy (STICS) was then applied, which generates quantifiable results in the form of velocity histograms and vector maps representing flow directionality and magnitude. This protocol describes the combination of super-resolution imaging and STICS techniques to generate flow vectors at sub-diffraction levels of detail. This technique was used to confirm an actin flow that is symmetrically retrograde and centripetal throughout the periphery of T cells upon synapse formation.

  12. Satisfactory visualization rates of standard cardiac views at 18 to 22 weeks' gestation using spatiotemporal image correlation.

    Science.gov (United States)

    Cohen, Leeber; Mangers, Kristie; Grobman, William A; Platt, Lawrence D

    2009-12-01

    The purpose of this study was to determine the frequency with which 3 standard screening views of the fetal heart (4-chamber, left ventricular outflow tract [LVOT], and right ventricular outflow tract [RVOT]) can be obtained satisfactorily with the spatiotemporal image correlation (STIC) technique. A prospective study of 111 patients undergoing anatomic surveys at 18 to 22 weeks was performed. Two ultrasound machines with fetal cardiac settings were used. The best volume set that could be obtained from each patient during a 45-minute examination was graded by 2 sonologists with regard to whether the 4-chamber, LVOT, and RVOT images were satisfactory for screening. All 3 views were judged satisfactory for screening in most patients: 1 sonologist graded the views as satisfactory in 70% of the patients, whereas the other found the views to be satisfactory in 83%. The position of the placenta did not alter the probability of achieving a satisfactory view, but a fetus in the spine anterior position was associated with a significantly lower probability that the views were regarded as satisfactory for screening (odds ratio, 0.28; 95% confidence interval, 0.09-0.70; P < .05). This study suggests that STIC may assist with screening for cardiac anomalies at 18 to 22 weeks' gestation.

  13. Role of four-dimensional echocardiography with high-definition flow imaging and spatiotemporal image correlation in detecting fetal pulmonary veins.

    Science.gov (United States)

    Sun, Xue; Zhang, Ying; Fan, Miao; Wang, Yu; Wang, Meilian; Siddiqui, Faiza Amber; Sun, Wei; Sun, Feifei; Zhang, Dongyu; Lei, Wenjia; Hu, Guyue

    2017-06-01

    Prenatal diagnosis of fetal total anomalous pulmonary vein connection (TAPVC) remains challenging for most screening sonographers. The purpose of this study was to evaluate the use of four-dimensional echocardiography with high-definition flow imaging and spatiotemporal image correlation (4D-HDFI) in identifying pulmonary veins in normal and TAPVC fetuses. We retrospectively reviewed and performed 4D-HDFI in 204 normal and 12 fetuses with confirmed diagnosis of TAPVC. Cardiac volumes were available for postanalysis to obtain 4D-rendered images of the pulmonary veins. For the normal fetuses, two other traditional modalities including color Doppler and HDFI were used to detect the number of pulmonary veins and comparisons were made between each of these traditional methods and 4D-HDFI. For conventional echocardiography, HDFI modality was superior to color Doppler in detecting more pulmonary veins in normal fetuses throughout the gestational period. 4D-HDFI was the best method during the second trimester of pregnancy in identifying normal fetal pulmonary veins. 4D-HDFI images vividly depicted the figure, course, and drainage of pulmonary veins in both normal and TAPVC fetuses. HDFI and the advanced 4D-HDFI technique could facilitate identification of the anatomical features of pulmonary veins in both normal and TAPVC fetuses; 4D-HDFI therefore provides additional and more precise information than conventional echocardiography techniques. © 2017, Wiley Periodicals, Inc.

  14. Improvement of image velocimetry based on a spatio-temporal correlation method; Jikukan sokan ni motozuku ryushi gazo sokudoba keisokuho no kaiseki seino kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, H. [Tokuyama College of Technology, Yamaguchi (Japan); Arifuku, T. [Komatsu Ltd., Tokyo (Japan); Koga, K. [Yamaguchi University, Yamaguchi (Japan). Faculty of Engineering

    1998-05-31

    In the image velocimetry, it is generally required to detect the various velocity in each position of the flow field. But the maximum velocity which the usual velocimetry can detect has been limited in about 1 pixel per frame. Then, in order to measure the wide range of velocity vectors from the dynamic image, the improvement of performance in the image velocimetry based on a spatio-temporal correlation method would be attempted by enlarging the analytical region and by interpolating the new frame. The analytical performance of velocimetry was estimated by measuring the velocity from the flow dynamic image made artificially on the personal computer so as to simulate the flow of fluid containing a lot of small particles. As the results, the velocity range of the improved velocimetry became larger than that of the usual velocimetry. 21 refs., 13 figs., 1 tab.

  15. Prenatal Diagnosis of Fetal Interrupted Aortic Arch Type A by Two-Dimensional Echocardiography and Four-Dimensional Echocardiography with B-Flow Imaging and Spatiotemporal Image Correlation.

    Science.gov (United States)

    Zhang, Dongyu; Zhang, Ying; Ren, Weidong; Sun, Feifei; Guo, Yajun; Sun, Wei; Wang, Yu; Huang, Liping; Cai, Ailu

    2016-01-01

    Fetal interrupted aortic arch (IAA) is a rare cardiac anomaly and its prenatal diagnosis is challenging. The purpose of our report is to evaluate the use of two-dimensional echocardiography (2DE) and 4D echocardiography with B-flow imaging and spatiotemporal image correlation (4D BF-STIC) in detecting IAA type A (IAA-A). Twenty-three cases of confirmed IAA-A identified by fetal echocardiography were involved in the study. The fetal echocardiography image data were reviewed to analyze the ratio of right ventricle to left ventricle (RV/LV) diameter, the ratio of main pulmonary artery to ascending aorta (MPA/AAO) diameter, and the correlation of RV/LV diameter ratio and size of ventricular septal defect (VSD). 4D BF-STIC was performed in 21 fetuses using the sagittal view (4D BF-STIC-sagittal) and the four-chamber view (4D BF-STIC-4CV) as initial planes of view. An additional 183 normal fetuses were also included in our study. RV/LV and MPA/AAO ratios were calculated and compared with that of IAA-A fetuses. Fetal 2DE, 4D BF-STIC-sagittal, and 4D BF-STIC-4CV were used to visualize the aortic arch and its associated neck vessels. Six subgroups were evaluated according to gestational age. Fetal 2DE, 4D BF-STIC-sagittal, and 4D BF-STIC-4CV made the correct prenatal diagnosis of IAA-A in 19/23 (82.6%), 14/21 (66.7%), and 19/21 (90.5%) of patients, respectively. A significantly enlarged MPA combined with symmetric ventricles was found in the IAA-A fetuses, while the size of the VSD was negatively correlated with RV/LV ratio. 4D BF-STIC-sagittal and 4D BF-STIC-4CV were better than traditional 2D ultrasound in detecting the aortic arch and neck vessels between 17 and 28 gestational weeks and 29 to 40 gestational weeks in normal fetuses. It is demonstrated that IAA-A could be diagnosed by traditional fetal echocardiography, while 4D technique could better display the anatomic structure and the spatial relationships of the great arteries. Use of volume reconstruction may

  16. Comparison of two methods for calculating the mean vascularization index of ovarian stroma on the basis of spatio-temporal image correlation high-definition flow technology.

    Science.gov (United States)

    Kudla, Marek J; Kandzia, Tomasz; Alcázar, Juan Luis

    2013-11-01

    The aim of our study was to determine the agreement between two different methods for calculating the mean vascularization index (VI) of ovarian stroma using spatio-temporal image correlation-high definition flow (STIC-HDF) technology. Stored 4-D STIC-HDF volume data for ovaries of 34 premenopausal women were assessed retrospectively. We calculated the mean VI from the VI values derived for each 3-D volume within the STIC sequence. Then, the examiner subjectively selected the two volumes with the highest and lowest color signals, respectively. We averaged these two values. Agreement between VI measurements was estimated by calculating intra-class correlation coefficients. The intra-class correlation coefficient for the VI was 0.999 (95% confidence interval: 0.999-1.000). The mean time needed to calculate the mean VI using the entire 4-D STIC sequence was significantly longer than the mean time needed to calculate the average value from the volumes with the highest and lowest color signals determined by the operator (p < 0001). We conclude that there is significant agreement between the two methods. Calculating the average VI from the highest and lowest values is less time consuming than calculating the mean VI from the complete STIC sequence. Copyright © 2013 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Fetal cardiac stroke volume determination by four-dimensional ultrasound with spatio-temporal image correlation compared with two-dimensional and Doppler ultrasonography.

    Science.gov (United States)

    Rizzo, Giuseppe; Capponi, Alessandra; Cavicchioni, Ottavia; Vendola, Marianne; Arduini, Domenico

    2007-12-01

    To assess the agreement of stroke volume (SV) measured with two-dimensional (2D) ultrasonography with Doppler capability (vs) four-dimensional (4D) with spatiotemporal image correlation (STIC) in normal and growth restricted fetuses. 2D Doppler and 4D STIC were used to measure SV of 40 normal fetuses at 20 to 22 and 28 to 32 weeks, and 16 growth-restricted fetuses at 26 to 34 weeks of gestation. Intraclass correlation was used to evaluate the agreement between left and right SV obtained by the two techniques, and proportionate Bland-Altman plots constructed. The time necessary to obtain SV was analyzed. The intraclass correlation coefficient between 2D Doppler and 4D STIC measurements for the left ventricle were 0.977 and 0.980 for the right ventricle. The proportionate limits of agreement between the two methods were 18.7 to 23.9% for the left ventricle and - 20.9 to 21.7% for the right ventricle. The time necessary to measure SV was significantly shorter with 4D STIC (3.1 (vs) 7.9 min p < 0.0001) than with 2D Doppler. There is a good agreement between SV measured either by 2D Doppler or by 4D STIC. The 4D STIC represents a simple and rapid technique to estimate fetal SV and promises to become the method of choice. Copyright (c) 2007 John Wiley & Sons, Ltd.

  18. Prenatal diagnosis of congenital heart disease using four-dimensional spatio-temporal image correlation (STIC) telemedicine via an Internet link: a pilot study.

    Science.gov (United States)

    Viñals, F; Mandujano, L; Vargas, G; Giuliano, A

    2005-01-01

    To assess whether the spatio-temporal image correlation (STIC) acquisition technique can be taught to a general obstetrician by e-mail; whether STIC volume datasets can be transmitted over the Internet; and whether STIC volume datasets analyzed offline at a remote setting can be used to confirm or exclude major cardiac defects (TELE-STIC). This was a prospective study involving 50 pregnant women with gestational ages ranging between 20 and 36 weeks. These patients were selected by two general obstetricians (operators) working in geographically remote areas of Chile. Although both obstetricians were users of equipment capable of four-dimensional (4D) ultrasound with STIC, they lacked skill in the performance of fetal cardiac examination. A dedicated web disk was created to upload the acquired volume datasets using an Internet broadband connection. Offline analysis was performed by a single investigator experienced in fetal echocardiography (the administrator). A telemedicine link via the Internet was possible in all cases. Seventy-seven volume datasets were sent to the web server. A complete cardiac examination according to set criteria was achieved by the administrator in 86% of the cases scanned by one operator and 95% of the cases scanned by the other operator. Three patients had cardiac defects confirmed postnatally, two fetuses had extracardiac anomalies and one fetus had a suspected cardiac defect unconfirmed by second-opinion TELE-STIC. There were two isolated major congenital heart defects. Both patients were given advice by e-mail and teleconference using a web camera about the likely outcome and benefits of scheduling in utero transport to a tertiary care center. STIC volumes can be obtained by operators inexperienced in fetal echocardiography, transmitted via the Internet, and their analysis enables recognition of most of the structures and views necessary to assess fetal cardiac anatomy. The preliminary use of TELE-STIC allowed us to demonstrate that

  19. Markovian Limit of a Spatio-Temporal Correlated Open Systems

    Science.gov (United States)

    Monnai, T.

    Large fluctuation of Brownian particles is affected by the finiteness of the correlation length of the background noise field. Indeed a Fokker—Planck equation is derived in a Markovian limit of a spatio-temporal short correlated noise. Corresponding kinetic quantities are renormalized due to the spatio-temporal memory. We also investigate the case of open system by connecting a thermostat to the system.

  20. Débito cardíaco e fração de ejeção fetal por meio do spatio-temporal image correlation (STIC: comparação entre fetos masculinos e femininos Fetal cardiac output and ejection fraction by spatio-temporal image correlation (STIC: comparison between male and female fetuses

    Directory of Open Access Journals (Sweden)

    Christiane Simioni

    2012-06-01

    Full Text Available OBJETIVO: Comparar do débito cardíaco (DC e a fração de ejeção (FE do coração de fetos masculinos e femininos obtidos por meio da ultrassonografia tridimensional, utilizando o spatio-temporal image correlation (STIC. MÉTODOS: Realizou-se um estudo de corte transversal com 216 fetos normais, entre 20 a 34 semanas de gestação, sendo 108 masculinos e 108 femininos. Os volumes ventriculares no final da sístole e diástole foram obtidos por meio do STIC, sendo as avaliações volumétricas realizadas pelo virtual organ computer-aided analysis (VOCAL com rotação de 30º. Para o cálculo do DC utilizou-se a fórmula: DC= volume sistólico/frequência cardíaca fetal, enquanto que para a FE utilizou-se a fórmula: FE= volume sistólico/volume diastólico final. O DC (combinado, feminino e masculino e a FE (masculina e feminina foram comparadas utilizando-se o teste t não pareado e ANCOVA. Foram criados gráficos de dispersão com os percentis 5, 50 e 95. RESULTADOS: A média do DC combinado, DC direito, DC esquerdo, FE direita e FE esquerda, para feminino e masculino, foram 240,07 mL/min; 122,67 mL/min; 123,40 mL/min; 72,84%; 67,22%; 270,56 mL/min; 139,22 mL/min; 131,34 mL/min; 70,73% e 64,76%, respectivamente; sem diferença estatística (P> 0,05. CONCLUSÕES: O DC e a FE fetal obtidos por meio da ultrassonografia tridimensional (STIC não apresentaram diferença significativa em relação ao gênero.OBJECTIVE: To compare the cardiac output (CO and ejection fraction (EF of the heart of male and female fetuses obtained by 3D-ultrasonography using spatio-temporal image correlation (STIC. METHODS: We conducted a cross-sectional study with 216 normal fetuses, between 20 and 34 weeks of gestation, 108 male and 108 female. Ventricular volumes at the end of systole and diastole were obtained by STIC, and the volumetric assessments performed by the virtual organ computer-aided analysis (VOCAL rotated 30º. To calculate the DC used the formula

  1. Eleven fetal echocardiographic planes using 4-dimensional ultrasound with spatio-temporal image correlation (STIC): a logical approach to fetal heart volume analysis.

    Science.gov (United States)

    Jantarasaengaram, Surasak; Vairojanavong, Kittipong

    2010-09-15

    Theoretically, a cross-sectional image of any cardiac planes can be obtained from a STIC fetal heart volume dataset. We described a method to display 11 fetal echocardiographic planes from STIC volumes. Fetal heart volume datasets were acquired by transverse acquisition from 200 normal fetuses at 15 to 40 weeks of gestation. Analysis of the volume datasets using the described technique to display 11 echocardiographic planes in the multiplanar display mode were performed offline. Volume datasets from 18 fetuses were excluded due to poor image resolution. The mean visualization rates for all echocardiographic planes at 15-17, 18-22, 23-27, 28-32 and 33-40 weeks of gestation fetuses were 85.6% (range 45.2-96.8%, N = 31), 92.9% (range 64.0-100%, N = 64), 93.4% (range 51.4-100%, N = 37), 88.7%(range 54.5-100%, N = 33) and 81.8% (range 23.5-100%, N = 17) respectively. Overall, the applied technique can favorably display the pertinent echocardiographic planes. Description of the presented method provides a logical approach to explore the fetal heart volumes.

  2. Spatiotemporal Ultrafast-Plasmon Control Based on Response Functions of Nanostructures Measured by Interferometric Cross-Correlation Microscopy

    Directory of Open Access Journals (Sweden)

    Kusaba Miyuki

    2013-03-01

    Full Text Available We demonstrate an electrical-field cross-correlation imaging technique to obtain a response function of localized plasmon generated by femtosecond laser pulses on gold nanostructures. Based on the measured response functions, we spatiotemporally control the plasmon by shaping the femtosecond excitation laser pulses.

  3. Correlated diffusion imaging

    International Nuclear Information System (INIS)

    Wong, Alexander; Glaister, Jeffrey; Cameron, Andrew; Haider, Masoom

    2013-01-01

    Prostate cancer is one of the leading causes of cancer death in the male population. Fortunately, the prognosis is excellent if detected at an early stage. Hence, the detection and localization of prostate cancer is crucial for diagnosis, as well as treatment via targeted focal therapy. New imaging techniques can potentially be invaluable tools for improving prostate cancer detection and localization. In this study, we introduce a new form of diffusion magnetic resonance imaging called correlated diffusion imaging, where the tissue being imaged is characterized by the joint correlation of diffusion signal attenuation across multiple gradient pulse strengths and timings. By taking into account signal attenuation at different water diffusion motion sensitivities, correlated diffusion imaging can provide improved delineation between cancerous tissue and healthy tissue when compared to existing diffusion imaging modalities. Quantitative evaluation using receiver operating characteristic (ROC) curve analysis, tissue class separability analysis, and visual assessment by an expert radiologist were performed to study correlated diffusion imaging for the task of prostate cancer diagnosis. These results are compared with that obtained using T2-weighted imaging and standard diffusion imaging (via the apparent diffusion coefficient (ADC)). Experimental results suggest that correlated diffusion imaging provide improved delineation between healthy and cancerous tissue and may have potential as a diagnostic tool for cancer detection and localization in the prostate gland. A new form of diffusion magnetic resonance imaging called correlated diffusion imaging (CDI) was developed for the purpose of aiding radiologists in cancer detection and localization in the prostate gland. Preliminary results show CDI shows considerable promise as a diagnostic aid for radiologists in the detection and localization of prostate cancer

  4. Selecting a separable parametric spatiotemporal covariance structure for longitudinal imaging data.

    Science.gov (United States)

    George, Brandon; Aban, Inmaculada

    2015-01-15

    Longitudinal imaging studies allow great insight into how the structure and function of a subject's internal anatomy changes over time. Unfortunately, the analysis of longitudinal imaging data is complicated by inherent spatial and temporal correlation: the temporal from the repeated measures and the spatial from the outcomes of interest being observed at multiple points in a patient's body. We propose the use of a linear model with a separable parametric spatiotemporal error structure for the analysis of repeated imaging data. The model makes use of spatial (exponential, spherical, and Matérn) and temporal (compound symmetric, autoregressive-1, Toeplitz, and unstructured) parametric correlation functions. A simulation study, inspired by a longitudinal cardiac imaging study on mitral regurgitation patients, compared different information criteria for selecting a particular separable parametric spatiotemporal correlation structure as well as the effects on types I and II error rates for inference on fixed effects when the specified model is incorrect. Information criteria were found to be highly accurate at choosing between separable parametric spatiotemporal correlation structures. Misspecification of the covariance structure was found to have the ability to inflate the type I error or have an overly conservative test size, which corresponded to decreased power. An example with clinical data is given illustrating how the covariance structure procedure can be performed in practice, as well as how covariance structure choice can change inferences about fixed effects. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Spatiotemporal matrix image formation for programmable ultrasound scanners

    Science.gov (United States)

    Berthon, Beatrice; Morichau-Beauchant, Pierre; Porée, Jonathan; Garofalakis, Anikitos; Tavitian, Bertrand; Tanter, Mickael; Provost, Jean

    2018-02-01

    As programmable ultrasound scanners become more common in research laboratories, it is increasingly important to develop robust software-based image formation algorithms that can be obtained in a straightforward fashion for different types of probes and sequences with a small risk of error during implementation. In this work, we argue that as the computational power keeps increasing, it is becoming practical to directly implement an approximation to the matrix operator linking reflector point targets to the corresponding radiofrequency signals via thoroughly validated and widely available simulations software. Once such a spatiotemporal forward-problem matrix is constructed, standard and thus highly optimized inversion procedures can be leveraged to achieve very high quality images in real time. Specifically, we show that spatiotemporal matrix image formation produces images of similar or enhanced quality when compared against standard delay-and-sum approaches in phantoms and in vivo, and show that this approach can be used to form images even when using non-conventional probe designs for which adapted image formation algorithms are not readily available.

  6. Spatio-Temporal Encoding in Medical Ultrasound Imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik

    2005-01-01

    In this dissertation two methods for spatio-temporal encoding in medical ultrasound imaging are investigated. The first technique is based on a frequency division approach. Here, the available spectrum of the transducer is divided into a set of narrow bands. A waveform is designed for each band...... the signal to noise ratio and simultaneously the penetration depth so that the medical doctor can image deeper lying structures. The method is tested both experimentally and in simulation and has also evaluated for the purpose of blood flow estimation. The work presented is based on four papers which...

  7. Assessment of Spatiotemporal Fusion Algorithms for Planet and Worldview Images.

    Science.gov (United States)

    Kwan, Chiman; Zhu, Xiaolin; Gao, Feng; Chou, Bryan; Perez, Daniel; Li, Jiang; Shen, Yuzhong; Koperski, Krzysztof; Marchisio, Giovanni

    2018-03-31

    Although Worldview-2 (WV) images (non-pansharpened) have 2-m resolution, the re-visit times for the same areas may be seven days or more. In contrast, Planet images are collected using small satellites that can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It would be ideal to fuse these two satellites images to generate high spatial resolution (2 m) and high temporal resolution (1 or 2 days) images for applications such as damage assessment, border monitoring, etc. that require quick decisions. In this paper, we evaluate three approaches to fusing Worldview (WV) and Planet images. These approaches are known as Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal Data Fusion (FSDAF), and Hybrid Color Mapping (HCM), which have been applied to the fusion of MODIS and Landsat images in recent years. Experimental results using actual Planet and Worldview images demonstrated that the three aforementioned approaches have comparable performance and can all generate high quality prediction images.

  8. Efficient image or video encryption based on spatiotemporal chaos system

    International Nuclear Information System (INIS)

    Lian Shiguo

    2009-01-01

    In this paper, an efficient image/video encryption scheme is constructed based on spatiotemporal chaos system. The chaotic lattices are used to generate pseudorandom sequences and then encrypt image blocks one by one. By iterating chaotic maps for certain times, the generated pseudorandom sequences obtain high initial-value sensitivity and good randomness. The pseudorandom-bits in each lattice are used to encrypt the Direct Current coefficient (DC) and the signs of the Alternating Current coefficients (ACs). Theoretical analysis and experimental results show that the scheme has good cryptographic security and perceptual security, and it does not affect the compression efficiency apparently. These properties make the scheme a suitable choice for practical applications.

  9. Spatio-temporal analysis of blood perfusion by imaging photoplethysmography

    Science.gov (United States)

    Zaunseder, Sebastian; Trumpp, Alexander; Ernst, Hannes; Förster, Michael; Malberg, Hagen

    2018-02-01

    Imaging photoplethysmography (iPPG) has attracted much attention over the last years. The vast majority of works focuses on methods to reliably extract the heart rate from videos. Only a few works addressed iPPGs ability to exploit spatio-temporal perfusion pattern to derive further diagnostic statements. This work directs at the spatio-temporal analysis of blood perfusion from videos. We present a novel algorithm that bases on the two-dimensional representation of the blood pulsation (perfusion map). The basic idea behind the proposed algorithm consists of a pairwise estimation of time delays between photoplethysmographic signals of spatially separated regions. The probabilistic approach yields a parameter denoted as perfusion speed. We compare the perfusion speed versus two parameters, which assess the strength of blood pulsation (perfusion strength and signal to noise ratio). Preliminary results using video data with different physiological stimuli (cold pressure test, cold face test) show that all measures are influenced by those stimuli (some of them with statistical certainty). The perfusion speed turned out to be more sensitive than the other measures in some cases. However, our results also show that the intraindividual stability and interindividual comparability of all used measures remain critical points. This work proves the general feasibility of employing the perfusion speed as novel iPPG quantity. Future studies will address open points like the handling of ballistocardiographic effects and will try to deepen the understanding of the predominant physiological mechanisms and their relation to the algorithmic performance.

  10. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    International Nuclear Information System (INIS)

    Stamov, Dimitar R; Stock, Erik; Franz, Clemens M; Jähnke, Torsten; Haschke, Heiko

    2015-01-01

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I

  11. Imaging collagen type I fibrillogenesis with high spatiotemporal resolution

    Energy Technology Data Exchange (ETDEWEB)

    Stamov, Dimitar R, E-mail: stamov@jpk.com [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Stock, Erik [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany); Franz, Clemens M [DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Jähnke, Torsten; Haschke, Heiko [JPK Instruments AG, Bouchéstrasse 12, 12435 Berlin (Germany)

    2015-02-15

    Fibrillar collagens, such as collagen type I, belong to the most abundant extracellular matrix proteins and they have received much attention over the last five decades due to their large interactome, complex hierarchical structure and high mechanical stability. Nevertheless, the collagen self-assembly process is still incompletely understood. Determining the real-time kinetics of collagen type I formation is therefore pivotal for better understanding of collagen type I structure and function, but visualising the dynamic self-assembly process of collagen I on the molecular scale requires imaging techniques offering high spatiotemporal resolution. Fast and high-speed scanning atomic force microscopes (AFM) provide the means to study such processes on the timescale of seconds under near-physiological conditions. In this study we have applied fast AFM tip scanning to study the assembly kinetics of fibrillar collagen type I nanomatrices with a temporal resolution reaching eight seconds for a frame size of 500 nm. By modifying the buffer composition and pH value, the kinetics of collagen fibrillogenesis can be adjusted for optimal analysis by fast AFM scanning. We furthermore show that amplitude-modulation imaging can be successfully applied to extract additional structural information from collagen samples even at high scan rates. Fast AFM scanning with controlled amplitude modulation therefore provides a versatile platform for studying dynamic collagen self-assembly processes at high resolution. - Highlights: • Continuous non-invasive time-lapse investigation of collagen I fibrillogenesis in situ. • Imaging of collagen I self-assembly with high spatiotemporal resolution. • Application of setpoint modulation to study the hierarchical structure of collagen I. • Observing real-time formation of the D-banding pattern in collagen I.

  12. Spatial Specificity in Spatiotemporal Encoding and Fourier Imaging

    Science.gov (United States)

    Goerke, Ute

    2015-01-01

    Purpose Ultrafast imaging techniques based on spatiotemporal-encoding (SPEN), such as RASER (rapid acquisition with sequential excitation and refocusing), is a promising new class of sequences since they are largely insensitive to magnetic field variations which cause signal loss and geometric distortion in EPI. So far, attempts to theoretically describe the point-spread-function (PSF) for the original SPEN-imaging techniques have yielded limited success. To fill this gap a novel definition for an apparent PSF is proposed. Theory Spatial resolution in SPEN-imaging is determined by the spatial phase dispersion imprinted on the acquired signal by a frequency-swept excitation or refocusing pulse. The resulting signal attenuation increases with larger distance from the vertex of the quadratic phase profile. Methods Bloch simulations and experiments were performed to validate theoretical derivations. Results The apparent PSF quantifies the fractional contribution of magnetization to a voxel’s signal as a function of distance to the voxel. In contrast, the conventional PSF represents the signal intensity at various locations. Conclusion The definition of the conventional PSF fails for SPEN-imaging since only the phase of isochromats, but not the amplitude of the signal varies. The concept of the apparent PSF is shown to be generalizable to conventional Fourier- imaging techniques. PMID:26712657

  13. Spatio-temporal diffusion of dynamic PET images

    International Nuclear Information System (INIS)

    Tauber, C; Chalon, S; Guilloteau, D; Stute, S; Buvat, I; Chau, M; Spiteri, P

    2011-01-01

    Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.

  14. Measurement of traffic parameters in image sequence using spatio-temporal information

    International Nuclear Information System (INIS)

    Lee, Daeho; Park, Youngtae

    2008-01-01

    This paper proposes a novel method for measurement of traffic parameters, such as the number of passed vehicles, velocity and occupancy rate, by video image analysis. The method is based on a region classification followed by spatio-temporal image analysis. Local detection region images in traffic lanes are classified into one of four categories: the road, the vehicle, the reflection and the shadow, by using statistical and structural features. Misclassification at a frame is corrected by using temporally correlated features of vehicles in the spatio-temporal image. This capability of error correction results in the accurate estimation of traffic parameters even in high traffic congestion. Also headlight detection is employed for nighttime operation. Experimental results show that the accuracy is more than 94% in our test database of diverse operating conditions such as daytime, shadowy daytime, highway, urban way, rural way, rainy day, snowy day, dusk and nighttime. The average processing time is 30 ms per frame when four traffic lanes are processed, and real-time operation could be realized while ensuring robust detection performance even for high-speed vehicles up to 150 km h −1

  15. Image correlation spectroscopy: mapping correlations in space, time, and reciprocal space.

    Science.gov (United States)

    Wiseman, Paul W

    2013-01-01

    This chapter presents an overview of two recent implementations of image correlation spectroscopy (ICS). The background theory is presented for spatiotemporal image correlation spectroscopy and image cross-correlation spectroscopy (STICS and STICCS, respectively) as well as k-(reciprocal) space image correlation spectroscopy (kICS). An introduction to the background theory is followed by sections outlining procedural aspects for properly implementing STICS, STICCS, and kICS. These include microscopy image collection, sampling in space and time, sample and fluorescent probe requirements, signal to noise, and background considerations that are all required to properly implement the ICS methods. Finally, procedural steps for immobile population removal and actual implementation of the ICS analysis programs to fluorescence microscopy image time stacks are described. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Travel Cost Inference from Sparse, Spatio-Temporally Correlated Time Series Using Markov Models

    DEFF Research Database (Denmark)

    Yang, Bin; Guo, Chenjuan; Jensen, Christian S.

    2013-01-01

    of such time series offers insight into the underlying system and enables prediction of system behavior. While the techniques presented in the paper apply more generally, we consider the case of transportation systems and aim to predict travel cost from GPS tracking data from probe vehicles. Specifically, each...... road segment has an associated travel-cost time series, which is derived from GPS data. We use spatio-temporal hidden Markov models (STHMM) to model correlations among different traffic time series. We provide algorithms that are able to learn the parameters of an STHMM while contending...... with the sparsity, spatio-temporal correlation, and heterogeneity of the time series. Using the resulting STHMM, near future travel costs in the transportation network, e.g., travel time or greenhouse gas emissions, can be inferred, enabling a variety of routing services, e.g., eco-routing. Empirical studies...

  17. Spatiotemporal Fusion of Remote Sensing Images with Structural Sparsity and Semi-Coupled Dictionary Learning

    Directory of Open Access Journals (Sweden)

    Jingbo Wei

    2016-12-01

    Full Text Available Fusion of remote sensing images with different spatial and temporal resolutions is highly needed by diverse earth observation applications. A small number of spatiotemporal fusion methods using sparse representation appear to be more promising than traditional linear mixture methods in reflecting abruptly changing terrestrial content. However, one of the main difficulties is that the results of sparse representation have reduced expressional accuracy; this is due in part to insufficient prior knowledge. For remote sensing images, the cluster and joint structural sparsity of the sparse coefficients could be employed as a priori knowledge. In this paper, a new optimization model is constructed with the semi-coupled dictionary learning and structural sparsity to predict the unknown high-resolution image from known images. Specifically, the intra-block correlation and cluster-structured sparsity are considered for single-channel reconstruction, and the inter-band similarity of joint-structured sparsity is considered for multichannel reconstruction, and both are implemented with block sparse Bayesian learning. The detailed optimization steps are given iteratively. In the experimental procedure, the red, green, and near-infrared bands of Landsat-7 and Moderate Resolution Imaging Spectrometer (MODIS satellites are put to fusion with root mean square errors to check the prediction accuracy. It can be concluded from the experiment that the proposed methods can produce higher quality than state-of-the-art methods.

  18. Spatio-temporal Hotelling observer for signal detection from image sequences.

    Science.gov (United States)

    Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J

    2009-06-22

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection.

  19. Synchronization of spatiotemporal chaotic systems and application to secure communication of digital image

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Zhang Na; Ren Xiao-Li; Zhang Yong-Lei

    2011-01-01

    Coupled map lattices (CMLs) are taken as examples to study the synchronization of spatiotemporal chaotic systems. In this paper, we use the nonlinear coupled method to implement the synchronization of two coupled map lattices. Through the appropriate separation of the linear term from the nonlinear term of the spatiotemporal chaotic system, we set the nonlinear term as the coupling function and then we can achieve the synchronization of two coupled map lattices. After that, we implement the secure communication of digital image using this synchronization method. Then, the discrete characteristics of the nonlinear coupling spatiotemporal chaos are applied to the discrete pixel of the digital image. After the synchronization of both the communication parties, the receiver can decrypt the original image. Numerical simulations show the effectiveness and the feasibility of the proposed program. (general)

  20. Urban Link Travel Time Prediction Based on a Gradient Boosting Method Considering Spatiotemporal Correlations

    Directory of Open Access Journals (Sweden)

    Faming Zhang

    2016-11-01

    Full Text Available The prediction of travel times is challenging because of the sparseness of real-time traffic data and the intrinsic uncertainty of travel on congested urban road networks. We propose a new gradient–boosted regression tree method to accurately predict travel times. This model accounts for spatiotemporal correlations extracted from historical and real-time traffic data for adjacent and target links. This method can deliver high prediction accuracy by combining simple regression trees with poor performance. It corrects the error found in existing models for improved prediction accuracy. Our spatiotemporal gradient–boosted regression tree model was verified in experiments. The training data were obtained from big data reflecting historic traffic conditions collected by probe vehicles in Wuhan from January to May 2014. Real-time data were extracted from 11 weeks of GPS records collected in Wuhan from 5 May 2014 to 20 July 2014. Based on these data, we predicted link travel time for the period from 21 July 2014 to 25 July 2014. Experiments showed that our proposed spatiotemporal gradient–boosted regression tree model obtained better results than gradient boosting, random forest, or autoregressive integrated moving average approaches. Furthermore, these results indicate the advantages of our model for urban link travel time prediction.

  1. Spatio-temporal correlations in the Manna model in one, three and five dimensions

    Science.gov (United States)

    Willis, Gary; Pruessner, Gunnar

    2018-02-01

    Although the paradigm of criticality is centered around spatial correlations and their anomalous scaling, not many studies of self-organized criticality (SOC) focus on spatial correlations. Often, integrated observables, such as avalanche size and duration, are used, not least as to avoid complications due to the unavoidable lack of translational invariance. The present work is a survey of spatio-temporal correlation functions in the Manna Model of SOC, measured numerically in detail in d = 1,3 and 5 dimensions and compared to theoretical results, in particular relating them to “integrated” observables such as avalanche size and duration scaling, that measure them indirectly. Contrary to the notion held by some of SOC models organizing into a critical state by re-arranging their spatial structure avalanche by avalanche, which may be expected to result in large, nontrivial, system-spanning spatial correlations in the quiescent state (between avalanches), correlations of inactive particles in the quiescent state have a small amplitude that does not and cannot increase with the system size, although they display (noisy) power law scaling over a range linear in the system size. Self-organization, however, does take place as the (one-point) density of inactive particles organizes into a particular profile that is asymptotically independent of the driving location, also demonstrated analytically in one dimension. Activity and its correlations, on the other hand, display nontrivial long-ranged spatio-temporal scaling with exponents that can be related to established results, in particular avalanche size and duration exponents. The correlation length and amplitude are set by the system size (confirmed analytically for some observables), as expected in systems displaying finite size scaling. In one dimension, we find some surprising inconsistencies of the dynamical exponent. A (spatially extended) mean field theory (MFT) is recovered, with some corrections, in five

  2. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    Science.gov (United States)

    Hengl, Tomislav; Heuvelink, Gerard B. M.; Perčec Tadić, Melita; Pebesma, Edzer J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations (159) in Croatia. The input data set contains 57,282 ground measurements of daily temperature for the year 2008. Temperature was modeled as a function of latitude, longitude, distance from the sea, elevation, time, insolation, and the MODIS LST images. The original rasters were first converted to principal components to reduce noise and filter missing pixels in the LST images. The residual were next analyzed for spatio-temporal auto-correlation; sum-metric separable variograms were fitted to account for zonal and geometric space-time anisotropy. The final predictions were generated for time-slices of a 3D space-time cube, constructed in the R environment for statistical computing. The results show that the space-time regression model can explain a significant part of the variation in station-data (84%). MODIS LST 8-day (cloud-free) images are unbiased estimator of the daily temperature, but with relatively low precision (±4.1°C); however their added value is that they systematically improve detection of local changes in land surface temperature due to local meteorological conditions and/or active heat sources (urban areas, land cover classes). The results of 10-fold cross-validation show that use of spatio-temporal regression-kriging and incorporation of time-series of remote sensing images leads to significantly more accurate maps of temperature than if plain spatial techniques were used. The average (global) accuracy of mapping temperature was ±2.4°C. The regression-kriging explained 91% of variability in daily temperatures, compared to 44% for ordinary kriging. Further software advancement—interactive space-time variogram exploration and automated retrieval

  3. Edge-based correlation image registration for multispectral imaging

    Science.gov (United States)

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  4. Image sequence analysis using spatio-temporal texture

    International Nuclear Information System (INIS)

    Sengupta, S.K.; Clark, G.A.; Barnes, F.L.; Schaich, P.C.

    1994-01-01

    The authors have developed and coded an algorithm for motion pattern classification based on spatio-temporal texture. The algorithm has been implemented and tested for the detection of wakes in simulated data with a relatively low signal-to-noise ratio (0.7 dB). Using a open-quote hold one out close-quote method, a detection probability of 100% with a 0% false alarm rate has been achieved on the limited number of samples (47 in each category) tested. The actual detection can be displayed in the form of a movie that can effectively show the submarine tracks based on the detected wake locations

  5. A Novel Image Encryption Algorithm Based on DNA Encoding and Spatiotemporal Chaos

    Directory of Open Access Journals (Sweden)

    Chunyan Song

    2015-10-01

    Full Text Available DNA computing based image encryption is a new, promising field. In this paper, we propose a novel image encryption scheme based on DNA encoding and spatiotemporal chaos. In particular, after the plain image is primarily diffused with the bitwise Exclusive-OR operation, the DNA mapping rule is introduced to encode the diffused image. In order to enhance the encryption, the spatiotemporal chaotic system is used to confuse the rows and columns of the DNA encoded image. The experiments demonstrate that the proposed encryption algorithm is of high key sensitivity and large key space, and it can resist brute-force attack, entropy attack, differential attack, chosen-plaintext attack, known-plaintext attack and statistical attack.

  6. Spatio-temporal correlations in models of collective motion ruled by different dynamical laws.

    Science.gov (United States)

    Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano

    2016-11-15

    Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.

  7. Spatiotemporal Analysis of RGB-D-T Facial Images for Multimodal Pain Level Recognition

    DEFF Research Database (Denmark)

    Irani, Ramin; Nasrollahi, Kamal; Oliu Simon, Marc

    2015-01-01

    facial images for pain detection and pain intensity level recognition. For this purpose, we extract energies released by facial pixels using a spatiotemporal filter. Experiments on a group of 12 elderly people applying the multimodal approach show that the proposed method successfully detects pain...

  8. Probabilistic M/EEG source imaging from sparse spatio-temporal event structure

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Attias, Hagai T.; Wipf, David

    While MEG and EEG source imaging methods have to tackle a severely ill-posed problem their success can be stated as their ability to constrain the solutions using appropriate priors. In this paper we propose a hierarchical Bayesian model facilitating spatio-temporal patterns through the use of bo...

  9. A novel image block cryptosystem based on a spatiotemporal chaotic system and a chaotic neural network

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; Bao Xue-Mei

    2013-01-01

    In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hardware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosystem is secure and practical, and suitable for image encryption. (general)

  10. Cryptanalysis on an image block encryption algorithm based on spatiotemporal chaos

    International Nuclear Information System (INIS)

    Wang Xing-Yuan; He Guo-Xiang

    2012-01-01

    An image block encryption scheme based on spatiotemporal chaos has been proposed recently. In this paper, we analyse the security weakness of the proposal. The main problem of the original scheme is that the generated keystream remains unchanged for encrypting every image. Based on the flaws, we demonstrate a chosen plaintext attack for revealing the equivalent keys with only 6 pairs of plaintext/ciphertext used. Finally, experimental results show the validity of our attack. (general)

  11. Assessment of spatiotemporal fusion algorithms for Planet and Worldview images

    Science.gov (United States)

    Although Worldview (WV) images (non-pansharpened) have 2-meter resolution, the re-visit times for the same areas may be 7 days or more. In contrast, Planet images using small satellites can cover the whole Earth almost daily. However, the resolution of Planet images is 3.125 m. It will be ideal to f...

  12. Spatio-temporal alignment of pedobarographic image sequences.

    Science.gov (United States)

    Oliveira, Francisco P M; Sousa, Andreia; Santos, Rubim; Tavares, João Manuel R S

    2011-07-01

    This article presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine, or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. In addition, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (P alignment of pedobarographic image data, since previous methods can only be applied on static images.

  13. Spatio-Temporal Series Remote Sensing Image Prediction Based on Multi-Dictionary Bayesian Fusion

    Directory of Open Access Journals (Sweden)

    Chu He

    2017-11-01

    Full Text Available Contradictions in spatial resolution and temporal coverage emerge from earth observation remote sensing images due to limitations in technology and cost. Therefore, how to combine remote sensing images with low spatial yet high temporal resolution as well as those with high spatial yet low temporal resolution to construct images with both high spatial resolution and high temporal coverage has become an important problem called spatio-temporal fusion problem in both research and practice. A Multi-Dictionary Bayesian Spatio-Temporal Reflectance Fusion Model (MDBFM has been proposed in this paper. First, multiple dictionaries from regions of different classes are trained. Second, a Bayesian framework is constructed to solve the dictionary selection problem. A pixel-dictionary likehood function and a dictionary-dictionary prior function are constructed under the Bayesian framework. Third, remote sensing images before and after the middle moment are combined to predict images at the middle moment. Diverse shapes and textures information is learned from different landscapes in multi-dictionary learning to help dictionaries capture the distinctions between regions. The Bayesian framework makes full use of the priori information while the input image is classified. The experiments with one simulated dataset and two satellite datasets validate that the MDBFM is highly effective in both subjective and objective evaluation indexes. The results of MDBFM show more precise details and have a higher similarity with real images when dealing with both type changes and phenology changes.

  14. Geometrical optics in correlated imaging systems

    International Nuclear Information System (INIS)

    Cao Dezhong; Xiong Jun; Wang Kaige

    2005-01-01

    We discuss the geometrical optics of correlated imaging for two kinds of spatial correlations corresponding, respectively, to a classical thermal light source and a quantum two-photon entangled source. Due to the different features in the second-order spatial correlation, the two sources obey different imaging equations. The quantum entangled source behaves as a mirror, whereas the classical thermal source looks like a phase-conjugate mirror in the correlated imaging

  15. Mechanical shape correlation : a novel integrated digital image correlation approach

    NARCIS (Netherlands)

    Kleinendorst, S.M.; Hoefnagels, J.P.M.; Geers, M.G.D.; Lamberti, L.; Lin, M.-T.; Furlong, C.; Sciammarella, C.

    2018-01-01

    Mechanical Shape Correlation (MSC) is a novel integrated digital image correlation technique, used to determine the optimal set of constitutive parameters to describe the experimentally observed mechanical behavior of a test specimen, based on digital images taken during the experiment. In contrast

  16. Analysis of Correlation Tendency between Wind and Solar from Various Spatio-temporal Perspectives

    Science.gov (United States)

    Wang, X.; Weihua, X.; Mei, Y.

    2017-12-01

    Analysis of correlation between wind resources and solar resources could explore their complementary features, enhance the utilization efficiency of renewable energy and further alleviate the carbon emission issues caused by the fossil energy. In this paper, we discuss the correlation between wind and solar from various spatio-temporal perspectives (from east to west, in terms of plain, plateau, hill, and mountain, from hourly to daily, ten days and monthly) with observed data and modeled data from NOAA (National Oceanic and Atmospheric Administration) and NERL (National Renewable Energy Laboratory). With investigation of wind speed time series and solar radiation time series (period: 10 years, resolution: 1h) of 72 stations located in various landform and distributed dispersedly in USA, the results show that the correlation coefficient, Kendall's rank correlation coefficient, changes negative to positive value from east coast to west coast of USA, and this phenomena become more obvious when the time scale of resolution increases from daily to ten days and monthly. Furthermore, considering the differences of landforms which influence the local meteorology the Kendall coefficients of diverse topographies are compared and it is found that the coefficients descend from mountain to hill, plateau and plain. However, no such evident tendencies could be found in daily scale. According to this research, it is proposed that the complementary feature of wind resources and solar resources in the east or in the mountain area of USA is conspicuous. Subsequent study would try to further verify this analysis by investigating the operation status of wind power station and solar power station.

  17. Fully refocused multi-shot spatiotemporally encoded MRI: robust imaging in the presence of metallic implants.

    Science.gov (United States)

    Ben-Eliezer, Noam; Solomon, Eddy; Harel, Elad; Nevo, Nava; Frydman, Lucio

    2012-12-01

    An approach has been recently introduced for acquiring arbitrary 2D NMR spectra or images in a single scan, based on the use of frequency-swept RF pulses for the sequential excitation and acquisition of the spins response. This spatiotemporal-encoding (SPEN) approach enables a unique, voxel-by-voxel refocusing of all frequency shifts in the sample, for all instants throughout the data acquisition. The present study investigates the use of this full-refocusing aspect of SPEN-based imaging in the multi-shot MRI of objects, subject to sizable field inhomogeneities that complicate conventional imaging approaches. 2D MRI experiments were performed at 7 T on phantoms and on mice in vivo, focusing on imaging in proximity to metallic objects. Fully refocused SPEN-based spin echo imaging sequences were implemented, using both Cartesian and back-projection trajectories, and compared with k-space encoded spin echo imaging schemes collected on identical samples under equal bandwidths and acquisition timing conditions. In all cases assayed, the fully refocused spatiotemporally encoded experiments evidenced a ca. 50 % reduction in signal dephasing in the proximity of the metal, as compared to analogous results stemming from the k-space encoded spin echo counterparts. The results in this study suggest that SPEN-based acquisition schemes carry the potential to overcome strong field inhomogeneities, of the kind that currently preclude high-field, high-resolution tissue characterizations in the neighborhood of metallic implants.

  18. Cryptanalysis of a spatiotemporal chaotic image/video cryptosystem

    International Nuclear Information System (INIS)

    Rhouma, Rhouma; Belghith, Safya

    2008-01-01

    This Letter proposes two different attacks on a recently proposed chaotic cryptosystem for images and videos in [S. Lian, Chaos Solitons Fractals (2007), (doi: 10.1016/j.chaos.2007.10.054)]. The cryptosystem under study displays weakness in the generation of the keystream. The encryption is made by generating a keystream mixed with blocks generated from the plaintext and the ciphertext in a CBC mode design. The so obtained keystream remains unchanged for every encryption procedure. Guessing the keystream leads to guessing the key. Two possible attacks are then able to break the whole cryptosystem based on this drawback in generating the keystream. We propose also to change the description of the cryptosystem to be robust against the described attacks by making it in a PCBC mode design

  19. Spatio-temporal imaging of the hemoglobin in the compressed breast with diffuse optical tomography

    Science.gov (United States)

    Boverman, Gregory; Fang, Qianqian; Carp, Stefan A.; Miller, Eric L.; Brooks, Dana H.; Selb, Juliette; Moore, Richard H.; Kopans, Daniel B.; Boas, David A.

    2007-07-01

    We develop algorithms for imaging the time-varying optical absorption within the breast given diffuse optical tomographic data collected over a time span that is long compared to the dynamics of the medium. Multispectral measurements allow for the determination of the time-varying total hemoglobin concentration and of oxygen saturation. To facilitate the image reconstruction, we decompose the hemodynamics in time into a linear combination of spatio-temporal basis functions, the coefficients of which are estimated using all of the data simultaneously, making use of a Newton-based nonlinear optimization algorithm. The solution of the extremely large least-squares problem which arises in computing the Newton update is obtained iteratively using the LSQR algorithm. A Laplacian spatial regularization operator is applied, and, in addition, we make use of temporal regularization which tends to encourage similarity between the images of the spatio-temporal coefficients. Results are shown for an extensive simulation, in which we are able to image and quantify localized changes in both total hemoglobin concentration and oxygen saturation. Finally, a breast compression study has been performed for a normal breast cancer screening subject, using an instrument which allows for highly accurate co-registration of multispectral diffuse optical measurements with an x-ray tomosynthesis image of the breast. We are able to quantify the global return of blood to the breast following compression, and, in addition, localized changes are observed which correspond to the glandular region of the breast.

  20. A graph-based approach to detect spatiotemporal dynamics in satellite image time series

    Science.gov (United States)

    Guttler, Fabio; Ienco, Dino; Nin, Jordi; Teisseire, Maguelonne; Poncelet, Pascal

    2017-08-01

    Enhancing the frequency of satellite acquisitions represents a key issue for Earth Observation community nowadays. Repeated observations are crucial for monitoring purposes, particularly when intra-annual process should be taken into account. Time series of images constitute a valuable source of information in these cases. The goal of this paper is to propose a new methodological framework to automatically detect and extract spatiotemporal information from satellite image time series (SITS). Existing methods dealing with such kind of data are usually classification-oriented and cannot provide information about evolutions and temporal behaviors. In this paper we propose a graph-based strategy that combines object-based image analysis (OBIA) with data mining techniques. Image objects computed at each individual timestamp are connected across the time series and generates a set of evolution graphs. Each evolution graph is associated to a particular area within the study site and stores information about its temporal evolution. Such information can be deeply explored at the evolution graph scale or used to compare the graphs and supply a general picture at the study site scale. We validated our framework on two study sites located in the South of France and involving different types of natural, semi-natural and agricultural areas. The results obtained from a Landsat SITS support the quality of the methodological approach and illustrate how the framework can be employed to extract and characterize spatiotemporal dynamics.

  1. Spatiotemporal processing of gated cardiac SPECT images using deformable mesh modeling

    International Nuclear Information System (INIS)

    Brankov, Jovan G.; Yang Yongyi; Wernick, Miles N.

    2005-01-01

    In this paper we present a spatiotemporal processing approach, based on deformable mesh modeling, for noise reduction in gated cardiac single-photon emission computed tomography images. Because of the partial volume effect (PVE), clinical cardiac-gated perfusion images exhibit a phenomenon known as brightening--the myocardium appears to become brighter as the heart wall thickens. Although brightening is an artifact, it serves as an important diagnostic feature for assessment of wall thickening in clinical practice. Our proposed processing algorithm aims to preserve this important diagnostic feature while reducing the noise level in the images. The proposed algorithm is based on the use of a deformable mesh for modeling the cardiac motion in a gated cardiac sequence, based on which the images are processed by smoothing along space-time trajectories of object points while taking into account the PVE. Our experiments demonstrate that the proposed algorithm can yield significantly more-accurate results than several existing methods

  2. Monitoring the Spatiotemporal Activities of miRNAs in Small Animal Models Using Molecular Imaging Modalities

    Directory of Open Access Journals (Sweden)

    Patrick Baril

    2015-03-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  3. Monitoring the spatiotemporal activities of miRNAs in small animal models using molecular imaging modalities.

    Science.gov (United States)

    Baril, Patrick; Ezzine, Safia; Pichon, Chantal

    2015-03-04

    MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression by binding mRNA targets via sequence complementary inducing translational repression and/or mRNA degradation. A current challenge in the field of miRNA biology is to understand the functionality of miRNAs under physiopathological conditions. Recent evidence indicates that miRNA expression is more complex than simple regulation at the transcriptional level. MiRNAs undergo complex post-transcriptional regulations such miRNA processing, editing, accumulation and re-cycling within P-bodies. They are dynamically regulated and have a well-orchestrated spatiotemporal localization pattern. Real-time and spatio-temporal analyses of miRNA expression are difficult to evaluate and often underestimated. Therefore, important information connecting miRNA expression and function can be lost. Conventional miRNA profiling methods such as Northern blot, real-time PCR, microarray, in situ hybridization and deep sequencing continue to contribute to our knowledge of miRNA biology. However, these methods can seldom shed light on the spatiotemporal organization and function of miRNAs in real-time. Non-invasive molecular imaging methods have the potential to address these issues and are thus attracting increasing attention. This paper reviews the state-of-the-art of methods used to detect miRNAs and discusses their contribution in the emerging field of miRNA biology and therapy.

  4. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.

    Science.gov (United States)

    Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W

    2018-02-16

    Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    Science.gov (United States)

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  6. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    Directory of Open Access Journals (Sweden)

    Qing Gu

    2015-10-01

    Full Text Available It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes. According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  7. The spatiotemporal pattern of Src activation at lipid rafts revealed by diffusion-corrected FRET imaging.

    Directory of Open Access Journals (Sweden)

    Shaoying Lu

    2008-07-01

    Full Text Available Genetically encoded biosensors based on fluorescence resonance energy transfer (FRET have been widely applied to visualize the molecular activity in live cells with high spatiotemporal resolution. However, the rapid diffusion of biosensor proteins hinders a precise reconstruction of the actual molecular activation map. Based on fluorescence recovery after photobleaching (FRAP experiments, we have developed a finite element (FE method to analyze, simulate, and subtract the diffusion effect of mobile biosensors. This method has been applied to analyze the mobility of Src FRET biosensors engineered to reside at different subcompartments in live cells. The results indicate that the Src biosensor located in the cytoplasm moves 4-8 folds faster (0.93+/-0.06 microm(2/sec than those anchored on different compartments in plasma membrane (at lipid raft: 0.11+/-0.01 microm(2/sec and outside: 0.18+/-0.02 microm(2/sec. The mobility of biosensor at lipid rafts is slower than that outside of lipid rafts and is dominated by two-dimensional diffusion. When this diffusion effect was subtracted from the FRET ratio images, high Src activity at lipid rafts was observed at clustered regions proximal to the cell periphery, which remained relatively stationary upon epidermal growth factor (EGF stimulation. This result suggests that EGF induced a Src activation at lipid rafts with well-coordinated spatiotemporal patterns. Our FE-based method also provides an integrated platform of image analysis for studying molecular mobility and reconstructing the spatiotemporal activation maps of signaling molecules in live cells.

  8. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    Science.gov (United States)

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  9. Image correlation method for DNA sequence alignment.

    Science.gov (United States)

    Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván

    2012-01-01

    The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.

  10. Resolving Fast, Confined Diffusion in Bacteria with Image Correlation Spectroscopy.

    Science.gov (United States)

    Rowland, David J; Tuson, Hannah H; Biteen, Julie S

    2016-05-24

    By following single fluorescent molecules in a microscope, single-particle tracking (SPT) can measure diffusion and binding on the nanometer and millisecond scales. Still, although SPT can at its limits characterize the fastest biomolecules as they interact with subcellular environments, this measurement may require advanced illumination techniques such as stroboscopic illumination. Here, we address the challenge of measuring fast subcellular motion by instead analyzing single-molecule data with spatiotemporal image correlation spectroscopy (STICS) with a focus on measurements of confined motion. Our SPT and STICS analysis of simulations of the fast diffusion of confined molecules shows that image blur affects both STICS and SPT, and we find biased diffusion rate measurements for STICS analysis in the limits of fast diffusion and tight confinement due to fitting STICS correlation functions to a Gaussian approximation. However, we determine that with STICS, it is possible to correctly interpret the motion that blurs single-molecule images without advanced illumination techniques or fast cameras. In particular, we present a method to overcome the bias due to image blur by properly estimating the width of the correlation function by directly calculating the correlation function variance instead of using the typical Gaussian fitting procedure. Our simulation results are validated by applying the STICS method to experimental measurements of fast, confined motion: we measure the diffusion of cytosolic mMaple3 in living Escherichia coli cells at 25 frames/s under continuous illumination to illustrate the utility of STICS in an experimental parameter regime for which in-frame motion prevents SPT and tight confinement of fast diffusion precludes stroboscopic illumination. Overall, our application of STICS to freely diffusing cytosolic protein in small cells extends the utility of single-molecule experiments to the regime of fast confined diffusion without requiring advanced

  11. Ultrasonic Detection Using Correlation Images (Preprint)

    National Research Council Canada - National Science Library

    Cepel, Raini; Ho, K. C; Rinker, Brett A; Palmer, Donald D; Neal, Steven P

    2006-01-01

    .... In this paper, we describe an amplitude independent approach for imaging and detection based on the similarity of adjacent signals, quantified by the correlation coefficient calculated between A-scans...

  12. Neurocysticercosis: Correlative pathomorphology and MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, J.; Hewlett, R.; Alheit, B.; Bowen, R.

    1988-02-01

    CT and MR images of 32 patients with neurocysticercosis were correlated with pathomorphology. Gross morphological features of cystic larvae, complex arachnoid cysts, granulomatous abscesses, basal meningitis and mineralised nodules correlated closely with the images obtained, especially on MR, where resolution permitted visualisation of larval protoscolices. Our material indicates three forms of the natural history of neurocysticercosis related chiefly to anatomic location, and provides details of the evolution of large, complex arachnoid cysts.

  13. Neurocysticercosis: Correlative pathomorphology and MR imaging

    International Nuclear Information System (INIS)

    Lotz, J.; Hewlett, R.; Alheit, B.; Tygerberg Hospital, Stellenbosch; Bowen, R.

    1988-01-01

    CT and MR images of 32 patients with neurocysticercosis were correlated with pathomorphology. Gross morphological features of cystic larvae, complex arachnoid cysts, granulomatous abscesses, basal meningitis and mineralised nodules correlated closely with the images obtained, especially on MR, where resolution permitted visualisation of larval protoscolices. Our material indicates three forms of the natural history of neurocysticercosis related chiefly to anatomic location, and provides details of the evolution of large, complex arachnoid cysts. (orig.)

  14. Quantum Image Encryption Algorithm Based on Image Correlation Decomposition

    Science.gov (United States)

    Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun

    2015-02-01

    A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.

  15. Speckle pattern processing by digital image correlation

    Directory of Open Access Journals (Sweden)

    Gubarev Fedor

    2016-01-01

    Full Text Available Testing the method of speckle pattern processing based on the digital image correlation is carried out in the current work. Three the most widely used formulas of the correlation coefficient are tested. To determine the accuracy of the speckle pattern processing, test speckle patterns with known displacement are used. The optimal size of a speckle pattern template used for determination of correlation and corresponding the speckle pattern displacement is also considered in the work.

  16. The use of spatio-temporal correlation to forecast critical transitions

    Science.gov (United States)

    Karssenberg, Derek; Bierkens, Marc F. P.

    2010-05-01

    Complex dynamical systems may have critical thresholds at which the system shifts abruptly from one state to another. Such critical transitions have been observed in systems ranging from the human body system to financial markets and the Earth system. Forecasting the timing of critical transitions before they are reached is of paramount importance because critical transitions are associated with a large shift in dynamical regime of the system under consideration. However, it is hard to forecast critical transitions, because the state of the system shows relatively little change before the threshold is reached. Recently, it was shown that increased spatio-temporal autocorrelation and variance can serve as alternative early warning signal for critical transitions. However, thus far these second order statistics have not been used for forecasting in a data assimilation framework. Here we show that the use of spatio-temporal autocorrelation and variance in the state of the system reduces the uncertainty in the predicted timing of critical transitions compared to classical approaches that use the value of the system state only. This is shown by assimilating observed spatio-temporal autocorrelation and variance into a dynamical system model using a Particle Filter. We adapt a well-studied distributed model of a logistically growing resource with a fixed grazing rate. The model describes the transition from an underexploited system with high resource biomass to overexploitation as grazing pressure crosses the critical threshold, which is a fold bifurcation. To represent limited prior information, we use a large variance in the prior probability distributions of model parameters and the system driver (grazing rate). First, we show that the rate of increase in spatio-temporal autocorrelation and variance prior to reaching the critical threshold is relatively consistent across the uncertainty range of the driver and parameter values used. This indicates that an increase in

  17. Spatiotemporal distribution of algal and nutrient, and their correlations based on long-term monitoring data in Lake Taihu, China

    Science.gov (United States)

    Acharya, K.; Li, Y.; Stone, M.; Yu, Z.; Young, M.; Shafer, D. S.; Zhu, J.; Warwick, J. J.

    2009-12-01

    Eutrophication in Lake Taihu - China’s third largest freshwater lake - has led to deterioration of water quality and caused more frequent cyanobacteria blooms at many lake locations in recent years. Eutrophication is thought to be fueled by increased nutrient loading, a consequence of rapid population and economic growth in the region. To understand the spatiotemporal distribution of algal blooms, a database was developed that includes long-term meteorological, hydrological, water quality, and socioeconomic data from the Lake Taihu watershed. The data were collected through various field observations, and augmented with information from local and provincial agencies, and universities. Based on the data, spatiotemporal distributions of, and correlations between, chlorophyll-a (Chl-a), total phosphorus (TP), total nitrogen (TN) and water temperature (WT) were analyzed. Results revealed a high degree of correlation between TP and Chl-a concentrations during warm seasons, with high concentrations of both substances present in the northern and northwest portions of the lake. During winter months, Chl-a concentrations were more strongly correlated with WT. Spatial trends in TP and TN concentrations corresponded to observed nutrient fluxes from adjoining rivers in densely populated areas, demonstrating the influence of watershed pollutant loads on lake water quality. Among important questions to be answered is whether wind-driven resuspension of existing nutrients in sediments in this shallow (cyanobacteria blooms to begin. This study identifies other questions, data gaps, and research needs, and provides a foundation for improving lake management strategies.

  18. Spatio-temporal encoding using narrow-band linear frequency modulated signals in synthetic aperture ultrasound imaging

    DEFF Research Database (Denmark)

    Gran, Fredrik; Jensen, Jørgen Arendt

    2005-01-01

    In this paper a method for spatio-temporal encoding is presented for synthetic transmit aperture ultrasound imaging (STA). The purpose is to excite several transmitters at the same time in order to transmit more acoustic energy in every single transmission. When increasing the transmitted acousti...

  19. Skeletal MR imaging: Correlation with skeletal scintigraphy

    International Nuclear Information System (INIS)

    Colletti, P.M.; Raval, J.K.; Ford, P.V.; Benson, R.C.; Kerr, R.M.; Boswell, W.D.; Siegel, M.E.; Ralls, P.W.

    1987-01-01

    Skeletal MR images bone marrow while skeletal scintigraphy uses bone metabolism to demonstrate abnormalities. The purpose of this paper is to correlate these MR and scintigraphic findings. T1 and T2 MR images at 0.5 T were correlated with planar bone scintigraphy (RN) using Tc-99m MDP in 56 patients. Of 23 cases with suspected spinal metastases, 19 were positive by MR imaging, 16 by RN. Individual lesions were shown better by MR imaging in five and by RN in two. These two cases had scoliosis, a potential difficulty with MR imaging. In 14 cases of suspected avascular necrosis (AVN), MR imaging was positive in 13 while RN was positive in ten. One negative case by RN had bilateral AVN by MR imaging. Four skull lesions shown easily by RN were seen only in retrospect on MR images. MR imaging is advantageous in evaluating bones with predominant marrow such as vertebrae or the femoral head, while RN is superior in areas primarily composed of cortical bone such as the skull

  20. Ghost imaging based on Pearson correlation coefficients

    International Nuclear Information System (INIS)

    Yu Wen-Kai; Yao Xu-Ri; Liu Xue-Feng; Li Long-Zhen; Zhai Guang-Jie

    2015-01-01

    Correspondence imaging is a new modality of ghost imaging, which can retrieve a positive/negative image by simple conditional averaging of the reference frames that correspond to relatively large/small values of the total intensity measured at the bucket detector. Here we propose and experimentally demonstrate a more rigorous and general approach in which a ghost image is retrieved by calculating a Pearson correlation coefficient between the bucket detector intensity and the brightness at a given pixel of the reference frames, and at the next pixel, and so on. Furthermore, we theoretically provide a statistical interpretation of these two imaging phenomena, and explain how the error depends on the sample size and what kind of distribution the error obeys. According to our analysis, the image signal-to-noise ratio can be greatly improved and the sampling number reduced by means of our new method. (paper)

  1. Monitoring Local Changes in Granite Rock Under Biaxial Test: A Spatiotemporal Imaging Application With Diffuse Waves

    Science.gov (United States)

    Xie, Fan; Ren, Yaqiong; Zhou, Yongsheng; Larose, Eric; Baillet, Laurent

    2018-03-01

    Diffuse acoustic or seismic waves are highly sensitive to detect changes of mechanical properties in heterogeneous geological materials. In particular, thanks to acoustoelasticity, we can quantify stress changes by tracking acoustic or seismic relative velocity changes in the material at test. In this paper, we report on a small-scale laboratory application of an innovative time-lapse tomography technique named Locadiff to image spatiotemporal mechanical changes on a granite sample under biaxial loading, using diffuse waves at ultrasonic frequencies (300 kHz to 900 kHz). We demonstrate the ability of the method to image reversible stress evolution and deformation process, together with the development of reversible and irreversible localized microdamage in the specimen at an early stage. Using full-field infrared thermography, we visualize stress-induced temperature changes and validate stress images obtained from diffuse ultrasound. We demonstrate that the inversion with a good resolution can be achieved with only a limited number of receivers distributed around a single source, all located at the free surface of the specimen. This small-scale experiment is a proof of concept for frictional earthquake-like failure (e.g., stick-slip) research at laboratory scale as well as large-scale seismic applications, potentially including active fault monitoring.

  2. Spatiotemporal Correlations between Water Footprint and Agricultural Inputs: A Case Study of Maize Production in Northeast China

    Directory of Open Access Journals (Sweden)

    Peili Duan

    2015-07-01

    Full Text Available To effectively manage water resources in agricultural production, it is necessary to understand the spatiotemporal variation of the water footprint (WF and the influences of agricultural inputs. Employing spatial autocorrelation analysis and a geographically weighted regression (GWR model, we explored the spatial variations of the WF and their relationships with agricultural inputs from 1998 to 2012 in Northeast China. The results indicated that: (1 the spatial distribution of WFs for the 36 major maize production prefectures was heterogeneous in Northeast China; (2 a cluster of high WFs was found in southeast Liaoning Province, while a cluster of low WFs was found in central Jilin Province, and (3 spatial and temporal differentiation in the correlations between the WF of maize production and agricultural inputs existed according to the GWR model. These correlations increased over time. Our results suggested that localized strategies for reducing the WF should be formulated based on specific relationships between the WF and agricultural inputs.

  3. Reliability-guided digital image correlation for image deformation measurement

    International Nuclear Information System (INIS)

    Pan Bing

    2009-01-01

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness

  4. Quaternionic Spatiotemporal Filtering for Dense Motion Field Estimation in Ultrasound Imaging

    Directory of Open Access Journals (Sweden)

    Marion Adrien

    2010-01-01

    Full Text Available Abstract Blood motion estimation provides fundamental clinical information to prevent and detect pathologies such as cancer. Ultrasound imaging associated with Doppler methods is often used for blood flow evaluation. However, Doppler methods suffer from shortcomings such as limited spatial resolution and the inability to estimate lateral motion. Numerous methods such as block matching and decorrelation-based techniques have been proposed to overcome these limitations. In this paper, we propose an original method to estimate dense fields of vector velocity from ultrasound image sequences. Our proposal is based on a spatiotemporal approach and considers 2D+t data as a 3D volume. Orientation of the texture within this volume is related to velocity. Thus, we designed a bank of 3D quaternionic filters to estimate local orientation and then calculate local velocities. The method was applied to a large set of experimental and simulated flow sequences with low motion ( 1 mm/s within small vessels ( 1 mm. Evaluation was conducted with several quantitative criteria such as the normalized mean error or the estimated mean velocity. The results obtained show the good behaviour of our method, characterizing the flows studied.

  5. A flexible spatiotemporal method for fusing satellite images with different resolutions

    Science.gov (United States)

    Xiaolin Zhu; Eileen H. Helmer; Feng Gao; Desheng Liu; Jin Chen; Michael A. Lefsky

    2016-01-01

    Studies of land surface dynamics in heterogeneous landscapes often require remote sensing datawith high acquisition frequency and high spatial resolution. However, no single sensor meets this requirement. This study presents a new spatiotemporal data fusion method, the Flexible Spatiotemporal DAta Fusion (FSDAF) method, to generate synthesized frequent high spatial...

  6. A novel spatiotemporal muscle activity imaging approach based on the Extended Kalman Filter.

    Science.gov (United States)

    Wang, Jing; Zhang, Yingchun; Zhu, Xiangjun; Zhou, Ping; Liu, Chenguang; Rymer, William Z

    2012-01-01

    A novel spatiotemporal muscle activity imaging (sMAI) approach has been developed using the Extended Kalman Filter (EKF) to reconstruct internal muscle activities from non-invasive multi-channel surface electromyogram (sEMG) recordings. A distributed bioelectric dipole source model is employed to describe the internal muscle activity space, and a linear relationship between the muscle activity space and the sEMG measurement space is then established. The EKF is employed to recursively solve the ill-posed inverse problem in the sMAI approach, in which the weighted minimum norm (WMN) method is utilized to calculate the initial state and a new nonlinear method is developed based on the propagating features of muscle activities to predict the recursive state. A series of computer simulations was conducted to test the performance of the proposed sMAI approach. Results show that the localization error rapidly decreases over 35% and the overlap ratio rapidly increases over 45% compared to the results achieved using the WMN method only. The present promising results demonstrate the feasibility of utilizing the proposed EKF-based sMAI approach to accurately reconstruct internal muscle activities from non-invasive sEMG recordings.

  7. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    International Nuclear Information System (INIS)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-01-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins. (paper)

  8. Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy

    Science.gov (United States)

    Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina

    2015-03-01

    Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.

  9. How about a Bayesian M/EEG imaging method correcting for incomplete spatio-temporal priors

    DEFF Research Database (Denmark)

    Stahlhut, Carsten; Attias, Hagai T.; Sekihara, Kensuke

    2013-01-01

    previous spatio-temporal inverse M/EEG models, the proposed model benefits of consisting of two source terms, namely, a spatio-temporal pattern term limiting the source configuration to a spatio-temporal subspace and a source correcting term to pick up source activity not covered by the spatio......-temporal prior belief. We have tested the model on both artificial data and real EEG data in order to demonstrate the efficacy of the model. The model was tested at different SNRs (-10.0,-5.2, -3.0, -1.0, 0, 0.8, 3.0 dB) using white noise. At all SNRs the sAquavit performs best in AUC measure, e.g. at SNR=0d...

  10. The spatiotemporal dynamics of autobiographical memory: Neural correlates of recall, emotional intensity, and reliving

    NARCIS (Netherlands)

    Daselaar, S.M.; Rice, H.J; Greenberg, D.L.; Cabeza, R.; LaBar, K.S.; Rudin, D.C.

    2008-01-01

    We sought to map the time course of autobiographical memory retrieval, including brain regions that mediate phenomenological experiences of reliving and emotional intensity. Participants recalled personal memories to auditory word cues during event-related functional magnetic resonance imaging

  11. Spatiotemporal correlations in entangled photons generated by spontaneous parametric down conversion

    International Nuclear Information System (INIS)

    Osorio, Clara I; Valencia, Alejandra; Torres, Juan P

    2008-01-01

    In most configurations aimed at generating entangled photons based on spontaneous parametric down conversion (SPDC), the generated pairs of photons are required to be entangled in only one degree of freedom. Any distinguishing information coming from the other degrees of freedom that characterize the photon should be suppressed to avoid correlations with the degree of freedom of interest. However, this suppression is not always possible. Here, we show how the frequency information available affects the purity of the two-photon state in space, revealing a correlation between the frequency and the space degrees of freedom. This correlation should be taken into account to calculate the total amount of entanglement between the photons.

  12. Spatio-temporal environmental correlation and population variability in simple metacommunities.

    Directory of Open Access Journals (Sweden)

    Lasse Ruokolainen

    Full Text Available Natural populations experience environmental conditions that vary across space and over time. This variation is often correlated between localities depending on the geographical separation between them, and different species can respond to local environmental fluctuations similarly or differently, depending on their adaptation. How this emerging structure in environmental correlation (between-patches and between-species affects spatial community dynamics is an open question. This paper aims at a general understanding of the interactions between the environmental correlation structure and population dynamics in spatial networks of local communities (metacommunities, by studying simple two-patch, two-species systems. Three different pairs of interspecific interactions are considered: competition, consumer-resource interaction, and host-parasitoid interaction. While the results paint a relatively complex picture of the effect of environmental correlation, the interaction between environmental forcing, dispersal, and local interactions can be understood via two mechanisms. While increasing between-patch environmental correlation couples immigration and local densities (destabilising effect, the coupling between local populations under increased between-species environmental correlation can either amplify or dampen population fluctuations, depending on the patterns in density dependence. This work provides a unifying framework for modelling stochastic metacommunities, and forms a foundation for a better understanding of population responses to environmental fluctuations in natural systems.

  13. Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging.

    Directory of Open Access Journals (Sweden)

    Karin Gorzolka

    Full Text Available MALDI mass spectrometry imaging was performed to localize metabolites during the first seven days of the barley germination. Up to 100 mass signals were detected of which 85 signals were identified as 48 different metabolites with highly tissue-specific localizations. Oligosaccharides were observed in the endosperm and in parts of the developed embryo. Lipids in the endosperm co-localized in dependency on their fatty acid compositions with changes in the distributions of diacyl phosphatidylcholines during germination. 26 potentially antifungal hordatines were detected in the embryo with tissue-specific localizations of their glycosylated, hydroxylated, and O-methylated derivates. In order to reveal spatio-temporal patterns in local metabolite compositions, multiple MSI data sets from a time series were analyzed in one batch. This requires a new preprocessing strategy to achieve comparability between data sets as well as a new strategy for unsupervised clustering. The resulting spatial segmentation for each time point sample is visualized in an interactive cluster map and enables simultaneous interactive exploration of all time points. Using this new analysis approach and visualization tool germination-dependent developments of metabolite patterns with single MS position accuracy were discovered. This is the first study that presents metabolite profiling of a cereals' germination process over time by MALDI MSI with the identification of a large number of peaks of agronomically and industrially important compounds such as oligosaccharides, lipids and antifungal agents. Their detailed localization as well as the MS cluster analyses for on-tissue metabolite profile mapping revealed important information for the understanding of the germination process, which is of high scientific interest.

  14. Idiopathic interstitial pneumonias: imaging-pathology correlation

    International Nuclear Information System (INIS)

    Ellis, Stephen M.; Hansell, David M.

    2002-01-01

    The terminology related to idiopathic interstitial pneumonia (IIP) remains confusing and in some cases wholly inaccurate. In addition, a greater understanding of the correlation between high-resolution computed tomography (HRCT) appearances and the corresponding histopathological changes found in the interstitial pneumonias has resulted in a crucial role for HRCT in the investigation of IIPs. The role of the radiologist is becoming increasingly important with a strong emphasis on establishing a diagnosis without resorting to lung biopsy. We aim to clarify the current classification of the IIPs highlighting their clinical, pathological and imaging characteristics in order to assist the radiologist in performing their increasingly important diagnostic role. (orig.)

  15. Self-calibrated correlation imaging with k-space variant correlation functions.

    Science.gov (United States)

    Li, Yu; Edalati, Masoud; Du, Xingfu; Wang, Hui; Cao, Jie J

    2018-03-01

    Correlation imaging is a previously developed high-speed MRI framework that converts parallel imaging reconstruction into the estimate of correlation functions. The presented work aims to demonstrate this framework can provide a speed gain over parallel imaging by estimating k-space variant correlation functions. Because of Fourier encoding with gradients, outer k-space data contain higher spatial-frequency image components arising primarily from tissue boundaries. As a result of tissue-boundary sparsity in the human anatomy, neighboring k-space data correlation varies from the central to the outer k-space. By estimating k-space variant correlation functions with an iterative self-calibration method, correlation imaging can benefit from neighboring k-space data correlation associated with both coil sensitivity encoding and tissue-boundary sparsity, thereby providing a speed gain over parallel imaging that relies only on coil sensitivity encoding. This new approach is investigated in brain imaging and free-breathing neonatal cardiac imaging. Correlation imaging performs better than existing parallel imaging techniques in simulated brain imaging acceleration experiments. The higher speed enables real-time data acquisition for neonatal cardiac imaging in which physiological motion is fast and non-periodic. With k-space variant correlation functions, correlation imaging gives a higher speed than parallel imaging and offers the potential to image physiological motion in real-time. Magn Reson Med 79:1483-1494, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  16. Finite element formulation for a digital image correlation method

    International Nuclear Information System (INIS)

    Sun Yaofeng; Pang, John H. L.; Wong, Chee Khuen; Su Fei

    2005-01-01

    A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our algorithms. This image correlation method with finite element formulation has an advantage over subset-based image correlation methods because it satisfies the requirements of displacement continuity and derivative continuity among elements on images. Numerical studies and a real experiment are used to verify the proposed formulation. Results have shown that the image correlation with the finite element formulation is computationally efficient, accurate, and robust

  17. Enhanced spatio-temporal alignment of plantar pressure image sequences using B-splines.

    Science.gov (United States)

    Oliveira, Francisco P M; Tavares, João Manuel R S

    2013-03-01

    This article presents an enhanced methodology to align plantar pressure image sequences simultaneously in time and space. The temporal alignment of the sequences is accomplished using B-splines in the time modeling, and the spatial alignment can be attained using several geometric transformation models. The methodology was tested on a dataset of 156 real plantar pressure image sequences (3 sequences for each foot of the 26 subjects) that was acquired using a common commercial plate during barefoot walking. In the alignment of image sequences that were synthetically deformed both in time and space, an outstanding accuracy was achieved with the cubic B-splines. This accuracy was significantly better (p align real image sequences with unknown transformation involved, the alignment based on cubic B-splines also achieved superior results than our previous methodology (p alignment on the dynamic center of pressure (COP) displacement was also assessed by computing the intraclass correlation coefficients (ICC) before and after the temporal alignment of the three image sequence trials of each foot of the associated subject at six time instants. The results showed that, generally, the ICCs related to the medio-lateral COP displacement were greater when the sequences were temporally aligned than the ICCs of the original sequences. Based on the experimental findings, one can conclude that the cubic B-splines are a remarkable solution for the temporal alignment of plantar pressure image sequences. These findings also show that the temporal alignment can increase the consistency of the COP displacement on related acquired plantar pressure image sequences.

  18. Spatio-temporal correlation between topographic ERP mapping and positron emission tomography

    International Nuclear Information System (INIS)

    Nagata, Ken; Yaguchi, Kiyoshi

    2001-01-01

    Simultaneous measurement of PET excellent for spatial resolution and event-related potential (ERP) for temporal resolution was performed during the visual recognition task. Subjects were 12 normal adult males having given the informed consent. MRI was done for the morphological indicator of the PET results. PET was conducted by Shimadzu HEADTOME V after bolus injection of 15 O-water to measure the cerebral blood flow (CBF). Electroencephalography was recorded simultaneously. The recognition task with the word, figure and human face was given during the measurements. At recognition of a famous person's face, ERP exhibited the negative peak around the occipital region after the latent time of 164 msec and PET exhibited the increased CBF in the gyruses of parahippocampus and fusiform, thus suggesting the correlation between electro-physiological activity and CBF change. (K.H.)

  19. Ghost imaging with third-order correlated thermal light

    International Nuclear Information System (INIS)

    Ou, L-H; Kuang, L-M

    2007-01-01

    In this paper, we propose a ghost imaging scheme with third-order correlated thermal light. We show that it is possible to produce the spatial information of an object at two different places in a nonlocal fashion by means of a third-order correlated imaging process with a third-order correlated thermal source and third-order correlation measurement. Concretely, we propose a protocol to create two ghost images at two different places from one object. This protocol involves two optical configurations. We derive the Gaussian thin lens equations and plot the geometrical optics of the ghost imaging processes for the two configurations. It is indicated that third-order correlated ghost imaging with thermal light exhibits richer correlated imaging effects than second-order correlated ghost imaging with thermal light

  20. Spatiotemporal Variation of Karst Ecosystem Service Values and Its Correlation with Environmental Factors in Northwest Guangxi, China

    Science.gov (United States)

    Zhang, Mingyang; Zhang, Chunhua; Wang, Kelin; Yue, Yuemin; Qi, Xiangkun; Fan, Feide

    2011-11-01

    In this investigation we analyzed the spatiotemporal variation of ecosystem service values (ESVs) and its correlation with numerous environmental factors (EFs) for the karst region of Northwest Guangxi, China, from 1985 to 2005 using remote sensing, geographic information systems (GIS) and statistical techniques. The results indicate that historically ESVs for this karst region decreased from 1985 (109.652 billion Yuan) to 1990 (88.789 billion Yuan) and then increased at the turn of the twenty-first century. However, the ESVs in both 2000 (103.384 billion Yuan) and 2005 (106.257 billion Yuan) never achieved the level recorded in 1985. The total of nutrient cycling, organic production and gas regulation combined were 72.69, 64.57, 70.18 and 72.10% of ESVs in 1985, 1990, 2000 and 2005, respectively. In contrast, the ESVs of water conservation, soil reservation, recreation and culture were determined to be relatively low contributing only 17.44, 23.82, 19.26 and 24.76% of total ESVs, respectively, during these four years. With regards to the spatial distribution of ESVs, larger values were recorded in the west and smaller ones recorded in the east. The most significant factors that were deemed to influence ESVs are annual rainfall, per capita cropland, slope and vegetation coverage. Annual rainfall and slope exert a negative force, whereas per capita cropland and vegetation coverage exert a positive force on ESVs. The results of the study would suggest that ecosystem conditions of this important karst region have been improved as the result of the implementation of rocky desertification control policies.

  1. Spatio-temporal variability of airborne bacterial communities and their correlation with particulate matter chemical composition across two urban areas.

    Science.gov (United States)

    Gandolfi, I; Bertolini, V; Bestetti, G; Ambrosini, R; Innocente, E; Rampazzo, G; Papacchini, M; Franzetti, A

    2015-06-01

    The study of spatio-temporal variability of airborne bacterial communities has recently gained importance due to the evidence that airborne bacteria are involved in atmospheric processes and can affect human health. In this work, we described the structure of airborne microbial communities in two urban areas (Milan and Venice, Northern Italy) through the sequencing, by the Illumina platform, of libraries containing the V5-V6 hypervariable regions of the 16S rRNA gene and estimated the abundance of airborne bacteria with quantitative PCR (qPCR). Airborne microbial communities were dominated by few taxa, particularly Burkholderiales and Actinomycetales, more abundant in colder seasons, and Chloroplasts, more abundant in warmer seasons. By partitioning the variation in bacterial community structure, we could assess that environmental and meteorological conditions, including variability between cities and seasons, were the major determinants of the observed variation in bacterial community structure, while chemical composition of atmospheric particulate matter (PM) had a minor contribution. Particularly, Ba, SO4 (2-) and Mg(2+) concentrations were significantly correlated with microbial community structure, but it was not possible to assess whether they simply co-varied with seasonal shifts of bacterial inputs to the atmosphere, or their variation favoured specific taxa. Both local sources of bacteria and atmospheric dispersal were involved in the assembling of airborne microbial communities, as suggested, to the one side by the large abundance of bacteria typical of lagoon environments (Rhodobacterales) observed in spring air samples from Venice and to the other by the significant effect of wind speed in shaping airborne bacterial communities at all sites.

  2. Quantum Correlated Multi-Fragment Reaction Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Feagin, James M. [California State Univ., Fullerton, CA (United States)

    2017-06-30

    This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms with particles and fields. This report will focus on the 12 year period from 2004 to 2017, although the DOE–BES has supported my research every year since 1986. All of the support from the grant was used to pay summer salaries of the PI and students and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals as well as conference invited talks and colloquiums. There were 12 peer reviewed publications in these 12+ years. Innovations in few-body science at molecular and nano levels are a critical component of on- going efforts to establish sustainable environmental and energy resources. The varied research paths taken will require the development of basic science on broad fronts with increasing flexi- bility to crossover technologies. We thus worked to extract understanding and quantum control of few-body microscopic systems based on our long-time experience with more conventional studies of correlated electrons and ions. Given the enormous advances over the past 20 years to our understanding of quantum cor- relations with photon interferometry, AMO collision science generally is ready to move beyond the one-particle, single-port momentum detection that has dominated collision physics since Rutherford. Nevertheless, our familiar theoretical tools for collision theory need to be up- graded to incorporate these more generalized measurement formalisms and ultimately to give incentive for a new generation of experiments. Our interest in these topics remains motivated by the recent surge in and success of exper- iments involving few-body atomic and molecular fragmentation and the detection of all the fragments. The research described here thus involved two parallel efforts with (i) emphasis on reaction imaging while (ii) pursuing longtime work on quantum correlated collective excitations.

  3. Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy

    DEFF Research Database (Denmark)

    Banzhaf, Christina A.; Wind, Bas S.; Mogensen, Mette

    2016-01-01

    Background and Objective Optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) offer high-resolution optical imaging of the skin, which may provide benefit in the context of laser-assisted drug delivery. We aimed to characterize postoperative healing of ablative fractional...... laser (AFXL)-induced channels and dynamics in their spatiotemporal closure using in vivo OCT and RCM techniques. Study design/Materials and Methods The inner forearm of healthy subjects (n = 6) was exposed to 10,600 nm fractional CO2 laser using 5 and 25% densities, 120 μm beam diameter, 5, 15, and 25 m......J/microbeam. Treatment sites were scanned with OCT to evaluate closure of AFXL-channels and RCM to evaluate subsequent re-epithelialization. Results OCT and RCM identified laser channels in epidermis and upper dermis as black, ablated tissue defects surrounded by characteristic hyper-and hyporeflective zones. OCT imaged...

  4. Digital Image Correlation for Performance Monitoring

    Science.gov (United States)

    Palaviccini, Miguel; Turner, Dan; Herzberg, Michael

    2016-01-01

    Evaluating the health of a mechanism requires more than just a binary evaluation of whether an operation was completed. It requires analyzing more comprehensive, full-field data. Health monitoring is a process of non-destructively identifying characteristics that indicate the fitness of an engineered component. In order to monitor unit health in a production setting, an automated test system must be created to capture the motion of mechanism parts in a real-time and non-intrusive manner. One way to accomplish this is by using high-speed video and Digital Image Correlation (DIC). In this approach, individual frames of the video are analyzed to track the motion of mechanism components. The derived performance metrics allow for state-of-health monitoring and improved fidelity of mechanism modeling. The results are in-situ state-of-health identification and performance prediction. This paper introduces basic concepts of this test method, and discusses two main themes: the use of laser marking to add fiducial patterns to mechanism components, and new software developed to track objects with complex shapes, even as they move behind obstructions. Finally, the implementation of these tests into an automated tester is discussed.

  5. Image scale measurement with correlation filters in a volume holographic optical correlator

    Science.gov (United States)

    Zheng, Tianxiang; Cao, Liangcai; He, Qingsheng; Jin, Guofan

    2013-08-01

    A search engine containing various target images or different part of a large scene area is of great use for many applications, including object detection, biometric recognition, and image registration. The input image captured in realtime is compared with all the template images in the search engine. A volume holographic correlator is one type of these search engines. It performs thousands of comparisons among the images at a super high speed, with the correlation task accomplishing mainly in optics. However, the inputted target image always contains scale variation to the filtering template images. At the time, the correlation values cannot properly reflect the similarity of the images. It is essential to estimate and eliminate the scale variation of the inputted target image. There are three domains for performing the scale measurement, as spatial, spectral and time domains. Most methods dealing with the scale factor are based on the spatial or the spectral domains. In this paper, a method with the time domain is proposed to measure the scale factor of the input image. It is called a time-sequential scaled method. The method utilizes the relationship between the scale variation and the correlation value of two images. It sends a few artificially scaled input images to compare with the template images. The correlation value increases and decreases with the increasing of the scale factor at the intervals of 0.8~1 and 1~1.2, respectively. The original scale of the input image can be measured by estimating the largest correlation value through correlating the artificially scaled input image with the template images. The measurement range for the scale can be 0.8~4.8. Scale factor beyond 1.2 is measured by scaling the input image at the factor of 1/2, 1/3 and 1/4, correlating the artificially scaled input image with the template images, and estimating the new corresponding scale factor inside 0.8~1.2.

  6. Spatiotemporal PET Imaging of Dynamic Metabolic Changes After Therapeutic Approaches of Induced Pluripotent Stem Cells, Neuronal Stem Cells, and a Chinese Patent Medicine in Stroke.

    Science.gov (United States)

    Zhang, Hong; Song, Fahuan; Xu, Caiyun; Liu, Hao; Wang, Zefeng; Li, Jinhui; Wu, Shuang; YehuaShen; Chen, Yao; Zhu, Yunqi; Du, Ruili; Tian, Mei

    2015-11-01

    This study aimed to use spatiotemporal PET imaging to investigate the dynamic metabolic changes after a combined therapeutic approach of induced pluripotent stem cells (iPSCs), neuronal stem cells (NSCs), and Chinese patent medicine in a rat model of cerebral ischemia-reperfusion injury. Cerebral ischemia was established by the middle cerebral artery occlusion approach. Thirty-six male rats were randomly assigned to 1 of the 6 groups: control phosphate-buffered saline (PBS), Chinese patent medicine (Qing-kai-ling [QKL]), induced pluripotent stem cells (iPSCs), combination of iPSCs and QKL, neuronal stem cells (NSCs), and combination of NSCs and QKL. Serial (18)F-FDG small-animal PET imaging and neurofunctional tests were performed weekly. Autoradiographic imaging and immunohistochemical and immunofluorescent analyses were performed at 4 wk after stem cell transplantation. Compared with the PBS control group, significantly higher (18)F-FDG accumulations in the ipsilateral cerebral infarction were observed in 5 treatment groups from weeks 1-4. Interestingly, the most intensive (18)F-FDG accumulation was found in the NSCs + QKL group at week 1 but in the iPSCs + QKL group at week 4. The neurofunctional scores in the 5 treatment groups were significantly higher than that of the PBS group from week 3 to 4. In addition, there was a significant correlation between the PET imaging findings and neurofunctional recovery (P PET imaging with (18)F-FDG demonstrated dynamic metabolic and functional recovery after iPSCs or NSCs combined with QKL in a rat model of cerebral ischemia-reperfusion injury. iPSCs or NSCs combined with Chinese medicine QKL seemed to be a better therapeutic approach than these stem cells used individually. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Digital Correlation based on Wavelet Transform for Image Detection

    International Nuclear Information System (INIS)

    Barba, L; Vargas, L; Torres, C; Mattos, L

    2011-01-01

    In this work is presented a method for the optimization of digital correlators to improve the characteristic detection on images using wavelet transform as well as subband filtering. It is proposed an approach of wavelet-based image contrast enhancement in order to increase the performance of digital correlators. The multiresolution representation is employed to improve the high frequency content of images taken into account the input contrast measured for the original image. The energy of correlation peaks and discrimination level of several objects are improved with this technique. To demonstrate the potentiality in extracting characteristics using the wavelet transform, small objects inside reference images are detected successfully.

  8. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement.

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-02-07

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L ₀ gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements.

  9. Spatio-Temporal Super-Resolution Reconstruction of Remote-Sensing Images Based on Adaptive Multi-Scale Detail Enhancement

    Science.gov (United States)

    Zhu, Hong; Tang, Xinming; Xie, Junfeng; Song, Weidong; Mo, Fan; Gao, Xiaoming

    2018-01-01

    There are many problems in existing reconstruction-based super-resolution algorithms, such as the lack of texture-feature representation and of high-frequency details. Multi-scale detail enhancement can produce more texture information and high-frequency information. Therefore, super-resolution reconstruction of remote-sensing images based on adaptive multi-scale detail enhancement (AMDE-SR) is proposed in this paper. First, the information entropy of each remote-sensing image is calculated, and the image with the maximum entropy value is regarded as the reference image. Subsequently, spatio-temporal remote-sensing images are processed using phase normalization, which is to reduce the time phase difference of image data and enhance the complementarity of information. The multi-scale image information is then decomposed using the L0 gradient minimization model, and the non-redundant information is processed by difference calculation and expanding non-redundant layers and the redundant layer by the iterative back-projection (IBP) technique. The different-scale non-redundant information is adaptive-weighted and fused using cross-entropy. Finally, a nonlinear texture-detail-enhancement function is built to improve the scope of small details, and the peak signal-to-noise ratio (PSNR) is used as an iterative constraint. Ultimately, high-resolution remote-sensing images with abundant texture information are obtained by iterative optimization. Real results show an average gain in entropy of up to 0.42 dB for an up-scaling of 2 and a significant promotion gain in enhancement measure evaluation for an up-scaling of 2. The experimental results show that the performance of the AMED-SR method is better than existing super-resolution reconstruction methods in terms of visual and accuracy improvements. PMID:29414893

  10. Self-Organization of Spatio-Temporal Hierarchy via Learning of Dynamic Visual Image Patterns on Action Sequences.

    Science.gov (United States)

    Jung, Minju; Hwang, Jungsik; Tani, Jun

    2015-01-01

    It is well known that the visual cortex efficiently processes high-dimensional spatial information by using a hierarchical structure. Recently, computational models that were inspired by the spatial hierarchy of the visual cortex have shown remarkable performance in image recognition. Up to now, however, most biological and computational modeling studies have mainly focused on the spatial domain and do not discuss temporal domain processing of the visual cortex. Several studies on the visual cortex and other brain areas associated with motor control support that the brain also uses its hierarchical structure as a processing mechanism for temporal information. Based on the success of previous computational models using spatial hierarchy and temporal hierarchy observed in the brain, the current report introduces a novel neural network model for the recognition of dynamic visual image patterns based solely on the learning of exemplars. This model is characterized by the application of both spatial and temporal constraints on local neural activities, resulting in the self-organization of a spatio-temporal hierarchy necessary for the recognition of complex dynamic visual image patterns. The evaluation with the Weizmann dataset in recognition of a set of prototypical human movement patterns showed that the proposed model is significantly robust in recognizing dynamically occluded visual patterns compared to other baseline models. Furthermore, an evaluation test for the recognition of concatenated sequences of those prototypical movement patterns indicated that the model is endowed with a remarkable capability for the contextual recognition of long-range dynamic visual image patterns.

  11. Sidescan Sonar Image Matching Using Cross Correlation

    DEFF Research Database (Denmark)

    Thisen, Erik; Sørensen, Helge Bjarup Dissing; Stage, Bjarne

    2003-01-01

    When surveying an area for sea mines with a sidescan sonar, the ability to find the same object in two different sonar images is helpful to determine the nature of the object. The main problem with matching two sidescan sonar images is that a scene changes appearance when viewed from different vi...

  12. Characterization of dynamic changes of current source localization based on spatiotemporal fMRI constrained EEG source imaging

    Science.gov (United States)

    Nguyen, Thinh; Potter, Thomas; Grossman, Robert; Zhang, Yingchun

    2018-06-01

    Objective. Neuroimaging has been employed as a promising approach to advance our understanding of brain networks in both basic and clinical neuroscience. Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) represent two neuroimaging modalities with complementary features; EEG has high temporal resolution and low spatial resolution while fMRI has high spatial resolution and low temporal resolution. Multimodal EEG inverse methods have attempted to capitalize on these properties but have been subjected to localization error. The dynamic brain transition network (DBTN) approach, a spatiotemporal fMRI constrained EEG source imaging method, has recently been developed to address these issues by solving the EEG inverse problem in a Bayesian framework, utilizing fMRI priors in a spatial and temporal variant manner. This paper presents a computer simulation study to provide a detailed characterization of the spatial and temporal accuracy of the DBTN method. Approach. Synthetic EEG data were generated in a series of computer simulations, designed to represent realistic and complex brain activity at superficial and deep sources with highly dynamical activity time-courses. The source reconstruction performance of the DBTN method was tested against the fMRI-constrained minimum norm estimates algorithm (fMRIMNE). The performances of the two inverse methods were evaluated both in terms of spatial and temporal accuracy. Main results. In comparison with the commonly used fMRIMNE method, results showed that the DBTN method produces results with increased spatial and temporal accuracy. The DBTN method also demonstrated the capability to reduce crosstalk in the reconstructed cortical time-course(s) induced by neighboring regions, mitigate depth bias and improve overall localization accuracy. Significance. The improved spatiotemporal accuracy of the reconstruction allows for an improved characterization of complex neural activity. This improvement can be

  13. Image processing by use of the digital cross-correlator

    International Nuclear Information System (INIS)

    Katou, Yoshinori

    1982-01-01

    We manufactured for trial an instrument which achieved the image processing using digital correlators. A digital correlator perform 64-bit parallel correlation at 20 MH. The output of a digital correlator is a 7-bit word representing. An A-D converter is used to quantize it a precision of six bits. The resulting 6-bit word is fed to six correlators, wired in parallel. The image processing achieved in 12 bits, whose digital outputs converted an analog signal by a D-A converter. This instrument is named the digital cross-correlator. The method which was used in the image processing system calculated the convolution with the digital correlator. It makes various digital filters. In the experiment with the image processing video signals from TV camera were used. The digital image processing time was approximately 5 μs. The contrast was enhanced and smoothed. The digital cross-correlator has the image processing of 16 sorts, and was produced inexpensively. (author)

  14. Changing image of correlation optics: introduction.

    Science.gov (United States)

    Angelsky, Oleg V; Desyatnikov, Anton S; Gbur, Gregory J; Hanson, Steen G; Lee, Tim; Miyamoto, Yoko; Schneckenburger, Herbert; Wyant, James C

    2016-04-20

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers.

  15. Changing image of correlation optics: introduction

    DEFF Research Database (Denmark)

    Angelsky, Oleg V.; Desyatnikov, Anton S.; Gbur, Gregory J.

    2016-01-01

    This feature issue of Applied Optics contains a series of selected papers reflecting recent progress of correlation optics and illustrating current trends in vector singular optics, internal energy flows at light fields, optical science of materials, and new biomedical applications of lasers. (C...

  16. In vivo imaging of hierarchical spatiotemporal activation of caspase-8 during apoptosis.

    Directory of Open Access Journals (Sweden)

    Katsuya Kominami

    Full Text Available BACKGROUND: Activation of caspases is crucial for the execution of apoptosis. Although the caspase cascade associated with activation of the initiator caspase-8 (CASP8 has been investigated in molecular and biochemical detail, the dynamics of CASP8 activation are not fully understood. METHODOLOGY/PRINCIPAL FINDINGS: We have established a biosensor based on fluorescence resonance energy transfer (FRET for visualizing apoptotic signals associated with CASP8 activation at the single-cell level. Our dual FRET (dual-FRET system, comprising a triple fusion fluorescent protein, enabled us to simultaneously monitor the activation of CASP8 and its downstream effector, caspase-3 (CASP3 in single live cells. With the dual-FRET-based biosensor, we detected distinct activation patterns of CASP8 and CASP3 in response to various apoptotic stimuli in mammalian cells, resulting in the positive feedback amplification of CASP8 activation. We reproduced these observations by in vitro reconstitution of the cascade, with a recombinant protein mixture that included procaspases. Furthermore, using a plasma membrane-bound FRET-based biosensor, we captured the spatiotemporal dynamics of CASP8 activation by the diffusion process, suggesting the focal activation of CASP8 is sufficient to propagate apoptotic signals through death receptors. CONCLUSIONS: Our new FRET-based system visualized the activation process of both initiator and effector caspases in a single apoptotic cell and also elucidated the necessity of an amplification loop for full activation of CASP8.

  17. Internuclear ophthalmoplegia: MR imaging and anatomic correlation

    International Nuclear Information System (INIS)

    Atlas, S.W.; Grossman, R.I.; Savino, P.J.

    1986-01-01

    Internuclear ophthalmoplegia is a gaze disorder characterized by impaired adduction of the side of a lesion in the medial longitudinal fasciculus (MLF) with dissociated nystagmus of the abducting eye. Eleven patients with internuclear ophthalmoplegia (nine with multiple sclerosis, two with infarction) were examined with spin-echo MR imaging performed at 1.5 T. Nine of the 11 patients also underwent CT. MR imaging was highly sensitive (10 of 11 cases) and CT was of no value (0 of 9 cases) in detecting clinically suspected MLF lesions. These lesions must be distinguished from ''pseudo-MLF hyperintensity,'' which appears as a thin, strictly midline, linear hyperintensity just interior to the fourth ventricle and aqueduct in healthy subjects. True MLF lesions are nodular, more prominent, and slightly off the midline, corresponding to the paramedian anatomic site of the MLF

  18. A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses.

    Science.gov (United States)

    Zhang, Linlin; Guindani, Michele; Versace, Francesco; Vannucci, Marina

    2014-07-15

    In this paper we present a novel wavelet-based Bayesian nonparametric regression model for the analysis of functional magnetic resonance imaging (fMRI) data. Our goal is to provide a joint analytical framework that allows to detect regions of the brain which exhibit neuronal activity in response to a stimulus and, simultaneously, infer the association, or clustering, of spatially remote voxels that exhibit fMRI time series with similar characteristics. We start by modeling the data with a hemodynamic response function (HRF) with a voxel-dependent shape parameter. We detect regions of the brain activated in response to a given stimulus by using mixture priors with a spike at zero on the coefficients of the regression model. We account for the complex spatial correlation structure of the brain by using a Markov random field (MRF) prior on the parameters guiding the selection of the activated voxels, therefore capturing correlation among nearby voxels. In order to infer association of the voxel time courses, we assume correlated errors, in particular long memory, and exploit the whitening properties of discrete wavelet transforms. Furthermore, we achieve clustering of the voxels by imposing a Dirichlet process (DP) prior on the parameters of the long memory process. For inference, we use Markov Chain Monte Carlo (MCMC) sampling techniques that combine Metropolis-Hastings schemes employed in Bayesian variable selection with sampling algorithms for nonparametric DP models. We explore the performance of the proposed model on simulated data, with both block- and event-related design, and on real fMRI data. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Observations of a Cold Front at High Spatiotemporal Resolution Using an X-Band Phased Array Imaging Radar

    Directory of Open Access Journals (Sweden)

    Andrew Mahre

    2017-02-01

    Full Text Available While the vertical structure of cold fronts has been studied using various methods, previous research has shown that traditional methods of observing meteorological phenomena (such as pencil-beam radars in PPI/volumetric mode are not well-suited for resolving small-scale cold front phenomena, due to relatively low spatiotemporal resolution. Additionally, non-simultaneous elevation sampling within a vertical cross-section can lead to errors in analysis, as differential vertical advection cannot be distinguished from temporal evolution. In this study, a cold front from 19 September 2015 is analyzed using the Atmospheric Imaging Radar (AIR. The AIR transmits a 20-degree fan beam in elevation, and digital beamforming is used on receive to generate simultaneous receive beams. This mobile, X-band, phased-array radar offers temporal sampling on the order of 1 s (while in RHI mode, range sampling of 30 m (37.5 m native resolution, and continuous, arbitrarily oversampled data in the vertical dimension. Here, 0.5-degree sampling is used in elevation (1-degree native resolution. This study is the first in which a cold front has been studied via imaging radar. The ability of the AIR to obtain simultaneous RHIs at high temporal sampling rates without mechanical steering allows for analysis of features such as Kelvin-Helmholtz instabilities and feeder flow.

  20. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.; Blaysat, Benoî t; Lubineau, Gilles; Geers, Marc G D

    2013-01-01

    , but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical

  1. Development of digital image correlation method to analyse crack ...

    Indian Academy of Sciences (India)

    samples were performed to verify the performance of the digital image correlation method. ... development cannot be measured accurately. ..... Mendelson A 1983 Plasticity: Theory and application (USA: Krieger Publishing company Malabar,.

  2. Pilomatricomas in children: imaging characteristics with pathologic correlation

    International Nuclear Information System (INIS)

    Lim, Hyun Wook; Im, Soo Ah; Lim, Gye-Yeon; Park, Hyun Jin; Lee, Heejeong; Sung, Mi Sook; Kang, Bong Joo; Kim, Jee Young

    2007-01-01

    Although pilomatricoma commonly occurs in children, there is still a poor understanding of the imaging characteristics of pilomatricoma and lack of agreement regarding its imaging findings and histopathologic features. To characterize the radiologic appearance of pilomatricomas on US, CT, and MR and to correlate the imaging findings with histopathologic features. The imaging findings of 47 pilomatricomas on US (n = 17), CT (n = 31), and MR (n = 5) were retrospectively evaluated. Pathologic specimens of all cases were reviewed and compared with imaging findings. All lesions were well-circumscribed, subcutaneous nodules with partial attachment to the overlying skin. On US, the lesions were mostly hyperechoic with posterior acoustic shadowing and hypoechoic rim. On CT, they appeared as enhancing soft-tissue masses with varying amounts of calcification. MR findings were internal reticulations and patchy areas on T2-weighted images and contrast-enhanced T1-weighted images, corresponding to edematous stroma on pathology. Peritumoral inflammatory changes and connective capsule on pathology were well correlated with imaging findings. Pilomatricoma should be considered when US or CT shows a well-defined hyperechoic or calcific nodule in subcutaneous fat attached to the skin in children. MR images may be helpful in diagnosis. Pathologic findings are well correlated with imaging findings. (orig.)

  3. Spatio-temporal imaging of voltage pulses with an ultrafast scanning tunneling microscope

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Keil, Ulrich Dieter Felix; Hvam, Jørn Märcher

    1997-01-01

    Measurements on an ultrafast scanning tunneling microscope with simultaneous spatial and temporal resolution are presented. We show images of picosecond pulses propagating on a coplanar waveguide and resolve their mode structures. The influence of transmission line discontinuities on the mode...

  4. A hybrid correlation analysis with application to imaging genetics

    Science.gov (United States)

    Hu, Wenxing; Fang, Jian; Calhoun, Vince D.; Wang, Yu-Ping

    2018-03-01

    Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding

  5. Differential Spatio-temporal Multiband Satellite Image Clustering using K-means Optimization With Reinforcement Programming

    Directory of Open Access Journals (Sweden)

    Irene Erlyn Wina Rachmawan

    2015-06-01

    Full Text Available Deforestration is one of the crucial issues in Indonesia because now Indonesia has world's highest deforestation rate. In other hand, multispectral image delivers a great source of data for studying spatial and temporal changeability of the environmental such as deforestration area. This research present differential image processing methods for detecting nature change of deforestration. Our differential image processing algorithms extract and indicating area automatically. The feature of our proposed idea produce extracted information from multiband satellite image and calculate the area of deforestration by years with calculating data using temporal dataset. Yet, multiband satellite image consists of big data size that were difficult to be handled for segmentation. Commonly, K- Means clustering is considered to be a powerfull clustering algorithm because of its ability to clustering big data. However K-Means has sensitivity of its first generated centroids, which could lead into a bad performance. In this paper we propose a new approach to optimize K-Means clustering using Reinforcement Programming in order to clustering multispectral image. We build a new mechanism for generating initial centroids by implementing exploration and exploitation knowledge from Reinforcement Programming. This optimization will lead a better result for K-means data cluster. We select multispectral image from Landsat 7 in past ten years in Medawai, Borneo, Indonesia, and apply two segmentation areas consist of deforestration land and forest field. We made series of experiments and compared the experimental results of K-means using Reinforcement Programming as optimizing initiate centroid and normal K-means without optimization process. Keywords: Deforestration, Multispectral images, landsat, automatic clustering, K-means.

  6. 4D PET iterative deconvolution with spatiotemporal regularization for quantitative dynamic PET imaging.

    Science.gov (United States)

    Reilhac, Anthonin; Charil, Arnaud; Wimberley, Catriona; Angelis, Georgios; Hamze, Hasar; Callaghan, Paul; Garcia, Marie-Paule; Boisson, Frederic; Ryder, Will; Meikle, Steven R; Gregoire, Marie-Claude

    2015-09-01

    Quantitative measurements in dynamic PET imaging are usually limited by the poor counting statistics particularly in short dynamic frames and by the low spatial resolution of the detection system, resulting in partial volume effects (PVEs). In this work, we present a fast and easy to implement method for the restoration of dynamic PET images that have suffered from both PVE and noise degradation. It is based on a weighted least squares iterative deconvolution approach of the dynamic PET image with spatial and temporal regularization. Using simulated dynamic [(11)C] Raclopride PET data with controlled biological variations in the striata between scans, we showed that the restoration method provides images which exhibit less noise and better contrast between emitting structures than the original images. In addition, the method is able to recover the true time activity curve in the striata region with an error below 3% while it was underestimated by more than 20% without correction. As a result, the method improves the accuracy and reduces the variability of the kinetic parameter estimates calculated from the corrected images. More importantly it increases the accuracy (from less than 66% to more than 95%) of measured biological variations as well as their statistical detectivity. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  7. DIfferential Subsampling with Cartesian Ordering (DISCO): a high spatio-temporal resolution Dixon imaging sequence for multiphasic contrast enhanced abdominal imaging.

    Science.gov (United States)

    Saranathan, Manojkumar; Rettmann, Dan W; Hargreaves, Brian A; Clarke, Sharon E; Vasanawala, Shreyas S

    2012-06-01

    To develop and evaluate a multiphasic contrast-enhanced MRI method called DIfferential Sub-sampling with Cartesian Ordering (DISCO) for abdominal imaging. A three-dimensional, variable density pseudo-random k-space segmentation scheme was developed and combined with a Dixon-based fat-water separation algorithm to generate high temporal resolution images with robust fat suppression and without compromise in spatial resolution or coverage. With institutional review board approval and informed consent, 11 consecutive patients referred for abdominal MRI at 3 Tesla (T) were imaged with both DISCO and a routine clinical three-dimensional SPGR-Dixon (LAVA FLEX) sequence. All images were graded by two radiologists using quality of fat suppression, severity of artifacts, and overall image quality as scoring criteria. For assessment of arterial phase capture efficiency, the number of temporal phases with angiographic phase and hepatic arterial phase was recorded. There were no significant differences in quality of fat suppression, artifact severity or overall image quality between DISCO and LAVA FLEX images (P > 0.05, Wilcoxon signed rank test). The angiographic and arterial phases were captured in all 11 patients scanned using the DISCO acquisition (mean number of phases were two and three, respectively). DISCO effectively captures the fast dynamics of abdominal pathology such as hyperenhancing hepatic lesions with a high spatio-temporal resolution. Typically, 1.1 × 1.5 × 3 mm spatial resolution over 60 slices was achieved with a temporal resolution of 4-5 s. Copyright © 2012 Wiley Periodicals, Inc.

  8. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy.

    Science.gov (United States)

    Penjweini, Rozhin; Deville, Sarah; D'Olieslaeger, Lien; Berden, Mandy; Ameloot, Marcel; Ethirajan, Anitha

    2015-11-28

    The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs. For the first time, Hypericin containing NPs are prepared by combining the miniemulsion technique with the solvent evaporation method. This approach yields an efficient loading of the NPs with Hypericin and allows for additional cargo molecules. To monitor the release of Hypercin from the NPs, an additional fluorescent lipophilic dye Coumarin-6 is incorporated in the NPs. Temporal and spatiotemporal image correlation spectroscopy is used to determine the fate of the NPs carrying the potential cargo. Both directed and non-directed motions are detected. By using image cross-correlation spectroscopy and specific fluorescent labeling of endosomes, lysosomes and mitochondria, the dynamics of the cargo loaded NPs in association with the organelles is studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Correlative intravital imaging of cGMP signals and vasodilation in mice

    Directory of Open Access Journals (Sweden)

    Martin eThunemann

    2014-10-01

    Full Text Available Cyclic guanosine monophosphate (cGMP is an important signaling molecule and drug target in the cardiovascular system. It is well known that stimulation of the vascular nitric oxide (NO-cGMP pathway results in vasodilation. However, the spatiotemporal dynamics of cGMP signals themselves and the cGMP concentrations within specific cardiovascular cell types in health, disease, and during pharmacotherapy with cGMP-elevating drugs are largely unknown. To facilitate the analysis of cGMP signaling in vivo, we have generated transgenic mice that express fluorescence resonance energy transfer (FRET-based cGMP sensor proteins. Here, we describe two models of intravital FRET/cGMP imaging in the vasculature of cGMP sensor mice: (1 epifluorescence-based ratio imaging in resistance-type vessels of the cremaster muscle and (2 ratio imaging by multiphoton microscopy within the walls of subcutaneous blood vessels accessed through a dorsal skinfold chamber. Both methods allow simultaneous monitoring of NO-induced cGMP transients and vasodilation in living mice. Detailed protocols of all steps necessary to perform and evaluate intravital imaging experiments of the vasculature of anesthetized mice including surgery, imaging, and data evaluation are provided. An image segmentation approach is described to estimate FRET/cGMP changes within moving structures such as the vessel wall during vasodilation. The methods presented herein should be useful to visualize cGMP or other biochemical signals that are detectable with FRET-based biosensors, such as cyclic adenosine monophosphate or Ca2+, and to correlate them with respective vascular responses. With further refinement and combination of transgenic mouse models and intravital imaging technologies, we envision an exciting future, in which we are able to ‘watch’ biochemistry, (patho physiology, and pharmacotherapy in the context of a living mammalian organism.

  10. Ultrasound Imaging Techniques for Spatiotemporal Characterization of Composition, Microstructure, and Mechanical Properties in Tissue Engineering.

    Science.gov (United States)

    Deng, Cheri X; Hong, Xiaowei; Stegemann, Jan P

    2016-08-01

    Ultrasound techniques are increasingly being used to quantitatively characterize both native and engineered tissues. This review provides an overview and selected examples of the main techniques used in these applications. Grayscale imaging has been used to characterize extracellular matrix deposition, and quantitative ultrasound imaging based on the integrated backscatter coefficient has been applied to estimating cell concentrations and matrix morphology in tissue engineering. Spectral analysis has been employed to characterize the concentration and spatial distribution of mineral particles in a construct, as well as to monitor mineral deposition by cells over time. Ultrasound techniques have also been used to measure the mechanical properties of native and engineered tissues. Conventional ultrasound elasticity imaging and acoustic radiation force imaging have been applied to detect regions of altered stiffness within tissues. Sonorheometry and monitoring of steady-state excitation and recovery have been used to characterize viscoelastic properties of tissue using a single transducer to both deform and image the sample. Dual-mode ultrasound elastography uses separate ultrasound transducers to produce a more potent deformation force to microscale characterization of viscoelasticity of hydrogel constructs. These ultrasound-based techniques have high potential to impact the field of tissue engineering as they are further developed and their range of applications expands.

  11. Evaluating the spatio-temporal performance of sky imager based solar irradiance analysis and forecasts

    Science.gov (United States)

    Schmidt, T.; Kalisch, J.; Lorenz, E.; Heinemann, D.

    2015-10-01

    Clouds are the dominant source of variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the world-wide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a shortest-term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A two month dataset with images from one sky imager and high resolutive GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series in different cloud scenarios. Overall, the sky imager based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depend strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  12. Spatio-temporal prediction of daily temperatures using time-series of MODIS LST images

    NARCIS (Netherlands)

    Hengl, T.; Heuvelink, G.B.M.; Percec Tadic, M.; Pebesma, E.J.

    2012-01-01

    A computational framework to generate daily temperature maps using time-series of publicly available MODIS MOD11A2 product Land Surface Temperature (LST) images (1 km resolution; 8-day composites) is illustrated using temperature measurements from the national network of meteorological stations

  13. Self-adaptive isogeometric global digital image correlation and digital height correlation

    NARCIS (Netherlands)

    Hoefnagels, J. P M; Kleinendorst, S. M.; Ruybalid, A. P.; Verhoosel, C. V.; Geers, M. G D; Yoshida, S.; Lamberti, L.; Sciammarella, C.

    2017-01-01

    This work explores the full potential of isogeometric shape functions for global digital image correlation. To this end, a novel DIC and DHC (digital height correlation) methodology have been developed based on adaptive refinement of isogeometric shape functions. Non-Uniform Rational B-Spline

  14. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Li, Guang, E-mail: lig2@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States); Wei, Jie [Department of Computer Science, City College of New York, New York, New York (United States); Kadbi, Mo [Philips Healthcare, MR Therapy Cleveland, Ohio (United States); Moody, Jason; Sun, August; Zhang, Shirong; Markova, Svetlana; Zakian, Kristen; Hunt, Margie; Deasy, Joseph O. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York (United States)

    2017-06-01

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm{sup 3}) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm{sup 3}). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4

  15. Novel Super-Resolution Approach to Time-Resolved Volumetric 4-Dimensional Magnetic Resonance Imaging With High Spatiotemporal Resolution for Multi-Breathing Cycle Motion Assessment

    International Nuclear Information System (INIS)

    Li, Guang; Wei, Jie; Kadbi, Mo; Moody, Jason; Sun, August; Zhang, Shirong; Markova, Svetlana; Zakian, Kristen; Hunt, Margie; Deasy, Joseph O.

    2017-01-01

    Purpose: To develop and evaluate a super-resolution approach to reconstruct time-resolved 4-dimensional magnetic resonance imaging (TR-4DMRI) with a high spatiotemporal resolution for multi-breathing cycle motion assessment. Methods and Materials: A super-resolution approach was developed to combine fast 3-dimensional (3D) cine MRI with low resolution during free breathing (FB) and high-resolution 3D static MRI during breath hold (BH) using deformable image registration. A T1-weighted, turbo field echo sequence, coronal 3D cine acquisition, partial Fourier approximation, and SENSitivity Encoding parallel acceleration were used. The same MRI pulse sequence, field of view, and acceleration techniques were applied in both FB and BH acquisitions; the intensity-based Demons deformable image registration method was used. Under an institutional review board–approved protocol, 7 volunteers were studied with 3D cine FB scan (voxel size: 5 × 5 × 5 mm"3) at 2 Hz for 40 seconds and a 3D static BH scan (2 × 2 × 2 mm"3). To examine the image fidelity of 3D cine and super-resolution TR-4DMRI, a mobile gel phantom with multi-internal targets was scanned at 3 speeds and compared with the 3D static image. Image similarity among 3D cine, 4DMRI, and 3D static was evaluated visually using difference image and quantitatively using voxel intensity correlation and Dice index (phantom only). Multi-breathing-cycle waveforms were extracted and compared in both phantom and volunteer images using the 3D cine as the references. Results: Mild imaging artifacts were found in the 3D cine and TR-4DMRI of the mobile gel phantom with a Dice index of >0.95. Among 7 volunteers, the super-resolution TR-4DMRI yielded high voxel-intensity correlation (0.92 ± 0.05) and low voxel-intensity difference (<0.05). The detected motion differences between TR-4DMRI and 3D cine were −0.2 ± 0.5 mm (phantom) and −0.2 ± 1.9 mm (diaphragms). Conclusion: Super-resolution TR-4DMRI has been

  16. Simulating Optical Correlation on a Digital Image Processing

    Science.gov (United States)

    Denning, Bryan

    1998-04-01

    Optical Correlation is a useful tool for recognizing objects in video scenes. In this paper, we explore the characteristics of a composite filter known as the equal correlation peak synthetic discriminant function (ECP SDF). Although the ECP SDF is commonly used in coherent optical correlation systems, the authors simulated the operation of a correlator using an EPIX frame grabber/image processor board to complete this work. Issues pertaining to simulating correlation using an EPIX board will be discussed. Additionally, the ability of the ECP SDF to detect objects that have been subjected to inplane rotation and small scale changes will be addressed by correlating filters against true-class objects placed randomly within a scene. To test the robustness of the filters, the results of correlating the filter against false-class objects that closely resemble the true class will also be presented.

  17. Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts

    Science.gov (United States)

    Schmidt, Thomas; Kalisch, John; Lorenz, Elke; Heinemann, Detlev

    2016-03-01

    Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI) forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1-2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  18. Evaluating the spatio-temporal performance of sky-imager-based solar irradiance analysis and forecasts

    Directory of Open Access Journals (Sweden)

    T. Schmidt

    2016-03-01

    Full Text Available Clouds are the dominant source of small-scale variability in surface solar radiation and uncertainty in its prediction. However, the increasing share of solar energy in the worldwide electric power supply increases the need for accurate solar radiation forecasts. In this work, we present results of a very short term global horizontal irradiance (GHI forecast experiment based on hemispheric sky images. A 2-month data set with images from one sky imager and high-resolution GHI measurements from 99 pyranometers distributed over 10 km by 12 km is used for validation. We developed a multi-step model and processed GHI forecasts up to 25 min with an update interval of 15 s. A cloud type classification is used to separate the time series into different cloud scenarios. Overall, the sky-imager-based forecasts do not outperform the reference persistence forecasts. Nevertheless, we find that analysis and forecast performance depends strongly on the predominant cloud conditions. Especially convective type clouds lead to high temporal and spatial GHI variability. For cumulus cloud conditions, the analysis error is found to be lower than that introduced by a single pyranometer if it is used representatively for the whole area in distances from the camera larger than 1–2 km. Moreover, forecast skill is much higher for these conditions compared to overcast or clear sky situations causing low GHI variability, which is easier to predict by persistence. In order to generalize the cloud-induced forecast error, we identify a variability threshold indicating conditions with positive forecast skill.

  19. TREND ASSESSMENT OF SPATIO-TEMPORAL CHANGE OF TEHRAN HEAT ISLAND USING SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    M. R. Saradjian

    2015-12-01

    Full Text Available Numerous investigations on Urban Heat Island (UHI show that land cover change is the main factor of increasing Land Surface Temperature (LST in urban areas, especially conversion of vegetation and bare soil to concrete, asphalt and other man-made structures. On the other hand, other human activities like those which cause to burning fossil fuels, that increase the amount of carbon dioxide, may raise temperature in global scale in comparison with small scales (urban areas. In this study, multiple satellite images with different spatial and temporal resolutions have been used to determine Land Surface Temperature (LST variability in Tehran metropolitan area. High temporal resolution of AVHRR images have been used as the main data source when investigating temperature variability in the urban area. The analysis shows that UHI appears more significant at afternoon and night hours. But the urban class temperature is almost equal to its surrounding vegetation and bare soil classes at around noon. It also reveals that there is no specific difference in UHI intense during the days throughout the year. However, it can be concluded that in the process of city expansion in years, UHI has been grown both spatially and in magnitude. In order to locate land-cover types and relate them to LST, Thematic Mapper (TM images have been exploited. The influence of elevation on the LST has also been studied, using digital elevation model derived from SRTM database.

  20. Spatial correlation genetic algorithm for fractal image compression

    International Nuclear Information System (INIS)

    Wu, M.-S.; Teng, W.-C.; Jeng, J.-H.; Hsieh, J.-G.

    2006-01-01

    Fractal image compression explores the self-similarity property of a natural image and utilizes the partitioned iterated function system (PIFS) to encode it. This technique is of great interest both in theory and application. However, it is time-consuming in the encoding process and such drawback renders it impractical for real time applications. The time is mainly spent on the search for the best-match block in a large domain pool. In this paper, a spatial correlation genetic algorithm (SC-GA) is proposed to speed up the encoder. There are two stages for the SC-GA method. The first stage makes use of spatial correlations in images for both the domain pool and the range pool to exploit local optima. The second stage is operated on the whole image to explore more adequate similarities if the local optima are not satisfied. With the aid of spatial correlation in images, the encoding time is 1.5 times faster than that of traditional genetic algorithm method, while the quality of the retrieved image is almost the same. Moreover, about half of the matched blocks come from the correlated space, so fewer bits are required to represent the fractal transform and therefore the compression ratio is also improved

  1. Potential of electrical resistivity tomography and muon density imaging to study spatio-temporal variations in the sub-surface

    Science.gov (United States)

    Lesparre, Nolwenn; Cabrera, Justo; Courbet, Christelle

    2015-04-01

    We explore the capacity of electrical resistivity tomography and muon density imaging to detect spatio-temporal variations of the medium surrounding a regional fault crossing the underground platform of Tournemire (Aveyron, France). The studied Cernon fault is sub-vertical and intersects perpendicularly the tunnel of Tournemire and extends to surface. The fault separates clay and limestones layers of the Dogger from limestones layers of the Lias. The Cernon fault presents a thickness of a ten of meters and drives water from an aquifer circulating at the top of the Dogger clay layer to the tunnel. An experiment combining electrical resistivity imaging and muon density imaging was setup taking advantage of the tunnel presence. A specific array of electrodes were set up, adapted for the characterization of the fault. Electrodes were placed along the tunnel as well as at the surface above the tunnel on both sides of the fault in order to acquire data in transmission across the massif to better cover the sounded medium. Electrical resistivity is particularly sensitive to water presence in the medium and thus carry information on the main water flow paths and on the pore space saturation. At the same time a muon sensor was placed in the tunnel under the fault region to detect muons coming from the sky after their crossing of the rock medium. Since the muon flux is attenuated as function of the quantity of matter crossed, muons flux measurements supply information on the medium average density along muons paths. The sensor presents 961 angles of view so measurements performed from one station allows a comparison of the muon flux temporal variations along the fault as well as in the medium surrounding the fault. As the water saturation of the porous medium fluctuates through time the medium density might indeed present sensible variations as shown by gravimetric studies. During the experiment important rainfalls occurred leading variations of the medium properties

  2. Real time implementation of the parametric imaging correlation algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bogorodski, Piotr; Wolek, Tomasz; Wasielewski, Jaroslaw; Piatkowski, Adam [Medical and Nuclear Electronics Division, Institute of Radioelectronics, Warsaw University of Technology, 00-665 Warsaw, Nowowiejska 15/19 (Poland)

    1999-12-31

    A novel method for functional image evaluation from image set obtained in contrast aided Ultrafast Computed Tomography and Magnetic Resonance Imaging will be presented. The method converts temporal set of images of first-pass transit of injected contrast, to a single parametric image. The main difference between proposed procedure and other widely accepted methods is fast, that our method applies correlation and discrimination analysis to each concentration-time curve, instead of fitting them to the given a priori tracer kinetics model. A stress will be put on execution speed (i.e. shortening of the time required to obtain a perfusion relevant image), and easiest user interface allowing the physician to utilize the system without any technical assistance. Both execution speed and user interface should satisfy requirements in the interventional procedures. (authors)

  3. Smartphone based scalable reverse engineering by digital image correlation

    Science.gov (United States)

    Vidvans, Amey; Basu, Saurabh

    2018-03-01

    There is a need for scalable open source 3D reconstruction systems for reverse engineering. This is because most commercially available reconstruction systems are capital and resource intensive. To address this, a novel reconstruction technique is proposed. The technique involves digital image correlation based characterization of surface speeds followed by normalization with respect to angular speed during rigid body rotational motion of the specimen. Proof of concept of the same is demonstrated and validated using simulation and empirical characterization. Towards this, smart-phone imaging and inexpensive off the shelf components along with those fabricated additively using poly-lactic acid polymer with a standard 3D printer are used. Some sources of error in this reconstruction methodology are discussed. It is seen that high curvatures on the surface suppress accuracy of reconstruction. Reasons behind this are delineated in the nature of the correlation function. Theoretically achievable resolution during smart-phone based 3D reconstruction by digital image correlation is derived.

  4. The iMars WebGIS - Spatio-Temporal Data Queries and Single Image Map Web Services

    Science.gov (United States)

    Walter, Sebastian; Steikert, Ralf; Schreiner, Bjoern; Muller, Jan-Peter; van Gasselt, Stephan; Sidiropoulos, Panagiotis; Lanz-Kroechert, Julia

    2017-04-01

    Introduction: Web-based planetary image dissemination platforms usually show outline coverages of the data and offer querying for metadata as well as preview and download, e.g. the HRSC Mapserver (Walter & van Gasselt, 2014). Here we introduce a new approach for a system dedicated to change detection by simultanous visualisation of single-image time series in a multi-temporal context. While the usual form of presenting multi-orbit datasets is the merge of the data into a larger mosaic, we want to stay with the single image as an important snapshot of the planetary surface at a specific time. In the context of the EU FP-7 iMars project we process and ingest vast amounts of automatically co-registered (ACRO) images. The base of the co-registration are the high precision HRSC multi-orbit quadrangle image mosaics, which are based on bundle-block-adjusted multi-orbit HRSC DTMs. Additionally we make use of the existing bundle-adjusted HRSC single images available at the PDS archives. A prototype demonstrating the presented features is available at http://imars.planet.fu-berlin.de. Multi-temporal database: In order to locate multiple coverage of images and select images based on spatio-temporal queries, we converge available coverage catalogs for various NASA imaging missions into a relational database management system with geometry support. We harvest available metadata entries during our processing pipeline using the Integrated Software for Imagers and Spectrometers (ISIS) software. Currently, this database contains image outlines from the MGS/MOC, MRO/CTX and the MO/THEMIS instruments with imaging dates ranging from 1996 to the present. For the MEx/HRSC data, we already maintain a database which we automatically update with custom software based on the VICAR environment. Web Map Service with time support: The MapServer software is connected to the database and provides Web Map Services (WMS) with time support based on the START_TIME image attribute. It allows temporal

  5. The spatio-temporal dynamics of PKA activity profile during mitosis and its correlation to chromosome segregation

    Science.gov (United States)

    Vandame, Pauline; Spriet, Corentin; Trinel, Dave; Gelaude, Armance; Caillau, Katia; Bompard, Coralie; Biondi, Emanuele; Bodart, Jean-François

    2014-01-01

    The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells. PMID:25485503

  6. The spatio-temporal dynamics of PKA activity profile during mitosis and its correlation to chromosome segregation.

    Science.gov (United States)

    Vandame, Pauline; Spriet, Corentin; Trinel, Dave; Gelaude, Armance; Caillau, Katia; Bompard, Coralie; Biondi, Emanuele; Bodart, Jean-François

    2014-01-01

    The cyclic adenosine monophosphate dependent kinase protein (PKA) controls a variety of cellular processes including cell cycle regulation. Here, we took advantages of genetically encoded FRET-based biosensors, using an AKAR-derived biosensor to characterize PKA activity during mitosis in living HeLa cells using a single-cell approach. We measured PKA activity changes during mitosis. HeLa cells exhibit a substantial increase during mitosis, which ends with telophase. An AKAREV T>A inactive form of the biosensor and H89 inhibitor were used to ascertain for the specificity of the PKA activity measured. On a spatial point of view, high levels of activity near to chromosomal plate during metaphase and anaphase were detected. By using the PKA inhibitor H89, we assessed the role of PKA in the maintenance of a proper division phenotype. While this treatment in our hands did not impaired cell cycle progression in a drastic manner, inhibition of PKA leads to a dramatic increase in chromososme misalignement on the spindle during metaphase that could result in aneuploidies. Our study emphasizes the insights that can be gained with genetically encoded FRET-based biosensors, which enable to overcome the shortcomings of classical methologies and unveil in vivo PKA spatiotemporal profiles in HeLa cells.

  7. Spatiotemporal dynamics of rhythmic spinal interneurons measured with two-photon calcium imaging and coherence analysis.

    Science.gov (United States)

    Kwan, Alex C; Dietz, Shelby B; Zhong, Guisheng; Harris-Warrick, Ronald M; Webb, Watt W

    2010-12-01

    In rhythmic neural circuits, a neuron often fires action potentials with a constant phase to the rhythm, a timing relationship that can be functionally significant. To characterize these phase preferences in a large-scale, cell type-specific manner, we adapted multitaper coherence analysis for two-photon calcium imaging. Analysis of simulated data showed that coherence is a simple and robust measure of rhythmicity for calcium imaging data. When applied to the neonatal mouse hindlimb spinal locomotor network, the phase relationships between peak activity of >1,000 ventral spinal interneurons and motor output were characterized. Most interneurons showed rhythmic activity that was coherent and in phase with the ipsilateral motor output during fictive locomotion. The phase distributions of two genetically identified classes of interneurons were distinct from the ensemble population and from each other. There was no obvious spatial clustering of interneurons with similar phase preferences. Together, these results suggest that cell type, not neighboring neuron activity, is a better indicator of an interneuron's response during fictive locomotion. The ability to measure the phase preferences of many neurons with cell type and spatial information should be widely applicable for studying other rhythmic neural circuits.

  8. Spatiotemporal Segmentation and Modeling of the Mitral Valve in Real-Time 3D Echocardiographic Images.

    Science.gov (United States)

    Pouch, Alison M; Aly, Ahmed H; Lai, Eric K; Yushkevich, Natalie; Stoffers, Rutger H; Gorman, Joseph H; Cheung, Albert T; Gorman, Joseph H; Gorman, Robert C; Yushkevich, Paul A

    2017-09-01

    Transesophageal echocardiography is the primary imaging modality for preoperative assessment of mitral valves with ischemic mitral regurgitation (IMR). While there are well known echocardiographic insights into the 3D morphology of mitral valves with IMR, such as annular dilation and leaflet tethering, less is understood about how quantification of valve dynamics can inform surgical treatment of IMR or predict short-term recurrence of the disease. As a step towards filling this knowledge gap, we present a novel framework for 4D segmentation and geometric modeling of the mitral valve in real-time 3D echocardiography (rt-3DE). The framework integrates multi-atlas label fusion and template-based medial modeling to generate quantitatively descriptive models of valve dynamics. The novelty of this work is that temporal consistency in the rt-3DE segmentations is enforced during both the segmentation and modeling stages with the use of groupwise label fusion and Kalman filtering. The algorithm is evaluated on rt-3DE data series from 10 patients: five with normal mitral valve morphology and five with severe IMR. In these 10 data series that total 207 individual 3DE images, each 3DE segmentation is validated against manual tracing and temporal consistency between segmentations is demonstrated. The ultimate goal is to generate accurate and consistent representations of valve dynamics that can both visually and quantitatively provide insight into normal and pathological valve function.

  9. Dynamic spatio-temporal imaging of early reflow in a neonatal rat stroke model.

    Science.gov (United States)

    Leger, Pierre-Louis; Bonnin, Philippe; Lacombe, Pierre; Couture-Lepetit, Elisabeth; Fau, Sebastien; Renolleau, Sylvain; Gharib, Abdallah; Baud, Olivier; Charriaut-Marlangue, Christiane

    2013-01-01

    The aim of the study was to better understand blood-flow changes in large arteries and microvessels during the first 15 minutes of reflow in a P7 rat model of arterial occlusion. Blood-flow changes were monitored by using ultrasound imaging with sequential Doppler recordings in internal carotid arteries (ICAs) and basilar trunk. Relative cerebral blood flow (rCBF) changes were obtained by using laser speckle Doppler monitoring. Tissue perfusion was measured with [(14)C]-iodoantipyrine autoradiography. Cerebral energy metabolism was evaluated by mitochondrial oxygen consumption. Gradual increase in mean blood-flow velocities illustrated a gradual perfusion during early reflow in both ICAs. On ischemia, the middle cerebral artery (MCA) territory presented a residual perfusion, whereas the caudal territory remained normally perfused. On reflow, speckle images showed a caudorostral propagation of reperfusion through anastomotic connections, and a reduced perfusion in the MCA territory. Autoradiography highlighted the caudorostral gradient, and persistent perfusion in ventral and medial regions. These blood-flow changes were accompanied by mitochondrial respiration impairment in the ipsilateral cortex. Collectively, these data indicate the presence of a primary collateral pathway through the circle of Willis, providing an immediate diversion of blood flow toward ischemic regions, and secondary efficient cortical anastomoses in the immature rat brain.

  10. Intensity correlation imaging with sunlight-like source

    Science.gov (United States)

    Wang, Wentao; Tang, Zhiguo; Zheng, Huaibin; Chen, Hui; Yuan, Yuan; Liu, Jinbin; Liu, Yanyan; Xu, Zhuo

    2018-05-01

    We show a method of intensity correlation imaging of targets illuminated by a sunlight-like source both theoretically and experimentally. With a Faraday anomalous dispersion optical filter (FADOF), we have modulated the coherence time of a thermal source up to 0.167 ns. And we carried out measurements of temporal and spatial correlations, respectively, with an intensity interferometer setup. By skillfully using the even Fourier fitting on the very sparse sampling data, the images of targets are successfully reconstructed from the low signal-noise-ratio(SNR) interference pattern by applying an iterative phase retrieval algorithm. The resulting imaging quality is as well as the one obtained by the theoretical fitting. The realization of such a case will bring this technique closer to geostationary satellite imaging illuminated by sunlight.

  11. Cross Correlation versus Normalized Mutual Information on Image Registration

    Science.gov (United States)

    Tan, Bin; Tilton, James C.; Lin, Guoqing

    2016-01-01

    This is the first study to quantitatively assess and compare cross correlation and normalized mutual information methods used to register images in subpixel scale. The study shows that the normalized mutual information method is less sensitive to unaligned edges due to the spectral response differences than is cross correlation. This characteristic makes the normalized image resolution a better candidate for band to band registration. Improved band-to-band registration in the data from satellite-borne instruments will result in improved retrievals of key science measurements such as cloud properties, vegetation, snow and fire.

  12. In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Paul W. [Univ. of Notre Dame, IN (United States); Shrout, J. D. [Univ. of Notre Dame, IN (United States); Sweedler, J. V. [Univ. of Illinois, Urbana-Champaign, IL (United States); Farrand, S. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-01-25

    This document constitutes the final technical report for DE-SC0006642, In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities, a project carried out collaboratively by investigators at Notre Dame and UIUC. The work carried out under DOE support in this project produced advances in two areas: development of new highly sophisticated correlated imaging approaches and the application of these new tools to the growth and differentiation of microbial communities under a variety of environmental conditions. A significant effort involved the creation of technical enhancements and sampling approaches to allow us to advance heterocorrelated mass spectrometry imaging (MSI) and correlated Raman microscopy (CRM) from bacterial cultures and biofilms. We then exploited these measurement advances in heterocorrelated MS/CRM imaging to determine relationship of signaling molecules and excreted signaling molecules produced by P. aeruginosa to conditions relevant to the rhizosphere. In particular, we: (1) developed a laboratory testbed mimic for the rhizosphere to enable microbial growth on slides under controlled conditions; (2) integrated specific measurements of (a) rhamnolipids, (b) quinolone/quinolones, and (c) phenazines specific to P. aeruginosa; and (3) utilized the imaging tools to probe how messenger secretion, quorum sensing and swarming behavior are correlated with behavior.

  13. Correlated statistical uncertainties in coded-aperture imaging

    International Nuclear Information System (INIS)

    Fleenor, Matthew C.; Blackston, Matthew A.; Ziock, Klaus P.

    2015-01-01

    In nuclear security applications, coded-aperture imagers can provide a wealth of information regarding the attributes of both the radioactive and nonradioactive components of the objects being imaged. However, for optimum benefit to the community, spatial attributes need to be determined in a quantitative and statistically meaningful manner. To address a deficiency of quantifiable errors in coded-aperture imaging, we present uncertainty matrices containing covariance terms between image pixels for MURA mask patterns. We calculated these correlated uncertainties as functions of variation in mask rank, mask pattern over-sampling, and whether or not anti-mask data are included. Utilizing simulated point source data, we found that correlations arose when two or more image pixels were summed. Furthermore, we found that the presence of correlations was heightened by the process of over-sampling, while correlations were suppressed by the inclusion of anti-mask data and with increased mask rank. As an application of this result, we explored how statistics-based alarming is impacted in a radiological search scenario

  14. Live imaging of symbiosis: spatiotemporal infection dynamics of a GFP-labelled Burkholderia symbiont in the bean bug Riptortus pedestris

    Science.gov (United States)

    Kikuchi, Yoshitomo; Fukatsu, Takema

    2014-01-01

    Many insects possess endosymbiotic bacteria inside their body, wherein intimate interactions occur between the partners. While recent technological advancements have deepened our understanding of metabolic and evolutionary features of the symbiont genomes, molecular mechanisms underpinning the intimate interactions remain difficult to approach because the insect symbionts are generally uncultivable. The bean bug Riptortus pedestris is associated with the betaproteobacterial Burkholderia symbiont in a posterior region of the midgut, which develops numerous crypts harbouring the symbiont extracellularly. Distinct from other insect symbiotic systems, R. pedestris acquires the Burkholderia symbiont not by vertical transmission but from the environment every generation. By making use of the cultivability and the genetic tractability of the symbiont, we constructed a transgenic Burkholderia strain labelled with green fluorescent protein (GFP), which enabled detailed observation of spatiotemporal dynamics and the colonization process of the symbiont in freshly prepared specimens. The symbiont live imaging revealed that, at the second instar, colonization of the symbiotic midgut M4 region started around 6 h after inoculation (hai). By 24 hai, the symbiont cells appeared in the main tract and also in several crypts of the M4. By 48 hai, most of the crypts were colonized by the symbiont cells. By 72 hai, all the crypts were filled up with the symbiont cells and the symbiont localization pattern continued during the subsequent nymphal development. Quantitative PCR of the symbiont confirmed the infection dynamics quantitatively. These results highlight the stinkbug-Burkholderia gut symbiosis as an unprecedented model for comprehensive understanding of molecular mechanisms underpinning insect symbiosis. PMID:24103110

  15. Cross-correlated imaging of distributed mode filtering rod fiber

    DEFF Research Database (Denmark)

    Laurila, Marko; Barankov, Roman; Jørgensen, Mette Marie

    2013-01-01

    We analyze the modal properties of an 85μm core distributed mode filtering rod fiber using cross-correlated (C2) imaging. We evaluate suppression of higher-order modes (HOMs) under severely misaligned mode excitation and identify a single-mode regime where HOMs are suppressed by more than 20dB....

  16. Application of digital image correlation method for analysing crack ...

    Indian Academy of Sciences (India)

    centrated strain by imitating the treatment of micro-cracks using the finite element ... water and moisture to penetrate the concrete leading to serious rust of the ... The correlations among various grey values of digital images are analysed for ...

  17. Application of digital-image-correlation techniques in analysing ...

    Indian Academy of Sciences (India)

    Basis theory of strain analysis using the digital image correlation method .... Type 304N Stainless Steel (Modulus of Elasticity = 193 MPa, Tensile Yield .... also proves the accuracy of the qualitative analyses by using the DIC ... We thank the National Science Council of Taiwan for supporting this research through grant. No.

  18. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix; Xiao, Lei; Kolb, Andreas; Hullin, Matthias B.; Heidrich, Wolfgang

    2014-01-01

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  19. Imaging in scattering media using correlation image sensors and sparse convolutional coding

    KAUST Repository

    Heide, Felix

    2014-10-17

    Correlation image sensors have recently become popular low-cost devices for time-of-flight, or range cameras. They usually operate under the assumption of a single light path contributing to each pixel. We show that a more thorough analysis of the sensor data from correlation sensors can be used can be used to analyze the light transport in much more complex environments, including applications for imaging through scattering and turbid media. The key of our method is a new convolutional sparse coding approach for recovering transient (light-in-flight) images from correlation image sensors. This approach is enabled by an analysis of sparsity in complex transient images, and the derivation of a new physically-motivated model for transient images with drastically improved sparsity.

  20. Correlation Filters for Detection of Cellular Nuclei in Histopathology Images.

    Science.gov (United States)

    Ahmad, Asif; Asif, Amina; Rajpoot, Nasir; Arif, Muhammad; Minhas, Fayyaz Ul Amir Afsar

    2017-11-21

    Nuclei detection in histology images is an essential part of computer aided diagnosis of cancers and tumors. It is a challenging task due to diverse and complicated structures of cells. In this work, we present an automated technique for detection of cellular nuclei in hematoxylin and eosin stained histopathology images. Our proposed approach is based on kernelized correlation filters. Correlation filters have been widely used in object detection and tracking applications but their strength has not been explored in the medical imaging domain up till now. Our experimental results show that the proposed scheme gives state of the art accuracy and can learn complex nuclear morphologies. Like deep learning approaches, the proposed filters do not require engineering of image features as they can operate directly on histopathology images without significant preprocessing. However, unlike deep learning methods, the large-margin correlation filters developed in this work are interpretable, computationally efficient and do not require specialized or expensive computing hardware. A cloud based webserver of the proposed method and its python implementation can be accessed at the following URL: http://faculty.pieas.edu.pk/fayyaz/software.html#corehist .

  1. Imaging the spatio-temporal dynamics of supragranular activity in the rat somatosensory cortex in response to stimulation of the paws.

    Directory of Open Access Journals (Sweden)

    M L Morales-Botello

    Full Text Available We employed voltage-sensitive dye (VSD imaging to investigate the spatio-temporal dynamics of the responses of the supragranular somatosensory cortex to stimulation of the four paws in urethane-anesthetized rats. We obtained the following main results. (1 Stimulation of the contralateral forepaw evoked VSD responses with greater amplitude and smaller latency than stimulation of the contralateral hindpaw, and ipsilateral VSD responses had a lower amplitude and greater latency than contralateral responses. (2 While the contralateral stimulation initially activated only one focus, the ipsilateral stimulation initially activated two foci: one focus was typically medial to the focus activated by contralateral stimulation and was stereotaxically localized in the motor cortex; the other focus was typically posterior to the focus activated by contralateral stimulation and was stereotaxically localized in the somatosensory cortex. (3 Forepaw and hindpaw somatosensory stimuli activated large areas of the sensorimotor cortex, well beyond the forepaw and hindpaw somatosensory areas of classical somatotopic maps, and forepaw stimuli activated larger cortical areas with greater activation velocity than hindpaw stimuli. (4 Stimulation of the forepaw and hindpaw evoked different cortical activation dynamics: forepaw responses displayed a clear medial directionality, whereas hindpaw responses were much more uniform in all directions. In conclusion, this work offers a complete spatio-temporal map of the supragranular VSD cortical activation in response to stimulation of the paws, showing important somatotopic differences between contralateral and ipsilateral maps as well as differences in the spatio-temporal activation dynamics in response to forepaw and hindpaw stimuli.

  2. MR imaging of symptomatic osteochondromas with pathological correlation

    International Nuclear Information System (INIS)

    Mehta, M.; Knapp, T.; White, L.M.; Wunder, J.S.; Bell, R.S.

    1998-01-01

    Objective. To demonstrate the value of MR imaging in the diagnosis and differentiation of the various symptomatic complications of osteochondromas, providing pathological correlation with emphasis on the usefulness of MR imaging as a single imaging modality in these patients. Design. We retrospectively reviewed all MR examinations of clinically symptomatic osteochondromas (30 patients) performed at our institution between March 1990 and October 1997. Patients. Thirty patients had clinically symptomatic osteochondromas during the study period. Twenty patients were male and 10 were female. There were five cases of multiple osteochondromatosis. Pathological correlation was available in 24 patients. Results and conclusion. Symptomatic complications included fracture (7%), osseous deformity limiting range of motion (23%), vascular injury (7%), neurological compromise (10%), bursa formation (27%) and malignant transformation (27%). MR imaging was able to diagnose or suggest the etiology for the clinical symptomatology in all cases, demonstrating that it is an ideal imaging modality in the diagnostic evaluation of symptomatic complications of osteochondromas and often avoids the need for further imaging. (orig.)

  3. Fluorescence decay time imaging using an imaging photon detector with a radio frequency photon correlation system

    Science.gov (United States)

    Morgan, Christopher G.; Mitchell, A. C.; Murray, J. G.

    1990-05-01

    An imaging photon detector has been modified to incorporate fast timing electronics coupled to a custom built photon correlator interfaced to a RISC computer. Using excitation with intensity- muodulated light, fluorescence images can be readily obtained where contrast is determined by the decay time of emission, rather than by intensity. This technology is readily extended to multifrequency phase/demodulation fluorescence imaging or to differential polarised phase fluorometry. The potential use of the correlator for confocal imaging with a laser scanner is also briefly discussed.

  4. Hippocampal sclerosis: correlation of MR imaging findings with surgical outcome

    International Nuclear Information System (INIS)

    Kim, Yoon Hee; Chang, Kee Hyun; Kim, Kyung Won; Han, Moon Hee; Park, Sung Ho; Nam, Hyun Woo; Choi, Kyu Ho; Cho, Woo Ho

    2001-01-01

    Atrophy and a high T2 signal of the hippocampus are known to be the principal MR imaging findings of hippocampal sclerosis. The purpose of this study was to determine whether or not individual MRI findings correlate with surgical outcome in patients with this condition. Preoperative MR imaging findings in 57 consecutive patients with pathologically-proven hippocampal sclerosis who underwent anterior temporal lobectomy and were followed-up for 24 months or more were retrospectively reviewed, and the results were compared with the postsurgical outcome (Engel classification). The MR images included routine sagittal T1-weighted and axial T2-weighted spin-echo images, and oblique coronal T1-weighted 3D gradient-echo and T2-weighted 2D fast spin-echo images obtained on either a 1.5 T or 1.0 T unit. The images were visually evaluated by two neuroradiologists blinded to the outcome; their focus was the presence or absence of atrophy and a high T2 hippocampal signal. Hippocampal atrophy was seen in 96% of cases (55/57) [100% (53/53) of the good outcome group (Engel class I and II), and 50% (2/4) of the poor outcome group (class III and IV)]. A high T2 hippocampal signal was seen in 61% of cases (35/57) [62% (33/53) of the good outcome group and 50% (2/4) of the poor outcome group]. All 35 patients with a high T2 signal had hippocampal atrophy. 'Normal' hippocampus, as revealed by MR imaging, occurred in 4% of patients (2/57), both of whom showed a poor outcome (Engel class III). The presence or absence of hippocampal atrophy correlated well with surgical outcome (p 0.05). Compared with a high T2 hippocampal signal, hippocampal atrophy is more common and correlates better with surgical outcome. For the prediction of this, it thus appears to be the more useful indicator

  5. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    Science.gov (United States)

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Correlation of angiography and MR imaging in cerebral vasculitis

    International Nuclear Information System (INIS)

    Cloft, H.J.; Phillips, C.D.; Dix, J.E.; McNulty, B.C.; Kallmes, D.F.; Zagardo, M.T.

    1999-01-01

    Purpose: MR imaging and cerebral angiography were correlated in patients with primary angiitis of the central nervous system (PACNS) to assess the relative roles of these imaging modalities in the diagnosis. Material and Methods: In 9 patients, MR imaging and angiography were compared with regard to the relative involvement of each major vascular territory. Vascular territories assessed were the anterior, middle, and posterior cerebral arteries, and the posterior fossa. Results: All patients had angiographic findings consistent with vasculitis in multiple vascular territories. MR findings ranged from normal to diffusely abnormal. One patient had a completely normal MR investigation. Of 50 territories affected by vasculitis on angiography, 17 (34%) were normal on MR. Conclusion: Relative to cerebral angiography, MR imaging is a poor indicator of the presence or absence of PACNS. Angiography is indicated when clinical suspicion of PACNS is strong, regardless of the findings on MR. (orig.)

  7. Vaginal Masses: Magnetic Resonance Imaging Features with Pathologic Correlation

    International Nuclear Information System (INIS)

    Elsayes, K.M.; Narra, V.R.; Dillman, J.R.; Velcheti, V.; Hameed, O.; Tongdee, R.; Menias, C.O.

    2007-01-01

    The detection of vaginal lesions has increased with the expanding use of cross-sectional imaging. Magnetic resonance imaging (MRI) - with its high-contrast resolution and multiplanar capabilities - is often useful for characterizing vaginal masses. Vaginal masses can be classified as congenital, inflammatory, cystic (benign), and neoplastic (benign or malignant) in etiology. Recognition of the typical MR imaging features of such lesions is important because it often determines the treatment approach and may obviate surgery. Finally, vaginal MR imaging can be used to evaluate post-treatment changes related to previous surgery and radiation therapy. In this article, we will review pertinent vaginal anatomy, vaginal and pelvic MRI technique, and the MRI features of a variety of vaginal lesions with pathological correlation

  8. Imaging pediatric magnet ingestion with surgical-pathological correlation

    International Nuclear Information System (INIS)

    Otjen, Jeffrey P.; Iyer, Ramesh S.; Rohrmann, Charles A.

    2013-01-01

    Foreign body ingestion is a common problem in the pediatric population and a frequent cause for emergency room visits. Magnets are common household objects that when ingested can bring about severe, possibly fatal gastrointestinal complications. Radiography is an integral component of the management of these children. Pediatric and emergency radiologists alike must be aware of imaging manifestations of magnet ingestion, as their identification drives decision-making for consulting surgeons and gastroenterologists. Radiology can thus substantially augment the clinical history and physical exam, facilitating appropriate management. This manuscript sequentially presents cases of magnet ingestion featuring imaging findings coupled with surgical and pathological correlation. Each case is presented to highlight ways in which the radiologist can make impactful contributions to diagnosis and management. Clinical overview with pitfalls of magnet ingestion imaging and an imaging decision tree will also be presented. (orig.)

  9. Imaging pediatric magnet ingestion with surgical-pathological correlation.

    Science.gov (United States)

    Otjen, Jeffrey P; Rohrmann, Charles A; Iyer, Ramesh S

    2013-07-01

    Foreign body ingestion is a common problem in the pediatric population and a frequent cause for emergency room visits. Magnets are common household objects that when ingested can bring about severe, possibly fatal gastrointestinal complications. Radiography is an integral component of the management of these children. Pediatric and emergency radiologists alike must be aware of imaging manifestations of magnet ingestion, as their identification drives decision-making for consulting surgeons and gastroenterologists. Radiology can thus substantially augment the clinical history and physical exam, facilitating appropriate management. This manuscript sequentially presents cases of magnet ingestion featuring imaging findings coupled with surgical and pathological correlation. Each case is presented to highlight ways in which the radiologist can make impactful contributions to diagnosis and management. Clinical overview with pitfalls of magnet ingestion imaging and an imaging decision tree will also be presented.

  10. Correlation and image compression for limited-bandwidth CCD.

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Douglas G.

    2005-07-01

    As radars move to Unmanned Aerial Vehicles with limited-bandwidth data downlinks, the amount of data stored and transmitted with each image becomes more significant. This document gives the results of a study to determine the effect of lossy compression in the image magnitude and phase on Coherent Change Detection (CCD). We examine 44 lossy compression types, plus lossless zlib compression, and test each compression method with over 600 CCD image pairs. We also derive theoretical predictions for the correlation for most of these compression schemes, which compare favorably with the experimental results. We recommend image transmission formats for limited-bandwidth programs having various requirements for CCD, including programs which cannot allow performance degradation and those which have stricter bandwidth requirements at the expense of CCD performance.

  11. Imaging of brain tumors with histological correlations. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Drevelegas, Antonios (ed.)

    2011-07-01

    This volume provides a deeper understanding of the diagnosis of brain tumors by correlating radiographic imaging features with the underlying pathological abnormalities. All modern imaging modalities are used to complete a diagnostic overview of brain tumors with emphasis on recent advances in diagnostic neuroradiology. High-quality illustrations depicting common and uncommon imaging characteristics of a wide range of brain tumors are presented and analysed, drawing attention to the ways in which these characteristics reflect different aspects of pathology. Important theoretical considerations are also discussed. Since the first edition, chapters have been revised and updated and new material has been added, including detailed information on the clinical application of functional MRI and diffusion tensor imaging. Radiologists and other clinicians interested in the current diagnostic approach to brain tumors will find this book to be an invaluable and enlightening clinical tool. (orig.)

  12. Photon-number correlation for quantum enhanced imaging and sensing

    Science.gov (United States)

    Meda, A.; Losero, E.; Samantaray, N.; Scafirimuto, F.; Pradyumna, S.; Avella, A.; Ruo-Berchera, I.; Genovese, M.

    2017-09-01

    In this review we present the potentialities and the achievements of the use of non-classical photon-number correlations in twin-beam states for many applications, ranging from imaging to metrology. Photon-number correlations in the quantum regime are easily produced and are rather robust against unavoidable experimental losses, and noise in some cases, if compared to the entanglement, where losing one photon can completely compromise the state and its exploitable advantages. Here, we will focus on quantum enhanced protocols in which only phase-insensitive intensity measurements (photon-number counting) are performed, which allow probing the transmission/absorption properties of a system, leading, for example, to innovative target detection schemes in a strong background. In this framework, one of the advantages is that the sources experimentally available emit a wide number of pair-wise correlated modes, which can be intercepted and exploited separately, for example by many pixels of a camera, providing a parallelism, essential in several applications, such as wide-field sub-shot-noise imaging and quantum enhanced ghost imaging. Finally, non-classical correlation enables new possibilities in quantum radiometry, e.g. the possibility of absolute calibration of a spatial resolving detector from the on-off single-photon regime to the linear regime in the same setup.

  13. A new method of spatio-temporal topographic mapping by correlation coefficient of K-means cluster.

    Science.gov (United States)

    Li, Ling; Yao, Dezhong

    2007-01-01

    It would be of the utmost interest to map correlated sources in the working human brain by Event-Related Potentials (ERPs). This work is to develop a new method to map correlated neural sources based on the time courses of the scalp ERPs waveforms. The ERP data are classified first by k-means cluster analysis, and then the Correlation Coefficients (CC) between the original data of each electrode channel and the time course of each cluster centroid are calculated and utilized as the mapping variable on the scalp surface. With a normalized 4-concentric-sphere head model with radius 1, the performance of the method is evaluated by simulated data. CC, between simulated four sources (s (1)-s (4)) and the estimated cluster centroids (c (1)-c (4)), and the distances (Ds), between the scalp projection points of the s (1)-s (4) and that of the c (1)-c (4), are utilized as the evaluation indexes. Applied to four sources with two of them partially correlated (with maximum mutual CC = 0.4892), CC (Ds) between s (1)-s (4) and c (1)-c (4) are larger (smaller) than 0.893 (0.108) for noise levels NSRclusters located at left, right occipital and frontal. The estimated vectors of the contra-occipital area demonstrate that attention to the stimulus location produces increased amplitude of the P1 and N1 components over the contra-occipital scalp. The estimated vector in the frontal area displays two large processing negativity waves around 100 ms and 250 ms when subjects are attentive, and there is a small negative wave around 140 ms and a P300 when subjects are unattentive. The results of simulations and real Visual Evoked Potentials (VEPs) data demonstrate the validity of the method in mapping correlated sources. This method may be an objective, heuristic and important tool to study the properties of cerebral, neural networks in cognitive and clinical neurosciences.

  14. Correlation of breast image alignment using biomechanical modelling

    Science.gov (United States)

    Lee, Angela; Rajagopal, Vijay; Bier, Peter; Nielsen, Poul M. F.; Nash, Martyn P.

    2009-02-01

    Breast cancer is one of the most common causes of cancer death among women around the world. Researchers have found that a combination of imaging modalities (such as x-ray mammography, magnetic resonance, and ultrasound) leads to more effective diagnosis and management of breast cancers because each imaging modality displays different information about the breast tissues. In order to aid clinicians in interpreting the breast images from different modalities, we have developed a computational framework for generating individual-specific, 3D, finite element (FE) models of the breast. Medical images are embedded into this model, which is subsequently used to simulate the large deformations that the breasts undergo during different imaging procedures, thus warping the medical images to the deformed views of the breast in the different modalities. In this way, medical images of the breast taken in different geometric configurations (compression, gravity, etc.) can be aligned according to physically feasible transformations. In order to analyse the accuracy of the biomechanical model predictions, squared normalised cross correlation (NCC2) was used to provide both local and global comparisons of the model-warped images with clinical images of the breast subject to different gravity loaded states. The local comparison results were helpful in indicating the areas for improvement in the biomechanical model. To improve the modelling accuracy, we will need to investigate the incorporation of breast tissue heterogeneity into the model and altering the boundary conditions for the breast model. A biomechanical image registration tool of this kind will help radiologists to provide more reliable diagnosis and localisation of breast cancer.

  15. Chondrosarcoma : MR imaging findings correlated with pathologic classification and grade

    International Nuclear Information System (INIS)

    Cho, Seong Whi; Kang, Heung Sik; Kim, Sam Soo; Lee, Sang Hyun; Cho, Jeong Yeon; Yeon, Kyung Mo

    1996-01-01

    To evaluate the MR imaging findings of chondrosarcomas by correlation with pathologic classification and grade. We performed MR imaging-pathologic correlation of nineteen chondrosarcomas. Conventional chondrosarcomas accounted for 15 cases (grade I:6, II:6, III:3) and the mesenchymal and dedifferentiated types each accounted for two. MR signal intensity (SI) of the tumor on T1- and T2-weighted images (T1WI and T2WI, respectively), was classified as homogeneous or heterogeneous low-, iso- or high SI, and enhancing pattern as marginal, marginal and septal, marginal and nodular, or diffuse enhancement. Eighteen cases of chondrosarcomas (95%) showed homogeneous or heterogeneous low- or iso SI on T1WI and high SI on T2WI. Low grade conventional chondrosarcomas showed marginal and septal (n=8/10) or marginal (n=2/10) enhancement on Gd-enhanced MR images. Grade III conventional chondrosarcomas showed marginal or marginal and nodular enhancement. Dedifferentiated and mesenchymal chondrosarcomas showed marginal and nodular or diffuse enhancement. Chondrosarcomas showed iso- or low SI on T1WI and high SI on T2WI. Marginal and septal enhancement was demonstrated on Gd-enhanced MR images of grade I and II conventional chondrosarcomas. If a tumor showed a marginal and nodular or diffuse enhancing pattern, this suggested it was a of high grade chondrosarcoma

  16. Referential processing: reciprocity and correlates of naming and imaging.

    Science.gov (United States)

    Paivio, A; Clark, J M; Digdon, N; Bons, T

    1989-03-01

    To shed light on the referential processes that underlie mental translation between representations of objects and words, we studied the reciprocity and determinants of naming and imaging reaction times (RT). Ninety-six subjects pressed a key when they had covertly named 248 pictures or imaged to their names. Mean naming and imagery RTs for each item were correlated with one another, and with properties of names, images, and their interconnections suggested by prior research and dual coding theory. Imagery RTs correlated .56 (df = 246) with manual naming RTs and .58 with voicekey naming RTs from prior studies. A factor analysis of the RTs and of 31 item characteristics revealed 7 dimensions. Imagery and naming RTs loaded on a common referential factor that included variables related to both directions of processing (e.g., missing names and missing images). Naming RTs also loaded on a nonverbal-to-verbal factor that included such variables as number of different names, whereas imagery RTs loaded on a verbal-to-nonverbal factor that included such variables as rated consistency of imagery. The other factors were verbal familiarity, verbal complexity, nonverbal familiarity, and nonverbal complexity. The findings confirm the reciprocity of imaging and naming, and their relation to constructs associated with distinct phases of referential processing.

  17. Extracting flat-field images from scene-based image sequences using phase correlation

    Energy Technology Data Exchange (ETDEWEB)

    Caron, James N., E-mail: Caron@RSImd.com [Research Support Instruments, 4325-B Forbes Boulevard, Lanham, Maryland 20706 (United States); Montes, Marcos J. [Naval Research Laboratory, Code 7231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States); Obermark, Jerome L. [Naval Research Laboratory, Code 8231, 4555 Overlook Avenue, SW, Washington, DC 20375 (United States)

    2016-06-15

    Flat-field image processing is an essential step in producing high-quality and radiometrically calibrated images. Flat-fielding corrects for variations in the gain of focal plane array electronics and unequal illumination from the system optics. Typically, a flat-field image is captured by imaging a radiometrically uniform surface. The flat-field image is normalized and removed from the images. There are circumstances, such as with remote sensing, where a flat-field image cannot be acquired in this manner. For these cases, we developed a phase-correlation method that allows the extraction of an effective flat-field image from a sequence of scene-based displaced images. The method uses sub-pixel phase correlation image registration to align the sequence to estimate the static scene. The scene is removed from sequence producing a sequence of misaligned flat-field images. An average flat-field image is derived from the realigned flat-field sequence.

  18. Monitoring of civil engineering structures using Digital Image Correlation technique

    Science.gov (United States)

    Malesa, M.; Szczepanek, D.; Kujawińska, M.; Świercz, A.; Kołakowski, P.

    2010-06-01

    The Digital Image Correlation (DIC) technique enables full field, noncontact measurements of displacements and strains of a wide variety of objects. An adaptation of the DIC technique for monitoring of civil-engineering structures is presented in the paper. A general concept of the complex, automatic monitoring system, in which the DIC sensor plays an important role is described. Some new software features, which aim to facilitate outdoor measurements and speed up the correlation analysis, is also introduced. As an example of application, measurements of a railway bridge in Nieporet (Poland) are presented. The experimental results are compared with displacements of a FEM model of the bridge.

  19. Optical Spectroscopy and Imaging of Correlated Spin Orbit Phases

    Science.gov (United States)

    2016-06-14

    Unlimited UU UU UU UU 14-06-2016 15-Mar-2013 14-Mar-2016 Final Report: Optical Spectroscopy and Imaging of Correlated Spin-Orbit Phases The views...Box 12211 Research Triangle Park, NC 27709-2211 Ultrafast optical spectroscopy , nonlinear optical spectroscopy , iridates, cuprates REPORT...California Blvd. Pasadena, CA 91125 -0001 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Optical Spectroscopy and

  20. Image denoising by exploring external and internal correlations.

    Science.gov (United States)

    Yue, Huanjing; Sun, Xiaoyan; Yang, Jingyu; Wu, Feng

    2015-06-01

    Single image denoising suffers from limited data collection within a noisy image. In this paper, we propose a novel image denoising scheme, which explores both internal and external correlations with the help of web images. For each noisy patch, we build internal and external data cubes by finding similar patches from the noisy and web images, respectively. We then propose reducing noise by a two-stage strategy using different filtering approaches. In the first stage, since the noisy patch may lead to inaccurate patch selection, we propose a graph based optimization method to improve patch matching accuracy in external denoising. The internal denoising is frequency truncation on internal cubes. By combining the internal and external denoising patches, we obtain a preliminary denoising result. In the second stage, we propose reducing noise by filtering of external and internal cubes, respectively, on transform domain. In this stage, the preliminary denoising result not only enhances the patch matching accuracy but also provides reliable estimates of filtering parameters. The final denoising image is obtained by fusing the external and internal filtering results. Experimental results show that our method constantly outperforms state-of-the-art denoising schemes in both subjective and objective quality measurements, e.g., it achieves >2 dB gain compared with BM3D at a wide range of noise levels.

  1. Three-dimensional facial digitization using advanced digital image correlation.

    Science.gov (United States)

    Nguyen, Hieu; Kieu, Hien; Wang, Zhaoyang; Le, Hanh N D

    2018-03-20

    Presented in this paper is an effective technique to acquire the three-dimensional (3D) digital images of the human face without the use of active lighting and artificial patterns. The technique is based on binocular stereo imaging and digital image correlation, and it includes two key steps: camera calibration and image matching. The camera calibration involves a pinhole model and a bundle-adjustment approach, and the governing equations of the 3D digitization process are described. For reliable pixel-to-pixel image matching, the skin pores and freckles or lentigines on the human face serve as the required pattern features to facilitate the process. It employs feature-matching-based initial guess, multiple subsets, iterative optimization algorithm, and reliability-guided computation path to achieve fast and accurate image matching. Experiments have been conducted to demonstrate the validity of the proposed technique. The simplicity of the approach and the affordable cost of the implementation show its practicability in scientific and engineering applications.

  2. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation.

    Science.gov (United States)

    Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh

    2011-06-01

    This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.

  3. Integrated global digital image correlation for interface delamination characterization

    KAUST Repository

    Hoefnagels, Johan P.M.

    2013-07-23

    Interfacial delamination is a key reliability challenge in composites and micro-electronic systems due to (high-density) integration of dissimilar materials. Predictive finite element models are used to minimize delamination failures during design, but require accurate interface models to capture (irreversible) crack initiation and propagation behavior observed in experiments. Therefore, an Integrated Global Digital Image Correlation (I-GDIC) strategy is developed for accurate determination of mechanical interface behavior from in-situ delamination experiments. Recently, a novel miniature delamination setup was presented that enables in-situ microscopic characterization of interface delamination while sensitively measuring global load-displacement curves for all mode mixities. Nevertheless, extraction of detailed mechanical interface behavior from measured images is challenging, because deformations are tiny and measurement noise large. Therefore, an advanced I-GDIC methodology is developed which correlates the image patterns by only deforming the images using kinematically-admissible \\'eigenmodes\\' that correspond to the few parameters controlling the interface tractions in an analytic description of the crack tip deformation field, thereby greatly enhancing accuracy and robustness. This method is validated on virtual delamination experiments, simulated using a recently developed self-adaptive cohesive zone (CZ) finite element framework. © The Society for Experimental Mechanics, Inc. 2014.

  4. Salivary gland masses. Dynamic MR imaging and pathologic correlation

    International Nuclear Information System (INIS)

    Park, Jinho; Inoue, Shingo; Ishizuka, Yasuhito; Shindo, Hiroaki; Kawanishi, Masayuki; Kakizaki, Dai; Abe, Kimihiko; Ebihara, Yoshiro

    1997-01-01

    To evaluate the efficiency of dynamic contrast-enhanced magnetic resonance imaging (MRI) for the diagnosis of salivary gland masses. We retrospectively examined 19 salivary gland masses that were pathologically diagnosed by surgical operation or biopsy. We obtained T1- and T2-weighted images on MRI, performed dynamic studies on each mass and examined the correlation between enhancement patterns and pathological findings. Four enhancement patterns were recognized on contrast-enhanced MRI: type 1 showed marked, homogeneous enhancement; type 2 slights, homogeneous enhancement; type 3 marginal enhancement; and type 4 poor enhancement of the mass. Most pleomorphic adenomas had a type 1 enhancement pattern, but two had a type 2 pattern. Pathologically, each mass enhancement pattern had different tumor cell and matrix components. Warthin's tumor generally showed the type 4 pattern. Primary malignant tumors of the salivary gland all showed the type 3 pattern, and pathological specimens showed many tumor cells along the marginal portion of the tumor. One inflammatory cyst and one Warthin's tumor also showed the type 3 pattern. Except for metastatic renal cell carcinoma, the enhancement patterns of late phase images and dynamic study images were the same. Dynamic MRI added little diagnostic information about salivary gland masses, but the contrast-enhanced MR features correlated well with the pathological findings. (author)

  5. Global correlation imaging of magnetic total field gradients

    International Nuclear Information System (INIS)

    Guo, Lianghui; Meng, Xiaohong; Shi, Lei

    2012-01-01

    Firstly we introduce the correlation imaging approach for the x-, y- and z-gradients of a magnetic total field anomaly for deriving the distribution of equivalent magnetic sources of the subsurface. In this approach, the subsurface space is divided into a regular grid, and then a correlation coefficient function is computed at each grid node, based on the cross-correlation between the x-gradient (or y-gradient or z-gradient) of the observed magnetic total field anomaly and the x-gradient (or y-gradient or z-gradient) of the theoretical magnetic total field anomaly due to a magnetic dipole. The resultant correlation coefficient is used to describe the probability of a magnetic dipole occurring at the node. We then define a global correlation coefficient function for comprehensively delineating the probability of an occurrence of a magnetic dipole, which takes, at each node, the maximum positive value of the corresponding correlation coefficient function of the three gradients. We finally test the approach both on synthetic data and real data from a metallic deposit area in the middle-lower reaches of the Yangtze River, China. (paper)

  6. An image correlation procedure for digitally reconstructed radiographs and electronic portal images

    International Nuclear Information System (INIS)

    Dong, Lei; Boyer, Arthur L.

    1995-01-01

    Purpose: To study a procedure that uses megavoltage digitally reconstructed radiographs (DRRs) calculated from patient's three-dimensional (3D) computed tomography (CT) data as a reference image for correlation with on-line electronic portal images (EPIs) to detect patient setup errors. Methods and Materials: Megavoltage DRRs were generated by ray tracing through a modified volumetric CT data set in which CT numbers were converted into linear attenuation coefficients for the therapeutic beam energy. The DRR transmission image was transformed to the grayscale window of the EPI by a histogram-matching technique. An alternative approach was to calibrate the transmission DRR using a measured response curve of the electronic portal imaging device (EPID). This forces the calculated transmission fluence values to be distributed in the same range as that of the EPID image. A cross-correlation technique was used to determine the degree of alignment of the patient anatomy found in the EPID image relative to the reference DRR. Results: Phantom studies demonstrated that the correlation procedure had a standard deviation of 0.5 mm and 0.5 deg. in aligning translational shifts and in-plane rotations. Systematic errors were found between a reference DRR and a reference EPID image. The automated grayscale image-correlation process was completed within 3 s on a workstation computer or 12 s on a PC. Conclusion: The alignment procedure allows the direct comparison of a patient's treatment portal designed with a 3D planning computer with a patient's on-line portal image acquired at the treatment unit. The image registration process is automated to the extent that it requires minimal user intervention, and it is fast and accurate enough for on-line clinical applications

  7. Imaging of congenital mesoblastic nephroma with pathological correlation

    International Nuclear Information System (INIS)

    Chaudry, Gulraiz; Perez-Atayde, Antonio R.; Ngan, Bo Yee; Gundogan, Munire; Daneman, Alan

    2009-01-01

    There are a variety of imaging findings for congenital mesoblastic nephroma (CMN) and two main pathological variants: classic and cellular. To determine whether imaging findings in children can predict the likely pathological variant. We reviewed imaging in children with pathology-proven CMN. Imaging findings correlated with gross and histological appearance. In 15 boys and 15 girls with CMN, US was performed in 27, CT in 19, and MRI in 7. Cystic components were readily identified on US; central hemorrhage was better differentiated on CT. MRI demonstrated high sensitivity for both. Histology confirmed classic CMN in 13 children, cellular CMN in 14 and ''mixed'' CMN in 3. Age at presentation was significantly higher in children with the cellular variant. Of 15 solid or predominantly solid tumors and 10 lesions with a hypoechoic ring, 12 and 7, respectively, had pathology consistent with classic CMN. In contrast, five of seven with intratumoral hemorrhage and all with a large cystic/necrotic component had pathology consistent with the cellular variant. The imaging appearance of CMN is often determined by the pathological type of tumor. Findings suggestive of the classic variant include a peripheral hypoechoic ring or large solid component. In comparison, cystic/necrotic change and hemorrhage is much more common in cellular CMN. (orig.)

  8. Digital image correlation based on a fast convolution strategy

    Science.gov (United States)

    Yuan, Yuan; Zhan, Qin; Xiong, Chunyang; Huang, Jianyong

    2017-10-01

    In recent years, the efficiency of digital image correlation (DIC) methods has attracted increasing attention because of its increasing importance for many engineering applications. Based on the classical affine optical flow (AOF) algorithm and the well-established inverse compositional Gauss-Newton algorithm, which is essentially a natural extension of the AOF algorithm under a nonlinear iterative framework, this paper develops a set of fast convolution-based DIC algorithms for high-efficiency subpixel image registration. Using a well-developed fast convolution technique, the set of algorithms establishes a series of global data tables (GDTs) over the digital images, which allows the reduction of the computational complexity of DIC significantly. Using the pre-calculated GDTs, the subpixel registration calculations can be implemented efficiently in a look-up-table fashion. Both numerical simulation and experimental verification indicate that the set of algorithms significantly enhances the computational efficiency of DIC, especially in the case of a dense data sampling for the digital images. Because the GDTs need to be computed only once, the algorithms are also suitable for efficiently coping with image sequences that record the time-varying dynamics of specimen deformations.

  9. Shallow soil moisture – ground thaw interactions and controls – Part 1: Spatiotemporal patterns and correlations over a subarctic landscape

    Directory of Open Access Journals (Sweden)

    X. J. Guan

    2010-07-01

    Full Text Available Soil moisture and ground thaw state are both indicative of a hillslope's ability to transfer water. In cold regions, in particular, it is widely known that the depth of the active layer and wetness of surface soils are important for runoff generation, but the diversity of interactions between ground thaw and surface soil moisture themselves has not been studied. To fill this knowledge gap, detailed shallow soil moisture and thaw depth surveys were conducted along systematic grids at the Baker Creek Basin, Northwest Territories. Multiple hillslopes were studied to determine how the interactions differed along a spectrum of topological, typological and topographic situations across the landscape. Overall results did not show a simple link between soil moisture and ground thaw as was expected. Instead, correlation was a function of wetness. The interaction between soil moisture and ground thaw was more dependent at wetter sites. This indicates that interactive soil moisture and thaw depth behaviour on hillslopes in cold regions changes with location and cannot necessarily be lumped together in hydrological models. To explore further why these differences arise, a companion paper (Guan et al., 2010 will examine how the hydrological and energy fluxes influenced the patterns of moisture and thaw among the study sites.

  10. Transport and accumulation of PVP-Hypericin in cancer and normal cells characterized by image correlation spectroscopy techniques.

    Science.gov (United States)

    Penjweini, Rozhin; Smisdom, Nick; Deville, Sarah; Ameloot, Marcel

    2014-05-01

    PVP-Hypericin (PVP: polyvinylpyrrolidone) is a potent anti-cancer photosensitizer for photodynamic diagnosis (PDD) and therapy (PDT). However, cellular targets and mechanisms involved in the cancer-selectivity of the photosensitizer are not yet fully understood. This paper gives new insights into the differential transport and localization of PVP-Hypericin in cancer and normal cells which are essential to unravel the mechanisms of action and cancer-selectivity. Temporal (TICS) and spatiotemporal (STICS) image correlation spectroscopy are used for the assessment of PVP-Hypericin diffusion and/or velocity in the case of concerted flow in human cervical epithelial HeLa and human lung carcinoma A549 cells, as well as in human primary dendritic cells (DC) and human peripheral blood mononuclear cells (PBMC). Spatiotemporal image cross-correlation spectroscopy (STICCS) based on organelle specific fluorescent labeling is employed to study the accumulation of the photosensitizer in nucleus, mitochondria, early-endosomes and lysosomes of the cells and to assess the dynamics of co-migrating molecules. Whereas STICS and TICS did not show a remarkable difference between the dynamics of PVP-Hypericin in HeLa, A549 and DC cells, a significantly different diffusion rate of the photosensitizer was measured in PBMC. STICCS detected a stationary accumulation of PVP-Hypericin within the nucleus, mitochondria, early endosomes and lysosomes of HeLa and A549 cells. However, significant flow due to the directed motion of the organelles was detected. In contrast, no accumulation in the nucleus and mitochondria of DC and PBMC could be monitored. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Measurement of spatial correlation functions using image processing techniques

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1985-01-01

    A procedure for using digital image processing techniques to measure the spatial correlation functions of composite heterogeneous materials is presented. Methods for eliminating undesirable biases and warping in digitized photographs are discussed. Fourier transform methods and array processor techniques for calculating the spatial correlation functions are treated. By introducing a minimal set of lattice-commensurate triangles, a method of sorting and storing the values of three-point correlation functions in a compact one-dimensional array is developed. Examples are presented at each stage of the analysis using synthetic photographs of cross sections of a model random material (the penetrable sphere model) for which the analytical form of the spatial correlations functions is known. Although results depend somewhat on magnification and on relative volume fraction, it is found that photographs digitized with 512 x 512 pixels generally have sufficiently good statistics for most practical purposes. To illustrate the use of the correlation functions, bounds on conductivity for the penetrable sphere model are calculated with a general numerical scheme developed for treating the singular three-dimensional integrals which must be evaluated

  12. Atlantoaxial subluxation. Radiography and magnetic resonance imaging correlated to myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Y.; Takahashi, M.; Sakamoto, Y.; Kojima, R.

    Twenty-nine patients with atlantoaxial subluxation (18 with rheumatoid arthritis, 2 due to trauma, 4 with os odontoideum, and one each with polyarteritis nodosa, rheumatic fever, Klippel-Feil syndrome, achondroplasia, and cause unknown) were evaluated using a 0.22 tesla resistive MRI unit. Cord compression was classified into four grades according to the degree on magnetic resonance imaging. There were 7 patients with no thecal sac compression (grade 0), 10 with a minimal degree of subarachnoid space compression without cord compression (grade 1), 7 with mild cord compression (grade 2), and 5 with severe cord compression or cord atrophy (grade 3). Although the severity of myelopathy showed poor correlation with the atlantodental interval on conventional radiography, high correlation was observed between MR grading and the degree of myelopathy. The high signal intensity foci were observed in 7 or 12 patients with cord compression (grades 2 and 3) on T2 weighted images. Other frequently observed findings in rheumatoid arthritis included soft tissue masses of low to intermediate signal intensity in the paraodontoid space, erosions of the odontoid processes, and atlanto-axial impaction on T1 and T2 weighted images.

  13. Cell Matrix Remodeling Ability Shown by Image Spatial Correlation

    Science.gov (United States)

    Chiu, Chi-Li; Digman, Michelle A.; Gratton, Enrico

    2013-01-01

    Extracellular matrix (ECM) remodeling is a critical step of many biological and pathological processes. However, most of the studies to date lack a quantitative method to measure ECM remodeling at a scale comparable to cell size. Here, we applied image spatial correlation to collagen second harmonic generation (SHG) images to quantitatively evaluate the degree of collagen remodeling by cells. We propose a simple statistical method based on spatial correlation functions to determine the size of high collagen density area around cells. We applied our method to measure collagen remodeling by two breast cancer cell lines (MDA-MB-231 and MCF-7), which display different degrees of invasiveness, and a fibroblast cell line (NIH/3T3). We found distinct collagen compaction levels of these three cell lines by applying the spatial correlation method, indicating different collagen remodeling ability. Furthermore, we quantitatively measured the effect of Latrunculin B and Marimastat on MDA-MB-231 cell line collagen remodeling ability and showed that significant collagen compaction level decreases with these treatments. PMID:23935614

  14. Magnetic resonance imaging of massive bone allografts with histologic correlation

    International Nuclear Information System (INIS)

    Hoeffner, E.G.; Soulen, R.L.; Ryan, J.R.; Qureshi, F.

    1996-01-01

    The objective of this study was to better understand the MRI appearance of massive bone allografts. The MRI findings of three massive bone allografts imaged in vivo were correlated with the histologic findings following removal of the allografts. A fourth allograft, never implanted, was imaged and evaluated histologically. Allografts were placed for the treatment of primary or recurrent osteosarcoma. The in-vivo allografts have a heterogeneous appearance on MRI which we attribute to the revascularization process. Fibrovascular connective tissue grows into the graft in a patchy, focal fashion, down the medullary canal from the graft-host junction and adjacent to the periosteum. The marrow spaces are initially devoid of normal cellular elements and occupied by fat and gelatinous material. This normal postoperative appearance of massive bone allografts must not be interpreted as recurrent neoplasm or infection in the allograft. Recognition of these complications rests on features outside the marrow. (orig./MG)

  15. Accuracy evaluation of optical distortion calibration by digital image correlation

    Science.gov (United States)

    Gao, Zeren; Zhang, Qingchuan; Su, Yong; Wu, Shangquan

    2017-11-01

    Due to its convenience of operation, the camera calibration algorithm, which is based on the plane template, is widely used in image measurement, computer vision and other fields. How to select a suitable distortion model is always a problem to be solved. Therefore, there is an urgent need for an experimental evaluation of the accuracy of camera distortion calibrations. This paper presents an experimental method for evaluating camera distortion calibration accuracy, which is easy to implement, has high precision, and is suitable for a variety of commonly used lens. First, we use the digital image correlation method to calculate the in-plane rigid body displacement field of an image displayed on a liquid crystal display before and after translation, as captured with a camera. Next, we use a calibration board to calibrate the camera to obtain calibration parameters which are used to correct calculation points of the image before and after deformation. The displacement field before and after correction is compared to analyze the distortion calibration results. Experiments were carried out to evaluate the performance of two commonly used industrial camera lenses for four commonly used distortion models.

  16. Neuropsychological Correlates of Diffusion Tensor Imaging in Schizophrenia

    Science.gov (United States)

    Nestor, Paul G.; Kubicki, Marek; Gurrera, Ronald J.; Niznikiewicz, Margaret; Frumin, Melissa; McCarley, Robert W.; Shenton, Martha E.

    2009-01-01

    Patients with schizophrenia (n = 41) and healthy comparison participants (n = 46) completed neuropsychological measures of intelligence, memory, and executive function. A subset of each group also completed magnetic resonance diffusion tensor imaging (DTI) studies (fractional anisotropy and cross-sectional area) of the uncinate fasciculus (UF) and cingulate bundle (CB). Patients with schizophrenia showed reduced levels of functioning across all neuropsychological measures. In addition, selective neuropsychological–DTI relationships emerged. Among patients but not controls, lower levels of declarative–episodic verbal memory correlated with reduced left UF, whereas executive function errors related to performance monitoring correlated with reduced left CB. The data suggested abnormal DTI patterns linking declarative–episodic verbal memory deficits to the left UF and executive function deficits to the left CB among patients with schizophrenia. PMID:15506830

  17. Multimodal imaging in cerebral gliomas and its neuropathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gempt, Jens, E-mail: jens.gempt@lrz.tum.de [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Soehngen, Eric [Abteilung für Neuroradiologie, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Förster, Stefan [Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Ryang, Yu-Mi [Neurochirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); Schlegel, Jürgen [Abteilung für Neuropathologie des Instituts für Allgemeine Pathologie und Pathologische Anatomie, Technische Universität München, Ismaninger Str. 22, 81675 München (Germany); and others

    2014-05-15

    Introduction: Concerning the preoperative clinical diagnostic work-up of glioma patients, tumor heterogeneity challenges the oncological therapy. The current study assesses the performance of a multimodal imaging approach to differentiate between areas in malignant gliomas and to investigate the extent to which such a combinatorial imaging approach might predict the underlying histology. Methods: Prior to surgical resection, patients harboring intracranial gliomas underwent MRIs (MR-S, PWI) and {sup 18}F-FET-PETs. Intratumoral and peritumoral biopsy targets were defined, by MRI only, by FET-PET only, and by MRI and FET-PET combined, and biopsied prior to surgical resection and which then received separate histopathological examinations. Results: In total, 38 tissue samples were acquired (seven glioblastomas, one anaplastic astrocytoma, one anaplastic oligoastrocytoma, one diffuse astrocytoma, and one oligoastrocytoma) and underwent histopathological analysis. The highest mean values of Mib1 and CD31 were found in the target point “T’ defined by MRI and FET-PET combined. A significant correlation between NAA/Cr and PET tracer uptake (−0.845, p < 0.05) as well as Cho/Cr ratio and cell density (0.742, p < 0.05) and NAA/Cr ratio and MIB-1 (−0761, p < 0.05) was disclosed for this target point, though not for target points defined by MRI and FET-PET alone. Conclusion: Multimodal-imaging-guided stereotactic biopsy correlated more with histological malignancy indices, such as cell density and MIB-1 labeling, than targets that were based solely on the highest amino acid uptake or contrast enhancement on MRI. The results of our study indicate that a combined PET-MR multimodal imaging approach bears potential benefits in detecting glioma heterogeneity.

  18. SPATIOTEMPORAL CONTRAST SENSITIVITY OF EARLY VISION

    NARCIS (Netherlands)

    Hateren, J.H. van

    Based on the spatial and temporal statistics of natural images, a theory is developed that specifies spatiotemporal filters that maximize the flow of information through noisy channels of limited dynamic range. Sensitivities resulting from these spatiotemporal filters are very similar to the human

  19. Mapping Daily Evapotranspiration based on Spatiotemporal Fusion of ASTER and MODIS Images over Irrigated Agricultural Areas in the Heihe River Basin, Northwest China

    Science.gov (United States)

    Huang, C.; LI, Y.

    2017-12-01

    Continuous monitoring of daily evapotranspiration (ET) is crucial for allocating and managing water resources in irrigated agricultural areas in arid regions. In this study, continuous daily ET at a 90-m spatial resolution was estimated using the Surface Energy Balance System (SEBS) by fusing Moderate Resolution Imaging Spectroradiometer (MODIS) images with high temporal resolution and Advanced Space-borne Thermal Emission Reflectance Radiometer (ASTER) images with high spatial resolution. The spatiotemporal characteristics of these sensors were obtained using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM). The performance of this approach was validated over a heterogeneous oasis-desert region covered by cropland, residential, woodland, water, Gobi desert, sandy desert, desert steppe, and wetland areas using in situ observations from automatic meteorological systems (AMS) and eddy covariance (EC) systems in the middle reaches of the Heihe River Basin in Northwest China. The error introduced during the data fusion process based on STARFM is within an acceptable range for predicted LST at a 90-m spatial resolution. The surface energy fluxes estimated using SEBS based on predicted remotely sensed data that combined the spatiotemporal characteristics of MODIS and ASTER agree well with the surface energy fluxes observed using EC systems for all land cover types, especially for vegetated area with MAP values range from 9% to 15%, which are less than the uncertainty (18%) of the observed in this study area. Time series of daily ET modelled from SEBS were compared to that modelled from PT-JPL (one of Satellite-based Priestley-Taylor ET model) and observations from EC systems. SEBS performed generally better than PT-JPL for vegetated area, especially irrigated cropland with bias, RMSE, and MAP values of 0.29 mm/d, 0.75 mm/d, 13% at maize site, -0.33 mm/d, 0.81 mm/d, and 14% at vegetable sites.

  20. A dense camera network for cropland (CropInsight) - developing high spatiotemporal resolution crop Leaf Area Index (LAI) maps through network images and novel satellite data

    Science.gov (United States)

    Kimm, H.; Guan, K.; Luo, Y.; Peng, J.; Mascaro, J.; Peng, B.

    2017-12-01

    Monitoring crop growth conditions is of primary interest to crop yield forecasting, food production assessment, and risk management of individual farmers and agribusiness. Despite its importance, there are limited access to field level crop growth/condition information in the public domain. This scarcity of ground truth data also hampers the use of satellite remote sensing for crop monitoring due to the lack of validation. Here, we introduce a new camera network (CropInsight) to monitor crop phenology, growth, and conditions that are designed for the US Corn Belt landscape. Specifically, this network currently includes 40 sites (20 corn and 20 soybean fields) across southern half of the Champaign County, IL ( 800 km2). Its wide distribution and automatic operation enable the network to capture spatiotemporal variations of crop growth condition continuously at the regional scale. At each site, low-maintenance, and high-resolution RGB digital cameras are set up having a downward view from 4.5 m height to take continuous images. In this study, we will use these images and novel satellite data to construct daily LAI map of the Champaign County at 30 m spatial resolution. First, we will estimate LAI from the camera images and evaluate it using the LAI data collected from LAI-2200 (LI-COR, Lincoln, NE). Second, we will develop relationships between the camera-based LAI estimation and vegetation indices derived from a newly developed MODIS-Landsat fusion product (daily, 30 m resolution, RGB + NIR + SWIR bands) and the Planet Lab's high-resolution satellite data (daily, 5 meter, RGB). Finally, we will scale up the above relationships to generate high spatiotemporal resolution crop LAI map for the whole Champaign County. The proposed work has potentials to expand to other agro-ecosystems and to the broader US Corn Belt.

  1. Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus.

    Directory of Open Access Journals (Sweden)

    Ken Sakaie

    Full Text Available To test the validity of diffusion tensor imaging (DTI measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF. Injury to the MLF underlies internuclear ophthalmoparesis (INO.40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD, transverse diffusivity (TD, mean diffusivity (MD and fractional anisotropy (FA. Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI.LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03. FA was also lower in patients in the same region (p < 0.0004. LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05 as did FA in the midbrain section (R = 0.31, p < 0.02.This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity.

  2. A generic, time-resolved, integrated digital image correlation, identification approach

    NARCIS (Netherlands)

    Hoefnagels, J.P.M.; Neggers, J.; Blaysat, Benoît; Hild, François; Geers, M.G.D.; Jin, H.; Sciammarella, C.; Yoshida, S.; Lamberti, L.

    2015-01-01

    A generic one-step Integrated Digital Image Correlation (I-DIC) inverse parameter identification approach is introduced that enables direct identification of constitutive model parameters by intimately integrating a Finite Elements Method (FEM) with Digital Image Correlation (DIC), directly

  3. Primary colorectal lymphoma: spectrum of imaging findings with pathologic correlation

    International Nuclear Information System (INIS)

    Lee, Hyun Ju; Han, Joon Koo; Kim, Tae Kyoung; Kim, Young Hoon; Kim, Ah Young; Kim, Kyoung Won; Choi, Ja Young; Choi, Byung Ihn

    2002-01-01

    Primary colorectal lymphoma is a very uncommon disease; therefore, it has received little attention in the radiology literature. Moreover, imaging features of newly described pathologic subtypes have not been reported such as low-grade B-cell lymphoma arising from mucosa-associated lymphoid tissue and peripheral T-cell lymphoma that involves colorectal area. We retrospectively reviewed double-contrast barium enema and CT scans in the patients with primary colorectal lymphoma. In this article the radiologic appearances of primary colorectal lymphoma are categorized into focal lesion and diffuse lesion. Focal lesion includes polypoid mass, circumferential infiltration with smooth mucosal surface, circumferential infiltration with extensive ulceration, cavitary mass, mucosal nodularity, and mucosal fold thickening. Diffuse lesion includes diffuse ulcerative lesion and diffuse nodular lesion. Peripheral T-cell lymphomas that involve the colon manifested as either a diffuse or focal segmental lesion and showed extensive mucosal ulceration. These findings are similar to those of Crohn's disease or tuberculous colitis and are different from those of previously reported colorectal lymphoma. Low-grade B-cell lymphoma arising from mucosa-associated lymphoid tissue manifest as multiple mucosal nodularity. The imaging features of primary colorectal lymphoma are quite variable and overlap with other colonic pathology; however, it is important for radiologists to know the imaging features of primary colorectal lymphoma with their pathologic correlation. (orig.)

  4. Quantum correlated imaging is a promising new technique in medical imaging

    Institute of Scientific and Technical Information of China (English)

    Nan Zhang; Zhaohua Yang

    2017-01-01

    Cardio-cerebral vascular diseases are common and frequently occurring serious diseases that threaten humans. In recent years, Digital Subtraction Angiography (DSA) has played a vital role in the diagnosis and treatment of cardio-cerebral vascular diseases. However, DSA is not able to visualize intravascular structures in real time, and it is especially difficult to evaluate each layer of the vascular wall and the composition of atherosclerotic plaques with DSA. Quantum correlated imaging is a new technique that can be used to perform real-time online imaging of intravascular flow, vascular wall structure, and atherosclerotic plaque composition. Quantum correlated imaging is a promising new technique that will soon be used in the diagnosis and treatment of cardio-cerebral vascular diseases.

  5. Theoretical scheme of thermal-light many-ghost imaging by Nth-order intensity correlation

    International Nuclear Information System (INIS)

    Liu Yingchuan; Kuang Leman

    2011-01-01

    In this paper, we propose a theoretical scheme of many-ghost imaging in terms of Nth-order correlated thermal light. We obtain the Gaussian thin lens equations in the many-ghost imaging protocol. We show that it is possible to produce N-1 ghost images of an object at different places in a nonlocal fashion by means of a higher order correlated imaging process with an Nth-order correlated thermal source and correlation measurements. We investigate the visibility of the ghost images in the scheme and obtain the upper bounds of the visibility for the Nth-order correlated thermal-light ghost imaging. It is found that the visibility of the ghost images can be dramatically enhanced when the order of correlation becomes larger. It is pointed out that the many-ghost imaging phenomenon is an observable physical effect induced by higher order coherence or higher order correlations of optical fields.

  6. High-speed technique based on a parallel projection correlation procedure for digital image correlation

    Science.gov (United States)

    Zaripov, D. I.; Renfu, Li

    2018-05-01

    The implementation of high-efficiency digital image correlation methods based on a zero-normalized cross-correlation (ZNCC) procedure for high-speed, time-resolved measurements using a high-resolution digital camera is associated with big data processing and is often time consuming. In order to speed-up ZNCC computation, a high-speed technique based on a parallel projection correlation procedure is proposed. The proposed technique involves the use of interrogation window projections instead of its two-dimensional field of luminous intensity. This simplification allows acceleration of ZNCC computation up to 28.8 times compared to ZNCC calculated directly, depending on the size of interrogation window and region of interest. The results of three synthetic test cases, such as a one-dimensional uniform flow, a linear shear flow and a turbulent boundary-layer flow, are discussed in terms of accuracy. In the latter case, the proposed technique is implemented together with an iterative window-deformation technique. On the basis of the results of the present work, the proposed technique is recommended to be used for initial velocity field calculation, with further correction using more accurate techniques.

  7. 4D cone beam CT via spatiotemporal tensor framelet

    International Nuclear Information System (INIS)

    Gao, Hao; Li, Ruijiang; Xing, Lei; Lin, Yuting

    2012-01-01

    Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.

  8. 4D cone beam CT via spatiotemporal tensor framelet

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hao, E-mail: hao.gao@emory.edu [Departments of Mathematics and Computer Science, and Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States); Li, Ruijiang; Xing, Lei [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Lin, Yuting [Department of Radiological Sciences, University of California, Irvine, California 92697 (United States)

    2012-11-15

    Purpose: On-board 4D cone beam CT (4DCBCT) offers respiratory phase-resolved volumetric imaging, and improves the accuracy of target localization in image guided radiation therapy. However, the clinical utility of this technique has been greatly impeded by its degraded image quality, prolonged imaging time, and increased imaging dose. The purpose of this letter is to develop a novel iterative 4DCBCT reconstruction method for improved image quality, increased imaging speed, and reduced imaging dose. Methods: The essence of this work is to introduce the spatiotemporal tensor framelet (STF), a high-dimensional tensor generalization of the 1D framelet for 4DCBCT, to effectively take into account of highly correlated and redundant features of the patient anatomy during respiration, in a multilevel fashion with multibasis sparsifying transform. The STF-based algorithm is implemented on a GPU platform for improved computational efficiency. To evaluate the method, 4DCBCT full-fan scans were acquired within 30 s, with a gantry rotation of 200°; STF is also compared with a state-of-art reconstruction method via spatiotemporal total variation regularization. Results: Both the simulation and experimental results demonstrate that STF-based reconstruction achieved superior image quality. The reconstruction of 20 respiratory phases took less than 10 min on an NVIDIA Tesla C2070 GPU card. The STF codes are available at https://sites.google.com/site/spatiotemporaltensorframelet . Conclusions: By effectively utilizing the spatiotemporal coherence of the patient anatomy among different respiratory phases in a multilevel fashion with multibasis sparsifying transform, the proposed STF method potentially enables fast and low-dose 4DCBCT with improved image quality.

  9. Prediction of fracture profile using digital image correlation

    Science.gov (United States)

    Chaitanya, G. M. S. K.; Sasi, B.; Kumar, Anish; Babu Rao, C.; Purnachandra Rao, B.; Jayakumar, T.

    2015-04-01

    Digital Image Correlation (DIC) based full field strain mapping methodology is used for mapping strain on an aluminum sample subjected to tensile deformation. The local strains on the surface of the specimen are calculated at different strain intervals. Early localization of strain is observed at a total strain of 0.050ɛ; itself, whereas a visually apparent localization of strain is observed at a total strain of 0.088ɛ;. Orientation of the line of fracture (12.0°) is very close to the orientation of locus of strain maxima (11.6°) computed from the strain mapping at 0.063ɛ itself. These results show the efficacy of the DIC based method to predict the location as well as the profile of the fracture, at an early stage.

  10. Imaging of compound palmar ganglion with pathologic correlation

    Directory of Open Access Journals (Sweden)

    Sourav Talukder

    2014-12-01

    Full Text Available Compound palmar ganglion, or chronic flexor tenosynovitis, most commonly of tuberculousorigin, is a rare extrapulmonary manifestation of tuberculosis (TB. The flexor synovialsheath is not a common site for TB but, once involved, causes rapid involvement of all flexortendons. We discuss the case of a 70-year-old farmer who presented to us with pain and progressive swelling of the palmar aspect of the wrist. On clinical examination, swelling both above and below the proximal wrist crease was found, with positive cross-fluctuation. Onultrasonography and magnetic resonance imaging, features suggestive of compound palmarganglion were present. The patient underwent surgical resection (extensive tenosynovectomyand chemotherapy. Post-operative histopatholgical findings correlated with the radiological features.

  11. Correlation of Imaging Findings with Pathologic Findings of Sclerosing Adenosis

    International Nuclear Information System (INIS)

    Choi, Bo Bae; Shu, Kwang Sun

    2012-01-01

    The purpose of this study was to evaluate the mammographic and sonographic findings of pure sclerosing adenosis. We retrospectively reviewed the mammographic and sonographic findings in 40 cases of pure sclerosing adenosis confirmed by core needle biopsy (n = 23), vacuum-assisted biopsy (n = 7), excision biopsy (n = 9), and lumpectomy (n = 1) from January 2002 to March 2010. All imaging findings were analyzed according to the American College of Radiology (ACR) breast imaging reporting and data system (BI-RADS). Radiologic features were correlated with pathologic findings. Although most mammograms showed negative findings (57%), calcification was the most common abnormal finding of sclerosing adenosis. On sonography, the most common finding was a circumscribed oval hypoechoic mass without posterior features (78%). Most masses showed BI-RADS category 3, (75%, 27/36). Five cases showed categories 4 or 5 (14%, 5/36). Most mammographic and sonographic findings of sclerosing adenosis are non-specific and non-pathognomonic, even though sometimes sclerosing adenosis can be radiologically or histopathologically confused with malignancy

  12. Imaging Correlations in Heterodyne Spectra for Quantum Displacement Sensing

    Science.gov (United States)

    Pontin, A.; Lang, J. E.; Chowdhury, A.; Vezio, P.; Marino, F.; Morana, B.; Serra, E.; Marin, F.; Monteiro, T. S.

    2018-01-01

    The extraordinary sensitivity of the output field of an optical cavity to small quantum-scale displacements has led to breakthroughs such as the first detection of gravitational waves and of the motions of quantum ground-state cooled mechanical oscillators. While heterodyne detection of the output optical field of an optomechanical system exhibits asymmetries which provide a key signature that the mechanical oscillator has attained the quantum regime, important quantum correlations are lost. In turn, homodyning can detect quantum squeezing in an optical quadrature but loses the important sideband asymmetries. Here we introduce and experimentally demonstrate a new technique, subjecting the autocorrelators of the output current to filter functions, which restores the lost heterodyne correlations (whether classical or quantum), drastically augmenting the useful information accessible. The filtering even adjusts for moderate errors in the locking phase of the local oscillator. Hence we demonstrate the single-shot measurement of hundreds of different field quadratures allowing the rapid imaging of detailed features from a simple heterodyne trace. We also obtain a spectrum of hybrid homodyne-heterodyne character, with motional sidebands of combined amplitudes comparable to homodyne. Although investigated here in a thermal regime, the method's robustness and generality represents a promising new approach to sensing of quantum-scale displacements.

  13. Correlates of Body Image in Polish Weight Trainers

    Directory of Open Access Journals (Sweden)

    Guszkowska Monika

    2015-06-01

    Full Text Available Purpose. The purpose of this study was to determine body image and body satisfaction in Polish adult men involved in resistance training and to investigate their relationships with objective anthropometric and training characteristics. Methods. The study included 176 males aged 18-31 years with 1-14 years resistance training experience. The Figure Rating Scale, Body Satisfaction Scale and a self-designed questionnaire were administered. Results. Approximately 62% of the participants would like to be more muscular, only 29% accepted their appearance and 9% would like to be less muscular. The body selected as the personal ideal (M = 5.34 was less muscular than the body considered by the participants to be ideal by other men (normative body; M = 6.07 and was more muscular than the body thought to be most attractive to women (M = 5.10. Actual and ideal body muscularity correlated positively with age and body mass, height and BMI. Dissatisfaction with trunk and motor characteristics correlated positively with ideal body and the body considered most attractive to women as well as with the discrepancy indices between the above factors and the actual body. Conclusions. Men regularly involved in resistance training were found to strive for a muscular physique. The normative body, the physique believed to be desired by other men, was more muscular than what was considered preferential to women. However, the latter constitutes a stronger determinant of the level of body satisfaction in men engaged in resistance training.

  14. Applications of three-dimensional image correlation in conformal radiotherapy

    International Nuclear Information System (INIS)

    Van Herk, M.; Gilhuijs, K.; Kwa, S.; Lebesque, J.; Muller, S.; De Munck, J.; Touw, A.; Kooy, H.

    1995-01-01

    The development of techniques for the registration of CT, MRI and SPECT creates new possibilities for improved target volume definition and quantitative image analysis. The discussed technique is based on chamfer matching and is suitable for automatic 3-D matching of CT with CT, CT with MRI, CT with SPECT and MRI with SPECT. By integrating CT with MRI, the diagnostic qualities of MRI are combined with the geometric accuracy of the planning CT. Significant differences in the delineation of the target volume for brain, head and neck and prostate tumors have been demonstrated when using integrated CT and MRI compared with using CT alone. In addition, integration of the planning CT with pre-operative scans improves knowledge of possible tumor extents. By first matching scans based on the bony anatomy and subsequently matching on an organ of study, relative motion of the organ is quantified accurately. In a study with 42 CT scans of 11 patients, magnitude and causes of prostate motion have been analysed. The most important motion of the prostate is a forward-backward rotation around a point near the apex caused by rectal volume difference. Significant correlations were also found between motion of the legs and the prostate. By integrating functional images made before and after radiotherapy with the planning CT, the relation between local change of lung function and delivered dose has been quantified accurately. The technique of chamfer matching is a convenient and more accurate alternative for the use of external markers in a CT/SPECT lung damage study. Also, damage visible in diagnostic scans can be related to radiation dose, thereby improving follow-up diagnostics. It can be concluded that 3-D image integration plays an important role in assessing and improving the accuracy of radiotherapy and is therefore indispensable for conformal therapy. However, user-friendly implementation of these techniques remains to be done to facilitate clinical application on a large

  15. Applications of three-dimensional image correlation in conformal radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Van Herk, M; Gilhuijs, K; Kwa, S; Lebesque, J; Muller, S; De Munck, J; Touw, A [Nederlands Kanker Inst. ` Antoni van Leeuwenhoekhuis` , Amsterdam (Netherlands); Kooy, H [Harvard Medical School, Boston, MA (United States)

    1995-12-01

    The development of techniques for the registration of CT, MRI and SPECT creates new possibilities for improved target volume definition and quantitative image analysis. The discussed technique is based on chamfer matching and is suitable for automatic 3-D matching of CT with CT, CT with MRI, CT with SPECT and MRI with SPECT. By integrating CT with MRI, the diagnostic qualities of MRI are combined with the geometric accuracy of the planning CT. Significant differences in the delineation of the target volume for brain, head and neck and prostate tumors were demonstrated when using integrated CT and MRI compared with using CT alone. In addition, integration of the planning CT with pre-operative scans improves knowledge of possible tumor extents. By first matching scans based on the bony anatomy and subsequently matching on an organ of study, relative motion of the organ is quantified accurately. In a study with 42 CT scans of 11 patients, magnitude and causes of prostate motion were analysed. The most important motion of the prostate is a forward-backward rotation around a point near the apex caused by rectal volume difference. Significant correlations were also found between motion of the legs and the prostate. By integrating functional images made before and after radiotherapy with the planning CT, the relation between local change of lung function and delivered dose has been quantified accurately. The technique of chamfer matching is a convenient and more accurate alternative for the use of external markers in a CT/SPECT lung damage study. Also, damage visible in diagnostic scans can be related to radiation dose, thereby improving follow-up diagnostics. It can be concluded that 3-D image integration plays an important role in assessing and improving the accuracy of radiotherapy and is therefore indispensable for conformal therapy. However, user-friendly implementation of these techniques remains to be done to facilitate clinical application on a large scale.

  16. Wavelet-space correlation imaging for high-speed MRI without motion monitoring or data segmentation.

    Science.gov (United States)

    Li, Yu; Wang, Hui; Tkach, Jean; Roach, David; Woods, Jason; Dumoulin, Charles

    2015-12-01

    This study aims to (i) develop a new high-speed MRI approach by implementing correlation imaging in wavelet-space, and (ii) demonstrate the ability of wavelet-space correlation imaging to image human anatomy with involuntary or physiological motion. Correlation imaging is a high-speed MRI framework in which image reconstruction relies on quantification of data correlation. The presented work integrates correlation imaging with a wavelet transform technique developed originally in the field of signal and image processing. This provides a new high-speed MRI approach to motion-free data collection without motion monitoring or data segmentation. The new approach, called "wavelet-space correlation imaging", is investigated in brain imaging with involuntary motion and chest imaging with free-breathing. Wavelet-space correlation imaging can exceed the speed limit of conventional parallel imaging methods. Using this approach with high acceleration factors (6 for brain MRI, 16 for cardiac MRI, and 8 for lung MRI), motion-free images can be generated in static brain MRI with involuntary motion and nonsegmented dynamic cardiac/lung MRI with free-breathing. Wavelet-space correlation imaging enables high-speed MRI in the presence of involuntary motion or physiological dynamics without motion monitoring or data segmentation. © 2014 Wiley Periodicals, Inc.

  17. a Comparative Analysis of Spatiotemporal Data Fusion Models for Landsat and Modis Data

    Science.gov (United States)

    Hazaymeh, K.; Almagbile, A.

    2018-04-01

    In this study, three documented spatiotemporal data fusion models were applied to Landsat-7 and MODIS surface reflectance, and NDVI. The algorithms included the spatial and temporal adaptive reflectance fusion model (STARFM), sparse representation based on a spatiotemporal reflectance fusion model (SPSTFM), and spatiotemporal image-fusion model (STI-FM). The objectives of this study were to (i) compare the performance of these three fusion models using a one Landsat-MODIS spectral reflectance image pairs using time-series datasets from the Coleambally irrigation area in Australia, and (ii) quantitatively evaluate the accuracy of the synthetic images generated from each fusion model using statistical measurements. Results showed that the three fusion models predicted the synthetic Landsat-7 image with adequate agreements. The STI-FM produced more accurate reconstructions of both Landsat-7 spectral bands and NDVI. Furthermore, it produced surface reflectance images having the highest correlation with the actual Landsat-7 images. This study indicated that STI-FM would be more suitable for spatiotemporal data fusion applications such as vegetation monitoring, drought monitoring, and evapotranspiration.

  18. MR imaging of meniscal tears: correlation with history of trauma

    International Nuclear Information System (INIS)

    Choi, Jong Cheul; Yang, Seoung Oh; Choi, Sun Seob; Son, Seok Hyun; Lee, Yung Il; Chung, Duck Hwan; Kim, Kyung Taek; Sohn, Sung Keun; Lee, Jung Yoon

    1994-01-01

    The medial meniscus is injured much more than the lateral meniscus. Because the medial meniscus is much larger in diameter, is thinner in its periphery and narrower in body than the lateral meniscus, and dose not attach to either cruciate ligament. We evaluated correlations with sites of tear and history of trauma. We reviewed retrospectively in 43 patients with meniscal tears on MR(51 cases) and correlated them with history of trauma. The most common site of injury was the posterior horn of the medial meniscuc(32/51), but high incidence of lateral meniscal tear compared with previous reports was seen. In the cases which had history of trauma, the posterior horn of medial meniscus was most commonly injured(26/34) and 5 meniscal tears were combined with meniscal tear in the other site. The tear in the anterior horn of the medial meniscus was seen only in a patient which had history of trauma and combined with meniscal tear in the other site. But in the meniscal tears without definite history of trauma, the incidence of meniscal tear was different from the meniscal tear with history of trauma. The incidence of lateral meniscal tear(11/17) was higher than medial meniscal tear and the posterior horn of lateral meniscus was commonly injured. We concluded that the medial meniscus was commonly injured, especially posterior horn, but in the cases which had no definite history of trauma, the lateral meniscus was commonly injured. An awareness of prevalent site of meniscal injuries may be helpful in the diagnostic interpretation of MR imaging of knee

  19. Determining spatio-temporal distribution of bee forage species of Al-Baha region based on ground inventorying supported with GIS applications and Remote Sensed Satellite Image analysis

    Directory of Open Access Journals (Sweden)

    Nuru Adgaba

    2017-07-01

    Full Text Available In arid zones, the shortage of bee forage is critical and usually compels beekeepers to move their colonies in search of better forages. Identifying and mapping the spatiotemporal distribution of the bee forages over given area is important for better management of bee colonies. In this study honey bee plants in the target areas were inventoried following, ground inventory work supported with GIS applications. The study was conducted on 85 large plots of 50 × 50 m each. At each plot, data on species name, height, base diameter, crown height, crown diameter has been taken for each plant with their respective geographical positions. The data were stored, and processed using Trimble GPS supported with ArcGIS10 software program. The data were used to estimate the relative frequency, density, abundance and species diversity, species important value index and apicultural value of the species. In addition, Remotely Sensed Satellite Image of the area was obtained and processed using Hopfield Artificial Neural Network techniques. During the study, 182 species from 49 plant families were identified as bee forages of the target area. From the total number of species; shrubs, herbs and trees were accounting for 61%, 27.67%, and 11.53% respectively. Of which Ziziphus spina-christi, Acacia tortilis, Acacia origina, Acacia asak, Lavandula dentata, and Hypoestes forskaolii were the major nectar source plants of the area in their degree of importance. The average vegetation cover values of the study areas were low (<30% with low Shannon’s species diversity indices (H′ of 0.5–1.52 for different sites. Based on the eco-climatological factors and the variations in their flowering period, these major bee forage species were found to form eight distinct spatiotemporal categories which allow beekeepers to migrate their colonies to exploit the resources at different seasons and place. The Remote Sensed Satellite Image analysis confirmed the spatial

  20. Automatic segmentation of 4D cardiac MR images for extraction of ventricular chambers using a spatio-temporal approach

    Science.gov (United States)

    Atehortúa, Angélica; Zuluaga, Maria A.; Ourselin, Sébastien; Giraldo, Diana; Romero, Eduardo

    2016-03-01

    An accurate ventricular function quantification is important to support evaluation, diagnosis and prognosis of several cardiac pathologies. However, expert heart delineation, specifically for the right ventricle, is a time consuming task with high inter-and-intra observer variability. A fully automatic 3D+time heart segmentation framework is herein proposed for short-axis-cardiac MRI sequences. This approach estimates the heart using exclusively information from the sequence itself without tuning any parameters. The proposed framework uses a coarse-to-fine approach, which starts by localizing the heart via spatio-temporal analysis, followed by a segmentation of the basal heart that is then propagated to the apex by using a non-rigid-registration strategy. The obtained volume is then refined by estimating the ventricular muscle by locally searching a prior endocardium- pericardium intensity pattern. The proposed framework was applied to 48 patients datasets supplied by the organizers of the MICCAI 2012 Right Ventricle segmentation challenge. Results show the robustness, efficiency and competitiveness of the proposed method both in terms of accuracy and computational load.

  1. Fourier-transform ghost imaging with pure far-field correlated thermal light

    International Nuclear Information System (INIS)

    Liu Honglin; Shen Xia; Han Shensheng; Zhu Daming

    2007-01-01

    Pure far-field correlated thermal light beams are created with phase grating, and Fourier-transform ghost imaging depending only on the far-field correlation is demonstrated experimentally. Theoretical analysis and the results of experimental investigation of this pure far-field correlated thermal light are presented. Applications which may be exploited with this imaging scheme are discussed

  2. Study of morphological changes in scattering and optically anisotropic medium through correlation images

    Science.gov (United States)

    Jain, Neha; Shukla, Prashant; Singh, Jai

    2018-05-01

    Correlation images are very useful in determining the morphological changes. We have investigated the correlation image analysis on depolarization and retardance matrices of polystyrene and gelatine samples respectively. We observed that that correlation images have a potential to show a significant variation with change in the concentration of samples (polystyrene and gelatine). For polystyrene microspheres the correlation value decreases with increasing scattering coefficient. In gelatine samples the correlation also decreases with sample concentration. This variation in correlation for retardance shows the change in a birefringence property of gelatine solution.

  3. Interrogating the Spatiotemporal Landscape of Neuromodulatory GPCR Signaling by Real-Time Imaging of cAMP in Intact Neurons and Circuits

    Directory of Open Access Journals (Sweden)

    Brian S. Muntean

    2018-01-01

    Full Text Available Summary: Modulation of neuronal circuits is key to information processing in the brain. The majority of neuromodulators exert their effects by activating G-protein-coupled receptors (GPCRs that control the production of second messengers directly impacting cellular physiology. How numerous GPCRs integrate neuromodulatory inputs while accommodating diversity of incoming signals is poorly understood. In this study, we develop an in vivo tool and analytical suite for analyzing GPCR responses by monitoring the dynamics of a key second messenger, cyclic AMP (cAMP, with excellent quantitative and spatiotemporal resolution in various neurons. Using this imaging approach in combination with CRISPR/Cas9 editing and optogenetics, we interrogate neuromodulatory mechanisms of defined populations of neurons in an intact mesolimbic reward circuit and describe how individual inputs generate discrete second-messenger signatures in a cell- and receptor-specific fashion. This offers a resource for studying native neuronal GPCR signaling in real time. : Muntean et al. develop an in vivo reagent to study processing of neurotransmitter GPCR signals by monitoring real-time dynamics of cAMP responses. They demonstrate application of this approach, in combination with CRISPR/Cas9 gene editing and optogenetics, to interrogate the functional organization of a striatal circuit. Keywords: cAMP, GPCR, neuromodulation, dopamine, striatum, imaging, optogenetics

  4. Correlation of the clinical and physical image quality in chest radiography for average adults with a computed radiography imaging system.

    Science.gov (United States)

    Moore, C S; Wood, T J; Beavis, A W; Saunderson, J R

    2013-07-01

    The purpose of this study was to examine the correlation between the quality of visually graded patient (clinical) chest images and a quantitative assessment of chest phantom (physical) images acquired with a computed radiography (CR) imaging system. The results of a previously published study, in which four experienced image evaluators graded computer-simulated postero-anterior chest images using a visual grading analysis scoring (VGAS) scheme, were used for the clinical image quality measurement. Contrast-to-noise ratio (CNR) and effective dose efficiency (eDE) were used as physical image quality metrics measured in a uniform chest phantom. Although optimal values of these physical metrics for chest radiography were not derived in this work, their correlation with VGAS in images acquired without an antiscatter grid across the diagnostic range of X-ray tube voltages was determined using Pearson's correlation coefficient. Clinical and physical image quality metrics increased with decreasing tube voltage. Statistically significant correlations between VGAS and CNR (R=0.87, pchest CR images acquired without an antiscatter grid. A statistically significant correlation has been found between the clinical and physical image quality in CR chest imaging. The results support the value of using CNR and eDE in the evaluation of quality in clinical thorax radiography.

  5. Spatiotemporal prediction of fine particulate matter using high resolution satellite images in the southeastern U.S 2003–2011

    Science.gov (United States)

    Lee, Mihye; Kloog, Itai; Chudnovsky, Alexandra; Lyapustin, Alexei; Wang, Yujie; Melly, Steven; Coull, Brent; Koutrakis, Petros; Schwartz, Joel

    2016-01-01

    Numerous studies have demonstrated that fine particulate matter (PM2.5, particles smaller than 2.5 μm in aerodynamic diameter) is associated with adverse health outcomes. The use of ground monitoring stations of PM2.5 to assess personal exposure; however, induces measurement error. Land use regression provides spatially resolved predictions but land use terms do not vary temporally. Meanwhile, the advent of satellite-retrieved aerosol optical depth (AOD) products have made possible to predict the spatial and temporal patterns of PM2.5 exposures. In this paper, we used AOD data with other PM2.5 variables such as meteorological variables, land use regression, and spatial smoothing to predict daily concentrations of PM2.5 at a 1 km2 resolution of the southeastern United States including the seven states of Georgia, North Carolina, South Carolina, Alabama, Tennessee, Mississippi, and Florida for the years from 2003 through 2011. We divided the study area into 3 regions and applied separate mixed-effect models to calibrate AOD using ground PM2.5 measurements and other spatiotemporal predictors. Using 10-fold cross-validation, we obtained out of sample R2 values of 0.77, 0.81, and 0.70 with the square root of the mean squared prediction errors (RMSPE) of 2.89, 2.51, and 2.82 μg/m3 for regions 1, 2, and 3, respectively. The slopes of the relationships between predicted PM2.5 and held out measurements were approximately 1 indicating no bias between the observed and modeled PM2.5 concentrations. Predictions can be used in epidemiological studies investigating the effects of both acute and chronic exposures to PM2.5. Our model results will also extend the existing studies on PM2.5 which have mostly focused on urban areas due to the paucity of monitors in rural areas. PMID:26082149

  6. Textural analysis of early-phase spatiotemporal changes in contrast enhancement of breast lesions imaged with an ultrafast DCE-MRI protocol.

    Science.gov (United States)

    Milenković, Jana; Dalmış, Mehmet Ufuk; Žgajnar, Janez; Platel, Bram

    2017-09-01

    New ultrafast view-sharing sequences have enabled breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to be performed at high spatial and temporal resolution. The aim of this study is to evaluate the diagnostic potential of textural features that quantify the spatiotemporal changes of the contrast-agent uptake in computer-aided diagnosis of malignant and benign breast lesions imaged with high spatial and temporal resolution DCE-MRI. The proposed approach is based on the textural analysis quantifying the spatial variation of six dynamic features of the early-phase contrast-agent uptake of a lesion's largest cross-sectional area. The textural analysis is performed by means of the second-order gray-level co-occurrence matrix, gray-level run-length matrix and gray-level difference matrix. This yields 35 textural features to quantify the spatial variation of each of the six dynamic features, providing a feature set of 210 features in total. The proposed feature set is evaluated based on receiver operating characteristic (ROC) curve analysis in a cross-validation scheme for random forests (RF) and two support vector machine classifiers, with linear and radial basis function (RBF) kernel. Evaluation is done on a dataset with 154 breast lesions (83 malignant and 71 benign) and compared to a previous approach based on 3D morphological features and the average and standard deviation of the same dynamic features over the entire lesion volume as well as their average for the smaller region of the strongest uptake rate. The area under the ROC curve (AUC) obtained by the proposed approach with the RF classifier was 0.8997, which was significantly higher (P = 0.0198) than the performance achieved by the previous approach (AUC = 0.8704) on the same dataset. Similarly, the proposed approach obtained a significantly higher result for both SVM classifiers with RBF (P = 0.0096) and linear kernel (P = 0.0417) obtaining AUC of 0.8876 and 0.8548, respectively

  7. MR Imaging of Rotator Cuff Tears: Correlation with Arthroscopy

    Science.gov (United States)

    Bhandary, Sudarshan; Khandige, Ganesh; Kabra, Utkarsh

    2017-01-01

    Introduction Rotator cuff tears are quite common and can cause significant disability. Magnetic Resonance Imaging (MRI) has now emerged as the modality of choice in the preoperative evaluation of patients with rotator cuff injuries, in view of its improved inherent soft tissue contrast and resolution. Aim To evaluate the diagnostic accuracy of routine MRI in the detection and characterisation of rotator cuff tears, by correlating the findings with arthroscopy. Materials and Methods This prospective study was carried out between July 2014 and August 2016 at the AJ Institute of Medical Sciences, Mangalore, Karnataka, India. A total of 82 patients were diagnosed with rotator cuff injury on MRI during this period, out of which 45 patients who underwent further evaluation with arthroscopy were included in this study. The data collected was analysed for significant correlation between MRI diagnosis and arthroscopic findings using kappa statistics. The sensitivity, specificity, predictive value and accuracy of MRI for the diagnosis of full and partial thickness tears were calculated using arthroscopic findings as the reference standard. Results There were 27 males and 18 females in this study. The youngest patient was 22 years and the oldest was 74 years. Majority of rotator cuff tears (78%) were seen in patients above the age of 40 years. MRI showed a sensitivity of 89.6%, specificity of 100%, positive predictive value of 100% and negative predictive value of 83.3% for the diagnosis of full thickness rotator cuff tears. For partial thickness tears, MRI showed a sensitivity of 100%, specificity of 86.6%, positive predictive value of 78.9% and negative predictive value of 100%. The accuracy was 93.1% for full thickness tears and 91.1% for partial thickness tears. The p-value was less than 0.01 for both full and partial thickness tears. There was good agreement between the MRI and arthroscopic findings, with kappa value of 0.85 for full thickness tears and 0.81 for partial

  8. Full-Field Indentation Damage Measurement Using Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Elías López-Alba

    2017-07-01

    Full Text Available A novel approach based on full-field indentation measurements to characterize and quantify the effect of contact in thin plates is presented. The proposed method has been employed to evaluate the indentation damage generated in the presence of bending deformation, resulting from the contact between a thin plate and a rigid sphere. For this purpose, the 3D Digital Image Correlation (3D-DIC technique has been adopted to quantify the out of plane displacements at the back face of the plate. Tests were conducted using aluminum thin plates and a rigid bearing sphere to evaluate the influence of the thickness and the material behavior during contact. Information provided by the 3D-DIC technique has been employed to perform an indirect measurement of the contact area during the loading and unloading path of the test. A symmetrical distribution in the contact damage region due to the symmetry of the indenter was always observed. In the case of aluminum plates, the presence of a high level of plasticity caused shearing deformation as the load increased. Results show the full-field contact damage area for different plates’ thicknesses at different loads. The contact damage region was bigger when the thickness of the specimen increased, and therefore, bending deformation was reduced. With the proposed approach, the elastic recovery at the contact location was quantified during the unloading, as well as the remaining permanent indentation damage after releasing the load. Results show the information obtained by full-field measurements at the contact location during the test, which implies a substantial improvement compared with pointwise techniques.

  9. Rainfall spatiotemporal variability relation to wetlands hydroperiods

    Science.gov (United States)

    Serrano-Hidalgo, Carmen; Guardiola-Albert, Carolina; Fernandez-Naranjo, Nuria

    2017-04-01

    Doñana natural space (Southwestern Spain) is one of the largest protected wetlands in Europe. The wide marshes present in this natural space have such ecological value that this wetland has been declared a Ramsar reserve in 1982. Apart from the extensive marsh, there are also small lagoons and seasonally flooded areas which are likewise essential to maintain a wide variety of valuable habitats. Hydroperiod, the length of time each point remains flooded along an annual cycle, is a critical ecological parameter that shapes aquatic plants and animals distribution and determines available habitat for many of the living organisms in the marshes. Recently, there have been published two different works estimating the hydroperiod of Doñana lagoons with Landsat Time Series images (Cifuentes et al., 2015; Díaz-Delgado et al., 2016). In both works the flooding cycle hydroperiod in Doñana marshes reveals a flooding regime mainly driven by rainfall, evapotranspiration, topography and local hydrological management actions. The correlation found between rainfall and hydroperiod is studied differently in both works. While in one the rainfall is taken from one raingauge (Cifuentes et al., 2015), the one performed by Díaz-Delgado (2016) uses annual rainfall maps interpolated with the inverse of the distance method. The rainfall spatiotemporal variability in this area can be highly significant; however the amount of this importance has not been quantified at the moment. In the present work the geostatistical tool known as spatiotemporal variogram is used to study the rainfall spatiotemporal variability. The spacetime package implemented in R (Pebesma, 2012) facilities its computation from a high rainfall data base of more than 100 raingauges from 1950 to 2016. With the aid of these variograms the rainfall spatiotemporal variability is quantified. The principal aim of the present work is the study of the relation between the rainfall spatiotemporal variability and the

  10. Snapping Sharks, Maddening Mindreaders, and Interactive Images: Teaching Correlation.

    Science.gov (United States)

    Mitchell, Mark L.

    Understanding correlation coefficients is difficult for students. A free computer program that helps introductory psychology students distinguish between positive and negative correlation, and which also teaches them to understand the differences between correlation coefficients of different size is described in this paper. The program is…

  11. Spatiotemporal Prediction of Fine Particulate Matter Using High-Resolution Satellite Images in the Southeastern US 2003-2011

    Science.gov (United States)

    Lee, Mihye; Kloog, Itai; Chudnovsky, Alexandra; Lyapustin, Alexei; Wang, Yujie; Melly, Steven; Coull, Brent; Koutrakis, Petros; Schwartz, Joel

    2016-01-01

    Numerous studies have demonstrated that fine particulate matter (PM(sub 2.5), particles smaller than 2.5 micrometers in aerodynamic diameter) is associated with adverse health outcomes. The use of ground monitoring stations of PM(sub 2.5) to assess personal exposure, however, induces measurement error. Land-use regression provides spatially resolved predictions but land-use terms do not vary temporally. Meanwhile, the advent of satellite-retrieved aerosol optical depth (AOD) products have made possible to predict the spatial and temporal patterns of PM(sub 2.5) exposures. In this paper, we used AOD data with other PM(sub 2.5) variables, such as meteorological variables, land-use regression, and spatial smoothing to predict daily concentrations of PM(sub 2.5) at a 1 sq km resolution of the Southeastern United States including the seven states of Georgia, North Carolina, South Carolina, Alabama, Tennessee, Mississippi, and Florida for the years from 2003 to 2011. We divided the study area into three regions and applied separate mixed-effect models to calibrate AOD using ground PM(sub 2.5) measurements and other spatiotemporal predictors. Using 10-fold cross-validation, we obtained out of sample R2 values of 0.77, 0.81, and 0.70 with the square root of the mean squared prediction errors of 2.89, 2.51, and 2.82 cu micrograms for regions 1, 2, and 3, respectively. The slopes of the relationships between predicted PM2.5 and held out measurements were approximately 1 indicating no bias between the observed and modeled PM(sub 2.5) concentrations. Predictions can be used in epidemiological studies investigating the effects of both acute and chronic exposures to PM(sub 2.5). Our model results will also extend the existing studies on PM(sub 2.5) which have mostly focused on urban areas because of the paucity of monitors in rural areas.

  12. Optimum slicing of radical prostatectomy specimens for correlation between histopathology and medical images

    International Nuclear Information System (INIS)

    Chen, Li Hong; Ng, Wan Sing; Ho, Henry; Yuen, John; Cheng, Chris; Lazaro, Richie; Thng, Choon Hua

    2010-01-01

    There is a need for methods which enable precise correlation of histologic sections with in vivo prostate images. Such methods would allow direct comparison between imaging features and functional or histopathological heterogeneity of tumors. Correlation would be particularly useful for validating the accuracy of imaging modalities, developing imaging techniques, assessing image-guided therapy, etc. An optimum prostate slicing method for accurate correlation between the histopathological and medical imaging planes in terms of section angle, thickness and level was sought. Literature review (51 references from 1986-2009 were cited) was done on the various sectioning apparatus or techniques used to slice the prostate specimen for accurate correlation between histopathological data and medical imaging. Technology evaluation was performed with review and discussion of various methods used to section other organs and their possible applications for sectioning prostatectomy specimens. No consensus has been achieved on how the prostate should be dissected to achieve a good correlation. Various customized sectioning instruments and techniques working with different mechanism are used in different research institutes to improve the correlation. Some of the methods have convincingly shown significant potential for improving image-specimen correlation. However, the semisolid consistent property of prostate tissue and the lack of identifiable landmarks remain challenges to be overcome, especially for fresh prostate sectioning and microtomy without external fiducials. A standardized optimum protocol to dissect prostatectomy specimens is needed for the validation of medical imaging modalities by histologic correlation. These standards can enhance disease management by improving the comparability between different modalities. (orig.)

  13. Spatio-Temporal Change of Vegetation Coverage and its Driving Forces Based on Landsat Images: a Case Study of Changchun City

    Science.gov (United States)

    Dong, L.; Jiang, H.; Yang, L.

    2018-04-01

    Based on the Landsat images in 2006, 2011 and 2015, and the method of dimidiate pixel model, the Normalized Difference Vegetation Index (NDVI) and the vegetation coverage, this paper analyzes the spatio-temporal variation of vegetation coverage in Changchun, China from 2006 to 2015, and investigates the response of vegetation coverage change to natural and artificial factors. The research results show that in nearly 10 years, the vegetation coverage in Changchun dropped remarkably, and reached the minimum in 2011. Moreover, the decrease of maximum NDVI was significant, with a decrease of about 27.43 %, from 2006 to 2015. The vegetation coverage change in different regions of the research area was significantly different. Among them, the vegetation change in Changchun showed a little drop, and it decreased firstly and then increased slowly in Yushu, Nong'an and Dehui. In addition, the temperature and precipitation change, land reclamation all affect the vegetation coverage. In short, the study of vegetation coverage change contributes scientific and technical support to government and environmental protection department, so as to promote the coordinated development of ecology and economy.

  14. High spatiotemporal resolution measurement of regional lung air volumes from 2D phase contrast x-ray images.

    Science.gov (United States)

    Leong, Andrew F T; Fouras, Andreas; Islam, M Sirajul; Wallace, Megan J; Hooper, Stuart B; Kitchen, Marcus J

    2013-04-01

    Described herein is a new technique for measuring regional lung air volumes from two-dimensional propagation-based phase contrast x-ray (PBI) images at very high spatial and temporal resolution. Phase contrast dramatically increases lung visibility and the outlined volumetric reconstruction technique quantifies dynamic changes in respiratory function. These methods can be used for assessing pulmonary disease and injury and for optimizing mechanical ventilation techniques for preterm infants using animal models. The volumetric reconstruction combines the algorithms of temporal subtraction and single image phase retrieval (SIPR) to isolate the image of the lungs from the thoracic cage in order to measure regional lung air volumes. The SIPR algorithm was used to recover the change in projected thickness of the lungs on a pixel-by-pixel basis (pixel dimensions ≈ 16.2 μm). The technique has been validated using numerical simulation and compared results of measuring regional lung air volumes with and without the use of temporal subtraction for removing the thoracic cage. To test this approach, a series of PBI images of newborn rabbit pups mechanically ventilated at different frequencies was employed. Regional lung air volumes measured from PBI images of newborn rabbit pups showed on average an improvement of at least 20% in 16% of pixels within the lungs in comparison to that measured without the use of temporal subtraction. The majority of pixels that showed an improvement was found to be in regions occupied by bone. Applying the volumetric technique to sequences of PBI images of newborn rabbit pups, it is shown that lung aeration at birth can be highly heterogeneous. This paper presents an image segmentation technique based on temporal subtraction that has successfully been used to isolate the lungs from PBI chest images, allowing the change in lung air volume to be measured over regions as small as the pixel size. Using this technique, it is possible to measure

  15. Considerations on the correlation between real body and body image

    OpenAIRE

    Beatrice ABALAȘEI; Florin TROFIN

    2017-01-01

    very individual in the society has a representation of it’s own body in relation to the spatial cues, postural cues, time cues, etc., considered by specialists the body scheme. Throughout its development, the human being goes through different stages of organization of both the image the and body scheme. We start carrying out this study from the idea that there could be, in male individuals, a link between body representation (own image projected outwardly apparent by reference to an image pr...

  16. METHODS OF DISTANCE MEASUREMENT’S ACCURACY INCREASING BASED ON THE CORRELATION ANALYSIS OF STEREO IMAGES

    Directory of Open Access Journals (Sweden)

    V. L. Kozlov

    2018-01-01

    Full Text Available To solve the problem of increasing the accuracy of restoring a three-dimensional picture of space using two-dimensional digital images, it is necessary to use new effective techniques and algorithms for processing and correlation analysis of digital images. Actively developed tools that allow you to reduce the time costs for processing stereo images, improve the quality of the depth maps construction and automate their construction. The aim of the work is to investigate the possibilities of using various techniques for processing digital images to improve the measurements accuracy of the rangefinder based on the correlation analysis of the stereo image. The results of studies of the influence of color channel mixing techniques on the distance measurements accuracy for various functions realizing correlation processing of images are presented. Studies on the analysis of the possibility of using integral representation of images to reduce the time cost in constructing a depth map areproposed. The results of studies of the possibility of using images prefiltration before correlation processing when distance measuring by stereo imaging areproposed.It is obtained that using of uniform mixing of channels leads to minimization of the total number of measurement errors, and using of brightness extraction according to the sRGB standard leads to an increase of errors number for all of the considered correlation processing techniques. Integral representation of the image makes it possible to accelerate the correlation processing, but this method is useful for depth map calculating in images no more than 0.5 megapixels. Using of image filtration before correlation processing can provide, depending on the filter parameters, either an increasing of the correlation function value, which is useful for analyzing noisy images, or compression of the correlation function.

  17. Automated method and system for the alignment and correlation of images from two different modalities

    Science.gov (United States)

    Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio

    1999-10-26

    A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.

  18. Magnetic resonance imaging of the menisci of the knee. Normal images. Pitfalls. Meniscus degeneration. Anatomical correlation

    International Nuclear Information System (INIS)

    Helenon, O.; Laval-Jeantet, M.; Bastian, D.

    1989-01-01

    The results of a study on 5 knees of fresh corpses explored with magnetic resonance imaging are reported, including 1 examined before and after intraarticular contrast injection, and on 15 asymptomatic subjects examined with the same procedure. A very thorough study of the menisci and of their attachment, ie. The tibial insertion of the menisceal horns, the transverse ligament, and the meniscofemoral ligament, is possible with T1-weighted MR sequences. The T2-weighted sequences, either following intraarticular contrast injection or in cases of articular effusion, allow analyzing the capsular attachments of the posterior horn of the lateral meniscus and its relationships with the tendon of the popliteal muscle. Five misleading images must be known for the exploration of the menisci, in order to avoid a number of interpretation problems. Images of type I and II initial meniscus degeneration are observed in 47% of all cases (control group). One case of menisceal cyst developing in the anterior horn of the lateral meniscus, with anatomical correlation, is also reported [fr

  19. A study of correlation technique on pyramid processed images

    Indian Academy of Sciences (India)

    generated according to the REDUCE function, defined as gk Еi, jЖ И REDUCE ... (Intel user's guide 1985). The application program is ... As the information content in the reduced image of size is 5 ┬ 5 negligible, the 5 ┬ 5 image case is not ...

  20. Correlative neuroanatomy of computed tomography and magnetic resonance imaging

    International Nuclear Information System (INIS)

    Groot, J.

    1984-01-01

    Since the development of computed tomography (CT) more than a decade ago, still another form of imaging has become available that provides displays of normal and abnormal human structures. Magnetic resonance imaging is given complete coverage in this book. It describes both CT and MR anatomy that explains basic principles and the current status of imaging the brain and spine. The author uses three-dimensional concepts to provide the reader with a simple means to compare the main structures of the brain, skull and spine. Combining normal, gross neuroanatomic illustrations with CT and MR images of normal and abnormal conditions, the book provides diagnostic guidance. Drawings, photographs and radiologic images are used to help

  1. Determining spatio-temporal distribution of bee forage species of Al-Baha region based on ground inventorying supported with GIS applications and Remote Sensed Satellite Image analysis.

    Science.gov (United States)

    Adgaba, Nuru; Alghamdi, Ahmed; Sammoud, Rachid; Shenkute, Awraris; Tadesse, Yilma; Ansari, Mahammad J; Sharma, Deepak; Hepburn, Colleen

    2017-07-01

    In arid zones, the shortage of bee forage is critical and usually compels beekeepers to move their colonies in search of better forages. Identifying and mapping the spatiotemporal distribution of the bee forages over given area is important for better management of bee colonies. In this study honey bee plants in the target areas were inventoried following, ground inventory work supported with GIS applications. The study was conducted on 85 large plots of 50 × 50 m each. At each plot, data on species name, height, base diameter, crown height, crown diameter has been taken for each plant with their respective geographical positions. The data were stored, and processed using Trimble GPS supported with ArcGIS10 software program. The data were used to estimate the relative frequency, density, abundance and species diversity, species important value index and apicultural value of the species. In addition, Remotely Sensed Satellite Image of the area was obtained and processed using Hopfield Artificial Neural Network techniques. During the study, 182 species from 49 plant families were identified as bee forages of the target area. From the total number of species; shrubs, herbs and trees were accounting for 61%, 27.67%, and 11.53% respectively. Of which Ziziphus spina-christi , Acacia tortilis , Acacia origina , Acacia asak , Lavandula dentata , and Hypoestes forskaolii were the major nectar source plants of the area in their degree of importance. The average vegetation cover values of the study areas were low (GIS and satellite image processing techniques could be an important tool for characterizing and mapping the available bee forage resources leading to their efficient and sustainable utilization.

  2. A nu-space for image correlation spectroscopy: characterization and application to measure protein transport in live cells

    Science.gov (United States)

    Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W.

    2013-08-01

    We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for spatio-temporal ICS (STICS) that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and intercellular adhesion molecule 1 (ICAM-1) ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrin-ligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.

  3. Imaging the square of the correlated two-electron wave function of a hydrogen molecule.

    Science.gov (United States)

    Waitz, M; Bello, R Y; Metz, D; Lower, J; Trinter, F; Schober, C; Keiling, M; Lenz, U; Pitzer, M; Mertens, K; Martins, M; Viefhaus, J; Klumpp, S; Weber, T; Schmidt, L Ph H; Williams, J B; Schöffler, M S; Serov, V V; Kheifets, A S; Argenti, L; Palacios, A; Martín, F; Jahnke, T; Dörner, R

    2017-12-22

    The toolbox for imaging molecules is well-equipped today. Some techniques visualize the geometrical structure, others the electron density or electron orbitals. Molecules are many-body systems for which the correlation between the constituents is decisive and the spatial and the momentum distribution of one electron depends on those of the other electrons and the nuclei. Such correlations have escaped direct observation by imaging techniques so far. Here, we implement an imaging scheme which visualizes correlations between electrons by coincident detection of the reaction fragments after high energy photofragmentation. With this technique, we examine the H 2 two-electron wave function in which electron-electron correlation beyond the mean-field level is prominent. We visualize the dependence of the wave function on the internuclear distance. High energy photoelectrons are shown to be a powerful tool for molecular imaging. Our study paves the way for future time resolved correlation imaging at FELs and laser based X-ray sources.

  4. Mesenchymal Tumors of the Breast: Imaging and the Histopathologic Correlation

    International Nuclear Information System (INIS)

    Kim, Bo Mi; Kim, Eun Kyung; You, Jae Kyoung; Kim, Yee Jeong

    2011-01-01

    Various benign and malignant mesenchymal tumors can occur in the breast. Most radiologists are unfamiliar with the imaging features of these tumors and the imaging features have not been described in the radiologic literature. It is important that radiologists should be familiar with the broad spectrum of imaging features of rare mesenchymal breast tumors. In this pictorial review, we demonstrate the sonographic findings and the corresponding pathologic findings of various mesenchymal tumors of the breast as defined by the World Health Organization classification system

  5. Radiation damage assessment by digital correlation of images

    International Nuclear Information System (INIS)

    Frank, J.; Salih, S.M.; Cosslett, V.E.

    1974-01-01

    Structural changes in the electron microscopic specimen due to radiation damage are conveniently studied by electron diffraction. However, two disadvantages of this method are that it does not work for amorphous specimens and that it is not sensitive to structural changes that affect only the phase of the structure factor. It has been proposed that a series of successive images taken under minimum exposure conditions could provide additional information in those cases where the relationship between object function and image intensity can be established. In order to test the proposed method, both lattice images and diffraction patterns of coronene crystals were recorded in separate experiments at controlled levels of exposure. (author)

  6. Image pre-filtering for measurement error reduction in digital image correlation

    Science.gov (United States)

    Zhou, Yihao; Sun, Chen; Song, Yuntao; Chen, Jubing

    2015-02-01

    In digital image correlation, the sub-pixel intensity interpolation causes a systematic error in the measured displacements. The error increases toward high-frequency component of the speckle pattern. In practice, a captured image is usually corrupted by additive white noise. The noise introduces additional energy in the high frequencies and therefore raises the systematic error. Meanwhile, the noise also elevates the random error which increases with the noise power. In order to reduce the systematic error and the random error of the measurements, we apply a pre-filtering to the images prior to the correlation so that the high-frequency contents are suppressed. Two spatial-domain filters (binomial and Gaussian) and two frequency-domain filters (Butterworth and Wiener) are tested on speckle images undergoing both simulated and real-world translations. By evaluating the errors of the various combinations of speckle patterns, interpolators, noise levels, and filter configurations, we come to the following conclusions. All the four filters are able to reduce the systematic error. Meanwhile, the random error can also be reduced if the signal power is mainly distributed around DC. For high-frequency speckle patterns, the low-pass filters (binomial, Gaussian and Butterworth) slightly increase the random error and Butterworth filter produces the lowest random error among them. By using Wiener filter with over-estimated noise power, the random error can be reduced but the resultant systematic error is higher than that of low-pass filters. In general, Butterworth filter is recommended for error reduction due to its flexibility of passband selection and maximal preservation of the allowed frequencies. Binomial filter enables efficient implementation and thus becomes a good option if computational cost is a critical issue. While used together with pre-filtering, B-spline interpolator produces lower systematic error than bicubic interpolator and similar level of the random

  7. Pleasant/Unpleasant Filtering for Affective Image Retrieval Based on Cross-Correlation of EEG Features

    Directory of Open Access Journals (Sweden)

    Keranmu Xielifuguli

    2014-01-01

    Full Text Available People often make decisions based on sensitivity rather than rationality. In the field of biological information processing, methods are available for analyzing biological information directly based on electroencephalogram: EEG to determine the pleasant/unpleasant reactions of users. In this study, we propose a sensitivity filtering technique for discriminating preferences (pleasant/unpleasant for images using a sensitivity image filtering system based on EEG. Using a set of images retrieved by similarity retrieval, we perform the sensitivity-based pleasant/unpleasant classification of images based on the affective features extracted from images with the maximum entropy method: MEM. In the present study, the affective features comprised cross-correlation features obtained from EEGs produced when an individual observed an image. However, it is difficult to measure the EEG when a subject visualizes an unknown image. Thus, we propose a solution where a linear regression method based on canonical correlation is used to estimate the cross-correlation features from image features. Experiments were conducted to evaluate the validity of sensitivity filtering compared with image similarity retrieval methods based on image features. We found that sensitivity filtering using color correlograms was suitable for the classification of preferred images, while sensitivity filtering using local binary patterns was suitable for the classification of unpleasant images. Moreover, sensitivity filtering using local binary patterns for unpleasant images had a 90% success rate. Thus, we conclude that the proposed method is efficient for filtering unpleasant images.

  8. NDVI and Panchromatic Image Correlation Using Texture Analysis

    Science.gov (United States)

    2010-03-01

    6 Figure 5. Spectral reflectance of vegetation and soil from 0.4 to 1.1 mm (From Perry...should help the classification methods to be able to classify kelp. Figure 5. Spectral reflectance of vegetation and soil from 0.4 to 1.1 mm...1988). Image processing software for imaging spectrometry analysis. Remote Sensing of Enviroment , 24: 201–210. Perry, C., & Lautenschlager, L. F

  9. Unusual cystic pancreatic neoplasms -image-pathological correlations

    International Nuclear Information System (INIS)

    Hilendarov, A.; Simova, E.; Petrova, A.; Traikova, N.; Deenichin, G.

    2013-01-01

    The aim is to present the variety of signs and symptoms from the diagnostic imaging methods of atypical neoplasms of the pancreas, presented as a type of cystic lesions. This often leads to unnecessary surgery or inappropriate tracking. In 115 patients (85 men and 30 women) with cystic lesions of the pancreas ultrasonic (US),computer tomography (CT) and magnetic resonance imaging (MRI) were performed and verified through histological and macroscopic pathology preparations. The ultrasound machines equipped with linear and convex transducers, MDCT and MRI imaging systems were used. In 14 of 115 patients atypical neoplasms of the pancreas were diagnosed: two cases with macroscopic serous cystic neoplasms, two nonmucinous cystic neoplasms, two hemorrhagic mucinous neoplasms, two ductal adenocarcinomas with cystic changes, one islet cell cystic tumor, two lymphoepithetial cysts, one lymphangioma, one solid papillary epithelial neoplasm and one mucinous adenocarcinoma. The authors take into consideration and overlapping of clinical symptoms and laboratory tests. Although much of the imaging features and morphological characteristics of cystic neoplasms of the pancreas are well known, should be known about the atypical unusual images in so-called 'typical' cystic neoplasms, cystic images in solid neoplasms and various atypical tumors with cystic lesions. (authors)

  10. Evaluation of digital image correlation techniques using realistic ground truth speckle images

    International Nuclear Information System (INIS)

    Cofaru, C; Philips, W; Van Paepegem, W

    2010-01-01

    Digital image correlation (DIC) has been acknowledged and widely used in recent years in the field of experimental mechanics as a contactless method for determining full field displacements and strains. Even though several sub-pixel motion estimation algorithms have been proposed in the literature, little is known about their accuracy and limitations in reproducing complex underlying motion fields occurring in real mechanical tests. This paper presents a new method for evaluating sub-pixel motion estimation algorithms using ground truth speckle images that are realistically warped using artificial motion fields that were obtained following two distinct approaches: in the first, the horizontal and vertical displacement fields are created according to theoretical formulas for the given type of experiment while the second approach constructs the displacements through radial basis function interpolation starting from real DIC results. The method is applied in the evaluation of five DIC algorithms with results indicating that the gradient-based DIC methods generally have a quality advantage when using small sized blocks and are a better choice for calculating very small displacements and strains. The Newton–Raphson is the overall best performing method with a notable quality advantage when large block sizes are employed and in experiments where large strain fields are of interest

  11. Multilocular cystic renal cell carcinoma: imaging and clinical correlation

    International Nuclear Information System (INIS)

    Xu Yong; Zhang Sheng

    2013-01-01

    Multilocular cystic renal cell carcinoma (MCRCC) is a subtype of clear cell renal cell carcinoma and has mild clinical symptoms and a favorable prognosis. Accordingly, nephron-sparing surgery is recommended as a therapeutic strategy. If histologic subtype of MCRCC can be predicted preoperatively with an acceptable level of accuracy, it may be important in predicting prognosis and make clinical management. Most MCRCCs show characteristic cross-sectional imaging findings and permit accurate diagnosis before the treatment. Cross -sectional imaging of MCRCC reveals a well -defined multilocular cystic mass with irregularly enhanced thickened septa and without enhanced intracystic solid nodule. It is often classified as Bosniak classification Ⅲ , which is significantly different from that of other renal cystic masses. The clinical, pathologic, and radiologic features of MCRCC were discussed and illustrated in this article. The role of the imaging preoperative evaluation for MCRCC, and management implications were emphasized. (authors)

  12. Patient positioning method based on binary image correlation between two edge images for proton-beam radiation therapy

    International Nuclear Information System (INIS)

    Sawada, Akira; Yoda, Kiyoshi; Numano, Masumi; Futami, Yasuyuki; Yamashita, Haruo; Murayama, Shigeyuki; Tsugami, Hironobu

    2005-01-01

    A new technique based on normalized binary image correlation between two edge images has been proposed for positioning proton-beam radiotherapy patients. A Canny edge detector was used to extract two edge images from a reference x-ray image and a test x-ray image of a patient before positioning. While translating and rotating the edged test image, the absolute value of the normalized binary image correlation between the two edge images is iteratively maximized. Each time before rotation, dilation is applied to the edged test image to avoid a steep reduction of the image correlation. To evaluate robustness of the proposed method, a simulation has been carried out using 240 simulated edged head front-view images extracted from a reference image by varying parameters of the Canny algorithm with a given range of rotation angles and translation amounts in x and y directions. It was shown that resulting registration errors have an accuracy of one pixel in x and y directions and zero degrees in rotation, even when the number of edge pixels significantly differs between the edged reference image and the edged simulation image. Subsequently, positioning experiments using several sets of head, lung, and hip data have been performed. We have observed that the differences of translation and rotation between manual positioning and the proposed method were within one pixel in translation and one degree in rotation. From the results of the validation study, it can be concluded that a significant reduction in workload for the physicians and technicians can be achieved with this method

  13. Monitoring of the Spatio-Temporal Dynamics of the Floods in the Guayas Watershed (Ecuadorian Pacific Coast Using Global Monitoring ENVISAT ASAR Images and Rainfall Data

    Directory of Open Access Journals (Sweden)

    Frédéric Frappart

    2017-01-01

    Full Text Available The floods are an annual phenomenon on the Pacific Coast of Ecuador and can become devastating during El Niño years, especially in the Guayas watershed (32,300 km2, the largest drainage basin of the South American western side of the Andes. As limited information on flood extent in this basin is available, this study presents a monitoring of the spatio-temporal dynamics of floods in the Guayas Basin, between 2005 and 2008, using a change detection method applied to ENVISAT ASAR Global Monitoring SAR images acquired at a spatial resolution of 1 km. The method is composed of three steps. First, a supervised classification was performed to identify pixels of open water present in the Guayas Basin. Then, the separability of their radar signature from signatures of other classes was determined during the four dry seasons from 2005 to 2008. In the end, standardized anomalies of backscattering coefficient were computed during the four wet seasons of the study period to detect changes between dry and wet seasons. Different thresholds were tested to identify the flooded areas in the watershed using external information from the Dartmouth Flood Observatory. A value of −2.30 ± 0.05 was found suitable to estimate the number of inundated pixels and limit the number of false detection (below 10%. Using this threshold, monthly maps of inundation were estimated during the wet season (December to May from 2004 to 2008. The most frequently inundated areas were found to be located along the Babahoyo River, a tributary in the east of the basin. Large interannual variability in the flood extent is observed at the flood peak (from 50 to 580 km2, consistent with the rainfall in the Guayas watershed during the study period.

  14. Correlates of Bio-Psychosocial Factors on Perceived Body Image ...

    African Journals Online (AJOL)

    DrNneka

    person's psychosocial adjustment experiences, feelings and attitudes that is ... Brogowicz (1990) reported that 90% of university students in their study said that they ... studies have focused on the issue of body weight as it relates to body image body ... boost feelings of self-mastery, increase social support, bolster feelings of ...

  15. Correlation of simulated TEM images with irradiation induced damage

    International Nuclear Information System (INIS)

    Schaeublin, R.; Almeida, P. de; Almazouzi, A.; Victoria, M.

    2000-01-01

    Crystal damage induced by irradiation is investigated using transmission electron microscopy (TEM) coupled to molecular dynamics (MD) calculations. The displacement cascades are simulated for energies ranging from 10 to 50 keV in Al, Ni and Cu and for times of up to a few tens of picoseconds. Samples are then used to perform simulations of the TEM images that one could observe experimentally. Diffraction contrast is simulated using a method based on the multislice technique. It appears that the cascade induced damage in Al imaged in weak beam exhibits little contrast, which is too low to be experimentally visible, while in Ni and Cu a good contrast is observed. The number of visible clusters is always lower than the actual one. Conversely, high resolution TEM (HRTEM) imaging allows most of the defects contained in the sample to be observed, although experimental difficulties arise due to the low contrast intensity of the smallest defects. Single point defects give rise in HTREM to a contrast that is similar to that of cavities. TEM imaging of the defects is discussed in relation to the actual size of the defects and to the number of clusters deduced from MD simulations

  16. Digital Image Analysis of Ultrasound B-mode images of Carotid Atherosclerotic Plaque: Correlation with Histological Examination

    DEFF Research Database (Denmark)

    Wilhjelm, Jens E.; Rosendal, Kim; Grønholdt, Marie-Louise Moes

    1996-01-01

    This paper reports on a study of how well texture features extracted from B-mode images of atherosclerotic plaque correlates with histological results obtained from the same plaque after carotid endarterectomy. The study reveals that a few second order texture features (diagonal moment, standard...... deviation and autocorrelation) provide good correlation within the training set (p = 0.04); However, the correlation found so far is not so high, that the method can be used in clinical prediction of plaque constituents....

  17. Biopolymer-based material used in optical image correlation

    Czech Academy of Sciences Publication Activity Database

    Mysliwiec, J.; Kochalska, Anna; Miniewicz, A.

    2008-01-01

    Roč. 47, č. 11 (2008), s. 1902-1906 ISSN 0003-6935 Institutional research plan: CEZ:AV0Z40500505 Keywords : biopolymer * DNA * optical correlation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.763, year: 2008

  18. Mechanical assessment of bovine pericardium using Müeller matrix imaging, enhanced backscattering and digital image correlation analysis.

    Science.gov (United States)

    Cuando-Espitia, Natanael; Sánchez-Arévalo, Francisco; Hernández-Cordero, Juan

    2015-08-01

    Mechanical characterization of tissue is an important but complex task. We demonstrate the simultaneous use of Mueller matrix imaging (MMI), enhanced backscattering (EBS) and digital image correlation (DIC) in a bovine pericardium (BP) tensile test. The interest in BP relies on its wide use as valve replacement and biological patch. We show that the mean free path (MFP), obtained through EBS measurements, can be used as an indicator of the anisotropy of the fiber ensemble. Our results further show a good correlation between retardance images and displacement vector fields, which are intrinsically related with the fiber interaction within the tissue.

  19. Correlation characteristics of optical coherence tomography images of turbid media with statistically inhomogeneous optical parameters

    International Nuclear Information System (INIS)

    Dolin, Lev S.; Sergeeva, Ekaterina A.; Turchin, Ilya V.

    2012-01-01

    Noisy structure of optical coherence tomography (OCT) images of turbid medium contains information about spatial variations of its optical parameters. We propose analytical model of statistical characteristics of OCT signal fluctuations from turbid medium with spatially inhomogeneous coefficients of absorption and backscattering. Analytically predicted correlation characteristics of OCT signal from spatially inhomogeneous medium are in good agreement with the results of correlation analysis of OCT images of different biological tissues. The proposed model can be efficiently applied for quantitative evaluation of statistical properties of absorption and backscattering fluctuations basing on correlation characteristics of OCT images.

  20. Correlation of early-phase {sup 18}F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Wey, Shiaw-Pyng; Lin, Kun-Ju [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Taipei (China); Chang Gung University, Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, Taipei (China); Huang, Chin-Chang; Hsu, Wen-Chun [Chang Gung Memorial Hospital, Department of Neurology, Taipei (China); Yen, Tzu-Chen [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Taipei (China); Kung, Mei-Ping [Chang Gung Memorial Hospital, Department of Nuclear Medicine and Molecular Imaging Center, Taipei (China); Chang Gung University, Healthy Aging Research Center and Department of Medical Imaging and Radiological Sciences, Taipei (China); University of Pennsylvania, Department of Radiology, Philadelphia, PA (United States)

    2012-04-15

    {sup 18}F-Florbetapir (AV-45/Amyvid) is a novel positron emission tomography (PET) tracer for imaging plaque pathology in Alzheimer's disease (AD), while PET images of fluorodeoxyglucose (FDG) for cerebral glucose metabolism can provide complementary information to amyloid plaque images for diagnosis of AD. The goal of this preliminary study was to investigate the perfusion-like property of relative cerebral blood flow estimates (R{sub 1}) and summed early-phase AV-45 images [perfusion AV-45 (pAV-45)] and optimize the early time frame for pAV-45. Dynamic AV-45 PET scans (0-180 min) were performed in seven subjects. pAV-45, late-phase AV-45, and FDG images were spatially normalized to the Montreal Neurological Institute template aided by individual MRI images, and the corresponding standardized uptake value ratio (SUVR) was computed. The R{sub 1} images were derived from a simplified reference tissue model. Correlations between regional and voxelwise R{sub 1} and the corresponding FDG images were calculated. An optimization of time frames of pAV-45 was conducted in terms of correlation to FDG images. The optimal early time frame was validated in a separate cohort. The regional distribution in the R{sub 1} images correlated well (R = 0.91) to that of the FDG within subjects. Consistently high correlation was noted across a long range of time frames. The maximal correlation of pAV-45 to FDG SUVR of R = 0.95 was observed at the time frame of 1-6 min, while the peak correlation of R = 0.99 happened at 0-2 min between pAV-45 and R{sub 1}. A similar result was achieved in the validation cohort. Preliminary results showed that the distribution patterns of R{sub 1} and pAV-45 images are highly correlated with normalized FDG images, and the initial 5-min early time frame of 1-6 min is potentially useful in providing complementary FDG-like information to the amyloid plaque density by late-phase AV-45 images. (orig.)

  1. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies

    International Nuclear Information System (INIS)

    Hsiao, Ing-Tsung; Hsieh, Chia-Ju; Wey, Shiaw-Pyng; Lin, Kun-Ju; Huang, Chin-Chang; Hsu, Wen-Chun; Yen, Tzu-Chen; Kung, Mei-Ping

    2012-01-01

    18 F-Florbetapir (AV-45/Amyvid) is a novel positron emission tomography (PET) tracer for imaging plaque pathology in Alzheimer's disease (AD), while PET images of fluorodeoxyglucose (FDG) for cerebral glucose metabolism can provide complementary information to amyloid plaque images for diagnosis of AD. The goal of this preliminary study was to investigate the perfusion-like property of relative cerebral blood flow estimates (R 1 ) and summed early-phase AV-45 images [perfusion AV-45 (pAV-45)] and optimize the early time frame for pAV-45. Dynamic AV-45 PET scans (0-180 min) were performed in seven subjects. pAV-45, late-phase AV-45, and FDG images were spatially normalized to the Montreal Neurological Institute template aided by individual MRI images, and the corresponding standardized uptake value ratio (SUVR) was computed. The R 1 images were derived from a simplified reference tissue model. Correlations between regional and voxelwise R 1 and the corresponding FDG images were calculated. An optimization of time frames of pAV-45 was conducted in terms of correlation to FDG images. The optimal early time frame was validated in a separate cohort. The regional distribution in the R 1 images correlated well (R = 0.91) to that of the FDG within subjects. Consistently high correlation was noted across a long range of time frames. The maximal correlation of pAV-45 to FDG SUVR of R = 0.95 was observed at the time frame of 1-6 min, while the peak correlation of R = 0.99 happened at 0-2 min between pAV-45 and R 1 . A similar result was achieved in the validation cohort. Preliminary results showed that the distribution patterns of R 1 and pAV-45 images are highly correlated with normalized FDG images, and the initial 5-min early time frame of 1-6 min is potentially useful in providing complementary FDG-like information to the amyloid plaque density by late-phase AV-45 images. (orig.)

  2. Superresolution microscope image reconstruction by spatiotemporal object decomposition and association: application in resolving t-tubule structure in skeletal muscle.

    Science.gov (United States)

    Sun, Mingzhai; Huang, Jiaqing; Bunyak, Filiz; Gumpper, Kristyn; De, Gejing; Sermersheim, Matthew; Liu, George; Lin, Pei-Hui; Palaniappan, Kannappan; Ma, Jianjie

    2014-05-19

    One key factor that limits resolution of single-molecule superresolution microscopy relates to the localization accuracy of the activated emitters, which is usually deteriorated by two factors. One originates from the background noise due to out-of-focus signals, sample auto-fluorescence, and camera acquisition noise; and the other is due to the low photon count of emitters at a single frame. With fast acquisition rate, the activated emitters can last multiple frames before they transiently switch off or permanently bleach. Effectively incorporating the temporal information of these emitters is critical to improve the spatial resolution. However, majority of the existing reconstruction algorithms locate the emitters frame by frame, discarding or underusing the temporal information. Here we present a new image reconstruction algorithm based on tracklets, short trajectories of the same objects. We improve the localization accuracy by associating the same emitters from multiple frames to form tracklets and by aggregating signals to enhance the signal to noise ratio. We also introduce a weighted mean-shift algorithm (WMS) to automatically detect the number of modes (emitters) in overlapping regions of tracklets so that not only well-separated single emitters but also individual emitters within multi-emitter groups can be identified and tracked. In combination with a maximum likelihood estimator method (MLE), we are able to resolve low to medium density of overlapping emitters with improved localization accuracy. We evaluate the performance of our method with both synthetic and experimental data, and show that the tracklet-based reconstruction is superior in localization accuracy, particularly for weak signals embedded in a strong background. Using this method, for the first time, we resolve the transverse tubule structure of the mammalian skeletal muscle.

  3. Imaging-pathologic correlation of multi-step hepatocarcinogenesis

    International Nuclear Information System (INIS)

    Matsui, O.

    2012-01-01

    Full text: Approximately 80% of Japanese HCC cases are derived from HCV-associated liver cirrhosis and chronic hepatitis, and the remaining less than 20% of patients are HBV positive. Because of the introduction of this surveillance system by periodic ultrasound in these high-risk patients, the size of HCCs firstly detected during 2004 to 2005 (n=16809) was less than 2cm in 35% of all cases, 2.1-5.0 cm 48%, respectively. However, various types of hepatocellular nodules such as dysplastic nodule are also detected during screening procedures. Pathologically, human HCC often develops in a multistep fashion from dysplastic nodule to classic hyper vascular HCC. Therefore, for the early diagnosis of HCC, understanding of the sequential changes of imaging findings in accordance with multi-step hepatocarcinogenseis is important. In addition, to understand the imaging features of various types of HCC is also important for the precise characterization of HCCs. (1) Classification of hepatocellular nodules during multistep hepatocarcinogenesis; According to International Consensus Group for Hepatocellular Neoplasia, these nodules are divided into large regenerative nodule, low grade dysplastic nodule (L-DN), high-grade dysplastic nodule (H-DN), and HCC. In addition, small HCC (less than 2 cm) is divided into early HCC and progressed HCC. Early HCC has a vaguely nodular appearance and is highly well differentiated. (2) Imaging of multistep hepatocarcinogenesis; We revealed that the intranodular blood supply changes in accordance with the progression of human hepatocarcinogenesis from dyspalstic nodule to overt HCC. The intranodular portal supply relative to the surrounding liver parenchyma evaluated by CT during arterial portography (CTAP) is decreased, whereas the intranodular arterial supply evaluated by CT during hepatic arteriography (CTHA) revealed is first decreased during the early stage of hepatocarcinogenesis and then increased in parallel with increasing grade of

  4. Acute Severe Aortic Regurgitation: Imaging with Pathological Correlation.

    Science.gov (United States)

    Janardhanan, Rajesh; Pasha, Ahmed Khurshid

    2016-03-01

    Acute aortic regurgitation (AR) is an important finding associated with a wide variety of disease processes. Its timely diagnosis is of utmost importance. Delay in diagnosis could prove fatal. We describe a case of acute severe AR that was timely diagnosed using real time three-dimensional (3D) transesophageal echocardiogram (3D TEE). Not only did it diagnose but also the images obtained by 3D TEE clearly matched with the pathologic specimen. Using this sophisticated imaging modality that is mostly available at the tertiary centers helped in the timely diagnosis, which lead to the optimal management saving his life. Echocardiography and especially 3D TEE can diagnose AR very accurately. Surgical intervention is the definitive treatment but medical therapy is utilized to stabilize the patient initially.

  5. Measurement of the Young's modulus of thin or flexible specimen with digital-image correlation method

    Science.gov (United States)

    Xu, Lianyun; Hou, Zhende; Qin, Yuwen

    2002-05-01

    Because some composite material, thin film material, and biomaterial, are very thin and some of them are flexible, the classical methods for measuring their Young's moduli, by mounting extensometers on specimens, are not available. A bi-image method based on image correlation for measuring Young's moduli is developed in this paper. The measuring precision achieved is one order enhanced with general digital image correlation or called single image method. By this way, the Young's modulus of a SS301 stainless steel thin tape, with thickness 0.067mm, is measured, and the moduli of polyester fiber films, a kind of flexible sheet with thickness 0.25 mm, are also measured.

  6. Cystic synovial sarcomas: imaging features with clinical and histopathologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hirofumi; Araki, Nobuhito [Department of Orthopedic Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, 1-3-3, Nakamichi, Higashinari-Ku, 537-8511, Osaka (Japan); Sawai, Yuka [Department of Radiology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Kudawara, Ikuo [Department of Orthopedic Surgery, Osaka National Hospital, Osaka (Japan); Mano, Masayuki; Ishiguro, Shingo [Department of Pathology, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka (Japan); Ueda, Takafumi; Yoshikawa, Hideki [Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka (Japan)

    2003-12-01

    To characterize the radiological and clinicopathologic features of cystic synovial sarcoma. Seven patients with primary cystic synovial sarcoma were evaluated. Computed tomography (CT) and magnetic resonance (MR) imaging were undertaken at the first presentation. The diagnosis of synovial sarcoma was made on the basis of histological examinations followed by molecular analysis. Radiological and clinicopathologic findings were reviewed. CT showed well-defined soft tissue mass without cortical bone erosion and invasion. Calcification was seen at the periphery of the mass in three cases. T2-weighted MR images showed multilocular inhomogeneous intensity mass in all cases, five of which showed fluid-fluid levels. On gross appearance, old and/or fresh hematomas were detected in six cases. In the one remaining case, microscopic hemorrhage in the cystic lumen was proven. Four cases had poorly differentiated areas. In five cases prominent hemangiopericytomatous vasculature was observed. Histologic grade was intermediate in one tumor and high in six. One case had a history of misdiagnosis for tarsal tunnel syndrome, one for lymphadenopathy, two for sciatica and two for hematoma. All cystic synovial sarcomas demonstrated multilocularity with well-circumscribed walls and internal septae. Synovial sarcoma should be taken into consideration in patients with deeply situated multicystic mass with triple signal intensity on T2-weighted MR imaging. (orig.)

  7. Cystic synovial sarcomas: imaging features with clinical and histopathologic correlation

    International Nuclear Information System (INIS)

    Nakanishi, Hirofumi; Araki, Nobuhito; Sawai, Yuka; Kudawara, Ikuo; Mano, Masayuki; Ishiguro, Shingo; Ueda, Takafumi; Yoshikawa, Hideki

    2003-01-01

    To characterize the radiological and clinicopathologic features of cystic synovial sarcoma. Seven patients with primary cystic synovial sarcoma were evaluated. Computed tomography (CT) and magnetic resonance (MR) imaging were undertaken at the first presentation. The diagnosis of synovial sarcoma was made on the basis of histological examinations followed by molecular analysis. Radiological and clinicopathologic findings were reviewed. CT showed well-defined soft tissue mass without cortical bone erosion and invasion. Calcification was seen at the periphery of the mass in three cases. T2-weighted MR images showed multilocular inhomogeneous intensity mass in all cases, five of which showed fluid-fluid levels. On gross appearance, old and/or fresh hematomas were detected in six cases. In the one remaining case, microscopic hemorrhage in the cystic lumen was proven. Four cases had poorly differentiated areas. In five cases prominent hemangiopericytomatous vasculature was observed. Histologic grade was intermediate in one tumor and high in six. One case had a history of misdiagnosis for tarsal tunnel syndrome, one for lymphadenopathy, two for sciatica and two for hematoma. All cystic synovial sarcomas demonstrated multilocularity with well-circumscribed walls and internal septae. Synovial sarcoma should be taken into consideration in patients with deeply situated multicystic mass with triple signal intensity on T2-weighted MR imaging. (orig.)

  8. Considerations on the correlation between real body and body image

    Directory of Open Access Journals (Sweden)

    Beatrice ABALAȘEI

    2017-03-01

    Full Text Available very individual in the society has a representation of it’s own body in relation to the spatial cues, postural cues, time cues, etc., considered by specialists the body scheme. Throughout its development, the human being goes through different stages of organization of both the image the and body scheme. We start carrying out this study from the idea that there could be, in male individuals, a link between body representation (own image projected outwardly apparent by reference to an image presented through a questionnaire and anthropological parameters, such as body fat and body mass index. The study was conducted on a total of 28 subjects, aged 22.71 ± 2.62 years, height of 177.11 ± 6.76 cm and body weight of 73.56 ± 12.60 kg. For these subjects the body composition has been determined by electromagnetic bioimpendance technique and projection of the self was assesed through a questionnaire. After analyzing statistical data, our hypothesis was refuted by the lack of mathematical connections between the variables analyzed.

  9. Renal cell carcinoma: histological classification and correlation with imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Muglia, Valdair F., E-mail: fmuglia@fmrp.usp.br [Universidade de Sao Paulo (CCIFM/FMRP/USP), Ribeirao Preto, SP (Brazil). Centro de Ciencias das Imagens e Fisica Medica. Faculdade de Medicina; Prando, Adilson [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Hospital Vera Cruz, Campinas, SP (Brazil). Dept. de Imaginologia

    2015-05-15

    Renal cell carcinoma (RCC) is the seventh most common histological type of cancer in the Western world and has shown a sustained increase in its prevalence. The histological classification of RCCs is of utmost importance, considering the significant prognostic and therapeutic implications of its histological subtypes. Imaging methods play an outstanding role in the diagnosis, staging and follow-up of RCC. Clear cell, papillary and chromophobe are the most common histological subtypes of RCC, and their preoperative radiological characterization, either followed or not by confirmatory percutaneous biopsy, may be particularly useful in cases of poor surgical condition, metastatic disease, central mass in a solitary kidney, and in patients eligible for molecular targeted therapy. New strategies recently developed for treating renal cancer, such as cryo and radiofrequency ablation, molecularly targeted therapy and active surveillance also require appropriate preoperative characterization of renal masses. Less common histological types, although sharing nonspecific imaging features, may be suspected on the basis of clinical and epidemiological data. The present study is aimed at reviewing the main clinical and imaging findings of histological RCC subtypes. (author)

  10. Simultaneous spatio-temporal focusing for tissue manipulation

    Directory of Open Access Journals (Sweden)

    Squier J.

    2013-11-01

    Full Text Available Simultaneous spatiotemporal focusing (SSTF is applied to lens tissue and compared directly with standard femtosecond micromachining of the tissue at the same numerical aperture. Third harmonic generation imaging is used for spatio-temporal characterization of the processing conditions obtained with both a standard and SSTF focus.

  11. Detection and correction of blinking bias in image correlation transport measurements of quantum dot tagged macromolecules

    DEFF Research Database (Denmark)

    Durisic, Nela; Bachir, Alexia I; Kolin, David L

    2007-01-01

    Semiconductor nanocrystals or quantum dots (QDs) are becoming widely used as fluorescent labels for biological applications. Here we demonstrate that fluorescence fluctuation analysis of their diffusional mobility using temporal image correlation spectroscopy is highly susceptible to systematic e...

  12. Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series

    Science.gov (United States)

    Lu, Meng; Pebesma, Edzer; Sanchez, Alber; Verbesselt, Jan

    2016-07-01

    Growing availability of long-term satellite imagery enables change modeling with advanced spatio-temporal statistical methods. Multidimensional arrays naturally match the structure of spatio-temporal satellite data and can provide a clean modeling process for complex spatio-temporal analysis over large datasets. Our study case illustrates the detection of breakpoints in MODIS imagery time series for land cover change in the Brazilian Amazon using the BFAST (Breaks For Additive Season and Trend) change detection framework. BFAST includes an Empirical Fluctuation Process (EFP) to alarm the change and a change point time locating process. We extend the EFP to account for the spatial autocorrelation between spatial neighbors and assess the effects of spatial correlation when applying BFAST on satellite image time series. In addition, we evaluate how sensitive EFP is to the assumption that its time series residuals are temporally uncorrelated, by modeling it as an autoregressive process. We use arrays as a unified data structure for the modeling process, R to execute the analysis, and an array database management system to scale computation. Our results point to BFAST as a robust approach against mild temporal and spatial correlation, to the use of arrays to ease the modeling process of spatio-temporal change, and towards communicable and scalable analysis.

  13. Aspects of second-order analysis of structured inhomogeneous spatio-temporal processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Ghorbani, Mohammad

    2012-01-01

    Statistical methodology for spatio-temporal point processes is in its infancy. We consider second-order analysis based on pair correlation functions and K-functions for general inhomogeneous spatio-temporal point processes and for inhomogeneous spatio-temporal Cox processes. Assuming spatio......-temporal separability of the intensity function, we clarify different meanings of second-order spatio-temporal separability. One is second-order spatio-temporal independence and relates to log-Gaussian Cox processes with an additive covariance structure of the underlying spatio-temporal Gaussian process. Another...... concerns shot-noise Cox processes with a separable spatio-temporal covariance density. We propose diagnostic procedures for checking hypotheses of second-order spatio-temporal separability, which we apply on simulated and real data....

  14. Second-order analysis of structured inhomogeneous spatio-temporal point processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Ghorbani, Mohammad

    Statistical methodology for spatio-temporal point processes is in its infancy. We consider second-order analysis based on pair correlation functions and K-functions for first general inhomogeneous spatio-temporal point processes and second inhomogeneous spatio-temporal Cox processes. Assuming...... spatio-temporal separability of the intensity function, we clarify different meanings of second-order spatio-temporal separability. One is second-order spatio-temporal independence and relates e.g. to log-Gaussian Cox processes with an additive covariance structure of the underlying spatio......-temporal Gaussian process. Another concerns shot-noise Cox processes with a separable spatio-temporal covariance density. We propose diagnostic procedures for checking hypotheses of second-order spatio-temporal separability, which we apply on simulated and real data (the UK 2001 epidemic foot and mouth disease data)....

  15. Correlated topographic and spectroscopic imaging by combined atomic force microscopy and optical microscopy

    International Nuclear Information System (INIS)

    Hu Dehong; Micic, Miodrag; Klymyshyn, Nicholas; Suh, Y.D.; Lu, H.P.

    2004-01-01

    Near-field scanning microscopy is a powerful approach to obtain topographic and spectroscopic characterization simultaneously for imaging biological and nanoscale systems. To achieve optical imaging at high spatial resolution beyond the diffraction limit, aperture-less metallic scanning tips have been utilized to enhance the laser illumination local electromagnetic field at the apex of the scanning tips. In this paper, we discuss and review our work on combined fluorescence imaging with AFM-metallic tip enhancement, finite element method simulation of the tip enhancement, and their applications on AFM-tip enhanced fluorescence lifetime imaging (AFM-FLIM) and correlated AFM and FLIM imaging of the living cells

  16. MR imaging of the hip in avascular necrosis: Radiologic-pathologic correlation

    International Nuclear Information System (INIS)

    Kang, H.S.; Lee, S.H.; Lee, Y.S.; Cho, Z.H.; Han, M.C.; Kim, C.W.

    1987-01-01

    MR imaging is the most sensitive modality for diagnosing avascular necrosis (AVN), but there is no established explanation for the change of signal intensity of the osteonecrotic segment. Ten surgically removed femoral heads with AVN underwent MR imaging at 2.0 T. A combination of high gradient strength (0.1 m T/cm) and small radio frequency coil (8 cm in diameter) was used to obtain images with effective thickness of 2.0 mm and pixel dimensions as small as 200 μm. MR images were correlated with high-resolution CT and histologic findings. This paper illustrates how MR images the histologic findings of AVN

  17. Meningioangiomatosis: MR imaging and pathological correlation in two cases

    International Nuclear Information System (INIS)

    Kim, W.-Y.; Kim, W.S.; Cheon, J.-E.; Yeon, K.M.; Kim, I.-O.

    2002-01-01

    Meningioangiomatosis is a rare, benign neoplastic disorder involving the cortex and leptomeninges. The pathological findings are characterised by proliferation of meningothelial cells and leptomeningeal vessels and calcifications within the mass. We experienced two cases of pathologically confirmed meningioangiomatosis, one as a solitary cortical mass with calcification and the other as a cortical lesion manifested as extensive intracranial haemorrhage. On MRI, the first case showed an isointense cortical mass in the left frontal lobe and homogeneous enhancement on the contrast-enhanced study. The second case showed a target-like lesion with a peripheral dark signal rim on T2-weighted images accompanied by extensive haemorrhage in the adjacent frontal lobe and lateral ventricles. (orig.)

  18. Diagnosing cysts with correlation coefficient images from 2-dimensional freehand elastography.

    Science.gov (United States)

    Booi, Rebecca C; Carson, Paul L; O'Donnell, Matthew; Richards, Michael S; Rubin, Jonathan M

    2007-09-01

    We compared the diagnostic potential of using correlation coefficient images versus elastograms from 2-dimensional (2D) freehand elastography to characterize breast cysts. In this preliminary study, which was approved by the Institutional Review Board and compliant with the Health Insurance Portability and Accountability Act, we imaged 4 consecutive human subjects (4 cysts, 1 biopsy-verified benign breast parenchyma) with freehand 2D elastography. Data were processed offline with conventional 2D phase-sensitive speckle-tracking algorithms. The correlation coefficient in the cyst and surrounding tissue was calculated, and appearances of the cysts in the correlation coefficient images and elastograms were compared. The correlation coefficient in the cysts was considerably lower (14%-37%) than in the surrounding tissue because of the lack of sufficient speckle in the cysts, as well as the prominence of random noise, reverberations, and clutter, which decorrelated quickly. Thus, the cysts were visible in all correlation coefficient images. In contrast, the elastograms associated with these cysts each had different elastographic patterns. The solid mass in this study did not have the same high decorrelation rate as the cysts, having a correlation coefficient only 2.1% lower than that of surrounding tissue. Correlation coefficient images may produce a more direct, reliable, and consistent method for characterizing cysts than elastograms.

  19. Using Image Gradients to Improve Robustness of Digital Image Correlation to Non-uniform Illumination: Effects of Weighting and Normalization Choices

    KAUST Repository

    Xu, Jiangping; Moussawi, Ali; Gras, Renaud; Lubineau, Gilles

    2015-01-01

    Changes in the light condition affect the solution of intensity-based digital image correlation algorithms. One natural way to decrease the influence of illumination is to consider the gradients of the image rather than the image itself when

  20. Radar correlated imaging for extended target by the combination of negative exponential restraint and total variation

    Science.gov (United States)

    Qian, Tingting; Wang, Lianlian; Lu, Guanghua

    2017-07-01

    Radar correlated imaging (RCI) introduces the optical correlated imaging technology to traditional microwave imaging, which has raised widespread concern recently. Conventional RCI methods neglect the structural information of complex extended target, which makes the quality of recovery result not really perfect, thus a novel combination of negative exponential restraint and total variation (NER-TV) algorithm for extended target imaging is proposed in this paper. The sparsity is measured by a sequential order one negative exponential function, then the 2D total variation technique is introduced to design a novel optimization problem for extended target imaging. And the proven alternating direction method of multipliers is applied to solve the new problem. Experimental results show that the proposed algorithm could realize high resolution imaging efficiently for extended target.

  1. Early detection of the incidence of malignancy in mammograms using digital image correlation

    International Nuclear Information System (INIS)

    Espitia, J.; Jacome, J.; Torres, C.

    2016-01-01

    The digital image correlation has proved an effective way for Pattern Recognition, this research to identify the using Findings digitally extracted from a mammographic image, which is the means used by more specialists to determine if a person is a candidate or not, a Suffer Breast Cancer. This shown that early detection of symptom logy 'carcinogenic' is the key . (Author)

  2. The Maximum Cross-Correlation approach to detecting translational motions from sequential remote-sensing images

    Science.gov (United States)

    Gao, J.; Lythe, M. B.

    1996-06-01

    This paper presents the principle of the Maximum Cross-Correlation (MCC) approach in detecting translational motions within dynamic fields from time-sequential remotely sensed images. A C program implementing the approach is presented and illustrated in a flowchart. The program is tested with a pair of sea-surface temperature images derived from Advanced Very High Resolution Radiometer (AVHRR) images near East Cape, New Zealand. Results show that the mean currents in the region have been detected satisfactorily with the approach.

  3. Fast Gated EPR Imaging of the Beating Heart: Spatiotemporally-Resolved 3D Imaging of Free Radical Distribution during the Cardiac Cycle

    Science.gov (United States)

    Chen, Zhiyu; Reyes, Levy A.; Johnson, David H.; Velayutham, Murugesan; Yang, Changjun; Samouilov, Alexandre; Zweier, Jay L.

    2012-01-01

    In vivo or ex vivo electron paramagnetic resonance imaging (EPRI) is a powerful technique for determining the spatial distribution of free radicals and other paramagnetic species in living organs and tissues. However, applications of EPRI have been limited by long projection acquisition times and the consequent fact that rapid gated EPRI was not possible. Hence in vivo EPRI typically provided only time-averaged information. In order to achieve direct gated EPRI, a fast EPR acquisition scheme was developed to decrease EPR projection acquisition time down to 10 – 20 ms, along with corresponding software and instrumentation to achieve fast gated EPRI of the isolated beating heart with submillimeter spatial resolution in as little as 2 to 3 minutes. Reconstructed images display temporal and spatial variations of the free radical distribution, anatomical structure, and contractile function within the rat heart during the cardiac cycle. PMID:22473660

  4. Remote Sensing Image Fusion Based on the Combination Grey Absolute Correlation Degree and IHS Transform

    Directory of Open Access Journals (Sweden)

    Hui LIN

    2014-12-01

    Full Text Available An improved fusion algorithm for multi-source remote sensing images with high spatial resolution and multi-spectral capacity is proposed based on traditional IHS fusion and grey correlation analysis. Firstly, grey absolute correlation degree is used to discriminate non-edge pixels and edge pixels in high-spatial resolution images, by which the weight of intensity component is identified in order to combine it with high-spatial resolution image. Therefore, image fusion is achieved using IHS inverse transform. The proposed method is applied to ETM+ multi-spectral images and panchromatic image, and Quickbird’s multi-spectral images and panchromatic image respectively. The experiments prove that the fusion method proposed in the paper can efficiently preserve spectral information of the original multi-spectral images while enhancing spatial resolution greatly. By comparison and analysis, the proposed fusion algorithm is better than traditional IHS fusion and fusion method based on grey correlation analysis and IHS transform.

  5. Motor features in posterior cortical atrophy and their imaging correlates.

    Science.gov (United States)

    Ryan, Natalie S; Shakespeare, Timothy J; Lehmann, Manja; Keihaninejad, Shiva; Nicholas, Jennifer M; Leung, Kelvin K; Fox, Nick C; Crutch, Sebastian J

    2014-12-01

    Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by impaired higher visual processing skills; however, motor features more commonly associated with corticobasal syndrome may also occur. We investigated the frequency and clinical characteristics of motor features in 44 PCA patients and, with 30 controls, conducted voxel-based morphometry, cortical thickness, and subcortical volumetric analyses of their magnetic resonance imaging. Prominent limb rigidity was used to define a PCA-motor subgroup. A total of 30% (13) had PCA-motor; all demonstrating asymmetrical left upper limb rigidity. Limb apraxia was more frequent and asymmetrical in PCA-motor, as was myoclonus. Tremor and alien limb phenomena only occurred in this subgroup. The subgroups did not differ in neuropsychological test performance or apolipoprotein E4 allele frequency. Greater asymmetry of atrophy occurred in PCA-motor, particularly involving right frontoparietal and peri-rolandic cortices, putamen, and thalamus. The 9 patients (including 4 PCA-motor) with pathology or cerebrospinal fluid all showed evidence of Alzheimer's disease. Our data suggest that PCA patients with motor features have greater atrophy of contralateral sensorimotor areas but are still likely to have underlying Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Displacement measurement with nanoscale resolution using a coded micro-mark and digital image correlation

    Science.gov (United States)

    Huang, Wei; Ma, Chengfu; Chen, Yuhang

    2014-12-01

    A method for simple and reliable displacement measurement with nanoscale resolution is proposed. The measurement is realized by combining a common optical microscopy imaging of a specially coded nonperiodic microstructure, namely two-dimensional zero-reference mark (2-D ZRM), and subsequent correlation analysis of the obtained image sequence. The autocorrelation peak contrast of the ZRM code is maximized with well-developed artificial intelligence algorithms, which enables robust and accurate displacement determination. To improve the resolution, subpixel image correlation analysis is employed. Finally, we experimentally demonstrate the quasi-static and dynamic displacement characterization ability of a micro 2-D ZRM.

  7. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    Science.gov (United States)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  8. Preliminary study on the correlation between color measurement of dyed polyester and its image files

    Science.gov (United States)

    Park, Y. K.; Park, Y. C.

    2017-10-01

    As the internet becomes more popular, buyers send image files to manufacturers instead of sending swatches. However, this method may cause problems because different from the monitor between the buyer and the manufacturer, and also there is a problem depending on the light source. In order to overcome these problems, we investigated the relationship between color measurement values of dyed fabrics and RGB values of image files. The RGB values of image files tended to decrease with increasing dye concentration in all three colors. Correlation between RGB values and a*, b* values was observed at low concentration, but there was little correlation at high concentration. In the case of yellow color, there is no correlation between the L*a*b* values obtained from the dyed fabric and RGB values obtained from the image file.

  9. A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates

    Directory of Open Access Journals (Sweden)

    Rex Eugene Jung

    2016-04-01

    Full Text Available Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization, but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ, an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMR. Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from .76 to .79, and two factors (Implementation and Learning were significantly related to measures of Creative Achievement (Scientifific - r = .26 and Writing - r = .31 respectively, suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe. The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus. We also identified compelling evidence suggesting imagination

  10. Correlative studies of structural and functional imaging in primary progressive aphasia.

    Science.gov (United States)

    Panegyres, P K; McCarthy, M; Campbell, A; Lenzo, N; Fallon, M; Thompson, J

    2008-01-01

    To compare and contrast structural and functional imaging in primary progressive aphasia (PPA). A cohort of 8 patients diagnosed with PPA presenting with nonfluency were prospectively evaluated. All patients had structural imaging in the form of MRI and in 1 patient CAT scanning on account of a cardiac pacemaker. All patients had single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. SPECT and PET imaging had 100% correlation. Anatomical imaging was abnormal in only 6 of the 8 patients. Wernicke's area showed greater peak Z score reduction and extent of area affected than Broca's area (McNemar paired test: P = .008 for Z score reduction; P = .0003 for extent). PET scanning revealed significant involvement of the anterior cingulum. Functional imaging in PPA: (a) identified more patients correctly than anatomic imaging highlighting the importance of SPECT and PET in the diagnosis; and (b) demonstrated the heterogeneous involvement of disordered linguistic networks in PPA suggesting its syndromic nature.

  11. Chondroid lipoma: correlation of imaging findings and histopathology of an unusual benign lesion

    International Nuclear Information System (INIS)

    Green, R.A.R.; Cannon, S.R.; Flanagan, A.M.

    2004-01-01

    The imaging findings of soft tissue tumours are often non-specific and generally require biopsy to differentiate between benign and malignant lesions. The finding of curvilinear, annular or amorphous mineralisation in an enlarging mass has sinister connotations. In this case report, we present the imaging findings with histological correlation of a chondroid lipoma, an unusual benign soft tissue tumour, which presented with radiographic evidence of calcification, an imaging finding not previously described. We also describe the ultrasound appearance and certain MR imaging appearances that have not been previously attributed to this tumour in the few reported cases. (orig.)

  12. Spatiotemporal complexity in coupled map lattices

    International Nuclear Information System (INIS)

    Kaneko, Kunihiko

    1986-01-01

    Some spatiotemporal patterns of couple map lattices are presented. The chaotic kink-like motions are shown for the phase motion of the coupled circle lattices. An extension of the couple map lattice approach to Hamiltonian dynamics is briefly reported. An attempt to characterize the high-dimensional attractor by the extension of the correlation dimension is discussed. (author)

  13. Correlation between pennation angle and image quality of skeletal muscle fibre tractography using deterministic diffusion tensor imaging.

    Science.gov (United States)

    Okamoto, Yoshikazu; Okamoto, Toru; Yuka, Kujiraoka; Hirano, Yuji; Isobe, Tomonori; Minami, Manabu

    2012-12-01

    The aim of this study was to ascertain whether a correlation existed between muscle pennation angle and the ability to successfully perform tractography of the lower leg muscle fibres with deterministic diffusion tensor imaging (DTI) in normal volunteers. Fourteen volunteers aged 20-39 (mean 28.2 years old) were recruited. All volunteers were scanned using DTI, and six fibre tractographs were constructed from one lower leg of each volunteer, and the 'fibre density' was calculated in each of the tractographs. The pennation angle is the angle formed by the muscle fibre and the aponeurosis. The average pennation angle (AVPA) and standard deviation of the pennation angle (SDPA) were also measured for each muscle by ultrasonography in the same region as the MRI scan. For all 84 tractography images, the correlation coefficient between the fibre density and AVPA or SDPA was calculated. Fibre density and AVPA showed a moderate negative correlation (R = -0.72), and fibre density and SDPA showed a weak negative correlation (R = -0.47). With respect to comparisons within each muscle, AVPA and fibre density showed a moderate negative correlation in the gastrocnemius lateralis muscle (R = -0.57). Our data suggest that a larger, more variable pennation angle resulted in worse skeletal muscle tractography using deterministic DTI. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.

  14. Intrasubject correlation between static scan and distribution volume images for [11C]flumazenil PET

    International Nuclear Information System (INIS)

    Mishina, Masahiro; Senda, Michio; Kimura, Yuichi

    2000-01-01

    Accumulation of [ 11 C]flumazenil (FMZ) reflects central nervous system benzodiazepine receptor (BZR). We searched for the optimal time for a static PET scan with FMZ as semi-quantitative imaging of BZR distribution. In 10 normal subjects, a dynamic series of decay-corrected PET scans was performed for 60 minutes, and the arterial blood was sampled during the scan to measure radioactivity and labeled metabolites. We generated 13 kinds of ''static scan'' images from the dynamic scan in each subject, and analyzed the pixel correlation for these images versus distribution volume (DV) images. We also analyzed the time for the [ 11 C]FMZ in plasma and tissue to reach the equilibrium. The intra-subject pixel correlation demonstrated that the static scan'' images for the period centering around 30 minutes post-injection had the strongest linear correlation with the DV image. The ratio of radioactivity in the cortex to that in the plasma reached a peak at 40 minutes after injection. Considering the physical decay and patient burden, we conclude that the decay corrected static scan for [ 11 C]FMZ PET as semi-quantitative imaging of BZR distribution is to be optimally acquired from 20 to 40 minutes after injection. (author)

  15. Correlation of sequential MR imaging of the injured spinal cord with prognosis

    International Nuclear Information System (INIS)

    Takahashi, Mutsumasa; Izunaga, Hiroshi; Sato, Ryuichiro; Shinzato, Jintetsu; Korogi, Yukunori; Yamashita, Yasuyuki; Sakae, Terumi

    1993-01-01

    Forty-nine patients with acute spinal cord injuries were studied sequentially with MR imaging by using 0.5 Tesla superconductive units, and sequential MR changes were correlated with the prognosis of the patients. MR images were obtained within one week of the injury and then every two to six months when possible. The Frankel classification of neurologic function was correlated with MR findings. The most frequently observed types of signal intensity patterns on MR imaging were type 0 (isointensity on both T 1 - and T 2 -weighted images) and type I (isointensity on T 1 - and hyperintensity on T 2 -weighted images). In subsequent subacute and chronic stages, type II (hypointensity on T 1 and hyperintensity on T 2 ) was most frequently observed. The evolution of type 0 was to types I and II, whereas type I usually turned into type II or remained as type I. Type III (hyperintensity on T 1 and hyper-, iso- or hypointensity on T 2 images) patients were few in number. There was a good correlation between MR imaging patterns and neurologic recovery for initial and subsequent MR patterns, in that type 0 showed good recovery, whereas types I and II revealed good improvement or no recovery. In addition, the extent of the high signal intensity area on initial as well as on subsequent T 2 -weighted images was proportionally correlated to neurologic recovery. The degree of cord compression was also important for predicting recovery of neurologic function. Findings of MR imaging of acutely injured spinal cord suggested the prognosis of spinal cord injury, especially when sequential studies were obtained. (author)

  16. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Inst. de Radiologia]. E-mail: mvmfonte@uol.com.br; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Radiologia; Reed, Umbertina Conti [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Faculdade de Medicina. Dept. de Neurologia; Rosemberg, Sergio [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Dept. de Patologia

    2008-11-15

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  17. Medulloblastoma: correlation among findings of conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Fonte, Mariana Vieira de Melo da; Otaduy, Maria Concepcion Garcia; Lucato, Leandro Tavares; Reed, Umbertina Conti; Leite, Claudia da Costa; Costa, Maria Olivia Rodrigues; Amaral, Raquel Portugal Guimaraes; Reed, Umbertina Conti; Rosemberg, Sergio

    2008-01-01

    To correlate imaging findings of medulloblastomas at conventional magnetic resonance imaging, diffusion-weighted imaging and proton magnetic resonance spectroscopy, comparing them with data in the literature. Preoperative magnetic resonance imaging studies of nine pediatric patients with histologically confirmed medulloblastomas (eight desmoplastic medulloblastoma, and one giant cell medulloblastoma) were retrospectively reviewed, considering demographics as well as tumors characteristics such as localization, morphology, signal intensity, contrast-enhancement, dissemination, and diffusion-weighted imaging and spectroscopy findings. In most of cases the tumors were centered in the cerebellar vermis (77.8%), predominantly solid (88.9%), hypointense on T 1-weighted images and intermediate/hyperintense on T 2-FLAIR-weighted images, with heterogeneous enhancement (100%), tumor dissemination/extension (77.8%) and limited water molecule mobility (100%). Proton spectroscopy acquired with STEAM technique (n = 6) demonstrated decreased Na a / Cr ratio (83.3%) and increased Co/Cr (100%) and ml/Cr (66.7%) ratios; and with PRESS technique (n = 7) demonstrated lactate peak (57.1%). Macroscopic magnetic resonance imaging findings in association with biochemical features of medulloblastomas have been useful in the differentiation among the most frequent posterior fossa tumors. (author)

  18. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    Science.gov (United States)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  19. Gastrointestinal stromal tumours: Correlation of modified NIH risk stratification with diffusion-weighted MR imaging as an imaging biomarker

    International Nuclear Information System (INIS)

    Kang, Tae Wook; Kim, Seong Hyun; Jang, Kyung Mi; Choi, Dongil; Ha, Sang Yun; Kim, Kyoung-Mee; Kang, Won Ki; Kim, Min Ji

    2015-01-01

    Highlights: • Except size and necrosis, conventional MR findings of GISTs were not significantly different according to the modified NIH criteria. • The ADC values of GISTs were negatively correlated with the modified NIH criteria. • The ADC value can be helpful for the determination of intermediate or high-risk GISTs. - Abstract: Purpose: To evaluate the correlation of risk grade of gastrointestinal stromal tumours (GISTs) based on modified National Institutes of Health (NIH) criteria with conventional magnetic resonance (MR) imaging and diffusion-weighted (DW) imaging. Methods: We included 22 patients with histopathologically proven GISTs in the stomach or small bowel who underwent pre-operative gadoxetic acid-enhanced MR imaging and DW imaging. We retrospectively assessed correlations between morphologic findings, qualitative (signal intensity, consensus from two observers) and quantitative (degree of dynamic enhancement using signal intensity of tumour/muscle ratio and apparent diffusion coefficient [ADC]) values, and the modified NIH criteria for risk stratification. Spearman partial correlation analysis was used to control for tumour size as a confounding factor. The optimal cut-off level of ADC values for intermediate or high risk GISTs was analyzed using a receiver operating characteristic analysis. Results: Except tumour size and necrosis, conventional MR imaging findings, including the degree of dynamic enhancement, were not significantly different according to the modified NIH criteria (p > 0.05). Tumour ADC values were negatively correlated with the modified NIH criteria, before and after adjustment of tumour size (ρ = −0.754; p < 0.001 and ρ = −0.513; p = 0.017, respectively). The optimal cut-off value for the determination of intermediate or high-risk GISTs was 1.279 × 10 −3 mm 2 /s (100% sensitivity, 69.2% specificity, 81.8% accuracy). Conclusion: Except tumour size and necrosis, conventional MR imaging findings did not correlate with

  20. Gastrointestinal stromal tumours: Correlation of modified NIH risk stratification with diffusion-weighted MR imaging as an imaging biomarker

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Tae Wook [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kim, Seong Hyun, E-mail: kshyun@skku.edu [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Jang, Kyung Mi; Choi, Dongil [Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Ha, Sang Yun; Kim, Kyoung-Mee [Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kang, Won Ki [Division of Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 135-710 (Korea, Republic of); Kim, Min Ji [Biostatics Unit, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul 135-710 (Korea, Republic of)

    2015-01-15

    Highlights: • Except size and necrosis, conventional MR findings of GISTs were not significantly different according to the modified NIH criteria. • The ADC values of GISTs were negatively correlated with the modified NIH criteria. • The ADC value can be helpful for the determination of intermediate or high-risk GISTs. - Abstract: Purpose: To evaluate the correlation of risk grade of gastrointestinal stromal tumours (GISTs) based on modified National Institutes of Health (NIH) criteria with conventional magnetic resonance (MR) imaging and diffusion-weighted (DW) imaging. Methods: We included 22 patients with histopathologically proven GISTs in the stomach or small bowel who underwent pre-operative gadoxetic acid-enhanced MR imaging and DW imaging. We retrospectively assessed correlations between morphologic findings, qualitative (signal intensity, consensus from two observers) and quantitative (degree of dynamic enhancement using signal intensity of tumour/muscle ratio and apparent diffusion coefficient [ADC]) values, and the modified NIH criteria for risk stratification. Spearman partial correlation analysis was used to control for tumour size as a confounding factor. The optimal cut-off level of ADC values for intermediate or high risk GISTs was analyzed using a receiver operating characteristic analysis. Results: Except tumour size and necrosis, conventional MR imaging findings, including the degree of dynamic enhancement, were not significantly different according to the modified NIH criteria (p > 0.05). Tumour ADC values were negatively correlated with the modified NIH criteria, before and after adjustment of tumour size (ρ = −0.754; p < 0.001 and ρ = −0.513; p = 0.017, respectively). The optimal cut-off value for the determination of intermediate or high-risk GISTs was 1.279 × 10{sup −3} mm{sup 2}/s (100% sensitivity, 69.2% specificity, 81.8% accuracy). Conclusion: Except tumour size and necrosis, conventional MR imaging findings did not

  1. Continuous Sub-daily Rainfall Simulation for Regional Flood Risk Assessment - Modelling of Spatio-temporal Correlation Structure of Extreme Precipitation in the Austrian Alps

    Science.gov (United States)

    Salinas, J. L.; Nester, T.; Komma, J.; Bloeschl, G.

    2017-12-01

    Generation of realistic synthetic spatial rainfall is of pivotal importance for assessing regional hydroclimatic hazard as the input for long term rainfall-runoff simulations. The correct reproduction of observed rainfall characteristics, such as regional intensity-duration-frequency curves, and spatial and temporal correlations is necessary to adequately model the magnitude and frequency of the flood peaks, by reproducing antecedent soil moisture conditions before extreme rainfall events, and joint probability of flood waves at confluences. In this work, a modification of the model presented by Bardossy and Platte (1992), where precipitation is first modeled on a station basis as a multivariate autoregressive model (mAr) in a Normal space. The spatial and temporal correlation structures are imposed in the Normal space, allowing for a different temporal autocorrelation parameter for each station, and simultaneously ensuring the positive-definiteness of the correlation matrix of the mAr errors. The Normal rainfall is then transformed to a Gamma-distributed space, with parameters varying monthly according to a sinusoidal function, in order to adapt to the observed rainfall seasonality. One of the main differences with the original model is the simulation time-step, reduced from 24h to 6h. Due to a larger availability of daily rainfall data, as opposite to sub-daily (e.g. hourly), the parameters of the Gamma distributions are calibrated to reproduce simultaneously a series of daily rainfall characteristics (mean daily rainfall, standard deviations of daily rainfall, and 24h intensity-duration-frequency [IDF] curves), as well as other aggregated rainfall measures (mean annual rainfall, and monthly rainfall). The calibration of the spatial and temporal correlation parameters is performed in a way that the catchment-averaged IDF curves aggregated at different temporal scales fit the measured ones. The rainfall model is used to generate 10.000 years of synthetic

  2. MR imaging and histopathologic correlations of thermal injuries induced by interstitial laser applications

    International Nuclear Information System (INIS)

    Anzai, Y.; Lufkin, R.B.; Castro, D.J.; Farahani, K.; Chen, H.W.; Hirchowiz, S.

    1991-01-01

    Interstitial laser phototherapy for deep-seated tumors may become an attractive therapeutic modality when a noninvasive, accurate monitoring system is developed. In this paper, to devaluate the ability of MR imaging to differentiate reversible and irreversible thermal injuries induced by laser therapy, the precise correlation of MR and histopathologic findings are investigated in the in vivo model. Nd:YAG lasers were applied to normal musculature of rabbits, and MR examinations were performed immediately after laser exposure and followed up for up to 10 weeks. The sequential MR images were correlated with histopathologic findings. T2-weighted MR imaging clearly showed laser-induced thermal injuries on any postoperative day. MR imaging of acute thermal injuries showed a central cavity, low-signal zone of coagulative necrosis and a peripheral high-signal layer of interstitial edema. The infiltration of neutrophils followed by fibrovascular response was identified on the marginal edema layer after 6 postoperative days

  3. Novel approach to improve molecular imaging research: Correlation between macroscopic and molecular pathological findings in patients

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Ingrid, E-mail: i.boehm@uni-bonn.de [Department of Diagnostic Radiology, ZARF Project, Center for Molecular Imaging Research MBMB, Philipps University of Marburg, Baldingerstrasse, 35039 Marburg (Germany)

    2011-09-15

    Purpose: Currently, clinical research approaches are sparse in molecular imaging studies. Moreover, possible links between imaging features and pathological laboratory parameters are unknown, so far. Therefore, the goal was to find a possible relationship between imaging features and peripheral blood cell apoptosis, and thereby to present a novel way to complement molecular imaging research. Materials and methods: The investigation has been done in systemic lupus erythematosus (SLE), a prototype of an autoimmune disease characterized by multiorgan involvement, autoantibody production, and disturbed apoptosis. Retrospectively, radiological findings have been compared to both autoantibody findings and percentage apoptotic blood cells. Results: Two SLE groups could be identified: patients with normal (annexin V binding < 20%), and with increased apoptosis (annexin V binding > 20%) of peripheral blood cells. The frequency of radiological examinations in SLE patients significantly correlated with an increased percentage of apoptotic cells (p < 0.005). In patients with characteristic imaging findings (e.g. lymph node swelling, pleural effusion) an elevated percentage of apoptotic cells was present. In contrast SLE-patients with normal imaging findings or uncharacteristic results of minimal severity had normal percentages of apoptotic blood cells. Conclusion: This correlation between radiographic findings and percentage of apoptotic blood cells provides (1) further insight into pathological mechanisms of SLE, (2) will offer the possibility to introduce apoptotic biomarkers as molecular probes for clinical molecular imaging approaches in future to early diagnose organ complaints in patients with SLE, and (3) is a plea to complement molecular imaging research by this clinical approach.

  4. The spatiotemporal dynamic analysis of the implied market information and characteristics of the correlation coefficient matrix of the international crude oil price returns

    International Nuclear Information System (INIS)

    Tian, Lixin; Ding, Zhenqi; Zhen, Zaili; Wang, Minggang

    2016-01-01

    The international crude oil market plays a crucial role in economies, and the studies of the correlation, risk and synchronization of the international crude oil market have important implications for the security and stability of the country, avoidance of business risk and people's daily lives. We investigate the information and characteristics of the international crude oil market (1999-2015) based on the random matrix theory (RMT). Firstly, we identify richer information in the largest eigenvalues deviating from RMT predictions for the international crude oil market; the international crude oil market can be roughly divided into ten different periods by the methods of eigenvectors and characteristic combination, and the implied market information of the correlation coefficient matrix is advanced. Secondly, we study the characteristics of the international crude oil market by the methods of system risk entropy, dynamic synchronous ratio, dynamic non-synchronous ratio and dynamic clustering algorithm. The results show that the international crude oil market is full of risk. The synchronization of the international crude oil market is very strong, and WTI and Brent occupy a very important position in the international crude oil market. (orig.)

  5. The spatiotemporal dynamic analysis of the implied market information and characteristics of the correlation coefficient matrix of the international crude oil price returns

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lixin [Jiangsu University, Energy Development and Environmental Protection Strategy Research Center, Zhenjiang, Jiangsu (China); Nanjing Normal University, School of Mathematical Sciences, Nanjing, Jiangsu (China); Ding, Zhenqi; Zhen, Zaili [Jiangsu University, Energy Development and Environmental Protection Strategy Research Center, Zhenjiang, Jiangsu (China); Wang, Minggang [Nanjing Normal University, School of Mathematical Sciences, Nanjing, Jiangsu (China)

    2016-08-15

    The international crude oil market plays a crucial role in economies, and the studies of the correlation, risk and synchronization of the international crude oil market have important implications for the security and stability of the country, avoidance of business risk and people's daily lives. We investigate the information and characteristics of the international crude oil market (1999-2015) based on the random matrix theory (RMT). Firstly, we identify richer information in the largest eigenvalues deviating from RMT predictions for the international crude oil market; the international crude oil market can be roughly divided into ten different periods by the methods of eigenvectors and characteristic combination, and the implied market information of the correlation coefficient matrix is advanced. Secondly, we study the characteristics of the international crude oil market by the methods of system risk entropy, dynamic synchronous ratio, dynamic non-synchronous ratio and dynamic clustering algorithm. The results show that the international crude oil market is full of risk. The synchronization of the international crude oil market is very strong, and WTI and Brent occupy a very important position in the international crude oil market. (orig.)

  6. Time-of-flight camera via a single-pixel correlation image sensor

    Science.gov (United States)

    Mao, Tianyi; Chen, Qian; He, Weiji; Dai, Huidong; Ye, Ling; Gu, Guohua

    2018-04-01

    A time-of-flight imager based on single-pixel correlation image sensors is proposed for noise-free depth map acquisition in presence of ambient light. Digital micro-mirror device and time-modulated IR-laser provide spatial and temporal illumination on the unknown object. Compressed sensing and ‘four bucket principle’ method are combined to reconstruct the depth map from a sequence of measurements at a low sampling rate. Second-order correlation transform is also introduced to reduce the noise from the detector itself and direct ambient light. Computer simulations are presented to validate the computational models and improvement of reconstructions.

  7. The correlation between lacunes and microbleeds on magnetic resonance imaging in consecutive 180 patients

    International Nuclear Information System (INIS)

    Tajitsu, Kenichiro; Yokoyama, Shunichi; Taguci, Yuichiro; Kusumoto, Kazuhiro

    2006-01-01

    Microbleeds on T2 * -weighted magnetic resonance imaging (MRI) represent a hemorrhagic type of small vessel disease. Small vessel disease causes both intracerebral hemorrhages and lacunar infarctions. We studied clinical background and MRI findings of the patients to clarify the correlation between microbleeds and lacunes. This study consisted of 180 consecutive patients who underwent brain MRI using 1.5T system in our hospital for a year. We obtained T2 * -weighted gradient-echo imaging as well as T1 and T2-weighted images. We statistically identified the factors related to the presence of microbleeds in all patients. The distribution of lacunes and microbleeds on MRI was compared to clarify the correlation of the lesions in the patients who had both lesions. The overall prevalence of microbleeds was 41.1% (74 of 180 patients). Logistic regression analysis indicated that previous stroke, leukoaraiosis and lacunes were significantly correlated with microbleeds. In the patients who have both microbleeds and lacunes, lesions are tended to locate in thalamus and basal ganglia, especially incidence of lacunes are significantly greater compared with other regions. Thirty-six of 398 lesions (9.05%) diagnosed as lacunes with T1- and T2-weighted imaging were demonstrated as microbleeds with T2 * -weighted gradient-echo imaging. Lacunes, leukoaraiosis as a hypertensive change on MRI had statistically significant correlation with the presence of microbleeds. T2 * -weighted gradient-echo imaging should be included in the imaging protocol for cerebrovascular disease, because T1- and T2-weighted imaging recognizing some of the microbleeds as lacunar infarction. (author)

  8. Fast method of constructing image correlations to build a free network based on image multivocabulary trees

    Science.gov (United States)

    Zhan, Zongqian; Wang, Xin; Wei, Minglu

    2015-05-01

    In image-based three-dimensional (3-D) reconstruction, one topic of growing importance is how to quickly obtain a 3-D model from a large number of images. The retrieval of the correct and relevant images for the model poses a considerable technological challenge. The "image vocabulary tree" has been proposed as a method to search for similar images. However, a significant drawback of this approach is identified in its low time efficiency and barely satisfactory classification result. The method proposed is inspired by, and improves upon, some recent methods. Specifically, vocabulary quality is considered and multivocabulary trees are designed to improve the classification result. A marked improvement was, indeed, observed in our evaluation of the proposed method. To improve time efficiency, graphics processing unit (GPU) computer unified device architecture parallel computation is applied in the multivocabulary trees. The results of the experiments showed that the GPU was three to four times more efficient than the enumeration matching and CPU methods when the number of images is large. This paper presents a reliable reference method for the rapid construction of a free network to be used for the computing of 3-D information.

  9. Correlation of bone quality in radiographic images with clinical bone quality classification

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyun Woo; Huh, Kyung Hoe; Kim, Jeong Hwa; Yi, Won Jin; Heo, Min Suk; Lee, Sam Sun; Choi, Soon Chul [Seoul National University, Seoul (Korea, Republic of); Park, Kwan Soo [Inje University, Seoul (Korea, Republic of)

    2006-03-15

    To investigate the validity of digital image processing on panoramic radiographs in estimating bone quality before endosseous dental implant installation by correlating bone quality in radiographic images with clinical bone quality classification. An experienced surgeon assessed and classified bone quality for implant sites with tactile sensation at the time of implant placement. Including fractal dimension eighteen morphologic features of trabecular pattern were examined in each anatomical sites on panoramic radiographs. Finally bone quality of 67 implant sites were evaluated in 42 patients. Pearson correlation analysis showed that three morphologic parameters had weak linear negative correlation with clinical bone quality classification showing correlation coefficients of -0.276, -0.280, and -0.289, respectively (p<0.05). And other three morphologic parameters had obvious linear negative correlation with clinical bone quality classification showing correlation coefficients of -0.346, -0.488, and -0.343 respectively (p<0.05). Fractal dimension also had a linear correlating with clinical bone quality classification with correlation coefficients -0.506 significantly (P<0.05). This study suggests that fractal and morphometric analysis using digital panoramic radiographs can be used to evaluate bone quality for implant recipient sites.

  10. Hemorrhage in pituitary adenoma: correlation of MR imaging with operative findings

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, N.; Takahashi, S.; Higano, S.; Mugikura, S.; Singh, L.N.; Furuta, S.; Tamura, H.; Ishibashi, T.; Maruoka, S.; Yamada, S. [Department of Radiology, Tohoku University School of Medicine, Sendai (Japan); Ikeda, H. [Department of Neurosurgery, Tohoku University School of Medicine, Sendai (Japan)

    1998-07-01

    The aim of this study was to correlate MR imaging and operative findings of hemorrhage in pituitary macroadenomas. We retrospectively reviewed MR images of 113 surgically proven pituitary adenomas. All patients were examined on a 1.5-T MR system. The intensity of intratumoral cystic cavities was correlated with operative findings. In 15 patients with pituitary apoplexy, we determined relationship between interval of MR examination after apoplectic event and MR signal intensity. In 8 patients with repeated preoperative MR examination, we evaluated sequential changes of intratumoral hemorrhage. There were 54 cavities at surgery: 52 were hemorrhagic and 2 were nonhemorrhagic. Twenty-nine of 52 hemorrhagic cysts demonstrated high/low signal (H/L) fluid-fluid levels on T2-weighted image (T2WI). In 19 of them, two components could be separately seen at operation: the supernatant high-intensity area represented xanthochromic fluid, and the dependent low-intensity area represented liquefied hematoma. The H/L fluid-fluid level was observed predominantly in hematomas on MR images obtained after longer intervals. In patients with repeated MR examination, follow-up MR imaging revealed additional hemorrhage or new formation of fluid-fluid levels. It was surprising that 12 of 14 cysts preoperatively judged as nonhemorrhagic in fact contained hemorrhagic components. The preoperative MR images are well correlated to the operative findings in hemorrhagic pituitary macroadenomas. It proved that 52 of 54 cystic cavities had hemorrhagic component. (orig.) With 8 figs., 3 tabs., 17 refs.

  11. Hemorrhage in pituitary adenoma: correlation of MR imaging with operative findings

    International Nuclear Information System (INIS)

    Kurihara, N.; Takahashi, S.; Higano, S.; Mugikura, S.; Singh, L.N.; Furuta, S.; Tamura, H.; Ishibashi, T.; Maruoka, S.; Yamada, S.; Ikeda, H.

    1998-01-01

    The aim of this study was to correlate MR imaging and operative findings of hemorrhage in pituitary macroadenomas. We retrospectively reviewed MR images of 113 surgically proven pituitary adenomas. All patients were examined on a 1.5-T MR system. The intensity of intratumoral cystic cavities was correlated with operative findings. In 15 patients with pituitary apoplexy, we determined relationship between interval of MR examination after apoplectic event and MR signal intensity. In 8 patients with repeated preoperative MR examination, we evaluated sequential changes of intratumoral hemorrhage. There were 54 cavities at surgery: 52 were hemorrhagic and 2 were nonhemorrhagic. Twenty-nine of 52 hemorrhagic cysts demonstrated high/low signal (H/L) fluid-fluid levels on T2-weighted image (T2WI). In 19 of them, two components could be separately seen at operation: the supernatant high-intensity area represented xanthochromic fluid, and the dependent low-intensity area represented liquefied hematoma. The H/L fluid-fluid level was observed predominantly in hematomas on MR images obtained after longer intervals. In patients with repeated MR examination, follow-up MR imaging revealed additional hemorrhage or new formation of fluid-fluid levels. It was surprising that 12 of 14 cysts preoperatively judged as nonhemorrhagic in fact contained hemorrhagic components. The preoperative MR images are well correlated to the operative findings in hemorrhagic pituitary macroadenomas. It proved that 52 of 54 cystic cavities had hemorrhagic component. (orig.)

  12. Intramuscular vascular malformations of an extremity: findings on MR imaging and pathologic correlation

    International Nuclear Information System (INIS)

    Kim, E.Y.; Ahn, J.M.; Yoon, H.K.; Do, Y.S.; Kim, S.H.; Choo, S.W.; Choo, I.W.; Suh, Y.L.; Kim, S.M.; Kang, H.S.

    1999-01-01

    Objective. To analyze the findings of intramuscular vascular malformations of an extremity on MR imaging and to correlate these findings with histopathologic examination.Design and patients. The findings on MR imaging and the medical records of 14 patients with an intramuscular vascular malformation of the extremity were retrospectively studied. All patients underwent surgical excision. Diagnoses were based on the results of pathologic examination. Findings on MR imaging were noted and correlated with the histopathologic findings.Results. Intramuscular vascular malformations of an extremity showed multi-septate, honeycomb, or mixed appearance on MR imaging. Multi-septate areas correlated with dilated and communicating vascular spaces with flattened endothelium. Honeycomb areas corresponded to vascular spaces with inconspicuous small lumina and thickened vascular walls. Areas of increased signal intensity on T2-weighted images were found in all intramuscular vascular malformations. Infiltrative margins were more commonly seen in intramuscular lymphaticovenous malformations. Adherence to neurovascular structures and orientation of the lesion along the long axis of the affected muscle were more commonly seen in intramuscular venous malformations.Conclusions. Intramuscular vascular malformations showed either a multi-septate, honeycomb, or mixed appearance, reflecting the size of the vascular spaces and the thickness of the smooth muscles of the vessel walls. Prediction of the subtype of an intramuscular vascular malformation of an extremity on MR imaging seems to be difficult, although there are associated findings that may be helpful in the differential diagnosis of each subtype. (orig.)

  13. Correlation between image quality of CT scan and amount of intravenous contrast media

    International Nuclear Information System (INIS)

    Yoon, Dae Young; Choi, Dae Seob; Kim, Seung Hyup; Han, Joon Koo; Choi, Byung Ihn; Im, Jung Gi; Han, Moon Hee; Chang, Kee Hyun; Kim, Jong Hyo; Han, Man Chung

    1993-01-01

    A blind, comparative clinical study was performed prospectively to examine the correlation between image quality of CT scan in terms of contrast enhancement effect and amount of intravenous contrast media. A total of 357 patients were randomized into two groups. Ionic high-osmolality contrast media (68% meglumine ioglicate) was administered intravenously as 100 ml bolus in one group and as 50 ml bolus in the other group. Statistically significant differences of image quality were found in CT scans of the brain, head and neck, chest and abdomen (p 0.05). We suggest that amount of contrast media may be reduced in pelvis CT without significant degradation of image quality

  14. Image motion compensation by area correlation and centroid tracking of solar surface features

    International Nuclear Information System (INIS)

    Nein, M.E.; Mcintosh, W.R.; Cumings, N.P.

    1983-07-01

    An experimental solar correlation tracker was tested and evaluated on a ground-based solar magnetograph. Using sunspots as fixed targets, tracking error signals were derived by which the telescope image was stabilized against wind induced perturbations. Two methods of stabilization were investigated mechanical stabilization of the image by controlled two-axes motion of an active optical element in the telescope beam, and electronic stabilization by biasing of the electron scan in the recording camera. Both approaches have demonstrated telescope stability of about 0.6 arc sec under random perturbations which can cause the unstabilized image to move up to 120 arc sec at frequencies up to 30 Hz

  15. Image motion compensation by area correlation and centroid tracking of solar surface features

    Science.gov (United States)

    Nein, M. E.; Mcintosh, W. R.; Cumings, N. P.

    1983-01-01

    An experimental solar correlation tracker was tested and evaluated on a ground-based solar magnetograph. Using sunspots as fixed targets, tracking error signals were derived by which the telescope image was stabilized against wind induced perturbations. Two methods of stabilization were investigated; mechanical stabilization of the image by controlled two-axes motion of an active optical element in the telescope beam, and electronic stabilization by biasing of the electron scan in the recording camera. Both approaches have demonstrated telescope stability of about 0.6 arc sec under random perturbations which can cause the unstabilized image to move up to 120 arc sec at frequencies up to 30 Hz.

  16. MR imaging of pregnancy luteoma: a case report and correlation with the clinical features

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Hung Wen; Wu, Ching Jiunn; Chung, Kuo Teng; Wang, Sheng Ru; Chen, Cheng Yu [Tri-Service General Hospital, National Defense Medical Center, Taipei (Taiwan)

    2005-03-15

    We report here on a 26-year-old pregnant female who developed hirsutism and virilization during her third trimester along with a significantly elevated serum testosterone level. Abdominal US and MR imaging studies were performed, and they showed unique imaging features that may suggest the diagnosis of pregnancy luteoma in the clinical context. After the delivery, the serum testosterone level continued to decrease, and it returned to normal three weeks postpartum. The follow-up imaging findings were closely correlated with the clinical presentation.

  17. Correlation between Health Perception, Body Image, and Eating Habits in High School Students

    Directory of Open Access Journals (Sweden)

    Abdullah Ichsan

    2016-06-01

    Full Text Available Background: Mental disorders, including eating disorders, mostly begin during youth. Moreover, negative body image is found to cause unhealthy eating habits in the context of several cross-cultural settings. This study aimed to examine the correlation between health perception and body image with eating habits among high school students. Methods: A structured, anonymous questionnaire was distributed to students of a private high school in Bandung, Indonesia in June-October 2014. The questionnaire included questions about health perception, body image, eating habits, body weight and height, and also other demographic parameters. The school was selected as the study object through purposive sampling, and 140 high school students (72 male and 68 female were ramdomly selected. Results: Male and female did not show considerable differences in health perceptions. Out of 13 statements, 12 statements of male respondents showed better body image than female. While in eating habits statements, female respondents seemed to maintain healthier eating habits than male respondents. No significant correlation was observed between body image and eating habits (r=-0.015, p=0.858. There was significant correlation between health perception and eating habits (r=0.374, p<0.001. Correlation between sex and eating habits was found (p=0.020, there was not significant relationship between eating habits and Body Mass Index (BMI (p=0.368. Conclusions: The negative relationship between body image and eating habits is not significant. However there was a significant positive relationship between health perception and eating habits. Furthermore, there was correlation between sex and eating habits, while the positive relationship between eating habits and BMI was still not found.

  18. NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures

    Directory of Open Access Journals (Sweden)

    Rivka Colen

    2014-10-01

    Full Text Available The National Cancer Institute (NCI Cancer Imaging Program organized two related workshops on June 26–27, 2013, entitled “Correlating Imaging Phenotypes with Genomics Signatures Research” and “Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems.” The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.

  19. A three-dimensional correlation method for registration of medical images in radiology

    International Nuclear Information System (INIS)

    Georgiou, Michalakis; Sfakianakis, George N.; Nagel, Joachim H.

    1998-01-01

    The availability of methods to register multi-modality images in order to 'fuse' them to correlate their information is increasingly becoming an important requirement for various diagnostic and therapeutic procedures. A variety of image registration methods have been developed but they remain limited to specific clinical applications. Assuming rigid body transformation, two images can be registered if their differences are calculated in terms of translation, rotation and scaling. This paper describes the development and testing of a new correlation based approach for three-dimensional image registration. First, the scaling factors introduced by the imaging devices are calculated and compensated for. Then, the two images become translation invariant by computing their three-dimensional Fourier magnitude spectra. Subsequently, spherical coordinate transformation is performed and then the three-dimensional rotation is computed using a novice approach referred to as p olar Shells . The method of polar shells maps the three angles of rotation into one rotation and two translations of a two-dimensional function and then proceeds to calculate them using appropriate transformations based on the Fourier invariance properties. A basic assumption in the method is that the three-dimensional rotation is constrained to one large and two relatively small angles. This assumption is generally satisfied in normal clinical settings. The new three-dimensional image registration method was tested with simulations using computer generated phantom data as well as actual clinical data. Performance analysis and accuracy evaluation of the method using computer simulations yielded errors in the sub-pixel range. (authors)

  20. Photoacoustic imaging in scattering media by combining a correlation matrix filter with a time reversal operator.

    Science.gov (United States)

    Rui, Wei; Tao, Chao; Liu, Xiaojun

    2017-09-18

    Acoustic scattering medium is a fundamental challenge for photoacoustic imaging. In this study, we reveal the different coherent properties of the scattering photoacoustic waves and the direct photoacoustic waves in a matrix form. Direct waves show a particular coherence on the antidiagonals of the matrix, whereas scattering waves do not. Based on this property, a correlation matrix filter combining with a time reversal operator is proposed to preserve the direct waves and recover the image behind a scattering layer. Both numerical simulations and photoacoustic imaging experiments demonstrate that the proposed approach effectively increases the image contrast and decreases the background speckles in a scattering medium. This study might improve the quality of photoacoustic imaging in an acoustic scattering environment and extend its applications.

  1. Observation of a cavitation cloud in tissue using correlation between ultrafast ultrasound images.

    Science.gov (United States)

    Prieur, Fabrice; Zorgani, Ali; Catheline, Stefan; Souchon, Rémi; Mestas, Jean-Louis; Lafond, Maxime; Lafon, Cyril

    2015-07-01

    The local application of ultrasound is known to improve drug intake by tumors. Cavitating bubbles are one of the contributing effects. A setup in which two ultrasound transducers are placed confocally is used to generate cavitation in ex vivo tissue. As the transducers emit a series of short excitation bursts, the evolution of the cavitation activity is monitored using an ultrafast ultrasound imaging system. The frame rate of the system is several thousands of images per second, which provides several tens of images between consecutive excitation bursts. Using the correlation between consecutive images for speckle tracking, a decorrelation of the imaging signal appears due to the creation, fast movement, and dissolution of the bubbles in the cavitation cloud. By analyzing this area of decorrelation, the cavitation cloud can be localized and the spatial extent of the cavitation activity characterized.

  2. Adaptive Microwave Staring Correlated Imaging for Targets Appearing in Discrete Clusters.

    Science.gov (United States)

    Tian, Chao; Jiang, Zheng; Chen, Weidong; Wang, Dongjin

    2017-10-21

    Microwave staring correlated imaging (MSCI) can achieve ultra-high resolution in real aperture staring radar imaging using the correlated imaging process (CIP) under all-weather and all-day circumstances. The CIP must combine the received echo signal with the temporal-spatial stochastic radiation field. However, a precondition of the CIP is that the continuous imaging region must be discretized to a fine grid, and the measurement matrix should be accurately computed, which makes the imaging process highly complex when the MSCI system observes a wide area. This paper proposes an adaptive imaging approach for the targets in discrete clusters to reduce the complexity of the CIP. The approach is divided into two main stages. First, as discrete clustered targets are distributed in different range strips in the imaging region, the transmitters of the MSCI emit narrow-pulse waveforms to separate the echoes of the targets in different strips in the time domain; using spectral entropy, a modified method robust against noise is put forward to detect the echoes of the discrete clustered targets, based on which the strips with targets can be adaptively located. Second, in a strip with targets, the matched filter reconstruction algorithm is used to locate the regions with targets, and only the regions of interest are discretized to a fine grid; sparse recovery is used, and the band exclusion is used to maintain the non-correlation of the dictionary. Simulation results are presented to demonstrate that the proposed approach can accurately and adaptively locate the regions with targets and obtain high-quality reconstructed images.

  3. Early evaluation of irradiated parotid glands with intravoxel incoherent motion MR imaging: correlation with dynamic contrast-enhanced MR imaging

    International Nuclear Information System (INIS)

    Zhou, Nan; Chu, Chen; Dou, Xin; Li, Ming; Liu, Song; Zhu, Lijing; Liu, Baorui; Guo, Tingting; Chen, Weibo; He, Jian; Yan, Jing; Zhou, Zhengyang; Yang, Xiaofeng; Liu, Tian

    2016-01-01

    Radiation-induced parotid damage is one of the most common complications in patients with nasopharyngeal carcinoma (NPC) undergoing radiotherapy (RT). Intravoxel incoherent motion (IVIM) magnetic resonance (MR) imaging has been reported for evaluating irradiated parotid damage. However, the changes of IVIM perfusion-related parameters in irradiated parotid glands have not been confirmed by conventional perfusion measurements obtained from dynamic contrast-enhanced (DCE) MR imaging. The purposes of this study were to monitor radiation-induced parotid damage using IVIM and DCE MR imaging and to investigate the correlations between changes of these MR parameters. Eighteen NPC patients underwent bilateral parotid T1-weighted, IVIM and DCE MR imaging pre-RT (2 weeks before RT) and post-RT (4 weeks after RT). Parotid volume; IVIM MR parameters, including apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f); and DCE MR parameters, including maximum relative enhancement (MRE), time to peak (TTP), Wash in Rate, and the degree of xerostomia were recorded. Correlations of parotid MR parameters with mean radiation dose, atrophy rate and xerostomia degree, as well as the relationships between IVIM and DCE MR parameters, were investigated. From pre-RT to post-RT, all of the IVIM and DCE MR parameters increased significantly (p < 0.001 for ADC, D, f, MRE, Wash in Rate; p = 0.024 for D*; p = 0.037 for TTP). Change rates of ADC, f and MRE were negatively correlated with atrophy rate significantly (all p < 0.05). Significant correlations were observed between the change rates of D* and MRE (r = 0.371, p = 0.026) and between the change rates of D* and TTP (r = 0.396, p = 0.017). The intra- and interobserver reproducibility of IVIM and DCE MR parameters was good to excellent (intraclass correlation coefficient, 0.633–0.983). Early radiation-induced changes of parotid glands could be evaluated by IVIM and

  4. Histologic correlation of in vivo optical coherence tomography images of the human retina

    NARCIS (Netherlands)

    Chen, T.; Cense, B.; Miller, J.S.; Rubin, P. A. D.; Deschler, D. G.; Gragoudas, E. S.; de Boer, J.F.

    2006-01-01

    Purpose: To correlate in vivo human retina optical coherence tomography (OCT)3 images with histology. Design: Case series. Methods: Linear OCT3 scans through the macula and optic nerve were obtained in three eyes of three patients who then underwent exenteration surgery for orbital cancers. OCT3

  5. Digital image correlation in analysis of striffness in local zones of welded joints

    Czech Academy of Sciences Publication Activity Database

    Milosevic, M.; Milosevic, N.J.; Sedmak, S.; Tatic, U.; Mitrovic, N.; Hloch, Sergej; Jovicic, R.

    2016-01-01

    Roč. 23, č. 1 (2016), s. 19-24 ISSN 1330-3651 Institutional support: RVO:68145535 Keywords : Aramis software * digital image correlation * strain analysis * stiffness * welded joints Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/file/225545

  6. Strain and displacement controls by fibre bragg grating and digital image correlation

    DEFF Research Database (Denmark)

    Waldbjørn, Jacob Paamand; Høgh, Jacob Herold; Schmidt, Jacob Wittrup

    2014-01-01

    the test based on measurements performed directly on the test specimen. In this paper, fibre Bragg grating (FBG) and Digital Image Correlation (DIC) are used to control a test. The FBG sensors offer the possibility of measuring strains inside the specimen, while the DIC system measures strains...

  7. Brain magnetic resonance imaging correlates of impaired cognition in patients with type 2 diabetes.

    NARCIS (Netherlands)

    Manschot, S.M.; Brands, A.M.; Grond, J. van der; Kessels, R.P.C.; Algra, A.; Kappelle, L.J.; Biessels, G.J.

    2006-01-01

    The structural correlates of impaired cognition in type 2 diabetes are unclear. The present study compared cognition and brain magnetic resonance imaging (MRI) between type 2 diabetic patients and nondiabetic control subjects and assessed the relationship between cognition and MRI findings and blood

  8. Correlation between subcutaneous knee fat thickness and chondromalacia patellae on magnetic resonance imaging of the knee.

    LENUS (Irish Health Repository)

    Kok, Hong Kuan

    2013-08-01

    Chondromalacia patellae is a common cause of anterior knee pain in young patients and can be detected noninvasively with magnetic resonance imaging (MRI). The purpose of our study was to evaluate the correlation between subcutaneous fat thickness around the knee joint on axial MRIs as a surrogate marker of obesity, with the presence or absence of chondromalacia patellae.

  9. On the boundary conditions and optimization methods in integrated digital image correlation

    NARCIS (Netherlands)

    Kleinendorst, S.M.; Verhaegh, B.J.; Hoefnagels, J.P.M.; Ruybalid, A.; van der Sluis, O.; Geers, M.G.D.; Lamberti, L.; Lin, M.-T.; Furlong, C.; Sciammarella, C.

    2018-01-01

    In integrated digital image correlation (IDIC) methods attention must be paid to the influence of using a correct geometric and material model, but also to make the boundary conditions in the FE simulation match the real experiment. Another issue is the robustness and convergence of the IDIC

  10. Correlation of computed tomographic and magnetic resonance imaging findings in cerebral infartion

    International Nuclear Information System (INIS)

    Komatsubara, Chizuko; Chuda, Moriyoshi; Taka, Toshihiko

    1989-01-01

    We evaluated neurological findings in 75 patients of cerebral infarction, and correlated computed tomographic (CT) and magnetic resonance imaging (MRI) findings. MRI was found to have the advantage when the lesion were multiple, or in the posterior fossa. MRI demonstrates the anatomical details, and lacks the bony artifact, so it is an excellent method for identification of cerebral infarction. (author)

  11. Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification

    International Nuclear Information System (INIS)

    Xue, Zhenyu; Charonko, John J; Vlachos, Pavlos P

    2014-01-01

    In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, U 68.5 uncertainties are estimated at the 68.5% confidence level while U 95 uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements. (paper)

  12. Particle image velocimetry correlation signal-to-noise ratio metrics and measurement uncertainty quantification

    Science.gov (United States)

    Xue, Zhenyu; Charonko, John J.; Vlachos, Pavlos P.

    2014-11-01

    In particle image velocimetry (PIV) the measurement signal is contained in the recorded intensity of the particle image pattern superimposed on a variety of noise sources. The signal-to-noise-ratio (SNR) strength governs the resulting PIV cross correlation and ultimately the accuracy and uncertainty of the resulting PIV measurement. Hence we posit that correlation SNR metrics calculated from the correlation plane can be used to quantify the quality of the correlation and the resulting uncertainty of an individual measurement. In this paper we extend the original work by Charonko and Vlachos and present a framework for evaluating the correlation SNR using a set of different metrics, which in turn are used to develop models for uncertainty estimation. Several corrections have been applied in this work. The SNR metrics and corresponding models presented herein are expanded to be applicable to both standard and filtered correlations by applying a subtraction of the minimum correlation value to remove the effect of the background image noise. In addition, the notion of a ‘valid’ measurement is redefined with respect to the correlation peak width in order to be consistent with uncertainty quantification principles and distinct from an ‘outlier’ measurement. Finally the type and significance of the error distribution function is investigated. These advancements lead to more robust and reliable uncertainty estimation models compared with the original work by Charonko and Vlachos. The models are tested against both synthetic benchmark data as well as experimental measurements. In this work, {{U}68.5} uncertainties are estimated at the 68.5% confidence level while {{U}95} uncertainties are estimated at 95% confidence level. For all cases the resulting calculated coverage factors approximate the expected theoretical confidence intervals, thus demonstrating the applicability of these new models for estimation of uncertainty for individual PIV measurements.

  13. Comparison of subset-based local and FE-based global digital image correlation: Theoretical error analysis and validation

    KAUST Repository

    Pan, B.; Wang, Bo; Lubineau, Gilles

    2016-01-01

    Subset-based local and finite-element-based (FE-based) global digital image correlation (DIC) approaches are the two primary image matching algorithms widely used for full-field displacement mapping. Very recently, the performances

  14. Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Directory of Open Access Journals (Sweden)

    Joel Saltz

    2018-04-01

    Full Text Available Summary: Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumor-infiltrating lymphocytes (TILs based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment. : Tumor-infiltrating lymphocytes (TILs were identified from standard pathology cancer images by a deep-learning-derived “computational stain” developed by Saltz et al. They processed 5,202 digital images from 13 cancer types. Resulting TIL maps were correlated with TCGA molecular data, relating TIL content to survival, tumor subtypes, and immune profiles. Keywords: digital pathology, immuno-oncology, machine learning, lymphocytes, tumor microenvironment, deep learning, tumor-infiltrating lymphocytes, artificial intelligence, bioinformatics, computer vision

  15. Triple correlation in temporomandibular joint dysfunction: MR imaging with arthrography, arthroscopy, and open surgery

    International Nuclear Information System (INIS)

    Rao, V.M.; Farole, A.; Karasick, D.

    1988-01-01

    Triple correlation of MR imaging with arthrography, arthroscopy, and open surgery was performed in 24 patients (34 temporomandibular joints) with ages ranging from 17 to 66 years. MR imaging showed disk position and morphologic features accurately in 30 joints (88%). It was false negative in one joint and false positive in three joints (9%). Degenerative changes were accurately detected with MR imaging, arthrography, and arthroscopy. Adhesions were diagnosed with arthrography in eight joints, arthroscopy in 14, and MR imaging in none. Disk perforations seen at open surgery were not detected with MR imaging. In conclusion, there is an overlap of information presented by various modalities. MR imaging is better than arthrography detecting disk morphologic features and displacement. Arthrography may add information by showing meniscal dynamics. Arthroscopy entails direct observation of superior joint space only and can detect adhesions and perforations better, but it may alter disk position and dynamics. In the more difficult cases, triple correlation may be needed, as modalities can be complementary

  16. Subjective Ratings of Beauty and Aesthetics: Correlations With Statistical Image Properties in Western Oil Paintings

    Science.gov (United States)

    Lehmann, Thomas; Redies, Christoph

    2017-01-01

    For centuries, oil paintings have been a major segment of the visual arts. The JenAesthetics data set consists of a large number of high-quality images of oil paintings of Western provenance from different art periods. With this database, we studied the relationship between objective image measures and subjective evaluations of the images, especially evaluations on aesthetics (defined as artistic value) and beauty (defined as individual liking). The objective measures represented low-level statistical image properties that have been associated with aesthetic value in previous research. Subjective rating scores on aesthetics and beauty correlated not only with each other but also with different combinations of the objective measures. Furthermore, we found that paintings from different art periods vary with regard to the objective measures, that is, they exhibit specific patterns of statistical image properties. In addition, clusters of participants preferred different combinations of these properties. In conclusion, the results of the present study provide evidence that statistical image properties vary between art periods and subject matters and, in addition, they correlate with the subjective evaluation of paintings by the participants. PMID:28694958

  17. Left Ventricle: Fully Automated Segmentation Based on Spatiotemporal Continuity and Myocardium Information in Cine Cardiac Magnetic Resonance Imaging (LV-FAST

    Directory of Open Access Journals (Sweden)

    Lijia Wang

    2015-01-01

    Full Text Available CMR quantification of LV chamber volumes typically and manually defines the basal-most LV, which adds processing time and user-dependence. This study developed an LV segmentation method that is fully automated based on the spatiotemporal continuity of the LV (LV-FAST. An iteratively decreasing threshold region growing approach was used first from the midventricle to the apex, until the LV area and shape discontinued, and then from midventricle to the base, until less than 50% of the myocardium circumference was observable. Region growth was constrained by LV spatiotemporal continuity to improve robustness of apical and basal segmentations. The LV-FAST method was compared with manual tracing on cardiac cine MRI data of 45 consecutive patients. Of the 45 patients, LV-FAST and manual selection identified the same apical slices at both ED and ES and the same basal slices at both ED and ES in 38, 38, 38, and 41 cases, respectively, and their measurements agreed within -1.6±8.7 mL, -1.4±7.8 mL, and 1.0±5.8% for EDV, ESV, and EF, respectively. LV-FAST allowed LV volume-time course quantitatively measured within 3 seconds on a standard desktop computer, which is fast and accurate for processing the cine volumetric cardiac MRI data, and enables LV filling course quantification over the cardiac cycle.

  18. Influence of retrospective sorting on image quality in respiratory correlated computed tomography

    International Nuclear Information System (INIS)

    Guckenberger, Matthias; Weininger, Markus; Wilbert, Juergen; Richter, Anne; Baier, Kurt; Krieger, Thomas; Polat, Buelent; Flentje, Michael

    2007-01-01

    Purpose: To evaluate the influence of retrospective sorting on image quality in four-dimensional respiratory correlated CT. Materials and methods: Twelve patients with intrapulmonary tumors were examined using a 24-slice CT-scanner in helical mode. Images were reconstructed after retrospective sorting based on five algorithms: amplitude-based sorting with definition of peak-exhalation and peak-inhalation separately/locally for all breathing cycles (LAS) and globally for the time of image acquisition (GAS). Drifts of the breathing signal were corrected in dc-GAS. In phase-based (PS) and cycle-based (CS) algorithm the projections were sorted relative to time. Motion artifacts were scored by a radiologist. The tumor volumes were measured using automatic image segmentation. Results: Averaged over all breathing phases, LAS and PS achieved significantly improved image quality and lowest tumor volume variability compared to GAS, dc-GAS and CS. Imaging redundancy of 5 s was not sufficient for GAS and dc-GAS: missing corresponding amplitude positions in one or several breathing cycles resulted in incomplete reconstruction of peak-ventilation images in 11/12 and 10/12 patients with GAS and dc-GAS, respectively. Limiting the analysis to mid-ventilation phases showed GAS and dc-GAS as the most reliable algorithms. Conclusions: LAS and PS are suggested as a compromise between image quality and radiation dose

  19. Denervation syndromes of the shoulder girdle: MR imaging with electrophysiologic correlation

    International Nuclear Information System (INIS)

    Bredella, M.A.; Wischer, T.K.; Stork, A.; Genant, H.K.; Tirman, P.F.J.; Fritz, R.C.

    1999-01-01

    Objective. To investigate the use of MR imaging in the characterization of denervated muscle of the shoulder correlated with electrophysiologic studies.Design and patients. We studied with MR imaging five patients who presented with shoulder weakness and pain and who underwent electrophysiologic studies. On MR imaging the distribution of muscle edema and fatty infiltration was recorded, as was the presence of masses impinging on a regional nerve.Results. Acute/subacute denervation was best seen on T2-weighted fast spin-echo images with fat saturation, showing increased SI related to neurogenic edema. Chronic denervation was best seen on T1-weighted spin-echo images, demonstrating loss of muscle bulk and diffuse areas of increased signal intensity within the muscle. Three patients showed MR imaging and electrophysiologic findings of Parsonage Turner syndrome. One patient demonstrated an arteriovenous malformation within the spinoglenoid notch, impinging on the suprascapular nerve with associated atrophy of the infraspinatus muscle. The fifth patient demonstrated fatty atrophy of the teres minor muscle caused by compression by a cyst of the axillary nerve and electrophysiologic findings of an incomplete axillary nerve block.Conclusion. MR imaging is useful in detecting and characterizing denervation atrophy and neurogenic edema in shoulder muscles. MR imaging can provide additional information to electrophysiologic studies by estimating the age (acute/chronic) and identifying morphologic causes for shoulder pain and atrophy. (orig.)

  20. Image features dependant correlation-weighting function for efficient PRNU based source camera identification.

    Science.gov (United States)

    Tiwari, Mayank; Gupta, Bhupendra

    2018-04-01

    For source camera identification (SCI), photo response non-uniformity (PRNU) has been widely used as the fingerprint of the camera. The PRNU is extracted from the image by applying a de-noising filter then taking the difference between the original image and the de-noised image. However, it is observed that intensity-based features and high-frequency details (edges and texture) of the image, effect quality of the extracted PRNU. This effects correlation calculation and creates problems in SCI. For solving this problem, we propose a weighting function based on image features. We have experimentally identified image features (intensity and high-frequency contents) effect on the estimated PRNU, and then develop a weighting function which gives higher weights to image regions which give reliable PRNU and at the same point it gives comparatively less weights to the image regions which do not give reliable PRNU. Experimental results show that the proposed weighting function is able to improve the accuracy of SCI up to a great extent. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A novel fractal image compression scheme with block classification and sorting based on Pearson's correlation coefficient.

    Science.gov (United States)

    Wang, Jianji; Zheng, Nanning

    2013-09-01

    Fractal image compression (FIC) is an image coding technology based on the local similarity of image structure. It is widely used in many fields such as image retrieval, image denoising, image authentication, and encryption. FIC, however, suffers from the high computational complexity in encoding. Although many schemes are published to speed up encoding, they do not easily satisfy the encoding time or the reconstructed image quality requirements. In this paper, a new FIC scheme is proposed based on the fact that the affine similarity between two blocks in FIC is equivalent to the absolute value of Pearson's correlation coefficient (APCC) between them. First, all blocks in the range and domain pools are chosen and classified using an APCC-based block classification method to increase the matching probability. Second, by sorting the domain blocks with respect to APCCs between these domain blocks and a preset block in each class, the matching domain block for a range block can be searched in the selected domain set in which these APCCs are closer to APCC between the range block and the preset block. Experimental results show that the proposed scheme can significantly speed up the encoding process in FIC while preserving the reconstructed image quality well.

  2. Learning statistical correlation for fast prostate registration in image-guided radiotherapy

    International Nuclear Information System (INIS)

    Shi Yonghong; Liao Shu; Shen Dinggang

    2011-01-01

    Purpose: In adaptive radiation therapy of prostate cancer, fast and accurate registration between the planning image and treatment images of the patient is of essential importance. With the authors' recently developed deformable surface model, prostate boundaries in each treatment image can be rapidly segmented and their correspondences (or relative deformations) to the prostate boundaries in the planning image are also established automatically. However, the dense correspondences on the nonboundary regions, which are important especially for transforming the treatment plan designed in the planning image space to each treatment image space, are remained unresolved. This paper presents a novel approach to learn the statistical correlation between deformations of prostate boundary and nonboundary regions, for rapidly estimating deformations of the nonboundary regions when given the deformations of the prostate boundary at a new treatment image. Methods: The main contributions of the proposed method lie in the following aspects. First, the statistical deformation correlation will be learned from both current patient and other training patients, and further updated adaptively during the radiotherapy. Specifically, in the initial treatment stage when the number of treatment images collected from the current patient is small, the statistical deformation correlation is mainly learned from other training patients. As more treatment images are collected from the current patient, the patient-specific information will play a more important role in learning patient-specific statistical deformation correlation to effectively reflect prostate deformation of the current patient during the treatment. Eventually, only the patient-specific statistical deformation correlation is used to estimate dense correspondences when a sufficient number of treatment images have been acquired from the current patient. Second, the statistical deformation correlation will be learned by using a

  3. Spatio-chromatic adaptation via higher-order canonical correlation analysis of natural images.

    Science.gov (United States)

    Gutmann, Michael U; Laparra, Valero; Hyvärinen, Aapo; Malo, Jesús

    2014-01-01

    Independent component and canonical correlation analysis are two general-purpose statistical methods with wide applicability. In neuroscience, independent component analysis of chromatic natural images explains the spatio-chromatic structure of primary cortical receptive fields in terms of properties of the visual environment. Canonical correlation analysis explains similarly chromatic adaptation to different illuminations. But, as we show in this paper, neither of the two methods generalizes well to explain both spatio-chromatic processing and adaptation at the same time. We propose a statistical method which combines the desirable properties of independent component and canonical correlation analysis: It finds independent components in each data set which, across the two data sets, are related to each other via linear or higher-order correlations. The new method is as widely applicable as canonical correlation analysis, and also to more than two data sets. We call it higher-order canonical correlation analysis. When applied to chromatic natural images, we found that it provides a single (unified) statistical framework which accounts for both spatio-chromatic processing and adaptation. Filters with spatio-chromatic tuning properties as in the primary visual cortex emerged and corresponding-colors psychophysics was reproduced reasonably well. We used the new method to make a theory-driven testable prediction on how the neural response to colored patterns should change when the illumination changes. We predict shifts in the responses which are comparable to the shifts reported for chromatic contrast habituation.

  4. SU-D-202-02: Quantitative Imaging: Correlation Between Image Feature Analysis and the Accuracy of Manually Drawn Contours On PET Images

    Energy Technology Data Exchange (ETDEWEB)

    Lamichhane, N; Johnson, P; Chinea, F; Patel, V; Yang, F [University of Miami, Miami, FL (United States)

    2016-06-15

    Purpose: To evaluate the correlation between image features and the accuracy of manually drawn target contours on synthetic PET images Methods: A digital PET phantom was used in combination with Monte Carlo simulation to create a set of 26 simulated PET images featuring a variety of tumor shapes and activity heterogeneity. These tumor volumes were used as a gold standard in comparisons with manual contours delineated by 10 radiation oncologist on the simulated PET images. Metrics used to evaluate segmentation accuracy included the dice coefficient, false positive dice, false negative dice, symmetric mean absolute surface distance, and absolute volumetric difference. Image features extracted from the simulated tumors consisted of volume, shape complexity, mean curvature, and intensity contrast along with five texture features derived from the gray-level neighborhood difference matrices including contrast, coarseness, busyness, strength, and complexity. Correlation between these features and contouring accuracy were examined. Results: Contour accuracy was reasonably well correlated with a variety of image features. Dice coefficient ranged from 0.7 to 0.90 and was correlated closely with contrast (r=0.43, p=0.02) and complexity (r=0.5, p<0.001). False negative dice ranged from 0.10 to 0.50 and was correlated closely with contrast (r=0.68, p<0.001) and complexity (r=0.66, p<0.001). Absolute volumetric difference ranged from 0.0002 to 0.67 and was correlated closely with coarseness (r=0.46, p=0.02) and complexity (r=0.49, p=0.008). Symmetric mean absolute difference ranged from 0.02 to 1 and was correlated closely with mean curvature (r=0.57, p=0.02) and contrast (r=0.6, p=0.001). Conclusion: The long term goal of this study is to assess whether contouring variability can be reduced by providing feedback to the practitioner based on image feature analysis. The results are encouraging and will be used to develop a statistical model which will enable a prediction of

  5. Adductor-related groin pain in athletes: correlation of MR imaging with clinical findings

    International Nuclear Information System (INIS)

    Robinson, P.; Barron, D.A.; Grainger, A.J.; O'Connor, P.J.; Parsons, W.; Schilders, E.M.G.

    2004-01-01

    To evaluate gadolinium-enhanced MR imaging in athletes with chronic groin pain and correlate with the clinical features. MR examinations performed in 52 athletes (51 male, 1 female; median age 26 years) with chronic groin pain and 6 asymptomatic control athletes (6 male; median age 29 years) were independently reviewed by two radiologists masked to the clinical details. Symptom duration (median 6 months) and clinical side of severity were recorded. Anatomical areas in the pelvis were scored for abnormality (as normal, mildly abnormal or abnormal) and an overall assessment for side distribution of abnormality was recorded, initially without post-gadolinium sequences and then, 3 weeks later (median 29 days), the post-gadolinium sequences only. Correlation between radiological and clinical abnormality was calculated by Spearman's correlation. Abnormal anterior pubis and enthesis enhancement significantly correlated with clinical side for both radiologists (both P=0.008). Abnormal anterior pubis and adductor longus enthesis oedema was significant for one radiologist (P=0.009). All other features showed no significant correlation (P>0.05). In the control cases there was no soft tissue abnormality but symphyseal irregularity was present (n=2). For both radiologists assessment of imaging side severity significantly correlated with clinical side for post-gadolinium (P=0.048 and P=0.023) but not non-gadolinium sequences (P>0.05). The extent and side of anterior pubis and adductor longus enthesis abnormality on MR imaging significantly and reproducibly correlates with the athletes' current symptoms in chronic adductor-related groin pain. (orig.)

  6. Indeterminacy and Spatiotemporal Data

    DEFF Research Database (Denmark)

    Pfoser, D.; Tryfona, N.; Jensen, Christian Søndergaard

    2005-01-01

    For some spatiotemporal applications, it can be assumed that the modeled world is precise and bounded, and that our record of it is precise. While these simplifying assumptions are sufficient in applications like a land information system, they are unnecessarily crude for many other applications...

  7. Posteromedial corner of the knee: MR imaging with gross anatomic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Loredo, R. (Texas Univ., San Antonio, TX (United States). Dept. of Radiology); Hodler, J. (Department of Radiology, Univ. of Zurich (Switzerland)); Pedowitz, R. (Department of Orthopedic Surgery, Veterans Administration Medical Center (VAMC), San Diego, CA (United States)); Yeh, L.-R.; Trudell, D.; Resnick, D. (Department of Radiology, Veterans Administration Medical Center (VAMC), 3350 La Jolla Village Drive, San Diego, CA 92161 (United States))

    1999-06-01

    Objective. The objective of this study was to illustrate the magnetic resonance (MR) image appearance of the structures of the posteromedial ''corner'' of the knee with particular emphasis on the anatomy and differentiation between the medial collateral ligament and the posterior oblique ligament.Design. Six cadaveric knee specimens underwent MR imaging, before and following instillation of intra-articular contrast material. The knees were sectioned in the axial, coronal, and coronal oblique planes and the gross morphology of the posteromedial corner and surrounding structures was studied and correlated with the MR images.Patients. The human cadaveric specimens were from two female and four male patients (age at death, 72-86 years; average, 78 years).Results and conclusions. The contrast-enhanced sequences and the coronal oblique images allowed for improved visualization of the structures. (orig.) With 8 figs., 7 refs.

  8. Magnetic resonance imaging for extramammary Paget's disease: radiological and pathological correlations

    International Nuclear Information System (INIS)

    Akaike, Gensuke; Nozaki, Taiki; Matsusako, Masaki; Saida, Yukihisa; Matsui, Mizuko; Ohtake, Naoyuki; Eto, Hikaru; Suzuki, Koyu

    2013-01-01

    Extramammary Paget's disease (EMPD) is a rare cutaneous neoplasm that is thought to represent intraepithelial adenocarcinoma developing in an area rich in apocrine glands. Magnetic resonance imaging (MRI) findings for this disease are not well established. We report three cases of pathologically confirmed EMPD in which MRI was performed before surgery. The lesions were widespread in the epidermis and the dermis. Lesions were sharply well enhanced on gadolinium-enhanced T1-weighted imaging and appeared hyperintense on diffusion-weighted imaging in all cases. Areas with enhancement in depth corresponded well with the pathological lesion. In addition, different malignant legions were found on the same images from MRI in two cases, indicating potential associations with other malignancies. We describe the MRI findings and their pathological correlation. MRI could be useful for preoperative evaluation of disease spread and detection of associated malignancies. (orig.)

  9. Spatiotemporal change of sky polarization during the total solar eclipse on 29 March 2006 in Turkey: polarization patterns of the eclipsed sky observed by full-sky imaging polarimetry.

    Science.gov (United States)

    Sipocz, Brigitta; Hegedüs, Ramón; Kriska, György; Horváth, Gábor

    2008-12-01

    Using 180 degrees field-of-view (full-sky) imaging polarimetry, we measured the spatiotemporal change of the polarization of skylight during the total solar eclipse on 29 March 2006 in Turkey. We present our observations here on the temporal variation of the celestial patterns of the degree p and angle alpha of linear polarization of the eclipsed sky measured in the red (650 nm), green (550 nm), and blue (450 nm) parts of the spectrum. We also report on the temporal and spectral change of the positions of neutral (unpolarized, p = 0) points, and points with local minima or maxima of p of the eclipsed sky. Our results are compared with the observations performed by the same polarimetric technique during the total solar eclipse on 11 August 1999 in Hungary. Practically the same characteristics of celestial polarization were encountered during both eclipses. This shows that the observed polarization phenomena of the eclipsed sky may be general.

  10. Correlation between model observer and human observer performance in CT imaging when lesion location is uncertain

    Energy Technology Data Exchange (ETDEWEB)

    Leng, Shuai; Yu, Lifeng; Zhang, Yi; McCollough, Cynthia H. [Department of Radiology, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905 (United States); Carter, Rickey [Department of Biostatistics, Mayo Clinic, 200 First Street Southwest, Rochester, Minnesota 55905 (United States); Toledano, Alicia Y. [Biostatistics Consulting, LLC, 10606 Wheatley Street, Kensington, Maryland 20895 (United States)

    2013-08-15

    Purpose: The purpose of this study was to investigate the correlation between model observer and human observer performance in CT imaging for the task of lesion detection and localization when the lesion location is uncertain.Methods: Two cylindrical rods (3-mm and 5-mm diameters) were placed in a 35 × 26 cm torso-shaped water phantom to simulate lesions with −15 HU contrast at 120 kV. The phantom was scanned 100 times on a 128-slice CT scanner at each of four dose levels (CTDIvol = 5.7, 11.4, 17.1, and 22.8 mGy). Regions of interest (ROIs) around each lesion were extracted to generate images with signal-present, with each ROI containing 128 × 128 pixels. Corresponding ROIs of signal-absent images were generated from images without lesion mimicking rods. The location of the lesion (rod) in each ROI was randomly distributed by moving the ROIs around each lesion. Human observer studies were performed by having three trained observers identify the presence or absence of lesions, indicating the lesion location in each image and scoring confidence for the detection task on a 6-point scale. The same image data were analyzed using a channelized Hotelling model observer (CHO) with Gabor channels. Internal noise was added to the decision variables for the model observer study. Area under the curve (AUC) of ROC and localization ROC (LROC) curves were calculated using a nonparametric approach. The Spearman's rank order correlation between the average performance of the human observers and the model observer performance was calculated for the AUC of both ROC and LROC curves for both the 3- and 5-mm diameter lesions.Results: In both ROC and LROC analyses, AUC values for the model observer agreed well with the average values across the three human observers. The Spearman's rank order correlation values for both ROC and LROC analyses for both the 3- and 5-mm diameter lesions were all 1.0, indicating perfect rank ordering agreement of the figures of merit (AUC

  11. A Generic and Efficient E-field Parallel Imaging Correlator for Next-Generation Radio Telescopes

    Science.gov (United States)

    Thyagarajan, Nithyanandan; Beardsley, Adam P.; Bowman, Judd D.; Morales, Miguel F.

    2017-05-01

    Modern radio telescopes are favouring densely packed array layouts with large numbers of antennas (NA ≳ 1000). Since the complexity of traditional correlators scales as O(N_A^2), there will be a steep cost for realizing the full imaging potential of these powerful instruments. Through our generic and efficient E-field Parallel Imaging Correlator (epic), we present the first software demonstration of a generalized direct imaging algorithm, namely the Modular Optimal Frequency Fourier imager. Not only does it bring down the cost for dense layouts to O(N_A log _2N_A) but can also image from irregular layouts and heterogeneous arrays of antennas. epic is highly modular, parallelizable, implemented in object-oriented python, and publicly available. We have verified the images produced to be equivalent to those from traditional techniques to within a precision set by gridding coarseness. We have also validated our implementation on data observed with the Long Wavelength Array (LWA1). We provide a detailed framework for imaging with heterogeneous arrays and show that epic robustly estimates the input sky model for such arrays. Antenna layouts with dense filling factors consisting of a large number of antennas such as LWA, the Square Kilometre Array, Hydrogen Epoch of Reionization Array, and Canadian Hydrogen Intensity Mapping Experiment will gain significant computational advantage by deploying an optimized version of epic. The algorithm is a strong candidate for instruments targeting transient searches of fast radio bursts as well as planetary and exoplanetary phenomena due to the availability of high-speed calibrated time-domain images and low output bandwidth relative to visibility-based systems.

  12. Histopathologic correlation of magnetic resonance imaging signal patterns in a spinal cord injury model.

    Science.gov (United States)

    Weirich, S D; Cotler, H B; Narayana, P A; Hazle, J D; Jackson, E F; Coupe, K J; McDonald, C L; Langford, L A; Harris, J H

    1990-07-01

    Magnetic resonance imaging (MRI) provides a noninvasive method of monitoring the pathologic response to spinal cord injury. Specific MR signal intensity patterns appear to correlate with degrees of improvement in the neurologic status in spinal cord injury patients. Histologic correlation of two types of MR signal intensity patterns are confirmed in the current study using a rat animal model. Adult male Sprague-Dawley rats underwent spinal cord trauma at the midthoracic level using a weight-dropping technique. After laminectomy, 5- and 10-gm brass weights were dropped from designated heights onto a 0.1-gm impounder placed on the exposed dura. Animals allowed to regain consciousness demonstrated variable recovery of hind limb paraplegia. Magnetic resonance images were obtained from 2 hours to 1 week after injury using a 2-tesla MRI/spectrometer. Sacrifice under anesthesia was performed by perfusive fixation; spinal columns were excised en bloc, embedded, sectioned, and observed with the compound light microscope. Magnetic resonance axial images obtained during the time sequence after injury demonstrate a distinct correlation between MR signal intensity patterns and the histologic appearance of the spinal cord. Magnetic resonance imaging delineates the pathologic processes resulting from acute spinal cord injury and can be used to differentiate the type of injury and prognosis.

  13. X-linked adrenoleukodystrophy: correlation between Loes score and diffusion tensor imaging parameters.

    Science.gov (United States)

    Ono, Sergio Eiji; de Carvalho Neto, Arnolfo; Gasparetto, Emerson Leandro; Coelho, Luiz Otávio de Mattos; Escuissato, Dante Luiz; Bonfim, Carmem Maria Sales; Ribeiro, Lisandro Lima

    2014-01-01

    The present study was aimed at evaluating the correlation between diffusion tensor imaging parameters and Loes score as well as whether those parameters could indicate early structural alterations. Diffusion tensor imaging measurements were obtained in 30 studies of 14 patients with X-linked adrenoleukodystrophy and were correlated with Loes scores. A control group including 28 male patients was created to establish agematched diffusion tensor imaging measurements. Inter- and intraobserver statistical analyses were undertaken. Diffusion tensor imaging measurements presented strong Pearson correlation coefficients (r) of -0.86, 0.89, 0.89 and 0.84 for fractional anisotropy and mean, radial and axial diffusivities (p tensor measurements at early stage of the disease indicates that mean and radial diffusivities might be useful to predict the disease progression. Measurements of diffusion tensor parameters can be used as an adjunct to the Loes score, aiding in the monitoring of the disease and alerting for possible Loes score progression in the range of interest for therapeutic decisions.

  14. CT and MR imaging findings of xanthogranulomatous cholecystitis: correlation with pathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Shuto, R.; Kiyosue, H.; Komatsu, E.; Matsumoto, S.; Mori, H. [Oita Medical Univ. (Japan). Dept. of Radiology; Kawano, K. [Oita Medical Univ. (Japan). Dept. of First Surgery; Kondo, Y.; Yokoyama, S. [Oita Medical Univ. (Japan). Dept. of First Pathology

    2004-03-01

    The aim of this study was to evaluate CT and MRI findings in xanthogranulomatous cholecystitis (XGC) and to correlate the imaging findings with various pathologic parameters. The study included 13 patients with histopathologically confirmed XGC. The CT (n=13) and MRI (n=5) obtained in these patients were evaluated retrospectively. On CT, low-attenuation areas in the wall of XGC correlated with foam and inflammatory cells or necrosis and/or abscess in XGC. Areas of iso- to slightly high signal intensity on T2-weighted images, showing slight enhancement at early phase and strong enhancement at last phase on dynamic study, corresponded with areas of abundant xanthogranulomas. Areas with very high signal intensity on T2-weighted images without enhancement corresponded with necrosis and/or abscesses. Luminal surface enhancement (LSE) of gallbladder wall represented preservation of the epithelial layer. The early-enhanced areas of the liver bed on dynamic CT and MR images corresponded with accumulation of inflammatory cells and abundant fibrosis. Our results indicate that CT and MRI findings correlate well with the histopathologic findings of XGC.

  15. Imaging diagnosis in relapsing polychondritis and correlation with clinical and serological data

    International Nuclear Information System (INIS)

    Thaiss, W.M.; Nikolaou, K.; Horger, M.; Spengler, W.; Xenitidis, T.; Henes, J.; Spira, D.

    2016-01-01

    We hypothesize that imaging findings from CT and MRI correlate better with clinical markers for assessment of disease activity in patients with the rare relapsing polychondritis (RPC) than with serological inflammatory markers. Retrospective database search at our institution identified 28 patients (13 females; age 49.0 years ± 15.0 SD) with RP between September 2004 and March 2014. Institutional review board approval was obtained for this retrospective data analysis. All patients had clinically proven RPC with at least two episodes of active disease. Of those, 18 patients were examined with CT- and MRI and presented all morphologic features of RPC like bronchial/laryngeal/auricular cartilage thickness, contrast enhancement, increased T2-signal intensity. Imaging data was subsequently correlated with corresponding clinical symptoms like fever, dyspnea, stridor, uveitis, pain, hearing impairment as well as with acute-phase-inflammatory parameters like C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). The clinical parameters were in good agreement with imaging findings and clinical symptoms such as tracheal wall thickening and dyspnea (r =0.65 p = 0.05), joint synovitis on MRI and a higher McAdam score (r = 0.84 p < 0.001). No correlations were found between inflammatory laboratory markers, imaging findings and clinical features. Imaging diagnosis in RPC using CT and/or MRI delivers information about the degree of disease activity that correlates better with clinical features than unspecific inflammatory laboratory markers. Additionally, clinically unapparent cartilage involvement can be assessed adding value to the clinical diagnosis and therapy planning in this rare disease. (orig.)

  16. Imaging diagnosis in relapsing polychondritis and correlation with clinical and serological data

    Energy Technology Data Exchange (ETDEWEB)

    Thaiss, W.M.; Nikolaou, K.; Horger, M. [Eberhard Karls University, Department of Radiology, Diagnostic and Interventional Radiology, Tuebingen (Germany); Spengler, W.; Xenitidis, T.; Henes, J. [Eberhard Karls University, Department of Internal Medicine II, Tuebingen (Germany); Spira, D. [Eberhard Karls University, Department of Radiology, Diagnostic and Interventional Radiology, Tuebingen (Germany); University Medical Center Heidelberg, Diagnostic and Interventional Radiology, Heidelberg (Germany)

    2016-03-15

    We hypothesize that imaging findings from CT and MRI correlate better with clinical markers for assessment of disease activity in patients with the rare relapsing polychondritis (RPC) than with serological inflammatory markers. Retrospective database search at our institution identified 28 patients (13 females; age 49.0 years ± 15.0 SD) with RP between September 2004 and March 2014. Institutional review board approval was obtained for this retrospective data analysis. All patients had clinically proven RPC with at least two episodes of active disease. Of those, 18 patients were examined with CT- and MRI and presented all morphologic features of RPC like bronchial/laryngeal/auricular cartilage thickness, contrast enhancement, increased T2-signal intensity. Imaging data was subsequently correlated with corresponding clinical symptoms like fever, dyspnea, stridor, uveitis, pain, hearing impairment as well as with acute-phase-inflammatory parameters like C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR). The clinical parameters were in good agreement with imaging findings and clinical symptoms such as tracheal wall thickening and dyspnea (r =0.65 p = 0.05), joint synovitis on MRI and a higher McAdam score (r = 0.84 p < 0.001). No correlations were found between inflammatory laboratory markers, imaging findings and clinical features. Imaging diagnosis in RPC using CT and/or MRI delivers information about the degree of disease activity that correlates better with clinical features than unspecific inflammatory laboratory markers. Additionally, clinically unapparent cartilage involvement can be assessed adding value to the clinical diagnosis and therapy planning in this rare disease. (orig.)

  17. Diffusion Tensor Imaging Correlates with Short-Term Myelopathy Outcome in Patients with Cervical Spondylotic Myelopathy.

    Science.gov (United States)

    Vedantam, Aditya; Rao, Avinash; Kurpad, Shekar N; Jirjis, Michael B; Eckardt, Gerald; Schmit, Brian D; Wang, Marjorie C

    2017-01-01

    To determine if spinal cord diffusion tensor imaging indexes correlate with short-term clinical outcome in patients undergoing elective cervical spine surgery for cervical spondylotic myelopathy (CSM). A prospective consecutive cohort study was performed in patients undergoing elective cervical spine surgery for CSM. After obtaining informed consent, patients with CSM underwent preoperative T2-weighted magnetic resonance imaging and diffusion tensor imaging of the cervical spine. Fractional anisotropy (FA) values at the level of maximum cord compression and at the noncompressed C1-2 level were calculated on axial images. We recorded the modified Japanese Orthopaedic Association (mJOA) scale, Neck Disability Index, and Short Form-36 physical functioning subscale scores for all patients preoperatively and 3 months postoperatively. Statistical analysis was performed to identify correlations between FA and clinical outcome scores. The study included 27 patients (mean age 54.5 years ± 1.9, 12 men). The mean postoperative changes in mJOA scale, Neck Disability Index, and Short Form-36 physical functioning subscale scores were 0.9 ± 0.3, -6.0 ± 1.9, and 3.4 ± 1.9. The mean FA at the level of maximum compression was significantly lower than the mean FA at the C1-2 level (0.5 vs. 0.55, P = 0.01). FA was significantly correlated with change in mJOA scale score (Pearson r = -0.42, P = 0.02). FA was significantly correlated with the preoperative mJOA scale score (Pearson r = 0.65, P < 0.001). Preoperative FA at the level of maximum cord compression significantly correlates with the 3-month change in mJOA scale score among patients with CSM. FA was also significantly associated with preoperative mJOA scale score and is a potential biomarker for spinal cord dysfunction in CSM. Published by Elsevier Inc.

  18. Diffusion tensor imaging correlates with lesion volume in cerebral hemisphere infarctions

    International Nuclear Information System (INIS)

    Rossi, Maija E; Jason, Eeva; Marchesotti, Silvia; Dastidar, Prasun; Ollikainen, Jyrki; Soimakallio, Seppo

    2010-01-01

    Both a large lesion volume and abnormalities in diffusion tensor imaging are independently associated with a poor prognosis after cerebral infarctions. Therefore, we assume that they are associated. This study assessed the associations between lesion volumes and diffusion tensor imaging in patients with a right-sided cerebral infarction. The lesion volumes of 33 patients (age 65.9 ± 8.7, 26 males and 7 females) were imaged using computed tomography (CT) in the acute phase (within 3-4 hours) and magnetic resonance imaging (MRI) in the chronic phase (follow-up at 12 months, with a range of 8-27 months). The chronic-phase fractional anisotropy (FA) and mean diffusivity (MD) values were measured at the site of the infarct and selected white matter tracts. Neurological tests in both the acute and chronic phases, and DTI lateralization were assessed with the Wilcoxon signed-rank test. The effects of thrombolytic therapy (n = 10) were assessed with the Mann-Whitney U test. The correlations between the measured parameters were analysed with Spearman's rho correlation. Bonferroni post-hoc correction was used to compensate for the familywise error rate in multiple comparisons. Several MD values in the right hemisphere correlated positively and FA values negatively with the lesion volumes. These correlations included both lesion area and healthy tissue. The results of the mini-mental state examination and the National Institutes of Health Stroke Scale also correlated with the lesion volume. A larger infarct volume is associated with more pronounced tissue modifications in the chronic stage as observed with the MD and FA alterations

  19. Imaging characteristics of supratentorial ependymomas: Study on a large single institutional cohort with histopathological correlation.

    Science.gov (United States)

    Mangalore, Sandhya; Aryan, Saritha; Prasad, Chandrajit; Santosh, Vani

    2015-01-01

    Supratentorial ependymoma (STE) is a tumor whose unique clinical and imaging characteristics have not been studied. Histopathologically, they resemble ependymoma elsewhere. We retrospectively reviewed the imaging findings with clinicopathological correlation in a large number of patients with STE to identify these characteristics. Computed tomography (CT) magnetic resonance images (MRI), pathology reports, and clinical information from 41 patients with pathology-confirmed STE from a single institution were retrospectively reviewed. CT and MRI findings including location, size, signal intensity, hemorrhage, and enhancement pattern were tabulated and described separately in intraventricular and intraparenchymal forms. STE was more common in pediatric age group and intraparenchymal was more common than intraventricular form. The most common presentation was features of raised intracranial tension. There were equal numbers of Grade II and Grade III tumors. The imaging characteristics in adult and pediatric age group were similar. The tumor was large and had both solid and cystic components. Advanced imaging such as diffusion, perfusion, and spectroscopy were suggestive of high-grade tumor. Only differentiating factor between Grade II and Grade III was the presence of calcification. 1234 rule and periwinkle sign which we have described in this article may help characterize this tumor on imaging. This series expands the clinical and imaging spectrum of STE and identifies characteristics that should suggest consideration of this uncommon diagnosis.

  20. Avascular necrosis of the femoral head: MR imaging with histologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chae Guk; Cha, Seong Sook; Eun, Choong Ki; Yang, Young Il; Choi, Jang Seok [Pusan Paik Hospital, College of Medicine, Inje University, Busan (Korea, Republic of); Park, Dong Woo [College of Medicine, Hanyang University, Seoul (Korea, Republic of)

    1995-07-15

    To correlate MR findings with histologic findings in avascular necrosis (AVN) of the femoral head. MR findings was performed with 8 femoral head specimens using T1-and proton density weighted coronal SE sequences, and compared with contact radiography and histologic sections. In each specimen, necrotic zone in the superior portion of femoral head, repair zone located inferior to the necrotic zone, and rim adjacent to normal bone marrow could be defined. Necrotic zone showed high signal intensity on both T1-and proton density-weighted images in 3 cases which were composed of necrotic bone and marrow, and low signal intensity on both sequences in 2 cases which were composed of necrotic bone marrow with amorphous cellular debris. Mixed high and low signal intensities were seen in 3 cases. The repair zone showed low signal intensity on T1-weighted image and high signal intensity on proton density weighted image in 5 cases which were composed of thickened trabecular bone and mesenchymal tissue and also showed intermediate signal intensity on T1-weighted image and high signal intensity on proton density weighted image in 3 cases which were composed of osteoid, chondroid and undifferentiated mesenchymal cells. Rim shown as the low signal intensity on T1 weighted image in all cases was corresponded to viable thickened trabecular bone. MR imaging would be the best modality in the diagnosis of avascular necrosis of femoral head and when used in conjunction with degree and location of signal intensity, the prediction of histologic finding may be possible.

  1. MR imaging findings of painful type II accessory navicular bone: correlation with surgical and pathologic studies

    International Nuclear Information System (INIS)

    Choi, Yun Sun; Lee, Kyung Tai; Kim, Eun Kyung; Kang, Heung Sik

    2004-01-01

    To evaluate the MR imaging findings of painful type II accessory navicular bone and to correlate these with the surgical and pathologic findings. The MR images of 17 patients with medial foot pain and surgically proven type II accessory navicular abnormalities were reviewed. The changes of signal intensity in the accessory navicular, synchondrosis and adjacent soft tissue, the presence of synchondrosis widening, and posterior tibial tendon (PTT) pathology on the T1-weighted and fat-suppressed T2-weighted images were analyzed. The MR imaging findings were compared with the surgical and pathologic findings. The fat-suppressed T2-weighted images showed high signal intensity in the accessory navicular bones and synchondroses in all patients, and in the soft tissue in 11 (64.7%) of the 17 patients, as well as synchondrosis widening in 3 (17.6%) of the 17 patients. The MR images showed tendon pathology in 12 (75%) of the 16 patients with PTT dysfunction at surgery. The pathologic findings of 16 surgical specimens included areas of osteonecrosis with granulomatous inflammation, fibrosis and destruction of the cartilage cap. The MR imaging findings of painful type II accessory navicular bone are a persistent edema pattern in the accessory navicular bone and within the synchondrosis, indicating osteonecrosis, inflammation and destruction of the cartilage cap. Posterior tibial tendon dysfunction was clinically evident in most patients

  2. Avascular necrosis of the femoral head: MR imaging with histologic correlation

    International Nuclear Information System (INIS)

    Lee, Chae Guk; Cha, Seong Sook; Eun, Choong Ki; Yang, Young Il; Choi, Jang Seok; Park, Dong Woo

    1995-01-01

    To correlate MR findings with histologic findings in avascular necrosis (AVN) of the femoral head. MR findings was performed with 8 femoral head specimens using T1-and proton density weighted coronal SE sequences, and compared with contact radiography and histologic sections. In each specimen, necrotic zone in the superior portion of femoral head, repair zone located inferior to the necrotic zone, and rim adjacent to normal bone marrow could be defined. Necrotic zone showed high signal intensity on both T1-and proton density-weighted images in 3 cases which were composed of necrotic bone and marrow, and low signal intensity on both sequences in 2 cases which were composed of necrotic bone marrow with amorphous cellular debris. Mixed high and low signal intensities were seen in 3 cases. The repair zone showed low signal intensity on T1-weighted image and high signal intensity on proton density weighted image in 5 cases which were composed of thickened trabecular bone and mesenchymal tissue and also showed intermediate signal intensity on T1-weighted image and high signal intensity on proton density weighted image in 3 cases which were composed of osteoid, chondroid and undifferentiated mesenchymal cells. Rim shown as the low signal intensity on T1 weighted image in all cases was corresponded to viable thickened trabecular bone. MR imaging would be the best modality in the diagnosis of avascular necrosis of femoral head and when used in conjunction with degree and location of signal intensity, the prediction of histologic finding may be possible

  3. Intravoxel incoehrent motion MR imaging in the head and neck: Correlation with dynamic contrast-enhanced MR imaging and diffusion-weighted imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Beak, Jung Hwan; Lee, Jeong Hyun [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of); Yoon, Ra Gyoung [Dept. of Radiology, Catholic Kwandong University International St. Mary' s Hospital, Catholic Kwandong University College of Medicine, Incheon (Korea, Republic of)

    2016-09-15

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D{sup *}), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D{sup *} and model-free parameters from the DCE-MRI (wash-in, T{sub max}, E{sub max}, initial AUC{sub 60}, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D{sup *} and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D{sup *} (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.

  4. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao Quan [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029 (China); Choi, Young Jun; Sung, Yu Sub [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Yoon, Ra Gyoung [Department of Radiology, Catholic Kwandong University International St. Mary' s Hospital, Catholic Kwandong University College of Medicine, Incheon 22711 (Korea, Republic of); Jang, Seung Won; Park, Ji Eun [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Heo, Young Jin [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of); Department of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392 (Korea, Republic of); Baek, Jung Hwan; Lee, Jeong Hyun [Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 05505 (Korea, Republic of)

    2016-11-01

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D{sup *}), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D{sup *} and model-free parameters from the DCE-MRI (wash-in, T{sub max}, E{sub max}, initial AUC{sub 60}, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D{sup *} and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D{sup *} (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.

  5. Intravoxel Incoherent Motion MR Imaging in the Head and Neck: Correlation with Dynamic Contrast-Enhanced MR Imaging and Diffusion-Weighted Imaging.

    Science.gov (United States)

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Yoon, Ra Gyoung; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Baek, Jung Hwan; Lee, Jeong Hyun

    2016-01-01

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D(*)), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D(*) and model-free parameters from the DCE-MRI (wash-in, Tmax, Emax, initial AUC60, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D(*) and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D(*) (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.

  6. Intravoxel incoehrent motion MR imaging in the head and neck: Correlation with dynamic contrast-enhanced MR imaging and diffusion-weighted imaging

    International Nuclear Information System (INIS)

    Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Beak, Jung Hwan; Lee, Jeong Hyun; Yoon, Ra Gyoung

    2016-01-01

    To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D * ), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D * and model-free parameters from the DCE-MRI (wash-in, T max , E max , initial AUC 60 , whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D * and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D * (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck

  7. Technical Note: Method to correlate whole-specimen histopathology of radical prostatectomy with diagnostic MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    McGrath, Deirdre M., E-mail: d.mcgrath@sheffield.ac.uk; Lee, Jenny; Foltz, Warren D. [Radiation Medicine Program, Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Samavati, Navid [Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9 (Canada); Jewett, Michael A. S. [Departments of Surgery (Urology) and Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Kwast, Theo van der [Pathology Department, University Health Network, Toronto, Ontario M5G 2C4 (Canada); Chung, Peter [Radiation Medicine Program, Princess Margaret Hospital, University Health Network and the University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Ménard, Cynthia [Radiation Medicine Program, Princess Margaret Hospital, University Health Network and the University of Toronto, Toronto, Ontario M5G 2M9, Canada and Centre Hospitalier de l’Université de Montréal, 1058 Rue Saint-Denis, Montréal, Québec H2X 3J4 (Canada); Brock, Kristy K. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48108 (United States)

    2016-03-15

    Purpose: Validation of MRI-guided tumor boundary delineation for targeted prostate cancer therapy is achieved via correlation with gold-standard histopathology of radical prostatectomy specimens. Challenges to accurate correlation include matching the pathology sectioning plane with the in vivo imaging slice plane and correction for the deformation that occurs between in vivo imaging and histology. A methodology is presented for matching of the histological sectioning angle and position to the in vivo imaging slices. Methods: Patients (n = 4) with biochemical failure following external beam radiotherapy underwent diagnostic MRI to confirm localized recurrence of prostate cancer, followed by salvage radical prostatectomy. High-resolution 3-D MRI of the ex vivo specimens was acquired to determine the pathology sectioning angle that best matched the in vivo imaging slice plane, using matching anatomical features and implanted fiducials. A novel sectioning device was developed to guide sectioning at the correct angle, and to assist the insertion of reference dye marks to aid in histopathology reconstruction. Results: The percentage difference in the positioning of the urethra in the ex vivo pathology sections compared to the positioning in in vivo images was reduced from 34% to 7% through slicing at the best match angle. Reference dye marks were generated, which were visible in ex vivo imaging, in the tissue sections before and after processing, and in histology sections. Conclusions: The method achieved an almost fivefold reduction in the slice-matching error and is readily implementable in combination with standard MRI technology. The technique will be employed to generate datasets for correlation of whole-specimen prostate histopathology with in vivo diagnostic MRI using 3-D deformable registration, allowing assessment of the sensitivity and specificity of MRI parameters for prostate cancer. Although developed specifically for prostate, the method is readily

  8. Technical Note: Method to correlate whole-specimen histopathology of radical prostatectomy with diagnostic MR imaging

    International Nuclear Information System (INIS)

    McGrath, Deirdre M.; Lee, Jenny; Foltz, Warren D.; Samavati, Navid; Jewett, Michael A. S.; Kwast, Theo van der; Chung, Peter; Ménard, Cynthia; Brock, Kristy K.

    2016-01-01

    Purpose: Validation of MRI-guided tumor boundary delineation for targeted prostate cancer therapy is achieved via correlation with gold-standard histopathology of radical prostatectomy specimens. Challenges to accurate correlation include matching the pathology sectioning plane with the in vivo imaging slice plane and correction for the deformation that occurs between in vivo imaging and histology. A methodology is presented for matching of the histological sectioning angle and position to the in vivo imaging slices. Methods: Patients (n = 4) with biochemical failure following external beam radiotherapy underwent diagnostic MRI to confirm localized recurrence of prostate cancer, followed by salvage radical prostatectomy. High-resolution 3-D MRI of the ex vivo specimens was acquired to determine the pathology sectioning angle that best matched the in vivo imaging slice plane, using matching anatomical features and implanted fiducials. A novel sectioning device was developed to guide sectioning at the correct angle, and to assist the insertion of reference dye marks to aid in histopathology reconstruction. Results: The percentage difference in the positioning of the urethra in the ex vivo pathology sections compared to the positioning in in vivo images was reduced from 34% to 7% through slicing at the best match angle. Reference dye marks were generated, which were visible in ex vivo imaging, in the tissue sections before and after processing, and in histology sections. Conclusions: The method achieved an almost fivefold reduction in the slice-matching error and is readily implementable in combination with standard MRI technology. The technique will be employed to generate datasets for correlation of whole-specimen prostate histopathology with in vivo diagnostic MRI using 3-D deformable registration, allowing assessment of the sensitivity and specificity of MRI parameters for prostate cancer. Although developed specifically for prostate, the method is readily

  9. Triceps brachii tendon: anatomic-MR imaging study in cadavers with histologic correlation

    International Nuclear Information System (INIS)

    Belentani, Clarissa; Pastore, Daniel; Wangwinyuvirat, Mani; Dirim, Berna; Trudell, Debra J.; Resnick, Donald; Haghighi, Parviz

    2009-01-01

    The purpose of this cadaveric study was to describe the normal MR anatomy of the triceps brachii tendon (TBT) insertion, to correlate the findings with those seen in anatomic sections and histopathologic analysis, and to review triceps tendon injuries. Twelve cadaveric elbows were used according to institution guidelines. T1-weighted spin-echo MR images were acquired in three planes. Findings on MR imaging were correlated with those derived from anatomic and histologic study. On MR images, the TBT had a bipartite appearance as it inserted on olecranon in all specimens. The insertion of the medial head was deeper than that of the long and lateral heads and was mainly muscular at its insertion, with a small amount of the tendon blending with the muscle distally, necessitating histologic analysis to determine if there was tendon blending with the muscle at the site of insertion and if the medial head inserted together with the common tendon or as a single unit. At histopathologic analysis, the three heads of the triceps tendon had a common insertion on the olecranon. The bipartite aspect of the tendon that was identified in the MR images was not seen by histologic study, indicating that there was a union of the medial and common tendons just before they inserted into bone. TBT has a bipartite appearance on MR images and inserts on olecranon as a single unit. (orig.)

  10. Triceps brachii tendon: anatomic-MR imaging study in cadavers with histologic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Belentani, Clarissa [University of California, Department of Radiology, San Diego, CA (United States); Pastore, Daniel; Wangwinyuvirat, Mani; Dirim, Berna; Trudell, Debra J.; Resnick, Donald [University of California, Department of Radiology, San Diego, CA (United States); University of California, VA Medical Center, San Diego, CA (United States); Haghighi, Parviz [University of California, VA Medical Center, San Diego, CA (United States); University of California, Department of Histology, San Diego (United States)

    2009-02-15

    The purpose of this cadaveric study was to describe the normal MR anatomy of the triceps brachii tendon (TBT) insertion, to correlate the findings with those seen in anatomic sections and histopathologic analysis, and to review triceps tendon injuries. Twelve cadaveric elbows were used according to institution guidelines. T1-weighted spin-echo MR images were acquired in three planes. Findings on MR imaging were correlated with those derived from anatomic and histologic study. On MR images, the TBT had a bipartite appearance as it inserted on olecranon in all specimens. The insertion of the medial head was deeper than that of the long and lateral heads and was mainly muscular at its insertion, with a small amount of the tendon blending with the muscle distally, necessitating histologic analysis to determine if there was tendon blending with the muscle at the site of insertion and if the medial head inserted together with the common tendon or as a single unit. At histopathologic analysis, the three heads of the triceps tendon had a common insertion on the olecranon. The bipartite aspect of the tendon that was identified in the MR images was not seen by histologic study, indicating that there was a union of the medial and common tendons just before they inserted into bone. TBT has a bipartite appearance on MR images and inserts on olecranon as a single unit. (orig.)

  11. Correlation of an abnormal rest /sup 201/Tl myocardial image: Pathological findings in cardiac transplant recipients

    Energy Technology Data Exchange (ETDEWEB)

    McKillop, J.H.; McDougall, I.R.; Billingham, M.; Schroeder, J.S.

    1982-06-01

    Rest myocardial /sup 201/Tl scintigraphy was undertaken in 15 males mean age 39 years (22-54) who had been accepted for cardiac transplantation. Complete pathological correlation was obtained in 14 after transplantation and in 1 who died before a suitable donor heart became available. The average time from scintigraphy to pathological evaluation was 42 days (9-103). All the /sup 201/Tl images were grossly abnormal and on the basis of these studies it was not possible to differentiate ischemic from idiopathic cardiomyopathy. Each of the three views of the /sup 201/Tl study was divided into three segments, therefore 135 areas were available for comparison (3 x 3 x 15). Eighty-eight of these were abnormal on scan and 78 of these were abnormal pathologically. The right ventricle was seen on all rest images but the degree of uptake bore no relationship to the measured thickness of the right ventricular wall. Structures such as the atrial wall and the enlarged papillary muscle were visualized in some patients. In two patients there was an improvement of the rest /sup 201/Tl image in delayed views and histologically these areas showed a mixture of muscle and fibrous tissue. The sensitivity of /sup 201/Tl imaging in this study was 89% and there was close correlation of the images with gross and microscopic pathological findings.

  12. Reconstruction of implanted marker trajectories from cone-beam CT projection images using interdimensional correlation modeling

    International Nuclear Information System (INIS)

    Chung, Hyekyun; Poulsen, Per Rugaard; Keall, Paul J.; Cho, Seungryong; Cho, Byungchul

    2016-01-01

    Purpose: Cone-beam CT (CBCT) is a widely used imaging modality for image-guided radiotherapy. Most vendors provide CBCT systems that are mounted on a linac gantry. Thus, CBCT can be used to estimate the actual 3-dimensional (3D) position of moving respiratory targets in the thoracic/abdominal region using 2D projection images. The authors have developed a method for estimating the 3D trajectory of respiratory-induced target motion from CBCT projection images using interdimensional correlation modeling. Methods: Because the superior–inferior (SI) motion of a target can be easily analyzed on projection images of a gantry-mounted CBCT system, the authors investigated the interdimensional correlation of the SI motion with left–right and anterior–posterior (AP) movements while the gantry is rotating. A simple linear model and a state-augmented model were implemented and applied to the interdimensional correlation analysis, and their performance was compared. The parameters of the interdimensional correlation models were determined by least-square estimation of the 2D error between the actual and estimated projected target position. The method was validated using 160 3D tumor trajectories from 46 thoracic/abdominal cancer patients obtained during CyberKnife treatment. The authors’ simulations assumed two application scenarios: (1) retrospective estimation for the purpose of moving tumor setup used just after volumetric matching with CBCT; and (2) on-the-fly estimation for the purpose of real-time target position estimation during gating or tracking delivery, either for full-rotation volumetric-modulated arc therapy (VMAT) in 60 s or a stationary six-field intensity-modulated radiation therapy (IMRT) with a beam delivery time of 20 s. Results: For the retrospective CBCT simulations, the mean 3D root-mean-square error (RMSE) for all 4893 trajectory segments was 0.41 mm (simple linear model) and 0.35 mm (state-augmented model). In the on-the-fly simulations, prior

  13. Reconstruction of implanted marker trajectories from cone-beam CT projection images using interdimensional correlation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyekyun [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea and Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Poulsen, Per Rugaard [Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark); Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006 (Australia); Cho, Seungryong [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Cho, Byungchul, E-mail: cho.byungchul@gmail.com, E-mail: bcho@amc.seoul.kr [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of)

    2016-08-15

    Purpose: Cone-beam CT (CBCT) is a widely used imaging modality for image-guided radiotherapy. Most vendors provide CBCT systems that are mounted on a linac gantry. Thus, CBCT can be used to estimate the actual 3-dimensional (3D) position of moving respiratory targets in the thoracic/abdominal region using 2D projection images. The authors have developed a method for estimating the 3D trajectory of respiratory-induced target motion from CBCT projection images using interdimensional correlation modeling. Methods: Because the superior–inferior (SI) motion of a target can be easily analyzed on projection images of a gantry-mounted CBCT system, the authors investigated the interdimensional correlation of the SI motion with left–right and anterior–posterior (AP) movements while the gantry is rotating. A simple linear model and a state-augmented model were implemented and applied to the interdimensional correlation analysis, and their performance was compared. The parameters of the interdimensional correlation models were determined by least-square estimation of the 2D error between the actual and estimated projected target position. The method was validated using 160 3D tumor trajectories from 46 thoracic/abdominal cancer patients obtained during CyberKnife treatment. The authors’ simulations assumed two application scenarios: (1) retrospective estimation for the purpose of moving tumor setup used just after volumetric matching with CBCT; and (2) on-the-fly estimation for the purpose of real-time target position estimation during gating or tracking delivery, either for full-rotation volumetric-modulated arc therapy (VMAT) in 60 s or a stationary six-field intensity-modulated radiation therapy (IMRT) with a beam delivery time of 20 s. Results: For the retrospective CBCT simulations, the mean 3D root-mean-square error (RMSE) for all 4893 trajectory segments was 0.41 mm (simple linear model) and 0.35 mm (state-augmented model). In the on-the-fly simulations, prior

  14. Spatio-Temporal Rule Mining

    DEFF Research Database (Denmark)

    Gidofalvi, Gyozo; Pedersen, Torben Bach

    2005-01-01

    Recent advances in communication and information technology, such as the increasing accuracy of GPS technology and the miniaturization of wireless communication devices pave the road for Location-Based Services (LBS). To achieve high quality for such services, spatio-temporal data mining techniques...... are needed. In this paper, we describe experiences with spatio-temporal rule mining in a Danish data mining company. First, a number of real world spatio-temporal data sets are described, leading to a taxonomy of spatio-temporal data. Second, the paper describes a general methodology that transforms...... the spatio-temporal rule mining task to the traditional market basket analysis task and applies it to the described data sets, enabling traditional association rule mining methods to discover spatio-temporal rules for LBS. Finally, unique issues in spatio-temporal rule mining are identified and discussed....

  15. Single-level dynamic spiral CT of hepatocellular carcinoma: correlation between imaging features and tumor angiogenesis

    International Nuclear Information System (INIS)

    Chen Weixia; Min Pengqiu; Song Bin; Xiao Bangliang; Liu Yan; Wang Wendong; Chen Xian; Xu Jianying

    2001-01-01

    Objective: To investigate the correlation of the enhancement imaging features of hepatocellular carcinoma (HCC) and relevant parameters revealed by single-level dynamic spiral CT scanning with tumor microvessel counting (MVC). Methods: The study included 26 histopathologically proven HCC patients. Target-slice dynamic scanning and portal venous phase scanning were performed for all patients. The time-density curves were generated with measurement of relevant parameters including: peak value (PV) and contrast enhancement ratio (CER), and the gross enhancement morphology analyzed. Histopathological slides were carefully prepared for the standard F8RA and VEGF immunohistochemical staining and tumor microvessel counting and calculation of VEGF expression percentage of tumor cells. The enhancement imaging features of HCC lesions were correlatively studied with tumor MVC and VEGF expression. Results: Peak value of HCC lesions were 7.9 to 75.2 HU, CER were 3.8% to 36.0%. MVC were 6 to 91, and the VEGF expression percentage were 32.1% to 78.3%. The PV and CER were significantly correlated with tumor tissue MVC (r = 0.508 and 0.423, P < 0.01 and 0.05 respectively). There were no correlations between PV and CER and VEGF expression percentage. Both the patterns of time-density curve and the gross enhancement morphology of HCC lesions were also correlated with tumor MVC, and reflected the distribution characteristics of tumor microvessels within HCC lesions. A close association was found between the likelihood of intrahepatic metastasis of HCC lesions with densely enhanced pseudo capsules and the presence of rich tumor microvessels within these pseudo capsules. Conclusion: The parameters and the enhancement imaging features of HCC lesions on target-slice dynamic scanning are correlated with tumor MVC, and can reflect the distribution characteristics of tumor microvessels within HCC lesions. Dynamic spiral CT scanning is a valuable means to assess the angiogenic activity and

  16. Symptomatic resolution of spinal osteoid osteoma with conservative management: imaging correlation

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, Prakash [The Royal National Orthopaedic Hospital, Spinal Surgery, London (United Kingdom); The Whitehouse, Enfield, Middlesex (United Kingdom); Harish, S. [The Royal National Orthopaedic Hospital, Radiology, London (United Kingdom); Nnadi, Colin; Noordeen, Hilali [The Royal National Orthopaedic Hospital, Spinal Surgery, London (United Kingdom); Saifuddin, Asif [The Royal National Orthopaedic Hospital, Department of Imaging, London (United Kingdom)

    2007-06-15

    A 10-year-old girl presented with a history of painful scoliosis. Imaging performed, including computed tomography (CT) and magnetic resonance imaging (MRI), demonstrated a lesion with radiological features consistent with an osteoid osteoma (OO) of the 6th thoracic vertebra. The patient was treated conservatively with non-steroidal anti-inflammatory drugs (NSAIDs). Over eight months of clinical and radiological surveillance, she became entirely asymptomatic and demonstrated complete resolution of the scoliotic curve. The CT and MRI features of the osteoid osteoma during the period of surveillance are presented and are correlated with the corresponding clinical features. (orig.)

  17. Magnetic resonance imaging-based cerebral tissue classification reveals distinct spatiotemporal patterns of changes after stroke in non-human primates.

    Science.gov (United States)

    Bouts, Mark J R J; Westmoreland, Susan V; de Crespigny, Alex J; Liu, Yutong; Vangel, Mark; Dijkhuizen, Rick M; Wu, Ona; D'Arceuil, Helen E

    2015-12-15

    Spatial and temporal changes in brain tissue after acute ischemic stroke are still poorly understood. Aims of this study were three-fold: (1) to determine unique temporal magnetic resonance imaging (MRI) patterns at the acute, subacute and chronic stages after stroke in macaques by combining quantitative T2 and diffusion MRI indices into MRI 'tissue signatures', (2) to evaluate temporal differences in these signatures between transient (n = 2) and permanent (n = 2) middle cerebral artery occlusion, and (3) to correlate histopathology findings in the chronic stroke period to the acute and subacute MRI derived tissue signatures. An improved iterative self-organizing data analysis algorithm was used to combine T2, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) maps across seven successive timepoints (1, 2, 3, 24, 72, 144, 240 h) which revealed five temporal MRI signatures, that were different from the normal tissue pattern (P MRI signatures associated with specific tissue fates may further aid in assessing and monitoring the efficacy of novel pharmaceutical treatments for stroke in a pre-clinical and clinical setting.

  18. A digital correlator upgrade for the Arcminute MicroKelvin Imager

    Science.gov (United States)

    Hickish, Jack; Razavi-Ghods, Nima; Perrott, Yvette C.; Titterington, David J.; Carey, Steve H.; Scott, Paul F.; Grainge, Keith J. B.; Scaife, Anna M. M.; Alexander, Paul; Saunders, Richard D. E.; Crofts, Mike; Javid, Kamran; Rumsey, Clare; Jin, Terry Z.; Ely, John A.; Shaw, Clive; Northrop, Ian G.; Pooley, Guy; D'Alessandro, Robert; Doherty, Peter; Willatt, Greg P.

    2018-04-01

    The Arcminute Microkelvin Imager (AMI) telescopes located at the Mullard Radio Astronomy Observatory near Cambridge have been significantly enhanced by the implementation of a new digital correlator with 1.2 MHz spectral resolution. This system has replaced a 750-MHz resolution analogue lag-based correlator, and was designed to mitigate the effects of radio frequency interference, particularly that from geostationary satellites which are visible from the AMI site when observing at low declinations. The upgraded instrument consists of 18 ROACH2 Field Programmable Gate Array platforms used to implement a pair of real-time FX correlators - one for each of AMI's two arrays. The new system separates the down-converted RF baseband signal from each AMI receiver into two sub-bands, each of which are filtered to a width of 2.3 GHz and digitized at 5-Gsps with 8 bits of precision. These digital data streams are filtered into 2048 frequency channels and cross-correlated using FPGA hardware, with a commercial 10 Gb Ethernet switch providing high-speed data interconnect. Images formed using data from the new digital correlator show over an order of magnitude improvement in dynamic range over the previous system. The ability to observe at low declinations has also been significantly improved.

  19. Structured sparse canonical correlation analysis for brain imaging genetics: an improved GraphNet method.

    Science.gov (United States)

    Du, Lei; Huang, Heng; Yan, Jingwen; Kim, Sungeun; Risacher, Shannon L; Inlow, Mark; Moore, Jason H; Saykin, Andrew J; Shen, Li

    2016-05-15

    Structured sparse canonical correlation analysis (SCCA) models have been used to identify imaging genetic associations. These models either use group lasso or graph-guided fused lasso to conduct feature selection and feature grouping simultaneously. The group lasso based methods require prior knowledge to define the groups, which limits the capability when prior knowledge is incomplete or unavailable. The graph-guided methods overcome this drawback by using the sample correlation to define the constraint. However, they are sensitive to the sign of the sample correlation, which could introduce undesirable bias if the sign is wrongly estimated. We introduce a novel SCCA model with a new penalty, and develop an efficient optimization algorithm. Our method has a strong upper bound for the grouping effect for both positively and negatively correlated features. We show that our method performs better than or equally to three competing SCCA models on both synthetic and real data. In particular, our method identifies stronger canonical correlations and better canonical loading patterns, showing its promise for revealing interesting imaging genetic associations. The Matlab code and sample data are freely available at http://www.iu.edu/∼shenlab/tools/angscca/ shenli@iu.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. White matter correlates of cognitive domains in normal aging with diffusion tensor imaging

    Directory of Open Access Journals (Sweden)

    Efrat eSasson

    2013-03-01

    Full Text Available The ability to perform complex as well as simple cognitive tasks engages a network of brain regions that is mediated by the white matter fiber bundles connecting them. Different cognitive tasks employ distinctive white matter fiber bundles. The temporal lobe and its projections subserve a variety of key functions known to deteriorate during aging. In a cohort of 52 healthy subjects (ages 25-82 years, we performed voxel-wise regression analysis correlating performance in higher-order cognitive domains (executive function, information processing speed, and memory with white matter integrity, as measured by diffusion tensor imaging (DTI fiber tracking in the temporal lobe projections (uncinate fasciculus (UF, fornix, cingulum, inferior longitudinal fasciculus (ILF, and superior longitudinal fasciculus (SLF. The fiber tracts were spatially registered and statistical parametric maps were produced to spatially localize the significant correlations. Results showed that performance in the executive function domain is correlated with DTI parameters in the left SLF and right UF; performance in the information processing speed domain is correlated with fractional anisotropy (FA in the left cingulum, left fornix, right and left ILF and SLF; and the memory domain shows significant correlations with DTI parameters in the right fornix, right cingulum, left ILF, left SLF and right UF. These findings suggest that DTI tractography enables anatomical definition of region of interest for correlation of behavioral parameters with diffusion indices, and functionality can be correlated with white matter integrity.

  1. Distal insertions of the semimembranosus tendon: MR imaging with anatomic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Maeseneer, Michel de [Universitair Ziekenhuis Brussel, Department of Radiology, Jette, Brussels (Belgium); Vrije Universiteit Brussel, Department of Experimental Anatomy, Brussels (Belgium); Shahabpour, Maryam; Milants, Annemieke; Ridder, Filip de; Mey, Johan de [Universitair Ziekenhuis Brussel, Department of Radiology, Jette, Brussels (Belgium); Lenchik, Leon [Wake Forest University, Department of Radiology, Winston-Salem, NC (United States); Cattrysse, Erik [Vrije Universiteit Brussel, Department of Experimental Anatomy, Brussels (Belgium)

    2014-06-15

    The purpose of this study is to investigate the distal insertions of the semimembranosus tendon with MR imaging, correlated with findings in cadavers. Four fresh cadaveric specimens were studied with 3-T MR imaging. Sequences included proton density (PD) sequences (TE, 13; TR, 4957; FOV, 170 x 170; matrix, 424 x 413; NA, 2; slice thickness, 2.5 mm) in the axial, coronal, and sagittal planes and 3D fast field echo (FFE) sequences (TR 9.4; TE 6.9; FOV, 159 x 105; matrix, 200 x 211; NA, 2; slice thickness, 0.57 mm). One specimen was dissected and three specimens were sectioned with a bandsaw in the axial, coronal, and sagittal plane. The sections were photographed and correlated with MR images. To standardize the analysis, the semimembranosus muscle and tendon were assessed at seven levels for the axial sections, and at three levels for the coronal and sagittal sections. Anatomic dissection revealed six insertions of the distal semimembranosus tendon: direct arm, anterior arm, posterior oblique ligament extension, oblique popliteal ligament extension, distal tibial expansion (popliteus aponeurosis), and meniscal arm. Axial MR images showed five of six insertions: direct arm, anterior arm, oblique popliteal ligament extension, posterior oblique ligament extension, and distal tibial expansion. Sagittal MR images showed four of six insertions: direct arm, anterior arm, oblique popliteal ligament arm, and distal tibial expansion. Sagittal MR images were ideal for showing the direct arm insertion, but were less optimal than the axial images for showing the other insertions. The anterior arm was seen but volume averaging was present with the gracilis tendon. Coronal MR images optimally revealed the anterior arm, although magic angle artifact was present at its posterior aspect. The common semimembranosus tendon and meniscal arm were also well depicted. The division in anterior arm, direct arm, and oblique popliteal ligament arm was poorly seen on coronal images due to

  2. A three-dimensional correlation method for registration of medical images in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, Michalakis; Sfakianakis, George N [Department of Radiology, University of Miami, Jackson Memorial Hospital, Miami, FL 33136 (United States); Nagel, Joachim H [Institute of Biomedical Engineering, University of Stuttgart, Stuttgart 70174 (Germany)

    1999-12-31

    The availability of methods to register multi-modality images in order to `fuse` them to correlate their information is increasingly becoming an important requirement for various diagnostic and therapeutic procedures. A variety of image registration methods have been developed but they remain limited to specific clinical applications. Assuming rigid body transformation, two images can be registered if their differences are calculated in terms of translation, rotation and scaling. This paper describes the development and testing of a new correlation based approach for three-dimensional image registration. First, the scaling factors introduced by the imaging devices are calculated and compensated for. Then, the two images become translation invariant by computing their three-dimensional Fourier magnitude spectra. Subsequently, spherical coordinate transformation is performed and then the three-dimensional rotation is computed using a novice approach referred to as {sup p}olar Shells{sup .} The method of polar shells maps the three angles of rotation into one rotation and two translations of a two-dimensional function and then proceeds to calculate them using appropriate transformations based on the Fourier invariance properties. A basic assumption in the method is that the three-dimensional rotation is constrained to one large and two relatively small angles. This assumption is generally satisfied in normal clinical settings. The new three-dimensional image registration method was tested with simulations using computer generated phantom data as well as actual clinical data. Performance analysis and accuracy evaluation of the method using computer simulations yielded errors in the sub-pixel range. (authors) 6 refs., 3 figs.

  3. Experimental abscess in the thigh of rabbit : magnetic resonance imaging and pathologic correlation

    International Nuclear Information System (INIS)

    Kang, Heung Sik; Chung, Yoong Ki; Jang, Ja June

    1996-01-01

    To understand MR imaging characteristics, of abscesses by correlation with pathologic findings, with emphasis on the hypointense rim of the abscess wall on T2-weighted images. We experimentally induced twenty abscesses on both thighs of ten New Zealand white rabbits by innoculation of E. coli. Spin-echo axial T1-weighted images(T1WI), proton density weighted images(PDWI), T2-weighted images(T2WI) and gadolinium enhanced T1WI of two rabbits were each obtained at 1 and 3 days, and at 1, 2 and 4 weeks following innoculation of pathogens. Rabbits were sacrificed after MR imaging, and freezing, sectioning along MR imaging planes and histopathologic examination were subsequently carried out. MR-pathologic correlation was performed, with emphasis on the MR signal characteristics of the abscess wall. In 19 abscesses, necrotic portions except gas showed hypointensity or hyperintensity on T1WI and hyperintensity on T2WI. Peripheral inflammatory reaction showed hypointensity on T1WI, hyperintensity on PDWI and T2WI, and contrast enhancement. Abscess wall showed slightly increased signal intensity on T1WI. A hypointense rim on PDWI and T2WI appeared from 3 days after pathogen innoculation. The rim was thickest at 1 week, and showed multilayers at 2 weeks and double layers at 4 weeks after pathogen innoculation. Cellular and necrotic debris was accumulated at the inner portion of the abscess wall. Inflammatory cells were mainly polymorphonuclear leukocytes and lymphocytes. Macrophages, which appeared at 3 days, suggested active phagocytosis at 1 week after innoculation. Thereafter, inflammatory reactions decreased and fibrosis progressed. The hypointense rim of the abscess wall on T2WI reflects the accumulation of cellular debris, the paramagnetic effect of free radicals due to active phagocytosing macrophages during the abscess forming stage, and fibrosis during the maturation stage

  4. MnDPDP-enhanced MR imaging of the liver. Correlation with surgical findings

    International Nuclear Information System (INIS)

    Kane, P.A.; Ayton, V.; Walters, H.L.; Benjamin, I.; Heaton, N.D.; Williams, R.; Karani, J.B.

    1997-01-01

    Purpose: To compare lesion detection and characterisation predicted by MnDPDP-enhanced MR imaging with surgical excision and pathological examination. Material and Methods: Ninety patients were intravenously infused at a rate of 2 to 3 ml/min with 5 μmol/kg mangafodipir trisodium (MnDPDP, Teslascan). The patients were examined with spin-echo and gradient-echo T1-weighted MR imaging at 1 h and 24 h after the end of infusion. The results were compared with identical pre-contrast sequences. In 20 of these patients, the pre-operative MR findings were compared with intra-operative ultrasonography and histology of the resected liver specimens. Results: In those with liver metastases, there was a good correlation between MR and the hepatic disease in 11 out of 14 cases. In the group with primary liver tumours, MR findings correlated with hepatic disease in 5 out 6 cases. (orig./AJ)

  5. Knee joint examinations by magnetic resonance imaging: The correlation of pathology, age, and sex

    OpenAIRE

    Serhat Avcu; Ersan Altun; Ihsan Akpinar; Mehmet Deniz Bulut; Kemal Eresov; Tugrul Biren

    2010-01-01

    Aims: The aim of our study was to investigate the incidence and coexistence of multiple knee joint pathologies and the distribution of knee joint pathologies according to age and sex. Patients and Methods: A retrospective analysis was performed using the clinical data of patients evaluated with magnetic resonance imaging (MRI) of the knee joint. Data from 308 patients examined between August 2002 and July 2003 were included into this study. A Pearson correlation analysis was performed to exam...

  6. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, S.; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-01-01

    Roč. 22, č. 2 (2016), s. 290-299 ISSN 1431-9276 R&D Projects: GA ČR(CZ) GAP305/11/2476; GA ČR(CZ) GPP501/12/P951 Institutional support: RVO:61389030 ; RVO:61388955 Keywords : raster image correlation spectroscopy * fluorescence recovery after photobleaching * auxin influx Subject RIV: EB - Genetics ; Molecular Biology; CF - Physical ; Theoretical Chemistry (UFCH-W) Impact factor: 1.891, year: 2016

  7. Magnetic resonance imaging correlates of bee sting induced multiple organ dysfunction syndrome: A case report.

    Science.gov (United States)

    Das, Sushant K; Zeng, Li-Chuan; Li, Bing; Niu, Xiang-Ke; Wang, Jing-Liang; Bhetuwal, Anup; Yang, Han-Feng

    2014-09-28

    Occasionally systemic complications with high risk of death, such as multiple organ dysfunction syndrome (MODS), can occur following multiple bee stings. This case study reports a patient who presented with MODS, i.e., acute kidney injury, hepatic and cardiac dysfunction, after multiple bee stings. The standard clinical findings were then correlated with magnetic resonance imaging (MRI) findings, which demonstrates that MRI may be utilized as a simpler tool to use than other multiple diagnostics.

  8. Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio

    International Nuclear Information System (INIS)

    Charonko, John J; Vlachos, Pavlos P

    2013-01-01

    Numerous studies have established firmly that particle image velocimetry (PIV) is a robust method for non-invasive, quantitative measurements of fluid velocity, and that when carefully conducted, typical measurements can accurately detect displacements in digital images with a resolution well below a single pixel (in some cases well below a hundredth of a pixel). However, to date, these estimates have only been able to provide guidance on the expected error for an average measurement under specific image quality and flow conditions. This paper demonstrates a new method for estimating the uncertainty bounds to within a given confidence interval for a specific, individual measurement. Here, cross-correlation peak ratio, the ratio of primary to secondary peak height, is shown to correlate strongly with the range of observed error values for a given measurement, regardless of flow condition or image quality. This relationship is significantly stronger for phase-only generalized cross-correlation PIV processing, while the standard correlation approach showed weaker performance. Using an analytical model of the relationship derived from synthetic data sets, the uncertainty bounds at a 95% confidence interval are then computed for several artificial and experimental flow fields, and the resulting errors are shown to match closely to the predicted uncertainties. While this method stops short of being able to predict the true error for a given measurement, knowledge of the uncertainty level for a PIV experiment should provide great benefits when applying the results of PIV analysis to engineering design studies and computational fluid dynamics validation efforts. Moreover, this approach is exceptionally simple to implement and requires negligible additional computational cost. (paper)

  9. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    Science.gov (United States)

    Schneider von Deimling, J.; Papenberg, C.

    2012-03-01

    Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV) to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  10. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    Directory of Open Access Journals (Sweden)

    J. Schneider von Deimling

    2012-03-01

    Full Text Available Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  11. Scanless nonlinear optical microscope for image reconstruction and space-time correlation analysis

    Science.gov (United States)

    Ceffa, N. G.; Radaelli, F.; Pozzi, P.; Collini, M.; Sironi, L.; D'alfonso, L.; Chirico, G.

    2017-06-01

    Optical Microscopy has been applied to life science from its birth and reached widespread application due to its major advantages: limited perturbation of the biological tissue and the easy accessibility of the light sources. However, as the spatial and time resolution requirements and the time stability of the microscopes increase, researchers are struggling against some of its limitations: limited transparency and the refractivity of the living tissue to light and the field perturbations induced by the path in the tissue. We have developed a compact stand-alone, completely scan-less, optical setup that allows to acquire non-linear excitation images and to measure the sample dynamics simultaneously on an ensemble of arbitrary chosen regions of interests. The image is obtained by shining a square array of spots on the sample obtained by a spatial light modulator and by shifting it (10 ms refresh time) on the sample. The final image is computed from the superposition of (100-1000) images. Filtering procedures can be applied to the raw images of the excitation array before building the image. We discuss results that show how this setup can be used for the correction of wave front aberrations induced by turbid samples (such as living tissues) and for the computation of space-time cross-correlations in complex networks.

  12. Thermal error analysis and compensation for digital image/volume correlation

    Science.gov (United States)

    Pan, Bing

    2018-02-01

    Digital image/volume correlation (DIC/DVC) rely on the digital images acquired by digital cameras and x-ray CT scanners to extract the motion and deformation of test samples. Regrettably, these imaging devices are unstable optical systems, whose imaging geometry may undergo unavoidable slight and continual changes due to self-heating effect or ambient temperature variations. Changes in imaging geometry lead to both shift and expansion in the recorded 2D or 3D images, and finally manifest as systematic displacement and strain errors in DIC/DVC measurements. Since measurement accuracy is always the most important requirement in various experimental mechanics applications, these thermal-induced errors (referred to as thermal errors) should be given serious consideration in order to achieve high accuracy, reproducible DIC/DVC measurements. In this work, theoretical analyses are first given to understand the origin of thermal errors. Then real experiments are conducted to quantify thermal errors. Three solutions are suggested to mitigate or correct thermal errors. Among these solutions, a reference sample compensation approach is highly recommended because of its easy implementation, high accuracy and in-situ error correction capability. Most of the work has appeared in our previously published papers, thus its originality is not claimed. Instead, this paper aims to give a comprehensive overview and more insights of our work on thermal error analysis and compensation for DIC/DVC measurements.

  13. Compress compound images in H.264/MPGE-4 AVC by exploiting spatial correlation.

    Science.gov (United States)

    Lan, Cuiling; Shi, Guangming; Wu, Feng

    2010-04-01

    Compound images are a combination of text, graphics and natural image. They present strong anisotropic features, especially on the text and graphics parts. These anisotropic features often render conventional compression inefficient. Thus, this paper proposes a novel coding scheme from the H.264 intraframe coding. In the scheme, two new intramodes are developed to better exploit spatial correlation in compound images. The first is the residual scalar quantization (RSQ) mode, where intrapredicted residues are directly quantized and coded without transform. The second is the base colors and index map (BCIM) mode that can be viewed as an adaptive color quantization. In this mode, an image block is represented by several representative colors, referred to as base colors, and an index map to compress. Every block selects its coding mode from two new modes and the previous intramodes in H.264 by rate-distortion optimization (RDO). Experimental results show that the proposed scheme improves the coding efficiency even more than 10 dB at most bit rates for compound images and keeps a comparable efficient performance to H.264 for natural images.

  14. Spontaneous rupture of the distal iliopsoas tendon: clinical and imaging findings, with anatomic correlations

    Energy Technology Data Exchange (ETDEWEB)

    Lecouvet, Frederic E.; Vande Berg, Bruno C.; Malghem, Jacques [Universite Catholique de Louvain, Department of Radiology and Medical Imaging, Saint Luc University Hospital, Brussels (Belgium); Demondion, Xavier [Centre Hospitalier Universitaire de Lille, Department of Bone Radiology and Laboratory of Anatomy, Lille (France); Leemrijse, Thibaut [Universite Catholique de Louvain, Department of Orthopedic Surgery, Saint Luc University Hospital, Brussels (Belgium); Devogelaer, Jean-Pierre [Universite Catholique de Louvain, Department of Rheumatology, Saint Luc University Hospital, Brussels (Belgium)

    2005-11-01

    We report the clinical and imaging findings in two elderly female patients with spontaneous rupture of the distal iliopsoas tendon from the lesser trochanter of the femur. We emphasize the key contribution of magnetic resonance (MR) imaging to this diagnosis and provide an anatomic correlation. Spontaneous rupture of the distal iliopsoas tendon should be kept in mind in the differential diagnosis of acute groin pain in the elderly. MR imaging enables positive diagnosis, by showing mass effect on the anterior aspect of the hip joint, proximal muscle thickening, and abnormal signal intensity, and by demonstrating interruption of the psoas tendon, whereas the distal insertion of the lateral portion of the iliacus muscle remains muscular and is preserved. (orig.)

  15. Intravascular papillary endothelial hyperplasia of the extremities: MR imaging findings with pathologic correlation

    International Nuclear Information System (INIS)

    Lee, Sang Hoon; Suh, Jin-Suck; Lim, Byung Il; Yang, Woo Ick; Shin, Kyoo-Ho

    2004-01-01

    We report the MRI findings of three cases of intravascular papillary endothelial hyperplasia (IPEH) of the extremities with correlation of the pathologic findings. The IPEH is a non-neoplastic reactive lesion within the vessels and is commonly associated with thrombi. Signal intensity of the IPEH is complex due to the thrombi and the PEH itself. The thrombi are characterized by a slightly hyperintense signal on T1- and T2-weighted images compared with that of muscle when it comes at the medium stage of hemorrhage. Papillary endothelial hyperplastic tissue appears either as iso- or hyperintense to the muscle on T2- and T1-weighted images and shows variable enhancement on Gd-DTPA-enhanced images. (orig.)

  16. Correlation of magnetic resonance imaging findings of spinal intradural extramedullary schwannomas with pathologic findings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeo Ju; Park, In Suh; Yoon, Seung Hwan; Choi, Suk Jin; Kim, Youn Jeong; Kang, Young Hye; Lee, Ha Young; Kim, Woo Chul; Han, Jun Gu; Cho, Soon Gu [Inha University Hospital, Incheon (Korea, Republic of)

    2015-06-15

    To evaluate the magnetic resonance imaging (MRI) findings of spinal intradural extramedullary schwannomas with pathologic correlation and to determine whether these schwannomas share the imaging features of schwannomas in the peripheral nerves. The MRIs of 17 cases of pathologically proven spinal intradural extramedullary schwannomas were reviewed retrospectively, and cystic changes, enhancement, and intratumoral hemorrhage of the tumors were evaluated. Imaging features known to be common findings of schwannoma in the peripheral nerves, such as encapsulation, the target sign, the fascicular sign, and visualization of entering or exiting nerve rootlets, were also evaluated. The histopathology of the tumors was correlated with the MRI findings. Cystic changes were detected in 14 cases by MRI and in 16 cases by pathology. The most common pattern of enhancement was a thick peripheral septal pattern (70.59%). Intratumoral hemorrhage was detected in four cases on MRI, but in all cases on pathology. Encapsulation was observed in all cases. The fascicular sign was seen in only four cases, and thickening of an exiting rootlet was visualized in one case. None of the cases showed the target sign. Spinal intradural extramedullary schwannomas were typical encapsulated cystic tumors and had few imaging features of schwannomas in the peripheral nerves.

  17. Investigation of spatial correlation in MR images of human cerebral white matter using geostatistical methods

    International Nuclear Information System (INIS)

    Keil, Fabian

    2014-01-01

    Investigating the structure of human cerebral white matter is gaining interest in the neurological as well as in the neuroscientific community. It has been demonstrated in many studies that white matter is a very dynamic structure, rather than a static construct which does not change for a lifetime. That means, structural changes within white matter can be observed even on short timescales, e.g. in the course of normal ageing, neurodegenerative diseases or even during learning processes. To investigate these changes, one method of choice is the texture analysis of images obtained from white matter. In this regard, MRI plays a distinguished role as it provides a completely non-invasive way of acquiring in vivo images of human white matter. This thesis adapted a statistical texture analysis method, known as variography, to quantify the spatial correlation of human cerebral white matter based on MR images. This method, originally introduced in geoscience, relies on the idea of spatial correlation in geological phenomena: in naturally grown structures near things are correlated stronger to each other than distant things. This work reveals that the geological principle of spatial correlation can be applied to MR images of human cerebral white matter and proves that variography is an adequate method to quantify alterations therein. Since the process of MRI data acquisition is completely different to the measuring process used to quantify geological phenomena, the variographic analysis had to be adapted carefully to MR methods in order to provide a correctly working methodology. Therefore, theoretical considerations were evaluated with numerical samples in a first, and validated with real measurements in a second step. It was shown that MR variography facilitates to reduce the information stored in the texture of a white matter image to a few highly significant parameters, thereby quantifying heterogeneity and spatial correlation distance with an accuracy better than 5

  18. Investigation of spatial correlation in MR images of human cerebral white matter using geostatistical methods

    Energy Technology Data Exchange (ETDEWEB)

    Keil, Fabian

    2014-03-20

    Investigating the structure of human cerebral white matter is gaining interest in the neurological as well as in the neuroscientific community. It has been demonstrated in many studies that white matter is a very dynamic structure, rather than a static construct which does not change for a lifetime. That means, structural changes within white matter can be observed even on short timescales, e.g. in the course of normal ageing, neurodegenerative diseases or even during learning processes. To investigate these changes, one method of choice is the texture analysis of images obtained from white matter. In this regard, MRI plays a distinguished role as it provides a completely non-invasive way of acquiring in vivo images of human white matter. This thesis adapted a statistical texture analysis method, known as variography, to quantify the spatial correlation of human cerebral white matter based on MR images. This method, originally introduced in geoscience, relies on the idea of spatial correlation in geological phenomena: in naturally grown structures near things are correlated stronger to each other than distant things. This work reveals that the geological principle of spatial correlation can be applied to MR images of human cerebral white matter and proves that variography is an adequate method to quantify alterations therein. Since the process of MRI data acquisition is completely different to the measuring process used to quantify geological phenomena, the variographic analysis had to be adapted carefully to MR methods in order to provide a correctly working methodology. Therefore, theoretical considerations were evaluated with numerical samples in a first, and validated with real measurements in a second step. It was shown that MR variography facilitates to reduce the information stored in the texture of a white matter image to a few highly significant parameters, thereby quantifying heterogeneity and spatial correlation distance with an accuracy better than 5

  19. Denoising Algorithm for CFA Image Sensors Considering Inter-Channel Correlation.

    Science.gov (United States)

    Lee, Min Seok; Park, Sang Wook; Kang, Moon Gi

    2017-05-28

    In this paper, a spatio-spectral-temporal filter considering an inter-channel correlation is proposed for the denoising of a color filter array (CFA) sequence acquired by CCD/CMOS image sensors. Owing to the alternating under-sampled grid of the CFA pattern, the inter-channel correlation must be considered in the direct denoising process. The proposed filter is applied in the spatial, spectral, and temporal domain, considering the spatio-tempo-spectral correlation. First, nonlocal means (NLM) spatial filtering with patch-based difference (PBD) refinement is performed by considering both the intra-channel correlation and inter-channel correlation to overcome the spatial resolution degradation occurring with the alternating under-sampled pattern. Second, a motion-compensated temporal filter that employs inter-channel correlated motion estimation and compensation is proposed to remove the noise in the temporal domain. Then, a motion adaptive detection value controls the ratio of the spatial filter and the temporal filter. The denoised CFA sequence can thus be obtained without motion artifacts. Experimental results for both simulated and real CFA sequences are presented with visual and numerical comparisons to several state-of-the-art denoising methods combined with a demosaicing method. Experimental results confirmed that the proposed frameworks outperformed the other techniques in terms of the objective criteria and subjective visual perception in CFA sequences.

  20. Correlation between pathology and neuromelanin MR imaging in Parkinson's disease and dementia with Lewy bodies

    International Nuclear Information System (INIS)

    Kitao, Shinichiro; Fujii, Shinya; Miyoshi, Fuminori; Kaminou, Toshio; Ogawa, Toshihide; Matsusue, Eiji; Kato, Shinsuke; Ito, Hisao

    2013-01-01

    Direct correlation between neuropathological findings and postmortem neuromelanin MR imaging (NmMRI) was performed in the substantia nigra pars compacta (SNc) to clarify the pathological background of the signal changes in normal, Parkinson's disease (PD), and dementia with Lewy bodies (DLB) cases. NmMRI of 10 % formalin-fixed autopsied midbrains was performed in three cases (normal control, DLB, and PD) with a 3T imaging system, using a 3D gradient echo T1-weighted sequence with a magnetization transfer contrast pulse. Neuropathological examinations of the midbrains were performed, and the density of neuromelanin-positive neurons (number per square millimeter) was determined. The extent of iron deposition in the midbrain was also evaluated using ferritin immunohistochemistry. Furthermore, we directly correlated the contrast signal ratio in the SNc and the density of neuromelanin-containing neurons. Diffuse hyperintense areas in the SNc reflected well-preserved neuromelanin-containing neurons in the normal control case, whereas an iso-intense area in the SNc showed severe loss of neuromelanin-containing neurons in the DLB and PD cases. Increased signal intensity in the SNc was apparently not influenced by iron deposition. Furthermore, a significant positive correlation between signal intensity and the density of neuromelanin-containing neurons was seen in the SNc. Based on the direct correlation between postportem NmMRI and neuropathological findings, signal intensity in the SNc is closely related to the quantity of neuromelanin-containing neurons but is not influenced by iron deposition. (orig.)

  1. VOLUME STUDY WITH HIGH DENSITY OF PARTICLES BASED ON CONTOUR AND CORRELATION IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Tatyana Yu. Nikolaeva

    2014-11-01

    Full Text Available The subject of study is the techniques of particle statistics evaluation, in particular, processing methods of particle images obtained by coherent illumination. This paper considers the problem of recognition and statistical accounting for individual images of small scattering particles in an arbitrary section of the volume in case of high concentrations. For automatic recognition of focused particles images, a special algorithm for statistical analysis based on contouring and thresholding was used. By means of the mathematical formalism of the scalar diffraction theory, coherent images of the particles formed by the optical system with high numerical aperture were simulated. Numerical testing of the method proposed for the cases of different concentrations and distributions of particles in the volume was performed. As a result, distributions of density and mass fraction of the particles were obtained, and the efficiency of the method in case of different concentrations of particles was evaluated. At high concentrations, the effect of coherent superposition of the particles from the adjacent planes strengthens, which makes it difficult to recognize images of particles using the algorithm considered in the paper. In this case, we propose to supplement the method with calculating the cross-correlation function of particle images from adjacent segments of the volume, and evaluating the ratio between the height of the correlation peak and the height of the function pedestal in the case of different distribution characters. The method of statistical accounting of particles considered in this paper is of practical importance in the study of volume with particles of different nature, for example, in problems of biology and oceanography. Effective work in the regime of high concentrations expands the limits of applicability of these methods for practically important cases and helps to optimize determination time of the distribution character and

  2. Serial MR Imaging of Intramuscular Hematoma: Experimental Study in a Rat Model with the Pathologic Correlation

    Science.gov (United States)

    Lee, Yeon Soo; Kwon, Soon Tae; Kim, Jong Ok

    2011-01-01

    Objective We wanted to demonstrate the temporal changes of the magnetic resonance imaging (MRI) findings in experimentally-induced intramuscular hematomas in rats and to correlate these data with the concurrent pathologic observations. Materials and Methods Intramuscular hematoma was induced in 30 rats. The MR images were obtained at 1, 4, 7 and 10 days and at 2, 3, 4, 6 and 8 weeks after muscle injury. The characteristic serial MRI findings were evaluated and the relative signal intensities were calculated. Pathologic specimens were obtained at each time point. Results On the T1-weighted imaging (T1WI), the intramuscular hematomas exhibited isointensity compared to that of muscle or the development of a high signal intensity (SI) rim on day one after injury. The high SI persisted until eight weeks after injury. On the T2-weighted imaging (T2WI), the hematomas showed high SI or centrally low SI on day one after injury, and mainly high SI after four days. A dark signal rim was apparent after seven days, which was indicative of hemosiderin on the pathology. The gradient echo (GRE) imaging yielded dark signal intensities at all stages. Conclusion Unlike brain hematomas, experimentally-induced intramuscular hematomas show increased SI on both the T1WI and T2WI from the acute stage onward, and this is pathologically correlated with a rich blood supply and rapid healing response to injury in the muscle. On the T2WI and GRE imaging, high SI with a peripheral dark signal rim is apparent from seven days to the chronic stage. PMID:21228942

  3. Automated collimation testing by determining the statistical correlation coefficient of Talbot self-images.

    Science.gov (United States)

    Rana, Santosh; Dhanotia, Jitendra; Bhatia, Vimal; Prakash, Shashi

    2018-04-01

    In this paper, we propose a simple, fast, and accurate technique for detection of collimation position of an optical beam using the self-imaging phenomenon and correlation analysis. Herrera-Fernandez et al. [J. Opt.18, 075608 (2016)JOOPDB0150-536X10.1088/2040-8978/18/7/075608] proposed an experimental arrangement for collimation testing by comparing the period of two different self-images produced by a single diffraction grating. Following their approach, we propose a testing procedure based on correlation coefficient (CC) for efficient detection of variation in the size and fringe width of the Talbot self-images and thereby the collimation position. When the beam is collimated, the physical properties of the self-images of the grating, such as its size and fringe width, do not vary from one Talbot plane to the other and are identical; the CC is maximum in such a situation. For the de-collimated position, the size and fringe width of the self-images vary, and correspondingly the CC decreases. Hence, the magnitude of CC is a measure of degree of collimation. Using the method, we could set the collimation position to a resolution of 1 μm, which relates to ±0.25   μ    radians in terms of collimation angle (for testing a collimating lens of diameter 46 mm and focal length 300 mm). In contrast to most collimation techniques reported to date, the proposed technique does not require a translation/rotation of the grating, use of complicated phase evaluation algorithms, or an intricate method for determination of period of the grating or its self-images. The technique is fully automated and provides high resolution and precision.

  4. Serial MR Imaging of Intramuscular Hematoma: Experimental Study in a Rat Model with the Pathologic Correlation

    International Nuclear Information System (INIS)

    Lee, Yeon Soo; Kim, Jong Ok; Choi, Eun Seok; Kwon, Soon Tae

    2011-01-01

    We wanted to demonstrate the temporal changes of the magnetic resonance imaging (MRI) findings in experimentally-induced intramuscular hematomas in rats and to correlate these data with the concurrent pathologic observations. Intramuscular hematoma was induced in 30 rats. The MR images were obtained at 1, 4, 7 and 10 days and at 2, 3, 4, 6 and 8 weeks after muscle injury. The characteristic serial MRI findings were evaluated and the relative signal intensities were calculated. Pathologic specimens were obtained at each time point. On the T1-weighted imaging (T1WI), the intramuscular hematomas exhibited isointensity compared to that of muscle or the development of a high signal intensity (SI) rim on day one after injury. The high SI persisted until eight weeks after injury. On the T2-weighted imaging (T2WI), the hematomas showed high SI or centrally low SI on day one after injury, and mainly high SI after four days. A dark signal rim was apparent after seven days, which was indicative of hemosiderin on the pathology. The gradient echo (GRE) imaging yielded dark signal intensities at all stages. Unlike brain hematomas, experimentally-induced intramuscular hematomas show increased SI on both the T1WI and T2WI from the acute stage onward, and this is pathologically correlated with a rich blood supply and rapid healing response to injury in the muscle. On the T2WI and GRE imaging, high SI with a peripheral dark signal rim is apparent from seven days to the chronic stage

  5. Neuropsychological correlates of brain atrophy in Huntington's disease: a magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Starkstein, S.E.; Brandt, J.; Bylsma, F.; Peyser, C.; Folstein, M.; Folstein, S.E.

    1992-01-01

    Magnetic resonance imaging and a comprehensive cognitive evaluation were carried out in a series of 29 patients with mild to moderate Huntington's disease (HD). A factor analysis of the neuropsychological test scores provided three factors: A memory/speed-of-processing factor, a 'frontal' factor, and a response inhibition factor. The memory/speed factor correlated significantly with measures of caudate atrophy, frontal atrophy, and atrophy of the left (but not the right) sylvian cistern. There were no significant correlations between the 'frontal' or response inhibition factors and measures of cortical or subcortical brain atrophy. Our findings confirm that subcortical atrophy is significantly correlated with specific cognitive deficits in HD, and demonstrate that cortical atrophy also has important association with the cognitive deficits of patients with HD. (orig.)

  6. Speckle correlation resolution enhancement of wide-field fluorescence imaging (Conference Presentation)

    Science.gov (United States)

    Yilmaz, Hasan

    2016-03-01

    Structured illumination enables high-resolution fluorescence imaging of nanostructures [1]. We demonstrate a new high-resolution fluorescence imaging method that uses a scattering layer with a high-index substrate as a solid immersion lens [2]. Random scattering of coherent light enables a speckle pattern with a very fine structure that illuminates the fluorescent nanospheres on the back surface of the high-index substrate. The speckle pattern is raster-scanned over the fluorescent nanospheres using a speckle correlation effect known as the optical memory effect. A series of standard-resolution fluorescence images per each speckle pattern displacement are recorded by an electron-multiplying CCD camera using a commercial microscope objective. We have developed a new phase-retrieval algorithm to reconstruct a high-resolution, wide-field image from several standard-resolution wide-field images. We have introduced phase information of Fourier components of standard-resolution images as a new constraint in our algorithm which discards ambiguities therefore ensures convergence to a unique solution. We demonstrate two-dimensional fluorescence images of a collection of nanospheres with a deconvolved Abbe resolution of 116 nm and a field of view of 10 µm × 10 µm. Our method is robust against optical aberrations and stage drifts, therefore excellent for imaging nanostructures under ambient conditions. [1] M. G. L. Gustafsson, J. Microsc. 198, 82-87 (2000). [2] H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, Optica 2, 424-429 (2015).

  7. Spatiotemporal optical solitons

    International Nuclear Information System (INIS)

    Malomed, Boris A; Mihalache, Dumitru; Wise, Frank; Torner, Lluis

    2005-01-01

    In the course of the past several years, a new level of understanding has been achieved about conditions for the existence, stability, and generation of spatiotemporal optical solitons, which are nondiffracting and nondispersing wavepackets propagating in nonlinear optical media. Experimentally, effectively two-dimensional (2D) spatiotemporal solitons that overcome diffraction in one transverse spatial dimension have been created in quadratic nonlinear media. With regard to the theory, fundamentally new features of light pulses that self-trap in one or two transverse spatial dimensions and do not spread out in time, when propagating in various optical media, were thoroughly investigated in models with various nonlinearities. Stable vorticity-carrying spatiotemporal solitons have been predicted too, in media with competing nonlinearities (quadratic-cubic or cubic-quintic). This article offers an up-to-date survey of experimental and theoretical results in this field. Both achievements and outstanding difficulties are reviewed, and open problems are highlighted. Also briefly described are recent predictions for stable 2D and 3D solitons in Bose-Einstein condensates supported by full or low-dimensional optical lattices. (review article)

  8. A Mixed Land Cover Spatio-temporal Data Model Based on Object-oriented and Snapshot

    Directory of Open Access Journals (Sweden)

    LI Yinchao

    2016-07-01

    Full Text Available Spatio-temporal data model (STDM is one of the hot topics in the domains of spatio-temporal database and data analysis. There is a common view that a universal STDM is always of high complexity due to the various situation of spatio-temporal data. In this article, a mixed STDM is proposed based on object-oriented and snapshot models for modelling and analyzing landcover change (LCC. This model uses the object-oriented STDM to describe the spatio-temporal processes of land cover patches and organize their spatial and attributive properties. In the meantime, it uses the snapshot STDM to present the spatio-temporal distribution of LCC on the whole via snapshot images. The two types of models are spatially and temporally combined into a mixed version. In addition to presenting the spatio-temporal events themselves, this model could express the transformation events between different classes of spatio-temporal objects. It can be used to create database for historical data of LCC, do spatio-temporal statistics, simulation and data mining with the data. In this article, the LCC data in Heilongjiang province is used for case study to validate spatio-temporal data management and analysis abilities of mixed STDM, including creating database, spatio-temporal query, global evolution analysis and patches spatio-temporal process expression.

  9. Validation of a raw data-based synchronization signal (kymogram) for phase-correlated cardiac image reconstruction

    International Nuclear Information System (INIS)

    Ertel, Dirk; Kachelriess, Marc; Kalender, Willi A.; Pflederer, Tobias; Achenbach, Stephan; Steffen, Peter

    2008-01-01

    Phase-correlated reconstruction is commonly used in computed tomography (CT)-based cardiac imaging. Alternatively to the commonly used ECG, the raw data-based kymogram function can be used as a synchronization signal. We used raw data of 100 consecutive patient exams to compare the performance of kymogram function to the ECG signal. For objective validation the correlation of the ECG and the kymogram was assessed. Additionally, we performed a double-blinded comparison of ECG-based and kymogram-based phase-correlated images. The two synchronization signals showed good correlation indicated by a mean difference in the detected heart rate of negligible 0.2 bpm. The mean image quality score was 2.0 points for kymogram-correlated images and 2.3 points for ECG-correlated images, respectively (3: best; 0: worst). The kymogram and the ECG provided images adequate for diagnosis for 93 and 97 patients, respectively. For 50% of the datasets the kymogram provided an equivalent or even higher image quality compared with the ECG signal. We conclude that an acceptable image quality can be assured in most cases by the kymogram. Improvements of image quality by the kymogram function were observed in a noticeable number of cases. The kymogram can serve as a backup solution when an ECG is not available or lacking in quality. (orig.)

  10. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiaozhen [The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Psychiatry, Hangzhou (China); Zhejiang University Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Zhang, Hong; Tian, Mei [Zhejiang University Medical PET Center, Hangzhou (China); Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou (China); Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou (China); The Second Affiliated Hospital of Zhejiang University School of Medicine, Department of Nuclear Medicine, Hangzhou, Zhejiang (China); Chung, June-key [Seoul National University Hospital, Department of Nuclear Medicine, Seoul (Korea, Republic of)

    2017-06-15

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with {sup 11}C-N-methylspiperone ({sup 11}C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between {sup 11}C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased {sup 11}C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing. (orig.)

  11. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging.

    Science.gov (United States)

    Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Chung, June-Key; Zhang, Hong; Tian, Mei

    2017-06-01

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with 11 C-N-methylspiperone ( 11 C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between 11 C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased 11 C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing.

  12. Neural correlates of the popular music phenomenon: evidence from functional MRI and PET imaging

    International Nuclear Information System (INIS)

    Chen, Qiaozhen; Zhang, Ying; Hou, Haifeng; Du, Fenglei; Wu, Shuang; Chen, Lin; Shen, Yehua; Chao, Fangfang; Zhang, Hong; Tian, Mei; Chung, June-key

    2017-01-01

    Music can induce different emotions. However, its neural mechanism remains unknown. The aim of this study was to use functional magnetic resonance imaging (fMRI) and position emission tomography (PET) imaging for mapping of neural changes under the most popular music in healthy volunteers. Blood-oxygen-level-dependent (BOLD) fMRI and monoamine receptor PET imaging with "1"1C-N-methylspiperone ("1"1C-NMSP) were conducted under the popular music Gangnam Style and light music A Comme Amour in healthy subjects. PET and fMRI images were analyzed by using the Statistical Parametric Mapping software (SPM). Significantly increased fMRI BOLD signals were found in the bilateral superior temporal cortices, left cerebellum, left putamen and right thalamus cortex. Monoamine receptor availability was increased significantly in the left superior temporal gyrus and left putamen, but decreased in the bilateral superior occipital cortices under the Gangnam Style compared with the light music condition. Significant positive correlation was found between "1"1C-NMSP binding and fMRI BOLD signals in the left temporal cortex. Furthermore, increased "1"1C-NMSP binding in the left putamen was positively correlated with the mood arousal level score under the Gangnam Style condition. Popular music Gangnam Style can arouse pleasure experience and strong emotional response. The left putamen is positively correlated with the mood arousal level score under the Gangnam Style condition. Our results revealed characteristic patterns of brain activity associated with Gangnam Style, and may also provide more general insights into the music-induced emotional processing. (orig.)

  13. Statistical Correlation of Low-Altitude ENA Emissions with Geomagnetic Activity from IMAGE MENA Observations

    Science.gov (United States)

    Mackler, D. A.; Jahn, J.- M.; Perez, J. D.; Pollock, C. J.; Valek, P. W.

    2016-01-01

    Plasma sheet particles transported Earthward during times of active magnetospheric convection can interact with exospheric/thermospheric neutrals through charge exchange. The resulting Energetic Neutral Atoms (ENAs) are free to leave the influence of the magnetosphere and can be remotely detected. ENAs associated with low-altitude (300-800 km) ion precipitation in the high-latitude atmosphere/ionosphere are termed low-altitude emissions (LAEs). Remotely observed LAEs are highly nonisotropic in velocity space such that the pitch angle distribution at the time of charge exchange is near 90deg. The Geomagnetic Emission Cone of LAEs can be mapped spatially, showing where proton energy is deposited during times of varying geomagnetic activity. In this study we present a statistical look at the correlation between LAE flux (intensity and location) and geomagnetic activity. The LAE data are from the MENA imager on the IMAGE satellite over the declining phase of solar cycle 23 (2000-2005). The SYM-H, AE, and Kp indices are used to describe geomagnetic activity. The goal of the study is to evaluate properties of LAEs in ENA images and determine if those images can be used to infer properties of ion precipitation. Results indicate a general positive correlation to LAE flux for all three indices, with the SYM-H showing the greatest sensitivity. The magnetic local time distribution of LAEs is centered about midnight and spreads with increasing activity. The invariant latitude for all indices has a slightly negative correlation. The combined results indicate LAE behavior similar to that of ion precipitation.

  14. Statistical correlation of low-altitude ENA emissions with geomagnetic activity from IMAGE/MENA observations

    Science.gov (United States)

    Mackler, D. A.; Jahn, J.-M.; Perez, J. D.; Pollock, C. J.; Valek, P. W.

    2016-03-01

    Plasma sheet particles transported Earthward during times of active magnetospheric convection can interact with exospheric/thermospheric neutrals through charge exchange. The resulting Energetic Neutral Atoms (ENAs) are free to leave the influence of the magnetosphere and can be remotely detected. ENAs associated with low-altitude (300-800 km) ion precipitation in the high-latitude atmosphere/ionosphere are termed low-altitude emissions (LAEs). Remotely observed LAEs are highly nonisotropic in velocity space such that the pitch angle distribution at the time of charge exchange is near 90°. The Geomagnetic Emission Cone of LAEs can be mapped spatially, showing where proton energy is deposited during times of varying geomagnetic activity. In this study we present a statistical look at the correlation between LAE flux (intensity and location) and geomagnetic activity. The LAE data are from the MENA imager on the IMAGE satellite over the declining phase of solar cycle 23 (2000-2005). The SYM-H, AE, and Kp indices are used to describe geomagnetic activity. The goal of the study is to evaluate properties of LAEs in ENA images and determine if those images can be used to infer properties of ion precipitation. Results indicate a general positive correlation to LAE flux for all three indices, with the SYM-H showing the greatest sensitivity. The magnetic local time distribution of LAEs is centered about midnight and spreads with increasing activity. The invariant latitude for all indices has a slightly negative correlation. The combined results indicate LAE behavior similar to that of ion precipitation.

  15. Application of digital image correlation for long-distance bridge deflection measurement

    Science.gov (United States)

    Tian, Long; Pan, Bing; Cai, Youfa; Liang, Hui; Zhao, Yan

    2013-06-01

    Due to its advantages of non-contact, full-field and high-resolution measurement, digital image correlation (DIC) method has gained wide acceptance and found numerous applications in the field of experimental mechanics. In this paper, the application of DIC for real-time long-distance bridge deflection detection in outdoor environments is studied. Bridge deflection measurement using DIC in outdoor environments is more challenging than regular DIC measurements performed under laboratory conditions. First, much more image noise due to variations in ambient light will be presented in the images recorded in outdoor environments. Second, how to select the target area becomes a key factor because long-distance imaging results in a large field of view of the test object. Finally, the image acquisition speed of the camera must be high enough (larger than 100 fps) to capture the real-time dynamic motion of a bridge. In this work, the above challenging issues are addressed and several improvements were made to DIC method. The applicability was demonstrated by real experiments. Experimental results indicate that the DIC method has great potentials in motion measurement in various large building structures.

  16. Tendons in the plantar aspect of the foot: MR imaging and anatomic correlation in cadavers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Rodrigo [University of California San Diego, Radiology, San Diego, CA (United States); Fleury Medical Center, Radiology, Sao Paulo, SP (Brazil); Aguiar, Rodrigo; Trudell, Debra; Resnick, Donald [University of California San Diego, Radiology, San Diego, CA (United States)

    2007-02-15

    The purpose of this anatomic imaging study was to illustrate the normal complex anatomy of tendons of the plantar aspect of the ankle and foot using magnetic resonance (MR) imaging with anatomic correlation in cadavers. Seven fresh cadaveric feet (obtained and used according to institutional guidelines, with informed consent from relatives of the deceased) were studied with intermediate-weighted fast-spin-echo MR imaging. For anatomic analysis, cadaveric specimens were sectioned in 3-mm-thick slices in the coronal and axial planes that approximated the sections acquired at MR imaging. The entire courses of the tendons into the plantar aspect of the foot were analyzed. The tibialis posterior tendon has a complex distal insertion. The insertions in the navicular, second, and third cuneiforms bones were identify in all cases using axial and coronal planes. A tendinous connection between the flexor hallucis longus and the flexor digitorum longus tendons was identified in five of our specimens (71%). The coronal plane provided the best evaluation. The peroneus longus tendon changes its direction at three points then obliquely crosses the sole and inserts in the base of the first metatarsal bone and the plantar aspect of the first cuneiform. MR imaging provides detailed information about the anatomy of tendons in the plantar aspect of the ankle and foot. It allows analysis of their insertions and the intertendinous connection between the flexor hallucis longus and the flexor digitorum longus tendons. (orig.)

  17. Diagnosis of intraductal spread of breast cancer by high-resolution MR imaging. Correlation between MR imaging and pathohistological findings

    International Nuclear Information System (INIS)

    Date, Shuji

    1998-01-01

    The main purpose of this study was to investigate pathohistological factors that affect the MR findings of intraductal spread (IDS) of breast cancer. The subjects of the present study were 42 breast cancer patients who were examined by MR imaging. Fat-suppressed high-resolution T1-weighted spin-echo images (350/13/1 (TR/TE/excitations), 16-cm FOV, 5-mm section thickness, and 512 x 256 matrix) were obtained one minute after the intravenous administration of Gd-DTPA. In this protocol, contrast determination time was 1 min 48 sec. Of the 42 cases, IDS was found to be located more than 1 cm from the primary focus in 22 cases (52%). Rates of sensitivity, specificity and accuracy of MR imaging for the detection of IDS were 82%, 80%, and 81%, respectively. The probable cause of misdiagnosis was parenchymal enhancement due to severe fibrocystic disease and normal menstrual cycle. In 21 of 42 cases, the MR findings were precisely correlated with the pathohistologic findings of almost the same cross-section. The MR findings of IDS varied greatly with observation of linear, band-like, branch-like, plate-like and minute ring enhancements. These findings closely reflected the size, aggregation pattern, and distribution of intraductal lesions. In particular, minute ring enhancement was only observed in 4 comedo-type lesions. This pattern of enhancement is considered to reflect elevated intraductal cellular density with necrosis in the central region. (author)

  18. Diagnosis of intraductal spread of breast cancer by high-resolution MR imaging. Correlation between MR imaging and pathohistological findings

    Energy Technology Data Exchange (ETDEWEB)

    Date, Shuji [Hiroshima City Hospital (Japan)

    1998-04-01

    The main purpose of this study was to investigate pathohistological factors that affect the MR findings of intraductal spread (IDS) of breast cancer. The subjects of the present study were 42 breast cancer patients who were examined by MR imaging. Fat-suppressed high-resolution T1-weighted spin-echo images (350/13/1 (TR/TE/excitations), 16-cm FOV, 5-mm section thickness, and 512 x 256 matrix) were obtained one minute after the intravenous administration of Gd-DTPA. In this protocol, contrast determination time was 1 min 48 sec. Of the 42 cases, IDS was found to be located more than 1 cm from the primary focus in 22 cases (52%). Rates of sensitivity, specificity and accuracy of MR imaging for the detection of IDS were 82%, 80%, and 81%, respectively. The probable cause of misdiagnosis was parenchymal enhancement due to severe fibrocystic disease and normal menstrual cycle. In 21 of 42 cases, the MR findings were precisely correlated with the pathohistologic findings of almost the same cross-section. The MR findings of IDS varied greatly with observation of linear, band-like, branch-like, plate-like and minute ring enhancements. These findings closely reflected the size, aggregation pattern, and distribution of intraductal lesions. In particular, minute ring enhancement was only observed in 4 comedo-type lesions. This pattern of enhancement is considered to reflect elevated intraductal cellular density with necrosis in the central region. (author)

  19. Skin surface and sub-surface strain and deformation imaging using optical coherence tomography and digital image correlation

    Science.gov (United States)

    Hu, X.; Maiti, R.; Liu, X.; Gerhardt, L. C.; Lee, Z. S.; Byers, R.; Franklin, S. E.; Lewis, R.; Matcher, S. J.; Carré, M. J.

    2016-03-01

    Bio-mechanical properties of the human skin deformed by external forces at difference skin/material interfaces attract much attention in medical research. For instance, such properties are important design factors when one designs a healthcare device, i.e., the device might be applied directly at skin/device interfaces. In this paper, we investigated the bio-mechanical properties, i.e., surface strain, morphological changes of the skin layers, etc., of the human finger-pad and forearm skin as a function of applied pressure by utilizing two non-invasive techniques, i.e., optical coherence tomography (OCT) and digital image correlation (DIC). Skin deformation results of the human finger-pad and forearm skin were obtained while pressed against a transparent optical glass plate under the action of 0.5-24 N force and stretching naturally from 90° flexion to 180° full extension respectively. The obtained OCT images showed the deformation results beneath the skin surface, however, DIC images gave overall information of strain at the surface.

  20. Spatiotemporal Modeling of Community Risk

    Science.gov (United States)

    2016-03-01

    Ertugay, and Sebnem Duzgun, “Exploratory and Inferential Methods for Spatio-Temporal Analysis of Residential Fire Clustering in Urban Areas,” Fire ...response in communities.”26 In “Exploratory and Inferential Methods for Spatio-temporal Analysis of Residential Fire Clustering in Urban Areas,” Ceyhan...of fire resources spread across the community. Spatiotemporal modeling shows that actualized risk is dynamic and relatively patterned. Though

  1. Enhanced Visualization of Subtle Outer Retinal Pathology by En Face Optical Coherence Tomography and Correlation with Multi-Modal Imaging.

    Directory of Open Access Journals (Sweden)

    Danuta M Sampson

    Full Text Available To present en face optical coherence tomography (OCT images generated by graph-search theory algorithm-based custom software and examine correlation with other imaging modalities.En face OCT images derived from high density OCT volumetric scans of 3 healthy subjects and 4 patients using a custom algorithm (graph-search theory and commercial software (Heidelberg Eye Explorer software (Heidelberg Engineering were compared and correlated with near infrared reflectance, fundus autofluorescence, adaptive optics flood-illumination ophthalmoscopy (AO-FIO and microperimetry.Commercial software was unable to generate accurate en face OCT images in eyes with retinal pigment epithelium (RPE pathology due to segmentation error at the level of Bruch's membrane (BM. Accurate segmentation of the basal RPE and BM was achieved using custom software. The en face OCT images from eyes with isolated interdigitation or ellipsoid zone pathology were of similar quality between custom software and Heidelberg Eye Explorer software in the absence of any other significant outer retinal pathology. En face OCT images demonstrated angioid streaks, lesions of acute macular neuroretinopathy, hydroxychloroquine toxicity and Bietti crystalline deposits that correlated with other imaging modalities.Graph-search theory algorithm helps to overcome the limitations of outer retinal segmentation inaccuracies in commercial software. En face OCT images can provide detailed topography of the reflectivity within a specific layer of the retina which correlates with other forms of fundus imaging. Our results highlight the need for standardization of image reflectivity to facilitate quantification of en face OCT images and longitudinal analysis.

  2. Correlative Imaging in a Patient with Cystic Thymoma: CT, MR and PET/CT Comparison

    International Nuclear Information System (INIS)

    Romeo, Valeria; Esposito, Alfredo; Maurea, Simone; Camera, Luigi; Mainenti, Pier Paolo; Palmieri, Giovannella; Buonerba, Carlo; Salvatore, Marco

    2015-01-01

    Cystic thymoma is a rare variant of thymic neoplasm characterized by almost complete cystic degeneration with mixed internal structure. We describe a case of a 60 year-old woman with a cystic thymoma studied with advanced tomographic imaging stydies. CT, MRI and PET/CT with 18 F-FDG were performed; volumetric CT and MRI images provided better anatomic evaluation for pre-operative assessment, while PET/CT was helpful for lesion characterization based on 18 F-FDG uptake. Although imaging studies are mandatory for pre-operative evaluation of cystic thymoma, final diagnosis still remains surgical. A 60-year-old woman with recent chest pain and no history of previous disease was admitted to our departement to investigate the result of a previous chest X-ray that showed bilateral mediastinal enlargement; for this purpose, enhanced chest CT scan was performed using a 64-rows scanner (Toshiba, Aquilion 64, Japan) before and after intravenous bolus administration of iodinated non ionic contrast agent; CT images demonstrated the presence of a large mediastinal mass (11×8 cm) located in the anterior mediastinum who extended from the anonymous vein to the cardio-phrenic space, compressing the left atrium and causing medium lobe atelectasis; bilateral pleural effusion was also present. In conclusion, correlative imaging plays a foundamental role for the diagnostic evaluation of patient with cystic thymoma. In particular, volumetric CT and MRI studies can provide better anatomic informations regarding internal structure and local tumor spread for pre-operative assessment. Conversely, metabolic imaging using 18 F-FDG PET/CT is helpful for lesion characterization differentiating benign from malignant lesion on the basis of intense tracer uptake. The role of PET/MRI is still under investigation. However, final diagnosis still remains surgical even though imaging studies are mandatory for pre-operative patient management

  3. Correlative nanoscale 3D imaging of structure and composition in extended objects.

    Directory of Open Access Journals (Sweden)

    Feng Xu

    Full Text Available Structure and composition at the nanoscale determine the behavior of biological systems and engineered materials. The drive to understand and control this behavior has placed strong demands on developing methods for high resolution imaging. In general, the improvement of three-dimensional (3D resolution is accomplished by tightening constraints: reduced manageable specimen sizes, decreasing analyzable volumes, degrading contrasts, and increasing sample preparation efforts. Aiming to overcome these limitations, we present a non-destructive and multiple-contrast imaging technique, using principles of X-ray laminography, thus generalizing tomography towards laterally extended objects. We retain advantages that are usually restricted to 2D microscopic imaging, such as scanning of large areas and subsequent zooming-in towards a region of interest at the highest possible resolution. Our technique permits correlating the 3D structure and the elemental distribution yielding a high sensitivity to variations of the electron density via coherent imaging and to local trace element quantification through X-ray fluorescence. We demonstrate the method by imaging a lithographic nanostructure and an aluminum alloy. Analyzing a biological system, we visualize in lung tissue the subcellular response to toxic stress after exposure to nanotubes. We show that most of the nanotubes are trapped inside alveolar macrophages, while a small portion of the nanotubes has crossed the barrier to the cellular space of the alveolar wall. In general, our method is non-destructive and can be combined with different sample environmental or loading conditions. We therefore anticipate that correlative X-ray nano-laminography will enable a variety of in situ and in operando 3D studies.

  4. Neurophysiological correlates of artistic image creation by representatives of artistic professions

    Directory of Open Access Journals (Sweden)

    Dikaya L. A.

    2016-12-01

    Full Text Available The steadily increasing demand for artistic professions brings to the fore the task of studying the phenomenon of art by researching the unique capacity of the human brain to create works of art in different spheres of creative activity. So far, only a few studies have investigated creativity-related brain activity in representatives of the creative professions. The aim of the empirical research was to study the neurophysiological correlates of artistic image creation by representatives of the artistic professions. The participants were 60 right-handed females aged 23-27, divided into three groups— artists (23 people, actors (17 people, and specialists who do not work in an artistic field (20 people. The mono-typing technique was used to model the creative artistic process. EEG signals were recorded in a resting state, and during four stages of the creation of an artistic image (viewing of monotypes, frustration, image creation, and thinking over the details from 21 electrodes set on the scalp according to the International 10-20 System. We analyzed EEG coherence for each functional trial at theta (4.00–8.00 Hz, alpha1 (8.00–10.5 Hz, alpha2 (10.5–13.00 Hz, and beta (13.00– 35.00 Hz frequency bands. For statistical analysis, we used MANOVA and post hoc analysis. We found that the neurophysiological correlates of creating an artistic image are different at different stages of the creative process, and have different features for artists and actors. The actors primarily show dominance of right hemisphere activity, while close interaction of the hemispheres distinguishes the brains of the artists. The differences revealed in brain cortex functioning when artists or actors create an artistic image reflect different strategies of imaginative creative work by representatives of these professions.

  5. Interferences, ghost images and other quantum correlations according to stochastic optics

    International Nuclear Information System (INIS)

    Fonseca da Silva, Luciano; Dechoum, Kaled

    2012-01-01

    There are an extensive variety of experiments in quantum optics that emphasize the non-local character of the coincidence measurements recorded by spatially separated photocounters. These are the cases of ghost image and other interference experiments based on correlated photons produced in, for instance, the process of parametric down-conversion or photon cascades. We propose to analyse some of these correlations in the light of stochastic optics, a local formalism based on classical electrodynamics with added background fluctuations that simulate the vacuum field of quantum electrodynamics, and raise the following question: can these experiments be used to distinguish between quantum entanglement and classical correlations? - Highlights: ► We analyse some quantum correlations in the light of stochastic optics. ► We study how vacuum fluctuations can rule quantum correlations. ► Many criteria cannot be considered a boundary between quantum and classical theories. ► Non-locality is a misused term in relation to many observed experiments.

  6. A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Khoo Sze-Wei

    2016-09-01

    Full Text Available Among the full-field optical measurement methods, the Digital Image Correlation (DIC is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.

  7. Histogram analysis of diffusion kurtosis imaging of nasopharyngeal carcinoma: Correlation between quantitative parameters and clinical stage.

    Science.gov (United States)

    Xu, Xiao-Quan; Ma, Gao; Wang, Yan-Jun; Hu, Hao; Su, Guo-Yi; Shi, Hai-Bin; Wu, Fei-Yun

    2017-07-18

    To evaluate the correlation between histogram parameters derived from diffusion-kurtosis (DK) imaging and the clinical stage of nasopharyngeal carcinoma (NPC). High T-stage (T3/4) NPC showed significantly higher Kapp-mean (P = 0.018), Kapp-median (P = 0.029) and Kapp-90th (P = 0.003) than low T-stage (T1/2) NPC. High N-stage NPC (N2/3) showed significantly lower Dapp-mean (P = 0.002), Dapp-median (P = 0.002) and Dapp-10th (P Histogram parameters, including mean, median, 10th, 90th percentiles, skewness and kurtosis of Dapp and Kapp were calculated. Patients were divided into low and high T, N and clinical stage based on American Joint Committee on Cancer (AJCC) staging system. Differences of histogram parameters between low and high T, N and AJCC stages were compared using t test. Multiple receiver operating characteristic (ROC) curves were used to determine and compare the value of significant parameters in predicting high T, N and AJCC stage, respectively. DK imaging-derived parameters correlated well with clinical stage of NPC, therefore could serve as an adjunctive imaging technique for evaluating NPC.

  8. Motivational Impact of Palatable Food Correlates With Functional Brain Responses to Food Images in Adolescents.

    Science.gov (United States)

    Jensen, Chad D; Duraccio, Kara M; Carbine, Kaylie A; Barnett, Kimberly A; Kirwan, C Brock

    2017-06-01

    To examine associations between motivational impact of palatable foods and neural activity in brain regions involved in inhibitory control among adolescents. Thirty-four adolescents aged 14-20 years underwent functional magnetic resonance imaging while viewing images of high- and low-energy foods. Participants completed the Power of Food Scale (PFS). Whole-brain analyses of variance tested for neural activation differences and correlations between brain activation and PFS scores were tested. We found an interaction between food type (high energy vs. low energy) and PFS scores in the right dorsolateral prefrontal cortex and right inferior parietal lobule. We also found that PFS scores correlated negatively with activation to high-energy foods in prefrontal cortical and parietal regions. These findings suggest that individuals with high motivation for high-energy foods also demonstrate lower neural activation in inhibition-related brain regions when viewing images of high-energy foods, indicating that they may have difficulty inhibiting consumption impulses. © The Author 2016. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  9. Transformation of light double cones in the human retina: the origin of trichromatism, of 4D-spatiotemporal vision, and of patchwise 4D Fourier transformation in Talbot imaging

    Science.gov (United States)

    Lauinger, Norbert

    1997-09-01

    The interpretation of the 'inverted' retina of primates as an 'optoretina' (a light cones transforming diffractive cellular 3D-phase grating) integrates the functional, structural, and oscillatory aspects of a cortical layer. It is therefore relevant to consider prenatal developments as a basis of the macro- and micro-geometry of the inner eye. This geometry becomes relevant for the postnatal trichromatic synchrony organization (TSO) as well as the adaptive levels of human vision. It is shown that the functional performances, the trichromatism in photopic vision, the monocular spatiotemporal 3D- and 4D-motion detection, as well as the Fourier optical image transformation with extraction of invariances all become possible. To transform light cones into reciprocal gratings especially the spectral phase conditions in the eikonal of the geometrical optical imaging before the retinal 3D-grating become relevant first, then in the von Laue resp. reciprocal von Laue equation for 3D-grating optics inside the grating and finally in the periodicity of Talbot-2/Fresnel-planes in the near-field behind the grating. It is becoming possible to technically realize -- at least in some specific aspects -- such a cortical optoretina sensor element with its typical hexagonal-concentric structure which leads to these visual functions.

  10. Correlation analysis between pulmonary function test parameters and CT image parameters of emphysema

    Science.gov (United States)

    Liu, Cheng-Pei; Li, Chia-Chen; Yu, Chong-Jen; Chang, Yeun-Chung; Wang, Cheng-Yi; Yu, Wen-Kuang; Chen, Chung-Ming

    2016-03-01

    Conventionally, diagnosis and severity classification of Chronic Obstructive Pulmonary Disease (COPD) are usually based on the pulmonary function tests (PFTs). To reduce the need of PFT for the diagnosis of COPD, this paper proposes a correlation model between the lung CT images and the crucial index of the PFT, FEV1/FVC, a severity index of COPD distinguishing a normal subject from a COPD patient. A new lung CT image index, Mirage Index (MI), has been developed to describe the severity of COPD primarily with emphysema disease. Unlike conventional Pixel Index (PI) which takes into account all voxels with HU values less than -950, the proposed approach modeled these voxels by different sizes of bullae balls and defines MI as a weighted sum of the percentages of the bullae balls of different size classes and locations in a lung. For evaluation of the efficacy of the proposed model, 45 emphysema subjects of different severity were involved in this study. In comparison with the conventional index, PI, the correlation between MI and FEV1/FVC is -0.75+/-0.08, which substantially outperforms the correlation between PI and FEV1/FVC, i.e., -0.63+/-0.11. Moreover, we have shown that the emphysematous lesion areas constituted by small bullae balls are basically irrelevant to FEV1/FVC. The statistical analysis and special case study results show that MI can offer better assessment in different analyses.

  11. Breast MR imaging: correlation of high resolution dynamic MR findings with prognostic factors

    International Nuclear Information System (INIS)

    Lee, Shin Ho; Cho, Nariya; Chung, Hye Kyung; Kim, Seung Ja; Cho, Kyung Soo; Moon, Woo Kyung; Cho, Joo Hee

    2005-01-01

    We wanted to correlate the kinetic and morphologic MR findings of invasive breast cancer with the classical and molecular prognostic factors. Eighty-seven patients with invasive ductal carcinoma NOS underwent dynamic MR imaging at 1.5 T, and with using the T1-weighted 3D FLASH technique. The morphologic findings (shape, margin, internal enhancement of the mass or the enhancement distribution and the internal enhancement of any non-mass lesion) and the kinetic findings (the initial phase and the delayed phase of the time-signal. Intensity curve) were interpreted using a ACR BI-RADS-MRI lexicon. We correlate MR findings with histopathologic prognostic factors (tumor size, lymph node status and tumor grade) and the immunohistochemically detected biomarkers (ER, PR, ρ 53, c-erbB-2, EGFR and Ki-67). Univariate and multivariate statistical analyses were than performed. Among the MR findings, a spiculated margin, rim enhancement and washout were significantly correlated with the prognostic factors. A spiculated margin was independently associated with the established predictors of a good prognosis (a lower histologic and nuclear grade, positive ER and PR) and rim enhancement was associated with a poor prognosis (a higher histologic and nuclear grade, negative ER and PR). Wash out was a independent predictor of Ki-67 activity. Some of the findings of high resolution dynamic MR imaging were associated with the prognostic factors, and these findings may predict the prognosis of breast cancer

  12. Gallbladder wall thickening: MR imaging and pathologic correlation with emphasis on layered pattern

    International Nuclear Information System (INIS)

    Jung, S.E.; Lee, J.M.; Hahn, S.T.; Lee, K.; Rha, S.E.; Choi, B.G.; Kim, E.K.

    2005-01-01

    The aim of this study was to correlate MR findings of gallbladder wall thickening with pathologic findings on the basis of the layered pattern and to evaluate the diagnostic value of MR imaging in gallbladder disease. We retrospectively evaluated the source images of HASTE sequences for MR cholangiography in 144 patients with gallbladder wall thickening. The layered pattern of thickened wall was classified into four patterns. Type 1 shows two layers with a thin hypointense inner layer and thick hyperintense outer layer. Type 2 has two layers of ill-defined margin. Type 3 shows multiple hyperintense cystic spaces in the wall. Type 4 shows diffuse nodular thickening without layering. MR findings of a layered pattern of thickened gallbladder were well correlated with histopathology. Chronic cholecystitis matched to type 1, acute cholecystitis corresponded to type 2, adenomyomatosis showed type 3, and the gallbladder carcinomas showed type 4. All four layered patterns were associated with PPV of 73% or greater, sensitivity of 92% or greater and specificity of 95% or greater. Our results indicate that MR findings of gallbladder wall thickening are characteristic in each entity and correlate well with pathologic findings. The classification of the layered pattern may be valuable for interpreting thickened gallbladder wall. (orig.)

  13. Imaging findings of intravascular papillary endothelial hyperplasia presenting in extremities: correlation with pathological findings.

    Science.gov (United States)

    Lee, Sun Joo; Choo, Hye Jung; Park, Ji Sung; Park, Yeong-Mi; Eun, Choong Ki; Hong, Sung Hwan; Hwang, Ji Young; Lee, In Sook; Lee, Jongmin; Jung, Soo-Jin

    2010-08-01

    To describe magnetic resonance imaging (MRI) and ultrasound (US) findings of intravascular papillary endothelial hyperplasia (IPEH) arising in extremities. Six patients with IPEH confirmed by surgical resection were reviewed retrospectively. Before resection, 3 patients underwent both MRI and US and 3 patients underwent only MRI. Two radiologists retrospectively reviewed MR/US imaging results and correlated them with pathological features. The 6 IPEHs were diagnosed as 4 mixed forms and 2 pure forms. The pre-existing pathology of four mixed forms was intramuscular or intermuscular hemangioma. By MRI, the mixed form of IPEH (n = 4) revealed iso- to slightly high signal intensity containing nodule-like foci of high signal intensity on T1-weighted images (T1WI) and high signal intensity-containing nodule-like foci of low signal intensity on T2-weighted images (T2WI). The pure form of IPEH (n = 2) showed homogeneous iso- signal intensity on T1WI and high and low signal intensity containing nodule-like foci of low signal intensity on T2WI. On gadolinium-enhanced fat-suppressed T1WI, 50% of cases (n = 3: mixed forms) revealed peripheral, septal, and central enhancement. The other IPEHs (n = 3: 1 mixed and 2 pure forms) showed peripheral and septal enhancement or only peripheral enhancement. By US, two mixed forms of IPEH showed well-defined hypoechoic masses containing hyperechoic septa and central portion with vascularities. One pure form of IPEH was a homogeneous hypoechoic mass with septal and peripheral vascularities on color Doppler imaging. The foci of high signal intensity on T1WI, foci of low signal intensity on T2WI, and non-enhancing portions on MRI and the hypoechoic portion on US were histopathologically correlated with thrombi and the peripheral/septal or central enhancing areas on MRI, hyperechoic septa and the central portion on US, and septal/central or peripheral vascularities on color Doppler imaging corresponded to hypertrophic papillary epithelium and

  14. Imaging findings of intravascular papillary endothelial hyperplasia presenting in extremities: correlation with pathological findings

    International Nuclear Information System (INIS)

    Lee, Sun Joo; Choo, Hye Jung; Park, Ji Sung; Park, Yeong-Mi; Eun, Choong Ki; Hong, Sung Hwan; Hwang, Ji Young; Lee, In Sook; Lee, Jongmin; Jung, Soo-Jin

    2010-01-01

    To describe magnetic resonance imaging (MRI) and ultrasound (US) findings of intravascular papillary endothelial hyperplasia (IPEH) arising in extremities. Six patients with IPEH confirmed by surgical resection were reviewed retrospectively. Before resection, 3 patients underwent both MRI and US and 3 patients underwent only MRI. Two radiologists retrospectively reviewed MR/US imaging results and correlated them with pathological features. The 6 IPEHs were diagnosed as 4 mixed forms and 2 pure forms. The pre-existing pathology of four mixed forms was intramuscular or intermuscular hemangioma. By MRI, the mixed form of IPEH (n = 4) revealed iso- to slightly high signal intensity containing nodule-like foci of high signal intensity on T1-weighted images (T1WI) and high signal intensity-containing nodule-like foci of low signal intensity on T2-weighted images (T2WI). The pure form of IPEH (n = 2) showed homogeneous iso- signal intensity on T1WI and high and low signal intensity containing nodule-like foci of low signal intensity on T2WI. On gadolinium-enhanced fat-suppressed T1WI, 50% of cases (n = 3: mixed forms) revealed peripheral, septal, and central enhancement. The other IPEHs (n = 3: 1 mixed and 2 pure forms) showed peripheral and septal enhancement or only peripheral enhancement. By US, two mixed forms of IPEH showed well-defined hypoechoic masses containing hyperechoic septa and central portion with vascularities. One pure form of IPEH was a homogeneous hypoechoic mass with septal and peripheral vascularities on color Doppler imaging. The foci of high signal intensity on T1WI, foci of low signal intensity on T2WI, and non-enhancing portions on MRI and the hypoechoic portion on US were histopathologically correlated with thrombi and the peripheral/septal or central enhancing areas on MRI, hyperechoic septa and the central portion on US, and septal/central or peripheral vascularities on color Doppler imaging corresponded to hypertrophic papillary epithelium and

  15. Characteristic MR and CT imaging findings of hepatobiliary paragonimiasis and their pathologic correlations

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chunyan; Hu, Yajun; Chen, Weixia [Dept of Radiology, West China Hospital of Sichuan Univ., Sichuan (China)], e-mail: wxchen25@126.com

    2012-06-15

    Background: Hepatobiliary paragonimiasis (HP) is not commonly encountered and may be confused with hepatobiliary tumors; however, computed tomography (CT) and magnetic resonance imaging (MRI) features of HP allow this entity to be distinguished from other diseases. Purpose: To present the CT and MRI findings in patients with HP and to describe some specific imaging findings along with their pathological correlations. Material and Methods: Imaging and clinical findings of 21 patients (9 boys/men and 12 girls/women; age range 3-67 years; mean age 40 years) who were diagnosed with HP were retrospectively evaluated. Among these patients, 16 underwent CT examination only, two had MR examination only, and three underwent both CT and MR. All patients underwent surgery, and the HP diagnosis was confirmed by the surgical and histopathologic results. Results: Chronic abdominal pain or back pain was reported by 14 patients, severe abdominal pain with acute onset was reported by one patient, and six patients were asymptomatic and were discovered incidentally. Peripheral eosinophilia was present in 14 patients (14/21, 66.7%), and abnormal liver function tests were found in 16 patients (16/21, 76.2%). Of the 19 patients who underwent CT imaging, 17 patients showed multiple mixed hypodense lesions or multiple cysts with inlaying septation with separate irregular rims or circular enhancement on post-contrast CT images. Tunnel-shaped micro abscesses and necrotic cavities were found in the lesions of 12 of those 17 patients. The other two patients showed smaller cystic masses. MRI showed faveolate T1 hypointense and T2 hyperintense areas in the liver parenchyma with rim or peripheral enhancement. Nodular or circular hyperintense materials were found scattered in the lesions on T1-weighted imaging. Conclusion: CT and MRI can reveal the radiological-pathological features of HP. Together with laboratory findings, MRI and CT findings may provide diagnostic clues, especially in endemic

  16. Characteristic MR and CT imaging findings of hepatobiliary paragonimiasis and their pathologic correlations

    International Nuclear Information System (INIS)

    Lu, Chunyan; Hu, Yajun; Chen, Weixia

    2012-01-01

    Background: Hepatobiliary paragonimiasis (HP) is not commonly encountered and may be confused with hepatobiliary tumors; however, computed tomography (CT) and magnetic resonance imaging (MRI) features of HP allow this entity to be distinguished from other diseases. Purpose: To present the CT and MRI findings in patients with HP and to describe some specific imaging findings along with their pathological correlations. Material and Methods: Imaging and clinical findings of 21 patients (9 boys/men and 12 girls/women; age range 3-67 years; mean age 40 years) who were diagnosed with HP were retrospectively evaluated. Among these patients, 16 underwent CT examination only, two had MR examination only, and three underwent both CT and MR. All patients underwent surgery, and the HP diagnosis was confirmed by the surgical and histopathologic results. Results: Chronic abdominal pain or back pain was reported by 14 patients, severe abdominal pain with acute onset was reported by one patient, and six patients were asymptomatic and were discovered incidentally. Peripheral eosinophilia was present in 14 patients (14/21, 66.7%), and abnormal liver function tests were found in 16 patients (16/21, 76.2%). Of the 19 patients who underwent CT imaging, 17 patients showed multiple mixed hypodense lesions or multiple cysts with inlaying septation with separate irregular rims or circular enhancement on post-contrast CT images. Tunnel-shaped micro abscesses and necrotic cavities were found in the lesions of 12 of those 17 patients. The other two patients showed smaller cystic masses. MRI showed faveolate T1 hypointense and T2 hyperintense areas in the liver parenchyma with rim or peripheral enhancement. Nodular or circular hyperintense materials were found scattered in the lesions on T1-weighted imaging. Conclusion: CT and MRI can reveal the radiological-pathological features of HP. Together with laboratory findings, MRI and CT findings may provide diagnostic clues, especially in endemic

  17. Correlative scanning electron and confocal microscopy imaging of labeled cells coated by indium-tin-oxide

    KAUST Repository

    Rodighiero, Simona

    2015-03-22

    Confocal microscopy imaging of cells allows to visualize the presence of specific antigens by using fluorescent tags or fluorescent proteins, with resolution of few hundreds of nanometers, providing their localization in a large field-of-view and the understanding of their cellular function. Conversely, in scanning electron microscopy (SEM), the surface morphology of cells is imaged down to nanometer scale using secondary electrons. Combining both imaging techniques have brought to the correlative light and electron microscopy, contributing to investigate the existing relationships between biological surface structures and functions. Furthermore, in SEM, backscattered electrons (BSE) can image local compositional differences, like those due to nanosized gold particles labeling cellular surface antigens. To perform SEM imaging of cells, they could be grown on conducting substrates, but obtaining images of limited quality. Alternatively, they could be rendered electrically conductive, coating them with a thin metal layer. However, when BSE are collected to detect gold-labeled surface antigens, heavy metals cannot be used as coating material, as they would mask the BSE signal produced by the markers. Cell surface could be then coated with a thin layer of chromium, but this results in a loss of conductivity due to the fast chromium oxidation, if the samples come in contact with air. In order to overcome these major limitations, a thin layer of indium-tin-oxide was deposited by ion-sputtering on gold-decorated HeLa cells and neurons. Indium-tin-oxide was able to provide stable electrical conductivity and preservation of the BSE signal coming from the gold-conjugated markers. © 2015 Wiley Periodicals, Inc.

  18. Automatic detection and classification of damage zone(s) for incorporating in digital image correlation technique

    Science.gov (United States)

    Bhattacharjee, Sudipta; Deb, Debasis

    2016-07-01

    Digital image correlation (DIC) is a technique developed for monitoring surface deformation/displacement of an object under loading conditions. This method is further refined to make it capable of handling discontinuities on the surface of the sample. A damage zone is referred to a surface area fractured and opened in due course of loading. In this study, an algorithm is presented to automatically detect multiple damage zones in deformed image. The algorithm identifies the pixels located inside these zones and eliminate them from FEM-DIC processes. The proposed algorithm is successfully implemented on several damaged samples to estimate displacement fields of an object under loading conditions. This study shows that displacement fields represent the damage conditions reasonably well as compared to regular FEM-DIC technique without considering the damage zones.

  19. Lipofibromatosis: magnetic resonance imaging features and pathological correlation in three cases

    International Nuclear Information System (INIS)

    Vogel, Daniela; Righi, Alberto; Kreshak, Jennifer; Dei Tos, Angelo Paolo; Merlino, Biagio; Brunocilla, Eugenio; Vanel, Daniel

    2014-01-01

    Lipofibromatosis is a rare, benign, but infiltrative, soft tissue tumor seen in children. We present three cases of lipofibromatosis, each with different magnetic resonance imaging features and correlate this with the histological findings. The patients comprised two males and one female who presented in infancy; at birth, 5 months, and 7 months of age. Clinically, the masses were painless and slow-growing. The masses ranged in size from 2 to 6 cm and involved the distal extremities in two cases (one foot, one wrist) and the trunk. Magnetic resonance imaging showed lipomatous lesions with varying amounts of adipose and solid components in each case. There were no capsules at the periphery of the lesions. One case showed a fat-predominant lesion, another an equal mixture of fat and solid tissue, and the third was predominantly solid. This was reflected in the histology, which showed corresponding features. Radiological and histopathological differential diagnoses are reviewed. (orig.)

  20. Shear strain determination of the polymer polydimethysiloxane (PMDS) using digital image correlation in different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, G N [Pos-graduacao em Engenharia Mecanica, TEM/PGMEC, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Brazil, Cep.: 24.210-240 (Brazil); Nunes, L C S [Laboratorio de Mecanica Teorica e Aplicada, Departamento de Engenharia Mecanica, Universidade Federal Fluminense, Rua Passo da Patria, 156, Niteroi, R.J., Brazil, Cep.: 24.210-240 (Brazil); Dos Santos, P A M, E-mail: pams@if.uff.br [Instituto de Fisica, Laboratorio de Optica Nao-linear e Aplicada, Universidade Federal Fluminense, Av. Gal. Nilton Tavares de Souza, s/n, Gragoata, Niteroi, R.J., Brazil, Cep.:24.210-346 (Brazil)

    2011-01-01

    In the present work a digital image correlation (DIC) method is used in order to analyze the adhesive shear modulus of poly-dimethylsiloxane (PDMS) submitted to different loads and temperatures. This is an optical-numerical full-field surface displacement measurement method. It is based on a comparison between two images of a specimen coated by a random speckled pattern in the undeformed and in the deformed states. A single lap joint testing is performed. This is a standard test specimen for characterizing adhesive properties and it is considered the simplest form of adhesive joints. For the single lap joint specimen, steel adherends are bonded using a flexible rubber elastic polymer (PDMS), which is a commercially available silicone elastic rubber.

  1. Lipofibromatosis: magnetic resonance imaging features and pathological correlation in three cases

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Daniela; Righi, Alberto; Kreshak, Jennifer; Dei Tos, Angelo Paolo [Istituto Ortopedico Rizzoli, Bologna (Italy); Merlino, Biagio [Universita Cattolica del Sacro Cuore Policlinico ' ' A. Gemelli' ' , Dipartimento di Scienze Radiologiche, Roma (Italy); Brunocilla, Eugenio [U.O. di UROLOGIA, Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Bologna (Italy); Vanel, Daniel [Istituto Ortopedico Rizzoli, Anatomia Patologica, Bologna (Italy)

    2014-05-15

    Lipofibromatosis is a rare, benign, but infiltrative, soft tissue tumor seen in children. We present three cases of lipofibromatosis, each with different magnetic resonance imaging features and correlate this with the histological findings. The patients comprised two males and one female who presented in infancy; at birth, 5 months, and 7 months of age. Clinically, the masses were painless and slow-growing. The masses ranged in size from 2 to 6 cm and involved the distal extremities in two cases (one foot, one wrist) and the trunk. Magnetic resonance imaging showed lipomatous lesions with varying amounts of adipose and solid components in each case. There were no capsules at the periphery of the lesions. One case showed a fat-predominant lesion, another an equal mixture of fat and solid tissue, and the third was predominantly solid. This was reflected in the histology, which showed corresponding features. Radiological and histopathological differential diagnoses are reviewed. (orig.)

  2. A high-accuracy image registration algorithm using phase-only correlation for dental radiographs

    International Nuclear Information System (INIS)

    Ito, Koichi; Nikaido, Akira; Aoki, Takafumi; Kosuge, Eiko; Kawamata, Ryota; Kashima, Isamu

    2008-01-01

    Dental radiographs have been used for the accurate assessment and treatment of dental diseases. The nonlinear deformation between two dental radiographs may be observed, even if they are taken from the same oral regions of the subject. For an accurate diagnosis, the complete geometric registration between radiographs is required. This paper presents an efficient dental radiograph registration algorithm using Phase-Only Correlation (POC) function. The use of phase components in 2D (two-dimensional) discrete Fourier transforms of dental radiograph images makes possible to achieve highly robust image registration and recognition. Experimental evaluation using a dental radiograph database indicates that the proposed algorithm exhibits efficient recognition performance even for distorted radiographs. (author)

  3. Towards high velocity deformation characterisation of metals and composites using Digital Image Correlation

    DEFF Research Database (Denmark)

    Eriksen, Rasmus Normann Wilken; Berggreen, Christian; Boyd, S.W

    2010-01-01

    images and then extracting deformation data using Digital Image Correlation (DIC) from tensile testing in the intermediate strain rate regime available with the test machines. Three different materials, aluminium alloy 1050, S235 steel and glass fibre reinforced plastic (GFRP) were tested at different......Characterisation of materials subject to high velocity deformation is necessary as many materials behave differently under such conditions. It is particularly important for accurate numerical simulation of high strain rate events. High velocity servo-hydraulic test machines have enabled material...... testing in the strain rate regime from 1 – 500 ε/s. The range is much lower than that experienced under ballistic, shock or impact loads, nevertheless it is a useful starting point for the application of optical techniques. The present study examines the possibility of using high speed cameras to capture...

  4. Sparse Canonical Correlation Analysis via Truncated ℓ1-norm with Application to Brain Imaging Genetics.

    Science.gov (United States)

    Du, Lei; Zhang, Tuo; Liu, Kefei; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L; Guo, Lei; Saykin, Andrew J; Shen, Li

    2016-01-01

    Discovering bi-multivariate associations between genetic markers and neuroimaging quantitative traits is a major task in brain imaging genetics. Sparse Canonical Correlation Analysis (SCCA) is a popular technique in this area for its powerful capability in identifying bi-multivariate relationships coupled with feature selection. The existing SCCA methods impose either the ℓ 1 -norm or its variants. The ℓ 0 -norm is more desirable, which however remains unexplored since the ℓ 0 -norm minimization is NP-hard. In this paper, we impose the truncated ℓ 1 -norm to improve the performance of the ℓ 1 -norm based SCCA methods. Besides, we propose two efficient optimization algorithms and prove their convergence. The experimental results, compared with two benchmark methods, show that our method identifies better and meaningful canonical loading patterns in both simulated and real imaging genetic analyse.

  5. A flexible and accurate digital volume correlation method applicable to high-resolution volumetric images

    Science.gov (United States)

    Pan, Bing; Wang, Bo

    2017-10-01

    Digital volume correlation (DVC) is a powerful technique for quantifying interior deformation within solid opaque materials and biological tissues. In the last two decades, great efforts have been made to improve the accuracy and efficiency of the DVC algorithm. However, there is still a lack of a flexible, robust and accurate version that can be efficiently implemented in personal computers with limited RAM. This paper proposes an advanced DVC method that can realize accurate full-field internal deformation measurement applicable to high-resolution volume images with up to billions of voxels. Specifically, a novel layer-wise reliability-guided displacement tracking strategy combined with dynamic data management is presented to guide the DVC computation from slice to slice. The displacements at specified calculation points in each layer are computed using the advanced 3D inverse-compositional Gauss-Newton algorithm with the complete initial guess of the deformation vector accurately predicted from the computed calculation points. Since only limited slices of interest in the reference and deformed volume images rather than the whole volume images are required, the DVC calculation can thus be efficiently implemented on personal computers. The flexibility, accuracy and efficiency of the presented DVC approach are demonstrated by analyzing computer-simulated and experimentally obtained high-resolution volume images.

  6. Correlative magnetic resonance imaging in the evaluation of aortic and pulmonary artery abnormalities

    Energy Technology Data Exchange (ETDEWEB)

    Risius, B.; O' Donnell, J.K.; Geisinger, M.A.; Zelch, M.G.; George, C.R.; Graor, R.A.; Moodie, D.S.

    1985-05-01

    Magnetic resonance imaging (MRI) yields excellent quality images of the cardiovascular system utilizing the inherent natural contrast between flowing blood and the surrounding anatomic structures. To evaluate the clinical usefulness of MRI in the noninvasive diagnosis of large vessel disorders, the authors have performed MRI on 40 pts with either aortic or pulmonary artery abnormalities (18 thoracic or abdominal aortic aneurysms, 8 aorto-occlusive disease, 6 dissecting aneurysms, 4 Marfan's syndrome, 2 pulmonary artery aneurysms 1 pulmonary artery occlusion, 1 aortic coarctation). Images were obtained in the transverse, coronal and sagital body planes utilizing a 0.6T superconductive magnet. Cardiac and/or respiratory gating was employed in most cases. Correlation was made for all studies with conventional or digital subtraction angiography, computed tomography, and/or ultrasound. The diagnostic information obtained by MRI equaled or exceeded that obtained by other imaging techniques except for the few cases where cardiac arrhythmias precluded adequate gated acquisition. All aneurysms and their relationships to adjacent structures were readily demonstrated as were the presence or absence of mural thrombi and dissecting intimal flaps. Angiographically demonstrated atherosclerotic plaques and luminal stenoses were seen by MRI in all patients without arrhythmias. The authors concluded that MRI is a powerful noninvasive diagnostic aid in the delineation of large vessel disorders, especially where knowledge of anatomic interrelationships can guide surgical or other interventional planning.

  7. MR imaging features and staging of neuroendocrine carcinomas of the uterine cervix with pathological correlations

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Xiaohui; Zhang, Xiang; Hu, Huijun; Li, Guozhao; Wang, Dongye; Zhang, Fang; Shen, Jun [Sun Yat-Sen University, Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou (China); Ban, Xiaohua [Sun Yat-Sen University, Medical Imaging and Minimally Invasive Interventional Center and State Key Laboratory of Oncology in Southern China, Cancer Center, Guangzhou, Guangdong (China); Wang, Charles Qian [Sun Yat-Sen University, Department of Radiology, Sun Yat-Sen Memorial Hospital, Guangzhou (China); University of New South Wales, JMO, Westmead Hospital, Sydney (Australia)

    2016-12-15

    To determine MR imaging features and staging accuracy of neuroendocrine carcinomas (NECs) of the uterine cervix with pathological correlations. Twenty-six patients with histologically proven NECs, 60 patients with squamous cell carcinomas (SCCs), and 30 patients with adenocarcinomas of the uterine cervix were included. The clinical data, pathological findings, and MRI findings were reviewed retrospectively. MRI features of cervical NECs, SCCs, and adenocarcinomas were compared, and MRI staging of cervical NECs was compared with the pathological staging. Cervical NECs showed a higher tendency toward a homogeneous signal intensity on T2-weighted imaging and a homogeneous enhancement pattern, as well as a lower ADC value of tumour and a higher incidence of lymphadenopathy, compared with SCCs and adenocarcinomas (P < 0.05). An ADC value cutoff of 0.90 x 10{sup -3} mm{sup 2}/s was robust for differentiation between cervical NECs and other cervical cancers, with a sensitivity of 63.3 % and a specificity of 95 %. In 21 patients who underwent radical hysterectomy and lymphadenectomy, the overall accuracy of tumour staging by MR imaging was 85.7 % with reference to pathology staging. Homogeneous lesion texture and low ADC value are likely suggestive features of cervical NECs and MR imaging is reliable for the staging of cervical NECs. (orig.)

  8. Optical imaging through turbid media with a degenerate four wave mixing correlation time gate

    International Nuclear Information System (INIS)

    Sappey, A.D.

    1994-01-01

    A novel method for detection of ballistic light and rejection of unwanted diffusive light to image structures inside highly scattering media is demonstrated. Degenerate four wave mixing (DFWM) of a doubled YAG laser in Rhodamine 6G is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore lost memory of the structures inside the scattering medium. We present preliminary results that determine the nature of the DFWM grating, confirm the coherence time of the laser, prove the phase-conjugate nature of the signal beam, and determine the dependence of the signal (reflectivity) on dye concentration and laser intensity. Finally, we have obtained images of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye. These imaging experiments demonstrate the utility of DFWM for imaging through turbid media. Based on our results, the use of DFWM as an ultrafast time gate for the detection of ballistic light in optical mammography appears to hold great promise for improving the current state of the art

  9. Gadolinium diethylenetriamine pentaacetic acid enhanced magnetic resonance imagings in cardiomyopathic hamsters. Histopathologic correlation

    International Nuclear Information System (INIS)

    Aso, Hiroko

    1995-01-01

    To assess the significance of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA)-enhanced magnetic resonance (MR) imaging, the findings were correlated with histopathological findings in cardiomyopathic hamsters (Bio 14.6). In hamsters given 1 mBq of Gd-DTPA, autoradiography revealed uptake of Gd-DTPA corresponding to the fibrotic tissue. According to the degree of fibrosis and inflammation, the tissue was graded into three. The ratio of contrast enhancement in the fibrotic area to that in the normal area was significantly higher in grade 1 than grades 2 and 3, and in grade 2 than grade 3. Next, hamsters in various age groups were given 0.2 mmol/kg intravenously. In the age group of 2-5 month, contrast enhancement was homogeneously observed in the entire myocardium. In the age group of 8-10 years, it was entirely observed, partly with heterogeneous enhancement. In the age group of 11-12 years, contrast enhancement was not different from that in the normal hamsters. Histological examination revealed that fibrosis changed from grade 1 through grade 3 with advancing age. In conclusion, MR imaging for myocardiopathy showed signal intensity reflecting the fibrotic tissue. Contrast enhancement of MR imaging was stronger when much more inflammatory cells were involved and fibrotic tissues were filled with much more blood vessels. Thus MR imaging may be a promising tool for evaluating the severity of myocardiopathy. (N.K.)

  10. Image Correlation Pattern Optimization for Micro-Scale In-Situ Strain Measurements

    Science.gov (United States)

    Bomarito, G. F.; Hochhalter, J. D.; Cannon, A. H.

    2016-01-01

    The accuracy and precision of digital image correlation (DIC) is a function of three primary ingredients: image acquisition, image analysis, and the subject of the image. Development of the first two (i.e. image acquisition techniques and image correlation algorithms) has led to widespread use of DIC; however, fewer developments have been focused on the third ingredient. Typically, subjects of DIC images are mechanical specimens with either a natural surface pattern or a pattern applied to the surface. Research in the area of DIC patterns has primarily been aimed at identifying which surface patterns are best suited for DIC, by comparing patterns to each other. Because the easiest and most widespread methods of applying patterns have a high degree of randomness associated with them (e.g., airbrush, spray paint, particle decoration, etc.), less effort has been spent on exact construction of ideal patterns. With the development of patterning techniques such as microstamping and lithography, patterns can be applied to a specimen pixel by pixel from a patterned image. In these cases, especially because the patterns are reused many times, an optimal pattern is sought such that error introduced into DIC from the pattern is minimized. DIC consists of tracking the motion of an array of nodes from a reference image to a deformed image. Every pixel in the images has an associated intensity (grayscale) value, with discretization depending on the bit depth of the image. Because individual pixel matching by intensity value yields a non-unique scale-dependent problem, subsets around each node are used for identification. A correlation criteria is used to find the best match of a particular subset of a reference image within a deformed image. The reader is referred to references for enumerations of typical correlation criteria. As illustrated by Schreier and Sutton and Lu and Cary systematic errors can be introduced by representing the underlying deformation with under

  11. Clinical and magnetic resonance imaging correlation in acute spinal cord injury

    International Nuclear Information System (INIS)

    Ramon, S.; Dominguez, R.; Ramirez, L.; Garcia Fernandez, L.

    1998-01-01

    The aim of this study was to correlate traumatic spinal cord injury (SCI) patients'outcome with magnetic resonance imaging (MRI) performed within the first 15 days following trauma. We retrospectively analyzed 55 SCI patients. Early functional prognosis may be established on the basis of clinical presentation of SCI and associated MRI. Cord hemorrhage and transection are irreversible, while edema has a potential for neurological recovery. Cord contusion tends to be associated with an incomplete SCI, unlike the compression pattern, in which the prognosis depends on the degree of the initial neurological damage. (author)

  12. Evaluation of random errors in Williams’ series coefficients obtained with digital image correlation

    International Nuclear Information System (INIS)

    Lychak, Oleh V; Holyns’kiy, Ivan S

    2016-01-01

    The use of the Williams’ series parameters for fracture analysis requires valid information about their error values. The aim of this investigation is the development of the method for estimation of the standard deviation of random errors of the Williams’ series parameters, obtained from the measured components of the stress field. Also, the criteria for choosing the optimal number of terms in the truncated Williams’ series for derivation of their parameters with minimal errors is proposed. The method was used for the evaluation of the Williams’ parameters, obtained from the data, and measured by the digital image correlation technique for testing a three-point bending specimen. (paper)

  13. Clinical and magnetic resonance imaging correlation in acute spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Ramon, S.; Dominguez, R.; Ramirez, L.; Garcia Fernandez, L. [University Hospital Vall d`Hebron, Barcelona (Spain)

    1998-04-01

    The aim of this study was to correlate traumatic spinal cord injury (SCI) patients`outcome with magnetic resonance imaging (MRI) performed within the first 15 days following trauma. We retrospectively analyzed 55 SCI patients. Early functional prognosis may be established on the basis of clinical presentation of SCI and associated MRI. Cord hemorrhage and transection are irreversible, while edema has a potential for neurological recovery. Cord contusion tends to be associated with an incomplete SCI, unlike the compression pattern, in which the prognosis depends on the degree of the initial neurological damage. (author)

  14. Three-Dimensional Digital Image Correlation of a Composite Overwrapped Pressure Vessel During Hydrostatic Pressure Tests

    Science.gov (United States)

    Revilock, Duane M., Jr.; Thesken, John C.; Schmidt, Timothy E.

    2007-01-01

    Ambient temperature hydrostatic pressurization tests were conducted on a composite overwrapped pressure vessel (COPV) to understand the fiber stresses in COPV components. Two three-dimensional digital image correlation systems with high speed cameras were used in the evaluation to provide full field displacement and strain data for each pressurization test. A few of the key findings will be discussed including how the principal strains provided better insight into system behavior than traditional gauges, a high localized strain that was measured where gages were not present and the challenges of measuring curved surfaces with the use of a 1.25 in. thick layered polycarbonate panel that protected the cameras.

  15. Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation

    KAUST Repository

    Pan, Bing

    2015-02-12

    Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.

  16. Characterization and functional correlation of multiple imaging modalities with focal choroidal excavation

    Directory of Open Access Journals (Sweden)

    Yun-Chen Chen

    2018-05-01

    Full Text Available Background: To investigate the clinical manifestations and imaging features of near-infrared autofluorescence (NIA, infrared reflectance (IR, fundus autofluorescence (FAF, indocyanine green angiography (ICGA and fluorescein angiography (FAG in the detection of patients with focal choroidal excavation (FCE identified by cross-sectional spectral-domain optical coherence tomography (SD-OCT. Methods: This retrospective cross-sectional study included 12 eyes of 10 Taiwanese patients with FCE diagnosed by SD-OCT. The areas and depths of FCE in serial cross-sectional and en-face OCT were compared in different imaging modalities. NIA, IR, FAF, ICGA and FAG images were obtained. Best corrected visual acuity, subjective distortion area in the Amsler grid and history of maculopathies were also recorded. Results: In areas where the choroid started to excavate as shown in SD-OCT, hypo-autofluorescence in NIA was noted. The area of hypo-fluorescence in NIA of all the FCE lesions showed good correlation with the size. The area of FCE was associated with complications such as choroidal neovascularization and central serous chorioretinopathy (p = 0.014, d.f = 1 and the volume (NIA area × Depth measured by SD-OCT × 1/3 was associated with subjective distortion strongly (p = 0.051, Spearman's correlation = 0.600. Conclusion: Among all image modalities, NIA was the most sensitive tool in area measurement of FCE and peripheral lesion detection. Also, the volume of FCE was associated with subjective distortion and the area was related to complications. Recording the area and volume of FCE could play an important role in monitoring complications. Keywords: Choroid-retina disease, Focal choroidal excavation, Near-infrared autofluorescence, Spectral-domain optical coherence tomography

  17. Comparison of Subset-Based Local and Finite Element-Based Global Digital Image Correlation

    KAUST Repository

    Pan, Bing; Wang, B.; Lubineau, Gilles; Moussawi, Ali

    2015-01-01

    Digital image correlation (DIC) techniques require an image matching algorithm to register the same physical points represented in different images. Subset-based local DIC and finite element-based (FE-based) global DIC are the two primary image matching methods that have been extensively investigated and regularly used in the field of experimental mechanics. Due to its straightforward implementation and high efficiency, subset-based local DIC has been used in almost all commercial DIC packages. However, it is argued by some researchers that FE-based global DIC offers better accuracy because of the enforced continuity between element nodes. We propose a detailed performance comparison between these different DIC algorithms both in terms of measurement accuracy and computational efficiency. Then, by measuring displacements of the same calculation points using the same calculation algorithms (e.g., correlation criterion, initial guess estimation, subpixel interpolation, optimization algorithm and convergence conditions) and identical calculation parameters (e.g., subset or element size), the performances of subset-based local DIC and two FE-based global DIC approaches are carefully compared in terms of measurement error and computational efficiency using both numerical tests and real experiments. A detailed examination of the experimental results reveals that, when subset (element) size is not very small and the local deformation within a subset (element) can be well approximated by the shape function used, standard subset-based local DIC approach not only provides better results in measured displacements, but also demonstrates much higher computation efficiency. However, several special merits of FE-based global DIC approaches are indicated.

  18. Some practical considerations in finite element-based digital image correlation

    KAUST Repository

    Wang, Bo

    2015-04-20

    As an alternative to subset-based digital image correlation (DIC), finite element-based (FE-based) DIC method has gained increasing attention in the experimental mechanics community. However, the literature survey reveals that some important issues have not been well addressed in the published literatures. This work therefore aims to point out a few important considerations in the practical algorithm implementation of the FE-based DIC method, along with simple but effective solutions that can effectively tackle these issues. First, to better accommodate the possible intensity variations of the deformed images practically occurred in real experiments, a robust zero-mean normalized sum of squared difference criterion, instead of the commonly used sum of squared difference criterion, is introduced to quantify the similarity between reference and deformed elements in FE-based DIC. Second, to reduce the bias error induced by image noise and imperfect intensity interpolation, low-pass filtering of the speckle images with a 5×5 pixels Gaussian filter prior to correlation analysis, is presented. Third, to ensure the iterative calculation of FE-based DIC converges correctly and rapidly, an efficient subset-based DIC method, instead of simple integer-pixel displacement searching, is used to provide accurate initial guess of deformation for each calculation point. Also, the effects of various convergence criteria on the efficiency and accuracy of FE-based DIC are carefully examined, and a proper convergence criterion is recommended. The efficacy of these solutions is verified by numerical and real experiments. The results reveal that the improved FE-based DIC offers evident advantages over existing FE-based DIC method in terms of accuracy and efficiency. © 2015 Elsevier Ltd. All rights reserved.

  19. Do Magnetic Resonance Imaging Characteristics of Full-Thickness Rotator Cuff Tears Correlate With Sleep Disturbance?

    Science.gov (United States)

    Reyes, Bryan A; Hull, Brandon R; Kurth, Alexander B; Kukowski, Nathan R; Mulligan, Edward P; Khazzam, Michael S

    2017-11-01

    Many patients with rotator cuff tears suffer from nocturnal shoulder pain, resulting in sleep disturbance. To determine whether rotator cuff tear size correlated with sleep disturbance in patients with full-thickness rotator cuff tears. Cross-sectional study; Level of evidence, 3. Patients with a diagnosis of unilateral full-thickness rotator cuff tears (diagnosed via magnetic resonance imaging [MRI]) completed the Pittsburgh Sleep Quality Index (PSQI), a visual analog scale (VAS) quantifying their shoulder pain, and the American Shoulder and Elbow Surgeons (ASES) questionnaire. Shoulder MRI scans were analyzed for anterior-posterior tear size (mm), tendon retraction (mm), Goutallier grade (0-4), number of tendons involved (1-4), muscle atrophy (none, mild, moderate, or severe), and humeral head rise (present or absent). Bivariate correlations were calculated between the MRI characteristics and baseline survey results. A total of 209 patients with unilateral full-thickness rotator cuff tears were included in this study: 112 (54%) female and 97 (46%) male (mean age, 64.1 years). On average, shoulder pain had been present f