WorldWideScience

Sample records for spatially resolved artificial

  1. Spatially Resolved Artificial Chemistry

    Fellermann, Harold

    2009-01-01

    Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...... made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction...

  2. Spatially Resolved Artificial Chemistry

    Fellermann, Harold

    2009-01-01

    made a class of models accessible to the realms of artificial chemistry that represent reacting molecules in a coarse-grained fashion in continuous space. This chapter introduces the mathematical models of Brownian dynamics (BD) and dissipative particle dynamics (DPD) for molecular motion and reaction......Although spatial structures can play a crucial role in chemical systems and can drastically alter the outcome of reactions, the traditional framework of artificial chemistry is a well-stirred tank reactor with no spatial representation in mind. Advanced method development in physical chemistry has...

  3. Spatially Resolved Analysis of Bragg Selectivity

    Tina Sabel

    2015-11-01

    Full Text Available This paper targets an inherent control of optical shrinkage in photosensitive polymers, contributing by means of spatially resolved analysis of volume holographic phase gratings. Point by point scanning of the local material response to the Gaussian intensity distribution of the recording beams is accomplished. Derived information on the local grating period and grating slant is evaluated by mapping of optical shrinkage in the lateral plane as well as through the depth of the layer. The influence of recording intensity, exposure duration and the material viscosity on the Bragg selectivity is investigated.

  4. Spatially resolved spectroscopy on semiconductor nanostructures

    Roessler, Johanna

    2009-02-20

    Cleared edge overgrowth (CEO) nanostructures are identified and studied by 1D und 2D {mu}PL mapping scans and by time-resolved and power-dependent measurements. Distinct excitonic ground states of 2fold CEO QDs with large localization energies are achieved. The deeper localization reached as compared to the only other report on 2fold CEO QDs in literature is attributed to a new strain-free fabrication process and changed QW thickness in [001] growth. In order to achieve controlled manipulation of 2fold CEO QDs the concept of a CEO structure with three top gates and one back gate is presented. Due to the complexity of this device, a simpler test structure is realized. Measurements on this test structure confirm the necessity to either grow significantly thicker overgrowth layers or to provide separate top gates in all three spatial direction to controllably manipulate 2fold CEO QDs with an external electric field. (orig.)

  5. Panchromatic SED modelling of spatially resolved galaxies

    Smith, Daniel J. B.; Hayward, Christopher C.

    2018-05-01

    We test the efficacy of the energy-balance spectral energy distribution (SED) fitting code MAGPHYS for recovering the spatially resolved properties of a simulated isolated disc galaxy, for which it was not designed. We perform 226 950 MAGPHYS SED fits to regions between 0.2 and 25 kpc in size across the galaxy's disc, viewed from three different sight-lines, to probe how well MAGPHYS can recover key galaxy properties based on 21 bands of UV-far-infrared model photometry. MAGPHYS yields statistically acceptable fits to >99 per cent of the pixels within the r-band effective radius and between 59 and 77 percent of pixels within 20 kpc of the nucleus. MAGPHYS is able to recover the distribution of stellar mass, star formation rate (SFR), specific SFR, dust luminosity, dust mass, and V-band attenuation reasonably well, especially when the pixel size is ≳ 1 kpc, whereas non-standard outputs (stellar metallicity and mass-weighted age) are recovered less well. Accurate recovery is more challenging in the smallest sub-regions of the disc (pixel scale ≲ 1 kpc), where the energy balance criterion becomes increasingly incorrect. Estimating integrated galaxy properties by summing the recovered pixel values, the true integrated values of all parameters considered except metallicity and age are well recovered at all spatial resolutions, ranging from 0.2 kpc to integrating across the disc, albeit with some evidence for resolution-dependent biases. These results must be considered when attempting to analyse the structure of real galaxies with actual observational data, for which the `ground truth' is unknown.

  6. Spatially Resolved Circumnuclear Dust in Centaurus A

    Karovska, Margarita; Marengo, Massimo; Elvis, Martin; Fazio, Giovanni; Hora, Joseph; Hinz, Philip; Hoffmann, William; Meyer, Michael; Mamajek, Eric

    2003-01-01

    In this paper we present results from our exploratory mid-IR study of Centaurus A circumnuclear environment using high-angular resolution imaging at the Magellan 6.5m telescope with the MIRAC/BLINC camera. We detected emission from a compact region surrounding the nuclear source, and obtained photometry at 8.8 microns and in the N band. Our analysis suggests that the nuclear region is resolved with a size of approximately 3 pc. The mid-IR emission from this region is likely associated with co...

  7. Exploring the limits to spatially resolved NMR

    Gaedke, Achim; Nestle, Nikolaus [TU Darmstadt, Institute of Condensed Matter Physics (Germany)

    2010-07-01

    Recent advances in MRI have demonstrated resolutions down to 1 {mu}m. Magnetic resonance force microscopy has the potential to reach sensitivity for single nuclear spins. Given these numbers, in vivo imaging of single cells or even biomacromolecules may seem possible. However, for in vivo applications, there are fundamental differences in the contrast mechanisms compared to MRI at macroscopic scales as the length scale of of molecular self-diffusion exceeds that of the spatial resolution on the NMR time scale. Those effects - which are fundamentally different from the echo attenuation in field gradient NMR - even may lead to general limitations on the spatial resolution achievable in aqueous systems with high water content. In our contribution, we explore those effects on a model system in a high-resolution stray-field imaging setup. In addition to experimental results, simulations based on the Bloch-Torrey equation are presented.

  8. Magnetic Resonance Microscopy Spatially Resolved NMR Techniques and Applications

    Codd, Sarah

    2008-01-01

    This handbook and ready reference covers materials science applications as well as microfluidic, biomedical and dental applications and the monitoring of physicochemical processes. It includes the latest in hardware, methodology and applications of spatially resolved magnetic resonance, such as portable imaging and single-sided spectroscopy. For materials scientists, spectroscopists, chemists, physicists, and medicinal chemists.

  9. Spatially resolved remote measurement of temperature by neutron resonance absorption

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)

    2015-12-11

    Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.

  10. Spatially Resolved Isotopic Source Signatures of Wetland Methane Emissions

    Ganesan, A. L.; Stell, A. C.; Gedney, N.; Comyn-Platt, E.; Hayman, G.; Rigby, M.; Poulter, B.; Hornibrook, E. R. C.

    2018-04-01

    We present the first spatially resolved wetland δ13C(CH4) source signature map based on data characterizing wetland ecosystems and demonstrate good agreement with wetland signatures derived from atmospheric observations. The source signature map resolves a latitudinal difference of 10‰ between northern high-latitude (mean -67.8‰) and tropical (mean -56.7‰) wetlands and shows significant regional variations on top of the latitudinal gradient. We assess the errors in inverse modeling studies aiming to separate CH4 sources and sinks by comparing atmospheric δ13C(CH4) derived using our spatially resolved map against the common assumption of globally uniform wetland δ13C(CH4) signature. We find a larger interhemispheric gradient, a larger high-latitude seasonal cycle, and smaller trend over the period 2000-2012. The implication is that erroneous CH4 fluxes would be derived to compensate for the biases imposed by not utilizing spatially resolved signatures for the largest source of CH4 emissions. These biases are significant when compared to the size of observed signals.

  11. A Spatially Resolved Study of the GRB 020903 Host Galaxy

    Thorp, Mallory D.; Levesque, Emily M.

    2018-03-01

    GRB 020903 is a long-duration gamma-ray burst with a host galaxy close enough and extended enough for spatially resolved observations, making it one of less than a dozen GRBs where such host studies are possible. GRB 020903 lies in a galaxy host complex that appears to consist of four interacting components. Here we present the results of spatially resolved spectroscopic observations of the GRB 020903 host. By taking observations at two different position angles, we were able to obtain optical spectra (3600–9000 Å) of multiple regions in the galaxy. We confirm redshifts for three regions of the host galaxy that match that of GRB 020903. We measure the metallicity of these regions, and find that the explosion site and the nearby star-forming regions both have comparable subsolar metallicities. We conclude that, in agreement with past spatially resolved studies of GRBs, the GRB explosion site is representative of the host galaxy as a whole rather than localized in a metal-poor region of the galaxy.

  12. Multidimensional artificial field embedding with spatial sensitivity

    Lunga, D

    2013-06-01

    Full Text Available Multidimensional embedding is a technique useful for characterizing spectral signature relations in hyperspectral images. However, such images consist of disjoint similar spectral classes that are spatially sensitive, thus presenting challenges...

  13. The impact of spatial resolution on resolving spatial precipitation patterns in the Himalayas

    Bonekamp, P.N.J.; Collier, S.E.; Immerzeel, W.W.

    2017-01-01

    Frequently used gridded meteorological datasets poorly represent precipitation in the Himalaya due to their relatively low spatial resolution and the associated coarse representation of the complex topography. Dynamical downscaling using high-resolution atmospheric models may improve the accuracy and quality of the precipitation fields, as simulations at higher spatial resolution are more capable of resolving the interaction between the topography and the atmosphere. However, most physics par...

  14. Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence

    Bailiff, I.K.; Mikhailik, V.B.

    2003-01-01

    Spatially-resolved measurements of optically stimulated luminescence (OSL) were performed using a two-dimensional scanning system designed for use with planar samples. The scanning system employs a focused laser beam to stimulate a selected area of the sample, which is moved under the beam by a motorised stage. Exposure of the sample is controlled by an electronic shutter. Mapping of the distribution of OSL using a continuous wave laser source was obtained with sub-millimeter resolution for samples of sliced brick, synthetic single crystal quartz, concrete and dental ceramic. These revealed sporadic emission in the case of brick or concrete and significant spatial variation of emission for quartz and dental ceramic slices. Determinations of absorbed dose were performed for quartz grains within a slice of modern brick. Reconfiguration of the scanner with a pulsed laser source enabled quartz and feldspathic minerals within a ceramic sample to be thinner region. about 6 nm from the extrapolation of themeasuring the time-resolved luminescence spectrum

  15. Microstructural investigation into calcium phosphate biomaterials by spatially resolved cathodoluminescence

    Goetze, J.; Heimann, R.B.; Hildebrandt, H. [Freiberg Univ. of Mining and Technology (Germany). Dept. of Mineralogy; Gburek, U. [Wuerzburg Univ. (Germany). Dept. of Experimental Dentistry

    2001-02-01

    From cathodoluminescence (CL) investigations of synthetic and natural calcium phosphates it can be concluded that the CL of pure synthetic apatite is mainly characterized by intrinsic luminescence, whereas the luminescence of naturally occurring apatites is frequently activated by trace elements. CL revealed internal structures within plasma-sprayed hydroxyapatite coatings which were not discernible by SEM-BSE imaging. However, cathodoluminescence microscopy alone can presently not be used in every case to characterize synthetic calcium phosphate biomaterials because of the dominant intrinsic blue CL emission. In the future, optimum results will likely be achieved by using a combination of CL microscopy and spectroscopy with other spatially resolved analytical methods such as SEM-BSE, SEM-CL or micro-Raman spectroscopy. In the present study, different types of tetracalcium phosphate dental cements could be distinguished due to varying CL colours and CL spectra that are caused by a different content of impurity Mn. These results emphasize the advantages of spectral CL measurements for spatially resolved detection of trace elements in solids. (orig.) [German] Ergebnisse von Kathodolumineszenz- (KL-) Untersuchungen synthetischer und natuerlicher Apatite zeigen, dass die KL synthetischer Apatite vorrangig durch intrinsische Lumineszenz gekennzeichnet ist, waehrend die KL natuerlicher Apatite meist durch Spurenlemente aktiviert wird. Mittels KL koennen Internstrukturen in plasmagespritzten Hydroxylapatit-Schichten sichtbar gemacht werden, die im REM-BSE nicht nachweisbar sind. Allerdings kann die KL-Mikroskopie aufgrund der dominierenden blauen intrinsischen Lumineszenz gegenwaertig nicht als alleinige Untersuchungsmethode zur Charakterisierung von Calciumphosphat Biomaterialien eingesetzt werden. Optimale Resultate werden zukuenftig durch Kombination von KL-Mikrroskopie und -spektroskopie mit anderen ortsaufgeloesten analytischen Methoden wie REM-BSE, REM-KL oder Mikro

  16. Near-Infrared Spatially Resolved Spectroscopy for Tablet Quality Determination.

    Igne, Benoît; Talwar, Sameer; Feng, Hanzhou; Drennen, James K; Anderson, Carl A

    2015-12-01

    Near-infrared (NIR) spectroscopy has become a well-established tool for the characterization of solid oral dosage forms manufacturing processes and finished products. In this work, the utility of a traditional single-point NIR measurement was compared with that of a spatially resolved spectroscopic (SRS) measurement for the determination of tablet assay. Experimental designs were used to create samples that allowed for calibration models to be developed and tested on both instruments. Samples possessing a poor distribution of ingredients (highly heterogeneous) were prepared by under-blending constituents prior to compaction to compare the analytical capabilities of the two NIR methods. The results indicate that SRS can provide spatial information that is usually obtainable only through imaging experiments for the determination of local heterogeneity and detection of abnormal tablets that would not be detected with single-point spectroscopy, thus complementing traditional NIR measurement systems for in-line, and in real-time tablet analysis. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Spatially resolved NEXAFS spectroscopy of siderophores in biological matrices

    Thieme, J; Kilcoyne, D; Tyliszczak, T; Haselwandter, K

    2013-01-01

    Iron is an essential nutrient for almost all forms of life. In the presence of oxygen iron is present in its ferric form which precipitates under formation of rather insoluble oxide-hydroxide polymers. Hence the bioavailability of iron is extremely low ( −17 M at pH 7 for Fe 3+ ). Under such conditions almost all microorganisms synthesize siderophores as iron chelating agents, thus solubilizing ferric iron from rather insoluble iron sources. Siderophores form soluble complexes with Fe 3+ . The present study aims at developing a methodology that would allow for the specific detection and localization of such iron chelators in their natural environment. The applicability of spatially resolved NEXAFS spectroscopy in the soft X-ray energy (E < 1 keV) range was evaluated for localization of typical fungal hydroxamate siderophores like ferrichrome or coprogen, which can be present in various biological materials. Results obtained with the scanning transmission X-ray microscopes at beamlines 11.0.2 and 5.3.2 of the ALS have shown characteristic signatures for siderophores. Thus NEXAFS spectroscopy at the carbon K-edge, nitrogen K-edge and iron L-edge with high spatial resolution has proven to be extremely useful for their identification in their natural environment. Spectra of different siderophores as well as spectra and images of biological material containing siderophores are presented

  18. Orientation Characterisation of Aerospace Materials by Spatially Resolved Acoustic Spectroscopy

    Li, Wenqi; Coulson, Jethro; Smith, Richard J; Clark, Matt; Somekh, Michael G; Sharples, Steve D; Aveson, John W

    2014-01-01

    Material characteristics in metals such as strength, stiffness and fracture resistance are strongly related to the underlying microstructure. The crystallographic structure and orientation are related to the ultrasonic properties through the stiffness matrix. In individual grains it is possible to analytically determine the ultrasonic velocity from the orientation and stiffness, or determine the stiffness from the known orientation and measured velocity. In this paper we present a technique for imaging the crystallographic orientation of grains in metals using spatially resolved acoustic spectroscopy (SRAS) and a novel inverse solver that can determine the crystallographic orientation from the known stiffness matrix for the material and the SRAS velocity measurement. Previously we have shown the ability of this technique to determine the orientation on single crystal nickel samples; we extended the technique to multigrain industrial metals, such as aluminium, nickel and Inconel. The comparison between SRAS and electron backscatter diffraction (EBSD) on the nickel sample is presented. SRAS is a fast, accurate, quantitative and robust technique for imaging material microstructure and orientation over a wide range of scales and industrial materials

  19. Retinal ganglion cell topography and spatial resolving power in penguins.

    Coimbra, João Paulo; Nolan, Paul M; Collin, Shaun P; Hart, Nathan S

    2012-01-01

    Penguins are a group of flightless seabirds that exhibit numerous morphological, behavioral and ecological adaptations to their amphibious lifestyle, but little is known about the topographic organization of neurons in their retinas. In this study, we used retinal wholemounts and stereological methods to estimate the total number and topographic distribution of retinal ganglion cells in addition to an anatomical estimate of spatial resolving power in two species of penguins: the little penguin, Eudyptula minor, and the king penguin, Aptenodytes patagonicus. The total number of ganglion cells per retina was approximately 1,200,000 in the little penguin and 1,110,000 in the king penguin. The topographic distribution of retinal ganglion cells in both species revealed the presence of a prominent horizontal visual streak with steeper gradients in the little penguin. The little penguin retinas showed ganglion cell density peaks of 21,867 cells/mm², affording spatial resolution in water of 17.07-17.46 cycles/degree (12.81-13.09 cycles/degree in air). In contrast, the king penguin showed a relatively lower peak density of ganglion cells of 14,222 cells/mm², but--due to its larger eye--slightly higher spatial resolution in water of 20.40 cycles/degree (15.30 cycles/degree in air). In addition, we mapped the distribution of giant ganglion cells in both penguin species using Nissl-stained wholemounts. In both species, topographic mapping of this cell type revealed the presence of an area gigantocellularis with a concentric organization of isodensity contours showing a peak in the far temporal retina of approximately 70 cells/mm² in the little penguin and 39 cells/mm² in the king penguin. Giant ganglion cell densities gradually fall towards the outermost isodensity contours revealing the presence of a vertically organized streak. In the little penguin, we confirmed our cytological characterization of giant ganglion cells using immunohistochemistry for microtubule

  20. Computation of the optical properties of turbid media from slope and curvature of spatially resolved reflectance curves

    Jäger, Marion; Foschum, Florian; Kienle, Alwin

    2013-01-01

    The optical properties of turbid media were calculated from the curvature at the radial distance ρ O and the slope at the radial distance ρ* of simulated spatially resolved reflectance curves (ρ O (ρ*) denotes a decrease of the spatially resolved reflectance curve of 0.75 (2.4) orders of magnitude relative to the reflectance value at 1.2 mm). We found correlations between the curvature at ρ O and the reduced scattering coefficient as well as the slope at ρ* and the absorption coefficient. For the determination of the optical properties we used these two correlations. The calculation of the reduced scattering coefficient from the curvature at ρ O is practically independent from the absorption coefficient. Knowing the reduced scattering coefficient within a certain accuracy allows the determination of the absorption coefficient from the slope at ρ*. Additionally, we investigated the performance of an artificial neural network for the determination of the optical properties using the above explained correlations. This means we used the derivatives as input data. Our artificial neural network was capable to learn the mapping between the optical properties and the derivatives. In effect, the results for the determined optical properties improved in comparison to the above explained method. Finally, the procedure was compared to an artificial neural network that was trained without using the derivatives. (note)

  1. Spatially resolved characterization in thin-film photovoltaics

    Bokalic, Matevz

    2015-01-01

    The book is devoted to the spatial characterization of solar cells and PV modules. It is written both as a monograph as well as a succinct guide for the state-of-the-art spatial characterization techniques and approaches. Amongst the approaches discussed are visual imaging, electro- and photo-luminescence imaging, thermography, and light beam induced mapping techniques. Emphasis is given on the luminescence image acquisition and interpretation due to its great potential. Characterization techniques are accompanied by simulation tools. The contents are aimed at a readership of students and s

  2. Spatially Resolved Quantification of the Surface Reactivity of Solid Catalysts.

    Huang, Bing; Xiao, Li; Lu, Juntao; Zhuang, Lin

    2016-05-17

    A new property is reported that accurately quantifies and spatially describes the chemical reactivity of solid surfaces. The core idea is to create a reactivity weight function peaking at the Fermi level, thereby determining a weighted summation of the density of states of a solid surface. When such a weight function is defined as the derivative of the Fermi-Dirac distribution function at a certain non-zero temperature, the resulting property is the finite-temperature chemical softness, termed Fermi softness (SF ), which turns out to be an accurate descriptor of the surface reactivity. The spatial image of SF maps the reactive domain of a heterogeneous surface and even portrays morphological details of the reactive sites. SF analyses reveal that the reactive zones on a Pt3 Y(111) surface are the platinum sites rather than the seemingly active yttrium sites, and the reactivity of the S-dimer edge of MoS2 is spatially anisotropic. Our finding is of fundamental and technological significance to heterogeneous catalysis and industrial processes demanding rational design of solid catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. SPATIALLY RESOLVED SPECTROSCOPY OF SUBMILLIMETER GALAXIES AT z ≃ 2

    Olivares, V.; Treister, E.; Privon, G. C.; Nagar, N. [Universidad de Concepción, Departamento de Astronomía, Casilla 160-C, Concepción (Chile); Alaghband-Zadeh, S.; Chapman, S. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA UK (United Kingdom); Casey, Caitlin M. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Schawinski, K. [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland); Kurczynski, P.; Gawiser, E. [Department of Physics and Astronomy, Rutgers, The State University of New Jersey, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Bauer, F. E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22 (Chile); Sanders, D. [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, HI 96822 (United States)

    2016-08-10

    We present near-infrared integral-field spectroscopic observations targeting H α in eight submillimeter galaxies (SMGs) at z = 1.3–2.5 using the Very Large Telescope/Spectrograph for Integral Field Observations in the Near Infrared, obtaining significant detections for six of them. The star formation rates derived from the H α emission are ∼100 M {sub ⊙} yr{sup −1}, which account for only ∼20%–30% of the infrared-derived values, thus suggesting that these systems are very dusty. Two of these systems present [N ii]/H α ratios indicative of the presence of an active galactic nucleus. We mapped the spatial distribution and kinematics of the star-forming regions in these galaxies on kiloparsec scales. In general, the H α morphologies tend to be highly irregular and/or clumpy, showing spatial extents of ∼3–11 kpc. We find evidence for significant spatial offsets, of ∼0.″1–0.″4 or 1.2–3.4 kpc, between the H α and the continuum emission in three of the sources. Performing a kinemetry analysis, we conclude that the majority of the sample is not consistent with disk-like rotation-dominated kinematics. Instead, they tend to show irregular and/or clumpy and turbulent velocity and velocity dispersion fields. This can be interpreted as evidence for a scenario in which these extreme star formation episodes are triggered by galaxy–galaxy interactions and major mergers. In contrast to recent results for SMGs, these sources appear to follow the same relations between gas and star-forming rate densities as less luminous and/or normal star-forming galaxies.

  4. Spatially resolved speckle-correlometry of sol-gel transition

    Isaeva, A. A.; Isaeva, E. A.; Pantyukov, A. V.; Zimnyakov, D. A.

    2018-04-01

    Sol-gel transition was studied using the speckle correlometry method with a localized light source and spatial filtering of backscattered radiation. Water solutions of technical or food gelatin with added TiO2 nanoparticles were used as studied objects. Structural transformation of "sol-gel" system was studied at various temperatures from 25°C to 50°C using analysis of the correlation and structure functions of speckle intensity fluctuations. The characteristic temperatures of "sol - gel" transition were evaluated for studied systems. Obtained results can be used for various applications in biomedicine and food industry.

  5. Spatially resolved SO2 flux emissions from Mt Etna

    Bitetto, M.; Delle Donne, D.; Tamburello, G.; Battaglia, A.; Coltelli, M.; Patanè, D.; Prestifilippo, M.; Sciotto, M.; Aiuppa, A.

    2016-01-01

    Abstract We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure‐fed eruption in the upper Valle del Bove. We demonstrate that our vent‐resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna's shallow plumbing system structure. We find that the fissure eruption contributed ~50,000 t of SO2 or ~30% of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Activity from this eruptive vent gradually vanished on 10 August, marking a switch of degassing toward the NSEC. Onset of degassing at the NSEC was a precursory to explosive paroxysmal activity on 11–15 August. PMID:27773952

  6. Spatially and temporally resolved diagnostics for microsecond, intense electron beams

    Gilgenbach, R.M.; Brake, M.; Horton, L.D.; Bidwell, S.; Lucey, R.F.; Smutek, L.; Tucker, J.E.

    1985-01-01

    Experiments are underway to investigate new diagnostics for electron beams in vacuum and in a plasma background. Measured parameters include temporally resolved beam current profile and beam emittance. These characterizations are being performed during electron beam diode closure experiments (1) and beam-plasma interaction experiments with either of two long-pulse accelerators: MELBA (Michigan Electron Long Beam Accelerator): Voltage = -1 MV, Current = 10 kA, at Pulselength = 0.1 to 1μs (1.4μs) for voltage flat to within +.7% (+.10%). The second accelerator is a long-pulse Febetron with parameters: Voltage = -0.5 MV, Current = 1 kA, and Pulselength = 0.3 s. Two different configurations have been developed which use Cerenkov radiation to detect electron beam current profiles as a function of time. The first uses Cerenkov emission by electrons which impinge axially on a single fiberoptic lightguide enclosed in a lucite tube. Plasma light is blocked by graphite spray or thin foil covering the end of the optical fiber. This diagnostic has the following advantages: 1) The threshold energy for Cerenkov emission effectively discriminates between high energy beam electrons and low energy (3-5 eV) plasma electrons, 2) The small, nonconducting probe introduces a minimal perturbation into the beam-plasma system, 3) Excellent signal to noise ratio is obtained because the fiberoptic signal is directly transmitted to a photomultiplier tube in the Faraday cage, 4) Quantitative data is obtained directly

  7. Tissue oxygenation and haemodynamics measurement with spatially resolved NIRS

    Zhang, Y.; Scopesi, F.; Serra, G.; Sun, J. W.; Rolfe, P.

    2010-08-01

    We describe the use of Near Infrared Spectroscopy (NIRS) for the non-invasive investigation of changes in haemodynamics and oxygenation of human peripheral tissues. The goal was to measure spatial variations of tissue NIRS oxygenation variables, namely deoxy-haemoglobin (HHb), oxy-haemoglobin (HbO2), total haemoglobin (HbT), and thereby to evaluate the responses of the peripheral circulation to imposed physiological challenges. We present a skinfat- muscle heterogeneous tissue model with varying fat thickness up to 15mm and a Monte Carlo simulation of photon transport within this model. The mean partial path length and the mean photon visit depth in the muscle layer were derived for different source-detector spacing. We constructed NIRS instrumentation comprising of light-emitting diodes (LED) as light sources at four wavelengths, 735nm, 760nm, 810nm and 850nm and sensitive photodiodes (PD) as the detectors. Source-detector spacing was varied to perform measurements at different depths within forearm tissue. Changes in chromophore concentration in response to venous and arterial occlusion were calculated using the modified Lambert-Beer Law. Studies in fat and thin volunteers indicated greater sensitivity in the thinner subjects for the tissue oxygenation measurement in the muscle layer. These results were consistent with those found using Monte Carlo simulation. Overall, the results of this investigation demonstrate the usefulness of the NIRS instrument for deriving spatial information from biological tissues.

  8. Spatially resolved spectrophotometry of Comet P/Stephan-Oterma

    Cochran, A. L.; Barker, E. S.

    1985-01-01

    Observations of Comet P/Stephan-Oterma were made with an Intensified Dissector Scanner spectrograph on the McDonald Observatory 2.7-m telescope during the period from July 1980 to February 1981. These spectra cover a range of heliocentric distances from 2.3 AU preperihelion to 1.8 AU postperihelion. A small aperture was used to map the spatial distributions of the gases in the coma. Column densities of the observed cometary emissions (CN, C3, CH, and C2) were calculated, and it is shown that Stephan-Oterma appeared nearly spherically symmetric. These date are used by Cochran (1985) to constrain chemical models of Stephan-Oterma.

  9. Preliminary results of spatially resolved ECR ion beam profile investigations

    Panitzsch, L.; Stalder, M.; Wimmer-Schweingruber, R.F.

    2012-01-01

    The profile of an ion beam produced in an Electron Cyclotron Resonance Ion Source (ECRIS) can vary greatly depending on the source settings and the ion-optical tuning. Strongly focussed ion beams form circular structures (hollow beams) as predicted by simulations and observed in experiments. Each of the rings is predicted to be dominated by ions with same or at least similar m/q-ratios due to ion-optical effects. To check this we performed a series of preliminary investigations to test the required tuning capabilities of our ion source. This includes beam focussing (A) and beam steering (B) using a 3D-movable extraction. Having tuned the source to deliver a beam of strongly focussed ions of different ion species and having steered this beam to match the transmittance area of the sector magnet we also recorded the ion charge state distribution of the strongly focussed beam profile at different, spatially limited positions (C). The preliminary results will be introduced within this paper: it appears that our 3D-movable extraction is very efficient to steer and to focus the beam strongly. The paper is followed by the slides of the presentation. (authors)

  10. Determining disease intervention strategies using spatially resolved simulations.

    Mark Read

    Full Text Available Predicting efficacy and optimal drug delivery strategies for small molecule and biological therapeutics is challenging due to the complex interactions between diverse cell types in different tissues that determine disease outcome. Here we present a new methodology to simulate inflammatory disease manifestation and test potential intervention strategies in silico using agent-based computational models. Simulations created using this methodology have explicit spatial and temporal representations, and capture the heterogeneous and stochastic cellular behaviours that lead to emergence of pathology or disease resolution. To demonstrate this methodology we have simulated the prototypic murine T cell-mediated autoimmune disease experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. In the simulation immune cell dynamics, neuronal damage and tissue specific pathology emerge, closely resembling behaviour found in the murine model. Using the calibrated simulation we have analysed how changes in the timing and efficacy of T cell receptor signalling inhibition leads to either disease exacerbation or resolution. The technology described is a powerful new method to understand cellular behaviours in complex inflammatory disease, permits rational design of drug interventional strategies and has provided new insights into the role of TCR signalling in autoimmune disease progression.

  11. Hemoglobin concentration determination based on near infrared spatially resolved transmission spectra

    Zhang, Linna; Li, Gang; Lin, Ling

    2016-10-01

    Spatially resolved diffuse reflectance spectroscopy method has been proved to be more effective than single point spectroscopy method in the experiment to predict the concentration of the Intralipid diluted solutions. However, Intralipid diluted solution is simple, cannot be the representative of turbid liquids. Blood is a natural and meaningful turbid liquid, more complicate. Hemoglobin is the major constituent of the whole blood. And hemoglobin concentration is commonly used in clinical medicine to diagnose many diseases. In this paper, near infrared spatially resolved transmission spectra (NIRSRTS) and Partial Least Square Regression (PLSR) were used to predict the hemoglobin concentration of human blood. The results showed the prediction ability for hemoglobin concentration of the proposed method is better than single point transmission spectroscopy method. This paper demonstrated the feasibility of the spatially resolved diffuse reflectance spectroscopy method for practical liquid composition analysis. This research provided a new thinking of practical turbid liquid composition analysis.

  12. Spatially resolvable optical emission spectrometer for analyzing density uniformity of semiconductor process plasma

    Oh, Changhoon; Ryoo, Hoonchul; Lee, Hyungwoo; Hahn, Jae W.; Kim, Se-Yeon; Yi, Hun-Jung

    2010-01-01

    We proposed a spatially resolved optical emission spectrometer (SROES) for analyzing the uniformity of plasma density for semiconductor processes. To enhance the spatial resolution of the SROES, we constructed a SROES system using a series of lenses, apertures, and pinholes. We calculated the spatial resolution of the SROES for the variation of pinhole size, and our calculated results were in good agreement with the measured spatial variation of the constructed SROES. The performance of the SROES was also verified by detecting the correlation between the distribution of a fluorine radical in inductively coupled plasma etch process and the etch rate of a SiO 2 film on a silicon wafer.

  13. Spatially Resolved Gas Temperature Measurements in an Atmospheric Pressure DC Glow Microdischarge with Raman Scattering

    Belostotskiy, S.; Wang, Q.; Donnelly, V.; Economou, D.; Sadeghi, N.

    2006-10-01

    Spatially resolved rotational Raman spectroscopy of ground state nitrogen N2(X^1σg^+) was used to measure the gas temperature (Tg) in a nitrogen dc glow microdischarge (gap between electrodes d˜500 μm). An original backscattering, confocal optical system was developed for collecting Raman spectra. Stray laser light and Raleigh scattering were blocked by using a triple grating monochromator and spatial filters, designed specifically for these experiments. The optical system provided a spatial resolution of electrodes, Tg increased linearly with jd, reaching 500 K at 1000 mA/cm^2 jd for a pressure of 720 Torr. Spatially resolved gas temperature measurements will also be presented and discussed in combination with a mathematical model for gas heating in the microplasma. This work is supported by DoE/NSF.

  14. Spatially resolved sulfur K-edge XANES spectroscopy of wheat leaves infected by Puccinia triticina

    Lichtenberg, H; Prange, A; Hormes, J; Steiner, U; Oerke, E-C

    2009-01-01

    In this study, wheat leaves infected with brown rust, a plant disease of serious economic concern caused by the fungus Puccinia triticina, were investigated using spatially resolved XANES (X-ray Absorption Near Edge Structure) spectroscopy at the sulfur K-absorption edge.

  15. Spatially resolved sulfur K-edge XANES spectroscopy of wheat leaves infected by Puccinia triticina

    Lichtenberg, H; Prange, A; Hormes, J [CAMD, Louisiana State University, 6980 Jefferson Hwy, Baton Rouge, LA 70806 (United States); Steiner, U; Oerke, E-C, E-mail: lichtenberg@lsu.ed [INRES-Phytomedicine, University of Bonn, Nussallee 9, 53115 Bonn (Germany)

    2009-11-15

    In this study, wheat leaves infected with brown rust, a plant disease of serious economic concern caused by the fungus Puccinia triticina, were investigated using spatially resolved XANES (X-ray Absorption Near Edge Structure) spectroscopy at the sulfur K-absorption edge.

  16. Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells

    Breitenbach, Thomas; Kuimova, Marina; Gbur, Peter

    2009-01-01

    be monitored using viability assays. Time- and spatially-resolved optical measurements of both singlet oxygen and its precursor, the excited state sensitizer, reflect the complex and dynamic morphology of the cell. These experiments help elucidate photoinduced, oxygen-dependent events that compromise cell...

  17. Test Sample for the Spatially Resolved Quantification of Illicit Drugs on Fingerprints Using Imaging Mass Spectrometry

    Muramoto, S.; Forbes, T.P.; van Asten, A.C.; Gillen, G.

    2015-01-01

    A novel test sample for the spatially resolved quantification of illicit drugs on the surface of a fingerprint using time-of-flight secondary ion mass spectrometry (ToF-SIMS) and desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated. Calibration curves relating the signal

  18. Sensitivity Analysis and Requirements for Temporally and Spatially Resolved Thermometry Using Neutron Resonance Spectroscopy

    Fernandez, Juan Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Barnes, Cris William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mocko, Michael Jeffrey [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zavorka, Lukas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-31

    This report is intended to examine the use of neutron resonance spectroscopy (NRS) to make time- dependent and spatially-resolved temperature measurements of materials in extreme conditions. Specifically, the sensitivities of the temperature estimate on neutron-beam and diagnostic parameters is examined. Based on that examination, requirements are set on a pulsed neutron-source and diagnostics to make a meaningful measurement.

  19. Total Artificial Heart Implantation Blood Pressure Management as Resolving Treatment for Massive Hemolysis following Total Artificial Heart Implantation.

    Ghodsizad, Ali; Koerner, Michael M; El-Banayosy, A; Zeriouh, Mohamed; Ruhparwar, Arjang; Loebe, Matthias

    2016-10-21

    The SynCardia Total Artificial Heart (TAH) has been used for patients with biventricular failure, who cannot be managed with implantation of a left ventricular (LV) assist device. Following TAH implantation, our patient developed severe hemolysis, which could only be managed successfully by aggressive blood pressure control [Ohashi 2003; Nakata 1998].

  20. The impact of spatial resolution on resolving spatial precipitation patterns in the Himalayas

    Bonekamp, P.N.J.; Collier, S.E.; Immerzeel, W.W.

    2017-01-01

    Frequently used gridded meteorological datasets poorly represent precipitation in the Himalaya due to their relatively low spatial resolution and the associated coarse representation of the complex topography. Dynamical downscaling using high-resolution atmospheric models may improve the accuracy

  1. Role of density modulation in the spatially resolved dynamics of strongly confined liquids.

    Saw, Shibu; Dasgupta, Chandan

    2016-08-07

    Confinement by walls usually produces a strong modulation in the density of dense liquids near the walls. Using molecular dynamics simulations, we examine the effects of the density modulation on the spatially resolved dynamics of a liquid confined between two parallel walls, using a resolution of a fraction of the interparticle distance in the liquid. The local dynamics is quantified by the relaxation time associated with the temporal autocorrelation function of the local density. We find that this local relaxation time varies in phase with the density modulation. The amplitude of the spatial modulation of the relaxation time can be quite large, depending on the characteristics of the wall and thermodynamic parameters of the liquid. To disentangle the effects of confinement and density modulation on the spatially resolved dynamics, we compare the dynamics of a confined liquid with that of an unconfined one in which a similar density modulation is induced by an external potential. We find several differences indicating that density modulation alone cannot account for all the features seen in the spatially resolved dynamics of confined liquids. We also examine how the dynamics near a wall depends on the separation between the two walls and show that the features seen in our simulations persist in the limit of large wall separation.

  2. Chromatic-free spatially resolved optical emission spectroscopy diagnostics for microplasma

    Zhu Liguo; Chen Wencong; Zhu Ximing; Pu Yikang; Li Zeren

    2009-01-01

    A chromatic-free spatially resolved diagnostic system for microplasma measurement is proposed and demonstrated, which consists of an optical chromatic-free microscope mirror system, an electron multiplying charge coupled device (EMCCD), and bandpass filters. The diagnostic system free of chromatic aberrations with a spatial resolution of about 6 μm is achieved. The factors that limit the resolution of this diagnostic system have been analyzed, which are optical diffraction, the pixel size of the EMCCD, and the thickness of the microplasma. In this paper, the optimal condition for achieving a maximum resolution power has been analyzed. With this diagnostic system, we revealed the spatial nonuniformity of a microwave atmospheric-pressure argon microplasma. Furthermore, the spatial distribution of the time-averaged effective electron temperature has been estimated from the intensity distributions of 750.4 and 415.8 nm emissions.

  3. Spatially resolved acoustic spectroscopy for rapid imaging of material microstructure and grain orientation

    Smith, Richard J; Li, Wenqi; Coulson, Jethro; Clark, Matt; Somekh, Michael G; Sharples, Steve D

    2014-01-01

    Measuring the grain structure of aerospace materials is very important to understand their mechanical properties and in-service performance. Spatially resolved acoustic spectroscopy is an acoustic technique utilizing surface acoustic waves to map the grain structure of a material. When combined with measurements in multiple acoustic propagation directions, the grain orientation can be obtained by fitting the velocity surface to a model. The new instrument presented here can take thousands of acoustic velocity measurements per second. The spatial and velocity resolution can be adjusted by simple modification to the system; this is discussed in detail by comparison of theoretical expectations with experimental data. (paper)

  4. Spatially Resolving Ocean Color and Sediment Dispersion in River Plumes, Coastal Systems, and Continental Shelf Waters

    Aurin, Dirk Alexander; Mannino, Antonio; Franz, Bryan

    2013-01-01

    Satellite remote sensing of ocean color in dynamic coastal, inland, and nearshorewaters is impeded by high variability in optical constituents, demands specialized atmospheric correction, and is limited by instrument sensitivity. To accurately detect dispersion of bio-optical properties, remote sensors require ample signal-to-noise ratio (SNR) to sense small variations in ocean color without saturating over bright pixels, an atmospheric correction that can accommodate significantwater-leaving radiance in the near infrared (NIR), and spatial and temporal resolution that coincides with the scales of variability in the environment. Several current and historic space-borne sensors have met these requirements with success in the open ocean, but are not optimized for highly red-reflective and heterogeneous waters such as those found near river outflows or in the presence of sediment resuspension. Here we apply analytical approaches for determining optimal spatial resolution, dominant spatial scales of variability ("patches"), and proportions of patch variability that can be resolved from four river plumes around the world between 2008 and 2011. An offshore region in the Sargasso Sea is analyzed for comparison. A method is presented for processing Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua and Terra imagery including cloud detection, stray lightmasking, faulty detector avoidance, and dynamic aerosol correction using short-wave- and near-infrared wavebands in extremely turbid regions which pose distinct optical and technical challenges. Results showthat a pixel size of approx. 520 mor smaller is generally required to resolve spatial heterogeneity in ocean color and total suspended materials in river plumes. Optimal pixel size increases with distance from shore to approx. 630 m in nearshore regions, approx 750 m on the continental shelf, and approx. 1350 m in the open ocean. Greater than 90% of the optical variability within plume regions is resolvable with

  5. A framework for widespread replication of a highly spatially resolved childhood lead exposure risk model.

    Kim, Dohyeong; Galeano, M Alicia Overstreet; Hull, Andrew; Miranda, Marie Lynn

    2008-12-01

    Preventive approaches to childhood lead poisoning are critical for addressing this longstanding environmental health concern. Moreover, increasing evidence of cognitive effects of blood lead levels system-based childhood lead exposure risk models, especially if executed at highly resolved spatial scales, can help identify children most at risk of lead exposure, as well as prioritize and direct housing and health-protective intervention programs. However, developing highly resolved spatial data requires labor-and time-intensive geocoding and analytical processes. In this study we evaluated the benefit of increased effort spent geocoding in terms of improved performance of lead exposure risk models. We constructed three childhood lead exposure risk models based on established methods but using different levels of geocoded data from blood lead surveillance, county tax assessors, and the 2000 U.S. Census for 18 counties in North Carolina. We used the results to predict lead exposure risk levels mapped at the individual tax parcel unit. The models performed well enough to identify high-risk areas for targeted intervention, even with a relatively low level of effort on geocoding. This study demonstrates the feasibility of widespread replication of highly spatially resolved childhood lead exposure risk models. The models guide resource-constrained local health and housing departments and community-based organizations on how best to expend their efforts in preventing and mitigating lead exposure risk in their communities.

  6. Spatially resolved spectroscopy analysis of the XMM-Newton large program on SN1006

    Li, Jiang-Tao; Decourchelle, Anne; Miceli, Marco; Vink, Jacco; Bocchino, Fabrizio

    2016-04-01

    We perform analysis of the XMM-Newton large program on SN1006 based on our newly developed methods of spatially resolved spectroscopy analysis. We extract spectra from low and high resolution meshes. The former (3596 meshes) is used to roughly decompose the thermal and non-thermal components and characterize the spatial distributions of different parameters, such as temperature, abundances of different elements, ionization age, and electron density of the thermal component, as well as photon index and cutoff frequency of the non-thermal component. On the other hand, the low resolution meshes (583 meshes) focus on the interior region dominated by the thermal emission and have enough counts to well characterize the Si lines. We fit the spectra from the low resolution meshes with different models, in order to decompose the multiple plasma components at different thermal and ionization states and compare their spatial distributions. In this poster, we will present the initial results of this project.

  7. Structure in nascent carbon nanotubes revealed by spatially resolved Raman spectroscopy

    Landois, Périne [CEA, IRAMIS, SPAM, Laboratoire Francis Perrin (CNRS URA 2453), 91191 Gif-sur-Yvette (France); Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud 11, 91405 Orsay (France); Pinault, Mathieu [CEA, IRAMIS, SPAM, Laboratoire Francis Perrin (CNRS URA 2453), 91191 Gif-sur-Yvette (France); Huard, Mickaël [Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud 11, 91405 Orsay (France); Reita, Valérie [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France); Rouzière, Stéphan; Launois, Pascale [Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris Sud 11, 91405 Orsay (France); Mayne-L' Hermite, Martine [CEA, IRAMIS, SPAM, Laboratoire Francis Perrin (CNRS URA 2453), 91191 Gif-sur-Yvette (France); Bendiab, Nedjma, E-mail: nedjma.bendiab@grenoble.cnrs.fr [Univ. Grenoble Alpes, Inst NEEL, F-38042 Grenoble (France); CNRS, Inst NEEL, F-38042 Grenoble (France)

    2014-10-01

    The understanding of carbon nanotube (CNT) growth is crucial for the control of their production. In particular, the identification of structural changes of carbon possibly occurring near the catalyst particle in the very early stages of their formation is of high interest. In this study, samples of nascent CNT obtained during nucleation step and samples of vertically aligned CNT obtained during growth step are analysed by combined spatially resolved Raman spectroscopy and X-ray diffraction measurements. Spatially resolved Raman spectroscopy reveals that iron-based phases and carbon phases are co-localized at the same position, and indicates that sp{sup 2} carbon nucleates preferentially on iron-based particles during this nucleation step. Depth scan Raman spectroscopy analysis, performed on nascent CNT, highlights that carbon structural organisation is significantly changing from defective graphene layers surrounding the iron-based particles at their base up to multi-walled nanotube structures in the upper part of iron-based particles. - Highlights: • Spatial co-localization of iron and carbon structures in nascent carbon nanotubes • Imaging local carbon structure changes along catalyst particles by Raman spectroscopy. • In nascent nanotubes, significant structural changes occur along catalyst particle.

  8. Spatially resolved D-T(2) correlation NMR of porous media.

    Zhang, Yan; Blümich, Bernhard

    2014-05-01

    Within the past decade, 2D Laplace nuclear magnetic resonance (NMR) has been developed to analyze pore geometry and diffusion of fluids in porous media on the micrometer scale. Many objects like rocks and concrete are heterogeneous on the macroscopic scale, and an integral analysis of microscopic properties provides volume-averaged information. Magnetic resonance imaging (MRI) resolves this spatial average on the contrast scale set by the particular MRI technique. Desirable contrast parameters for studies of fluid transport in porous media derive from the pore-size distribution and the pore connectivity. These microscopic parameters are accessed by 1D and 2D Laplace NMR techniques. It is therefore desirable to combine MRI and 2D Laplace NMR to image functional information on fluid transport in porous media. Because 2D Laplace resolved MRI demands excessive measuring time, this study investigates the possibility to restrict the 2D Laplace analysis to the sum signals from low-resolution pixels, which correspond to pixels of similar amplitude in high-resolution images. In this exploratory study spatially resolved D-T2 correlation maps from glass beads and mortar are analyzed. Regions of similar contrast are first identified in high-resolution images to locate corresponding pixels in low-resolution images generated with D-T2 resolved MRI for subsequent pixel summation to improve the signal-to-noise ratio of contrast-specific D-T2 maps. This method is expected to contribute valuable information on correlated sample heterogeneity from the macroscopic and the microscopic scales in various types of porous materials including building materials and rock. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.; Scott, H. A.; Biener, M. M.; Fein, J. R.; Fournier, K. B.; Gamboa, E. J.; Kemp, G. E.; Klein, S. R.; Kuranz, C. C.; LeFevre, H. J.; Manuel, M. J. -E.; Wan, W. C.; Drake, R. P.

    2016-09-28

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  10. CO2 laser interferometer for temporally and spatially resolved electron density measurements

    Brannon, P. J.; Gerber, R. A.; Gerardo, J. B.

    1982-09-01

    A 10.6-μm Mach-Zehnder interferometer has been constructed to make temporally and spatially resolved measurements of electron densities in plasmas. The device uses a pyroelectric vidicon camera and video memory to record and display the two-dimensional fringe pattern and a Pockels cell to limit the pulse width of the 10.6-μm radiation. A temporal resolution of 14 ns has been demonstrated. The relative sensitivity of the device for electron density measurements is 2×1015 cm-2 (the line integral of the line-of-sight length and electron density), which corresponds to 0.1 fringe shift.

  11. CO2 laser interferometer for temporally and spatially resolved electron density measurements

    Brannon, P.J.; Gerber, R.A.; Gerardo, J.B.

    1982-01-01

    A 10.6-μm Mach--Zehnder interferometer has been constructed to make temporally and spatially resolved measurements of electron densities in plasmas. The device uses a pyroelectric vidicon camera and video memory to record and display the two-dimensional fringe pattern and a Pockels cell to limit the pulse width of the 10.6-μm radiation. A temporal resolution of 14 ns has been demonstrated. The relative sensitivity of the device for electron density measurements is 2 x 10 15 cm -2 (the line integral of the line-of-sight length and electron density), which corresponds to 0.1 fringe shift

  12. Spatially resolved charge exchange flux calculations on the Toroidal Pumped Limiter of Tore Supra

    Marandet, Y.; Tsitrone, E.; Boerner, P.; Reiter, D.; Beaute, A.; Delchambre, E.; Escarguel, A.; Brezinsek, S.; Genesio, P.; Gunn, J.; Monier-Garbet, P.; Mitteau, R.; Pegourie, B.

    2009-01-01

    A spatially resolved calculation of the charge exchange particle and energy fluxes on the Toroidal Pumped Limiter (TPL) of Tore Supra is presented, as a first step towards a better understanding and modelling of carbon erosion, migration, as well as deuterium codeposition and bulk diffusion of deuterium in Tore Supra. The results are obtained with the EIRENE code run in a 3D geometry. Physical and chemical erosion maps on the TPL are calculated, and the contribution of neutrals to erosion, especially in the self-shadowed area, is calculated.

  13. Spatially resolved measurements of the magnetocaloric effect and the local magnetic field using thermography

    Christensen, Dennis; Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2010-01-01

    The magnetocaloric effect causes a magnetic material to change temperature upon application of a magnetic field. Here, spatially resolved measurements of the adiabatic temperature change are performed on a plate of gadolinium using thermography. The adiabatic temperature change is used to extract...... the corresponding change in the local magnetic field strength. The measured temperature change and local magnetic field strength are compared to results obtained with a numerical model, which takes demagnetization into account and employs experimental data....

  14. Artificial neural networks for spatial distribution of fuel assemblies in reload of PWR reactors

    Oliveira, Edyene; Castro, Victor F.; Velásquez, Carlos E.; Pereira, Claubia

    2017-01-01

    An artificial neural network methodology is being developed in order to find an optimum spatial distribution of the fuel assemblies in a nuclear reactor core during reload. The main bounding parameter of the modelling was the neutron multiplication factor, k ef f . The characteristics of the network are defined by the nuclear parameters: cycle, burnup, enrichment, fuel type, and average power peak of each element. These parameters were obtained by the ORNL nuclear code package SCALE6.0. As for the artificial neural network, the ANN Feedforward Multi L ayer P erceptron with various layers and neurons were constructed. Three algorithms were used and tested: LM (Levenberg-Marquardt), SCG (Scaled Conjugate Gradient) and BayR (Bayesian Regularization). Artificial neural network have implemented using MATLAB 2015a version. As preliminary results, the spatial distribution of the fuel assemblies in the core using a neural network was slightly better than the standard core. (author)

  15. AgesGalore-A software program for evaluating spatially resolved luminescence data

    Greilich, S.; Harney, H.-L.; Woda, C.; Wagner, G.A.

    2006-01-01

    Low-light luminescence is usually recorded by photomultiplier tubes (PMTs) yielding integrated photon-number data. Highly sensitive CCD (charged coupled device) detectors allow for the spatially resolved recording of luminescence. The resulting two-dimensional images require suitable software for data processing. We present a recently developed software program specially designed for equivalent-dose evaluation in the framework of optically stimulated luminescence (OSL) dating. The software is capable of appropriate CCD data handling, parameter estimation using a Bayesian approach, and the pixel-wise fitting of functions for time and dose dependencies to the luminescence signal. The results of the fitting procedure and the equivalent-dose evaluation can be presented and analyzed both as spatial and as frequency distributions

  16. Collimated dual species oven source and its characterisation via spatially resolved fluorescence spectroscopy

    Cooper, N.; Da Ros, E.; Nute, J.; Baldolini, D.; Jouve, P.; Hackermüller, L.; Langer, M.

    2018-03-01

    We describe the design, construction and characterisation of a collimated, dual-species oven source for generating intense beams of lithium and caesium in UHV environments. Our design produces full beam overlap for the two species. Using an aligned microtube array the FWHM of the output beam is restricted to  ˜75 milliradians, with an estimated axial brightness of 3.6× 1014 atoms s-1 sr-1 for Li and 7.4× 1015 atoms s-1 sr-1 for Cs. We measure the properties of the output beam using a spatially-resolved fluorescence technique, which allows for the extraction of additional information not accessible without spatial resolution.

  17. Artificial Virus as Trump-card to Resolve Exigencies in Targeted Gene Delivery.

    Ajithkumar, K C; Pramod, Kannissery

    2018-01-01

    Viruses are potent pathogens that can effectively deliver the genetic material to susceptible host cells. This capability is beneficially utilized to successfully deliver the genetic material. However, the use of virus mediated gene delivery is considered divisive, because the potentially replicable genomes recombine or integrate with the cell DNA resulting in immunogenicity, ranging from inflammation to death. Thus, the need for potentially effective non-viral gene delivery vehicles arises. Non-viral vectors, protein only particles and virus like particles (VLP) can be constructed which contain all the necessary functional moieties. These resemble viruses and are called artificial or synthetic virus. The artificial virus eliminates the disadvantages of viral vectors but retain the beneficial effects of the viruses. Need for further functionalization can be avoided by this approach because incorporation of requisite agents such as cell ligands, membrane active peptides, etc. into proteins is possible. The protein- DNA complexes resemble bacterial inclusion bodies. Nucleic acids influence conformation of protein units which subsequently result in cell uptake and finally to the cell nucleus. Such tunable systems mimic the activities of infected viruses and are used for the safe and effective delivery of drugs and genetic material in gene therapy. The versatility, stability and biocompatible nature of artificial virus along with high transfection efficacy have made it favorite for gene delivery purposes, in addition to being useful for various biomedical and drug delivery applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. A spatially resolved radio spectral index study of the dwarf irregular galaxy NGC 1569

    Westcott, Jonathan; Brinks, Elias; Hindson, Luke; Beswick, Robert; Heesen, Volker

    2018-04-01

    We study the resolved radio continuum spectral energy distribution of the dwarf irregular galaxy, NGC 1569, on a beam-by-beam basis to isolate and study its spatially resolved radio emission characteristics. Utilizing high-quality NRAO Karl G. Jansky Very Large Array observations that densely sample the 1-34 GHz frequency range, we adopt a Bayesian fitting procedure, where we use H α emission that has not been corrected for extinction as a prior, to produce maps of how the separated thermal emission, non-thermal emission, and non-thermal spectral index vary across NGC 1569's main disc. We find a higher thermal fraction at 1 GHz than is found in spiral galaxies (26^{+2}_{-3} {per cent}) and find an average non-thermal spectral index α = -0.53 ± 0.02, suggesting that a young population of cosmic ray electrons is responsible for the observed non-thermal emission. By comparing our recovered map of the thermal radio emission with literature H α maps, we estimate the total reddening along the line of sight to NGC 1569 to be E(B - V) = 0.49 ± 0.05, which is in good agreement with other literature measurements. Spatial variations in the reddening indicate that a significant portion of the total reddening is due to internal extinction within NGC 1569.

  19. Noncontact blood species identification method based on spatially resolved near-infrared transmission spectroscopy

    Zhang, Linna; Sun, Meixiu; Wang, Zhennan; Li, Hongxiao; Li, Yingxin; Li, Gang; Lin, Ling

    2017-09-01

    The inspection and identification of whole blood are crucially significant for import-export ports and inspection and quarantine departments. In our previous research, we proved Near-Infrared diffuse transmitted spectroscopy method was potential for noninvasively identifying three blood species, including macaque, human and mouse, with samples measured in the cuvettes. However, in open sampling cases, inspectors may be endangered by virulence factors in blood samples. In this paper, we explored the noncontact measurement for classification, with blood samples measured in the vacuum blood vessels. Spatially resolved near-infrared spectroscopy was used to improve the prediction accuracy. Results showed that the prediction accuracy of the model built with nine detection points was more than 90% in identification between all five species, including chicken, goat, macaque, pig and rat, far better than the performance of the model built with single-point spectra. The results fully supported the idea that spatially resolved near-infrared spectroscopy method can improve the prediction ability, and demonstrated the feasibility of this method for noncontact blood species identification in practical applications.

  20. A spatially and temporally resolved model of the electricity grid – Economic vs environmental dispatch

    Razeghi, Ghazal; Brouwer, Jack; Samuelsen, Scott

    2016-01-01

    Highlights: • A spatially and temporally resolved dispatch model is developed. • MCP and average price of electricity are determined for 2050 base case. • Economic and environmental dispatch strategies are assessed. • Environmental dispatch results in significant NO_x reduction and higher prices. • A combination of economic and environmental strategies is the preferred method. - Abstract: Substantial changes need to occur in the electricity generation sector in order to address greenhouse gas and urban air quality goals. These goals, combined with increasing energy prices, have led to elevated interest in alternative, low to zero carbon and pollutant emission technologies in this sector. The challenge is to assess the impacts of various technologies, policies, and market practices in order to develop a roadmap to meet energy and environmental goals. To this end, a spatially and temporally resolved resource dispatch model is developed that simulates an electricity market while taking into account physical constraints associated with various components of an electricity grid. Multiple technology simulation modules are developed to provide inputs to the model. The model is used to design a market-based grid, and to develop and evaluate different dispatch strategies. To maintain the system cost at acceptable levels and reduce emissions, the results reveal that the best approach is a combination of economic and environmental dispatch strategies. The methodology and the tools developed provide a means to examine various aspects of future scenarios and their impacts on different sectors, and can be used for both decision making and planning.

  1. Scanning photoelectron microscope for nanoscale three-dimensional spatial-resolved electron spectroscopy for chemical analysis.

    Horiba, K; Nakamura, Y; Nagamura, N; Toyoda, S; Kumigashira, H; Oshima, M; Amemiya, K; Senba, Y; Ohashi, H

    2011-11-01

    In order to achieve nondestructive observation of the three-dimensional spatially resolved electronic structure of solids, we have developed a scanning photoelectron microscope system with the capability of depth profiling in electron spectroscopy for chemical analysis (ESCA). We call this system 3D nano-ESCA. For focusing the x-ray, a Fresnel zone plate with a diameter of 200 μm and an outermost zone width of 35 nm is used. In order to obtain the angular dependence of the photoelectron spectra for the depth-profile analysis without rotating the sample, we adopted a modified VG Scienta R3000 analyzer with an acceptance angle of 60° as a high-resolution angle-resolved electron spectrometer. The system has been installed at the University-of-Tokyo Materials Science Outstation beamline, BL07LSU, at SPring-8. From the results of the line-scan profiles of the poly-Si/high-k gate patterns, we achieved a total spatial resolution better than 70 nm. The capability of our system for pinpoint depth-profile analysis and high-resolution chemical state analysis is demonstrated. © 2011 American Institute of Physics

  2. Spatially resolved x-ray fluorescence spectroscopy of beryllium capsule implosions at the NIF

    MacDonald, M. J.; Bishel, D. T.; Saunders, A. M.; Scott, H. A.; Kyrala, G.; Kline, J.; MacLaren, S.; Thorn, D. B.; Yi, S. A.; Zylstra, A. B.; Falcone, R. W.; Doeppner, T.

    2017-10-01

    Beryllium ablators used in indirectly driven inertial confinement fusion implosions are doped with copper to prevent preheat of the cryogenic hydrogen fuel. Here, we present analysis of spatially resolved copper K- α fluorescence spectra from the beryllium ablator layer. It has been shown that K- α fluorescence spectroscopy can be used to measure plasma conditions of partially ionized dopants in high energy density systems. In these experiments, K-shell vacancies in the copper dopant are created by the hotspot emission at stagnation, resulting in K-shell fluorescence at bang time. Spatially resolved copper K- α emission spectra are compared to atomic kinetics and radiation code simulations to infer density and temperature profiles. This work was supported by the US DOE under Grant No. DE-NA0001859, under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344, and by Los Alamos National Laboratory under contract DE-AC52-06NA52396.

  3. Spatially resolved x-ray laser spectra and demonstration of gain in nickel-like systems

    Whelan, D.A.; Keane, C.J.; MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.; Eckart, M.J.

    1987-09-25

    A recent series of experiments have provided spatially resolved near field images of several candidate x-ray lasing transition in neon-like, nickel-like, and hydrogen-like ions from laser-produced plasmas. From these time-gated, spatially, and spectrally resolved measurements the source size for the J = 0 - 1 and the J = 2 - 1 transitions in Ne-like selenium have been determined. Source regions as small as 50 ..mu..m have been observed on transitions with gain-length products >9. In addition, we have obtained the first experimental evidence for the amplification of spontaneous emission in the nickel-like ions of europium and ytterbium. Gains of order 1 cm/sup -1/ and gain-length products of up to 3.8 are observed on the J = 0 - 1, 4d-4p transitions in Eu + 35 at 65.26 and 71.00 A. Analogous transitions in Yb = +42 have been identified and some evidence for ASE has been observed. 7 refs., 11 figs.

  4. Spatially resolved X-ray laser spectra and demonstration of gain in nickel-like systems

    Whelan, D.A.; Keane, C.J.; MacGowan, B.J.; Matthews, D.L.; Trebes, J.E.; Eckart, M.J.

    1987-01-01

    A recent series of experiments have provided spatially resolved near field images of several candidate x-ray lasing transition in neon-like, nickel-like, and hydrogen-like ions from laser-produced plasmas. From these time-gated, spatially, and spectrally resolved measurements the source size for the J=0-1 and the J=2-1 transitions in Ne-like selenium have been determined. Source regions as small as 50 μm have been observed on transitions with gain-length products >9. In addition, the authors have obtained the first experimental evidence for the amplification of spontaneous emission in the nickel-like ions of europium and ytterbium. Gains of order 1 cm/sup -1/ and gain-length products of up to 3.8 are observed on the J=0-1,4d-4p transitions in Eu/sup +35/ at 65.83 and 71.00A. Analogous transitions in Yb/sup +42/ have been identified and some evidence for ASE has been observed

  5. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions

    Anchukaitis, Kevin J.; Wilson, Rob; Briffa, Keith R.; Büntgen, Ulf; Cook, Edward R.; D'Arrigo, Rosanne; Davi, Nicole; Esper, Jan; Frank, David; Gunnarson, Björn E.; Hegerl, Gabi; Helama, Samuli; Klesse, Stefan; Krusic, Paul J.; Linderholm, Hans W.; Myglan, Vladimir; Osborn, Timothy J.; Zhang, Peng; Rydval, Milos; Schneider, Lea; Schurer, Andrew; Wiles, Greg; Zorita, Eduardo

    2017-05-01

    Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regional-scale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (May-August) mean temperatures across the extratropical Northern Hemisphere (40-90°N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750-1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.

  6. Simulations of the temporal and spatial resolution for a compact time-resolved electron diffractometer

    Robinson, Matthew S.; Lane, Paul D.; Wann, Derek A.

    2016-02-01

    A novel compact electron gun for use in time-resolved gas electron diffraction experiments has recently been designed and commissioned. In this paper we present and discuss the extensive simulations that were performed to underpin the design in terms of the spatial and temporal qualities of the pulsed electron beam created by the ionisation of a gold photocathode using a femtosecond laser. The response of the electron pulses to a solenoid lens used to focus the electron beam has also been studied. The simulated results show that focussing the electron beam affects the overall spatial and temporal resolution of the experiment in a variety of ways, and that factors that improve the resolution of one parameter can often have a negative effect on the other. A balance must, therefore, be achieved between spatial and temporal resolution. The optimal experimental time resolution for the apparatus is predicted to be 416 fs for studies of gas-phase species, while the predicted spatial resolution of better than 2 nm-1 compares well with traditional time-averaged electron diffraction set-ups.

  7. Spatially resolved δ13C analysis using laser ablation isotope ratio mass spectrometry

    Moran, J.; Riha, K. M.; Nims, M. K.; Linley, T. J.; Hess, N. J.; Nico, P. S.

    2014-12-01

    Inherent geochemical, organic matter, and microbial heterogeneity over small spatial scales can complicate studies of carbon dynamics through soils. Stable isotope analysis has a strong history of helping track substrate turnover, delineate rhizosphere activity zones, and identifying transitions in vegetation cover, but most traditional isotope approaches are limited in spatial resolution by a combination of physical separation techniques (manual dissection) and IRMS instrument sensitivity. We coupled laser ablation sampling with isotope measurement via IRMS to enable spatially resolved analysis over solid surfaces. Once a targeted sample region is ablated the resulting particulates are entrained in a helium carrier gas and passed through a combustion reactor where carbon is converted to CO2. Cyrotrapping of the resulting CO2 enables a reduction in carrier gas flow which improves overall measurement sensitivity versus traditional, high flow sample introduction. Currently we are performing sample analysis at 50 μm resolution, require 65 ng C per analysis, and achieve measurement precision consistent with other continuous flow techniques. We will discuss applications of the laser ablation IRMS (LA-IRMS) system to microbial communities and fish ecology studies to demonstrate the merits of this technique and how similar analytical approaches can be transitioned to soil systems. Preliminary efforts at analyzing soil samples will be used to highlight strengths and limitations of the LA-IRMS approach, paying particular attention to sample preparation requirements, spatial resolution, sample analysis time, and the types of questions most conducive to analysis via LA-IRMS.

  8. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  9. Improved algorithm for estimating optical properties of food and biological materials using spatially-resolved diffuse reflectance

    In this research, the inverse algorithm for estimating optical properties of food and biological materials from spatially-resolved diffuse reflectance was optimized in terms of data smoothing, normalization and spatial region of reflectance profile for curve fitting. Monte Carlo simulation was used ...

  10. Global Research on Artificial Intelligence from 1990–2014: Spatially-Explicit Bibliometric Analysis

    Jiqiang Niu

    2016-05-01

    Full Text Available In this article, we conducted the evaluation of artificial intelligence research from 1990–2014 by using bibliometric analysis. We introduced spatial analysis and social network analysis as geographic information retrieval methods for spatially-explicit bibliometric analysis. This study is based on the analysis of data obtained from database of the Science Citation Index Expanded (SCI-Expanded and Conference Proceedings Citation Index-Science (CPCI-S. Our results revealed scientific outputs, subject categories and main journals, author productivity and geographic distribution, international productivity and collaboration, and hot issues and research trends. The growth of article outputs in artificial intelligence research has exploded since the 1990s, along with increasing collaboration, reference, and citations. Computer science and engineering were the most frequently-used subject categories in artificial intelligence studies. The top twenty productive authors are distributed in countries with a high investment of research and development. The United States has the highest number of top research institutions in artificial intelligence, producing most single-country and collaborative articles. Although there is more and more collaboration among institutions, cooperation, especially international ones, are not highly prevalent in artificial intelligence research as expected. The keyword analysis revealed interesting research preferences, confirmed that methods, models, and application are in the central position of artificial intelligence. Further, we found interesting related keywords with high co-occurrence frequencies, which have helped identify new models and application areas in recent years. Bibliometric analysis results from our study will greatly facilitate the understanding of the progress and trends in artificial intelligence, in particular, for those researchers interested in domain-specific AI-driven problem-solving. This will be

  11. Spatially Resolved Imaging and Spectroscopy of Candidate Dual Active Galactic Nuclei

    McGurk, R. C.; Max, C. E.; Medling, A. M.; Shields, G. A.; Comerford, J. M.

    2015-09-01

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets.

  12. SPATIALLY RESOLVED IMAGING AND SPECTROSCOPY OF CANDIDATE DUAL ACTIVE GALACTIC NUCLEI

    McGurk, R. C.; Max, C. E. [Astronomy Department and UCO-Lick Observatory, University of California, Santa Cruz, CA 95064 (United States); Medling, A. M. [Research School of Astronomy and Astrophysics, Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek, ACT 2611 (Australia); Shields, G. A. [Laguna Falls Institute for Astrophysics, Austin, TX 78746 (United States); Comerford, J. M., E-mail: rosalie.mcgurk@gmail.com, E-mail: max@ucolick.org, E-mail: anne.medling@anu.edu.au, E-mail: shields@lfastro.org, E-mail: julie.comerford@colorado.edu [Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309 (United States)

    2015-09-20

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets.

  13. SPATIALLY RESOLVED IMAGING AND SPECTROSCOPY OF CANDIDATE DUAL ACTIVE GALACTIC NUCLEI

    McGurk, R. C.; Max, C. E.; Medling, A. M.; Shields, G. A.; Comerford, J. M.

    2015-01-01

    When galaxies merge, both central supermassive black holes are immersed in a dense and chaotic environment. If there is sufficient gas in the nuclear regions, one expects to see close pairs of active galactic nuclei (AGNs), or dual AGNs, in a fraction of galaxy mergers. However, finding them remains a challenge. The presence of double-peaked [O iii] emission lines has been proposed as a technique to select dual AGNs efficiently. We studied a sample of double-peaked narrow [O iii] emitting AGNs from Sloan Digital Sky Survey (SDSS) DR7. By obtaining new and archival high spatial resolution images taken with the Keck II Laser Guide Star Adaptive Optics system and the near-infrared camera NIRC2, we show that 30% of 140 double-peaked [O iii] emission line SDSS AGNs have two spatial components within a 3″ radius. However, spatially resolved spectroscopy or X-ray observations are needed to confirm these galaxy pairs as systems containing two AGNs. We followed up three spatially double candidate dual AGNs with integral field spectroscopy from Keck OSIRIS and 10 candidates with long-slit spectroscopy from the Shane Kast Double Spectrograph at Lick Observatory. We find that the double-peaked emission lines in our sample of 12 candidates are caused by: one dual AGN (SDSS J114642.47+511029.6), one confirmed outflow and four likely outflows, two pairs of star-forming galaxies, one candidate indeterminate due to sky line interference, and three AGNs with spatially coincident double [O iii] peaks, likely due to unresolved complex narrow line kinematics, outflows, binary AGN, or small-scale jets

  14. Monthly and spatially resolved black carbon emission inventory of India: uncertainty analysis

    U. Paliwal

    2016-10-01

    Full Text Available Black carbon (BC emissions from India for the year 2011 are estimated to be 901.11 ± 151.56 Gg yr−1 based on a new ground-up, GIS-based inventory. The grid-based, spatially resolved emission inventory includes, in addition to conventional sources, emissions from kerosene lamps, forest fires, diesel-powered irrigation pumps and electricity generators at mobile towers. The emissions have been estimated at district level and were spatially distributed onto grids at a resolution of 40 × 40 km2. The uncertainty in emissions has been estimated using a Monte Carlo simulation by considering the variability in activity data and emission factors. Monthly variation of BC emissions has also been estimated to account for the seasonal variability. To the total BC emissions, domestic fuels contributed most significantly (47 %, followed by industry (22 %, transport (17 %, open burning (12 % and others (2 %. The spatial and seasonal resolution of the inventory will be useful for modeling BC transport in the atmosphere for air quality, global warming and other process-level studies that require greater temporal resolution than traditional inventories.

  15. Spatial capture-recapture: a promising method for analyzing data collected using artificial cover objects

    Sutherland, Chris; Munoz, David; Miller, David A.W.; Grant, Evan H. Campbell

    2016-01-01

    Spatial capture–recapture (SCR) is a relatively recent development in ecological statistics that provides a spatial context for estimating abundance and space use patterns, and improves inference about absolute population density. SCR has been applied to individual encounter data collected noninvasively using methods such as camera traps, hair snares, and scat surveys. Despite the widespread use of capture-based surveys to monitor amphibians and reptiles, there are few applications of SCR in the herpetological literature. We demonstrate the utility of the application of SCR for studies of reptiles and amphibians by analyzing capture–recapture data from Red-Backed Salamanders, Plethodon cinereus, collected using artificial cover boards. Using SCR to analyze spatial encounter histories of marked individuals, we found evidence that density differed little among four sites within the same forest (on average, 1.59 salamanders/m2) and that salamander detection probability peaked in early October (Julian day 278) reflecting expected surface activity patterns of the species. The spatial scale of detectability, a measure of space use, indicates that the home range size for this population of Red-Backed Salamanders in autumn was 16.89 m2. Surveying reptiles and amphibians using artificial cover boards regularly generates spatial encounter history data of known individuals, which can readily be analyzed using SCR methods, providing estimates of absolute density and inference about the spatial scale of habitat use.

  16. Spatially resolved element analysis of historical violin varnishes by use of muPIXE.

    von Bohlen, Alex; Röhrs, Stefan; Salomon, Joseph

    2007-02-01

    External muPIXE has been used for characterisation of small samples of varnish from historical violins, and pieces of varnished wood from historical and modern stringed instruments. To obtain spatially resolved information about the distribution of elements across the varnish layers single-spot analysis, line-scans, and area-mapping were performed. Local resolution of approximately 20 mum was obtained from the 3 MeV, 1 nA proton micro-probe. Results from simultaneous multi-element determination of Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Br, Rb, Sr, Ag, Cd, Sn, Ba, and Pb in historical varnishes are presented. Semi-quantitative evaluation of line-scans recorded on diverse historical varnishes is reported. The applied method is discussed in detail and the results obtained are critically reviewed and compared with those in the literature.

  17. Scanning mass spectrometer setup for spatially resolved reactivity studies on model catalysts

    Roos, Matthias; Schirling, Christian; Kielbassa, Stefan; Bansmann, Joachim; Behm, Juergen [Institut fuer Oberflaechenchemie und Katalyse, Universitaet Ulm, D-89069 Ulm (Germany)

    2007-07-01

    A scanning mass spectrometer with micrometer-scale resolution was developed for investigations on the catalytic activity of microstructured planar model catalysts. Products of local surface reactions can be detected via a fine capillary orifice in a differentially pumped quadrupole mass spectrometer. The position of the sample with respect to the capillary is controlled by three piezo-driven translators. The surface reactivity of a resistive heated sample can be depicted in a spatially resolved topogram, taking into account the influence of the distance between sample and capillary on the magnitude of the QMS signal and the lateral resolution. Photolithographic structured reactive patterns on top of an inactive substrate enable investigations of mesoscopic transport effects such as coupling between catalytically active areas and of (reverse) spillover phenomena on one sample by varying the size and the distances of the active areas.

  18. Imaging buried organic islands by spatially resolved ballistic electron emission spectroscopy

    Goh, Kuan Eng J; Bannani, A; Troadec, C

    2008-01-01

    The well-known Au/n-Si(111) Schottky interface is modified by a discontinuous pentacene film (∼1.5 nm thick) and studied using spatially resolved ballistic electron emission spectroscopy (BEES). The pentacene film introduced subtle changes to the interface which cannot be definitively detected by current-voltage measurements or a standard BEES analysis of the barrier height. In contrast, analyzing the BEES results in a dual-parameter (transmission attenuation and barrier height) space allows the effect of the pentacene film on the Au/n-Si(111) interface to be clearly demonstrated. We found that the pentacene film behaves like a tunneling barrier and increases the distribution of local barrier heights with a tendency toward lower values. Our results highlight the potential of the dual-parameter BEES analysis for understanding local interface modification by molecules.

  19. Spatially resolved XRF, XAFS, XRD, STXM and IR investigation of a natural U-rich clay

    Denecke, M. A.; Michel, P.; Schäfer, T.; Huber, F.; Rickers, K.; Rothe, J.; Dardenne, K.; Brendebach, B.; Vitova, T.; Elie, M.

    2009-11-01

    Combined spatially resolved hard X-ray μ-XRF and μ-XAFS studies using an X-ray beam with micrometer dimensions at the INE-Beamline for actinide research at ANKA and Beamline L at HASYLAB with those from scanning transmission soft X-ray microscopy (STXM) and synchrotron-based Fourier transform infrared microspectroscopy (μ-FTIR) recorded with beam spots in the nanometer range are used to study a U-rich clay originating from Autunian shales in the Permian Lodève Basin (France). This argillaceous formation is a natural U deposit associated with organic matter (bitumen). Results allow us to differentiate between possible mechanisms leading to U enrichment: likely U immobilization via reaction with organic material associated with clay mineral. Such investigations support development of reliable assessment of the long term radiological safety for proposed nuclear waste disposal sites.

  20. Spatially-resolved EEL studies of plasmons in silver filled carbon nanotubes using a dedicated STEM

    Bangert, U; Harvey, A J; Seepujak, A

    2008-01-01

    Using a dedicated FEG STEM, we present highly spatially-resolved electron energy-loss (EEL) studies of individual multi-walled carbon nanotubes (MWCNTs), each with the inner cavity possessing regions completely filled with silver. The transmission and attenuation of graphite π-collective mode E-fields through the MWCNT walls are established. Noticeable changes in the graphite π-surface mode are witnessed, concomitant with coupling of the silver Mie mode and the graphite π-surface mode. The resulting collective mode is significantly red-shifted to below 5 eV, with considerable intensity in the visible frequency regime. It appears that silver retains its ability to enhance E-fields when surrounded by a MWCNT. Present observations lead to the possibility of collective modes propagating on graphene monolayers being tuned in frequency by the presence of a metal.

  1. Heat treatment of bovine bone preceding spatially resolved texture investigation by neutron diffraction

    Benmarouane, Abdelilah; Hansen, Thomas; Lodini, Alain

    2004-01-01

    Bone is a composite material of collagen and porous hydroxyapatite crystallites, aligned parallel to each other, with the c-axis parallel to the long axis of the fibre. Its texture and crystallinity has been investigated by means of neutron diffraction, using the high intensity 2-axis diffractometer D20 at ILL in particular. We show spatially resolved pole figures on a composite sample of two bone pieces of different preferred orientation. We have selected the (1 1 1) reflection, which is nearly not affected by texture to characterise the crystallinity index, and (0 0 2) to show the texture because the c-axes of hydroxyapatite crystallites is directed along the axis of the bone

  2. Spatially resolved Raman spectroscopy study of transformed zones in magnesia-partially-stabilized zirconia

    Davskardt, R.H.; Veirs, D.K.; Ritchie, R.O.

    1989-01-01

    Raman vibrational spectroscopy provides an effective phase characterization technique in materials systems containing particle dispersions of the tetragonal and monoclinic polymorphs of zirconia, each of which yields a unique Raman spectrum. An investigation is reported to assess a novel, spatially resolved Raman spectroscopy system in the study of transformed zones surrounding cracks in partially stabilized MgO-ZrO 2 (PSZ). The experimental arrangement uses an imaging (two-dimensional) photomultiplier tube to produce a one-dimensional Raman profile of phase compositions along a slitlike laser beam without translation of either the sample or the laser beam and without scanning the spectrometer. Results from phase characterization studies of the size, frontal morphology, and extent of transformation of transformation zones surrounding cracks produced under monotonic and cyclic loading conditions are presented

  3. Spatially resolved positron annihilation spectroscopy on friction stir weld induced defects.

    Hain, Karin; Hugenschmidt, Christoph; Pikart, Philip; Böni, Peter

    2010-04-01

    A friction stir welded (FSW) Al alloy sample was investigated by Doppler broadening spectroscopy (DBS) of the positron annihilation line. The spatially resolved defect distribution showed that the material in the joint zone becomes completely annealed during the welding process at the shoulder of the FSW tool, whereas at the tip, annealing is prevailed by the deterioration of the material due to the tool movement. This might be responsible for the increased probability of cracking in the heat affected zone of friction stir welds. Examination of a material pairing of steel S235 and the Al alloy Silafont36 by coincident Doppler broadening spectroscopy (CDBS) indicates the formation of annealed steel clusters in the Al alloy component of the sample. The clear visibility of Fe in the CDB spectra is explained by the very efficient trapping at the interface between steel cluster and bulk.

  4. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.

    Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  5. Dwarf galaxies with ionizing radiation feedback. II. Spatially resolved star formation relation

    Kim, Ji-hoon; Krumholz, Mark R.; Goldbaum, Nathan J.; Wise, John H.; Turk, Matthew J.; Abel, Tom

    2013-01-01

    We investigate the spatially resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate (SFR). Because we have self-consistently calculated the location of ionized gas, we are able to make simulated, spatially resolved observations of star formation tracers, such as Hα emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3 × 10 11 M ☉ , we find that the correlation between SFR density (estimated from mock Hα emission) and H 2 density shows large scatter, especially at high resolutions of ≲75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution and because Hα traces hot gas around star-forming regions and is displaced from the H 2 peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces and molecular clouds being dispersed via stellar feedback.

  6. Redox-dependent spatially resolved electrochemistry at graphene and graphite step edges.

    Güell, Aleix G; Cuharuc, Anatolii S; Kim, Yang-Rae; Zhang, Guohui; Tan, Sze-yin; Ebejer, Neil; Unwin, Patrick R

    2015-04-28

    The electrochemical (EC) behavior of mechanically exfoliated graphene and highly oriented pyrolytic graphite (HOPG) is studied at high spatial resolution in aqueous solutions using Ru(NH3)6(3+/2+) as a redox probe whose standard potential sits close to the intrinsic Fermi level of graphene and graphite. When scanning electrochemical cell microscopy (SECCM) data are coupled with that from complementary techniques (AFM, micro-Raman) applied to the same sample area, different time-dependent EC activity between the basal planes and step edges is revealed. In contrast, other redox couples (ferrocene derivatives) whose potential is further removed from the intrinsic Fermi level of graphene and graphite show uniform and high activity (close to diffusion-control). Macroscopic voltammetric measurements in different environments reveal that the time-dependent behavior after HOPG cleavage, peculiar to Ru(NH3)6(3+/2+), is not associated particularly with any surface contaminants but is reasonably attributed to the spontaneous delamination of the HOPG with time to create partially coupled graphene layers, further supported by conductive AFM measurements. This process has a major impact on the density of states of graphene and graphite edges, particularly at the intrinsic Fermi level to which Ru(NH3)6(3+/2+) is most sensitive. Through the use of an improved voltammetric mode of SECCM, we produce movies of potential-resolved and spatially resolved HOPG activity, revealing how enhanced activity at step edges is a subtle effect for Ru(NH3)6(3+/2+). These latter studies allow us to propose a microscopic model to interpret the EC response of graphene (basal plane and edges) and aged HOPG considering the nontrivial electronic band structure.

  7. Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae)

    De Busserolles, Fanny

    2014-01-01

    Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density). In this study, we investigated the neural cell distribution in the ganglion cell layer of a range of lanternfish species belonging to 10 genera. Analyses were performed on wholemounted retinas using stereology. Topographic maps were constructed of the distribution of all neurons and both ganglion and amacrine cell populations in 5 different species from Nissl-stained retinas using cytological criteria. Amacrine cell distribution was also examined immunohistochemically in 2 of the 5 species using anti-parvalbumin antibody. The distributions of both the total neuron and the amacrine cell populations were aligned in all of the species examined, showing a general increase in cell density toward the retinal periphery. However, when the ganglion cell population was topographically isolated from the amacrine cell population, which comprised up to 80% of the total neurons within the ganglion cell layer, a different distribution was revealed. Topographic maps of the true ganglion cell distribution in 18 species of lanternfishes revealed well-defined specializations in different regions of the retina. Different species possessed distinct areas of high ganglion cell density with respect to both peak density and the location and/or shape of the specialized acute zone (i.e. elongated areae ventro-temporales, areae temporales and large areae centrales). The spatial resolving power was calculated to be relatively low (varying from 1.6 to 4.4 cycles per degree), indicating that myctophids may constitute one of the less visually acute groups of deep-sea teleosts. The diversity in retinal specializations and spatial resolving power within the family is assessed in terms of possible ecological functions and evolutionary history.

  8. Dwarf galaxies with ionizing radiation feedback. II. Spatially resolved star formation relation

    Kim, Ji-hoon; Krumholz, Mark R.; Wise, John H.; Turk, Matthew J.; Goldbaum, Nathan J.; Abel, Tom

    2013-11-15

    AWe investigate the spatially resolved star formation relation using a galactic disk formed in a comprehensive high-resolution (3.8 pc) simulation. Our new implementation of stellar feedback includes ionizing radiation as well as supernova explosions, and we handle ionizing radiation by solving the radiative transfer equation rather than by a subgrid model. Photoheating by stellar radiation stabilizes gas against Jeans fragmentation, reducing the star formation rate (SFR). Because we have self-consistently calculated the location of ionized gas, we are able to make simulated, spatially resolved observations of star formation tracers, such as Hα emission. We can also observe how stellar feedback manifests itself in the correlation between ionized and molecular gas. Applying our techniques to the disk in a galactic halo of 2.3 × 1011 M , we find that the correlation between SFR density (estimated from mock Hα emission) and H2 density shows large scatter, especially at high resolutions of ≲ 75 pc that are comparable to the size of giant molecular clouds (GMCs). This is because an aperture of GMC size captures only particular stages of GMC evolution and because Hα traces hot gas around star-forming regions and is displaced from the H2 peaks themselves. By examining the evolving environment around star clusters, we speculate that the breakdown of the traditional star formation laws of the Kennicutt-Schmidt type at small scales is further aided by a combination of stars drifting from their birthplaces and molecular clouds being dispersed via stellar feedback.

  9. Reactor for in situ measurements of spatially resolved kinetic data in heterogeneous catalysis

    Horn, R.; Korup, O.; Geske, M.; Zavyalova, U.; Oprea, I.; Schlögl, R.

    2010-06-01

    The present work describes a reactor that allows in situ measurements of spatially resolved kinetic data in heterogeneous catalysis. The reactor design allows measurements up to temperatures of 1300 °C and 45 bar pressure, i.e., conditions of industrial relevance. The reactor involves reactants flowing through a solid catalyst bed containing a sampling capillary with a side sampling orifice through which a small fraction of the reacting fluid (gas or liquid) is transferred into an analytical device (e.g., mass spectrometer, gas chromatograph, high pressure liquid chromatograph) for quantitative analysis. The sampling capillary can be moved with μm resolution in or against flow direction to measure species profiles through the catalyst bed. Rotation of the sampling capillary allows averaging over several scan lines. The position of the sampling orifice is such that the capillary channel through the catalyst bed remains always occupied by the capillary preventing flow disturbance and fluid bypassing. The second function of the sampling capillary is to provide a well which can accommodate temperature probes such as a thermocouple or a pyrometer fiber. If a thermocouple is inserted in the sampling capillary and aligned with the sampling orifice fluid temperature profiles can be measured. A pyrometer fiber can be used to measure the temperature profile of the solid catalyst bed. Spatial profile measurements are demonstrated for methane oxidation on Pt and methane oxidative coupling on Li/MgO, both catalysts supported on reticulated α -Al2O3 foam supports.

  10. Investigation of microstructure in additive manufactured Inconel 625 by spatially resolved neutron transmission spectroscopy

    Tremsin, Anton S.; Gao, Yan; Dial, Laura C.; Grazzi, Francesco; Shinohara, Takenao

    2016-01-01

    Non-destructive testing techniques based on neutron imaging and diffraction can provide information on the internal structure of relatively thick metal samples (up to several cm), which are opaque to other conventional non-destructive methods. Spatially resolved neutron transmission spectroscopy is an extension of traditional neutron radiography, where multiple images are acquired simultaneously, each corresponding to a narrow range of energy. The analysis of transmission spectra enables studies of bulk microstructures at the spatial resolution comparable to the detector pixel. In this study we demonstrate the possibility of imaging (with 100 μm resolution) distribution of some microstructure properties, such as residual strain, texture, voids and impurities in Inconel 625 samples manufactured with an additive manufacturing method called direct metal laser melting (DMLM). Although this imaging technique can be implemented only in a few large-scale facilities, it can be a valuable tool for optimization of additive manufacturing techniques and materials and for correlating bulk microstructure properties to manufacturing process parameters. In addition, the experimental strain distribution can help validate finite element models which many industries use to predict the residual stress distributions in additive manufactured components.

  11. Obtaining absolute spatial flux measurements with a time-resolved pinhole camera

    Baker, K.L.; Porter, J.L.; Ruggles, L.E.; Fehl, D.L.; Chandler, G.A.; Vargas, M.; Mix, L.P.; Simpson, W.W.; Deeney, C.; Chrien, R.E.; Idzorek, G.C.

    1999-01-01

    A technique is described to determine the spatial x-ray flux emitted from a hohlraum wall and subsequently transmitted through a diagnostic hole. This technique uses x-ray diodes, bolometers, and a time-resolved pinhole camera to determine the spatial flux of x rays emitted through a hohlraum close-quote s diagnostic hole. The primary motivation for this analysis was the relatively long duration, nearly 100 ns, of the x-ray drive present in z-pinch driven hohlraums. This radiation causes plasma to ablate from the hohlraum walls surrounding the diagnostic hole and results in a partial obscuration that reduces the effective area over which diagnostics view the radiation. The effective change in area leads to an underestimation of the wall temperature when nonimaging diagnostics such as x-ray diodes and bolometers are used to determine power and later to infer a wall temperature. An analysis similar to the one described below is then necessary to understand the radiation environment present in x-ray driven hohlraums when these diagnostics are used and hole closure is important. copyright 1999 American Institute of Physics

  12. In situ distributed diagnostics of flowable electrode systems: resolving spatial and temporal limitations.

    Dennison, C R; Gogotsi, Y; Kumbur, E C

    2014-09-14

    In this study, we have developed an in situ distributed diagnostics tool to investigate spatial and temporal effects in electrochemical systems based on flowable electrodes. Specifically, an experimental approach was developed that enables spatially-resolved voltage measurements to be obtained in situ, in real-time. To extract additional data from these distributed measurements, an experimentally-parameterized equivalent circuit model with a new 'flow capacitor' circuit element was developed to predict the distributions of various system parameters during operation. As a case study, this approach was applied to investigate the behavior of the suspension electrodes used in an electrochemical flow capacitor under flowing and static conditions. The volumetric capacitance is reduced from 15.6 F ml(-1) to 1.1 F ml(-1) under flowing conditions. Results indicate that the majority of the charging in suspension electrodes occurs within ∼750 μm of the current collectors during flow, which gives rise to significant state-of-charge gradients across the cell, as well as underutilization of the available active material. The underlying cause of this observation is attributed to the relatively high electrical resistance of the slurry coupled with a stratified charging regime and insufficient residence time. The observations highlight the need to develop more conductive slurries and to design cells with reduced charge transport lengths.

  13. A split imaging spectrometer for temporally and spatially resolved titanium absorption spectroscopy

    Hager, J. D., E-mail: hager@lanl.gov; Lanier, N. E.; Kline, J. L.; Flippo, K. A. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Bruns, H. C.; Schneider, M.; Saculla, M.; McCarville, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2014-11-15

    We present a temporally and a spatially resolved spectrometer for titanium x-ray absorption spectroscopy along 2 axial symmetric lines-of-sight. Each line-of-sight of the instrument uses an elliptical crystal to acquire both the 2p and 3p Ti absorption lines on a single, time gated channel of the instrument. The 2 axial symmetric lines-of-sight allow the 2p and 3p absorption features to be measured through the same point in space using both channels of the instrument. The spatially dependent material temperature can be inferred by observing the 2p and the 3p Ti absorption features. The data are recorded on a two strip framing camera with each strip collecting data from a single line-of-sight. The design is compatible for use at both the OMEGA laser and the National Ignition Facility. The spectrometer is intended to measure the material temperature behind a Marshak wave in a radiatively driven SiO{sub 2} foam with a Ti foam tracer. In this configuration, a broad band CsI backlighter will be used for a source and the Ti absorption spectrum measured.

  14. 3D Spatially Resolved Models of the Intracellular Dynamics of the Hepatitis C Genome Replication Cycle

    Knodel, Markus

    2017-10-02

    Mathematical models of virus dynamics have not previously acknowledged spatial resolution at the intracellular level despite substantial arguments that favor the consideration of intracellular spatial dependence. The replication of the hepatitis C virus (HCV) viral RNA (vRNA) occurs within special replication complexes formed from membranes derived from endoplasmatic reticulum (ER). These regions, termed membranous webs, are generated primarily through specific interactions between nonstructural virus-encoded proteins (NSPs) and host cellular factors. The NSPs are responsible for the replication of the vRNA and their movement is restricted to the ER surface. Therefore, in this study we developed fully spatio-temporal resolved models of the vRNA replication cycle of HCV. Our simulations are performed upon realistic reconstructed cell structures-namely the ER surface and the membranous webs-based on data derived from immunostained cells replicating HCV vRNA. We visualized 3D simulations that reproduced dynamics resulting from interplay of the different components of our models (vRNA, NSPs, and a host factor), and we present an evaluation of the concentrations for the components within different regions of the cell. Thus far, our model is restricted to an internal portion of a hepatocyte and is qualitative more than quantitative. For a quantitative adaption to complete cells, various additional parameters will have to be determined through further in vitro cell biology experiments, which can be stimulated by the results deccribed in the present study.

  15. Zooming into Molecular Biomarker Distribution through Spatially Resolved Mass Spectrometry on Intact Sediment Sections

    Wörmer, L.; Fuchser, J.; Alfken, S.; Elvert, M.; Schimmelmann, A.; Hinrichs, K. U.

    2016-02-01

    Marine microorganisms adapt to their habitat by structural modification of their membrane lipids. After sedimentation, and due to their persistence in the sedimentary record, the information archived in them remains available on geological time-scales. Thereby sedimentary lipid biomarkers become important informants of past environments. Conventional biomarker analysis is labor-intensive and requires cm-sized samples, temporal resolution is consequently low. We here present an approach, based on laser desorption ionization (LDI) coupled to ultra high resolution mass spectrometry, that avoids wet-chemical sample preparation and enables analysis directly on sediment sections at sub-mm spatial resolution. Our initial study targeted archaeal glycerol dialkyl glycerol tetraethers (GDGTs). GDGTS are ubiquitous and persistent components in marine sediments, and used in several, widely recognized paleoenvironmental proxies. Applied to an Eastern Mediterranean Sapropel layer, GDGT-profiles with previously unachieved temporal resolution were obtained, and pointed to a strong influence of high frequency cycles on sea-surface temperature and planktonic archaeal ecology. Spatial information furthermore revealed a new view on the fine-scale patchiness of lipid distribution. Following these pioneering studies, major developments are under way. A dedicated facility has been set up at MARUM/University of Bremen, which combines lipid biomarker and elemental analysis at sub-mm resolution (down to 50 µm). We present methods for other comprehensive lipid biomarkers (e.g. alkenones or sterols) that are currently being targeted; and the application of spatially resolved biomarker analysis to recent laminated sediments (Santa Barbara Basin), yielding informative profiles with subannual resolution. We also discuss criteria for analyte and sample selection, as well as the main potentialities and constraints of this new approach.

  16. Comparison of grain to grain orientation and stiffness mapping by spatially resolved acoustic spectroscopy and EBSD.

    Mark, A F; Li, W; Sharples, S; Withers, P J

    2017-07-01

    Our aim was to establish the capability of spatially resolved acoustic spectroscopy (SRAS) to map grain orientations and the anisotropy in stiffness at the sub-mm to micron scale by comparing the method with electron backscatter diffraction (EBSD) undertaken within a scanning electron microscope. In the former the grain orientations are deduced by measuring the spatial variation in elastic modulus; conversely, in EBSD the elastic anisotropy is deduced from direct measurements of the crystal orientations. The two test-cases comprise mapping the fusion zones for large TIG and MMA welds in thick power plant austenitic and ferritic steels, respectively; these are technologically important because, among other things, elastic anisotropy can cause ultrasonic weld inspection methods to become inaccurate because it causes bending in the paths of sound waves. The spatial resolution of SRAS is not as good as that for EBSD (∼100 μm vs. ∼a few nm), nor is the angular resolution (∼1.5° vs. ∼0.5°). However the method can be applied to much larger areas (currently on the order of 300 mm square), is much faster (∼5 times), is cheaper and easier to perform, and it could be undertaken on the manufacturing floor. Given these advantages, particularly to industrial users, and the on-going improvements to the method, SRAS has the potential to become a standard method for orientation mapping, particularly in cases where the elastic anisotropy is important over macroscopic/component length scales. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  17. AITSO: A Tool for Spatial Optimization Based on Artificial Immune Systems

    Zhao, Xiang; Liu, Yaolin; Liu, Dianfeng; Ma, Xiaoya

    2015-01-01

    A great challenge facing geocomputation and spatial analysis is spatial optimization, given that it involves various high-dimensional, nonlinear, and complicated relationships. Many efforts have been made with regard to this specific issue, and the strong ability of artificial immune system algorithms has been proven in previous studies. However, user-friendly professional software is still unavailable, which is a great impediment to the popularity of artificial immune systems. This paper describes a free, universal tool, named AITSO, which is capable of solving various optimization problems. It provides a series of standard application programming interfaces (APIs) which can (1) assist researchers in the development of their own problem-specific application plugins to solve practical problems and (2) allow the implementation of some advanced immune operators into the platform to improve the performance of an algorithm. As an integrated, flexible, and convenient tool, AITSO contributes to knowledge sharing and practical problem solving. It is therefore believed that it will advance the development and popularity of spatial optimization in geocomputation and spatial analysis. PMID:25678911

  18. AITSO: A Tool for Spatial Optimization Based on Artificial Immune Systems

    Xiang Zhao

    2015-01-01

    Full Text Available A great challenge facing geocomputation and spatial analysis is spatial optimization, given that it involves various high-dimensional, nonlinear, and complicated relationships. Many efforts have been made with regard to this specific issue, and the strong ability of artificial immune system algorithms has been proven in previous studies. However, user-friendly professional software is still unavailable, which is a great impediment to the popularity of artificial immune systems. This paper describes a free, universal tool, named AITSO, which is capable of solving various optimization problems. It provides a series of standard application programming interfaces (APIs which can (1 assist researchers in the development of their own problem-specific application plugins to solve practical problems and (2 allow the implementation of some advanced immune operators into the platform to improve the performance of an algorithm. As an integrated, flexible, and convenient tool, AITSO contributes to knowledge sharing and practical problem solving. It is therefore believed that it will advance the development and popularity of spatial optimization in geocomputation and spatial analysis.

  19. Spatial Treatment of the Slab-geometry Discrete Ordinates Equations Using Artificial Neural Networks

    Brantley, P S

    2001-01-01

    An artificial neural network (ANN) method is developed for treating the spatial variable of the one-group slab-geometry discrete ordinates (S N ) equations in a homogeneous medium with linearly anisotropic scattering. This ANN method takes advantage of the function approximation capability of multilayer ANNs. The discrete ordinates angular flux is approximated by a multilayer ANN with a single input representing the spatial variable x and N outputs representing the angular flux in each of the discrete ordinates angular directions. A global objective function is formulated which measures how accurately the output of the ANN approximates the solution of the discrete ordinates equations and boundary conditions at specified spatial points. Minimization of this objective function determines the appropriate values for the parameters of the ANN. Numerical results are presented demonstrating the accuracy of the method for both fixed source and incident angular flux problems

  20. Artificial neural networks for spatial distribution of fuel assemblies in reload of PWR reactors

    Oliveira, Edyene; Castro, Victor F.; Velásquez, Carlos E.; Pereira, Claubia, E-mail: claubia@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pós-Graduação em Ciências e Técnicas Nucleares

    2017-07-01

    An artificial neural network methodology is being developed in order to find an optimum spatial distribution of the fuel assemblies in a nuclear reactor core during reload. The main bounding parameter of the modelling was the neutron multiplication factor, k{sub ef{sub f}}. The characteristics of the network are defined by the nuclear parameters: cycle, burnup, enrichment, fuel type, and average power peak of each element. These parameters were obtained by the ORNL nuclear code package SCALE6.0. As for the artificial neural network, the ANN Feedforward Multi{sub L}ayer{sub P}erceptron with various layers and neurons were constructed. Three algorithms were used and tested: LM (Levenberg-Marquardt), SCG (Scaled Conjugate Gradient) and BayR (Bayesian Regularization). Artificial neural network have implemented using MATLAB 2015a version. As preliminary results, the spatial distribution of the fuel assemblies in the core using a neural network was slightly better than the standard core. (author)

  1. SDSS IV MaNGA - spatially resolved diagnostic diagrams: a proof that many galaxies are LIERs

    Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Yan, Renbin; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Heckman, Timothy M.; Law, David R.; Roman-Lopes, Alexandre; Pan, Kaike; Stanghellini, Letizia; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.

    2016-09-01

    We study the spatially resolved excitation properties of the ionized gas in a sample of 646 galaxies using integral field spectroscopy data from the Sloan Digital Sky Survey IV Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) programme. Making use of Baldwin-Philips-Terlevich diagnostic diagrams we demonstrate the ubiquitous presence of extended (kpc scale) low-ionization emission-line regions (LIERs) in both star-forming and quiescent galaxies. In star-forming galaxies LIER emission can be associated with diffuse ionized gas, most evident as extraplanar emission in edge-on systems. In addition, we identify two main classes of galaxies displaying LIER emission: `central LIER' (cLIER) galaxies, where central LIER emission is spatially extended, but accompanied by star formation at larger galactocentric distances, and `extended LIER' (eLIER) galaxies, where LIER emission is extended throughout the whole galaxy. In eLIER and cLIER galaxies, LIER emission is associated with radially flat, low H α equivalent width of line emission (<3 Å) and stellar population indices demonstrating the lack of young stellar populations, implying that line emission follows tightly the continuum due to the underlying old stellar population. The H α surface brightness radial profiles are always shallower than 1/r2 and the line ratio [O III] λ5007/[O II] λλ3727,29 (a tracer of the ionization parameter of the gas) shows a flat gradient. This combined evidence strongly supports the scenario in which LIER emission is not due to a central point source but to diffuse stellar sources, the most likely candidates being hot, evolved (post-asymptotic giant branch) stars. Shocks are observed to play a significant role in the ionization of the gas only in rare merging and interacting systems.

  2. A SPATIALLY RESOLVED INNER HOLE IN THE DISK AROUND GM AURIGAE

    Hughes, A. Meredith; Andrews, Sean M.; Wilner, David J.; Qi Chunhua; Espaillat, Catherine; Calvet, Nuria; D'Alessio, Paola; Williams, Jonathan P.; Hogerheijde, Michiel R.

    2009-01-01

    We present 0.''3 resolution observations of the disk around GM Aurigae with the Submillimeter Array (SMA) at a wavelength of 860 μm and with the Plateau de Bure Interferometer at a wavelength of 1.3 mm. These observations probe the distribution of disk material on spatial scales commensurate with the size of the inner hole predicted by models of the spectral energy distribution (SED). The data clearly indicate a sharp decrease in millimeter optical depth at the disk center, consistent with a deficit of material at distances less than ∼20 AU from the star. We refine the accretion disk model of Calvet et al. based on the unresolved SED and demonstrate that it reproduces well the spatially resolved millimeter continuum data at both available wavelengths. We also present complementary SMA observations of CO J = 3-2 and J = 2-1 emission from the disk at 2'' resolution. The observed CO morphology is consistent with the continuum model prediction, with two significant deviations: (1) the emission displays a larger CO J = 3-2/J = 2-1 line ratio than predicted, which may indicate additional heating of gas in the upper disk layers; and (2) the position angle of the kinematic rotation pattern differs by 11 deg. ± 2 deg. from that measured at smaller scales from the dust continuum, which may indicate the presence of a warp. We note that photoevaporation, grain growth, and binarity are unlikely mechanisms for inducing the observed sharp decrease in opacity or surface density at the disk center. The inner hole plausibly results from the dynamical influence of a planet on the disk material. Warping induced by a planet could also potentially explain the difference in position angle between the continuum and CO data sets.

  3. Final Technical Report - Consolidating Biomass Pretreatment with Saccharification by Resolving the Spatial Control Mechanisms of Fungi

    Schilling, Jonathan [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-07-06

    Consolidated bioprocessing (CBP) of lignocellulose combines enzymatic sugar release (saccharification) with fermentation, but pretreatments remain separate and costly. In nature, lignocellulose-degrading brown rot fungi consolidate pretreatment and saccharification, likely using spatial gradients to partition these incompatible reactions. With the field of biocatalysis maturing, reaction partitioning is increasingly reproducible for commercial use. Therefore, my goal was to resolve the reaction partitioning mechanisms of brown rot fungi so that they can be applied to bioconversion of lignocellulosic feedstocks. Brown rot fungi consolidate oxidative pretreatments with saccharification and are a focus for biomass refining because 1) they attain >99% sugar yield without destroying lignin, 2) they use a simplified cellulase suite that lacks exoglucanase, and 3) their non-enzymatic pretreatment is facilitative and may be accelerated. Specifically, I hypothesized that during brown rot, oxidative pretreatments occur ahead of enzymatic saccharification, spatially, and the fungus partitions these reactions using gradients in pH, lignin reactivity, and plant cell wall porosity. In fact, we found three key results during these experiments for this work: 1) Brown rot fungi have an inducible cellulase system, unlike previous descriptions of a constitutive mechanism. 2) The induction of cellulases is delayed until there is repression of oxidatively-linked genes, allowing the brown rot fungi to coordinate two incompatible reactions (oxidative pretreatment with enzymatic saccharification, to release wood sugars) in the same pieces of wood. 3) This transition is mediated by the same wood sugar, cellobiose, released by the oxidative pretreatment step. Collectively, these findings have been published in excellent journal outlets and have been presented at conferences around the United States, and they offer clear targets for gene discovery en route to making biofuels and biochemicals

  4. Spatially resolved characterization of biogenic manganese oxideproduction within a bacterial biofilm

    Toner, Brandy; Fakra, Sirine; Villalobos, Mario; Warwick, Tony; Sposito, Garrison

    2004-10-01

    Pseudomonas putida strain MnB1, a biofilm forming bacteria, was used as a model for the study of bacterial Mn oxidation in freshwater and soil environments. The oxidation of Mn{sub (aq)}{sup +2} by P. putida was characterized by spatially and temporally resolving the oxidation state of Mn in the presence of a bacterial biofilm using scanning transmission x-ray microscopy (STXM) combined with near edge x-ray absorption fine structure (NEXAFS) spectroscopy at the Mn-L{sub 2,3} absorption edges. Subsamples were collected from growth flasks containing 0.1 mM and 1 mM total Mn at 16, 24, 36 and 48 hours after inoculation. Immediately after collection, the unprocessed hydrated subsamples were imaged at 40 nm resolution. Manganese NEXAFS spectra were extracted from x-ray energy sequences of STXM images (stacks) and fit with linear combinations of well characterized reference spectra to obtain quantitative relative abundances of Mn(II), Mn(III) and Mn(IV). Careful consideration was given to uncertainty in the normalization of the reference spectra, choice of reference compounds, and chemical changes due to radiation damage. The STXM results confirm that Mn{sub (aq)}{sup +2} was removed from solution by P. putida and was concentrated as Mn(III) and Mn(IV) immediately adjacent to the bacterial cells. The Mn precipitates were completely enveloped by bacterial biofilm material. The distribution of Mn oxidation states was spatially heterogeneous within and between the clusters of bacterial cells. Scanning transmission x-ray microscopy is a promising tool to advance the study of hydrated interfaces between minerals and bacteria, particularly in cases where the structure of bacterial biofilms needs to be maintained.

  5. An approach to estimate spatial distribution of analyte within cells using spectrally-resolved fluorescence microscopy

    Sharma, Dharmendar Kumar; Irfanullah, Mir; Basu, Santanu Kumar; Madhu, Sheri; De, Suman; Jadhav, Sameer; Ravikanth, Mangalampalli; Chowdhury, Arindam

    2017-03-01

    While fluorescence microscopy has become an essential tool amongst chemists and biologists for the detection of various analyte within cellular environments, non-uniform spatial distribution of sensors within cells often restricts extraction of reliable information on relative abundance of analytes in different subcellular regions. As an alternative to existing sensing methodologies such as ratiometric or FRET imaging, where relative proportion of analyte with respect to the sensor can be obtained within cells, we propose a methodology using spectrally-resolved fluorescence microscopy, via which both the relative abundance of sensor as well as their relative proportion with respect to the analyte can be simultaneously extracted for local subcellular regions. This method is exemplified using a BODIPY sensor, capable of detecting mercury ions within cellular environments, characterized by spectral blue-shift and concurrent enhancement of emission intensity. Spectral emission envelopes collected from sub-microscopic regions allowed us to compare the shift in transition energies as well as integrated emission intensities within various intracellular regions. Construction of a 2D scatter plot using spectral shifts and emission intensities, which depend on the relative amount of analyte with respect to sensor and the approximate local amounts of the probe, respectively, enabled qualitative extraction of relative abundance of analyte in various local regions within a single cell as well as amongst different cells. Although the comparisons remain semi-quantitative, this approach involving analysis of multiple spectral parameters opens up an alternative way to extract spatial distribution of analyte in heterogeneous systems. The proposed method would be especially relevant for fluorescent probes that undergo relatively nominal shift in transition energies compared to their emission bandwidths, which often restricts their usage for quantitative ratiometric imaging in

  6. Spatially-resolved, three-dimensional spray characterization of impinging jets by digital in-line holography

    Gao, Jian; Rodrigues, Neil; Sojka, Paul; Chen, Jun

    2014-11-01

    The impinging jet injector is a preferred method for the atomization of liquid rocket propellants. The majority of experimental studies in literature are not spatially-resolved due to the limitations of widely available point-wise and two-dimensional (2D) diagnostic techniques such as phase Doppler anemometry (PDA), which requires significant experimental repetitions to give spatially-resolved measurements. In the present study, digital in-line holography (DIH) is used to provide spatially-resolved, three-dimensional (3D) characteristics of impinging jet sprays. A double-exposure DIH setup is configured to measure droplet 3D, three-component velocity as well as the size distribution. The particle information is extracted by the hybrid method, which is recently proposed as a particle detection method. To enlarge the detection volume, two parallel, collimated laser beams are used to simultaneously probe the spray at two locations, and two identical cameras are used to record the corresponding holograms. Such a setup has a detection volume of approximately 20 cm by 3.6 cm by 4.8 cm. Sprays of both Newtonian and non-Newtonian liquids corresponding to regimes at relatively lower jet Reynolds and Weber numbers are investigated. Measurements from DIH are further verified by comparison with experimental data obtained from shadowgraph and PDA. It is revealed that DIH is particularly suitable to provide spatially-resolved, 3D measurements of impinging jet sprays that are not particularly dense.

  7. Spatially-resolved studies of charge-density-wave phase slip and dynamics in NbSe3

    Lemay, S.G.; Adelman, T.L.; Zaitsev-Zotov, S.V.; Thorne, R.E.

    1999-01-01

    We review our spatially and temporally resolved studies of charge-density-wave (CDW) phase slip and dynamics in NbSe 3 . Measurements of the steady-state CDW current, phase slip and strain profiles and their transient evolutions in response to a change in current direction provide a detailed picture of the interplay between elastic deformations and plasticity in this material. (orig.)

  8. SPATIALLY RESOLVED HCN ABSORPTION FEATURES IN THE CIRCUMNUCLEAR REGION OF NGC 1052

    Sawada-Satoh, Satoko [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-12 Hoshigaoka-cho, Mizusawa-ku, Oshu, Iwate 023-0861 (Japan); Roh, Duk-Gyoo; Oh, Se-Jin; Lee, Sang-Sung; Byun, Do-Young; Yeom, Jae-Hwan; Jung, Dong-Kyu; Kim, Hyo-Ryoung; Hwang, Ju-Yeon [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong, Daejeon 34055 (Korea, Republic of); Kameno, Seiji, E-mail: satoko.ss@nao.ac.jp, E-mail: sss@mx.ibaraki.ac.jp [Joint ALMA Observatory, Alonso de Cordova 3107 Vitacura, Santiago 763 0355 (Chile)

    2016-10-10

    We present the first VLBI detection of HCN molecular absorption in the nearby active galactic nucleus NGC 1052. Utilizing the 1 mas resolution achieved by the Korean VLBI Network, we have spatially resolved the HCN absorption against a double-sided nuclear jet structure. Two velocity features of HCN absorption are detected significantly at the radial velocity of 1656 and 1719 km s{sup −1}, redshifted by 149 and 212 km s{sup −1} with respect to the systemic velocity of the galaxy. The column density of the HCN molecule is estimated to be 10{sup 15}–10{sup 16} cm{sup −2}, assuming an excitation temperature of 100–230 K. The absorption features show high optical depth localized on the receding jet side, where the free–free absorption occurred due to the circumnuclear torus. The size of the foreground absorbing molecular gas is estimated to be on approximately one-parsec scales, which agrees well with the approximate size of the circumnuclear torus. HCN absorbing gas is likely to be several clumps smaller than 0.1 pc inside the circumnuclear torus. The redshifted velocities of the HCN absorption features imply that HCN absorbing gas traces ongoing infall motion inside the circumnuclear torus onto the central engine.

  9. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS

    Fischer, P. D.; Brown, M. E.; Hand, K. P.

    2015-01-01

    We present a comprehensive analysis of spatially resolved moderate spectral resolution near-infrared spectra obtained with the adaptive optics system at the Keck Observatory. We identify three compositionally distinct end member regions: the trailing hemisphere bullseye, the leading hemisphere upper latitudes, and a third component associated with leading hemisphere chaos units. We interpret the composition of the three end member regions to be dominated by irradiation products, water ice, and evaporite deposits or salt brines, respectively. The third component is associated with geological features and distinct from the geography of irradiation, suggesting an endogenous identity. Identifying the endogenous composition is of particular interest for revealing the subsurface composition. However, its spectrum is not consistent with linear mixtures of the salt minerals previously considered relevant to Europa. The spectrum of this component is distinguished by distorted hydration features rather than distinct spectral features, indicating hydrated minerals but making unique identification difficult. In particular, it lacks features common to hydrated sulfate minerals, challenging the traditional view of an endogenous salty component dominated by Mg-sulfates. Chloride evaporite deposits are one possible alternative

  10. Spatially resolved micro-Raman observation on the phase separation of effloresced sea salt droplets.

    Xiao, Han-Shuang; Dong, Jin-Ling; Wang, Liang-Yu; Zhao, Li-Jun; Wang, Feng; Zhang, Yun-Hong

    2008-12-01

    We report on the investigation of the phase separation of individual seawater droplets in the efflorescence processes with the spatially resolved Raman system. Upon decreasing the relative humidity (RH), CaSO4.0.5H2O separated out foremost fromthe droplet atan unexpectedly high RH of approcimately 90%. Occasionally, CaSO4.2H2O substituted for CaSO4.O.5H2O crystallizing first at approximately 78% RH. Relatively large NaCI solids followed to crystallize at approximately 55% RH and led to the great loss of the solution. Then, the KMgCl3.6H2O crystallites separated out from the residual solutions, adjacentto NaCl at approximately 44% RH. Moreover, a shell structure of dried sea salt particle was found to form at low RHs, with the NaCl crystals in the core and minor supersaturated solutions covered with MgSO4 gel coating on the surface. Ultimately, the shielded solution partly effloresced into MgSO4 hydrates at very dry state (<5% RH).

  11. Algorithm of extraction optics properties from the measurement of spatially resolved diffuse reflectance

    Cunill Rodriguez, Margarita; Delgado Atencio, Jose Alberto; Castro Ramos, Jorge; Vazquez y Montiel, Sergio

    2009-01-01

    There are several methods to obtain the optical parameters of biological tissues from the measurement of spatially resolved diffuse reflectance. One of them is well-known as Video Reflectometry in which a camera CCD is used as detection and recording system of the lateral distribution of diffuse reflectance Rd(r) when an infinitely narrow light beam impinges on the tissue. In this paper, we present an algorithm that we have developed for the calibration and application of an experimental set-up of Video Reflectometry destined to extract the optical properties of models of biological tissues with optical properties similar to the human skin. The results of evaluation of the accuracy of the algorithm for optical parameters extraction is shown for a set of proofs reflectance curves with known values of these parameters. In the generation of these curves the simulation of measurement errors was also considered. The results show that it is possible to extract the optical properties with an accuracy error of less than 1% for all the proofs curves. (Author)

  12. DARK MATTER SUBSTRUCTURE DETECTION USING SPATIALLY RESOLVED SPECTROSCOPY OF LENSED DUSTY GALAXIES

    Hezaveh, Yashar; Holder, Gilbert; Dalal, Neal; Kuhlen, Michael; Marrone, Daniel; Murray, Norman; Vieira, Joaquin

    2013-01-01

    We investigate how strong lensing of dusty, star-forming galaxies (DSFGs) by foreground galaxies can be used as a probe of dark matter halo substructure. We find that spatially resolved spectroscopy of lensed sources allows dramatic improvements to measurements of lens parameters. In particular, we find that modeling of the full, three-dimensional (angular position and radial velocity) data can significantly facilitate substructure detection, increasing the sensitivity of observables to lower mass subhalos. We carry out simulations of lensed dusty sources observed by early ALMA (Cycle 1) and use a Fisher matrix analysis to study the parameter degeneracies and mass detection limits of this method. We find that even with conservative assumptions, it is possible to detect galactic dark matter subhalos of ∼10 8 M ☉ with high significance in most lensed DSFGs. Specifically, we find that in typical DSFG lenses, there is a ∼55% probability of detecting a substructure with M > 10 8 M ☉ with more than 5σ detection significance in each lens, if the abundance of substructure is consistent with previous lensing results. The full ALMA array, with its significantly enhanced sensitivity and resolution, should improve these estimates considerably. Given the sample of ∼100 lenses provided by surveys such as the South Pole Telescope, our understanding of dark matter substructure in typical galaxy halos is poised to improve dramatically over the next few years.

  13. DARK MATTER SUBSTRUCTURE DETECTION USING SPATIALLY RESOLVED SPECTROSCOPY OF LENSED DUSTY GALAXIES

    Hezaveh, Yashar; Holder, Gilbert [Department of Physics, McGill University, 3600 Rue University, Montreal, Quebec H3A 2T8 (Canada); Dalal, Neal [Astronomy Department, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Kuhlen, Michael [Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); Marrone, Daniel [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Murray, Norman [CITA, University of Toronto, 60 St. George Street, Toronto, ON M5S 3H8 (Canada); Vieira, Joaquin [California Institute of Technology, 1200 East California Blvd, MC 249-17, Pasadena, CA 91125 (United States)

    2013-04-10

    We investigate how strong lensing of dusty, star-forming galaxies (DSFGs) by foreground galaxies can be used as a probe of dark matter halo substructure. We find that spatially resolved spectroscopy of lensed sources allows dramatic improvements to measurements of lens parameters. In particular, we find that modeling of the full, three-dimensional (angular position and radial velocity) data can significantly facilitate substructure detection, increasing the sensitivity of observables to lower mass subhalos. We carry out simulations of lensed dusty sources observed by early ALMA (Cycle 1) and use a Fisher matrix analysis to study the parameter degeneracies and mass detection limits of this method. We find that even with conservative assumptions, it is possible to detect galactic dark matter subhalos of {approx}10{sup 8} M{sub Sun} with high significance in most lensed DSFGs. Specifically, we find that in typical DSFG lenses, there is a {approx}55% probability of detecting a substructure with M > 10{sup 8} M{sub Sun} with more than 5{sigma} detection significance in each lens, if the abundance of substructure is consistent with previous lensing results. The full ALMA array, with its significantly enhanced sensitivity and resolution, should improve these estimates considerably. Given the sample of {approx}100 lenses provided by surveys such as the South Pole Telescope, our understanding of dark matter substructure in typical galaxy halos is poised to improve dramatically over the next few years.

  14. The PyCASSO database: spatially resolved stellar population properties for CALIFA galaxies

    de Amorim, A. L.; García-Benito, R.; Cid Fernandes, R.; Cortijo-Ferrero, C.; González Delgado, R. M.; Lacerda, E. A. D.; López Fernández, R.; Pérez, E.; Vale Asari, N.

    2017-11-01

    The Calar Alto Legacy Integral Field Area (CALIFA) survey, a pioneer in integral field spectroscopy legacy projects, has fostered many studies exploring the information encoded on the spatially resolved data on gaseous and stellar features in the optical range of galaxies. We describe a value-added catalogue of stellar population properties for CALIFA galaxies analysed with the spectral synthesis code starlight and processed with the pycasso platform. Our public database (http://pycasso.ufsc.br/, mirror at http://pycasso.iaa.es/) comprises 445 galaxies from the CALIFA Data Release 3 with COMBO data. The catalogue provides maps for the stellar mass surface density, mean stellar ages and metallicities, stellar dust attenuation, star formation rates, and kinematics. Example applications both for individual galaxies and for statistical studies are presented to illustrate the power of this data set. We revisit and update a few of our own results on mass density radial profiles and on the local mass-metallicity relation. We also show how to employ the catalogue for new investigations, and show a pseudo Schmidt-Kennicutt relation entirely made with information extracted from the stellar continuum. Combinations to other databases are also illustrated. Among other results, we find a very good agreement between star formation rate surface densities derived from the stellar continuum and the H α emission. This public catalogue joins the scientific community's effort towards transparency and reproducibility, and will be useful for researchers focusing on (or complementing their studies with) stellar properties of CALIFA galaxies.

  15. Voxel-based measurement sensitivity of spatially resolved near-infrared spectroscopy in layered tissues.

    Niwayama, Masatsugu

    2018-03-01

    We quantitatively investigated the measurement sensitivity of spatially resolved spectroscopy (SRS) across six tissue models: cerebral tissue, a small animal brain, the forehead of a fetus, an adult brain, forearm muscle, and thigh muscle. The optical path length in the voxel of the model was analyzed using Monte Carlo simulations. It was found that the measurement sensitivity can be represented as the product of the change in the absorption coefficient and the difference in optical path length in two states with different source-detector distances. The results clarified the sensitivity ratio between the surface layer and the deep layer at each source-detector distance for each model and identified changes in the deep measurement area when one of the detectors was close to the light source. A comparison was made with the results from continuous-wave spectroscopy. The study also identified measurement challenges that arise when the surface layer is inhomogeneous. Findings on the measurement sensitivity of SRS at each voxel and in each layer can support the correct interpretation of measured values when near-infrared oximetry or functional near-infrared spectroscopy is used to investigate different tissue structures. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  16. Spatially resolved electronic structure inside and outside the vortex cores of a high-temperature superconductor

    Mitrović, V. F.; Sigmund, E. E.; Eschrig, M.; Bachman, H. N.; Halperin, W. P.; Reyes, A. P.; Kuhns, P.; Moulton, W. G.

    2001-10-01

    Puzzling aspects of high-transition-temperature (high-Tc) superconductors include the prevalence of magnetism in the normal state and the persistence of superconductivity in high magnetic fields. Superconductivity and magnetism generally are thought to be incompatible, based on what is known about conventional superconductors. Recent results, however, indicate that antiferromagnetism can appear in the superconducting state of a high-Tc superconductor in the presence of an applied magnetic field. Magnetic fields penetrate a superconductor in the form of quantized flux lines, each of which represents a vortex of supercurrents. Superconductivity is suppressed in the core of the vortex and it has been suggested that antiferromagnetism might develop there. Here we report the results of a high-field nuclear-magnetic-resonance (NMR) imaging experiment in which we spatially resolve the electronic structure of near-optimally doped YBa2Cu3O7-δ inside and outside vortex cores. Outside the cores, we find strong antiferromagnetic fluctuations, whereas inside we detect electronic states that are rather different from those found in conventional superconductors.

  17. Spatially resolved synchrotron radiation induced X-ray fluorescence analyses of rare Rembrandt silverpoint drawings

    Reiche, I.; Radtke, M.; Berger, A.; Goerner, W.; Merchel, S.; Riesemeier, H.; Bevers, H.

    2006-01-01

    New analyses of a series of very rare silverpoint drawings that were executed by Rembrandt Harmensz. van Rijn (1606-1669) which are kept today in the Kupferstichkabinett (Museum of Prints and Drawings) of the State Museums of Berlin are reported here. Analysis of these drawings requires particular attention because the study has to be fully non-destructive and extremely sensitive. The metal alloy on the paper does not exceed some hundreds of μg/cm 2 . Therefore, synchrotron radiation induced X-ray fluorescence (SR-XRF) is - together with external micro-proton-induced X-ray emission - the only well-suited method for the analyses of metalpoint drawings. In some primary work, about 25 German and Flemish metalpoint drawings were investigated using spatially resolved SR-XRF analysis at the BAMline at BESSY. This study enlarges the existing French-German database of metalpoint drawings dating from the 15th and 16th centuries, as these Rembrandt drawings originate from the 17th century where this graphical technique was even rarer and already obsolete. It also illustrates how SR-XRF analysis can reinforce art historical assumptions on the dating of drawings and their connection. (orig.)

  18. Spatially Resolved MaNGA Observations of the Host Galaxy of Superluminous Supernova 2017egm

    Chen, Ting-Wan; Schady, Patricia; Xiao, Lin; Eldridge, J. J.; Schweyer, Tassilo; Lee, Chien-Hsiu; Yu, Po-Chieh; Smartt, Stephen J.; Inserra, Cosimo

    2017-11-01

    Superluminous supernovae (SLSNe) are found predominantly in dwarf galaxies, indicating that their progenitors have a low metallicity. However, the most nearby SLSN to date, SN 2017egm, occurred in the spiral galaxy NGC 3191, which has a relatively high stellar mass and correspondingly high metallicity. In this Letter, we present detailed analysis of the nearby environment of SN 2017egm using MaNGA IFU data, which provides spectral data on kiloparsec scales. From the velocity map we find no evidence that SN 2017egm occurred within some intervening satellite galaxy, and at the SN position most metallicity diagnostics yield a solar and above solar metallicity (12+{log}({{O}}/{{H}})∼ 8.8{--}9.1). Additionally, we measure a small Hα equivalent width (EW) at the SN position of just 34 Å, which is one of the lowest EWs measured at any SLSN or gamma-ray burst position, and indicative of the progenitor star being comparatively old. We also compare the observed properties of NGC 3191 with other SLSN host galaxies. The solar-metallicity environment at the position of SN 2017egm presents a challenge to our theoretical understanding, and our spatially resolved spectral analysis provides further constraints on the progenitors of SLSNe.

  19. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS

    Fischer, P. D.; Brown, M. E. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Hand, K. P., E-mail: pfischer@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2015-11-15

    We present a comprehensive analysis of spatially resolved moderate spectral resolution near-infrared spectra obtained with the adaptive optics system at the Keck Observatory. We identify three compositionally distinct end member regions: the trailing hemisphere bullseye, the leading hemisphere upper latitudes, and a third component associated with leading hemisphere chaos units. We interpret the composition of the three end member regions to be dominated by irradiation products, water ice, and evaporite deposits or salt brines, respectively. The third component is associated with geological features and distinct from the geography of irradiation, suggesting an endogenous identity. Identifying the endogenous composition is of particular interest for revealing the subsurface composition. However, its spectrum is not consistent with linear mixtures of the salt minerals previously considered relevant to Europa. The spectrum of this component is distinguished by distorted hydration features rather than distinct spectral features, indicating hydrated minerals but making unique identification difficult. In particular, it lacks features common to hydrated sulfate minerals, challenging the traditional view of an endogenous salty component dominated by Mg-sulfates. Chloride evaporite deposits are one possible alternative.

  20. Spatially and time-resolved magnetization dynamics driven by spin-orbit torques

    Baumgartner, Manuel; Garello, Kevin; Mendil, Johannes; Avci, Can Onur; Grimaldi, Eva; Murer, Christoph; Feng, Junxiao; Gabureac, Mihai; Stamm, Christian; Acremann, Yves; Finizio, Simone; Wintz, Sebastian; Raabe, Jörg; Gambardella, Pietro

    2017-10-01

    Current-induced spin-orbit torques are one of the most effective ways to manipulate the magnetization in spintronic devices, and hold promise for fast switching applications in non-volatile memory and logic units. Here, we report the direct observation of spin-orbit-torque-driven magnetization dynamics in Pt/Co/AlOx dots during current pulse injection. Time-resolved X-ray images with 25 nm spatial and 100 ps temporal resolution reveal that switching is achieved within the duration of a subnanosecond current pulse by the fast nucleation of an inverted domain at the edge of the dot and propagation of a tilted domain wall across the dot. The nucleation point is deterministic and alternates between the four dot quadrants depending on the sign of the magnetization, current and external field. Our measurements reveal how the magnetic symmetry is broken by the concerted action of the damping-like and field-like spin-orbit torques and the Dzyaloshinskii-Moriya interaction, and show that reproducible switching events can be obtained for over 1012 reversal cycles.

  1. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy.

    Hirsch, M; Catchpole-Smith, S; Patel, R; Marrow, P; Li, Wenqi; Tuck, C; Sharples, S D; Clare, A T

    2017-09-01

    Developments in additive manufacturing technology are serving to expand the potential applications. Critical developments are required in the supporting areas of measurement and in process inspection to achieve this. CM247LC is a nickel superalloy that is of interest for use in aerospace and civil power plants. However, it is difficult to process via selective laser melting (SLM) as it suffers from cracking during rapid cooling and solidification. This limits the viability of CM247LC parts created using SLM. To quantify part integrity, spatially resolved acoustic spectroscopy (SRAS) has been identified as a viable non-destructive evaluation technique. In this study, a combination of optical microscopy and SRAS was used to identify and classify the surface defects present in SLM-produced parts. By analysing the datasets and scan trajectories, it is possible to correlate morphological information with process parameters. Image processing was used to quantify porosity and cracking for bulk density measurement. Analysis of surface acoustic wave data showed that an error in manufacture in the form of an overscan occurred. Comparing areas affected by overscan with a bulk material, a change in defect density from 1.17% in the bulk material to 5.32% in the overscan regions was observed, highlighting the need to reduce overscan areas in manufacture.

  2. Meso-scale defect evaluation of selective laser melting using spatially resolved acoustic spectroscopy

    Hirsch, M.; Catchpole-Smith, S.; Patel, R.; Marrow, P.; Li, Wenqi; Tuck, C.; Sharples, S. D.; Clare, A. T.

    2017-09-01

    Developments in additive manufacturing technology are serving to expand the potential applications. Critical developments are required in the supporting areas of measurement and in process inspection to achieve this. CM247LC is a nickel superalloy that is of interest for use in aerospace and civil power plants. However, it is difficult to process via selective laser melting (SLM) as it suffers from cracking during rapid cooling and solidification. This limits the viability of CM247LC parts created using SLM. To quantify part integrity, spatially resolved acoustic spectroscopy (SRAS) has been identified as a viable non-destructive evaluation technique. In this study, a combination of optical microscopy and SRAS was used to identify and classify the surface defects present in SLM-produced parts. By analysing the datasets and scan trajectories, it is possible to correlate morphological information with process parameters. Image processing was used to quantify porosity and cracking for bulk density measurement. Analysis of surface acoustic wave data showed that an error in manufacture in the form of an overscan occurred. Comparing areas affected by overscan with a bulk material, a change in defect density from 1.17% in the bulk material to 5.32% in the overscan regions was observed, highlighting the need to reduce overscan areas in manufacture.

  3. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I-VI. The MSRRS sensor is commercially available under the brand name biozoom.

  4. Spatially resolved soft x-ray diagnostics in fusion energy research

    Mlynar, J.; Weinzettl, V.; Imrisek, M.; Loeffelmann, V.

    2013-01-01

    With construction of ITER, the fusion community has progressed into a new stage of research with increased focus on reactor technologies. Corresponding development of diagnostic systems for fusion is required, including research of novel diagnostic methods, validation of radiation hard detectors, and tests of sensors for real-time operation and control, which comprise development of tools for fast data analyses. In parallel, diagnostic systems on running fusion experiments substantially contribute to better understanding of reactor-relevant plasma physics, in particular of energy confinement, plasma stability and transport of impurities. In this respect, spatially resolved Soft X-ray (SXR) diagnostic systems present an interesting case study of development towards reactor-relevant systems. In magnetic confinement fusion research, spatial distribution of SXR radiation with spectral range typically 1 keV - 15 keV is mostly measured by a photosensitive single-row semiconductor elements in a pinhole camera shielded by a beryllium foil. The SXR intensity strongly depends on plasma density, temperature and effective charge, which carry a valuable information on the plasma core physics. Data from SXR diagnostic can be also used for the operation control, among others due to their sensitivity to heavy impurity concentration or to the position of the peak temperature. In order to reconstruct the spatial distribution of SXR plasma emission from the measured line integrated signals, several tomographic methods have been developed and validated. However, the semiconductor elements cannot survive in harsh conditions of future fusion reactors due to radiation damage, which calls for development of radiation hard SXR cameras. In this contribution, role of the SXR diagnostics will be presented in experience and future plans of the Czech tokamak COMPASS (IPP Prague) and the French tokamak TORE SUPRA (CEA Cadarache). In IPP Prague, data from SXR cameras recently contributed to

  5. Spatially resolving the dust properties and submillimetre excess in M 33

    Relaño, M.; De Looze, I.; Kennicutt, R. C.; Lisenfeld, U.; Dariush, A.; Verley, S.; Braine, J.; Tabatabaei, F.; Kramer, C.; Boquien, M.; Xilouris, M.; Gratier, P.

    2018-05-01

    Context. The relative abundance of the dust grain types in the interstellar medium is directly linked to physical quantities that trace the evolution of galaxies. Because of the poor spatial resolution of the infrared and submillimetre data, we are able to study the dependence of the resolved infrared spectral energy distribution (SED) across regions of the interstellar medium (ISM) with different physical properties in just a few objects. Aims: We aim to study the dust properties of the whole disc of M 33 at spatial scales of 170 pc. This analysis allows us to infer how the relative dust grain abundance changes with the conditions of the ISM, study the existence of a submillimetre excess and look for trends of the gas-to-dust mass ratio (GDR) with other physical properties of the galaxy. Methods: For each pixel in the disc of M 33 we have fitted the infrared SED using a physically motivated dust model that assumes an emissivity index β close to two. We applied a Bayesian statistical method to fit the individual SEDs and derived the best output values from the study of the probability density function of each parameter. We derived the relative amount of the different dust grains in the model, the total dust mass, and the strength of the interstellar radiation field (ISRF) heating the dust at each spatial location. Results: The relative abundance of very small grains tends to increase, and for big grains to decrease, at high values of Hα luminosity. This shows that the dust grains are modified inside the star-forming regions, in agreement with a theoretical framework of dust evolution under different physical conditions. The radial dependence of the GDR is consistent with the shallow metallicity gradient observed in this galaxy. The strength of the ISRF derived in our model correlates with the star formation rate in the galaxy in a pixel by pixel basis. Although this is expected, it is the first time that a correlation between the two quantities has been reported

  6. Spatially resolved vertical vorticity in solar supergranulation using helioseismology and local correlation tracking

    Langfellner, J.; Gizon, L.; Birch, A. C.

    2015-09-01

    Flow vorticity is a fundamental property of turbulent convection in rotating systems. Solar supergranules exhibit a preferred sense of rotation, which depends on the hemisphere. This is due to the Coriolis force acting on the diverging horizontal flows. We aim to spatially resolve the vertical flow vorticity of the average supergranule at different latitudes, both for outflow and inflow regions. To measure the vertical vorticity, we use two independent techniques: time-distance helioseismology (TD) and local correlation tracking of granules in intensity images (LCT) using data from the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO). Both maps are corrected for center-to-limb systematic errors. We find that 8 h TD and LCT maps of vertical vorticity are highly correlated at large spatial scales. Associated with the average supergranule outflow, we find tangential (vortical) flows that reach about 10 m s-1 in the clockwise direction at 40° latitude. In average inflow regions, the tangential flow reaches the same magnitude, but in the anticlockwise direction. These tangential velocities are much smaller than the radial (diverging) flow component (300 m s-1 for the average outflow and 200 m s-1 for the average inflow). The results for TD and LCT as measured from HMI are in excellent agreement for latitudes between -60° and 60°. From HMI LCT, we measure the vorticity peak of the average supergranule to have a full width at half maximum of about 13 Mm for outflows and 8 Mm for inflows. This is larger than the spatial resolution of the LCT measurements (about 3 Mm). On the other hand, the vorticity peak in outflows is about half the value measured at inflows (e.g., 4 × 10-6 s-1 clockwise compared to 8 × 10-6 s-1 anticlockwise at 40° latitude). Results from the Michelson Doppler Imager (MDI) on board the Solar and Heliospheric Observatory (SOHO) obtained in 2010 are biased compared to the HMI/SDO results for the same period

  7. Estimating the spatial distribution of artificial groundwater recharge using multiple tracers.

    Moeck, Christian; Radny, Dirk; Auckenthaler, Adrian; Berg, Michael; Hollender, Juliane; Schirmer, Mario

    2017-10-01

    Stable isotopes of water, organic micropollutants and hydrochemistry data are powerful tools for identifying different water types in areas where knowledge of the spatial distribution of different groundwater is critical for water resource management. An important question is how the assessments change if only one or a subset of these tracers is used. In this study, we estimate spatial artificial infiltration along an infiltration system with stage-discharge relationships and classify different water types based on the mentioned hydrochemistry data for a drinking water production area in Switzerland. Managed aquifer recharge via surface water that feeds into the aquifer creates a hydraulic barrier between contaminated groundwater and drinking water wells. We systematically compare the information from the aforementioned tracers and illustrate differences in distribution and mixing ratios. Despite uncertainties in the mixing ratios, we found that the overall spatial distribution of artificial infiltration is very similar for all the tracers. The highest infiltration occurred in the eastern part of the infiltration system, whereas infiltration in the western part was the lowest. More balanced infiltration within the infiltration system could cause the elevated groundwater mound to be distributed more evenly, preventing the natural inflow of contaminated groundwater. Dedicated to Professor Peter Fritz on the occasion of his 80th birthday.

  8. A novel artificial immune algorithm for spatial clustering with obstacle constraint and its applications.

    Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji

    2014-01-01

    An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.

  9. A Novel Artificial Immune Algorithm for Spatial Clustering with Obstacle Constraint and Its Applications

    Liping Sun

    2014-01-01

    Full Text Available An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.

  10. Dose calculation for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema

    Monajemi, T. T.; Clements, Charles M.; Sloboda, Ron S.

    2011-01-01

    Purpose: The objectives of this study were (i) to develop a dose calculation method for permanent prostate implants that incorporates a clinically motivated model for edema and (ii) to illustrate the use of the method by calculating the preimplant dosimetry error for a reference configuration of 125 I, 103 Pd, and 137 Cs seeds subject to edema-induced motions corresponding to a variety of model parameters. Methods: A model for spatially anisotropic edema that resolves linearly with time was developed based on serial magnetic resonance imaging measurements made previously at our center to characterize the edema for a group of n=40 prostate implant patients [R. S. Sloboda et al., ''Time course of prostatic edema post permanent seed implant determined by magnetic resonance imaging,'' Brachytherapy 9, 354-361 (2010)]. Model parameters consisted of edema magnitude, Δ, and period, T. The TG-43 dose calculation formalism for a point source was extended to incorporate the edema model, thus enabling calculation via numerical integration of the cumulative dose around an individual seed in the presence of edema. Using an even power piecewise-continuous polynomial representation for the radial dose function, the cumulative dose was also expressed in closed analytical form. Application of the method was illustrated by calculating the preimplant dosimetry error, RE preplan , in a 5x5x5 cm 3 volume for 125 I (Oncura 6711), 103 Pd (Theragenics 200), and 131 Cs (IsoRay CS-1) seeds arranged in the Radiological Physics Center test case 2 configuration for a range of edema relative magnitudes (Δ=[0.1,0.2,0.4,0.6,1.0]) and periods (T=[28,56,84] d). Results were compared to preimplant dosimetry errors calculated using a variation of the isotropic edema model developed by Chen et al. [''Dosimetric effects of edema in permanent prostate seed implants: A rigorous solution,'' Int. J. Radiat. Oncol., Biol., Phys. 47, 1405-1419 (2000)]. Results: As expected, RE preplan for our edema model

  11. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    Magaryan, K.A.; Mikhailov, M.A.; Karimullin, K.R.; Knyazev, M.V.; Eremchev, I.Y.; Naumov, A.V.; Vasilieva, I.A.; Klimusheva, G.V.

    2016-01-01

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm 2 . Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  12. Spatially-resolved luminescence spectroscopy of CdSe quantum dots synthesized in ionic liquid crystal matrices

    Magaryan, K.A., E-mail: xmagaros@gmail.com [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Mikhailov, M.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Karimullin, K.R. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); E.K. Zavoyski Kazan Physical-Technical Institute of RAS, 10/7 Sibirski trakt Str., Kazan 420029 (Russian Federation); Knyazev, M.V.; Eremchev, I.Y. [Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Naumov, A.V. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Institute for Spectroscopy of RAS, 5 Fizicheskaya Str., Troitsk, Moscow 142190 (Russian Federation); Vasilieva, I.A. [Moscow State Pedagogical University, 29 Malaya Pirogovskaya Str., Moscow 119992 (Russian Federation); Klimusheva, G.V. [Institute of Physics, NAS of Ukraine, 46 Prospect Nauki, Kiev 03028 (Ukraine)

    2016-01-15

    The paper is devoted to investigation of luminescence properties of new quantum dot (QD)-doped materials. We studied CdSe QDs (1.8 nm and 2.3 nm) grown inside of a liquid crystalline cadmium alcanoate matrix. Temperature dependence of parameters of fluorescence spectra obtained in a wide temperature range using epi-luminescence microscopy technique was analyzed. Spatially-resolved luminescence images were measured for the areas of the samples of 150×150 µm{sup 2}. Strong correlation between fluorescence spectra and sample structure was observed. - Highlights: • Glassy matrix with CdSe quantum dots inside fabricated in liquid crystalline mesophase. • Study of luminescence properties in a wide range of low temperatures. • Strong dependence of the luminescence spectra on spatial inhomogeneities. • Spatially-resolved luminescence imaging of quantum dots in liquid crystalline matrix.

  13. Spatially-resolved star formation histories of CALIFA galaxies. Implications for galaxy formation

    González Delgado, R. M.; Pérez, E.; Cid Fernandes, R.; García-Benito, R.; López Fernández, R.; Vale Asari, N.; Cortijo-Ferrero, C.; de Amorim, A. L.; Lacerda, E. A. D.; Sánchez, S. F.; Lehnert, M. D.; Walcher, C. J.

    2017-11-01

    This paper presents the spatially resolved star formation history (SFH) of nearby galaxies with the aim of furthering our understanding of the different processes involved in the formation and evolution of galaxies. To this end, we apply the fossil record method of stellar population synthesis to a rich and diverse data set of 436 galaxies observed with integral field spectroscopy in the CALIFA survey. The sample covers a wide range of Hubble types, with stellar masses ranging from M⋆ 109 to 7 × 1011 M⊙. Spectral synthesis techniques are applied to the datacubes to retrieve the spatially resolved time evolution of the star formation rate (SFR), its intensity (ΣSFR), and other descriptors of the 2D SFH in seven bins of galaxy morphology (E, S0, Sa, Sb, Sbc, Sc, and Sd) and five bins of stellar mass. Our main results are that (a) galaxies form very fast independently of their current stellar mass, with the peak of star formation at high redshift (z > 2). Subsequent star formation is driven by M⋆ and morphology, with less massive and later type spirals showing more prolonged periods of star formation. (b) At any epoch in the past, the SFR is proportional to M⋆, with most massive galaxies having the highest absolute (but lowest specific) SFRs. (c) While today, the ΣSFR is similar for all spirals and significantly lower in early-type galaxies (ETG), in the past, the ΣSFR scales well with morphology. The central regions of today's ETGs are where the ΣSFR reached the highest values (> 103 M⊙ Gyr-1 pc-2), similar to those measured in high-redshift star-forming galaxies. (d) The evolution of ΣSFR in Sbc systems matches that of models for Milky Way-like galaxies, suggesting that the formation of a thick disk may be a common phase in spirals at early epochs. (e) The SFR and ΣSFR in outer regions of E and S0 galaxies show that they have undergone an extended phase of growth in mass between z = 2 and 0.4. The mass assembled in this phase is in agreement with

  14. Timing the formation and assembly of early-type galaxies via spatially resolved stellar populations analysis

    Martín-Navarro, Ignacio; Vazdekis, Alexandre; Falcón-Barroso, Jesús; La Barbera, Francesco; Yıldırım, Akın; van de Ven, Glenn

    2018-04-01

    To investigate star formation and assembly processes of massive galaxies, we present here a spatially resolved stellar population analysis of a sample of 45 elliptical galaxies (Es) selected from the Calar Alto Legacy Integral Field Area survey. We find rather flat age and [Mg/Fe] radial gradients, weakly dependent on the effective velocity dispersion of the galaxy within half-light radius. However, our analysis shows that metallicity gradients become steeper with increasing galaxy velocity dispersion. In addition, we have homogeneously compared the stellar population gradients of our sample of Es to a sample of nearby relic galaxies, i.e. local remnants of the high-z population of red nuggets. This comparison indicates that, first, the cores of present-day massive galaxies were likely formed in gas-rich, rapid star formation events at high redshift (z ≳ 2). This led to radial metallicity variations steeper than observed in the local Universe, and positive [Mg/Fe] gradients. Secondly, our analysis also suggests that a later sequence of minor dry mergers, populating the outskirts of early-type galaxies (ETGs), flattened the pristine [Mg/Fe] and metallicity gradients. Finally, we find a tight age-[Mg/Fe] relation, supporting that the duration of the star formation is the main driver of the [Mg/Fe] enhancement in massive ETGs. However, the star formation time-scale alone is not able to fully explain our [Mg/Fe] measurements. Interestingly, our results match the expected effect that a variable stellar initial mass function would have on the [Mg/Fe] ratio.

  15. Compact Starburst Galaxies with Fast Outflows: Spatially Resolved Stellar Mass Profiles

    Gottlieb, Sophia; Diamond-Stanic, Aleksandar; Lipscomb, Charles; Ohene, Senyo; Rines, Josh; Moustakas, John; Sell, Paul; Tremonti, Christy; Coil, Alison; Rudnick, Gregory; Hickox, Ryan C.; Geach, James; Kepley, Amanda

    2018-01-01

    Powerful galactic winds driven by stellar feedback and black hole accretion are thought to play an important role in regulating star formation in galaxies. In particular, strong stellar feedback from supernovae, stellar winds, radiation pressure, and cosmic rays is required by simulations of star-forming galaxies to prevent the vast majority of baryons from cooling and collapsing to form stars. However, it remains unclear whether these stellar processes play a significant role in expelling gas and shutting down star formation in massive progenitors of quiescent galaxies. What are the limits of stellar feedback? We present multi-band photometry with HST/WFC3 (F475W, F814W, F160W) for a dozen compact starburst galaxies at z~0.6 with half-light radii that suggest incredibly large central escape velocities. These massive galaxies are driving fast (>1000 km/s) outflows that have been previously attributed to stellar feedback associated with the compact (r~100 pc) starburst. But how compact is the stellar mass? In the context of the stellar feedback hypothesis, it is unclear whether these fast outflows are being driven at velocities comparable to the escape velocity of an incredibly dense stellar system (as predicted by some models of radiation-pressure winds) or at velocities that exceed the central escape velocity by large factor. Our spatially resolved measurements with HST show that the stellar mass is more extended than the light, and this requires that the physical mechanism responsible for driving the winds must be able to launch gas at velocities that are factors of 5-10 beyond the central escape velocity.

  16. Fingerprinting ancient gold by measuring Pt with spatially resolved high energy Sy-XRF

    Guerra, M.F.; Calligaro, T.; Radtke, M.; Reiche, I.; Riesemeier, H.

    2005-01-01

    Trace elements of ancient gold such as Pt, give fundamental information on the circulation of the metal in the past. In the case of objects from the cultural heritage, the determination of trace elements requires non-destructive point analysis in general. These conditions and the need of good detection limits restrain the number of applicable analytical techniques. After the development of a PIXE set-up with a selective Cu or Zn filter of 75 μm and of a PIXE-XRF set-up using a primary target of As, we tested the possibilities of spatially resolved Sy-XRF to determine Pt in gold alloys. With a Zn filter, PIXE showed a detection limit of 1000 ppm in gold while PIXE-XRF lowers this detection limit down to 80 ppm. This last value being constrained by the resonant Raman effect produced on gold. In order to improve the detection limit of Pt keeping the non-destructiveness and access to point analysis, we developed an analytical protocol for XRF with synchrotron radiation at BESSY II, using the BAMline set-up. The L-lines of Pt were excited by a beam of energy above and below 11.564 keV and measured using a Si(Li) detector with a 50 μm Cu filter. A μ-beam of 100-250 μm 2 was used according to the size of the sample. The determination of the Pt content in the samples was carried out by Monte-Carlo simulation and subtraction of Au and Pt spectra obtained on pure standards. The limit of detection for Pt of 20 ppm was determined by using certified standards. The detection limits of a small set of other characteristic elements of gold were also measured using an incident energy of 33 keV

  17. Diffusion and spatially resolved NMR in Berea and Venezuelan oil reservoir rocks.

    Murgich, J; Corti, M; Pavesi, L; Voltini, F

    1992-01-01

    Conventional and spatially resolved proton NMR and relaxation measurements are used in order to study the molecular motions and the equilibrium and nonequilibrium diffusion of oils in Berea sandstone and Venezuelan reservoir rocks. In the water-saturated Berea a single line with T*2 congruent to 150 microseconds is observed, while the relaxation recovery is multiexponential. In an oil reservoir rock (Ful 13) a single narrow line is present while a distribution of relaxation rates is evidenced from the recovery plots. On the contrary, in the Ful 7 sample (extracted at a deeper depth in a different zone) two NMR components are present, with 3.5 and 30 KHz linewidths, and the recovery plot exhibits biexponential law. No echo signal could be reconstructed in the oil reservoir rocks. These findings can be related to the effects in the micropores, where motions at very low frequency can occur in a thin layer. From a comparison of the diffusion constant in water-saturated Berea, D congruent to 5*10(-6) cm2/sec, with the ones in model systems, the average size of the pores is estimated around 40 A. The density profiles at the equilibrium show uniform distribution of oils or of water, and the relaxation rates appear independent from the selected slice. The nonequilibrium diffusion was studied as a function of time in a Berea cylinder with z axis along H0, starting from a thin layer of oil at the base, and detecting the spin density profiles d(z,t) with slice-selection techniques. Simultaneously, the values of T1's were measured locally, and the distribution of the relaxation rates was observed to be present in any slice.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. A High-mass Protobinary System with Spatially Resolved Circumstellar Accretion Disks and Circumbinary Disk

    Kraus, S.; Kluska, J.; Kreplin, A.; Bate, M.; Harries, T. J.; Hone, E.; Anugu, A. [School of Physics, Astrophysics Group, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Hofmann, K.-H.; Weigelt, G. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Monnier, J. D. [Department of Astronomy, University of Michigan, 311 West Hall, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); De Wit, W. J. [ESO, Alonso de Cordova 3107, Vitacura, Santiago 19 (Chile); Wittkowski, M., E-mail: skraus@astro.ex.ac.uk [ESO, Karl-Schwarzschild-Str. 2, D-85748 Garching bei München (Germany)

    2017-01-20

    High-mass multiples might form via fragmentation of self-gravitational disks or alternative scenarios such as disk-assisted capture. However, only a few observational constraints exist on the architecture and disk structure of high-mass protobinaries and their accretion properties. Here, we report the discovery of a close (57.9 ± 0.2 mas = 170 au) high-mass protobinary, IRAS17216-3801, where our VLTI/GRAVITY+AMBER near-infrared interferometry allows us to image the circumstellar disks around the individual components with ∼3 mas resolution. We estimate the component masses to ∼20 and ∼18 M {sub ⊙} and find that the radial intensity profiles can be reproduced with an irradiated disk model, where the inner regions are excavated of dust, likely tracing the dust sublimation region in these disks. The circumstellar disks are strongly misaligned with respect to the binary separation vector, which indicates that the tidal forces did not have time to realign the disks, pointing toward a young dynamical age of the system. We constrain the distribution of the Br γ and CO-emitting gas using VLTI/GRAVITY spectro-interferometry and VLT/CRIRES spectro-astrometry and find that the secondary is accreting at a higher rate than the primary. VLT/NACO imaging shows L ′-band emission on (3–4)× larger scales than the binary separation, matching the expected dynamical truncation radius for the circumbinary disk. The IRAS17216-3801 system is ∼3× more massive and ∼5× more compact than other high-mass multiplies imaged at infrared wavelength and the first high-mass protobinary system where circumstellar and circumbinary dust disks could be spatially resolved. This opens exciting new opportunities for studying star–disk interactions and the role of multiplicity in high-mass star formation.

  19. SDSS-IV MaNGA - the spatially resolved transition from star formation to quiescence

    Belfiore, Francesco; Maiolino, Roberto; Maraston, Claudia; Emsellem, Eric; Bershady, Matthew A.; Masters, Karen L.; Bizyaev, Dmitry; Boquien, Médéric; Brownstein, Joel R.; Bundy, Kevin; Diamond-Stanic, Aleksandar M.; Drory, Niv; Heckman, Timothy M.; Law, David R.; Malanushenko, Olena; Oravetz, Audrey; Pan, Kaike; Roman-Lopes, Alexandre; Thomas, Daniel; Weijmans, Anne-Marie; Westfall, Kyle B.; Yan, Renbin

    2017-04-01

    Using spatially resolved spectroscopy from SDSS-IV MaNGA we have demonstrated that low ionization emission-line regions (LIERs) in local galaxies result from photoionization by hot evolved stars, not active galactic nuclei, hence tracing galactic region hosting old stellar population where, despite the presence of ionized gas, star formation is no longer occurring. LIERs are ubiquitous in both quiescent galaxies and in the central regions of galaxies where star formation takes place at larger radii. We refer to these two classes of galaxies as extended LIER (eLIER) and central LIER (cLIER) galaxies, respectively. cLIERs are late-type galaxies primarily spread across the green valley, in the transition region between the star formation main sequence and quiescent galaxies. These galaxies display regular disc rotation in both stars and gas, although featuring a higher central stellar velocity dispersion than star-forming galaxies of the same mass. cLIERs are consistent with being slowly quenched inside-out; the transformation is associated with massive bulges, pointing towards the importance of bulge growth via secular evolution. eLIERs are morphologically early types and are indistinguishable from passive galaxies devoid of line emission in terms of their stellar populations, morphology and central stellar velocity dispersion. Ionized gas in eLIERs shows both disturbed and disc-like kinematics. When a large-scale flow/rotation is observed in the gas, it is often misaligned relative to the stellar component. These features indicate that eLIERs are passive galaxies harbouring a residual cold gas component, acquired mostly via external accretion. Importantly, quiescent galaxies devoid of line emission reside in denser environments and have significantly higher satellite fraction than eLIERs. Environmental effects thus represent the likely cause for the existence of line-less galaxies on the red sequence.

  20. Novel technique for spatially resolved imaging of molecular bond orientations using x-ray birefringence

    Sutter, John P., E-mail: john.sutter@diamond.ac.uk; Dolbnya, Igor P.; Collins, Stephen P. [Diamond Light Source Ltd, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom); Harris, Kenneth D. M., E-mail: HarrisKDM@cardiff.ac.uk; Edwards-Gau, Gregory R.; Kariuki, Benson M. [School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT (United Kingdom); Palmer, Benjamin A. [Department of Structural Biology, Weizmann Institute of Science, 234 Herzl St., Rehovot 7610001 (Israel)

    2016-07-27

    Birefringence has been observed in anisotropic materials transmitting linearly polarized X-ray beams tuned close to an absorption edge of a specific element in the material. Synchrotron bending magnets provide X-ray beams of sufficiently high brightness and cross section for spatially resolved measurements of birefringence. The recently developed X-ray Birefringence Imaging (XBI) technique has been successfully applied for the first time using the versatile test beamline B16 at Diamond Light Source. Orientational distributions of the C–Br bonds of brominated “guest” molecules within crystalline “host” tunnel structures (in thiourea or urea inclusion compounds) have been studied using linearly polarized incident X-rays near the Br K-edge. Imaging of domain structures, changes in C–Br bond orientations associated with order-disorder phase transitions, and the effects of dynamic averaging of C–Br bond orientations have been demonstrated. The XBI setup uses a vertically deflecting high-resolution double-crystal monochromator upstream from the sample and a horizontally deflecting single-crystal polarization analyzer downstream, with a Bragg angle as close as possible to 45°. In this way, the ellipticity and rotation angle of the polarization of the beam transmitted through the sample is measured as in polarizing optical microscopy. The theoretical instrumental background calculated from the elliptical polarization of the bending-magnet X-rays, the imperfect polarization discrimination of the analyzer, and the correlation between vertical position and photon energy introduced by the monochromator agrees well with experimental observations. The background is calculated analytically because the region of X-ray phase space selected by this setup is sampled inefficiently by standard methods.

  1. Mapping lightscapes: spatial patterning of artificial lighting in an urban landscape.

    Hale, James D; Davies, Gemma; Fairbrass, Alison J; Matthews, Thomas J; Rogers, Christopher D F; Sadler, Jon P

    2013-01-01

    Artificial lighting is strongly associated with urbanisation and is increasing in its extent, brightness and spectral range. Changes in urban lighting have both positive and negative effects on city performance, yet little is known about how its character and magnitude vary across the urban landscape. A major barrier to related research, planning and governance has been the lack of lighting data at the city extent, particularly at a fine spatial resolution. Our aims were therefore to capture such data using aerial night photography and to undertake a case study of urban lighting. We present the finest scale multi-spectral lighting dataset available for an entire city and explore how lighting metrics vary with built density and land-use. We found positive relationships between artificial lighting indicators and built density at coarse spatial scales, whilst at a local level lighting varied with land-use. Manufacturing and housing are the primary land-use zones responsible for the city's brightly lit areas, yet manufacturing sites are relatively rare within the city. Our data suggests that efforts to address light pollution should broaden their focus from residential street lighting to include security lighting within manufacturing areas.

  2. Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks Models

    Sungwon Kim

    2015-06-01

    Full Text Available The objective of this study is to develop artificial neural network (ANN models, including multilayer perceptron (MLP and Kohonen self-organizing feature map (KSOFM, for spatial disaggregation of areal rainfall in the Wi-stream catchment, an International Hydrological Program (IHP representative catchment, in South Korea. A three-layer MLP model, using three training algorithms, was used to estimate areal rainfall. The Levenberg–Marquardt training algorithm was found to be more sensitive to the number of hidden nodes than were the conjugate gradient and quickprop training algorithms using the MLP model. Results showed that the networks structures of 11-5-1 (conjugate gradient and quickprop and 11-3-1 (Levenberg-Marquardt were the best for estimating areal rainfall using the MLP model. The networks structures of 1-5-11 (conjugate gradient and quickprop and 1-3-11 (Levenberg–Marquardt, which are the inverse networks for estimating areal rainfall using the best MLP model, were identified for spatial disaggregation of areal rainfall using the MLP model. The KSOFM model was compared with the MLP model for spatial disaggregation of areal rainfall. The MLP and KSOFM models could disaggregate areal rainfall into individual point rainfall with spatial concepts.

  3. Spatially resolved data on sediment transport: 1) field application examining fluorescent soil particle movement from tillage

    Quinton, John; Hardy, Robert; Pates, Jacqueline; James, Michael

    2017-04-01

    Understanding where sediment originates from and where it travels to, in what quantities and at which rate is at the heart of many questions surrounding sediment transport. Progress towards unravelling these questions and deepening our understanding has come from a wide range of approaches, including laboratory and field experiments conducted at a variety of scales. In seeking to understand the connectivity of sources and sinks of sediment scientists have spent considerable energy in developing tracing technologies. These have included numerous studies that have relied on the chemical properties of the soil and sediment to establish source-sink connectivity, and the use of 137Ceasium, from radioactive fall-out, to map sediment redistribution. More recently there has been an upsurge in interest in the use of artificially applied soil tracers, including rare earth element oxides and magnetic minerals. However all these tracing methods have a significant drawback: they rely on the collection of samples to assess their concentration. This means that their spatial distribution cannot easily be established in situ and that the environment that is being studied is damaged by the sampling process; nor can data be collected in real time which allows a dynamic understanding of erosion and transport processes to be developed. Here we report on the field application of a fluorescent sand sized tracer at the hillslope scale during a tillage erosion experiment. Here we trialled both intensity based and particle counting methodologies for tracer enumeration. After simulating seven years of tillage on a hillslope we were able to precisely determine the distribution of the fluorescent tracer and also its incorporation and distribution within the soil profile. Single grains of tracer could be found over 35 m from the insertion point. In a second abstract we report on an application that combines novel fluorescent videography techniques with custom image processing to trace the

  4. Spatially resolved determination of the short-circuit current density of silicon solar cells via lock-in thermography

    Fertig, Fabian; Greulich, Johannes; Rein, Stefan

    2014-01-01

    We present a spatially resolved method to determine the short-circuit current density of crystalline silicon solar cells by means of lock-in thermography. The method utilizes the property of crystalline silicon solar cells that the short-circuit current does not differ significantly from the illuminated current under moderate reverse bias. Since lock-in thermography images locally dissipated power density, this information is exploited to extract values of spatially resolved current density under short-circuit conditions. In order to obtain an accurate result, one or two illuminated lock-in thermography images and one dark lock-in thermography image need to be recorded. The method can be simplified in a way that only one image is required to generate a meaningful short-circuit current density map. The proposed method is theoretically motivated, and experimentally validated for monochromatic illumination in comparison to the reference method of light-beam induced current.

  5. Development of a software system for spatial resolved trace analysis of high performance materials with SIMS

    Brunner, Ch. H.

    1997-09-01

    The following work is separated into two distinctly different parts. The first one is dealing with the SIMSScan software project, an application system for secondary ion mass spectrometry. This application system primarily lays down the foundation, for the research activity introduced in the second part of this work. SIMSScan is an application system designed to provide data acquisition routines for different requirements in the field of secondary ion mass spectroscopy. The whole application package is divided into three major sections, each one dealing with specific measurement tasks. Various supporting clients and wizards, providing extended functionality to the main application, build the core of the software. The MassScan as well as the DepthScan module incorporate the SIMS in the direct imaging or stigmatic mode and are featuring the capabilities for mass spectra recording or depth profile analysis. In combination with an image recording facility the DepthScan module features the capability of spatial resolved material analysis - 3D SIMS. The RasterScan module incorporates the SIMS in scanning mode and supports an fiber optical link for optimized data transfer. The primary goal of this work is to introduce the basic ideas behind the implementation of the main application modules and the supporting clients. Furthermore, it is the intention to lay down the foundation for further developments. At the beginning a short introduction into the paradigm of object oriented programming as well as Windows TM programming is given. Besides explaining the basic ideas behind the Doc/View application architecture the focus is mainly shifted to the routines controlling the SIMS hardware and the basic concepts of multithreaded programming. The elementary structures of the view and document objects is discussed in detail only for the MassScan module, because the ideas behind data abstraction and encapsulation are quite similar. The second part introduces the research activities

  6. Overcoming artificial spatial correlations in simulations of superstructure domain growth with parallel Monte Carlo algorithms

    Schleier, W.; Besold, G.; Heinz, K.

    1992-01-01

    The authors study the applicability of parallelized/vectorized Monte Carlo (MC) algorithms to the simulation of domain growth in two-dimensional lattice gas models undergoing an ordering process after a rapid quench below an order-disorder transition temperature. As examples they consider models with 2 x 1 and c(2 x 2) equilibrium superstructures on the square and rectangular lattices, respectively. They also study the case of phase separation ('1 x 1' islands) on the square lattice. A generalized parallel checkerboard algorithm for Kawasaki dynamics is shown to give rise to artificial spatial correlations in all three models. However, only if superstructure domains evolve do these correlations modify the kinetics by influencing the nucleation process and result in a reduced growth exponent compared to the value from the conventional heat bath algorithm with random single-site updates. In order to overcome these artificial modifications, two MC algorithms with a reduced degree of parallelism ('hybrid' and 'mask' algorithms, respectively) are presented and applied. As the results indicate, these algorithms are suitable for the simulation of superstructure domain growth on parallel/vector computers. 60 refs., 10 figs., 1 tab

  7. Spatially resolved chemical analysis of cicada wings using laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS).

    Román, Jessica K; Walsh, Callee M; Oh, Junho; Dana, Catherine E; Hong, Sungmin; Jo, Kyoo D; Alleyne, Marianne; Miljkovic, Nenad; Cropek, Donald M

    2018-03-01

    Laser-ablation electrospray ionization (LAESI) imaging mass spectrometry (IMS) is an emerging bioanalytical tool for direct imaging and analysis of biological tissues. Performing ionization in an ambient environment, this technique requires little sample preparation and no additional matrix, and can be performed on natural, uneven surfaces. When combined with optical microscopy, the investigation of biological samples by LAESI allows for spatially resolved compositional analysis. We demonstrate here the applicability of LAESI-IMS for the chemical analysis of thin, desiccated biological samples, specifically Neotibicen pruinosus cicada wings. Positive-ion LAESI-IMS accurate ion-map data was acquired from several wing cells and superimposed onto optical images allowing for compositional comparisons across areas of the wing. Various putative chemical identifications were made indicating the presence of hydrocarbons, lipids/esters, amines/amides, and sulfonated/phosphorylated compounds. With the spatial resolution capability, surprising chemical distribution patterns were observed across the cicada wing, which may assist in correlating trends in surface properties with chemical distribution. Observed ions were either (1) equally dispersed across the wing, (2) more concentrated closer to the body of the insect (proximal end), or (3) more concentrated toward the tip of the wing (distal end). These findings demonstrate LAESI-IMS as a tool for the acquisition of spatially resolved chemical information from fragile, dried insect wings. This LAESI-IMS technique has important implications for the study of functional biomaterials, where understanding the correlation between chemical composition, physical structure, and biological function is critical. Graphical abstract Positive-ion laser-ablation electrospray ionization mass spectrometry coupled with optical imaging provides a powerful tool for the spatially resolved chemical analysis of cicada wings.

  8. Spatial Interpolation of Rainfall Erosivity Using Artificial Neural Networks for Southern Brazil Conditions

    Michel Castro Moreira

    Full Text Available ABSTRACT Water erosion is the process of disaggregation and transport of sediments, and rainfall erosivity is a numerical value that expresses the erosive capacity of rain. The scarcity of information on rainfall erosivity makes it difficult or impossible to use to estimate losses occasioned by the erosive process. The objective of this study was to develop Artificial Neural Networks (ANNs for spatial interpolation of the monthly and annual values of rainfall erosivity at any location in the state of Rio Grande do Sul, and a software that enables the use of these networks in a simple and fast manner. This experiment used 103 rainfall stations in Rio Grande do Sul and their surrounding area to generate synthetic rainfall series on the software ClimaBR 2.0. Rainfall erosivity was determined by summing the values of the EI30 and KE >25 indexes, considering two methodologies for obtaining the kinetic energy of rainfall. With these values of rainfall erosivity and latitude, longitude, and altitude of the stations, the ANNs were trained and tested for spatializations of rainfall erosivity. To facilitate the use of the ANNs, a computer program was generated, called netErosividade RS, which makes feasible the use of ANNs to estimate the values of rainfall erosivity for any location in the state of Rio Grande do Sul.

  9. Spatially resolved spectra of the 'teacup' active galactic nucleus: tracing the history of a dying quasar

    Gagne, J. P.; Crenshaw, D. M.; Fischer, T. C.; Kraemer, S. B.; Schmitt, H. R.; Keel, W. C.; Rafter, S.; Bennert, V. N.; Schawinski, K.

    2014-01-01

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a 'handle'-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.

  10. Spatially resolved spectra of the 'teacup' active galactic nucleus: tracing the history of a dying quasar

    Gagne, J. P.; Crenshaw, D. M.; Fischer, T. C. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place South SE, Suite 600, Atlanta, GA 30303 (United States); Kraemer, S. B. [Department of Physics, Catholic University of America, 620 Michigan Avenue, N.E., Washington, DC 20064 (United States); Schmitt, H. R. [Naval Research Laboratory, Washington, DC 20375 (United States); Keel, W. C. [Department of Physics and Astronomy, University of Alabama, Box 870324, Tuscaloosa, AL 35487 (United States); Rafter, S. [Physics Department, Technion, Haifa 32000 (Israel); Bennert, V. N. [Physics Department, California Polytechnic State University San Luis Obispo, CA 93407 (United States); Schawinski, K., E-mail: gagne@chara.gsu.edu [Institute for Astronomy, Department of Physics, ETH Zurich, Wolfgang-Pauli-Strasse 27, CH-8093 Zurich (Switzerland)

    2014-09-01

    The Sloan Digital Sky Survey (SDSS) Galaxy Zoo project has revealed a number of spectacular galaxies possessing extended emission-line regions (EELRs), the most famous being Hanny's Voorwerp galaxy. We present another EELR object discovered in the SDSS endeavor: the Teacup active galactic nucleus (AGN). Nicknamed for its EELR, which has a 'handle'-like structure protruding 15 kpc into the northeast quadrant of the galaxy. We analyze the physical conditions of this galaxy with long-slit, ground-based spectroscopy from the Lowell, Lick, and KPNO observatories. With the Lowell 1.8 m Perkin's telescope we took multiple observations at different offset positions, allowing us to recover spatially resolved spectra across the galaxy. Line diagnostics indicate the ionized gas is photoionized primarily by the AGN. Additionally we are able to derive the hydrogen density from the [S II] λ6716/λ6731 ratio. We generated two-component photoionization models for each spatially resolved Lowell spectrum. These models allow us to calculate the AGN bolometric luminosity seen by the gas at different radii from the nuclear center of the Teacup. Our results show a drop in bolometric luminosity by more than two orders of magnitude from the EELR to the nucleus, suggesting that the AGN has decreased in luminosity by this amount in a continuous fashion over 46,000 yr, supporting the case for a dying AGN in this galaxy independent of any IR based evidence. We demonstrate that spatially resolved photoionization modeling could be applied to EELRs to investigate long timescale variability.

  11. A diagnostic for time-resolved spatial profiles measurements on the ion temperature on JET

    Brocken, H.J.B.M.; Ven, H.W van der.

    1980-05-01

    A neutral particle scattering experiment for a continuous measurement of the ion temperature and ion density of the JET plasma in the hydrogen and deuterium phase is proposed. Space- and time-resolved measurements are possible by injection of a mono-energetic particle beam into the plasma and from the analysis of the velocity distribution of the scattered particles. The requirements on the injection system are specified and a suitable analyzer system is described

  12. The spatial decision-supporting system combination of RBR & CBR based on artificial neural network and association rules

    Tian, Yangge; Bian, Fuling

    2007-06-01

    The technology of artificial intelligence should be imported on the basis of the geographic information system to bring up the spatial decision-supporting system (SDSS). The paper discusses the structure of SDSS, after comparing the characteristics of RBR and CBR, the paper brings up the frame of a spatial decisional system that combines RBR and CBR, which has combined the advantages of them both. And the paper discusses the CBR in agriculture spatial decisions, the application of ANN (Artificial Neural Network) in CBR, and enriching the inference rule base based on association rules, etc. And the paper tests and verifies the design of this system with the examples of the evaluation of the crops' adaptability.

  13. Sub-nA spatially resolved conductivity profiling of surface and interface defects in ceria films

    Tim Farrow

    2015-03-01

    Full Text Available Spatial variability of conductivity in ceria is explored using scanning probe microscopy with galvanostatic control. Ionically blocking electrodes are used to probe the conductivity under opposite polarities to reveal possible differences in the defect structure across a thin film of CeO2. Data suggest the existence of a large spatial inhomogeneity that could give rise to constant phase elements during standard electrochemical characterization, potentially affecting the overall conductivity of films on the macroscale. The approach discussed here can also be utilized for other mixed ionic electronic conductor systems including memristors and electroresistors, as well as physical systems such as ferroelectric tunneling barriers.

  14. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements

    Rowlands, D. D.; Luthcke, S. B.; Klosko, S. M.

    2005-01-01

    resolution. Using 4° × 4° blocks at 10-day intervals, we estimate the mass of surplus or deficit water over a 52° × 60° grid centered on the Amazon basin for July 2003. We demonstrate that the recovered signals are coherent and correlate well with the expected hydrological signal....... the estimation of static monthly parameters. Through an analysis of the GRACE data residuals, we show that the fundamental temporal and spatial resolution of the GRACE data is 10 days and 400 km. We present an approach similar in concept to altimetric methods that recovers submonthly mass flux at a high spatial...

  15. Fiber Bragg grating based spatially resolved characterization of flux-pinning induced strain of rectangular-shaped bulk YBCO samples

    Latka, Ines; Habisreuther, Tobias; Litzkendorf, Doris

    2011-01-01

    Highlights: → Fiber Bragg gratings (FBG) act as strain sensors, also at cryogenic temperatures. → FBGs are not sensitive to magnetic fields. → Local, shape dependent magnetostriction was detected on rectangular samples. → Magnetostrictive effects of the top surface and in a gap between two samples are different. - Abstract: We report on measurements of the spatially resolved characterization of flux-pinning induced strain of rectangular-shaped bulk YBCO samples. The spatially resolved strain measurements are accomplished by the use 2 fiber Bragg grating arrays, which are with an included angle of 45 o fixed to the surface. In this paper first attempts to confirm the shape distortions caused by the flux-pinning induced strain as predicted in will be presented. Two sample setups, a single bulk and a 'mirror' arrangement, will be compared. This mirror setup represents a model configuration for a measurement inside the superconductor, where demagnetization effects can be neglected and the magnetic field merely has a z-component.

  16. Spatially Resolved Characterization of Cellulose Nanocrystal-Polypropylene Composite by Confocal Raman Microscopy

    Umesh P. Agarwal; Ronald Sabo; Richard S. Reiner; Craig M. Clemons; Alan W. Rudie

    2012-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)–polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose) and two of the three composites investigated used...

  17. Spatially and spectrally resolved 10 mu m emission in Herbig Ae/Be stars

    van Boekel, R; Waters, LBFM; Dominik, C; Dullemond, CP; Tielens, AGGM; de Koter, A

    We present new mid-infrared spectroscopy of the emission from warm circumstellar dust grains in the Herbig Ae stars HD 100546. HD 97048 and HD 104237, with a spatial resolution Of of approximate to0."9. We find that the emission in the UIR bands at 8.6, 11.3 and (HD 97048 only) 12.7 mum is extended

  18. Spatially resolved modelling of inhomogeneous materials with a first order magnetic phase transition

    Nielsen, Kaspar Kirstein; Bahl, Christian; Smith, Anders

    2017-01-01

    of regions each having a uniform and defined through a Voronoi-map. We show that demagnetising effects, caused by a finite sample size, and spatial variation in can account for the previously experimentally observed 'virgin' effects in the adiabatic temperature change and isothermal entropy change...

  19. Chapter 1.4: Spatially Resolved Characterization of CNC-Polypropylene composite by Confocal Raman Microscopy

    Umesh Agarwal; Ronald Sabo; Richard Reiner; Craig Clemons; Alan Rudie

    2013-01-01

    Raman spectroscopy was used to analyze cellulose nanocrystal (CNC)-polypropylene (PP) composites and to investigate the spatial distribution of CNCs in extruded composite filaments. Three composites were made from two forms of nanocellulose (CNCs from wood pulp and the nanoscale fraction of microcrystalline cellulose), and two of the three composites...

  20. Spatially and temporally resolved x-ray emission from imploding laser fusion targets

    Attwood, D.T.; Coleman, L.W.; Boyle, M.J.; Phillion, D.W.; Swain, J.E.; Manes, K.R.; Larsen, J.T.

    1976-09-01

    The Livermore 15 psec x-ray streak camera has been used in conjunction with 6 μm diameter pinholes to record well resolved implosion histories of DT filled laser fusion targets. The space-time compression data provide clearly identified implosion velocities, typically 3 x 10 7 cm/sec for two-sided clamshell irradiation of a 70 μm/sup D/, .5 μm wall DT filled glass microshell. Single-sided irradiation results show hydrodynamic convergence at the target center, followed by an asymmetric but two-sided target disassembly. These experiments were performed at the two arm Janus Laser facility, which typically delivered a total of 0.4 TW in a 70 psec pulse for these experiments

  1. Spatially resolved ultrasonic attenuation in resistance spot welds: implications for nondestructive testing.

    Mozurkewich, George; Ghaffari, Bita; Potter, Timothy J

    2008-09-01

    Spatial variation of ultrasonic attenuation and velocity has been measured in plane parallel specimens extracted from resistance spot welds. In a strong weld, attenuation is larger in the nugget than in the parent material, and the region of increased attenuation is surrounded by a ring of decreased attenuation. In the center of a stick weld, attenuation is even larger than in a strong weld, and the low-attenuation ring is absent. These spatial variations are interpreted in terms of differences in grain size and martensite formation. Measured frequency dependences indicate the presence of an additional attenuation mechanism besides grain scattering. The observed attenuations do not vary as commonly presumed with weld quality, suggesting that the common practice of using ultrasonic attenuation to indicate weld quality is not a reliable methodology.

  2. Research Update: Spatially resolved mapping of electronic structure on atomic level by multivariate statistical analysis

    Belianinov, Alex; Ganesh, Panchapakesan; Lin, Wenzhi; Jesse, Stephen; Pan, Minghu; Kalinin, Sergei V.; Sales, Brian C.; Sefat, Athena S.

    2014-01-01

    Atomic level spatial variability of electronic structure in Fe-based superconductor FeTe 0.55 Se 0.45 (T c = 15 K) is explored using current-imaging tunneling-spectroscopy. Multivariate statistical analysis of the data differentiates regions of dissimilar electronic behavior that can be identified with the segregation of chalcogen atoms, as well as boundaries between terminations and near neighbor interactions. Subsequent clustering analysis allows identification of the spatial localization of these dissimilar regions. Similar statistical analysis of modeled calculated density of states of chemically inhomogeneous FeTe 1−x Se x structures further confirms that the two types of chalcogens, i.e., Te and Se, can be identified by their electronic signature and differentiated by their local chemical environment. This approach allows detailed chemical discrimination of the scanning tunneling microscopy data including separation of atomic identities, proximity, and local configuration effects and can be universally applicable to chemically and electronically inhomogeneous surfaces

  3. Spatially resolved transport data for electrons in gases: Definition, interpretation and calculation

    Dujko, S.; White, R.D.; Raspopović, Z.M.; Petrović, Z.Lj.

    2012-01-01

    The spatiotemporal evolution of electron swarms in the presence of electric and magnetic fields is investigated to facilitate understanding temporal and spatial non-locality in low-temperature plasmas. Using two independent techniques, a multi-term solution of Boltzmann’s equation and a Monte Carlo simulation technique, the synergism of an applied magnetic field and non-conservative collisions (ionization and/or electron attachment) is demonstrated as a means to control the non-locality of relaxation processes. In particular, oscillatory features in the spatial and temporal profiles are demonstrated, and shown to be enhanced or suppressed through the magnetic field strength, the angle between the electric and magnetic fields, and the degree of ionization. Finally we discuss the impact of field configurations and strengths on the transport properties, highlighting the distinctions in the measured transport properties between various experimental configurations when non-conservative processes are present.

  4. Spatially and temporally resolved EUV emissions from SATURN z-pinches

    Nash, T.J.; Breeze, S.; Mock, R.; Jobe, D.

    1995-01-01

    EUV emissions can be used to measure several z-pinch parameters. The authors have measured implosion velocity from Doppler splitting of lines and estimated electron temperature during run-in from the mean ionization state of line emissions. In an argon pinch they measure an electron temperature of 100 eV before stagnation. To date Doppler split lines have measured implosion velocities less than 40 cm/microsecond. They are presently attempting to measure magnetic field or load current from Zeeman splitting and it may be possible to measure electron density from a Stark-broadened line. Opacity and ion thermal broadening may also contribute to line width information. The spectrometer utilizes a variable line space grating to give a flat focal field. Spectral resolution with a 60 micron detector resolution is up to 3,000 and generally increases with wavelength. This is sufficient to detect several plasma line broadening mechanisms. The spectrometer may detect lines above 100 angstrom and below 1,400 angstrom. Spectral range across a microchannel plate stripline detector decreases with increasing wavelength setting. The authors may gate two striplines with 1 to 12 nsec gates at any time during the pinch discharge. Each stripline spatially images the pinch diameter perpendicular to the direction of dispersion. Spatial resolution in the pinch diameter is 1 mm. Spatial acquisition along the z axis is also 1 mm. Data are presented from argon, krypton, and aluminum z-pinch discharges on the SATURN accelerator

  5. SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR–M ∗ Relations on Galaxy Properties

    Pan, Hsi-An; Lin, Lihwai; Hsieh, Bau-Ching; Sánchez, Sebastián F.; Ibarra-Medel, Héctor; Boquien, Médéric; Lacerna, Ivan; Argudo-Fernández, Maria; Bizyaev, Dmitry; Cano-Díaz, Mariana; Drory, Niv; Gao, Yang; Masters, Karen; Pan, Kaike; Tabor, Martha; Tissera, Patricia; Xiao, Ting

    2018-02-01

    The galaxy integrated Hα star formation rate–stellar mass relation, or SFR(global)–M *(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα (all)) and stellar mass surface density (Σ*(all)) progressively turns over at the high Σ*(all) end for increasing M *(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)–M *(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H II)–M *(H II) and spatially resolved ΣHα (H II)–Σ*(H II) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR–M * relation critically depends on their global properties (M *(global) and B/T) and relative abundances of various ionizing sources within the galaxies.

  6. Spatially resolved quantum plasmon modes in metallic nano-films from first-principles

    Andersen, Kirsten; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2012-01-01

    Electron energy loss spectroscopy (EELS) can be used to probe plasmon excitations in nanostructured materials with atomic-scale spatial resolution. For structures smaller than a few nanometers, quantum effects are expected to be important, limiting the validity of widely used semiclassical response...... as (conventional) surface modes, subsurface modes, and a discrete set of bulk modes resembling standing waves across the film. We find clear effects of both quantum confinement and nonlocal response. The quantum plasmon modes provide an intuitive picture of collective excitations of confined electron systems...

  7. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  8. Spatially resolving the very high energy emission from MGRO J2019+37 with VERITAS

    Aliu, E.; Errando, M.; Aune, T.; Behera, B.; Chen, X.; Federici, S.; Beilicke, M.; Buckley, J. H.; Bugaev, V.; Benbow, W.; Cerruti, M.; Berger, K.; Bird, R.; Bouvier, A.; Ciupik, L.; Connolly, M. P.; Cui, W.; Dumm, J.; Dwarkadas, V. V.; Falcone, A.

    2014-01-01

    We present very high energy (VHE) imaging of MGRO J2019+37 obtained with the VERITAS observatory. The bright extended (∼2°) unidentified Milagro source is located toward the rich star formation region Cygnus-X. MGRO J2019+37 is resolved into two VERITAS sources. The faint, point-like source VER J2016+371 overlaps CTB 87, a filled-center remnant (SNR) with no evidence of a supernova remnant shell at the present time. Its spectrum is well fit in the 0.65-10 TeV energy range by a power-law model with photon index 2.3 ± 0.4. VER J2019+378 is a bright extended (∼1°) source that likely accounts for the bulk of the Milagro emission and is notably coincident with PSR J2021+3651 and the star formation region Sh 2–104. Its spectrum in the range 1-30 TeV is well fit with a power-law model of photon index 1.75 ± 0.3, among the hardest values measured in the VHE band, comparable to that observed near Vela-X. We explore the unusual spectrum and morphology in the radio and X-ray bands to constrain possible emission mechanisms for this source.

  9. Spatially resolved localized vibrational mode spectroscopy of carbon in liquid encapsulated Czochralski grown gallium arsenide wafers

    Yau, Waifan.

    1988-04-01

    Substitutional carbon on an arsenic lattice site is the shallowest and one of the most dominant acceptors in semi-insulating Liquid Encapsulated Czochralski (LEC) GaAs. However, the role of this acceptor in determining the well known ''W'' shape spatial variation of neutral EL2 concentration along the diameter of a LEC wafer is not known. In this thesis, we attempt to clarify the issue of the carbon acceptor's effect on this ''W'' shaped variation by measuring spatial profiles of this acceptor along the radius of three different as-grown LEC GaAs wafers. With localized vibrational mode absorption spectroscopy, we find that the profile of the carbon acceptor is relatively constant along the radius of each wafer. Average values of concentration are 8 x 10E15 cm -3 , 1.1 x 10E15 cm -3 , and 2.2 x 10E15 cm -3 , respectively. In addition, these carbon acceptor LVM measurements indicate that a residual donor with concentration comparable to carbon exists in these wafers and it is a good candidate for the observed neutral EL2 concentration variation. 22 refs., 39 figs

  10. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    Hess, Nancy J.; Paša-Tolić, Ljiljana; Bailey, Vanessa L.; Dohnalkova, Alice C.

    2017-06-01

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. The aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.

  11. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas.

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L

    2012-10-01

    High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  12. Spatial prediction of ground subsidence susceptibility using an artificial neural network.

    Lee, Saro; Park, Inhye; Choi, Jong-Kuk

    2012-02-01

    Ground subsidence in abandoned underground coal mine areas can result in loss of life and property. We analyzed ground subsidence susceptibility (GSS) around abandoned coal mines in Jeong-am, Gangwon-do, South Korea, using artificial neural network (ANN) and geographic information system approaches. Spatial data of subsidence area, topography, and geology, as well as various ground-engineering data, were collected and used to create a raster database of relevant factors for a GSS map. Eight major factors causing ground subsidence were extracted from the existing ground subsidence area: slope, depth of coal mine, distance from pit, groundwater depth, rock-mass rating, distance from fault, geology, and land use. Areas of ground subsidence were randomly divided into a training set to analyze GSS using the ANN and a test set to validate the predicted GSS map. Weights of each factor's relative importance were determined by the back-propagation training algorithms and applied to the input factor. The GSS was then calculated using the weights, and GSS maps were created. The process was repeated ten times to check the stability of analysis model using a different training data set. The map was validated using area-under-the-curve analysis with the ground subsidence areas that had not been used to train the model. The validation showed prediction accuracies between 94.84 and 95.98%, representing overall satisfactory agreement. Among the input factors, "distance from fault" had the highest average weight (i.e., 1.5477), indicating that this factor was most important. The generated maps can be used to estimate hazards to people, property, and existing infrastructure, such as the transportation network, and as part of land-use and infrastructure planning.

  13. Catalysts at work: From integral to spatially resolved X-ray absorption spectroscopy

    Grunwaldt, Jan-Dierk; Kimmerle, B.; Baiker, A.

    2009-01-01

    available techniques, X-ray absorption spectroscopy (XAS) is a well-suited tool for this purpose as the different selected examples highlight. Two different techniques, scanning and full-field X-ray microscopy/tomography, are described and compared. At first, the tomographic structure of impregnated alumina...... pellets is presented using full-field transmission microtomography and compared to the results obtained with a scanning X-ray microbeam technique to analyse the catalyst bed inside a catalytic quartz glass reactor. On the other hand, by using XAS in scanning microtomography, the structure...... metal-based catalysts. In order to obtain spectroscopic information on the spatial variation of the oxidation state of the catalyst inside the reactor XAS spectra were recorded by scanning with a micro-focussed beam along the catalyst bed. Alternatively, full-field transmission imaging was used...

  14. SPATIALLY RESOLVED GAS KINEMATICS WITHIN A Lyα NEBULA: EVIDENCE FOR LARGE-SCALE ROTATION

    Prescott, Moire K. M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen (Denmark); Martin, Crystal L. [Department of Physics, Broida Hall, Mail Code 9530, University of California, Santa Barbara, CA 93106 (United States); Dey, Arjun, E-mail: mkmprescott@dark-cosmology.dk [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2015-01-20

    We use spatially extended measurements of Lyα as well as less optically thick emission lines from an ≈80 kpc Lyα nebula at z ≈ 1.67 to assess the role of resonant scattering and to disentangle kinematic signatures from Lyα radiative transfer effects. We find that the Lyα, C IV, He II, and C III] emission lines all tell a similar story in this system, and that the kinematics are broadly consistent with large-scale rotation. First, the observed surface brightness profiles are similar in extent in all four lines, strongly favoring a picture in which the Lyα photons are produced in situ instead of being resonantly scattered from a central source. Second, we see low kinematic offsets between Lyα and the less optically thick He II line (∼100-200 km s{sup –1}), providing further support for the argument that the Lyα and other emission lines are all being produced within the spatially extended gas. Finally, the full velocity field of the system shows coherent velocity shear in all emission lines: ≈500 km s{sup –1} over the central ≈50 kpc of the nebula. The kinematic profiles are broadly consistent with large-scale rotation in a gas disk that is at least partially stable against collapse. These observations suggest that the Lyα nebula represents accreting material that is illuminated by an offset, hidden active galactic nucleus or distributed star formation, and that is undergoing rotation in a clumpy and turbulent gas disk. With an implied mass of M(

  15. Spatially-resolved velocities of thermally-produced spray droplets using a velocity-divided Abel inversion of photographed streaks

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Muraoka, K.

    2017-10-01

    Droplet velocities of thermal spray are known to have profound effects on important coating qualities, such as adhesive strength, porosity, and hardness, for various applications. For obtaining the droplet velocities, therefore, the TOF (time-of-flight) technique has been widely used, which relies on observations of emitted radiation from the droplets, where all droplets along the line-of-sight contribute to signals. Because droplets at and near the flow axis mostly contribute coating layers, it has been hoped to get spatially resolved velocities. For this purpose, a velocity-divided Abel inversion was devised from CMOS photographic data. From this result, it has turned out that the central velocity is about 25% higher than that obtained from the TOF technique for the case studied (at the position 150 mm downstream of the plasma spray gun, where substrates for spray coatings are usually placed). Further implications of the obtained results are discussed.

  16. Spatial-Resolved Measurement and Analysis of Extreme-Ultraviolet Emission Spectra from Laser-Produced Al Plasmas

    Cao Shi-Quan; Su Mao-Gen; Sun Dui-Xiong; Min Qi; Dong Chen-Zhong

    2016-01-01

    Extreme ultraviolet emission from laser-produced Al plasma is experimentally and theoretically investigated. Spatial-evolution emission spectra are measured by using the spatio-temporally resolved laser produced plasma technique. Based on the assumptions of a normalized Boltzmann distribution among the excited states and a steady-state collisional-radiative model, we succeed in reproducing the spectra at different detection positions, which are in good agreement with experiments. The decay curves about the electron temperature and electron density, as well as the fractions of individual Al ions and average ionization stage with increasing the detection distance are obtained by comparison with the experimental measurements. These parameters are critical points for deeply understanding the expanding and cooling of laser produced plasmas in vacuum. (paper)

  17. SDSS-IV MaNGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence

    Hsieh, B. C.; Lin, Lihwai; Lin, J. H.; Pan, H. A.; Hsu, C. H.; Sánchez, S. F.; Cano-Díaz, M.; Zhang, K.; Yan, R.; Barrera-Ballesteros, J. K.; Boquien, M.; Riffel, R.; Brownstein, J.; Cruz-González, I.; Hagen, A.; Ibarra, H.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.

    2017-12-01

    We present our study on the spatially resolved Hα and M * relation for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We show that the star formation rate surface density ({{{Σ }}}{SFR}), derived based on the Hα emissions, is strongly correlated with the M * surface density ({{{Σ }}}* ) on kiloparsec scales for star-forming galaxies and can be directly connected to the global star-forming sequence. This suggests that the global main sequence may be a consequence of a more fundamental relation on small scales. On the other hand, our result suggests that ∼20% of quiescent galaxies in our sample still have star formation activities in the outer region with lower specific star formation rate (SSFR) than typical star-forming galaxies. Meanwhile, we also find a tight correlation between {{{Σ }}}{{H}α } and {{{Σ }}}* for LI(N)ER regions, named the resolved “LI(N)ER” sequence, in quiescent galaxies, which is consistent with the scenario that LI(N)ER emissions are primarily powered by the hot, evolved stars as suggested in the literature.

  18. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  19. Investigation of Co nanoparticle formation using time-dependent and spatially-resolved X-ray absorption spectroscopy

    Zinoveva, S.

    2008-04-15

    A crucial step towards controlled synthesis of nanoparticles is the detailed understanding of the various chemical processes that take place during the synthesis. X-ray Absorption Spectroscopy (XAS) is especially suitable for elucidating the type and structure of the intermediate metal species. It is applicable to materials that have no long range order and provides information on both electronic and geometric structures. Here a comparative study is reported of the formation of cobalt nanoparticles via thermolysis of two organometallic precursors dicobalt octacarbonyl (DCO) and alkyne-bridged dicobalt hexacarbonyl (ADH) in the presence of aluminum organics. Using time-dependent XAS a reaction pathway different from both the atom based La Mer model and the Watzky and Finsky autocatalytic surface growth model is observed. Where prior to the nucleation several intermediates are formed and the initial nucleus is composed of Co atoms coordinated with ligands Co{sub n}(CO){sub m} with n=2-3, m=3-5. The formation of Co nanoparticles was also investigated using a reaction different from thermolysis of cobalt carbonyls, namely reduction of Co (II) acetate by sodium borohydrate. Here the combination of microreactor system and spatially resolved XAS allowed ''in situ'' monitoring of the wet chemical synthesis. Several steps of the reaction were spatially resolved in the microreactor. The vertical size of the X-ray beam (50 {mu}m) focused with Kirkpatrick-Baez mirror system, determines the time resolution (better than 2 ms). The results provide direct insight into rapid process of nanoparticles formation and demonstrate the potential of this new technique for the fundamental studies of such type of processes where miniaturization and timeresolution are important. Like in the carbonyls thermolysis no evidence for the reduction of the starting complex to isolated Co{sup 0} atoms followed by nucleation of Co{sup 0} atoms was observed. (orig.)

  20. Investigation of Co nanoparticle formation using time-dependent and spatially-resolved X-ray absorption spectroscopy

    Zinoveva, S

    2008-04-15

    A crucial step towards controlled synthesis of nanoparticles is the detailed understanding of the various chemical processes that take place during the synthesis. X-ray Absorption Spectroscopy (XAS) is especially suitable for elucidating the type and structure of the intermediate metal species. It is applicable to materials that have no long range order and provides information on both electronic and geometric structures. Here a comparative study is reported of the formation of cobalt nanoparticles via thermolysis of two organometallic precursors dicobalt octacarbonyl (DCO) and alkyne-bridged dicobalt hexacarbonyl (ADH) in the presence of aluminum organics. Using time-dependent XAS a reaction pathway different from both the atom based La Mer model and the Watzky and Finsky autocatalytic surface growth model is observed. Where prior to the nucleation several intermediates are formed and the initial nucleus is composed of Co atoms coordinated with ligands Co{sub n}(CO){sub m} with n=2-3, m=3-5. The formation of Co nanoparticles was also investigated using a reaction different from thermolysis of cobalt carbonyls, namely reduction of Co (II) acetate by sodium borohydrate. Here the combination of microreactor system and spatially resolved XAS allowed ''in situ'' monitoring of the wet chemical synthesis. Several steps of the reaction were spatially resolved in the microreactor. The vertical size of the X-ray beam (50 {mu}m) focused with Kirkpatrick-Baez mirror system, determines the time resolution (better than 2 ms). The results provide direct insight into rapid process of nanoparticles formation and demonstrate the potential of this new technique for the fundamental studies of such type of processes where miniaturization and timeresolution are important. Like in the carbonyls thermolysis no evidence for the reduction of the starting complex to isolated Co{sup 0} atoms followed by nucleation of Co{sup 0} atoms was observed. (orig.)

  1. Spatially resolved near infrared observations of Enceladus' tiger stripe eruptions from Cassini VIMS

    Dhingra, Deepak; Hedman, Matthew M.; Clark, Roger N.; Nicholson, Philip D.

    2017-08-01

    Particle properties of individual fissure eruptions within Enceladus' plume have been analyzed using high spatial resolution Visible and Infrared Mapping Spectrometer (VIMS) observations from the Cassini mission. To first order, the spectra of the materials emerging from Cairo, Baghdad and Damascus sulci are very similar, with a strong absorption band around 3 μm due to water-ice. The band minimum position indicates that the ice grains emerging from all the fissures are predominantly crystalline, which implies that the water-ice particles' formation temperatures are likely above 130 K. However, there is also evidence for subtle variations in the material emerging from the different source fissures. Variations in the spectral slope between 1-2.5 μm are observed and probably reflect differences in the size distributions of particles between 0.5 and 5 μm in radius. We also note variations in the shape of the 3 μm water-ice absorption band, which are consistent with differences in the relative abundance of > 5 μm particles. These differences in the particle size distribution likely reflect variations in the particle formation conditions and/or their transport within the fissures. These observations therefore provide strong motivation for detailed modeling to help place important constraints on the diversity of the sub-surface environmental conditions at the geologically active south-pole of Enceladus.

  2. A method for in-situ spatially-resolved analysis of actinides in geomedia

    Clark, S.B.; Payne, R.F.

    2005-01-01

    It is well documented that U and Pu contamination in soils and sediments is not homogeneously distributed among all environmental surfaces, yet the composition of soil/sediment grains is quite variable and the chemistry controlling the partitioning to specific grains is not well understood. Fission track analysis (FTA) is a technique that directly detects nuclides with high fission cross sections, such as 235 U and 239 Pu, in many matrices including environmental materials. The fission track detector can be used to record the spatial distribution of contamination within the geomedia matrix. One limitation to FTA is that it cannot differentiate between 235 U and 239 Pu, nor does it provide any information about the composition of the grains to which the U or Pu is sorbed. In this work, we have developed an epoxy sample preparation technique that allows location of soil/sediment grains via FTA, and the irradiated sample can subsequently be coupled to laser ablation mass spectrometry (LAMS) with no additional sample preparation. This technique successfully allows grains containing 235 U and/or 239 Pu to be located and further analyzed. LAMS data provides Pu and U isotopic information and stable element analysis of the grains, thus providing the ability to study the nature of the interactions between the Pu and U with the environmental matrix.

  3. Spatially resolved mapping of electrical conductivity across individual domain (grain) boundaries in graphene.

    Clark, Kendal W; Zhang, X-G; Vlassiouk, Ivan V; He, Guowei; Feenstra, Randall M; Li, An-Ping

    2013-09-24

    All large-scale graphene films contain extended topological defects dividing graphene into domains or grains. Here, we spatially map electronic transport near specific domain and grain boundaries in both epitaxial graphene grown on SiC and CVD graphene on Cu subsequently transferred to a SiO2 substrate, with one-to-one correspondence to boundary structures. Boundaries coinciding with the substrate step on SiC exhibit a significant potential barrier for electron transport of epitaxial graphene due to the reduced charge transfer from the substrate near the step edge. Moreover, monolayer-bilayer boundaries exhibit a high resistance that can change depending on the height of substrate step coinciding at the boundary. In CVD graphene, the resistance of a grain boundary changes with the width of the disordered transition region between adjacent grains. A quantitative modeling of boundary resistance reveals the increased electron Fermi wave vector within the boundary region, possibly due to boundary induced charge density variation. Understanding how resistance change with domain (grain) boundary structure in graphene is a crucial first step for controlled engineering of defects in large-scale graphene films.

  4. Spatially resolving the secretome within the mycelium of the cell factory Aspergillus niger.

    Krijgsheld, Pauline; Altelaar, A F Maarten; Post, Harm; Ringrose, Jeffrey H; Müller, Wally H; Heck, Albert J R; Wösten, Han A B

    2012-05-04

    Aspergillus niger is an important cell factory for the industrial production of enzymes. These enzymes are released into the culture medium, from which they can be easily isolated. Here, we determined with stable isotope dimethyl labeling the secretome of five concentric zones of 7-day-old xylose-grown colonies of A. niger that had either or not been treated with cycloheximide. As expected, cycloheximide blocked secretion of proteins at the periphery of the colony. Unexpectedly, protein release was increased by cycloheximide in the intermediate and central zones of the mycelium when compared to nontreated colonies. Electron microscopy indicated that this is due to partial degradation of the cell wall. In total, 124 proteins were identified in cycloheximide-treated colonies, of which 19 secreted proteins had not been identified before. Within the pool of 124 proteins, 53 secreted proteins were absent in nontreated colonies, and additionally, 35 proteins were released ≥4-fold in the central and subperipheral zones of cycloheximide-treated colonies when compared to nontreated colonies. The composition of the secretome in each of the five concentric zones differed. This study thus describes spatial release of proteins in A. niger, which is instrumental in understanding how fungi degrade complex substrates in nature.

  5. Spatially resolved quantification of agrochemicals on plant surfaces using energy dispersive X-ray microanalysis.

    Hunsche, Mauricio; Noga, Georg

    2009-12-01

    In the present study the principle of energy dispersive X-ray microanalysis (EDX), i.e. the detection of elements based on their characteristic X-rays, was used to localise and quantify organic and inorganic pesticides on enzymatically isolated fruit cuticles. Pesticides could be discriminated from the plant surface because of their distinctive elemental composition. Findings confirm the close relation between net intensity (NI) and area covered by the active ingredient (AI area). Using wide and narrow concentration ranges of glyphosate and glufosinate, respectively, results showed that quantification of AI requires the selection of appropriate regression equations while considering NI, peak-to-background (P/B) ratio, and AI area. The use of selected internal standards (ISs) such as Ca(NO(3))(2) improved the accuracy of the quantification slightly but led to the formation of particular, non-typical microstructured deposits. The suitability of SEM-EDX as a general technique to quantify pesticides was evaluated additionally on 14 agrochemicals applied at diluted or regular concentration. Among the pesticides tested, spatial localisation and quantification of AI amount could be done for inorganic copper and sulfur as well for the organic agrochemicals glyphosate, glufosinate, bromoxynil and mancozeb. (c) 2009 Society of Chemical Industry.

  6. Resolving the Spatial Structures of Bound Hole States in Black Phosphorus.

    Qiu, Zhizhan; Fang, Hanyan; Carvalho, Alexandra; Rodin, A S; Liu, Yanpeng; Tan, Sherman J R; Telychko, Mykola; Lv, Pin; Su, Jie; Wang, Yewu; Castro Neto, A H; Lu, Jiong

    2017-11-08

    Understanding the local electronic properties of individual defects and dopants in black phosphorus (BP) is of great importance for both fundamental research and technological applications. Here, we employ low-temperature scanning tunnelling microscope (LT-STM) to probe the local electronic structures of single acceptors in BP. We demonstrate that the charge state of individual acceptors can be reversibly switched by controlling the tip-induced band bending. In addition, acceptor-related resonance features in the tunnelling spectra can be attributed to the formation of Rydberg-like bound hole states. The spatial mapping of the quantum bound states shows two distinct shapes evolving from an extended ellipse shape for the 1s ground state to a dumbbell shape for the 2p x excited state. The wave functions of bound hole states can be well-described using the hydrogen-like model with anisotropic effective mass, corroborated by our theoretical calculations. Our findings not only provide new insight into the many-body interactions around single dopants in this anisotropic two-dimensional material but also pave the way to the design of novel quantum devices.

  7. Spatially resolved observation of the fundamental and second harmonic standing kink modes using SDO/AIA

    Pascoe, D. J.; Goddard, C. R.; Nakariakov, V. M.

    2016-09-01

    Aims: We consider a coronal loop kink oscillation observed by the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO) which demonstrates two strong spectral components. The period of the lower frequency component being approximately twice that of the shorter frequency component suggests the presence of harmonics. Methods: We examine the presence of two longitudinal harmonics by investigating the spatial dependence of the loop oscillation. The time-dependent displacement of the loop is measured at 15 locations along the loop axis. For each position the displacement is fitted as the sum of two damped sinusoids, having periods P1 and P2, and a damping time τ. The shorter period component exhibits anti-phase oscillations in the loop legs. Results: We interpret the observation in terms of the first (global or fundamental) and second longitudinal harmonics of the standing kink mode. The strong excitation of the second harmonic appears connected to the preceding coronal mass ejection (CME) which displaced one of the loop legs. The oscillation parameters found are P1 = 5.00±0.62 min, P2 = 2.20±0.23 min, P1/ 2P2 = 1.15±0.22, and τ/P = 3.35 ± 1.45. A movie associated to Fig. 5 is available in electronic form at http://www.aanda.org

  8. Spatially resolved metabolic analysis reveals a central role for transcriptional control in carbon allocation to wood.

    Roach, Melissa; Arrivault, Stéphanie; Mahboubi, Amir; Krohn, Nicole; Sulpice, Ronan; Stitt, Mark; Niittylä, Totte

    2017-06-15

    The contribution of transcriptional and post-transcriptional regulation to modifying carbon allocation to developing wood of trees is not well defined. To clarify the role of transcriptional regulation, the enzyme activity patterns of eight central primary metabolism enzymes across phloem, cambium, and developing wood of aspen (Populus tremula L.) were compared with transcript levels obtained by RNA sequencing of sequential stem sections from the same trees. Enzymes were selected on the basis of their importance in sugar metabolism and in linking primary metabolism to lignin biosynthesis. Existing enzyme assays were adapted to allow measurements from ~1 mm3 sections of dissected stem tissue. These experiments provided high spatial resolution of enzyme activity changes across different stages of wood development, and identified the gene transcripts probably responsible for these changes. In most cases, there was a clear positive relationship between transcripts and enzyme activity. During secondary cell wall formation, the increases in transcript levels and enzyme activities also matched with increased levels of glucose, fructose, hexose phosphates, and UDP-glucose, emphasizing an important role for transcriptional regulation in carbon allocation to developing aspen wood. These observations corroborate the efforts to increase carbon allocation to wood by engineering gene regulatory networks. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  9. Spatially and Temporally Resolved Analysis of Environmental Trade-Offs in Electricity Generation.

    Peer, Rebecca A M; Garrison, Jared B; Timms, Craig P; Sanders, Kelly T

    2016-04-19

    The US power sector is a leading contributor of emissions that affect air quality and climate. It also requires a lot of water for cooling thermoelectric power plants. Although these impacts affect ecosystems and human health unevenly in space and time, there has been very little quantification of these environmental trade-offs on decision-relevant scales. This work quantifies hourly water consumption, emissions (i.e., carbon dioxide, nitrogen oxides, and sulfur oxides), and marginal heat rates for 252 electricity generating units (EGUs) in the Electric Reliability Council of Texas (ERCOT) region in 2011 using a unit commitment and dispatch model (UC&D). Annual, seasonal, and daily variations, as well as spatial variability are assessed. When normalized over the grid, hourly average emissions and water consumption intensities (i.e., output per MWh) are found to be highest when electricity demand is the lowest, as baseload EGUs tend to be the most water and emissions intensive. Results suggest that a large fraction of emissions and water consumption are caused by a small number of power plants, mainly baseload coal-fired generators. Replacing 8-10 existing power plants with modern natural gas combined cycle units would result in reductions of 19-29%, 51-55%, 60-62%, and 13-27% in CO2 emissions, NOx emissions, SOx emissions, and water consumption, respectively, across the ERCOT region for two different conversion scenarios.

  10. Comparison of two spatially-resolved fossil fuel CO2 emissions inventories at the urban scale in four US cities

    Liang, J.; Gurney, K. R.; O'Keeffe, D.; Patarasuk, R.; Hutchins, M.; Rao, P.

    2017-12-01

    Spatially-resolved fossil fuel CO2 (FFCO2) emissions are used not only in complex atmospheric modeling systems as prior scenarios to simulate concentrations of CO2 in the atmosphere, but to improve understanding of relationships with socioeconomic factors in support of sustainability policymaking. We present a comparison of ODIAC, a top-down global gridded FFCO2 emissions dataset, and Hesita, a bottom-up FFCO2 emissions dataset, in four US cities, including Los Angles, Indianapolis, Salt Lake City and Baltimore City. ODIAC was developed by downscaling national total emissions to 1km-by-1km grid cells using satellite nightlight imagery as proxy. Hesita was built from the ground up by allocating sector-specific county-level emissions to urban-level spatial surrogates including facility locations, road maps, building footprints/parcels, railroad maps and shipping lanes. The differences in methodology and data sources could lead to large discrepancies in FFCO2 estimates at the urban scale, and these discrepancies need to be taken into account in conducting atmospheric modeling or socioeconomic analysis. This comparison work is aimed at quantifying the statistical and spatial difference between the two FFCO2 inventories. An analysis of the difference in total emissions, spatial distribution and statistical distribution resulted in the following findings: (1) ODIAC agrees well with Hestia in total FFCO2 emissions estimates across the four cities with a difference from 3%-20%; (2) Small-scale areal and linear spatial features such as roads and buildings are either entirely missing or not very well represented in ODIAC, since nightlight imagery might not be able to capture these information. This might further lead to underestimated on-road FFCO2 emissions in ODIAC; (3) The statistical distribution of ODIAC is more concentrated around the mean with much less samples in the lower range. These phenomena could result from the nightlight halo and saturation effects; (4) The

  11. The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: A case study of Inje, Korea

    Saro, Lee; Woo, Jeon Seong; Kwan-Young, Oh; Moung-Jin, Lee

    2016-02-01

    The aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with artificial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identified based on interpretations of optical remote sensing data (Aerial photographs) followed by field surveys. A spatial database considering forest, geophysical, soil and topographic data, was built on the study area using the Geographical Information System (GIS). These factors were analysed using artificial neural network (ANN) and logistic regression models to generate a landslide susceptibility map. The study validates the landslide susceptibility map by comparing them with landslide occurrence areas. The locations of landslide occurrence were divided randomly into a training set (50%) and a test set (50%). A training set analyse the landslide susceptibility map using the artificial network along with logistic regression models, and a test set was retained to validate the prediction map. The validation results revealed that the artificial neural network model (with an accuracy of 80.10%) was better at predicting landslides than the logistic regression model (with an accuracy of 77.05%). Of the weights used in the artificial neural network model, `slope' yielded the highest weight value (1.330), and `aspect' yielded the lowest value (1.000). This research applied two statistical analysis methods in a GIS and compared their results. Based on the findings, we were able to derive a more effective method for analyzing landslide susceptibility.

  12. The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models: A case study of Inje, Korea

    Saro Lee

    2016-02-01

    Full Text Available The aim of this study is to predict landslide susceptibility caused using the spatial analysis by the application of a statistical methodology based on the GIS. Logistic regression models along with artificial neutral network were applied and validated to analyze landslide susceptibility in Inje, Korea. Landslide occurrence area in the study were identified based on interpretations of optical remote sensing data (Aerial photographs followed by field surveys. A spatial database considering forest, geophysical, soil and topographic data, was built on the study area using the Geographical Information System (GIS. These factors were analysed using artificial neural network (ANN and logistic regression models to generate a landslide susceptibility map. The study validates the landslide susceptibility map by comparing them with landslide occurrence areas. The locations of landslide occurrence were divided randomly into a training set (50% and a test set (50%. A training set analyse the landslide susceptibility map using the artificial network along with logistic regression models, and a test set was retained to validate the prediction map. The validation results revealed that the artificial neural network model (with an accuracy of 80.10% was better at predicting landslides than the logistic regression model (with an accuracy of 77.05%. Of the weights used in the artificial neural network model, ‘slope’ yielded the highest weight value (1.330, and ‘aspect’ yielded the lowest value (1.000. This research applied two statistical analysis methods in a GIS and compared their results. Based on the findings, we were able to derive a more effective method for analyzing landslide susceptibility.

  13. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting

    Roeffaers, Maarten B. J.; Sels, Bert F.; Uji-I, Hiroshi; de Schryver, Frans C.; Jacobs, Pierre A.; de Vos, Dirk E.; Hofkens, Johan

    2006-02-01

    Catalytic processes on surfaces have long been studied by probing model reactions on single-crystal metal surfaces under high vacuum conditions. Yet the vast majority of industrial heterogeneous catalysis occurs at ambient or elevated pressures using complex materials with crystal faces, edges and defects differing in their catalytic activity. Clearly, if new or improved catalysts are to be rationally designed, we require quantitative correlations between surface features and catalytic activity-ideally obtained under realistic reaction conditions. Transmission electron microscopy and scanning tunnelling microscopy have allowed in situ characterization of catalyst surfaces with atomic resolution, but are limited by the need for low-pressure conditions and conductive surfaces, respectively. Sum frequency generation spectroscopy can identify vibrations of adsorbed reactants and products in both gaseous and condensed phases, but so far lacks sensitivity down to the single molecule level. Here we adapt real-time monitoring of the chemical transformation of individual organic molecules by fluorescence microscopy to monitor reactions catalysed by crystals of a layered double hydroxide immersed in reagent solution. By using a wide field microscope, we are able to map the spatial distribution of catalytic activity over the entire crystal by counting single turnover events. We find that ester hydrolysis proceeds on the lateral {1010} crystal faces, while transesterification occurs on the entire outer crystal surface. Because the method operates at ambient temperature and pressure and in a condensed phase, it can be applied to the growing number of liquid-phase industrial organic transformations to localize catalytic activity on and in inorganic solids. An exciting opportunity is the use of probe molecules with different size and functionality, which should provide insight into shape-selective or structure-sensitive catalysis and thus help with the rational design of new or

  14. Spatially resolved flux measurements of NOx from London suggest significantly higher emissions than predicted by inventories.

    Vaughan, Adam R; Lee, James D; Misztal, Pawel K; Metzger, Stefan; Shaw, Marvin D; Lewis, Alastair C; Purvis, Ruth M; Carslaw, David C; Goldstein, Allen H; Hewitt, C Nicholas; Davison, Brian; Beevers, Sean D; Karl, Thomas G

    2016-07-18

    To date, direct validation of city-wide emissions inventories for air pollutants has been difficult or impossible. However, recent technological innovations now allow direct measurement of pollutant fluxes from cities, for comparison with emissions inventories, which are themselves commonly used for prediction of current and future air quality and to help guide abatement strategies. Fluxes of NOx were measured using the eddy-covariance technique from an aircraft flying at low altitude over London. The highest fluxes were observed over central London, with lower fluxes measured in suburban areas. A footprint model was used to estimate the spatial area from which the measured emissions occurred. This allowed comparison of the flux measurements to the UK's National Atmospheric Emissions Inventory (NAEI) for NOx, with scaling factors used to account for the actual time of day, day of week and month of year of the measurement. The comparison suggests significant underestimation of NOx emissions in London by the NAEI, mainly due to its under-representation of real world road traffic emissions. A comparison was also carried out with an enhanced version of the inventory using real world driving emission factors and road measurement data taken from the London Atmospheric Emissions Inventory (LAEI). The measurement to inventory agreement was substantially improved using the enhanced version, showing the importance of fully accounting for road traffic, which is the dominant NOx emission source in London. In central London there was still an underestimation by the inventory of 30-40% compared with flux measurements, suggesting significant improvements are still required in the NOx emissions inventory.

  15. Complex EUV imaging reflectometry: spatially resolved 3D composition determination and dopant profiling with a tabletop 13nm source

    Porter, Christina L.; Tanksalvala, Michael; Gerrity, Michael; Miley, Galen P.; Esashi, Yuka; Horiguchi, Naoto; Zhang, Xiaoshi; Bevis, Charles S.; Karl, Robert; Johnsen, Peter; Adams, Daniel E.; Kapteyn, Henry C.; Murnane, Margaret M.

    2018-03-01

    With increasingly 3D devices becoming the norm, there is a growing need in the semiconductor industry and in materials science for high spatial resolution, non-destructive metrology techniques capable of determining depth-dependent composition information on devices. We present a solution to this problem using ptychographic coherent diffractive imaging (CDI) implemented using a commercially available, tabletop 13 nm source. We present the design, simulations, and preliminary results from our new complex EUV imaging reflectometer, which uses coherent 13 nm light produced by tabletop high harmonic generation. This tool is capable of determining spatially-resolved composition vs. depth profiles for samples by recording ptychographic images at multiple incidence angles. By harnessing phase measurements, we can locally and nondestructively determine quantities such as device and thin film layer thicknesses, surface roughness, interface quality, and dopant concentration profiles. Using this advanced imaging reflectometer, we can quantitatively characterize materials-sciencerelevant and industry-relevant nanostructures for a wide variety of applications, spanning from defect and overlay metrology to the development and optimization of nano-enhanced thermoelectric or spintronic devices.

  16. Integrated circuit-based electrochemical sensor for spatially resolved detection of redox-active metabolites in biofilms.

    Bellin, Daniel L; Sakhtah, Hassan; Rosenstein, Jacob K; Levine, Peter M; Thimot, Jordan; Emmett, Kevin; Dietrich, Lars E P; Shepard, Kenneth L

    2014-01-01

    Despite advances in monitoring spatiotemporal expression patterns of genes and proteins with fluorescent probes, direct detection of metabolites and small molecules remains challenging. A technique for spatially resolved detection of small molecules would benefit the study of redox-active metabolites that are produced by microbial biofilms and can affect their development. Here we present an integrated circuit-based electrochemical sensing platform featuring an array of working electrodes and parallel potentiostat channels. 'Images' over a 3.25 × 0.9 mm(2) area can be captured with a diffusion-limited spatial resolution of 750 μm. We demonstrate that square wave voltammetry can be used to detect, identify and quantify (for concentrations as low as 2.6 μM) four distinct redox-active metabolites called phenazines. We characterize phenazine production in both wild-type and mutant Pseudomonas aeruginosa PA14 colony biofilms, and find correlations with fluorescent reporter imaging of phenazine biosynthetic gene expression.

  17. Quantitative, depth-resolved determination of particle motion using multi-exposure, spatial frequency domain laser speckle imaging.

    Rice, Tyler B; Kwan, Elliott; Hayakawa, Carole K; Durkin, Anthony J; Choi, Bernard; Tromberg, Bruce J

    2013-01-01

    Laser Speckle Imaging (LSI) is a simple, noninvasive technique for rapid imaging of particle motion in scattering media such as biological tissue. LSI is generally used to derive a qualitative index of relative blood flow due to unknown impact from several variables that affect speckle contrast. These variables may include optical absorption and scattering coefficients, multi-layer dynamics including static, non-ergodic regions, and systematic effects such as laser coherence length. In order to account for these effects and move toward quantitative, depth-resolved LSI, we have developed a method that combines Monte Carlo modeling, multi-exposure speckle imaging (MESI), spatial frequency domain imaging (SFDI), and careful instrument calibration. Monte Carlo models were used to generate total and layer-specific fractional momentum transfer distributions. This information was used to predict speckle contrast as a function of exposure time, spatial frequency, layer thickness, and layer dynamics. To verify with experimental data, controlled phantom experiments with characteristic tissue optical properties were performed using a structured light speckle imaging system. Three main geometries were explored: 1) diffusive dynamic layer beneath a static layer, 2) static layer beneath a diffuse dynamic layer, and 3) directed flow (tube) submerged in a dynamic scattering layer. Data fits were performed using the Monte Carlo model, which accurately reconstructed the type of particle flow (diffusive or directed) in each layer, the layer thickness, and absolute flow speeds to within 15% or better.

  18. Spatially Resolved Hard X-ray Emission in the Central 5 kpc of the Galaxy Merger NGC 6240

    Wang, Junfeng; Nardini, E.; Fabbiano, G.; Karovska, M.; Elvis, M.; Pellegrini, S.; Max, C. E.; Risaliti, G.; U, V.; Zezas, A.

    2013-04-01

    We have obtained a deep, sub-arcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from 70 million K hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with velocity of 2200 km/s. For the first time we obtain spatial distribution of this highly ionized gas emitting FeXXV and find that it shows a remarkable correspondence to the large scale morphology of H_2(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originated in the starburst driven wind into the ambient dense gas can account for this morphological correspondence. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate.

  19. SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA’S LARGE-SCALE COMPOSITIONAL UNITS AT 3–4 μ m WITH KECK NIRSPEC

    Fischer, P. D.; Brown, M. E.; Trumbo, S. K. [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Hand, K. P., E-mail: pfischer@caltech.edu [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2017-01-01

    We present spatially resolved spectroscopic observations of Europa’s surface at 3–4 μ m obtained with the near-infrared spectrograph and adaptive optics system on the Keck II telescope. These are the highest quality spatially resolved reflectance spectra of Europa’s surface at 3–4 μ m. The observations spatially resolve Europa’s large-scale compositional units at a resolution of several hundred kilometers. The spectra show distinct features and geographic variations associated with known compositional units; in particular, large-scale leading hemisphere chaos shows a characteristic longward shift in peak reflectance near 3.7 μ m compared to icy regions. These observations complement previous spectra of large-scale chaos, and can aid efforts to identify the endogenous non-ice species.

  20. Sistema imunológico artificial para resolver o problema da árvore geradora mínima com parâmetros fuzzy

    Tiago Agostinho Almeida

    2007-04-01

    Full Text Available Neste trabalho é proposta uma meta-heurística baseada em técnicas da computação evolutiva que visa encontrar um conjunto de árvores geradoras mínimas, para problemas de grafos que possuem incertezas em relação às informações associadas aos parâmetros. Resolver problemas dessa natureza é um processo NP-Completo, pois envolve um número enorme de comparações. A fim de contornar essa complexidade, é proposto um sistema imunológico artificial capaz de explorar eficientemente o espaço de busca e de obter resultados satisfatórios, sem a necessidade de confrontar todas as soluções entre si.This work proposes an heuristical approach based on evolutionary computation, whose goal is to find a set of minimum spanning trees in graphs that contain uncertainties in their parameters. This kind of problem is a NP-Hard one, because it involves an enormous number of comparisons. In order to avoid this complexity, this work proposes an artificial immune system that explores efficiently the search space of solutions to looking for satisfactory results, without the necessity of comparing all possible solutions.

  1. Spatially Resolved Dust, Gas, and Star Formation in the Dwarf Magellanic Irregular NGC 4449

    Calzetti, D.; Wilson, G. W.; Draine, B. T.; Roussel, H.; Johnson, K. E.; Heyer, M. H.; Wall, W. F.; Grasha, K.; Battisti, A.; Andrews, J. E.; Kirkpatrick, A.; Rosa González, D.; Vega, O.; Puschnig, J.; Yun, M.; Östlin, G.; Evans, A. S.; Tang, Y.; Lowenthal, J.; Sánchez-Arguelles, D.

    2018-01-01

    We investigate the relation between gas and star formation in subgalactic regions, ∼360 pc to ∼1.5 kpc in size, within the nearby starburst dwarf NGC 4449, in order to separate the underlying relation from the effects of sampling at varying spatial scales. Dust and gas mass surface densities are derived by combining new observations at 1.1 mm, obtained with the AzTEC instrument on the Large Millimeter Telescope, with archival infrared images in the range 8–500 μm from the Spitzer Space Telescope and the Herschel Space Observatory. We extend the dynamic range of our millimeter (and dust) maps at the faint end, using a correlation between the far-infrared/millimeter colors F(70)/F(1100) (and F(160)/F(1100)) and the mid-infrared color F(8)/F(24) that we establish for the first time for this and other galaxies. Supplementing our data with maps of the extinction-corrected star formation rate (SFR) surface density, we measure both the SFR–molecular gas and the SFR–total gas relations in NGC 4449. We find that the SFR–molecular gas relation is described by a power law with an exponent that decreases from ∼1.5 to ∼1.2 for increasing region size, while the exponent of the SFR–total gas relation remains constant with a value of ∼1.5 independent of region size. We attribute the molecular law behavior to the increasingly better sampling of the molecular cloud mass function at larger region sizes; conversely, the total gas law behavior likely results from the balance between the atomic and molecular gas phases achieved in regions of active star formation. Our results indicate a nonlinear relation between SFR and gas surface density in NGC 4449, similar to what is observed for galaxy samples. Based on observations obtained with the Large Millimeter Telescope Alfonso Serrano—a binational collaboration between INAOE (Mexico) and the University of Massachusetts–Amherst (USA).

  2. Development and application of methods and models for the calculation of spatially and temporally highly resolved emissions in Europe

    Thiruchittampalam, Balendra

    2014-01-01

    High spatial and temporal resolution models are essential for answering many questions of air quality management and climate modeling. High-resolution emission models are required to determine the concentration of pollutants using chemical transport models, and to quantify the impacts on health and environment and in particular to develop adequate countermeasures. The aim of this work is to develop methods for the calculation of spatially and temporally high-resolved emissions and to apply these exemplarily on a 1 km x 1 km and hourly resolution for the year 2008 in the EU-27 and EFTA countries. The derivation of methods for the spatial and temporal resolution of emissions with corresponding detailed equations is one of the major improvements that have been carried out in the course of this work. The improvement of the spatial distribution of emissions from the point source relevant sectors like energy supply, industry and waste management is achieved by considering sector specific diffuse emission shares. The progress of the spatial distribution of emissions from households is in particular the development of a fuel type weighted distribution over Europe. Another main focus is the development of the spatial distribution of road transport emissions. Due to the restricted access to traffic count data at the European level, methods have been established to provide reliable emissions on grid level for Europe. The progress in the spatial distribution of agricultural emissions is achieved by the consideration of diffuse shares similar to the other point source relevant sectors like energy supply or industry. In addition to the spatial distribution of the emissions the temporal resolution is a main focus of this work, since the state of knowledge of the temporal resolution of emissions in Europe is still rudimentary. Therefore, it was necessary to develop in particular time curves for the hourly resolution of emissions for the main sectors, namely electricity and heat

  3. SDSS-IV MaNGA: The Spatially Resolved Stellar Initial Mass Function in ˜400 Early-Type Galaxies

    Parikh, Taniya; Thomas, Daniel; Maraston, Claudia; Westfall, Kyle B.; Goddard, Daniel; Lian, Jianhui; Meneses-Goytia, Sofia; Jones, Amy; Vaughan, Sam; Andrews, Brett H.; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Brownstein, Joel R.; Bundy, Kevin; Drory, Niv; Emsellem, Eric; Law, David R.; Newman, Jeffrey A.; Roman-Lopes, Alexandre; Wake, David; Yan, Renbin; Zheng, Zheng

    2018-03-01

    MaNGA provides the opportunity to make precise spatially resolved measurements of the IMF slope in galaxies owing to its unique combination of spatial resolution, wavelength coverage and sample size. We derive radial gradients in age, element abundances and IMF slope analysing optical and near-infrared absorption features from stacked spectra out to the half-light radius of 366 early-type galaxies with masses 9.9 - 10.8 log M/M⊙. We find flat gradients in age and [α/Fe] ratio, as well as negative gradients in metallicity, consistent with the literature. We further derive significant negative gradients in the [Na/Fe] ratio with galaxy centres being well enhanced in Na abundance by up to 0.5 dex. Finally, we find a gradient in IMF slope with a bottom-heavy IMF in the centre (typical mass excess factor of 1.5) and a Milky Way-type IMF at the half-light radius. This pattern is mass-dependent with the lowest mass galaxies in our sample featuring only a shallow gradient around a Milky Way IMF. Our results imply the local IMF-σ relation within galaxies to be even steeper than the global relation and hint towards the local metallicity being the dominating factor behind the IMF variations. We also employ different stellar population models in our analysis and show that a radial IMF gradient is found independently of the stellar population model used. A similar analysis of the Wing-Ford band provides inconsistent results and further evidence of the difficulty in measuring and modelling this particular feature.

  4. Two-Photon Irradiation of an Intracellular Singlet Oxygen Photosensitizer: Achieving Localized Sub-Cellular Excitation in Spatially-Resolved Experiments

    Pedersen, Brian Wett; Breitenbach, Thomas; Redmond, Robert W.

    2010-01-01

    The response of a given cell to spatially-resolved sub-cellular irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. In these experiments, incident light was scattered over a volume greater than that defi ned by the dimensions of the laser...

  5. Development of a Schottky CdTe Medipix3RX hybrid photon counting detector with spatial and energy resolving capabilities

    Gimenez, E.N., E-mail: Eva.Gimenez@diamond.ac.uk [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom); Astromskas, V. [University of Surrey (United Kingdom); Horswell, I.; Omar, D.; Spiers, J.; Tartoni, N. [Diamond Light Source, Harwell Campus, Oxforshire OX11 0DE (United Kingdom)

    2016-07-11

    A multichip CdTe-Medipix3RX detector system was developed in order to bring the advantages of photon-counting detectors to applications in the hard X-ray range of energies. The detector head consisted of 2×2 Medipix3RX ASICs bump-bonded to a 28 mm×28 mm e{sup −} collection Schottky contact CdTe sensor. Schottky CdTe sensors undergo performance degrading polarization which increases with temperature, flux and the longer the HV is applied. Keeping the temperature stable and periodically refreshing the high voltage bias supply was used to minimize the polarization and achieve a stable and reproducible detector response. This leads to good quality images and successful results on the energy resolving capabilities of the system. - Highlights: • A high atomic number (CdTe sensor based) photon-counting detector was developed. • Polarization effects affected the image were minimized by regularly refreshing the bias voltage and stabilizing the temperature. • Good spatial resolution and image quality was achieved following this procedure.

  6. Energy dissipation mechanism revealed by spatially resolved Raman thermometry of graphene/hexagonal boron nitride heterostructure devices

    Kim, Daehee; Kim, Hanul; Yun, Wan Soo; Watanabe, Kenji; Taniguchi, Takashi; Rho, Heesuk; Bae, Myung-Ho

    2018-04-01

    Understanding the energy transport by charge carriers and phonons in two-dimensional (2D) van der Waals heterostructures is essential for the development of future energy-efficient 2D nanoelectronics. Here, we performed in situ spatially resolved Raman thermometry on an electrically biased graphene channel and its hBN substrate to study the energy dissipation mechanism in graphene/hBN heterostructures. By comparing the temperature profile along the biased graphene channel with that along the hBN substrate, we found that the thermal boundary resistance between the graphene and hBN was in the range of (1-2) ~ × 10-7 m2 K W-1 from ~100 °C to the onset of graphene break-down at ~600 °C in air. Consideration of an electro-thermal transport model together with the Raman thermometry conducted in air showed that a doping effect occurred under a strong electric field played a crucial role in the energy dissipation of the graphene/hBN device up to T ~ 600 °C.

  7. Probing Minor-merger-driven Star Formation In Early-type Galaxies Using Spatially-resolved Spectro-photometric Studies

    Kaviraj, Sugata; Crockett, M.; Silk, J.; O'Connell, R. W.; Whitmore, B.; Windhorst, R.; Cappellari, M.; Bureau, M.; Davies, R.

    2012-01-01

    Recent studies that leverage the rest-frame ultraviolet (UV) spectrum have revealed widespread recent star formation in early-type galaxies (ETGs), traditionally considered to be old, passively-evolving systems. This recent star formation builds 20% of the ETG stellar mass after z 1, driven by repeated minor mergers between ETGs and small, gas-rich satellites. We demonstrate how spatially-resolved studies, using a combination of high-resolution UV-optical imaging and integral-field spectroscopy (IFS), is a powerful tool to quantify the assembly history of individual ETGs and elucidate the poorly-understood minor-merger process. Using a combination of WFC3 UV-optical (2500-8200 angstroms) imaging and IFS from the SAURON project of the ETG NGC 4150, we show that this galaxy experienced a merger with mass ratio 1:15 around 0.9 Gyr ago, which formed 3% of its stellar mass and a young kinematically-decoupled core. A UV-optical analysis of its globular cluster system shows that the bulk of the stars locked up in these clusters likely formed 6-7 Gyrs in the past. We introduce a new HST-WFC3 programme, approved in Cycle 19, which will leverage similar UV-optical imaging of a representative sample of nearby ETGs from SAURON to study the recent star formation and its drivers in unprecedented detail and put definitive constraints on minor-merger-driven star formation in massive galaxies at late epochs.

  8. The spatially resolved characterisation of Egyptian blue, Han blue and Han purple by photo-induced luminescence digital imaging.

    Verri, G

    2009-06-01

    The photo-induced luminescence properties of Egyptian blue, Han blue and Han purple were investigated by means of near-infrared digital imaging. These pigments emit infrared radiation when excited in the visible range. The emission can be recorded by means of a modified commercial digital camera equipped with suitable glass filters. A variety of visible light sources were investigated to test their ability to excite luminescence in the pigments. Light-emitting diodes, which do not emit stray infrared radiation, proved an excellent source for the excitation of luminescence in all three compounds. In general, the use of visible radiation emitters with low emission in the infrared range allowed the presence of the pigments to be determined and their distribution to be spatially resolved. This qualitative imaging technique can be easily applied in situ for a rapid characterisation of materials. The results were compared to those for Egyptian green and for historical and modern blue pigments. Examples of the application of the technique on polychrome works of art are presented.

  9. Discovery of Low-ionization Envelopes in the Planetary Nebula NGC 5189: Spatially-resolved Diagnostics from HST Observations

    Danehkar, Ashkbiz; Karovska, Margarita; Maksym, Walter Peter; Montez, Rodolfo

    2018-01-01

    The planetary nebula NGC 5189 shows one of the most spectacular morphological structures among planetary nebulae with [WR]-type central stars. Using high-angular resolution HST/WFC3 imaging, we discovered inner, low-ionization structures within a region of 0.3 parsec × 0.2 parsec around the central binary system. We used Hα, [O III], and [S II] emission line images to construct line-ratio diagnostic maps, which allowed us to spatially resolve two distinct low-ionization envelopes within the inner, ionized gaseous environment, extending over a distance of 0.15 pc from the central binary. Both the low-ionization envelopes appear to be expanding along a NE to SW symmetric axis. The SW envelope appears smaller than its NE counterpart. Our diagnostic maps show that highly-ionized gas surrounds these low-ionization envelopes, which also include filamentary and clumpy structures. These envelopes could be a result of a powerful outburst from the central interacting binary, when one of the companions (now a [WR] star) was in its AGB evolutionary stage, with a strong mass-loss generating dense circumstellar shells. Dense material ejected from the progenitor AGB star is likely heated up as it propagates along a symmetric axis into the previously expelled low-density material. Our new diagnostic methodology is a powerful tool for high-angular resolution mapping of low-ionization structures in other planetary nebulae with complex structures possibly caused by past outbursts from their progenitors.

  10. Time and spatially resolved LIF of OH in a plasma filament in atmospheric pressure He-H2O

    Verreycken, T; Van der Horst, R M; Baede, A H F M; Van Veldhuizen, E M; Bruggeman, P J

    2012-01-01

    The production of OH in a nanosecond pulsed filamentary discharge generated in pin-pin geometry in a He-H 2 O mixture is studied by time and spatially resolved laser-induced fluorescence. Apart from the OH density the gas temperature and the electron density are also measured. Depending on the applied voltage the discharge is in a different mode. The maximum electron densities in the low- (1.3 kV) and high-density (5 kV) modes are 2 × 10 21 m -3 and 7 × 10 22 m -3 , respectively. The gas temperature in both modes does not exceed 600 K. In the low-density mode the maximum OH density is at the centre of the discharge filament, while in the high-density mode the largest OH density is observed on the edge of the discharge. A chemical model is used to obtain an estimate of the absolute OH density. The chemical model also shows that charge exchange and dissociative recombination can explain the production of OH in the case of the high-density mode. (paper)

  11. Tunable All Reflective Spatial Heterodyne Spectroscopy, A Technique For High Resolving Power Observation OI Defused Emission Line Sources

    Hosseini, Seyedeh Sona

    The solar system presents a challenge to spectroscopic observers, because it is an astrophysically low energy environment populated with often angularly extended targets (e.g, interplanetary medium, comets, planetary upper atmospheres, and planet and satellite near space environments). Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. The drawback of high-resolution spectroscopy comes from the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become definitive for faint and/or extended targets and for spacecraft encounters. An emerging technique with promise for the study of faint, extended sources at high resolving power is the all-reflective form of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally possess both high etendue and high resolving power. To achieve similar spectral grasp, grating spectrometers require big telescopes. SHS is a common-path beam Fourier transform interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. Compared to similar Fourier transform Spectrometers (FTS), SHS has considerably relaxed optical tolerances that make it easier to use in the visible and UV spectral ranges. The large etendue of SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables the study of the dynamical and spectral characteristics described above. SHS also combines very

  12. Spatial interpolation and radiological mapping of ambient gamma dose rate by using artificial neural networks and fuzzy logic methods.

    Yeşilkanat, Cafer Mert; Kobya, Yaşar; Taşkın, Halim; Çevik, Uğur

    2017-09-01

    The aim of this study was to determine spatial risk dispersion of ambient gamma dose rate (AGDR) by using both artificial neural network (ANN) and fuzzy logic (FL) methods, compare the performances of methods, make dose estimations for intermediate stations with no previous measurements and create dose rate risk maps of the study area. In order to determine the dose distribution by using artificial neural networks, two main networks and five different network structures were used; feed forward ANN; Multi-layer perceptron (MLP), Radial basis functional neural network (RBFNN), Quantile regression neural network (QRNN) and recurrent ANN; Jordan networks (JN), Elman networks (EN). In the evaluation of estimation performance obtained for the test data, all models appear to give similar results. According to the cross-validation results obtained for explaining AGDR distribution, Pearson's r coefficients were calculated as 0.94, 0.91, 0.89, 0.91, 0.91 and 0.92 and RMSE values were calculated as 34.78, 43.28, 63.92, 44.86, 46.77 and 37.92 for MLP, RBFNN, QRNN, JN, EN and FL, respectively. In addition, spatial risk maps showing distributions of AGDR of the study area were created by all models and results were compared with geological, topological and soil structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Visualizing chemical states and defects induced magnetism of graphene oxide by spatially-resolved-X-ray microscopy and spectroscopy.

    Wang, Y F; Singh, Shashi B; Limaye, Mukta V; Shao, Y C; Hsieh, S H; Chen, L Y; Hsueh, H C; Wang, H T; Chiou, J W; Yeh, Y C; Chen, C W; Chen, C H; Ray, Sekhar C; Wang, J; Pong, W F; Takagi, Y; Ohigashi, T; Yokoyama, T; Kosugi, N

    2015-10-20

    This investigation studies the various magnetic behaviors of graphene oxide (GO) and reduced graphene oxides (rGOs) and elucidates the relationship between the chemical states that involve defects therein and their magnetic behaviors in GO sheets. Magnetic hysteresis loop reveals that the GO is ferromagnetic whereas photo-thermal moderately reduced graphene oxide (M-rGO) and heavily reduced graphene oxide (H-rGO) gradually become paramagnetic behavior at room temperature. Scanning transmission X-ray microscopy and corresponding X-ray absorption near-edge structure spectroscopy were utilized to investigate thoroughly the variation of the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups, as well as the C 2p(σ*)-derived states in flat and wrinkle regions to clarify the relationship between the spatially-resolved chemical states and the magnetism of GO, M-rGO and H-rGO. The results of X-ray magnetic circular dichroism further support the finding that C 2p(σ*)-derived states are the main origin of the magnetism of GO. Based on experimental results and first-principles calculations, the variation in magnetic behavior from GO to M-rGO and to H-rGO is interpreted, and the origin of ferromagnetism is identified as the C 2p(σ*)-derived states that involve defects/vacancies rather than the C 2p(π*) states that are bound with oxygen-containing and hydroxyl groups on GO sheets.

  14. Microscopic View of Defect Evolution in Thermal Treated AlGaInAs Quantum Well Revealed by Spatially Resolved Cathodoluminescence

    Yue Song

    2018-06-01

    Full Text Available An aluminum gallium indium arsenic (AlGaInAs material system is indispensable as the active layer of diode lasers emitting at 1310 or 1550 nm, which are used in optical fiber communications. However, the course of the high-temperature instability of a quantum well structure, which is closely related to the diffusion of indium atoms, is still not clear due to the system’s complexity. The diffusion process of indium atoms was simulated by thermal treatment, and the changes in the optical and structural properties of an AlGaInAs quantum well are investigated in this paper. Compressive strained Al0.07Ga0.22In0.71As quantum wells were treated at 170 °C with different heat durations. A significant decrement of photoluminescence decay time was observed on the quantum well of a sample that was annealed after 4 h. The microscopic cathodoluminescent (CL spectra of these quantum wells were measured by scanning electron microscope-cathodoluminescence (SEM-CL. The thermal treatment effect on quantum wells was characterized via CL emission peak wavelength and energy density distribution, which were obtained by spatially resolved cathodoluminescence. The defect area was clearly observed in the Al0.07Ga0.22In0.71As quantum wells layer after thermal treatment. CL emissions from the defect core have higher emission energy than those from the defect-free regions. The defect core distribution, which was associated with indium segregation gradient distribution, showed asymmetric character.

  15. SPATIALLY RESOLVED OBSERVATIONS OF THE BIPOLAR OPTICAL OUTFLOW FROM THE BROWN DWARF 2MASS J12073347–3932540

    Whelan, E. T.; Ray, T. P.; Comeron, F.; Bacciotti, F.; Kavanagh, P. J.

    2012-01-01

    Studies of brown dwarf (BD) outflows provide information pertinent to questions on BD formation, as well as allowing outflow mechanisms to be investigated at the lowest masses. Here new observations of the bipolar outflow from the 24 M JUP BD 2MASS J12073347–3932540 are presented. The outflow was originally identified through the spectro-astrometric analysis of the [O I]λ6300 emission line. Follow-up observations consisting of spectra and [S II], R-band and I-band images were obtained. The new spectra confirm the original results and are used to constrain the outflow position angle (P.A.) at ∼65°. The [O I]λ6300 emission line region is spatially resolved and the outflow is detected in the [S II] images. The detection is firstly in the form of an elongation of the point-spread function (PSF) along the direction of the outflow P.A. Four faint knot-like features (labeled A-D) are also observed to the southwest of 2MASS J12073347–3932540 along the same P.A. suggested by the spectra and the elongation in the PSF. Interestingly, D, the feature furthest from the source, is bow shaped with the apex pointing away from 2MASS J12073347–3932540. A color-color analysis allows us to conclude that at least feature D is part of the outflow under investigation while A is likely a star or galaxy. Follow-up observations are needed to confirm the origin of B and C. This is a first for a BD, as BD optical outflows have to date only been detected using spectro-astrometry. This result also demonstrates for the first time that BD outflows can be collimated and episodic.

  16. SPATIALLY RESOLVED SPECTROSCOPY AND CHEMICAL HISTORY OF STAR-FORMING GALAXIES IN THE HERCULES CLUSTER: THE EFFECTS OF THE ENVIRONMENT

    Petropoulou, V.; Vilchez, J.; Iglesias-Paramo, J.; Cedres, B.; Papaderos, P.; Magrini, L.; Reverte, D.

    2011-01-01

    Spatially resolved spectroscopy has been obtained for a sample of 27 star-forming (SF) galaxies selected from our deep Hα survey of the Hercules cluster. We have applied spectral synthesis models to all emission-line spectra of this sample using the population synthesis code STARLIGHT and have obtained fundamental parameters of stellar components such as mean metallicity and age. The emission-line spectra were corrected for underlying stellar absorption using these spectral synthesis models. Line fluxes were measured and O/H and N/O gas chemical abundances were obtained using the latest empirical calibrations. We have derived the masses and total luminosities of the galaxies using available Sloan Digital Sky Survey broadband photometry. The effects of cluster environment on the chemical evolution of galaxies and on their mass-metallicity (MZ) and luminosity-metallicity (LZ) relations were studied by combining the derived gas metallicities, the mean stellar metallicities and ages, the masses and luminosities of the galaxies, and their existing H I data. Our Hercules SF galaxies are divided into three main subgroups: (1) chemically evolved spirals with truncated ionized-gas disks and nearly flat oxygen gradients, demonstrating the effect of ram-pressure stripping; (2) chemically evolved dwarfs/irregulars populating the highest local densities, possible products of tidal interactions in preprocessing events; and (3) less metallic dwarf galaxies that appear to be 'newcomers' to the cluster and are experiencing pressure-triggered star formation. Most Hercules SF galaxies follow well-defined MZ and LZ sequences (for both O/H and N/O), though the dwarf/irregular galaxies located at the densest regions appear to be outliers to these global relations, suggesting a physical reason for the dispersion in these fundamental relations. The Hercules cluster appears to be currently assembling via the merger of smaller substructures, providing an ideal laboratory where the local

  17. Star Formation Histories of the LEGUS Dwarf Galaxies. II. Spatially Resolved Star Formation History of the Magellanic Irregular NGC 4449

    Sacchi, E.; Cignoni, M.; Aloisi, A.; Tosi, M.; Calzetti, D.; Lee, J. C.; Adamo, A.; Annibali, F.; Dale, D. A.; Elmegreen, B. G.; Gouliermis, D. A.; Grasha, K.; Grebel, E. K.; Hunter, D. A.; Sabbi, E.; Smith, L. J.; Thilker, D. A.; Ubeda, L.; Whitmore, B. C.

    2018-04-01

    We present a detailed study of the Magellanic irregular galaxy NGC 4449 based on both archival and new photometric data from the Legacy Extragalactic UV Survey, obtained with the Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3. Thanks to its proximity (D = 3.82 ± 0.27 Mpc), we reach stars 3 mag fainter than the tip of the red giant branch in the F814W filter. The recovered star formation history (SFH) spans the whole Hubble time, but due to the age–metallicity degeneracy of the red giant branch stars, it is robust only over the lookback time reached by our photometry, i.e., ∼3 Gyr. The most recent peak of star formation (SF) is around 10 Myr ago. The average surface density SF rate over the whole galaxy lifetime is 0.01 M ⊙ yr‑1 kpc‑2. From our study, it emerges that NGC 4449 has experienced a fairly continuous SF regime in the last 1 Gyr, with peaks and dips whose SF rates differ only by a factor of a few. The very complex and disturbed morphology of NGC 4449 makes it an interesting galaxy for studies of the relationship between interactions and starbursts, and our detailed and spatially resolved analysis of its SFH does indeed provide some hints on the connection between these two phenomena in this peculiar dwarf galaxy. Based on observations obtained with the NASA/ESA Hubble Space Telescope at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy under NASA contract NAS 5-26555.

  18. Associations between arrhythmia episodes and temporally and spatially resolved black carbon and particulate matter in elderly patients

    Zanobetti, Antonella; Coull, Brent A.; Gryparis, Alexandros; Kloog, Itai; Sparrow, David; Vokonas, Pantel S; Wright, Robert O.; Gold, Diane R; Schwartz, Joel

    2015-01-01

    Objectives Ambient air pollution has been associated with sudden deaths, some of which are likely due to ventricular arrhythmias. Defibrillator discharge studies have examined the association of air pollution with arrhythmias in sensitive populations. No studies have assessed this association using residence-specific estimates of air pollution exposure. Methods In the Normative Aging Study, we investigated the association between temporally-and spatially-resolved black carbon (BC) and PM2.5 and arrhythmia episodes (bigeminy, trigeminy or couplets episodes) measured as ventricular ectopy (VE) by 4-min electrocardiogram (ECG) monitoring in repeated measures of 701 subjects, during the years 2000 to 2010. We used a binomial distribution (having or not a VE episode) in a mixed effect model with a random intercept for subject, controlling for seasonality, temperature, day of the week, medication use, smoking, having diabetes, BMI and age. We also examined whether these associations were modified by genotype or phenotype. Results We found significant increases in VE with both pollutants and lags; for the estimated concentration averaged over the three days prior to the health assessment we found increases in the odds of having VE with an OR of 1.52 (95% CI: 1.19–1.94) for an IQR (0.30 μg/m3) increase in BC and an OR of 1.39 (95% CI: 1.12–1.71) for an IQR (5.63 μg/m3) increase in PM2.5. We also found higher effects in subjects with the GSTT1 and GSTM1 variants and in obese (P-valuespollutants may increase the risk of ventricular arrhythmia in elderly subjects. PMID:24142987

  19. Spatially-resolved isotopic study of carbon trapped in ∼3.43 Ga Strelley Pool Formation stromatolites

    Flannery, David T.; Allwood, Abigail C.; Summons, Roger E.; Williford, Kenneth H.; Abbey, William; Matys, Emily D.; Ferralis, Nicola

    2018-02-01

    The large isotopic fractionation of carbon associated with enzymatic carbon assimilation allows evidence for life's antiquity, and potentially the early operation of several extant metabolic pathways, to be derived from the stable carbon isotope record of sedimentary rocks. Earth's organic carbon isotope record extends to the Late Eoarchean-Early Paleoarchean: the age of the oldest known sedimentary rocks. However, complementary inorganic carbon reservoirs are poorly represented in the oldest units, and commonly reported bulk organic carbon isotope measurements do not capture the micro-scale isotopic heterogeneities that are increasingly reported from younger rocks. Here, we investigated the isotopic composition of the oldest paired occurrences of sedimentary carbonate and organic matter, which are preserved as dolomite and kerogen within textural biosignatures of the ∼3.43 Ga Strelley Pool Formation. We targeted least-altered carbonate phases in situ using microsampling techniques guided by non-destructive elemental mapping. Organic carbon isotope values were measured by spatially-resolved bulk analyses, and in situ using secondary ion mass spectrometry to target microscale domains of organic material trapped within inorganic carbon matrixes. Total observed fractionation of 13C ranges from -29 to -45‰. Our data are consistent with studies of younger Archean rocks that host biogenic stromatolites and organic-inorganic carbon pairs showing greater fractionation than expected for Rubisco fixation alone. We conclude that organic matter was fixed and/or remobilized by at least one metabolism in addition to the CBB cycle, possibly by the Wood-Ljungdahl pathway or methanogenesis-methanotrophy, in a shallow-water marine environment during the Paleoarchean.

  20. Influence of cutaneous and muscular circulation on spatially resolved versus standard Beer-Lambert near-infrared spectroscopy.

    Messere, Alessandro; Roatta, Silvestro

    2013-12-01

    The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near-infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer-Lambert (BL) technique in detecting blood volume changes selectively induced in muscle and skin. In 16 healthy subjects, the biceps brachii was investigated during isometric elbow flexion at 70% of the maximum voluntary contractions lasting 10 sec, performed before and after exposure of the upper arm to warm air flow. From probes applied over the muscle belly the following variables were recorded: total hemoglobin index (THI, SRS-based), total hemoglobin concentration (tHb, BL-based), tissue oxygenation index (TOI, SRS-based), and skin blood flow (SBF), using laser Doppler flowmetry. Blood volume indices exhibited similar changes during muscle contraction but only tHb significantly increased during warming (+5.2 ± 0.7 μmol/L·cm, an effect comparable to the increase occurring in postcontraction hyperemia), accompanying a 10-fold increase in SBF. Contraction-induced changes in tHb and THI were not substantially affected by warming, although the tHb tracing was shifted upward by (5.2 ± 3.5 μmol/L·cm, P < 0.01). TOI was not affected by cutaneous warming. In conclusion, SRS appears to effectively reject interference by SBF in both muscle blood volume and oxygenation monitoring. Instead, BL-based parameters should be interpreted with caution, whenever changes in cutaneous perfusion cannot be excluded.

  1. Influence of cutaneous and muscular circulation on spatially resolved versus standard Beer–Lambert near‐infrared spectroscopy

    Messere, Alessandro; Roatta, Silvestro

    2013-01-01

    Abstract The potential interference of cutaneous circulation on muscle blood volume and oxygenation monitoring by near‐infrared spectroscopy (NIRS) remains an important limitation of this technique. Spatially resolved spectroscopy (SRS) was reported to minimize the contribution of superficial tissue layers in cerebral monitoring but this characteristic has never been documented in muscle tissue monitoring. This study aims to compare SRS with the standard Beer–Lambert (BL) technique in detecting blood volume changes selectively induced in muscle and skin. In 16 healthy subjects, the biceps brachii was investigated during isometric elbow flexion at 70% of the maximum voluntary contractions lasting 10 sec, performed before and after exposure of the upper arm to warm air flow. From probes applied over the muscle belly the following variables were recorded: total hemoglobin index (THI, SRS‐based), total hemoglobin concentration (tHb, BL‐based), tissue oxygenation index (TOI, SRS‐based), and skin blood flow (SBF), using laser Doppler flowmetry. Blood volume indices exhibited similar changes during muscle contraction but only tHb significantly increased during warming (+5.2 ± 0.7 μmol/L·cm, an effect comparable to the increase occurring in postcontraction hyperemia), accompanying a 10‐fold increase in SBF. Contraction‐induced changes in tHb and THI were not substantially affected by warming, although the tHb tracing was shifted upward by (5.2 ± 3.5 μmol/L·cm, P < 0.01). TOI was not affected by cutaneous warming. In conclusion, SRS appears to effectively reject interference by SBF in both muscle blood volume and oxygenation monitoring. Instead, BL‐based parameters should be interpreted with caution, whenever changes in cutaneous perfusion cannot be excluded. PMID:24744858

  2. Highly spatially resolved structural and optical investigation of Bi nanoparticles in Y-Er disilicate thin films

    Scarangella, A. [CNR IMM-MATIS, Via S. Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Amiard, G.; Boninelli, S., E-mail: simona.boninelli@ct.infn.it; Miritello, M. [CNR IMM-MATIS, Via S. Sofia 64, 95123 Catania (Italy); Reitano, R. [Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Priolo, F. [CNR IMM-MATIS, Via S. Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia 64, 95123 Catania (Italy); Scuola Superiore di Catania, Università di Catania, Via Valdisavoia 9, 95123 Catania (Italy)

    2016-08-08

    Er-containing silicon compatible materials have been widely used as infrared emitters for microphotonics application. In this field, the additional introduction of a proper sensitizer permits to increase the Er excitation cross sections, thus increasing its optical efficiency. This work aims to investigate the influence of a post-transition metal, bismuth, on the optical properties of erbium-yttrium disilicate thin films synthesized by magnetron co-sputtering. After thermal treatments at 1000 °C in O{sub 2} or N{sub 2} environment, the presence of small precipitates, about 6 nm in diameter, was evidenced by transmission electron microscopy analyses. The spatially resolved chemical nature of the nanoparticles was discerned in the Si and O rich environments by means of scanning transmission electron microscopy–energy dispersive X-ray and scanning transmission electron microscopy–electron energy loss spectroscopy analyses performed with nanometric resolution. In particular, metallic Bi nanoparticles were stabilized in the N{sub 2} environment, being strongly detrimental for the Er emission. A different scenario was instead observed in O{sub 2}, where the formation of Bi silicate nanoparticles was demonstrated with the support of photoluminescence excitation spectroscopy. In particular, a broad band peaked at 255 nm, correlated to the excitation band of Bi silicate nanoparticles, was identified in Er excitation spectrum. Thus Bi silicate clusters act as sensitizer for Er ions, permitting to improve Er emission up to 250 times with respect to the resonant condition. Moreover, the Er decay time increases in the presence of the Bi silicate nanoparticles that act as cages for Er ions. These last results permit to further increase Er optical efficiency in the infrared range, suggesting (Bi + Er)-Y disilicate as a good candidate for applications in microphotonics.

  3. Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality

    Ciattoni, Alessandro; Rizza, Carlo

    2015-05-01

    We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with nonmagnetic inclusions in the long-wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that the effective medium permittivity tensor and the first- and second-order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly varying fields, each satisfying electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achiral, i.e., it is indistinguishable from its mirror image, it shows pseudo-chiral-omega electromagnetic chirality if the rotation needed to restore the dielectric profile after the reflection is either a 0∘ or 90∘ rotation around an axis orthogonal to the reflection plane. These two symmetric situations encompass two-dimensional and one-dimensional metamaterials with chiral response. As an example admitting full analytical description, we discuss one-dimensional metamaterials whose single chirality parameter is shown to be directly related to the metamaterial dielectric profile by quadratures.

  4. Towards real time spatially resolved data on sediment transport: 1) tracing the motion of the fluorescent soil particles under rainfall

    Quinton, John; Hardy, Rob; Pates, Jackie; James, Mike

    2017-04-01

    Understanding where sediment originates from and where it travels to, in what quantities and at which rate is at the heart of many questions surrounding sediment transport, including the connectivity problem. Progress towards unravelling these questions and deepening our understanding has come from a wide range of approaches, including laboratory and field experiments conducted at a variety of scales. In seeking to understand the connectivity of sources and sinks of sediment scientists have spent considerable energy in developing tracing technologies. These have included numerous studies that have relied on the chemical properties of the soil and sediment to establish source-sink connectivity, and the use of 137Ceasium, from radioactive fall-out, to map sediment redistribution. More recently there has been an upsurge in interest in the use of artificially applied soil tracers, including rare earth element oxides and magnetic minerals. However all these tracing methods have a significant drawback: they rely on the collection of samples to assess their concentration. This means that their spatial distribution cannot easily be established in situ and that the environment that is being studied is damaged by the sampling process; nor can data be collected in real time which allows a dynamic understanding of erosion and transport processes to be developed. In this paper we present a methodology for use with a commercially available fluorescent tracer. The tracer is produced in a range of sizes and fluorescent signatures and can be applied to the soil surface. Here we report on an application that combines novel fluorescent videography techniques with custom image processing to trace the motion of the fluorescent soil particles under rainfall. Here we demonstrate the tracking of multiple sub-millimetre particles simultaneously, establishing their position 50 times a second with submillimetre precision. From this we are able to visualise and quantify parameters such as

  5. Antiferromagnetism Induced in the Vortex Core of Tl2Ba2CuO6++δ Probed by Spatially-Resolved 205Tl-NMR

    Kumagai, K.; Kakuyanagi, K.; Matsuda, Y.; Hasegawa, T.

    2003-01-01

    Magnetism in the vortex core state has been studied by spatially-resolved NMR. The nuclear spin lattice relaxation rate T 1 -1 of 205 Tl in nearly optimal-doped Tl 2 Ba 2 CuO 6+ δ (T c =85 K) is significantly enhanced in the vortex core region. The NMR results suggest that the suppression of the d-wave superconducting order parameter in the vortex core leads to the nucleation of islands with local antiferromagnetic (AF) order. (author)

  6. AIDEN: A Density Conscious Artificial Immune System for Automatic Discovery of Arbitrary Shape Clusters in Spatial Patterns

    Vishwambhar Pathak

    2012-11-01

    Full Text Available Recent efforts in modeling of dynamics of the natural immune cells leading to artificial immune systems (AIS have ignited contemporary research interest in finding out its analogies to real world problems. The AIS models have been vastly exploited to develop dependable robust
    solutions to clustering. Most of the traditional clustering methods bear limitations in their capability to detect clusters of arbitrary shapes in a fully unsupervised manner. In this paper the recognition and communication dynamics of T Cell Receptors, the recognizing elements in innate immune
    system, has been modeled with a kernel density estimation method. The model has been shown to successfully discover non spherical clusters in spatial patterns. Modeling the cohesion of the antibodies and pathogens with ‘local influence’ measure inducts comprehensive extension of the
    antibody representation ball (ARB, which in turn corresponds to controlled expansion of clusters and prevents overfitting.

  7. Effects of Artificial Gravity and Bed Rest on Spatial Orientation and Balance Control

    Paloski, William H.; Moore, S. T.; Feiveson, A. H.; Taylor, L. C.

    2007-01-01

    While the vestibular system should be well-adapted to bed rest (a condition it experiences approximately 8/24 hrs each day), questions remain regarding the degree to which repeated exposures to the unusual gravito-inertial force environment of a short-radius centrifuge might affect central processing of vestibular information used in spatial orientation and balance control. Should these functions be impaired by intermittent AG, its feasibility as a counter-measure would be diminished. We, therefore, examined the effects of AG on spatial orientation and balance control in 15 male volunteers before and after 21 days of 6 HDT bed rest (BR). Eight of the subjects were treated with daily 1hr AG exposures (2.5g at the feet; 1.0g at the heart) aboard a short radius (3m) centrifuge, while the other seven served as controls (C). Spatial orientation was assessed by measures of ocular counter-rolling (OCR; rotation of the eye about the line of sight, an otolith-mediated reflex) and subjective visual vertical (SVV; perception of the spatial upright). Both OCR and SVV measurements were made with the subject upright, lying on their left sides, and lying on their right sides. OCR was measured from binocular eye orientation recordings made while the subjects fixated for 10s on a point target directly in front of the face at a distance of 1 m. SVV was assessed by asking subjects (in the dark) to adjust to upright (using a handheld controller) the orientation of a luminous bar randomly perturbed (15) to either side of the vertical meridian. Balance control performance was assessed using a computerized dynamic posturography (CDP) protocol similar to that currently required for all returning crew members. During each session, the subjects completed a combination of trials of sensory organization test (SOT) 2 (eyes closed, fixed platform) and SOT 5 (eyes closed, sway-referenced platform) with and without static and dynamic pitch plane head movements (plus or minus 20 deg., dynamic

  8. Artificial neural network approach to spatial estimation of wind velocity data

    Oztopal, Ahmet

    2006-01-01

    In any regional wind energy assessment, equal wind velocity or energy lines provide a common basis for meaningful interpretations that furnish essential information for proper design purposes. In order to achieve regional variation descriptions, there are methods of optimum interpolation with classical weighting functions or variogram methods in Kriging methodology. Generally, the weighting functions are logically and geometrically deduced in a deterministic manner, and hence, they are imaginary first approximations for regional variability assessments, such as wind velocity. Geometrical weighting functions are necessary for regional estimation of the regional variable at a location with no measurement, which is referred to as the pivot station from the measurements of a set of surrounding stations. In this paper, weighting factors of surrounding stations necessary for the prediction of a pivot station are presented by an artificial neural network (ANN) technique. The wind speed prediction results are compared with measured values at a pivot station. Daily wind velocity measurements in the Marmara region from 1993 to 1997 are considered for application of the ANN methodology. The model is more appropriate for winter period daily wind velocities, which are significant for energy generation in the study area. Trigonometric point cumulative semivariogram (TPCSV) approach results are compared with the ANN estimations for the same set of data by considering the correlation coefficient (R). Under and over estimation problems in objective analysis can be avoided by the ANN approach

  9. Spatially resolved analyses of uranium species using a coupled system made up of confocal laser-scanning microscopy (CLSM) and laser induced fluorescence spectroscopy (LIFS)

    Brockmann, S.; Grossmann, K.; Arnold, T.

    2014-01-01

    The fluorescent properties of uranium when excited by UV light are used increasingly for spectroscope analyses of uranium species within watery samples. Here, alongside the fluorescent properties of the hexavalent oxidation phases, the tetra and pentavalent oxidation phases also play an increasingly important role. The detection of fluorescent emission spectrums on solid and biological samples using (time-resolved) laser induced fluorescence spectroscopy (TRLFS or LIFS respectively) has, however, the disadvantage that no statements regarding the spatial localisation of the uranium can be made. However, particularly in complex, biological samples, such statements on the localisation of the uranium enrichment in the sample are desired, in order to e.g. be able to distinguish between intra and extra-cellular uranium bonds. The fluorescent properties of uranium (VI) compounds and minerals can also be used to detect their localisation within complex samples. So the application of fluorescent microscopic methods represents one possibility to localise and visualise uranium precipitates and enrichments in biological samples, such as biofilms or cells. The confocal laser-scanning microscopy (CLSM) is especially well suited to this purpose. Coupling confocal laser-scanning microscopy (CLSM) with laser induced fluorescence spectroscopy (LIFS) makes it possible to localise and visualise fluorescent signals spatially and three-dimensionally, while at the same time being able to detect spatially resolved, fluorescent-spectroscopic data. This technology is characterised by relatively low detection limits from up to 1.10 -6 M for uranium (VI) compounds within the confocal volume. (orig.)

  10. Modelling spatial and temporal variations in the water quality of an artificial water reservoir in the semiarid Midwest of Argentina

    Cid, Fabricio D., E-mail: fabricio.cid@gmail.com [Laboratory of Biology ' Prof. E. Caviedes Codelia' , Facultad de Ciencias Humanas, Universidad Nacional de San Luis, San Luis (Argentina); Laboratory of Integrative Biology, Institute for Multidisciplinary Research in Biology (IMIBIO-SL), Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Luis (Argentina); Department of Biochemistry and Biological Sciences, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Anton, Rosa I. [Department of Analytical Chemistry, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina); Pardo, Rafael; Vega, Marisol [Department of Analytical Chemistry, Facultad de Ciencias, Universidad de Valladolid, Valladolid (Spain); Caviedes-Vidal, Enrique [Laboratory of Biology ' Prof. E. Caviedes Codelia' , Facultad de Ciencias Humanas, Universidad Nacional de San Luis, San Luis (Argentina); Laboratory of Integrative Biology, Institute for Multidisciplinary Research in Biology (IMIBIO-SL), Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Luis (Argentina); Department of Biochemistry and Biological Sciences, Facultad de Quimica, Bioquimica y Farmacia, Universidad Nacional de San Luis, San Luis (Argentina)

    2011-10-31

    Highlights: {yields} Water quality of an Argentinean reservoir has been investigated by N-way PCA. {yields} PARAFAC mode modelled spatial and seasonal variations of water composition. {yields} Two factors related with organic and lead pollution have been identified. {yields} The most polluted areas of the reservoir were located, and polluting sources identified. - Abstract: Temporal and spatial patterns of water quality of an important artificial water reservoir located in the semiarid Midwest of Argentina were investigated using chemometric techniques. Surface water samples were collected at 38 points of the water reservoir during eleven sampling campaigns between October 1998 and June 2000, covering the warm wet season and the cold dry season, and analyzed for dissolved oxygen (DO), conductivity, pH, ammonium, nitrate, nitrite, total dissolved solids (TDS), alkalinity, hardness, bicarbonate, chloride, sulfate, calcium, magnesium, fluoride, sodium, potassium, iron, aluminum, silica, phosphate, sulfide, arsenic, chromium, lead, cadmium, chemical oxygen demand (COD), biochemical oxygen demand (BOD), viable aerobic bacteria (VAB) and total coliform bacteria (TC). Concentrations of lead, ammonium, nitrite and coliforms were higher than the maximum allowable limits for drinking water in a large proportion of the water samples. To obtain a general representation of the spatial and temporal trends of the water quality parameters at the reservoir, the three-dimensional dataset (sampling sites x parameters x sampling campaigns) has been analyzed by matrix augmentation principal component analysis (MA-PCA) and N-way principal component analysis (N-PCA) using Tucker3 and PARAFAC (Parallel Factor Analysis) models. MA-PCA produced a component accounting for the general behavior of parameters associated with organic pollution. The Tucker3 models were not appropriate for modelling the water quality dataset. The two-factor PARAFAC model provided the best picture to understand the

  11. Modelling spatial and temporal variations in the water quality of an artificial water reservoir in the semiarid Midwest of Argentina

    Cid, Fabricio D.; Anton, Rosa I.; Pardo, Rafael; Vega, Marisol; Caviedes-Vidal, Enrique

    2011-01-01

    Highlights: → Water quality of an Argentinean reservoir has been investigated by N-way PCA. → PARAFAC mode modelled spatial and seasonal variations of water composition. → Two factors related with organic and lead pollution have been identified. → The most polluted areas of the reservoir were located, and polluting sources identified. - Abstract: Temporal and spatial patterns of water quality of an important artificial water reservoir located in the semiarid Midwest of Argentina were investigated using chemometric techniques. Surface water samples were collected at 38 points of the water reservoir during eleven sampling campaigns between October 1998 and June 2000, covering the warm wet season and the cold dry season, and analyzed for dissolved oxygen (DO), conductivity, pH, ammonium, nitrate, nitrite, total dissolved solids (TDS), alkalinity, hardness, bicarbonate, chloride, sulfate, calcium, magnesium, fluoride, sodium, potassium, iron, aluminum, silica, phosphate, sulfide, arsenic, chromium, lead, cadmium, chemical oxygen demand (COD), biochemical oxygen demand (BOD), viable aerobic bacteria (VAB) and total coliform bacteria (TC). Concentrations of lead, ammonium, nitrite and coliforms were higher than the maximum allowable limits for drinking water in a large proportion of the water samples. To obtain a general representation of the spatial and temporal trends of the water quality parameters at the reservoir, the three-dimensional dataset (sampling sites x parameters x sampling campaigns) has been analyzed by matrix augmentation principal component analysis (MA-PCA) and N-way principal component analysis (N-PCA) using Tucker3 and PARAFAC (Parallel Factor Analysis) models. MA-PCA produced a component accounting for the general behavior of parameters associated with organic pollution. The Tucker3 models were not appropriate for modelling the water quality dataset. The two-factor PARAFAC model provided the best picture to understand the spatial and

  12. Radiative and magnetic properties of solar active regions. II. Spatially resolved analysis of O V 62.97 nm transition region emission

    Fludra, A.; Warren, H.

    2010-11-01

    Context. Global relationships between the photospheric magnetic flux and the extreme ultraviolet emission integrated over active region area have been studied in a previous paper by Fludra & Ireland (2008, A&A, 483, 609). Spatially integrated EUV line intensities are tightly correlated with the total unsigned magnetic flux, and yet these global power laws have been shown to be insufficient for accurately determining the coronal heating mechanism owing to the mathematical ill-conditioning of the inverse problem. Aims: Our aim is to establish a relationship between the EUV line intensities and the photospheric magnetic flux density on small spatial scales in active regions and investigate whether it provides a way of identifying the process that heats the coronal loops. Methods: We compare spatially resolved EUV transition region emission and the photospheric magnetic flux density. This analysis is based on the O V 62.97 nm line recorded by the SOHO Coronal Diagnostic Spectrometer (CDS) and SOHO MDI magnetograms for six solar active regions. The magnetic flux density ϕ is converted to a simulated O V intensity using a model relationship I(ϕ, L) = Cϕδ Lλ, where the loop length L is obtained from potential magnetic field extrapolations. This simulated spatial distribution of O V intensities is convolved with the CDS instrument's point spread function and compared pixel by pixel with the observed O V line intensity. Parameters δ and λ are derived to give the best fit for the observed and simulated intensities. Results: Spatially-resolved analysis of the transition region emission reveals the complex nature of the heating processes in active regions. In some active regions, particularly large, local intensity enhancements up to a factor of five are present. When areas with O V intensities above 3000 erg cm-2 s-1 sr-1 are ignored, a power law has been fitted to the relationship between the local O V line intensity and the photospheric magnetic flux density in each

  13. Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV).

    Poblete, Tomas; Ortega-Farías, Samuel; Moreno, Miguel Angel; Bardeen, Matthew

    2017-10-30

    Water stress, which affects yield and wine quality, is often evaluated using the midday stem water potential (Ψ stem ). However, this measurement is acquired on a per plant basis and does not account for the assessment of vine water status spatial variability. The use of multispectral cameras mounted on unmanned aerial vehicle (UAV) is capable to capture the variability of vine water stress in a whole field scenario. It has been reported that conventional multispectral indices (CMI) that use information between 500-800 nm, do not accurately predict plant water status since they are not sensitive to water content. The objective of this study was to develop artificial neural network (ANN) models derived from multispectral images to predict the Ψ stem spatial variability of a drip-irrigated Carménère vineyard in Talca, Maule Region, Chile. The coefficient of determination (R²) obtained between ANN outputs and ground-truth measurements of Ψ stem were between 0.56-0.87, with the best performance observed for the model that included the bands 550, 570, 670, 700 and 800 nm. Validation analysis indicated that the ANN model could estimate Ψ stem with a mean absolute error (MAE) of 0.1 MPa, root mean square error (RMSE) of 0.12 MPa, and relative error (RE) of -9.1%. For the validation of the CMI, the MAE, RMSE and RE values were between 0.26-0.27 MPa, 0.32-0.34 MPa and -24.2-25.6%, respectively.

  14. Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV

    Tomas Poblete

    2017-10-01

    Full Text Available Water stress, which affects yield and wine quality, is often evaluated using the midday stem water potential (Ψstem. However, this measurement is acquired on a per plant basis and does not account for the assessment of vine water status spatial variability. The use of multispectral cameras mounted on unmanned aerial vehicle (UAV is capable to capture the variability of vine water stress in a whole field scenario. It has been reported that conventional multispectral indices (CMI that use information between 500–800 nm, do not accurately predict plant water status since they are not sensitive to water content. The objective of this study was to develop artificial neural network (ANN models derived from multispectral images to predict the Ψstem spatial variability of a drip-irrigated Carménère vineyard in Talca, Maule Region, Chile. The coefficient of determination (R2 obtained between ANN outputs and ground-truth measurements of Ψstem were between 0.56–0.87, with the best performance observed for the model that included the bands 550, 570, 670, 700 and 800 nm. Validation analysis indicated that the ANN model could estimate Ψstem with a mean absolute error (MAE of 0.1 MPa, root mean square error (RMSE of 0.12 MPa, and relative error (RE of −9.1%. For the validation of the CMI, the MAE, RMSE and RE values were between 0.26–0.27 MPa, 0.32–0.34 MPa and −24.2–25.6%, respectively.

  15. Spatial and temporal variations of water quality in an artificial urban river receiving WWTP effluent in South China.

    Zhang, Di; Tao, Yi; Liu, Xiaoning; Zhou, Kuiyu; Yuan, Zhenghao; Wu, Qianyuan; Zhang, Xihui

    2016-01-01

    Urban wastewater treatment plant (WWTP) effluent as reclaimed water provides an alternative water resource for urban rivers and effluent will pose a significant influence on the water quality of rivers. The objective of this study was to investigate the spatial and temporal variations of water quality in XZ River, an artificial urban river in Shenzhen city, Guangdong Province, China, after receiving reclaimed water from WWTP effluent. The water samples were collected monthly at different sites of XZ River from April 2013 to September 2014. Multivariate statistical techniques and a box-plot were used to assess the variations of water quality and to identify the main pollution factor. The results showed the input of WWTP effluent could effectively increase dissolved oxygen, decrease turbidity, phosphorus load and organic pollution load of XZ River. However, total nitrogen and nitrate pollution loads were found to remain at higher levels after receiving reclaimed water, which might aggravate eutrophication status of XZ River. Organic pollution load exhibited the lowest value on the 750 m downstream of XZ River, while turbidity and nutrient load showed the lowest values on the 2,300 m downstream. There was a higher load of nitrogen and phosphorus pollution in the dry season and at the beginning of wet season.

  16. A spatially resolved network spike in model neuronal cultures reveals nucleation centers, circular traveling waves and drifting spiral waves.

    Paraskevov, A V; Zendrikov, D K

    2017-03-23

    We show that in model neuronal cultures, where the probability of interneuronal connection formation decreases exponentially with increasing distance between the neurons, there exists a small number of spatial nucleation centers of a network spike, from where the synchronous spiking activity starts propagating in the network typically in the form of circular traveling waves. The number of nucleation centers and their spatial locations are unique and unchanged for a given realization of neuronal network but are different for different networks. In contrast, if the probability of interneuronal connection formation is independent of the distance between neurons, then the nucleation centers do not arise and the synchronization of spiking activity during a network spike occurs spatially uniform throughout the network. Therefore one can conclude that spatial proximity of connections between neurons is important for the formation of nucleation centers. It is also shown that fluctuations of the spatial density of neurons at their random homogeneous distribution typical for the experiments in vitro do not determine the locations of the nucleation centers. The simulation results are qualitatively consistent with the experimental observations.

  17. Tunable Reflective Spatial Heterodyne Spectrometer: A Technique for High Resolving Power, Wide Field Of View Observation Of Diffuse Emission Line Sources

    Hosseini, Seyedeh Sona

    The purpose of this dissertation is to discuss the need for new technology in broadband high-resolution spectroscopy based on the emerging technique of Spatial Heterodyne Spectroscopy (SHS) and to propose new solutions that should enhance and generalize this technology to other fields. Spectroscopy is a proven tool for determining compositional and other properties of remote objects. Narrow band imaging and low resolving spectroscopic measurements provide information about composition, photochemical evolution, energy distribution and density. The extension to high resolving power provides further access to temperature, velocity, isotopic ratios, separation of blended sources, and opacity effects. In current high resolving power devices, the drawback of high-resolution spectroscopy is bound to the instrumental limitations of lower throughput, the necessity of small entrance apertures, sensitivity, field of view, and large physical instrumental size. These limitations quickly become handicapping for observation of faint and/or extended targets and for spacecraft encounters. A technique with promise for the study of faint and extended sources at high resolving power is the reflective format of the Spatial Heterodyne Spectrometer (SHS). SHS instruments are compact and naturally tailored for both high etendue (defined in section 2.2.5) and high resolving power. In contrast, to achieve similar spectral grasp, grating spectrometers require large telescopes. For reference, SHS is a cyclical interferometer that produces Fizeau fringe pattern for all other wavelengths except the tuned wavelength. The large etendue obtained by SHS instruments makes them ideal for observations of extended, low surface brightness, isolated emission line sources, while their intrinsically high spectral resolution enables one to study the dynamical and physical properties described above. This document contains four chapters. Chapter 1, introduces a class of scientific targets that formerly have

  18. Spatially and spectrally resolved photoluminescence of InGaN MQWs grown on highly Si doped a-plane GaN buffer

    Thunert, Martin; Wieneke, Matthias; Dempewolf, Anja; Bertram, Frank; Dadgar, Armin; Krost, Alois; Christen, Juergen [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany)

    2011-07-01

    A set of InGaN multi quantum well (MQW) samples grown by MOVPE on highly Si doped a-plane GaN on r-plane sapphire templates has been investigated using spatially resolved photoluminescence spectroscopy ({mu}-PL). The Si doping level of nominal about 10{sup 20} cm{sup -3} leads to three dimensionally grown crystallites mostly terminated by m-facets. The MQW thickness has been systematically varied from nominally 2.1 to 4.2 nm, as well as the InGaN growth temperature, which was varied from 760 C to 700 C. The growth of a-plane GaN based devices leads to a non-polar growth direction avoiding the polarization field affected Quantum-Confined-Stark-Effect. Spatially resolved PL studies show for all samples low near band edge (NBE) GaN emission intensity over the whole area under investigation accompanied by highly intense InGaN MQW emission for single crystallites. The MQW luminescence shows a systematic blueshift with increasing InGaN growth temperature due to lower In incorporation as well as a systematic redshift with increasing MQW thickness. Excitation power dependent spectra at 4 K as well as temperature dependent PL spectra will be presented.

  19. Towards real-time non contact spatial resolved oxygenation monitoring using a multi spectral filter array camera in various light conditions

    Bauer, Jacob R.; van Beekum, Karlijn; Klaessens, John; Noordmans, Herke Jan; Boer, Christa; Hardeberg, Jon Y.; Verdaasdonk, Rudolf M.

    2018-02-01

    Non contact spatial resolved oxygenation measurements remain an open challenge in the biomedical field and non contact patient monitoring. Although point measurements are the clinical standard till this day, regional differences in the oxygenation will improve the quality and safety of care. Recent developments in spectral imaging resulted in spectral filter array cameras (SFA). These provide the means to acquire spatial spectral videos in real-time and allow a spatial approach to spectroscopy. In this study, the performance of a 25 channel near infrared SFA camera was studied to obtain spatial oxygenation maps of hands during an occlusion of the left upper arm in 7 healthy volunteers. For comparison a clinical oxygenation monitoring system, INVOS, was used as a reference. In case of the NIRS SFA camera, oxygenation curves were derived from 2-3 wavelength bands with a custom made fast analysis software using a basic algorithm. Dynamic oxygenation changes were determined with the NIR SFA camera and INVOS system at different regional locations of the occluded versus non-occluded hands and showed to be in good agreement. To increase the signal to noise ratio, algorithm and image acquisition were optimised. The measurement were robust to different illumination conditions with NIR light sources. This study shows that imaging of relative oxygenation changes over larger body areas is potentially possible in real time.

  20. Comparison of spatially and temporally resolved diffuse transillumination measurement systems for extraction of optical properties of scattering media.

    Ortiz-Rascón, E; Bruce, N C; Garduño-Mejía, J; Carrillo-Torres, R; Hernández-Paredes, J; Álvarez-Ramos, M E

    2017-11-20

    This paper discusses the main differences between two different methods for determining the optical properties of tissue optical phantoms by fitting the spatial and temporal intensity distribution functions to the diffusion approximation theory. The consistency in the values of the optical properties is verified by changing the width of the recipient containing the turbid medium; as the optical properties are an intrinsic value of the scattering medium, independently of the recipient width, the stability in these values for different widths implies a better measurement system for the acquisition of the optical properties. It is shown that the temporal fitting method presents higher stability than the spatial fitting method; this is probably due to the addition of the time of flight parameter into the diffusion theory.

  1. A highly spatially resolved GIS-based model to assess the isoprenoid emissions from key Italian ecosystems

    Pacheco, Claudia Kemper; Fares, Silvano; Ciccioli, Paolo

    2014-10-01

    The amount of Biogenic Volatile Organic Compounds (BVOC) emitted from terrestrial vegetation is of great importance in atmospheric reactivity, particularly for ozone-forming reactions and as condensation nuclei in aerosol formation and growth. This work presents a detailed inventory of isoprenoid emissions from vegetation in Italy using an original approach which combines state of the art models to estimate the species-specific isoprenoid emissions and a Geographic Information System (GIS) where emissions are spatially represented. Isoprenoid species and basal emission factors were obtained by combining results from laboratory experiments with those published in literature. For the first time, our investigation was not only restricted to isoprene and total monoterpenes, but our goal was to provide maps of isoprene and individual monoterpenes at a high-spatial (∼1 km2) and temporal resolution (daily runs, monthly trends in emissions are discussed in the text). Another novelty in our research was the inclusion of the effects of phenology on plant emissions. Our results show that: a) isoprene, a-pinene, sabinene and b-pinene are the most important compounds emitted from vegetation in Italy; b) annual biogenic isoprene and monoterpene fluxes for the year 2006 were ∼31.30 Gg and ∼37.70 Gg, respectively; and c) Quercus pubescens + Quercus petrea + Quercus robur, Quercus ilex, Quercus suber and Fagus sylvatica are the principal isoprenoid emitting species in the country. The high spatial and temporal resolution, combined with the species-specific emission output, makes the model particularly suitable for assessing local budgets, and for modeling photochemical pollution in Italy.

  2. Spatially-Resolved Ion Trajectory Measurements During Cl2 Reactive Ion Beam Etching and Ar Ion Beam Etching

    Vawter, G. Allen; Woodworth, Joseph R.; Zubrzycki, Walter J.

    1999-01-01

    The angle of ion incidence at the etched wafer location during RIBE and IBE using Cl 2 , Ar and O 2 ion beams has been characterized using an ion energy and angle analyzer. Effects of beam current and accelerator grid bias on beam divergence and the spatial uniformity of the spread of incident angles are measured. It is observed that increased total beam current can lead to reduced current density at the sample stage due to enhanced beam divergence at high currents. Results are related to preferred etch system design for uniform high-aspect-ratio etching across semiconductor wafers

  3. An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor.

    Touitou, Jamal; Burch, Robbie; Hardacre, Christopher; McManus, Colin; Morgan, Kevin; Sá, Jacinto; Goguet, Alexandre

    2013-05-21

    This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 μm (O.D.) thermocouple has been inserted in a 250 μm (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.

  4. Spatially resolved investigation of the oil composition in single intact hyphae of Mortierella spp. with micro-Raman spectroscopy.

    Münchberg, Ute; Wagner, Lysett; Spielberg, Eike T; Voigt, Kerstin; Rösch, Petra; Popp, Jürgen

    2013-02-01

    Zygomycetes are well known for their ability to produce various secondary metabolites. Fungi of the genus Mortierella can accumulate highly unsaturated lipids in large amounts as lipid droplets. However, no information about the spatial distribution or homogeneity of the oil inside the fungi is obtainable to date due to the invasive and destructive analytical techniques applied so far. Raman spectroscopy has been demonstrated to be well suited to investigate biological samples on a micrometre scale. It also has been shown that the degree of unsaturation of lipids can be determined from Raman spectra. We applied micro-Raman spectroscopy to investigate the spatial distribution and composition of lipid vesicles inside intact hyphae. For Mortierella alpina and Mortierella elongata distinct differences in the degree of unsaturation and even the impact of growth conditions are determined from the Raman spectra. In both species we found that the fatty acid saturation in the vesicles is highly variable in the first 600 μm of the growing hyphal tip and fluctuates towards a constant composition and saturation ratio in all of the remaining mycelium. Our approach facilitates in vivo monitoring of the lipid production and allows us to investigate the impact of cultivation parameters on the oil composition directly in the growing hyphae without the need for extensive extraction procedures. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A temporally and spatially resolved electron density diagnostic method for the edge plasma based on Stark broadening

    Zafar, A., E-mail: zafara@ornl.gov [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Martin, E. H.; Isler, R. C.; Caughman, J. B. O. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Shannon, S. C. [Department of Nuclear Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-11-15

    An electron density diagnostic (≥10{sup 10} cm{sup −3}) capable of high temporal (ms) and spatial (mm) resolution is currently under development at Oak Ridge National Laboratory. The diagnostic is based on measuring the Stark broadened, Doppler-free spectral line profile of the n = 6–2 hydrogen Balmer series transition. The profile is then fit to a fully quantum mechanical model including the appropriate electric and magnetic field operators. The quasi-static approach used to calculate the Doppler-free spectral line profile is outlined here and the results from the model are presented for H-δ spectra for electron densities of 10{sup 10}–10{sup 13} cm{sup −3}. The profile shows complex behavior due to the interaction between the magnetic substates of the atom.

  6. Implications for gravitational lensing and the dark matter content in clusters of galaxies from spatially resolved x-ray spectra

    Loewenstein, M.

    1994-01-01

    A simple method for deriving well-behaved temperature solutions to the equation of hydrostatic equilibrium for intracluster media with X-ray imaging observations is presented and applied to a series of generalized models as well as to observations of the Perseus cluster and Abell 2256. In these applications the allowed range in the ratio of nonbaryons to baryons as a function of radius is derived, taking into account the uncertainties and crude spatial resolution of the X-ray spectra and considering a range of physically reasonable mass models with various scale heights. Particular attention is paid to the central regions of the cluster, and it is found that the dark matter can be sufficiently concentrated to be consistent with the high central mass surface densities for moderate-redshift clusters from their gravitational lensing properties.

  7. SPATIALLY RESOLVED STAR FORMATION HISTORY ALONG THE DISK OF M82 USING MULTI-BAND PHOTOMETRIC DATA

    Rodriguez-Merino, L. H.; Rosa-Gonzalez, D.; Mayya, Y. D.

    2011-01-01

    We present results on the star formation history and extinction in the disk of M82 over spatial scales of 10'' (∼180 pc). Multi-band photometric data covering the far-ultraviolet to the near-infrared bands were fitted to a grid of synthetic spectral energy distributions. We obtained distribution functions of age and extinction for each of the 117 apertures analyzed, taking into account observational errors through Monte Carlo simulations. These distribution functions were fitted with Gaussian functions to obtain the mean ages and extinctions together with their errors. The zones analyzed include the high surface brightness complexes defined by O'Connell and Mangano. We found that these complexes share the same star formation history and extinction as the field stellar populations in the disk. There is an indication that the stellar populations are marginally older at the outer disk (450 Myr at ∼3 kpc) as compared to the inner disk (100 Myr at 0.5 kpc). For the nuclear region (radius less than 500 pc), we obtained an age of less than 10 Myr. The results obtained in this work are consistent with the idea that the 0.5-3 kpc part of the disk of M82 formed around 90% of the stellar mass in a star-forming episode that started around 450 Myr ago and lasted for about 350 Myr. We found that field stars are the major contributors to the flux over the spatial scales analyzed in this study, with the stellar cluster contribution being 7% in the nucleus and 0.7% in the disk.

  8. Influence of hydrostatic pressure on dynamics and spatial distribution of protein partial molar volume: time-resolved surficial Kirkwood-Buff approach.

    Yu, Isseki; Tasaki, Tomohiro; Nakada, Kyoko; Nagaoka, Masataka

    2010-09-30

    The influence of hydrostatic pressure on the partial molar volume (PMV) of the protein apomyoglobin (AMb) was investigated by all-atom molecular dynamics (MD) simulations. Using the time-resolved Kirkwood-Buff (KB) approach, the dynamic behavior of the PMV was identified. The simulated time average value of the PMV and its reduction by 3000 bar pressurization correlated with experimental data. In addition, with the aid of the surficial KB integral method, we obtained the spatial distributions of the components of PMV to elucidate the detailed mechanism of the PMV reduction. New R-dependent PMV profiles identified the regions that increase or decrease the PMV under the high pressure condition. The results indicate that besides the hydration in the vicinity of the protein surface, the outer space of the first hydration layer also significantly influences the total PMV change. These results provide a direct and detailed picture of pressure induced PMV reduction.

  9. Spectral and spatial resolving of photoelectric property of femtosecond laser drilled holes of GaSb(1-x)Bi(x).

    Pan, C B; Zha, F X; Song, Y X; Shao, J; Dai, Y; Chen, X R; Ye, J Y; Wang, S M

    2015-07-15

    Femtosecond laser drilled holes of GaSbBi were characterized by the joint measurements of photoconductivity (PC) spectroscopy and laser-beam-induced current (LBIC) mapping. The excitation light in PC was focused down to 60 μm presenting the spectral information of local electronic property of individual holes. A redshift of energy band edge of about 6-8 meV was observed by the PC measurement when the excitation light irradiated on the laser drilled holes. The spatial resolving of photoelectric property was achieved by the LBIC mapping which shows "pseudo-holes" with much larger dimensions than the geometric sizes of the holes. The reduced LBIC current with the pseudo-holes is associated with the redshift effect indicating that the electronic property of the rim areas of the holes is modified by the femtosecond laser drilling.

  10. Recombination dynamics in coalesced a-plane GaN ELO structures investigated by high spatially and ps-time-resolved cathodoluminescence microscopy

    Bastek, B.; Bertram, F.; Christen, J. [Institute of Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Wernicke, T.; Weyers, M. [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, Berlin (Germany); Kneissl, M. [Institute of Solid State Physics, Technical University, Berlin (Germany)

    2008-07-01

    The characteristic epitaxial lateral overgrowth (ELO) domains of fully coalesced a-plane GaN layers were directly imaged by highly spatially and spectrally resolved cathodoluminescence microscopy (CL) at 5 K. The patterned layers were grown by MOVPE on r-plane sapphire substrate and stripe masks oriented in the [01 anti 10] direction. In the area of coherent growth (I) the broad basal plane stacking fault (BSF) emission centered at 3.41 eV dominates the spectra. Also in the region (II) of coalescence the BSF luminescence dominates, however, the intensity increases by one order of magnitude compared to area (I). In complete contrast, in the stripes associated with the laterally grown domains (III) in [0001] direction, exclusively an intense and sharp (D{sup 0},X) emission at 3.475 eV is observed. ps-time-resolved CL of the free excitons (FX) recorded from this domains (III) decays bi-exponentially. The initial lifetime of 180 ps is primarily given by the capture of FX by impurities to form bound excitons (BE). With rising temperature this capture time constant decreases as T{sup -1/4} and reaches a minimum of 104 ps at T=60 K. Above 60 K, i.e. when FX starts to dominate the BEs, the lifetime increases rapidly to a value of 240 ps for 300 K.

  11. Investigations of lateral and vertical compositional gradients in Cu(In,Ga)Se{sub 2} by highly spatially, spectrally and time resolved cathodoluminescence spectroscopy

    Mueller, Mathias; Ribbe, Stefan; Hempel, Thomas; Bertram, Frank; Christen, Juergen [Institute for Experimental Physics, Otto-von-Guericke-University, Magdeburg (Germany); Witte, Wolfram; Hariskos, Dimitrios [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), Stuttgart (Germany)

    2011-07-01

    Luminescence properties of Cu(In,Ga)Se{sub 2} (CIGS) layers with different thicknesses were investigated by means of highly spatially, spectrally and time resolved cathodoluminescence (CL) spectroscopy at low temperature (T=5 K). A polycrystalline CIGS thin film with a thickness of 2.4 {mu}m was grown using an in-line co-evaporation process with a final Cu-poor composition on top of a sputtered Mo layer on a soda lime glass substrate. The layer thickness was then reduced by highly controlled bromine methanol etching. The typical grainy (d{sub average}=3 {mu}m) structure of the untouched sample develops thin longish structures under the influence of the etchant. Integral CL spectra of the samples are dominated by donor-acceptor pair (DAP) luminescence. The peak energies of these spectra are ranging from 1.13 eV to 1.22 eV with decreasing layer thickness. The lateral distribution of the luminescence is inhomogeneous regarding the intensity as well as the peak energy. Time resolved CL shows a strong dependence of the initial lifetime from the emission energy.

  12. Development of an integrated fission product release and transport code for spatially resolved full-core calculations of V/HTRs

    Xhonneux, Andre; Allelein, Hans-Josef

    2014-01-01

    The computer codes FRESCO-I, FRESCO-II, PANAMA and SPATRA developed at Forschungszentrum Jülich in Germany in the early 1980s are essential tools to predict the fission product release from spherical fuel elements and the TRISO fuel performance, respectively, under given normal or accidental conditions. These codes are able to calculate a conservative estimation of the source term, i.e. quantity and duration of radionuclide release. Recently, these codes have been reversed engineered, modernized (FORTRAN 95/2003) and combined to form a consistent code named STACY (Source Term Analysis Code System). STACY will later become a module of the V/HTR Code Package (HCP). In addition, further improvements have been implemented to enable more detailed calculations. For example the distinct temperature profile along the pebble radius is now taken into account and coated particle failure rates can be calculated under normal operating conditions. In addition, the absolute fission product release of an V/HTR pebble bed core can be calculated by using the newly developed burnup code Topological Nuclide Transformation (TNT) replacing the former rudimentary approach. As a new functionality, spatially resolved fission product release calculations for normal operating conditions as well as accident conditions can be performed. In case of a full-core calculation, a large number of individual pebbles which follow a random path through the reactor core can be simulated. The history of the individual pebble is recorded, too. Main input data such as spatially resolved neutron fluxes and fluid dynamics data are provided by the VSOP code. Capabilities of the FRESCO-I and SPATRA code which allow for the simulation of the redistribution of fission products within the primary circuit and the deposition of fission products on graphitic and metallic surfaces are also available in STACY. In this paper, details of the STACY model and first results for its application to the 200 MW(th) HTR

  13. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T.

    Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares

    2018-02-01

    We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.

  14. Climate change impact assessment in Veneto and Friuli Plain groundwater. Part II: a spatially resolved regional risk assessment.

    Pasini, S; Torresan, S; Rizzi, J; Zabeo, A; Critto, A; Marcomini, A

    2012-12-01

    Climate change impact assessment on water resources has received high international attention over the last two decades, due to the observed global warming and its consequences at the global to local scale. In particular, climate-related risks for groundwater and related ecosystems pose a great concern to scientists and water authorities involved in the protection of these valuable resources. The close link of global warming with water cycle alterations encourages research to deepen current knowledge on relationships between climate trends and status of water systems, and to develop predictive tools for their sustainable management, copying with key principles of EU water policy. Within the European project Life+ TRUST (Tool for Regional-scale assessment of groundwater Storage improvement in adaptation to climaTe change), a Regional Risk Assessment (RRA) methodology was developed in order to identify impacts from climate change on groundwater and associated ecosystems (e.g. surface waters, agricultural areas, natural environments) and to rank areas and receptors at risk in the high and middle Veneto and Friuli Plain (Italy). Based on an integrated analysis of impacts, vulnerability and risks linked to climate change at the regional scale, a RRA framework complying with the Sources-Pathway-Receptor-Consequence (SPRC) approach was defined. Relevant impacts on groundwater and surface waters (i.e. groundwater level variations, changes in nitrate infiltration processes, changes in water availability for irrigation) were selected and analyzed through hazard scenario, exposure, susceptibility and risk assessment. The RRA methodology used hazard scenarios constructed through global and high resolution model simulations for the 2071-2100 period, according to IPCC A1B emission scenario in order to produce useful indications for future risk prioritization and to support the addressing of adaptation measures, primarily Managed Artificial Recharge (MAR) techniques. Relevant

  15. A monolithic microsphere-fiber probe for spatially resolved Raman spectroscopy: Application to head and neck squamous cell carcinomas

    Holler, S.; Haig, B.; Donovan, M. J.; Sobrero, M.; Miles, B. A.

    2018-03-01

    The ability to identify precise cancer margins in vivo during a surgical excision is critical to the well-being of the patient. Decreased operative time has been linked to shorter patient recovery time, and there are risks associated with removing either too much or too little tissue from the surgical site. The more rapidly and accurately a surgeon can identify and excise diseased tissue, the better the prognosis for the patient. To this end, we investigate both malignant and healthy oral cavity tissue using the Raman spectroscopy, with a monolithic microsphere-fiber probe. Our results indicate that this probe has decreased the size of the analyzed area by more than an order of magnitude, as compared to a conventional fiber reflection probe. Scanning the probe across the tissues reveals variations in the Raman spectra that enable us to differentiate between malignant and healthy tissues. Consequently, we anticipate that the high spatial resolution afforded by the probe will permit us to identify tumor margins in detail, thereby optimizing tissue removal and improving patient outcomes.

  16. Spatially resolved investigation of competing nanocluster emission in quantum-disks-in-nanowires structure characterized by nanoscale cathodoluminescence

    Prabaswara, Aditya; Stowe, David J.; Janjua, Bilal; Ng, Tien Khee; Anjum, Dalaver H.; Longo, Paolo; Zhao, Chao; Elafandy, Rami T.; Li, Xiaohang; Alyamani, Ahmed Y.; El-Desouki, Munir M.; Ooi, Boon S.

    2017-01-01

    We report on the study and characterization of nanoclusters-related recombination centers within quantum-disks-in-nanowires heterostructure by utilizing microphotoluminescence (mu-PL) and cathodoluminescence scanning transmission electron microscopy (CL-STEM). mu-PL measurement shows that the nanoclusters-related recombination center exhibits different temperature-dependent characteristics compared with the surrounding InGaN quantum-disksrelated recombination center. CL-STEM measurements reveal that these recombination centers mainly arise from irregularities within the quantum disks, with a strong, spatially localized emission when measured at low temperature. The spectra obtained from both CL-STEM and mu-PL correlate well with each other. Our work sheds light on the optical and structural properties of simultaneously coexisting recombination centers within nanowires heterostructures. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

  17. Spatially resolved investigation of competing nanocluster emission in quantum-disks-in-nanowires structure characterized by nanoscale cathodoluminescence

    Prabaswara, Aditya

    2017-06-30

    We report on the study and characterization of nanoclusters-related recombination centers within quantum-disks-in-nanowires heterostructure by utilizing microphotoluminescence (mu-PL) and cathodoluminescence scanning transmission electron microscopy (CL-STEM). mu-PL measurement shows that the nanoclusters-related recombination center exhibits different temperature-dependent characteristics compared with the surrounding InGaN quantum-disksrelated recombination center. CL-STEM measurements reveal that these recombination centers mainly arise from irregularities within the quantum disks, with a strong, spatially localized emission when measured at low temperature. The spectra obtained from both CL-STEM and mu-PL correlate well with each other. Our work sheds light on the optical and structural properties of simultaneously coexisting recombination centers within nanowires heterostructures. (C) The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

  18. Undergraduate ALFALFA Team: Analysis of Spatially-Resolved Star-Formation in Nearby Galaxy Groups and Clusters

    Finn, Rose; Collova, Natasha; Spicer, Sandy; Whalen, Kelly; Koopmann, Rebecca A.; Durbala, Adriana; Haynes, Martha P.; Undergraduate ALFALFA Team

    2017-01-01

    As part of the Undergraduate ALFALFA Team, we are conducting a survey of the gas and star-formation properties of galaxies in 36 groups and clusters in the local universe. The galaxies in our sample span a large range of galactic environments, from the centers of galaxy groups and clusters to the surrounding infall regions. One goal of the project is to map the spatial distribution of star-formation; the relative extent of the star-forming and stellar disks provides important information about the internal and external processes that deplete gas and thus drive galaxy evolution. We obtained wide-field H-alpha observations with the WIYN 0.9m telescope at Kitt Peak National Observatory for galaxies in the vicinity of the MKW11 and NRGb004 galaxy groups and the Abell 1367 cluster. We present a preliminary analysis of the relative size of the star-forming and stellar disks as a function of galaxy morphology and local galaxy density, and we calculate gas depletion times using star-formation rates and HI gas mass. We will combine these results with those from other UAT members to determine if and how environmentally-driven gas depletion varies with the mass and X-ray properties of the host group or cluster. This work has supported by NSF grants AST-0847430, AST-1211005 and AST-1637339.

  19. Studies of Shear Band Velocity Using Spatially and Temporally Resolved Measurements of Strain During Quasistatic Compression of Bulk Metallic Glass

    Wright, W J; Samale, M; Hufnagel, T; LeBlanc, M; Florando, J

    2009-06-15

    We have made measurements of the temporal and spatial features of the evolution of strain during the serrated flow of Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass tested under quasistatic, room temperature, uniaxial compression. Strain and load data were acquired at rates of up to 400 kHz using strain gages affixed to all four sides of the specimen and a piezoelectric load cell located near the specimen. Calculation of the displacement rate requires an assumption about the nature of the shear displacement. If one assumes that the entire shear plane displaces simultaneously, the displacement rate is approximately 0.002 m/s. If instead one assumes that the displacement occurs as a localized propagating front, the velocity of the front is approximately 2.8 m/s. In either case, the velocity is orders of magnitude less than the shear wave speed ({approx}2000 m/s). The significance of these measurements for estimates of heating in shear bands is discussed.

  20. Spatially Resolved Carbon Isotope and Elemental Analyses of the Root-Rhizosphere-Soil System to Understand Below-ground Nutrient Interactions

    Denis, E. H.; Ilhardt, P.; Tucker, A. E.; Huggett, N. L.; Rosnow, J. J.; Krogstad, E. J.; Moran, J.

    2017-12-01

    , soil, and specific types of mineral grains within soil. Integrating spatially resolved analysis of photosynthate distribution with local geochemical microenvironments may reveal key properties of nutrient exchange hotspots that help direct overall plant health and productivity.

  1. Spatially-resolved in-situ quantification of biofouling using optical coherence tomography (OCT) and 3D image analysis in a spacer filled channel

    Fortunato, Luca

    2016-11-21

    The use of optical coherence tomography (OCT) to investigate biomass in membrane systems has increased with time. OCT is able to characterize the biomass in-situ and non-destructively. In this study, a novel approach to process three-dimensional (3D) OCT scans is proposed. The approach allows obtaining spatially-resolved detailed structural biomass information. The 3D biomass reconstruction enables analysis of the biomass only, obtained by subtracting the time zero scan to all images. A 3D time series analysis of biomass development in a spacer filled channel under representative conditions (cross flow velocity) for a spiral wound membrane element was performed. The flow cell was operated for five days with monitoring of ultrafiltration membrane performance: feed channel pressure drop and permeate flux. The biomass development in the flow cell was detected by OCT before a performance decline was observed. Feed channel pressure drop continuously increased with increasing biomass volume, while flux decline was mainly affected in the initial phase of biomass accumulation. The novel OCT imaging approach enabled the assessment of spatial biomass distribution in the flow cell, discriminating the total biomass volume between the membrane, feed spacer and glass window. Biomass accumulation was stronger on the feed spacer during the early stage of biofouling, impacting the feed channel pressure drop stronger than permeate flux.

  2. Investigations of vertical chemical gradients in Cu(In,Ga)S{sub 2}-thin films prepared by sulfurization of sputtered precursor layers using highly spatially resolved cathodoluminescence microscopy

    Ribbe, Stefan; Mueller, Mathias; Bertram, Frank; Hempel, Thomas; Christen, Juergen [Institute for Experimental Physics, Otto-von-Guericke-University Magdeburg (Germany); Rodriguez-Alvarez, Humberto; Lauche, Jakob; Schock, Hans-Werner [Helmholtz Center Berlin for Materials and Energy (Germany)

    2012-07-01

    The luminescence properties of Cu(In,Ga)S{sub 2}(CIGS)-absorber layers for thin film solar cells have been studied by highly spatially resolved cathodoluminescence (CL) at low temperature (T=5 K). In/Cu-Ga-precursors were annealed with elementary sulfur pellets in a rapid thermal process at different annealing times to represent different growth steps of the CIGS absorber layer. Spatially integral CL spectra show a dominant peak at 825 nm accompanied by a low-energy shoulder at 890 nm. Only a slight blue shift of the main peak is observed by variation of the excitation density. Investigations of cross-sections show for all samples a similar luminescence distribution. Near the molybdenum back contact distinct areas show luminescence emitting at 680-750 nm. In contrast, in upper regions of the layer a homogeneous low-energy luminescence at around 820 nm is observed which exhibits the most intensive spots on the cross-section. In local spectra we observe a change of the dominant recombination channel at the interface of these two regions.

  3. Policy applications of a highly resolved spatial and temporal onroad carbon dioxide emissions data product for the U.S.: Analyses and their implications for mitigation

    Mendoza Lebrun, Daniel

    Onroad CO2 emissions were analyzed as part of overall GHG emissions, but those studies have suffered from one or more of these five shortcomings: 1) the spatial resolution was coarse, usually encompassing a region, or the entire U.S.; 2) the temporal resolution was coarse (annual or monthly); 3) the study region was limited, usually a metropolitan planning organization (MPO) or state; 4) fuel sales were used as a proxy to quantify fuel consumption instead of focusing on travel; 5) the spatial heterogeneity of fleet and road network composition was not considered and instead national averages are used. Normalized vehicle-type state-level spatial biases range from 2.6% to 8.1%, while the road type classification biases range from -6.3% to 16.8%. These biases are found to cause errors in reduction estimates as large as ±60%, corresponding to ±0.2 MtC, for a national-average emissions mitigation strategy focused on a 10% emissions reduction from a single vehicle class. Temporal analysis shows distinct emissions seasonality that is particularly visible in the northernmost latitudes, demonstrating peak-to-peak deviations from the annual mean of up to 50%. The hourly structure shows peak-to-peak deviation from a weekly average of up to 200% for heavy-duty (HD) vehicles and 140% for light-duty (LD) vehicles. The present study focuses on reduction of travel and fuel economy improvements by putting forth several mitigation scenarios aimed at reducing VMT and increasing vehicle fuel efficiency. It was found that the most effective independent reduction strategies are those that increase fuel efficiency by extending standards proposed by the corporate average fuel economy (CAFE) or reduction of fuel consumption due to price increases. These two strategies show cumulative emissions reductions of approximately 11% and 12%, respectively, from a business as usual (BAU) approach over the 2000-2050 period. The U.S. onroad transportation sector is long overdue a comprehensive study

  4. SPATIALLY RESOLVED KINEMATICS OF THE CENTRAL REGIONS OF M83: HIDDEN MASS SIGNATURES AND THE ROLE OF SUPERNOVAE

    Piqueras Lopez, J.; Colina, L. [Centro de Astrobiologia, INTA-CSIC (Spain); Davies, R.; Orban de Xivry, G., E-mail: piqueraslj@cab.inta-csic.es [Max-Planck-Institut fuer extraterrestrische Physik, Postfach 1312, 85741 Garching (Germany)

    2012-06-10

    The barred grand-design spiral M83 (NGC 5236) is one of the most studied galaxies given its proximity, orientation, and particular complexity. Nonetheless, many aspects of the central regions remain controversial, conveying our limited understanding of the inner gas and stellar kinematics, and ultimately of the nucleus evolution. In this work, we present AO VLT-SINFONI data of its central {approx}235 Multiplication-Sign 140 pc with an unprecedented spatial resolution of {approx}0.2 arcsec, corresponding to {approx}4 pc. We have focused our study on the distribution and kinematics of the stars and the ionized and molecular gas by studying the Pa{alpha} and Br{gamma} emission in detail, the H{sub 2} 1-0S(1) line at 2.122 {mu}m, and the [Fe II] line at 1.644 {mu}m, together with the CO absorption bands at 2.293 {mu}m and 2.323 {mu}m. Our results reveal a complex situation where the gas and stellar kinematics are totally unrelated. Supernova explosions play an important role in shaping the gas kinematics, dominated by shocks and inflows at scales of tens of parsecs that make them unsuitable to derive general dynamical properties. We propose that the location of the nucleus of M83 is unlikely to be related to the off-center 'optical nucleus'. The study of the stellar kinematics reveals that the optical nucleus is a gravitationally bound massive star cluster with M{sub dyn} = (1.1 {+-} 0.4) Multiplication-Sign 10{sup 7} M{sub Sun }, formed by a past starburst. The kinematic and photometric analysis of the cluster yield that the stellar content of the cluster is well described by an intermediate age population of log T(yr) = 8.0 {+-} 0.4, with a mass of M* {approx_equal} (7.8 {+-} 2.4) Multiplication-Sign 10{sup 6} M{sub Sun }.

  5. SPATIALLY RESOLVING THE HK Tau B EDGE-ON DISK FROM 1.2 TO 4.7 μm: A UNIQUE SCATTERED LIGHT DISK

    McCabe, C.; Duchene, G.; Pinte, C.; Menard, F.; Stapelfeldt, K. R.; Ghez, A. M.

    2011-01-01

    We present spatially resolved scattered light images of the circumstellar disk around HK Tau B at 3.8 and 4.7 μm taken with the Keck Telescope Laser Guide Star Adaptive Optics (AO) system, and 1.6-2.12 μm images taken with the Very Large Telescope/NACO AO system. Combined with previously published optical Hubble Space Telescope data, we investigate the spatially resolved scattered light properties of this edge-on circumstellar disk and probe for the presence of large grains. The 0.6-3.8 μm scattered light observations reveal strong, and in some cases, unusual, wavelength dependencies in the observed disk morphology. The separation between the two scattered light nebulae, which is directly proportional to the disk-mass-opacity product, decreases by 30% between 0.6 and 3.8 μm. Over the same wavelength range, the FWHM of the disk nebulosity declines by a factor of two, while the flux ratio between the two nebulae increases by a factor of ∼8. No other disk known to date shows a flux ratio that increases with wavelength. Both the FWHM and nebula flux ratio are affected by the scattering phase function and the observed behavior can most readily be explained by a phase function that becomes more forward throwing with wavelength. The multi-wavelength scattered light observations also confirm the asymmetric nature of the disk and show that the level of asymmetry is a function of wavelength. We use the MCFOST radiative transfer code to model the disk at four wavelengths, corresponding to the I, H, Ks, and L' bandpasses. A single power-law grain size distribution can recreate the observed disk properties simultaneously at all four wavelengths. Bayesian analysis of the dust parameters finds a 99% probability that the maximum grain size is 5.5 μm or larger. We also find that the grain size distribution is steep, with a 99% probability of a power-law index of 4.2 or larger, suggesting that these large grains are a small fraction of the overall dust population. The best

  6. Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural network

    Papale, D.; Black, T Andrew; Carvalhais, Nuno

    2015-01-01

    -output relationships, while prediction for conditions outside the training domain is generally uncertain. In this work, artificial neural networks (ANNs) were used for the prediction of gross primary production (GPP) and latent heat flux (LE) on local and European scales with the aim to assess the portion...

  7. Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural networks

    Papale, Dario; Black, T. A.; Carvalhais, N.; Cascatti, A.; Chen, J.; Jung, M.; Kiely, G.; Lasslop, G.; Mahecha, M.G.; Margolis, H.; Merbold, L.; Montagnani, L.; Moors, E.; Olesen, J. E.; Reichstein, M.; Tramontana, G.; Van Gorsel, E.; Wohlfahrt, G.; Ráduly, B.

    2015-01-01

    Roč. 120, č. 10 (2015), s. 1941-1957 ISSN 2169-8953 Institutional support: RVO:67179843 Keywords : upscaling * representativeness * gross primary production * latent heat * uncertainty * artificial neural networks Subject RIV: EH - Ecology, Behaviour Impact factor: 3.440, year: 2013

  8. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence

    Diamond, Kevin R; Farrell, Thomas J; Patterson, Michael S [Department of Medical Physics, Juravinski Cancer Centre and McMaster University, 699 Concession Street, Hamilton, Ontario L8V 5C2 (Canada)

    2003-12-21

    Steady-state diffusion theory models of fluorescence in tissue have been investigated for recovering fluorophore concentrations and fluorescence quantum yield. Spatially resolved fluorescence, excitation and emission reflectance were calculated by diffusion theory and Monte Carlo simulations, and measured using a multi-fibre probe on tissue-simulating phantoms containing either aluminium phthalocyanine tetrasulfonate (AlPcS{sub 4}), Photofrin or meso-tetra-(4-sulfonatophenyl)-porphine dihydrochloride (TPPS{sub 4}). The accuracy of the fluorophore concentration and fluorescence quantum yield recovered by three different models of spatially resolved fluorescence were compared. The models were based on: (a) weighted difference of the excitation and emission reflectance, (b) fluorescence due to a point excitation source or (c) fluorescence due to a pencil beam excitation source. When literature values for the fluorescence quantum yield were used for each of the fluorophores, the fluorophore absorption coefficient (and hence concentration) at the excitation wavelengthwas recovered with a root-mean-square accuracy of 11.4% using the point source model of fluorescence and 8.0% using the more complicated pencil beam excitation model. The accuracy was calculated over a broad range of optical properties and fluorophore concentrations. The weighted difference of reflectance model performed poorly, with a root-mean-square error in concentration of about 50%. Monte Carlo simulations suggest that there are some situations where the weighted difference of reflectance is as accurate as the other two models, although this was not confirmed experimentally. Estimates of the fluorescence quantum yield in multiple scattering media were also made by determining independently from the fitted absorption spectrum and applying the various diffusion theory models. The fluorescence quantum yields for AlPcS{sub 4} and TPPS{sub 4} were calculated to be 0.59 {+-} 0.03 and 0.121 {+-} 0

  9. Measurement of fluorophore concentrations and fluorescence quantum yield in tissue-simulating phantoms using three diffusion models of steady-state spatially resolved fluorescence

    Diamond, Kevin R; Farrell, Thomas J; Patterson, Michael S

    2003-01-01

    Steady-state diffusion theory models of fluorescence in tissue have been investigated for recovering fluorophore concentrations and fluorescence quantum yield. Spatially resolved fluorescence, excitation and emission reflectance were calculated by diffusion theory and Monte Carlo simulations, and measured using a multi-fibre probe on tissue-simulating phantoms containing either aluminium phthalocyanine tetrasulfonate (AlPcS 4 ), Photofrin or meso-tetra-(4-sulfonatophenyl)-porphine dihydrochloride (TPPS 4 ). The accuracy of the fluorophore concentration and fluorescence quantum yield recovered by three different models of spatially resolved fluorescence were compared. The models were based on: (a) weighted difference of the excitation and emission reflectance, (b) fluorescence due to a point excitation source or (c) fluorescence due to a pencil beam excitation source. When literature values for the fluorescence quantum yield were used for each of the fluorophores, the fluorophore absorption coefficient (and hence concentration) at the excitation wavelengthwas recovered with a root-mean-square accuracy of 11.4% using the point source model of fluorescence and 8.0% using the more complicated pencil beam excitation model. The accuracy was calculated over a broad range of optical properties and fluorophore concentrations. The weighted difference of reflectance model performed poorly, with a root-mean-square error in concentration of about 50%. Monte Carlo simulations suggest that there are some situations where the weighted difference of reflectance is as accurate as the other two models, although this was not confirmed experimentally. Estimates of the fluorescence quantum yield in multiple scattering media were also made by determining independently from the fitted absorption spectrum and applying the various diffusion theory models. The fluorescence quantum yields for AlPcS 4 and TPPS 4 were calculated to be 0.59 ± 0.03 and 0.121 ± 0.001 respectively using the point

  10. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Bayliss, Matthew B.; Bordoloi, Rongmon [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel [Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109 (United States); Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa [RSAA, Australian National University, Cotter Road, Weston Creek, ACT 2611 (Australia); Gladders, Michael D. [Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637 (United States); Rigby, Jane R. [Astrophysics Science Division, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Dahle, Hakon [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Florian, Michael, E-mail: mbayliss@mit.edu [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States)

    2017-08-20

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  11. Spatially Resolved Patchy Ly α Emission within the Central Kiloparsec of a Strongly Lensed Quasar Host Galaxy at z = 2.8

    Bayliss, Matthew B.; Bordoloi, Rongmon; Sharon, Keren; Runnoe, Jessie; Johnson, Traci; Paterno-Mahler, Rachel; Acharyya, Ayan; Bian, Fuyan; Kewley, Lisa; Gladders, Michael D.; Rigby, Jane R.; Dahle, Hakon; Florian, Michael

    2017-01-01

    We report the detection of extended Ly α emission from the host galaxy of SDSS J2222+2745, a strongly lensed quasar at z = 2.8. Spectroscopic follow-up clearly reveals extended Ly α in emission between two images of the central active galactic nucleus (AGN). We reconstruct the lensed quasar host galaxy in the source plane by applying a strong lens model to HST imaging and resolve spatial scales as small as ∼200 pc. In the source plane, we recover the host galaxy morphology to within a few hundred parsecs of the central AGN and map the extended Ly α emission to its physical origin on one side of the host galaxy at radii ∼0.5–2 kpc from the central AGN. There are clear morphological differences between the Ly α and rest-frame ultraviolet stellar continuum emission from the quasar host galaxy. Furthermore, the relative velocity profiles of quasar Ly α , host galaxy Ly α , and metal lines in outflowing gas reveal differences in the absorbing material affecting the AGN and host galaxy. These data indicate the presence of patchy local intervening gas in front of the central quasar and its host galaxy. This interpretation is consistent with the central luminous quasar being obscured across a substantial fraction of its surrounding solid angle, resulting in strong anisotropy in the exposure of the host galaxy to ionizing radiation from the AGN. This work demonstrates the power of strong-lensing-assisted studies to probe spatial scales that are currently inaccessible by other means.

  12. Spatially-Resolved Influence of Temperature and Salinity on Stock and Recruitment Variability of Commercially Important Fishes in the North Sea.

    Anna Akimova

    Full Text Available Understanding of the processes affecting recruitment of commercially important fish species is one of the major challenges in fisheries science. Towards this aim, we investigated the relation between North Sea hydrography (temperature and salinity and fish stock variables (recruitment, spawning stock biomass and pre-recruitment survival index for 9 commercially important fishes using spatially-resolved cross-correlation analysis. We used high-resolution (0.2° × 0.2° hydrographic data fields matching the maximal temporal extent of the fish population assessments (1948-2013. Our approach allowed for the identification of regions in the North Sea where environmental variables seem to be more influential on the fish stocks, as well as the regions of a lesser or nil influence. Our results confirmed previously demonstrated negative correlations between temperature and recruitment of cod and plaice and identified regions of the strongest correlations (German Bight for plaice and north-western North Sea for cod. We also revealed a positive correlation between herring spawning stock biomass and temperature in the Orkney-Shetland area, as well as a negative correlation between sole pre-recruitment survival index and temperature in the German Bight. A strong positive correlation between sprat stock variables and salinity in the central North Sea was also found. To our knowledge the results concerning correlations between North Sea hydrography and stocks' dynamics of herring, sole and sprat are novel. The new information about spatial distribution of the correlation provides an additional help to identify mechanisms underlying these correlations. As an illustration of the utility of these results for fishery management, an example is provided that incorporates the identified environmental covariates in stock-recruitment models.

  13. Fast and Furious: Shock heated gas as the origin of spatially resolved hard X-ray emission in the central 5 kpc of the galaxy merger NGC 6240

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido; Zezas, Andreas [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pellegrini, Silvia [Dipartimento di Astronomia, Universitá di Bologna, Via Ranzani 1, I-40127 Bologna (Italy); Max, Claire [Center for Adaptive Optics, University of California, 1156 High Street, Santa Cruz, CA 95064 (United States); U, Vivian, E-mail: jfwang@northwestern.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2014-01-20

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ∼ 6 keV (∼70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ∼2200 km s{sup –1}. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H{sub 2}(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L {sub 0.5-8} {sub keV} = 5.3 × 10{sup 41} erg s{sup –1}, the diffuse hard X-ray emission is ∼100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M {sub hot} = 1.8 × 10{sup 8} M {sub ☉}) and thermal energy (E {sub th} = 6.5 × 10{sup 57} erg). The total iron mass in the highly ionized plasma is M {sub Fe} = 4.6 × 10{sup 5} M {sub ☉}. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  14. Fast and Furious: Shock Heated Gas as the Origin of Spatially Resolved Hard X-Ray Emission in the Central 5 kpc of the Galaxy Merger NGC 6240

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Pellegrini, Silvia; Max, Claire; Risaliti, Guido; U, Vivian; Zezas, Andreas

    2014-01-01

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ~ 6 keV (~70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ~2200 km s-1. For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H2(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L 0.5-8 keV = 5.3 × 1041 erg s-1, the diffuse hard X-ray emission is ~100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M hot = 1.8 × 108 M ⊙) and thermal energy (E th = 6.5 × 1057 erg). The total iron mass in the highly ionized plasma is M Fe = 4.6 × 105 M ⊙. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  15. Fast and Furious: Shock heated gas as the origin of spatially resolved hard X-ray emission in the central 5 kpc of the galaxy merger NGC 6240

    Wang, Junfeng; Nardini, Emanuele; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido; Zezas, Andreas; Pellegrini, Silvia; Max, Claire; U, Vivian

    2014-01-01

    We have obtained a deep, subarcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from kT ∼ 6 keV (∼70 MK) hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with a velocity of ∼2200 km s –1 . For the first time, we obtain the spatial distribution of this highly ionized gas emitting Fe XXV, which shows a remarkable correspondence to the large-scale morphology of H 2 (1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originating in the starburst-driven wind into the ambient dense gas can account for this morphological correspondence. With an observed L 0.5-8 keV = 5.3 × 10 41 erg s –1 , the diffuse hard X-ray emission is ∼100 times more luminous than that observed in the classic starburst galaxy M82. Assuming a filling factor of 1% for the 70 MK temperature gas, we estimate its total mass (M hot = 1.8 × 10 8 M ☉ ) and thermal energy (E th = 6.5 × 10 57 erg). The total iron mass in the highly ionized plasma is M Fe = 4.6 × 10 5 M ☉ . Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate. No evidence for fluorescent Fe I emission is found in the CO filament connecting the two nuclei.

  16. The synthesis of carbon nanocomposites as fuel cell catalyst support and the characterization of fuel cell catalysts by spatially resolved scanning mass spectrometry

    Li, Nan

    2007-07-01

    Ammonia decomposition over Ni/SiO{sub 2} and Ni/MgO was investigated by temperature-programmed desorption (TPD) and temperature-programmed surface reaction (TPSR) in order to produce CO{sub x} free hydrogen fuel for fuel cell application. A highly efficient route for the synthesis of carbon nanocomposites based on electrochemical deposition and iron catalyzed chemical vapor deposition (CVD) was developed in order to obtain a promising substrate for fuel cell catalysts. The duration of electrochemical deposition, temperature and time for the carbon nanotubes (CNTs) growth had been optimized to achieve higher surface area after the growth. Hierarchically structured CNTs composites had been synthesized and electrochemical studies provided evidence for the strong interaction among the substrate and grown CNTs, which are essential for the application in fuel cells. A straightforward strategy was developed to synthesize well dispersed gold nanoparticles with a diameter of 4 to 6 nm on the sidewall of multi-walled carbon nanotubes (MWNTs). A gas flow set-up was developed for the evaluation of fuel cell catalysts by performing scanning mass spectrometry with integrated constant-distance positioning. Methanol oxidation was identified as a suitable test reaction. The diameter of scanning probe was reduced in order to achieve higher spatial resolution. Spatially resolved scanning mass spectrometry was successfully applied to visualize the catalytic activity over Pt-based catalysts and monitor the local activity of a catalysts coated membrane (CCM). The gas-solid phase reaction results were proved to be accurate, reliable and independent of the sample topography. This analytical method opens the way for fast quality control of the catalyst coating with respect to even coating and absence of damages, and for a better understanding of the CCM degradation in polymer membrane electrolyte fuel cells (PEMFCs). (orig.)

  17. Spatially resolved regression analysis of pre-treatment FDG, FLT and Cu-ATSM PET from post-treatment FDG PET: an exploratory study

    Bowen, Stephen R; Chappell, Richard J; Bentzen, Søren M; Deveau, Michael A; Forrest, Lisa J; Jeraj, Robert

    2012-01-01

    Purpose To quantify associations between pre-radiotherapy and post-radiotherapy PET parameters via spatially resolved regression. Materials and methods Ten canine sinonasal cancer patients underwent PET/CT scans of [18F]FDG (FDGpre), [18F]FLT (FLTpre), and [61Cu]Cu-ATSM (Cu-ATSMpre). Following radiotherapy regimens of 50 Gy in 10 fractions, veterinary patients underwent FDG PET/CT scans at three months (FDGpost). Regression of standardized uptake values in baseline FDGpre, FLTpre and Cu-ATSMpre tumour voxels to those in FDGpost images was performed for linear, log-linear, generalized-linear and mixed-fit linear models. Goodness-of-fit in regression coefficients was assessed by R2. Hypothesis testing of coefficients over the patient population was performed. Results Multivariate linear model fits of FDGpre to FDGpost were significantly positive over the population (FDGpost~0.17 FDGpre, p=0.03), and classified slopes of RECIST non-responders and responders to be different (0.37 vs. 0.07, p=0.01). Generalized-linear model fits related FDGpre to FDGpost by a linear power law (FDGpost~FDGpre0.93, pregression analysis indicates that pre-treatment FDG PET uptake is most strongly associated with three-month post-treatment FDG PET uptake in this patient population, though associations are histopathology-dependent. PMID:22682748

  18. Spatially and time-resolved element-specific in situ corrosion investigations with an online hyphenated microcapillary flow injection inductively coupled plasma mass spectrometry set-up

    Homazava, N.; Ulrich, A.; Kraehenbuehl, U.

    2008-01-01

    A novel technique for in situ spatial, time-resolved element-specific investigations of corrosion processes is developed. The technique is based on an online hyphenation of a specially designed microflow-capillary set-up to inductively coupled plasma mass spectrometry (ICP-MS) using flow injection sample introduction. Detailed aspects of the method development, optimization of the sample microflow introduction and flow injection characteristics for the localized corrosion analysis are described. Moreover, specific challenges of the ICP-MS analysis as applied to the analysis of corrosion sample probes, e.g. high matrix load and limited sample volume, are discussed. The efficiency of the developed technique is proved by corrosion susceptibility analysis of a commercial Al alloy. Results of the corrosion experiments of the aluminum alloy AA 6111 are presented to demonstrate the influence of various factors such as exposure time and pH value of the corrosive medium on the element-specific dissolution rates of the alloy. This novel technique provides new aspects in corrosion science and sheds new light on corrosion mechanisms

  19. The Energy-Water Nexus: Spatially-Resolved Analysis of the Potential for Desalinating Brackish Groundwater by Use of Solar Energy

    Jill B. Kjellsson

    2015-06-01

    Full Text Available This research looks at coupling desalination with renewable energy sources to create a high-value product (treated water from two low value resources (brackish groundwater and intermittent solar energy. Desalination of brackish groundwater is already being considered as a potential new water supply in Texas. This research uses Texas as a testbed for spatially-resolved analysis techniques while considering depth to brackish groundwater, water quality, and solar radiation across Texas to determine the locations with the best potential for integrating solar energy with brackish groundwater desalination. The framework presented herein can be useful for policymakers, regional planners, and project developers as they consider where to site desalination facilities coupled with solar photovoltaics. Results suggest that the northwestern region of Texas—with abundant sunshine and groundwater at relatively shallow depths and low salinity in areas with freshwater scarcity—has the highest potential for solar powered desalination. The range in capacity for solar photovoltaic powered reverse osmosis desalination was found to be 1.56 × 10—6 to 2.93 × 10—5 cubic meters of water per second per square meter of solar panel (m3/s/m2.

  20. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms

    Zhang Shiqiang; Van Gessel, Bram; Hofmann, Sven; Van Veldhuizen, Eddie; Bruggeman, Peter; Van Gaens, Wouter; Bogaerts, Annemie

    2013-01-01

    In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O 2 , operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O 3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O 3 in the core of the plasma is mainly caused by an enhanced destruction of O 3 due to a large atomic oxygen density. (paper)

  1. Spatial partition of artificial structures by fish at the surroundings of the conservation unit - Parque Estadual da Ilha Anchieta, SP, Brazil

    Patricia Teresa Monteiro Cunningham

    2004-03-01

    Full Text Available The aim of this work was to study the spatial partition dynamics of fish at artificial structures. Holed structured concrete blocks were used to construct eight identical artificial structures and disposed between 3m-6m depths. Installation was made in two steps during 1996 (May/June and November/December and daily observations were carried out during 30 consecutive days SCUBA diving. The artificial reef areas were used in discriminated ways by the fish community and was most probably influenced by several factor, mainly biotic. The results of the Krustal-Wallis test led to the refutation of the hypothesis that the artificial structure spaces were shared and randomly used by fish.Este trabalho é parte integrante de um projeto maior realizado pelo Laboratório ECOPEX/IOUSP. Foi desenvolvido nos entornos do Parque Estadual da Ilha Anchieta, Ubatuba, litoral norte de São Paulo, com o objetivo de estudar a dinâmica de repartição espacial dos peixes em estruturas artificiais e de testar a hipótese "os peixes repartem e utilizam aleatoriamente o espaço das estruturas artificiais". Utilizando-se blocos de concreto vazados, foram construídas e colocadas entre 3m - 6m, oito estruturas artificias idênticas. A instalação foi feita em duas etapas durante o ano de 1996 (Maio/Junho e Novembro/Dezembro e as observações efetuadas diariamente durante 30 dias consecutivos usando equipamento de mergulho autônomo. A ictiofauna utilizou de forma diferenciada as áreas dos recifes artificiais, influenciada provavelmente por vários fatores, principalmente bióticos. Os resultados do teste de Kruskal-Wallis levaram a refutar a hipótese desse estudo.

  2. [Three-dimension temporal and spatial dynamics of soil water for the artificial vegetation in the center of Taklimakan desert under saline water drip-irrigation].

    Ding, Xin-yuan; Zhou, Zhi-bin; Xu, Xin-wen; Lei, Jia-qiang; Lu, Jing-jing; Ma, Xue-xi; Feng, Xiao

    2015-09-01

    Three-dimension temporal and spatial dynamics of the soil water characteristics during four irrigating cycles of months from April to July for the artificial vegetation in the center of Taklimakan Desert under saline water drip-irrigation had been analyzed by timely measuring the soil water content in horizontal and vertical distances 60 cm and 120 cm away from the irrigating drips, respectively. Periodic spatial and temporal variations of soil water content were observed. When the precipitation effect was not considered, there were no significant differences in the characteristics of soil water among the irrigation intervals in different months, while discrepancies were obvious in the temporal and spatial changes of soil moisture content under the conditions of rainfall and non-rainfall. When it referred to the temporal changes of soil water, it was a little higher in April but a bit lower in July, and the soil water content in June was the highest among four months because some remarkable events of precipitation happened in this month. However, as a whole, the content of soil moisture was reduced as months (from April to July) went on and it took a decreasing tendency along with days (1-15 d) following a power function. Meanwhile, the characteristics of soil water content displayed three changeable stages in an irrigation interval. When it referred to the spatial distributions of soil water, the average content of soil moisture was reduced along with the horizontal distance following a linear regression function, and varied with double peaks along with the vertical distance. In addition, the spatial distribution characteristics of the soil water were not influenced by the factors of precipitation and irrigating time but the physical properties of soil.

  3. The MASSIVE Survey - V. Spatially resolved stellar angular momentum, velocity dispersion, and higher moments of the 41 most massive local early-type galaxies

    Veale, Melanie; Ma, Chung-Pei; Thomas, Jens; Greene, Jenny E.; McConnell, Nicholas J.; Walsh, Jonelle; Ito, Jennifer; Blakeslee, John P.; Janish, Ryan

    2017-01-01

    We present spatially resolved two-dimensional stellar kinematics for the 41 most massive early-type galaxies (ETGs; MK ≲ -25.7 mag, stellar mass M* ≳ 1011.8 M⊙) of the volume-limited (D McDonald Observatory, covering a 107 arcsec × 107 arcsec field of view (often reaching 2 to 3 effective radii). We measure the 2D spatial distribution of each galaxy's angular momentum (λ and fast or slow rotator status), velocity dispersion (σ), and higher order non-Gaussian velocity features (Gauss-Hermite moments h3 to h6). Our sample contains a high fraction (˜80 per cent) of slow and non-rotators with λ ≲ 0.2. When combined with the lower mass ETGs in the ATLAS3D survey, we find the fraction of slow rotators to increase dramatically with galaxy mass, reaching ˜50 per cent at MK ˜ -25.5 mag and ˜90 per cent at MK ≲ -26 mag. All of our fast rotators show a clear anticorrelation between h3 and V/σ, and the slope of the anticorrelation is steeper in more round galaxies. The radial profiles of σ show a clear luminosity and environmental dependence: the 12 most luminous galaxies in our sample (MK ≲ -26 mag) are all brightest cluster/group galaxies (except NGC 4874) and all have rising or nearly flat σ profiles, whereas five of the seven `isolated' galaxies are all fainter than MK = -25.8 mag and have falling σ. All of our galaxies have positive average h4; the most luminous galaxies have average h4 ˜ 0.05, while less luminous galaxies have a range of values between 0 and 0.05. Most of our galaxies show positive radial gradients in h4, and those galaxies also tend to have rising σ profiles. We discuss the implications for the relationship among dynamical mass, σ, h4, and velocity anisotropy for these massive galaxies.

  4. Simultaneous characterization of elemental segregation and cementite networks in high carbon steel products by spatially-resolved laser-induced breakdown spectroscopy

    Boué-Bigne, Fabienne, E-mail: fabienne.boue-bigne@tatasteel.com

    2014-06-01

    The reliable characterization of the level of elemental segregation and of the extent of grain-boundary cementite networks in high carbon steel products is a prerequisite for checking product quality, for the purpose of product release to customers, and to investigate the presence of defects that may have led to mechanical property failure of the product. Current methods for the characterization of segregation and cementite networks rely on two different methods of sample etching followed by visual observation, where quality scores are given based on human perception and judgment. With the continuous demand on increasing quality, some of the conventional characterization methods and their associated scoring boards have lost relevance for the precision of characterization that is required today to distinguish between a product that will perform well and one that will not. In order to move away from a qualitative, human perception based situation for the scoring of the severity of segregation and cementite networks, a new method of data evaluation based on spatially-resolved LIBS measurements was developed to provide quantitative and simultaneous characterization of both types of defects. The quantitative assessment of segregation and cementite networks is based on the acquisition of carbon concentration maps. The ability to produce rapid scanning measurements of micro and macro-scale features with adequate spatial resolution makes LIBS the measurement method of preference for this purpose. The characterization of both different defects is extracted simultaneously and from the same carbon concentration map following a series of statistical treatment and data extraction rules. LIBS results were validated against recognized methods and were applied to a significant number of routine samples. The new LIBS method offers a step change improvement in reliability for the characterization of segregation and cementite networks in steel products over the conventional methods

  5. A comparative transmission electron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia - porcelain interface in dental prosthesis

    Lunt, Alexander J.G., E-mail: alexander.lunt@chch.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Mohanty, Gaurav, E-mail: gaurav.mohanty@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Ying, Siqi, E-mail: siqi.ying@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Dluhoš, Jiří, E-mail: jiri.dluhos@tescan.cz [TESCAN Brno, s.r.o., Libušina tř. 1, 623 00 Brno-Kohoutovice (Czech Republic); Sui, Tan, E-mail: tan.sui@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom); Neo, Tee K., E-mail: neophyte@singnet.com.sg [Specialist Dental Group, Mount Elizabeth Orchard, 3 Mount Elizabeth, #08-03/08-08/08-10, 228510 (Singapore); Michler, Johann, E-mail: johann.michler@empa.ch [EMPA Materials Science & Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Korsunsky, Alexander M., E-mail: alexander.korsunsky@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford, Oxfordshire OX1 3PJ (United Kingdom)

    2015-12-01

    μm. - Highlights: • Cross section of yttria partially stabilised zirconia (YPSZ)–porcelain prosthesis • Energy dispersive X-ray spectroscopy shows 2–6 μm elemental diffusion zone. • Transmission electron microscopy shows voids in near interface porcelain. • Complex near interface YPSZ microstructure shows grains embedded in porcelain. • Spatially resolved micropillar compression reveals modulus and strength variation.

  6. Spatial distribution of juvenile fish along an artificialized seascape, insights from common coastal species in the Northwestern Mediterranean Sea.

    Mercader, Manon; Rider, Mary; Cheminée, Adrien; Pastor, Jérémy; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Verdoit-Jarraya, Marion; Lenfant, Philippe

    2018-06-01

    Along the littoral, a growing number of anthropogenic structures have caused substantial habitat destruction. Despite their detrimental impact, these constructions could play a role in the functioning of coastal ecosystems. The objective of this work was to assess the distribution of juvenile coastal fish along a seascape composed of various natural and artificial habitats in order to determine the potential role of coastal infrastructures as juvenile habitat. We surveyed juvenile populations on various infrastructures and natural sites along a 100 km shoreline of the French Mediterranean coast. Juvenile densities varied according to the level of artificialization of the sites. Densities were the highest on coastal defense structures, intermediate in natural sites and lowest in harbors. Focusing inside harbors revealed highly variable densities depending on the type of habitat, with densities on ripraps or jetties that were equivalent to those of natural sites. Our results underline the importance of anthropogenic structures as potential juvenile habitats, which is too often not considered in management plans. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.

    Shimoyamada, Atsushi; Yamamoto, Kazuo; Yoshida, Ryuji; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2015-12-01

    All-solid-state Li-ion batteries (LIBs) with solid electrolytes are expected to be the next generation devices to overcome serious issues facing conventional LIBs with liquid electrolytes. However, the large Li-ion transfer resistance at the electrode/solid-electrolyte interfaces causes low power density and prevents practical use. In-situ-formed negative electrodes prepared by decomposing the solid electrolyte Li(1+x+3z)Alx(Ti,Ge)(2-x)Si(3z)P(3-z)O12 (LASGTP) with an excess Li-ion insertion reaction are effective electrodes providing low Li-ion transfer resistance at the interfaces. Prior to our work, however, it had still been unclear how the negative electrodes were formed in the parent solid electrolytes. Here, we succeeded in dynamically visualizing the formation by in situ spatially resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS). The Li-ions were gradually inserted into the solid electrolyte region around 400 nm from the negative current-collector/solid-electrolyte interface in the charge process. Some of the ions were then extracted in the discharge process, and the rest were diffused such that the distribution was almost flat, resulting in the negative electrodes. The redox reaction of Ti(4+)/Ti(3+) in the solid electrolyte was also observed in situ during the Li insertion/extraction processes. The in situ SR-TEM-EELS revealed the mechanism of the electrochemical reaction in solid-state batteries. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. High spatial resolution and temporally resolved T2* mapping of normal human myocardium at 7.0 Tesla: an ultrahigh field magnetic resonance feasibility study.

    Fabian Hezel

    Full Text Available Myocardial tissue characterization using T(2(* relaxation mapping techniques is an emerging application of (preclinical cardiovascular magnetic resonance imaging. The increase in microscopic susceptibility at higher magnetic field strengths renders myocardial T(2(* mapping at ultrahigh magnetic fields conceptually appealing. This work demonstrates the feasibility of myocardial T(2(* imaging at 7.0 T and examines the applicability of temporally-resolved and high spatial resolution myocardial T(2(* mapping. In phantom experiments single cardiac phase and dynamic (CINE gradient echo imaging techniques provided similar T(2(* maps. In vivo studies showed that the peak-to-peak B(0 difference following volume selective shimming was reduced to approximately 80 Hz for the four chamber view and mid-ventricular short axis view of the heart and to 65 Hz for the left ventricle. No severe susceptibility artifacts were detected in the septum and in the lateral wall for T(2(* weighting ranging from TE = 2.04 ms to TE = 10.2 ms. For TE >7 ms, a susceptibility weighting induced signal void was observed within the anterior and inferior myocardial segments. The longest T(2(* values were found for anterior (T(2(* = 14.0 ms, anteroseptal (T(2(* = 17.2 ms and inferoseptal (T(2(* = 16.5 ms myocardial segments. Shorter T(2(* values were observed for inferior (T(2(* = 10.6 ms and inferolateral (T(2(* = 11.4 ms segments. A significant difference (p = 0.002 in T(2(* values was observed between end-diastole and end-systole with T(2(* changes of up to approximately 27% over the cardiac cycle which were pronounced in the septum. To conclude, these results underscore the challenges of myocardial T(2(* mapping at 7.0 T but demonstrate that these issues can be offset by using tailored shimming techniques and dedicated acquisition schemes.

  9. An Interferometric Study of the Post-AGB Binary 89 Herculis. 1: Spatially Resolving the Continuum Circumstellar Environment at Optical and Near-IR Wavelengths with the VLTI, NPOI, IOTA, PTI, and the CHARA Array

    2013-01-01

    Herculis I. Spatially resolving the continuum circumstellar environment at optical and near-IR wavelengths with the VLTI, NPOI, IOTA , PTI, and the CHARA...public release; distribution unlimited 13. SUPPLEMENTARY NOTES A&A 559, A111 (2013) 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION...Array ( IOTA ) and the Center for High Angular Resolution Astronomy (CHARA) Array, covering 0.5 to 2.2 μm and with baselines from 15 to 278 m. Here we

  10. Molecular Chemical Structure of Barley Proteins Revealed by Ultra-Spatially Resolved Synchrotron Light Sourced FTIR Microspectroscopy: Comparison of Barley Varieties

    Yu, P.

    2007-01-01

    Barley protein structure affects the barley quality, fermentation, and degradation behavior in both humans and animals among other factors such as protein matrix. Publications show various biological differences among barley varieties such as Valier and Harrington, which have significantly different degradation behaviors. The objectives of this study were to reveal the molecular structure of barley protein, comparing various varieties (Dolly, Valier, Harrington, LP955, AC Metcalfe, and Sisler), and quantify protein structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling by using the ultra-spatially resolved synchrotron light sourced Fourier transform infrared microspectroscopy (SFTIRM). The items of the protein molecular structure revealed included protein structure α-helices, β-sheets, and others such as β-turns and random coils. The experiment was performed at the National Synchrotron Light Source in Brookhaven National Laboratory (BNL, US Department of Energy, NY). The results showed that with the SFTIRM, the molecular structure of barley protein could be revealed. Barley protein structures exhibited significant differences among the varieties in terms of proportion and ratio of model-fitted α-helices, β-sheets, and others. By using multi-component peaks modeling at protein amide I region of 1710-1576 cm -1 , the results show that barley protein consisted of approximately 18-34% of α-helices, 14-25% of β-sheets, and 44-69% others. AC Metcalfe, Sisler, and LP955 consisted of higher (P 0.05). The ratio of α-helices to others (0.3 to 1.0, P < 0.05) and that of β-sheets to others (0.2 to 0.8, P < 0.05) were different among the barley varieties. It needs to be pointed out that using a multi-peak modeling for protein structure analysis is only for making relative estimates and not exact determinations and only for the comparison purpose between varieties. The principal component analysis showed that protein amide I Fourier

  11. Spatial and temporal variability of sediment deposition on artificial-lawn traps in a floodplain of the River Elbe

    Baborowski, M. [Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg (Germany)]. E-mail: martina.baborowski@ufz.de; Buettner, O. [Department of Lake Research, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg (Germany); Morgenstern, P. [Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Krueger, F. [ELANA Boden Wasser Monitoring, Dorfstrasse 55, 39615 Falkenberg (Germany); Lobe, I. [Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg (Germany); Rupp, H. [Department of Soil Physics, Helmholtz Centre for Environmental Research - UFZ, Dorfstrasse 55, 39615 Falkenberg (Germany); Tuempling, W. v. [Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg (Germany)

    2007-08-15

    Artificial-lawn mats were used as sediment traps in floodplains to measure sediment input and composition during flood events. To estimate the natural variability, 10 traps were installed during two flood waves at three different morphological units in a meander loop of the River Elbe. The geochemical composition of deposited and suspended matter was compared. The sediment input showed weak correlations with concentration and composition of river water. It also correlated poorly with flood duration and level as well as distance of trap position from the main river. This is due to the high variability of the inundation, different morphological conditions and the variability of sources. The composition of the deposits and the suspended matter in the river water was comparable. Hence, for the investigated river reach, the expected pollution of the floodplain sediments can be derived from the pollution of the suspended matter in the river during the flood wave. - The deposition of polluted sediments on floodplains is characterised by a high local variability.

  12. Spatial and temporal variability of sediment deposition on artificial-lawn traps in a floodplain of the River Elbe

    Baborowski, M.; Buettner, O.; Morgenstern, P.; Krueger, F.; Lobe, I.; Rupp, H.; Tuempling, W. v.

    2007-01-01

    Artificial-lawn mats were used as sediment traps in floodplains to measure sediment input and composition during flood events. To estimate the natural variability, 10 traps were installed during two flood waves at three different morphological units in a meander loop of the River Elbe. The geochemical composition of deposited and suspended matter was compared. The sediment input showed weak correlations with concentration and composition of river water. It also correlated poorly with flood duration and level as well as distance of trap position from the main river. This is due to the high variability of the inundation, different morphological conditions and the variability of sources. The composition of the deposits and the suspended matter in the river water was comparable. Hence, for the investigated river reach, the expected pollution of the floodplain sediments can be derived from the pollution of the suspended matter in the river during the flood wave. - The deposition of polluted sediments on floodplains is characterised by a high local variability

  13. Physical, Spatial, and Molecular Aspects of Extracellular Matrix of In Vivo Niches and Artificial Scaffolds Relevant to Stem Cells Research

    Maria Akhmanova

    2015-01-01

    Full Text Available Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity, viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement, and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems.

  14. Optical Coherence Tomography (OCT for Time-Resolved Imaging of Alveolar Dynamics in Mechanically Ventilated Rats

    Christian Schnabel

    2017-03-01

    Full Text Available Though artificial ventilation is an essential life-saving treatment, the mechanical behavior of lung tissue at the alveolar level is still unknown. Therefore, we need to understand the tissue response during artificial ventilation at this microscale in order to develop new and more protective ventilation methods. Optical coherence tomography (OCT combined with intravital microscopy (IVM is a promising tool for visualizing lung tissue dynamics with a high spatial and temporal resolution in uninterruptedly ventilated rats. We present a measurement setup using a custom-made animal ventilator and a gating technique for data acquisition of time-resolved sequences.

  15. Study of optoelectronic properties of thin film solar cell materials Cu2ZnSn(S,Se)4 using multiple correlative spatially-resolved spectroscopy techniques

    Chen, Qiong

    Containing only earth abundant and environmental friendly elements, quaternary compounds Cu2ZnSnS4 (CZTS) and Cu2ZnSnSe 4 (CZTSe) are considered as promising absorber materials for thin film solar cells. The best record efficiency for this type of thin film solar cell is now 12.6%. As a promising photovoltaic (PV) material, the electrical and optical properties of CZTS(Se) have not been well studied. In this work, an effort has been made to understand the optoelectronic and structural properties, in particular the spatial variations, of CZTS(Se) materials and devices by correlating multiple spatially resolved characterization techniques with sub-micron resolution. Micro-Raman (micro-Raman) spectroscopy was used to analyze the chemistry compositions in CZTS(Se) film; Micro-Photoluminescence (micro-PL) was used to determine the band gap and possible defects. Micro-Laser-Beam-Induced-Current (micro-LBIC) was used to examine the photo-response of CZTS(Se) solar cell in different illumination conditions. Micro-reflectance was used to estimate the reflectance loss. And Micro-I-V measurement was used to compare important electrical parameters from CZTS(Se) solar cells with different device structure or absorber compositions. Scanning electron microscopy and atomic force microscopy were used to characterize the surface morphology. Successfully integrating and correlating these techniques was first demonstrated during the course of this work in our laboratory, and this level of integration and correlation has been rare in the field of PV research. This effort is significant not only for this particular project and also for a wide range of research topics. Applying this approach, in conjunction with high-temperature and high-excitation-power optical spectroscopy, we have been able to reveal the microscopic scale variations among samples and devices that appeared to be very similar from macroscopic material and device characterizations, and thus serve as a very powerful tool

  16. Analyzing Snowpack Metrics Over Large Spatial Extents Using Calibrated, Enhanced-Resolution Brightness Temperature Data and Long Short Term Memory Artificial Neural Networks

    Norris, W.; J Q Farmer, C.

    2017-12-01

    Snow water equivalence (SWE) is a difficult metric to measure accurately over large spatial extents; snow-tell sites are too localized, and traditional remotely sensed brightness temperature data is at too coarse of a resolution to capture variation. The new Calibrated Enhanced-Resolution Brightness Temperature (CETB) data from the National Snow and Ice Data Center (NSIDC) offers remotely sensed brightness temperature data at an enhanced resolution of 3.125 km versus the original 25 km, which allows for large spatial extents to be analyzed with reduced uncertainty compared to the 25km product. While the 25km brightness temperature data has proved useful in past research — one group found decreasing trends in SWE outweighed increasing trends three to one in North America; other researchers used the data to incorporate winter conditions, like snow cover, into ecological zoning criterion — with the new 3.125 km data, it is possible to derive more accurate metrics for SWE, since we have far more spatial variability in measurements. Even with higher resolution data, using the 37 - 19 GHz frequencies to estimate SWE distorts the data during times of melt onset and accumulation onset. Past researchers employed statistical splines, while other successful attempts utilized non-parametric curve fitting to smooth out spikes distorting metrics. In this work, rather than using legacy curve fitting techniques, a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) was trained to perform curve fitting on the data. LSTM ANN have shown great promise in modeling time series data, and with almost 40 years of data available — 14,235 days — there is plenty of training data for the ANN. LSTM's are ideal for this type of time series analysis because they allow important trends to persist for long periods of time, but ignore short term fluctuations; since LSTM's have poor mid- to short-term memory, they are ideal for smoothing out the large spikes generated in the melt

  17. Developing Baltic cod recruitment models I : Resolving spatial and temporal dynamics of spawning stock and recruitment for cod, herring, and sprat

    Köster, Fritz; Möllmann, C.; Neuenfeldt, Stefan

    2001-01-01

    The Baltic Sea comprises a heterogeneous oceanographic environment influencing the spatial and temporal potential for reproductive success of cod (Gadus morhua) and sprat (Sprattus sprattus) in the different spawning basins. Hence, to quantify stock and recruitment dynamics, it is necessary......-disaggregated multispecies virtual population analyses (MSVPA) were performed for interacting species cod, herring (Clupea harengus), and sprat in the different subdivisions of the Central Baltic. The MSVPA runs revealed distinct spatial trends in population abundance, spawning biomass, recruitment, and predation...

  18. Investigation of local thermodynamic equilibrium of laser induced Al2O3–TiC plasma in argon by spatially resolved optical emission spectroscopy

    K. Alnama

    2016-06-01

    Full Text Available Plasma plume of Al2O3–TiC is generated by third harmonic Q-switched Nd:YAG nanosecond laser. It is characterized using Optical Emission Spectroscopy (OES at different argon background gas pressures 10, 102, 103, 104 and 105 Pa. Spatial evolution of excitation and ionic temperatures is deduced from spectral data analysis. Temporal evolution of Ti I emission originated from different energy states is probed. The correlation between the temporal behavior and the spatial temperature evolution are investigated under LTE condition for the possibility to use the temporal profile of Ti I emission as an indicator for LTE validity in the plasma.

  19. Spatially resolved RNA-sequencing of the embryonic heart identifies a role for Wnt/β-catenin signaling in autonomic control of heart rate

    Burkhard, Silja Barbara

    2018-01-01

    Development of specialized cells and structures in the heart is regulated by spatially -restricted molecular pathways. Disruptions in these pathways can cause severe congenital cardiac malformations or functional defects. To better understand these pathways and how they regulate cardiac development we used tomo-seq, combining high-throughput RNA-sequencing with tissue-sectioning, to establish a genome-wide expression dataset with high spatial resolution for the developing zebrafish heart. Analysis of the dataset revealed over 1100 genes differentially expressed in sub-compartments. Pacemaker cells in the sinoatrial region induce heart contractions, but little is known about the mechanisms underlying their development. Using our transcriptome map, we identified spatially restricted Wnt/β-catenin signaling activity in pacemaker cells, which was controlled by Islet-1 activity. Moreover, Wnt/β-catenin signaling controls heart rate by regulating pacemaker cellular response to parasympathetic stimuli. Thus, this high-resolution transcriptome map incorporating all cell types in the embryonic heart can expose spatially restricted molecular pathways critical for specific cardiac functions. PMID:29400650

  20. Artificial intelligence

    Hunt, Earl B

    1975-01-01

    Artificial Intelligence provides information pertinent to the fundamental aspects of artificial intelligence. This book presents the basic mathematical and computational approaches to problems in the artificial intelligence field.Organized into four parts encompassing 16 chapters, this book begins with an overview of the various fields of artificial intelligence. This text then attempts to connect artificial intelligence problems to some of the notions of computability and abstract computing devices. Other chapters consider the general notion of computability, with focus on the interaction bet

  1. SPATIALLY RESOLVED M-BAND EMISSION FROM IO’S LOKI PATERA–FIZEAU IMAGING AT THE 22.8 m LBT

    Conrad, Albert; Veillet, Christian [LBT Observatory, University of Arizona, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Kleer, Katherine de; Pater, Imke de [University of California at Berkeley, Berkeley, CA 94720 (United States); Leisenring, Jarron; Defrère, Denis; Hinz, Philip; Skemer, Andy [University of Arizona, 1428 E. University Blvd., Tucson, AZ 85721 (United States); Camera, Andrea La; Bertero, Mario; Boccacci, Patrizia [DIBRIS, University of Genoa, Via Dodecaneso 35, I-16146 Genova (Italy); Arcidiacono, Carmelo [INAF-Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna (Italy); Hofmann, Karl-Heinz; Schertl, Dieter; Weigelt, Gerd [Max Planck Institute for Radio Astronomy, Auf dem Hügel 69, D-53121 Bonn (Germany); Kürster, Martin [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Rathbun, Julie [Planetary Science Institute, 1700 E. Fort Lowell, Tucson, AZ 85719 (United States); Skrutskie, Michael [University of Virginia, 530 McCormick Road, Charlottesville, VA 22904 (United States); Spencer, John [Southwest Research Institute, 1050 Walnut Ste. Suite 300, Boulder, CO 80302 (United States); Woodward, Charles E., E-mail: aconrad@lbto.org [Minnesota Institute for Astrophysics, 116 Church St., Minneapolis, MN 55455 (United States)

    2015-05-15

    The Large Binocular Telescope Interferometer mid-infrared camera, LMIRcam, imaged Io on the night of 2013 December 24 UT and detected strong M-band (4.8 μm) thermal emission arising from Loki Patera. The 22.8 m baseline of the Large Binocular Telescope provides an angular resolution of ∼32 mas (∼100 km at Io) resolving the Loki Patera emission into two distinct maxima originating from different regions within Loki’s horseshoe lava lake. This observation is consistent with the presence of a high-temperature source observed in previous studies combined with an independent peak arising from cooling crust from recent resurfacing. The deconvolved images also reveal 15 other emission sites on the visible hemisphere of Io including two previously unidentified hot spots.

  2. Engineering Synthesis of Nonlinear Spatial Selection with Artificial Intelligence Elements to Suppress Critical Interference of Background in Aviation and Space-Based Opto-Electronic Devices

    V. L. Levshin

    2015-01-01

    Full Text Available The previous authors’ works have shown that the system of quasi-optimal linear spatial filtering, due to the restriction of this class of filters, related to the superposition principle, has very limited capacity to suppress the most critical interference spatially inhomogeneous background. Such partial suppression does not meet extreme approach requirements for providing high probability characteristics to detect small targets in the most difficult background conditions.In this regard, there is a conclusion that it is necessary to find a different approach, in which the result of the system operation in complex background does not depend on the level of the background noise at the input. This article performs an engineering synthesis of the system with the artificial visual intelligence elements, which recognizes a class of the small-sized radiating objects with the suppression of the most critical interference through nonlinear topological selection.Consideration of this problem begins with the formation of the filter-discriminator aperture, which is a basis for this theory, «echoing» with the theory of optimal nonlinear filtering spatial Poisson processes. Thus, formation of the optimized nonlinear filter structure is based on the optimal linear filter (Wiener filter structure. As a result, there are three versions of filter apertures (4-, 8- and 16-connected ones, with one of which later providing operations of the object shape discrimination. The focus of the article is, mainly, on the 8-connected aperture, as the average in balance of efficiency and complexity option.The article pays considerable attention to development of signs and algorithms to select the objects by size and shape. It shows that selection on a uniform background is possible by the maximum value of the first derivative and to separate the most critical form of Markov’s field inhomogeneities and background brightness, as the fragments of component boundaries of

  3. Multimodal MSI in Conjunction with Broad Coverage Spatially Resolved MS2 Increases Confidence in Both Molecular Identification and Localization

    Veličković, Dušan; Chu, Rosalie K.; Carrell, Alyssa A. [Biosciences; Thomas, Mathew; Paša-Tolić, Ljiljana; Weston, David J. [Biosciences; Anderton, Christopher R.

    2017-12-18

    One critical aspect of mass spectrometry imaging (MSI) is the need to confidently identify detected analytes. While orthogonal tandem MS (e.g., LC-MS2) experiments from sample extracts can assist in annotating ions, the spatial information about these molecules is lost. Accordingly, this could cause mislead conclusions, especially in cases where isobaric species exhibit different distributions within a sample. In this Technical Note, we employed a multimodal imaging approach, using matrix assisted laser desorption/ionization (MALDI)-MSI and liquid extraction surface analysis (LESA)-MS2I, to confidently annotate and One critical aspect of mass spectrometry imaging (MSI) is the need to confidently identify detected analytes. While orthogonal tandem MS (e.g., LC-MS2) experiments from sample extracts can assist in annotating ions, the spatial information about these molecules is lost. Accordingly, this could cause mislead conclusions, especially in cases where isobaric species exhibit different distributions within a sample. In this Technical Note, we employed a multimodal imaging approach, using matrix assisted laser desorption/ionization (MALDI)-MSI and liquid extraction surface analysis (LESA)-MS2I, to confidently annotate and localize a broad range of metabolites involved in a tripartite symbiosis system of moss, cyanobacteria, and fungus. We found that the combination of these two imaging modalities generated very congruent ion images, providing the link between highly accurate structural information onfered by LESA and high spatial resolution attainable by MALDI. These results demonstrate how this combined methodology could be very useful in differentiating metabolite routes in complex systems.

  4. ScatterJn: An ImageJ Plugin for Scatterplot-Matrix Analysis and Classification of Spatially Resolved Analytical Microscopy Data

    Fabian Zeitvogel

    2016-02-01

    Full Text Available We present ScatterJn, an ImageJ (and Fiji plugin for scatterplot-based exploration and analysis of analytical microscopy data. In contrast to commonly used scatterplot tools, it handles more than two input images (or image stacks, respectively by creating a matrix of pairwise scatterplots. The tool offers the possibility to manually classify pixels by selecting regions of datapoints in the scatterplots as well as in the spatial domain. We demonstrate its functioning using a set of elemental maps acquired by SEM-EDX mapping of a soil sample. The plugin is available at https://savannah.nongnu.org/projects/scatterjn.

  5. A study of the interference of cesium and phosphate in the low power inductively coupled radiofrequency argon plasma using spatially resolved emission and absorption measurements, ch. 4

    Kornblum, G.R.

    1977-01-01

    The literature on interferences in the radio frequency inductively coupled atmospheric argon plasma (ICP) is reviewed. Even for the most extensively investigated interferences of aluminum, phosphate and alkali elements on calcium, the studies are mostly descriptive. Inter-pretation of these data is impeded by conflicting results, the absence of thermal equilibrium and the lack of radially resolved observations. The present study of a low-power ICP $ KW) utilizes the Abel inversion technique for emission and absorption measurements of atom and ion lines to clarify the mechanism of interferences on calcium and magnesium due to phosphate and cesium. Under conditions of large carrier gas flow (4.5 l/min) the pronounced interferences are the result of three combined effects: volatilization interference, a change in excitation temperature and a shift in the ionization equilibrium. At lower carrier gas flow (1.4 l/min) the interferences are markedly reduced but still due to the same three effects. The relative preponderance of a particular type of interference depends upon the height of observation and upon the particular combination of analyte and interferent considered

  6. Investigation on the role of air in the dynamical evolution and thermodynamic state of a laser-induced aluminium plasma by spatial- and time-resolved spectroscopy

    Cristoforetti, G., E-mail: gabriele.cristoforetti@cnr.i [National Institute of Optics, Research Area of National Research Council, Via G.Moruzzi, 1 - 56124 Pisa (Italy); Lorenzetti, G.; Legnaioli, S.; Palleschi, V. [Institute of Chemistry of Organometallic Compounds, Research Area of National Research Council, Via G.Moruzzi, 1 - 56124 Pisa (Italy)

    2010-09-15

    The amount and the spatial distribution of air atoms and ions in a laser-induced plasma in ambient air provide important information about the formation of the plasma and its successive evolution history. For this reason, in the present work, the air mixing in a laser-induced plasma in air at atmospheric pressure and its influence on its thermodynamic evolution were studied. Information about spatial distributions of atoms and ions from Al, N and O were achieved by Abel-inverted spectra in the plume. The occurrence of LTE in the plume was also assessed by the utilization of theoretical criteria, and by the analysis of experimental spectra. Aluminium atoms and ions were found to be in LTE, while nitrogen and oxygen were not because of their longer times of relaxation toward equilibrium. Nitrogen was found to be over-ionized with respect to Saha-Eggert equilibrium, indicating that the plasma is recombining. Experimental observations suggest that the concentration of air species in the plasma is larger than that of aluminium, even in the region closer to the target, where the aluminium lines are stronger. In the front part of the plume only emission lines from air species were observed. The results suggest that a Laser-Supported Detonation (LSD) regime occurs during the trailing part of the laser pulse, resulting in the strong inclusion into the plasma of air elements. In this scenario, also the thermodynamic history of the plume is affected by the predominance of air species.

  7. Spatially resolving a starburst galaxy at hard X-ray energies: NuSTAR, CHANDRA, AND VLBA observations of NGC 253

    Wik, D. R.; Lehmer, B. D.; Hornschemeier, A. E.

    2014-01-01

    for the first time. As a follow up to our initial study of its nuclear region, we present the first results concerning the full galaxy from simultaneous NuSTAR, Chandra, and Very Long Baseline Array monitoring of the local starburst galaxy NGC 253. Above ~10 keV, nearly all the emission is concentrated within...... is detected at E > 40 keV. We report upper limits on diffuse inverse Compton emission for a range of spatial models. For the most extended morphologies considered, these hard X-ray constraints disfavor a dominant inverse Compton component to explain the γ-ray emission detected with Fermi and H.E.S.S. If NGC...

  8. Artificial Intelligence.

    Information Technology Quarterly, 1985

    1985-01-01

    This issue of "Information Technology Quarterly" is devoted to the theme of "Artificial Intelligence." It contains two major articles: (1) Artificial Intelligence and Law" (D. Peter O'Neill and George D. Wood); (2) "Artificial Intelligence: A Long and Winding Road" (John J. Simon, Jr.). In addition, it contains two sidebars: (1) "Calculating and…

  9. A radially accessible tubular in situ X-ray cell for spatially resolved operando scattering and spectroscopic studies of electrochemical energy storage devices

    Liu, Hao; Allan, Phoebe K.; Borkiewicz, Olaf J.; Kurtz, Charles; Grey, Clare P.; Chapman, Karena W.; Chupas, Peter J.

    2016-09-16

    A tubularoperandoelectrochemical cell has been developed to allow spatially resolved X-ray scattering and spectroscopic measurements of individual cell components, or regions thereof, during device operation. These measurements are enabled by the tubular cell geometry, wherein the X-ray-transparent tube walls allow radial access for the incident and scattered/transmitted X-ray beam; by probing different depths within the electrode stack, the transformation of different components or regions can be resolved. The cell is compatible with a variety of synchrotron-based scattering, absorption and imaging methodologies. The reliability of the electrochemical cell and the quality of the resulting X-ray scattering and spectroscopic data are demonstrated for two types of energy storage: the evolution of the distribution of the state of charge of an Li-ion battery electrode during cycling is documented using X-ray powder diffraction, and the redistribution of ions between two porous carbon electrodes in an electrochemical double-layer capacitor is documented using X-ray absorption near-edge spectroscopy.

  10. Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins.

    Van Berkel, Gary J; Kertesz, Vilmos

    2013-06-30

    A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP® 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V™ ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin α and β chains. Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection. Published in 2013. This article is a U.S. Government work and is in the public domain in the USA.

  11. The Hα line forming region of AB Aurigae spatially resolved at sub-AU with the VEGA/CHARA spectro-interferometer

    Rousselet-Perraut, K.; Benisty, M.; Mourard, D.; Rajabi, S.; Bacciotti, F.; Bério, Ph.; Bonneau, D.; Chesneau, O.; Clausse, J. M.; Delaa, O.; Marcotto, A.; Roussel, A.; Spang, A.; Stee, Ph.; Tallon-Bosc, I.; McAlister, H.; ten Brummelaar, T.; Sturmann, J.; Sturmann, L.; Turner, N.; Farrington, C.; Goldfinger, P. J.

    2010-06-01

    Context. A crucial issue in star formation is to understand the physical mechanism by which mass is accreted onto and ejected by a young star. To derive key constraints on the launching point of the jets and on the geometry of the winds, the visible spectro-polarimeter VEGA installed on the CHARA optical array can be an efficient means of probing the structure and the kinematics of the hot circumstellar gas at sub-AU. Aims: For the first time, we observed the Herbig Ae star AB Aur in the Hα emission line, using the VEGA low spectral resolution (R = 1700) on two baselines of the array. Methods: We computed and calibrated the spectral visibilities of AB Aur between 610 nm and 700 nm in spectral bands of 20.4 nm. To simultaneously reproduce the line profile and the inferred visibility around Hα, we used a 1D radiative transfer code (RAMIDUS/PROFILER) that calculates level populations for hydrogen atoms in a spherical geometry and that produces synthetic spectro-interferometric observables. Results: We clearly resolved AB Aur in the Hα line and in a part of the continuum, even at the smallest baseline of 34 m. The small P-Cygni absorption feature is indicative of an outflow but could not be explained by a spherical stellar wind model. Instead, it favors a magneto-centrifugal X-disk or disk-wind geometry. The fit of the spectral visibilities from 610 to 700 nm could not be accounted for by a wind alone, so another component inducing a visibility modulation around Hα needed to be considered. We thus considered a brightness asymmetry possibly caused by large-scale nebulosity or by the known spiral structures. Conclusions: Thanks to the unique capabilities of VEGA, we managed to simultaneously record for the first time a spectrum at a resolution of 1700 and spectral visibilities in the visible range on a target as faint as mV = 7.1. It was possible to rule out a spherical geometry for the wind of AB Aur and provide realistic solutions to account for the Hα emission

  12. Spatially resolved In and As distributions in InGaAs/GaP and InGaAs/GaAs quantum dot systems

    Shen, J; Cha, J J; Song, Y; Lee, M L

    2014-01-01

    InGaAs quantum dots (QDs) on GaP are promising for monolithic integration of optoelectronics with Si technology. To understand and improve the optical properties of InGaAs/GaP QD systems, detailed measurements of the QD atomic structure as well as the spatial distributions of each element at high resolution are crucial. This is because the QD band structure, band alignment, and optical properties are determined by the atomic structure and elemental composition. Here, we directly measure the inhomogeneous distributions of In and As in InGaAs QDs grown on GaAs and GaP substrates at the nanoscale using energy dispersive x-ray spectral mapping in a scanning transmission electron microscope. We find that the In distribution is broader on GaP than on GaAs, and as a result, the QDs appear to be In-poor using a GaP matrix. Our findings challenge some of the assumptions made for the concentrations and distributions of In within InGaAs/GaAs or InGaAs/GaP QD systems and provide detailed structural and elemental information to modify the current band structure understanding. In particular, the findings of In deficiency and inhomogeneous distribution in InGaAs/GaP QD systems help to explain photoluminescence spectral differences between InGaAs/GaAs and InGaAs/GaP QD systems. (paper)

  13. Variability of O2, H2S, and pH in intertidal sediments measured on a highly resolved spatial and temporal scale

    Walpersdorf, E.; Werner, U.; Bird, P.; de Beer, D.

    2003-04-01

    We investigated the variability of O_2, pH, and H_2S in intertidal sediments to assess the time- and spatial scales of changes in environmental conditions and their effects on bacterial activities. Measurements were performed over the tidal cycle and at different seasons by the use of microsensors attached to an autonomous in-situ measuring device. This study was carried out at a sand- and a mixed flat in the backbarrier area of Spiekeroog (Germany) within the frame of the DFG research group "Biogeochemistry of the Wadden Sea". Results showed that O_2 variability was not pronounced in the coastal mixed flat, where only extreme weather conditions could increase O_2 penetration. In contrast, strong dynamics in O_2 availability, pH and maximum penetration depths of several cm were found at the sandflat. In these highly permeable sediments, we directly observed tidal pumping: at high tide O_2-rich water was forced into the plate and at low tide anoxic porewater drained off the sediment. From the lower part of the plate where organic rich clayey layers were embedded in the sediment anoxic water containing H_2S leaked out during low tide. Thus advective processes, driven by the tidal pump, waves and currents, control O_2 penetration and depth distribution of H_2S and pH. The effects of the resulting porewater exchange on mineralization rates and microbial activities will be discussed.

  14. Spatially resolved electron density and electron energy distribution function in Ar magnetron plasmas used for sputter-deposition of ZnO-based thin films

    Maaloul, L.; Gangwar, R. K.; Morel, S.; Stafford, L., E-mail: luc.stafford@umontreal.ca [Département de Physique, Université de Montréal, Montréal, Québec H3C 3J7 (Canada)

    2015-11-15

    Langmuir probe and trace rare gases optical emission spectroscopy were used to analyze the spatial structure of the electron density and electron energy distribution function (EEDF) in a cylindrical Ar magnetron plasma reactor used for sputter-deposition of ZnO-based thin films. While a typical Bessel (zero order) diffusion profile was observed along the radial direction for the number density of charged particles at 21 cm from the ZnO target, a significant rise of these populations with respect to the Bessel function was seen in the center of the reactor at 4 cm from the magnetron surface. As for the EEDF, it was found to transform from a more or less Maxwellian far from the target to a two-temperature Maxwellian with a depletion of high-energy electrons where magnetic field confinement effects become important. No significant change in the behavior of the electron density and EEDF across a wide range of pressures (5–100 mTorr) and self-bias voltages (115–300 V) was observed during magnetron sputtering of Zn, ZnO, and In{sub 2}O{sub 3} targets. This indicates that sputtering of Zn, In, and O atoms do not play a very significant role on the electron particle balance and electron heating dynamics, at least over the range of experimental conditions investigated.

  15. Spatially resolved investigation of systemic and contact pesticides in plant material by desorption electrospray ionization mass spectrometry imaging (DESI-MSI).

    Gerbig, Stefanie; Brunn, Hubertus E; Spengler, Bernhard; Schulz, Sabine

    2015-09-01

    Distribution of pesticides both on the surface of leaves and in cross sections of plant stem and leaves was investigated using desorption electrospray ionization mass spectrometry imaging (DESI-MSI) with a spatial resolution of 50-100 μm. Two commercially available insecticide sprays containing different contact pesticides were applied onto leaves of Cotoneaster horizontalis, and the distributions of all active ingredients were directly analyzed. The first spray contained pyrethrins and rapeseed oil, both known as natural insecticides. Each component showed an inhomogeneous spreading throughout the leaf, based on substance polarity and solubility. The second spray contained the synthetic insecticides imidacloprid and methiocarb. Imidacloprid accumulated on the border of the leaf, while methiocarb was distributed more homogenously. In order to investigate the incorporation of a systemically acting pesticide into Kalanchoe blossfeldiana, a commercially available insecticide tablet containing dimethoate was spiked to the soil of the plant. Cross sections of the stem and leaf were obtained 25 and 60 days after application. Dimethoate was mainly detected in the transport system of the plant after 25 days, while it was found to be homogenously distributed in a leaf section after 60 days.

  16. Reference-free spectroscopic determination of fat and protein in milk in the visible and near infrared region below 1000nm using spatially resolved diffuse reflectance fiber probe.

    Bogomolov, Andrey; Belikova, Valeria; Galyanin, Vladislav; Melenteva, Anastasiia; Meyer, Hans

    2017-05-15

    New technique of diffuse reflectance spectroscopic analysis of milk fat and total protein content in the visible (Vis) and adjacent near infrared (NIR) region (400-995nm) has been developed and tested. Sample analysis was performed through a probe having eight 200-µm fiber channels forming a linear array. One of the end fibers was used for the illumination and other seven - for the spectroscopic detection of diffusely reflected light. One of the detection channels was used as a reference to normalize the spectra and to convert them into absorbance-equivalent units. The method has been tested experimentally using a designed sample set prepared from industrial raw milk standards with widely varying fat and protein content. To increase the modelling robustness all milk samples were measured in three different homogenization degrees. Comprehensive data analysis has shown the advantage of combining both spectral and spatial resolution in the same measurement and revealed the most relevant channels and wavelength regions. The modelling accuracy was further improved using joint variable selection and preprocessing optimization method based on the genetic algorithm. The root mean-square errors of different validation methods were below 0.10% for fat and below 0.08% for total protein content. Based on the present experimental data, it was computationally shown that the full-spectrum analysis in this method can be replaced by a sensor measurement at several specific wavelengths, for instance, using light-emitting diodes (LEDs) for illumination. Two optimal sensor configurations have been suggested: with nine LEDs for the analysis of fat and seven - for protein content. Both simulated sensors exhibit nearly the same component determination accuracy as corresponding full-spectrum analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. On the Spatially Resolved Star Formation History in M51. I. Hybrid UV+IR Star Formation Laws and IR Emission from Dust Heated by Old Stars

    Eufrasio, R. T.; Lehmer, B. D.; Zezas, A.; Dwek, E.; Arendt, R. G.; Basu-Zych, A.; Wiklind, T.; Yukita, M.; Fragos, T.; Hornschemeier, A. E.; Markwardt, L.; Ptak, A.; Tzanavaris, P.

    2017-12-01

    We present LIGHTNING, a new spectral energy distribution fitting procedure, capable of quickly and reliably recovering star formation history (SFH) and extinction parameters. The SFH is modeled as discrete steps in time. In this work, we assumed lookback times of 0-10 Myr, 10-100 Myr, 0.1-1 Gyr, 1-5 Gyr, and 5-13.6 Gyr. LIGHTNING consists of a fully vectorized inversion algorithm to determine SFH step intensities and combines this with a grid-based approach to determine three extinction parameters. We apply our procedure to the extensive far-UV-to-far-IR photometric data of M51, convolved to a common spatial resolution and pixel scale, and make the resulting maps publicly available. We recover, for M51a, a peak star formation rate (SFR) between 0.1 and 5 Gyr ago, with much lower star formation activity over the past 100 Myr. For M51b, we find a declining SFR toward the present day. In the outskirt regions of M51a, which includes regions between M51a and M51b, we recover an SFR peak between 0.1 and 1 Gyr ago, which corresponds to the effects of the interaction between M51a and M51b. We utilize our results to (1) illustrate how UV+IR hybrid SFR laws vary across M51 and (2) provide first-order estimates for how the IR luminosity per unit stellar mass varies as a function of the stellar age. From the latter result, we find that IR emission from dust heated by stars is not always associated with young stars and that the IR emission from M51b is primarily powered by stars older than 5 Gyr.

  18. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul

    2007-01-01

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO2) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO2) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO2 and HHb, total haemoglobin concentration and SO2. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of ±3.8 g l-1 (±58 µM) and ±4

  19. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul [Department of Medical Physics and Bioengineering, University College London, Malet Place Engineering Building, London WC1E 6BT (United Kingdom)

    2007-01-07

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO{sub 2}) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO{sub 2}) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO{sub 2} and HHb, total haemoglobin concentration and SO{sub 2}. The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of {+-}3

  20. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration

    Laufer, Jan; Delpy, Dave; Elwell, Clare; Beard, Paul

    2007-01-01

    A new approach based on pulsed photoacoustic spectroscopy for non-invasively quantifying tissue chromophore concentrations with high spatial resolution has been developed. The technique is applicable to the quantification of tissue chromophores such as oxyhaemoglobin (HbO 2 ) and deoxyhaemoglobin (HHb) for the measurement of physiological parameters such as blood oxygen saturation (SO 2 ) and total haemoglobin concentration. It can also be used to quantify the local accumulation of targeted contrast agents used in photoacoustic molecular imaging. The technique employs a model-based inversion scheme to recover the chromophore concentrations from photoacoustic measurements. This comprises a numerical forward model of the detected time-dependent photoacoustic signal that incorporates a multiwavelength diffusion-based finite element light propagation model to describe the light transport and a time-domain acoustic model to describe the generation, propagation and detection of the photoacoustic wave. The forward model is then inverted by iteratively fitting it to measurements of photoacoustic signals acquired at different wavelengths to recover the chromophore concentrations. To validate this approach, photoacoustic signals were generated in a tissue phantom using nanosecond laser pulses between 740 nm and 1040 nm. The tissue phantom comprised a suspension of intralipid, blood and a near-infrared dye in which three tubes were immersed. Blood at physiological haemoglobin concentrations and oxygen saturation levels ranging from 2% to 100% was circulated through the tubes. The signal amplitude from different temporal sections of the detected photoacoustic waveforms was plotted as a function of wavelength and the forward model fitted to these data to recover the concentrations of HbO 2 and HHb, total haemoglobin concentration and SO 2 . The performance was found to compare favourably to that of a laboratory CO-oximeter with measurement resolutions of ±3.8 g l -1 (±58

  1. Development and application of methods and models for the calculation of spatially and temporally highly resolved emissions in Europe; Entwicklung und Anwendung von Methoden und Modellen zur Berechnung von raeumlich und zeitlich hochaufgeloesten Emissionen in Europa

    Thiruchittampalam, Balendra

    2014-04-08

    High spatial and temporal resolution models are essential for answering many questions of air quality management and climate modeling. High-resolution emission models are required to determine the concentration of pollutants using chemical transport models, and to quantify the impacts on health and environment and in particular to develop adequate countermeasures. The aim of this work is to develop methods for the calculation of spatially and temporally high-resolved emissions and to apply these exemplarily on a 1 km x 1 km and hourly resolution for the year 2008 in the EU-27 and EFTA countries. The derivation of methods for the spatial and temporal resolution of emissions with corresponding detailed equations is one of the major improvements that have been carried out in the course of this work. The improvement of the spatial distribution of emissions from the point source relevant sectors like energy supply, industry and waste management is achieved by considering sector specific diffuse emission shares. The progress of the spatial distribution of emissions from households is in particular the development of a fuel type weighted distribution over Europe. Another main focus is the development of the spatial distribution of road transport emissions. Due to the restricted access to traffic count data at the European level, methods have been established to provide reliable emissions on grid level for Europe. The progress in the spatial distribution of agricultural emissions is achieved by the consideration of diffuse shares similar to the other point source relevant sectors like energy supply or industry. In addition to the spatial distribution of the emissions the temporal resolution is a main focus of this work, since the state of knowledge of the temporal resolution of emissions in Europe is still rudimentary. Therefore, it was necessary to develop in particular time curves for the hourly resolution of emissions for the main sectors, namely electricity and heat

  2. Artificial Consciousness or Artificial Intelligence

    Spanache Florin

    2017-01-01

    Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus a...

  3. Innovative 'Artificial Mussels' technology for assessing spatial and temporal distribution of metals in Goulburn-Murray catchments waterways, Victoria, Australia: effects of climate variability (dry vs. wet years).

    Kibria, Golam; Lau, T C; Wu, Rudolf

    2012-12-01

    The "Artificial mussel" (AM), a novel passive sampling technology, was used for the first time in Australia in freshwater to monitor and assess the risk of trace metals (Cd, Cu, Hg, Pb, and Zn). AMs were deployed at 10 sites within the Goulburn-Murray Water catchments, Victoria, Australia during a dry year (2009-2010) and a wet year (2010-2011). Our results showed that the AMs accumulated all the five metals. Cd, Pb, Hg were detected during the wet year but below detection limits during the dry year. At some sites close to orchards, vine yards and farming areas, elevated levels of Cu were clearly evident during the dry year, while elevated levels of Zn were found during the wet year; the Cu indicates localized inputs from the agricultural application of copper fungicide. The impacts from old mines were significantly less compared 'hot spots'. Our study demonstrated that climate variability (dry, wet years) can influence the metal inputs to waterways via different transport pathways. Using the AMs, we were able to identify various 'hot spots' of heavy metals, which may pose a potential risk to aquatic ecosystems (sub-lethal effects to fish) and public (via food chain metal bioaccumulation and biomagnification) in the Goulburn-Murray Water catchments. The State Protection Policy exempted artificial channels and drains from protection of beneficial use (including protection of aquatic ecosystems) and majority of sites ('hot spots') were located within artificial irrigation channels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. [Artificial organs].

    Raguin, Thibaut; Dupret-Bories, Agnès; Debry, Christian

    2017-01-01

    Research has been fighting against organ failure and shortage of donations by supplying artificial organs for many years. With the raise of new technologies, tissue engineering and regenerative medicine, many organs can benefit of an artificial equivalent: thanks to retinal implants some blind people can visualize stimuli, an artificial heart can be proposed in case of cardiac failure while awaiting for a heart transplant, artificial larynx enables laryngectomy patients to an almost normal life, while the diabetic can get a glycemic self-regulation controlled by smartphones with an artificial device. Dialysis devices become portable, as well as the oxygenation systems for terminal respiratory failure. Bright prospects are being explored or might emerge in a near future. However, the retrospective assessment of putative side effects is not yet sufficient. Finally, the cost of these new devices is significant even if the advent of three dimensional printers may reduce it. © 2017 médecine/sciences – Inserm.

  5. SPATIALLY RESOLVED [Fe II] 1.64 μm EMISSION IN NGC 5135: CLUES FOR UNDERSTANDING THE ORIGIN OF THE HARD X-RAYS IN LUMINOUS INFRARED GALAXIES

    Colina, L.; Pereira-Santaella, M.; Alonso-Herrero, A.; Arribas, S.; Bedregal, A. G.

    2012-01-01

    Spatially resolved near-IR and X-ray imaging of the central region of the luminous infrared galaxy (LIRG) NGC 5135 is presented. The kinematical signatures of strong outflows are detected in the [Fe II] 1.64 μm emission line in a compact region at 0.9 kpc from the nucleus. The derived mechanical energy release is consistent with a supernova rate of 0.05-0.1 yr –1 . The apex of the outflowing gas spatially coincides with the strongest [Fe II] emission peak and with the dominant component of the extranuclear hard X-ray emission. All these features provide evidence for a plausible direct physical link between supernova-driven outflows and the hard X-ray emitting gas in an LIRG. This result is consistent with model predictions of starbursts concentrated in small volumes and with high thermalization efficiencies. A single high-mass X-ray binary (HMXB) as the major source of the hard X-ray emission, although not favored, cannot be ruled out. Outside the active galactic nucleus, the hard X-ray emission in NGC 5135 appears to be dominated by the hot interstellar medium produced by supernova explosions in a compact star-forming region, and not by the emission due to HMXBs. If this scenario is common to (ultra)luminous infrared galaxies, the hard X-rays would only trace the most compact (≤100 pc) regions with high supernova and star formation densities, therefore a lower limit to their integrated star formation. The star formation rate derived in NGC 5135 based on its hard X-ray luminosity is a factor of two and four lower than the values obtained from the 24 μm and soft X-ray luminosities, respectively.

  6. Spatially resolved analytical electron microscopy at grain boundaries of {alpha}-Al{sub 2}O{sub 3}; Ortsaufgeloeste analytische Elektronenmikroskopie an Korngrenzen in {alpha}Al{sub 2}O{sub 3}

    Nufer, S.

    2001-10-01

    Aluminum oxide, {alpha}-Al{sub 2}O{sub 3}, is a common structural ceramic material. The most technologically important properties are either determined or strongly influenced by the polycrystalline microstructure. For instance, the grain boundaries control the mechanical behavior (e.g. plasticity, creep, and fracture) or various transport phenomena (e.g. ion diffusion, segregation, and electrical resistivity). In order to understand the structure-properties relationships, it is therefore important to characterize the structure and chemistry of grain boundaries, both experimentally and theoretically. In this work the electronic structure of the basal and rhombohedral twin grain boundaries and the impurity excess at different tilt grain boundaries in bicrystals were investigated, using electron energy-loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDXS). The electronic structure of the rhombohedral twin grain boundary was determined by comparing spatially resolved EELS measurements of the O-K ionisation edge with the theoretical density of states (DOS), obtained from local density functional theory (LDFT) calculations. The interface excess of impurities was quantitatively analysed at grain boundaries with and without Y-doping. (orig.)

  7. Spatial structure determination of (√3 x √3)R30 degrees and (1.5 x 1.5)R18 degrees CO on Cu(111) using angle-resolved photoemission extended fine structure

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A.

    1997-01-01

    The authors report a study of the spatial structure of (√3 x √3)R30 degrees (low coverage) and (1.5 x 1.5)R18 degrees (intermediate coverage) CO adsorbed on Cu(111), using the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) technique at beamline 9.3.2 at the Advanced Light Source. The CO molecule adsorbs on an atop site for both adsorption phases. Full multiple-scattering spherical-wave (MSSW) calculations were used to extract the C-Cu. bond length and the first Cu-Cu layer spacing for each adsorption phase. The authors find that the C-Cu bond length remains unchanged with increasing coverage, but the 1st Cu-Cu layer spacing contracts at the intermediate coverage. They calculate the bending mode force constant in the (1.5 x 1.5)R18 degrees phase to be K δ = 2.2 (1) x 10 -12 dyne-cm/rad from their experimentally determined bond lengths combined with previously published infra-red absorption frequencies

  8. Spatial structure determination of ({radical}3 x {radical}3)R30{degrees} and (1.5 x 1.5)R18{degrees}CO on Cu(111) using angle-resolved photoemission extended fine structure

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors report a study of the spatial structure of ({radical}3 x {radical}3)R30{degrees} (low coverage) and (1.5 x 1.5)R18{degrees} (intermediate coverage) CO adsorbed on Cu(111), using the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) technique at beamline 9.3.2 at the Advanced Light Source. The CO molecule adsorbs on an atop site for both adsorption phases. Full multiple-scattering spherical-wave (MSSW) calculations were used to extract the C-Cu. bond length and the first Cu-Cu layer spacing for each adsorption phase. The authors find that the C-Cu bond length remains unchanged with increasing coverage, but the 1st Cu-Cu layer spacing contracts at the intermediate coverage. They calculate the bending mode force constant in the (1.5 x 1.5)R18{degrees} phase to be K{sub {delta}} = 2.2 (1) x 10{sup {minus}12} dyne-cm/rad from their experimentally determined bond lengths combined with previously published infra-red absorption frequencies.

  9. Spatially resolved electrochemical sensing of chemical gradients

    Mensack, N.M.; Wydallis, J.B.; Lynn, Nicholas Scott; Dandy, D.S.; Henry, C.S.

    2013-01-01

    Roč. 13, č. 2 (2013), s. 208-2013 ISSN 1473-0197 Institutional support: RVO:67985882 Keywords : CARBON * CHEMOTAXIS * ELECTRODES Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 5.748, year: 2013

  10. Artificial intelligence

    Ennals, J R

    1987-01-01

    Artificial Intelligence: State of the Art Report is a two-part report consisting of the invited papers and the analysis. The editor first gives an introduction to the invited papers before presenting each paper and the analysis, and then concludes with the list of references related to the study. The invited papers explore the various aspects of artificial intelligence. The analysis part assesses the major advances in artificial intelligence and provides a balanced analysis of the state of the art in this field. The Bibliography compiles the most important published material on the subject of

  11. Artificial Reefs

    National Oceanic and Atmospheric Administration, Department of Commerce — An artificial reef is a human-made underwater structure, typically built to promote marine life in areas with a generally featureless bottom, control erosion, block...

  12. Natural - synthetic - artificial!

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  13. Inverse calculation of strain profiles from ETDR measurements using artificial neural networks

    R. Höhne

    2017-12-01

    Full Text Available A novel carbon fibre sensor is developed for the spatially resolved strain measurement. A unique feature of the sensor is the fibre-break resistive measurement principle and the two-core transmission line design. The electrical time domain reflectometry (ETDR is used in order to realize a spatially resolved measurement of the electrical parameters of the sensor. In this contribution, the process of mapping between the ETDR signals to the existing strain profile is described. Artificial neural networks (ANNs are used to solve the inverse electromagnetic problem. The investigations were carried out with a sensor patch in a cantilever arm configuration. Overall, 136 experiments with varying strain distribution over the sensor length were performed to generate the necessary training data to learn the ANN model. The validation of the ANN highlights the feasibility as well as the current limits concerning the quantitative accuracy of mapping ETDR signals to strain profiles.

  14. Artificial reefs: “Attraction versus Production”

    Eduardo Barros Fagundes Netto

    2011-04-01

    Full Text Available The production of fish is the most common reason for the construction and installation of an artificial reef. More recently, environmental concerns and conservation of biological resources have been instrumental to the formulation of new goals of the research. One of the issues to be resolved is the biological function of “attraction vs. production” as a result of the use of artificial reefs. The uncertainty as to the answer to the question whether the artificial reefs will or not benefit the development of fish stocks could be solved if the artificial reefs would be managed as marine protected areas.

  15. Artificial sweeteners

    Raben, Anne Birgitte; Richelsen, Bjørn

    2012-01-01

    Artificial sweeteners can be a helpful tool to reduce energy intake and body weight and thereby risk for diabetes and cardiovascular diseases (CVD). Considering the prevailing diabesity (obesity and diabetes) epidemic, this can, therefore, be an important alternative to natural, calorie-containin......Artificial sweeteners can be a helpful tool to reduce energy intake and body weight and thereby risk for diabetes and cardiovascular diseases (CVD). Considering the prevailing diabesity (obesity and diabetes) epidemic, this can, therefore, be an important alternative to natural, calorie......-containing sweeteners. The purpose of this review is to summarize the current evidence on the effect of artificial sweeteners on body weight, appetite, and risk markers for diabetes and CVD in humans....

  16. Artificial Intelligence

    Warwick, Kevin

    2011-01-01

    if AI is outside your field, or you know something of the subject and would like to know more then Artificial Intelligence: The Basics is a brilliant primer.' - Nick Smith, Engineering and Technology Magazine November 2011 Artificial Intelligence: The Basics is a concise and cutting-edge introduction to the fast moving world of AI. The author Kevin Warwick, a pioneer in the field, examines issues of what it means to be man or machine and looks at advances in robotics which have blurred the boundaries. Topics covered include: how intelligence can be defined whether machines can 'think' sensory

  17. Artificial intelligence

    Perret-Galix, D.

    1992-01-01

    A vivid example of the growing need for frontier physics experiments to make use of frontier technology is in the field of artificial intelligence and related themes. This was reflected in the second international workshop on 'Software Engineering, Artificial Intelligence and Expert Systems in High Energy and Nuclear Physics' which took place from 13-18 January at France Telecom's Agelonde site at La Londe des Maures, Provence. It was the second in a series, the first having been held at Lyon in 1990

  18. Artificial Intelligence.

    Wash, Darrel Patrick

    1989-01-01

    Making a machine seem intelligent is not easy. As a consequence, demand has been rising for computer professionals skilled in artificial intelligence and is likely to continue to go up. These workers develop expert systems and solve the mysteries of machine vision, natural language processing, and neural networks. (Editor)

  19. An interferometric study of the post-AGB binary 89 Herculis. I. Spatially resolving the continuum circumstellar environment at optical and near-IR wavelengths with the VLTI, NPOI, IOTA, PTI, and the CHARA Array

    Hillen, M.; Verhoelst, T.; Van Winckel, H.; Chesneau, O.; Hummel, C. A.; Monnier, J. D.; Farrington, C.; Tycner, C.; Mourard, D.; ten Brummelaar, T.; Banerjee, D. P. K.; Zavala, R. T.

    2013-11-01

    Context. Binary post-asymptotic giant branch (post-AGB) stars are interesting laboratories to study both the evolution of binaries as well as the structure of circumstellar disks. Aims: A multiwavelength high angular resolution study of the prototypical object 89 Herculis is performed with the aim of identifying and locating the different emission components seen in the spectral energy distribution. Methods: A large interferometric data set, collected over the past decade and covering optical and near-infrared wavelengths, is analyzed in combination with the spectral energy distribution and flux-calibrated optical spectra. In this first paper only simple geometric models are applied to fit the interferometric data. Combining the interferometric constraints with the photometry and the optical spectra, we re-assess the energy budget of the post-AGB star and its circumstellar environment. Results: We report the first (direct) detection of a large (35-40%) optical circumstellar flux contribution and spatially resolve its emission region. Given this large amount of reprocessed and/or redistributed optical light, the fitted size of the emission region is rather compact and fits with(in) the inner rim of the circumbinary dust disk. This rim dominates our K band data through thermal emission and is rather compact, emitting significantly already at a radius of twice the orbital separation. We interpret the circumstellar optical flux as due to a scattering process, with the scatterers located in the extremely puffed-up inner rim of the disk and possibly also in a bipolar outflow seen pole-on. A non-local thermodynamic equilibrium gaseous origin in an inner disk cannot be excluded but is considered highly unlikely. Conclusions: This direct detection of a significant amount of circumbinary light at optical wavelengths poses several significant questions regarding our understanding of both post-AGB binaries and the physics in their circumbinary disks. Although the

  20. Artificial Consciousness or Artificial Intelligence

    Spanache Florin

    2017-05-01

    Full Text Available Artificial intelligence is a tool designed by people for the gratification of their own creative ego, so we can not confuse conscience with intelligence and not even intelligence in its human representation with conscience. They are all different concepts and they have different uses. Philosophically, there are differences between autonomous people and automatic artificial intelligence. This is the difference between intelligence and artificial intelligence, autonomous versus automatic. But conscience is above these differences because it is neither conditioned by the self-preservation of autonomy, because a conscience is something that you use to help your neighbor, nor automatic, because one’s conscience is tested by situations which are not similar or subject to routine. So, artificial intelligence is only in science-fiction literature similar to an autonomous conscience-endowed being. In real life, religion with its notions of redemption, sin, expiation, confession and communion will not have any meaning for a machine which cannot make a mistake on its own.

  1. Artificial radionuclides 90Sr and 241Am in the sediments of the Baltic Sea: Total and spatial inventories and some temporal trends

    Hutri, Kaisa-Leena; Mattila, Jukka; Ikäheimonen, Tarja Tuulikki; Vartti, Vesa-Pekka

    2013-01-01

    Highlights: • The inventories of 137 Sr and 241 Am in the Baltic Sea is studied. • About 20 sediment cores around the Baltic Sea were analyzed. • The results show that 90 Sr distribution is uneven and effected by the Chernobyl fallout. • 241 Am is more evenly distributed in the sediments. • The Baltic Sea is the most contaminated sea with respect to 137 Cs in sediments. -- Abstract: The Baltic Sea was contaminated by radioactivity following global nuclear fallout and later by the Chernobyl accident. Despite the decrease of radioactivity caused by radioactive decay, radionuclides have a prolonged residence time in the water of the Baltic Sea due to slow water exchange and relatively rapid sedimentation. Very little is known about the amounts or spatial differences of 90 Sr and 241 Am in the Baltic Sea sediments. In this study, 20 sediment cores taken around the Baltic Sea were investigated to estimate inventories of these radionuclides. The rough results show that the Chernobyl fallout added the amount of 90 Sr in the same areas where the increase of 137 Cs can be detected, whereas this is not the case for 241 Am which is more evenly distributed in the sea bottom. In addition, local differences occur in the concentrations. These results are an important amendment to the radioactivity baseline of the Baltic Sea

  2. Artificial Intelligence.

    Lawrence, David R; Palacios-González, César; Harris, John

    2016-04-01

    It seems natural to think that the same prudential and ethical reasons for mutual respect and tolerance that one has vis-à-vis other human persons would hold toward newly encountered paradigmatic but nonhuman biological persons. One also tends to think that they would have similar reasons for treating we humans as creatures that count morally in our own right. This line of thought transcends biological boundaries-namely, with regard to artificially (super)intelligent persons-but is this a safe assumption? The issue concerns ultimate moral significance: the significance possessed by human persons, persons from other planets, and hypothetical nonorganic persons in the form of artificial intelligence (AI). This article investigates why our possible relations to AI persons could be more complicated than they first might appear, given that they might possess a radically different nature to us, to the point that civilized or peaceful coexistence in a determinate geographical space could be impossible to achieve.

  3. Artificial intelligence

    Duda, Antonín

    2009-01-01

    Abstract : Issue of this work is to acquaint the reader with the history of artificial inteligence, esspecialy branch of chess computing. Main attention is given to progress from fifties to the present. The work also deals with fighting chess programs against each other, and against human opponents. The greatest attention is focused on 1997 and duel Garry Kasparov against chess program Deep Blue. The work is divided into chapters according to chronological order.

  4. Artificial heart

    1984-10-18

    Super-pure plutonium-238 could use heat produced during fission to power an implanted artificial heart. Three model hearts have worked for some time. Concern that excess heat would make the procedure unsafe for humans has broadened the search for another energy source, such as electrohydraulic drive or an external power battery. A back pack approach may provide an interim solution until materials are developed which can withstand heart activity and be small enough for implantation.

  5. Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural Network Model and GIS

    Ping Zhang

    2015-09-01

    Full Text Available PM2.5 pollution has become of increasing public concern because of its relative importance and sensitivity to population health risks. Accurate predictions of PM2.5 pollution and population exposure risks are crucial to developing effective air pollution control strategies. We simulated and predicted the temporal and spatial changes of PM2.5 concentration and population exposure risks, by coupling optimization algorithms of the Back Propagation-Artificial Neural Network (BP-ANN model and a geographical information system (GIS in Xi’an, China, for 2013, 2020, and 2025. Results indicated that PM2.5 concentration was positively correlated with GDP, SO2, and NO2, while it was negatively correlated with population density, average temperature, precipitation, and wind speed. Principal component analysis of the PM2.5 concentration and its influencing factors’ variables extracted four components that accounted for 86.39% of the total variance. Correlation coefficients of the Levenberg-Marquardt (trainlm and elastic (trainrp algorithms were more than 0.8, the index of agreement (IA ranged from 0.541 to 0.863 and from 0.502 to 0.803 by trainrp and trainlm algorithms, respectively; mean bias error (MBE and Root Mean Square Error (RMSE indicated that the predicted values were very close to the observed values, and the accuracy of trainlm algorithm was better than the trainrp. Compared to 2013, temporal and spatial variation of PM2.5 concentration and risk of population exposure to pollution decreased in 2020 and 2025. The high-risk areas of population exposure to PM2.5 were mainly distributed in the northern region, where there is downtown traffic, abundant commercial activity, and more exhaust emissions. A moderate risk zone was located in the southern region associated with some industrial pollution sources, and there were mainly low-risk areas in the western and eastern regions, which are predominantly residential and educational areas.

  6. Temporal and Spatial Simulation of Atmospheric Pollutant PM2.5 Changes and Risk Assessment of Population Exposure to Pollution Using Optimization Algorithms of the Back Propagation-Artificial Neural Network Model and GIS.

    Zhang, Ping; Hong, Bo; He, Liang; Cheng, Fei; Zhao, Peng; Wei, Cailiang; Liu, Yunhui

    2015-09-29

    PM2.5 pollution has become of increasing public concern because of its relative importance and sensitivity to population health risks. Accurate predictions of PM2.5 pollution and population exposure risks are crucial to developing effective air pollution control strategies. We simulated and predicted the temporal and spatial changes of PM2.5 concentration and population exposure risks, by coupling optimization algorithms of the Back Propagation-Artificial Neural Network (BP-ANN) model and a geographical information system (GIS) in Xi'an, China, for 2013, 2020, and 2025. Results indicated that PM2.5 concentration was positively correlated with GDP, SO₂, and NO₂, while it was negatively correlated with population density, average temperature, precipitation, and wind speed. Principal component analysis of the PM2.5 concentration and its influencing factors' variables extracted four components that accounted for 86.39% of the total variance. Correlation coefficients of the Levenberg-Marquardt (trainlm) and elastic (trainrp) algorithms were more than 0.8, the index of agreement (IA) ranged from 0.541 to 0.863 and from 0.502 to 0.803 by trainrp and trainlm algorithms, respectively; mean bias error (MBE) and Root Mean Square Error (RMSE) indicated that the predicted values were very close to the observed values, and the accuracy of trainlm algorithm was better than the trainrp. Compared to 2013, temporal and spatial variation of PM2.5 concentration and risk of population exposure to pollution decreased in 2020 and 2025. The high-risk areas of population exposure to PM2.5 were mainly distributed in the northern region, where there is downtown traffic, abundant commercial activity, and more exhaust emissions. A moderate risk zone was located in the southern region associated with some industrial pollution sources, and there were mainly low-risk areas in the western and eastern regions, which are predominantly residential and educational areas.

  7. Artificial graphites

    Maire, J.

    1984-01-01

    Artificial graphites are obtained by agglomeration of carbon powders with an organic binder, then by carbonisation at 1000 0 C and graphitization at 2800 0 C. After description of the processes and products, we show how the properties of the various materials lead to the various uses. Using graphite enables us to solve some problems, but it is not sufficient to satisfy all the need of the application. New carbonaceous material open application range. Finally, if some products are becoming obsolete, other ones are being developed in new applications [fr

  8. Decomposition of time-resolved tomographic PIV

    Schmid, P.J.; Violato, D.; Scarano, F.

    2012-01-01

    An experimental study has been conducted on a transitional water jet at a Reynolds number of Re = 5,000. Flow fields have been obtained by means of time-resolved tomographic particle image velocimetry capturing all relevant spatial and temporal scales. The measured threedimensional flow fields have

  9. Sub-THz spectroscopic characterization of vibrational modes in artificially designed DNA monocrystal

    Sizov, Igor; Rahman, Masudur; Gelmont, Boris; Norton, Michael L.; Globus, Tatiana

    2013-01-01

    Highlights: • Sub-THz spectroscopy is used to characterize artificially designed DNA monocrystal. • Results are obtained using a novel near field, RT, frequency domain spectrometer. • Narrow resonances of 0.1 cm −1 width in absorption spectra of crystal are observed. • Signature measured between 310 and 490 GHz is reproducible and well resolved. • Absorption pattern is explained in part by simulation results from dsDNA fragment. - Abstract: Sub-terahertz (sub-THz) vibrational spectroscopy is a new spectroscopic branch for characterizing biological macromolecules. In this work, highly resolved sub-THz resonance spectroscopy is used for characterizing engineered molecular structures, an artificially designed DNA monocrystal, built from a short DNA sequence. Using a recently developed frequency domain spectroscopic instrument operating at room temperature with high spectral and spatial resolution, we demonstrated very intense and specific spectral lines from a DNA crystal in general agreement with a computational molecular dynamics (MD) simulation of a short double stranded DNA fragment. The spectroscopic signature measured in the frequency range between 310 and 490 GHz is rich in well resolved and reproducible spectral features thus demonstrating the capability of THz resonance spectroscopy to be used for characterizing custom macromolecules and structures designed and implemented via nanotechnology for a wide variety of application domains. Analysis of MD simulation indicates that intense and narrow vibrational modes with atomic movements perpendicular (transverse) and parallel (longitudinal) to the long DNA axis coexist in dsDNA, with much higher contribution from longitudinal vibrations

  10. Spatially resolved analyses of uranium species using a coupled system made up of confocal laser-scanning microscopy (CLSM) and laser induced fluorescence spectroscopy (LIFS); Ortsaufgeloeste Analyse von Uranspezies mittels einem Gekoppelten System aus Konfokaler Laser-Scanning Mikroskopie (CLSM) und Laser Induzierter Fluoreszenzspektroskopie (LIFS)

    Brockmann, S. [Verein fuer Kernverfahrenstechnik und Analytik Rossendorf e.V. (VKTA), Dresden (Germany); Grossmann, K.; Arnold, T. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (Germany). Inst. fuer Ressourcenoekologie

    2014-01-15

    The fluorescent properties of uranium when excited by UV light are used increasingly for spectroscope analyses of uranium species within watery samples. Here, alongside the fluorescent properties of the hexavalent oxidation phases, the tetra and pentavalent oxidation phases also play an increasingly important role. The detection of fluorescent emission spectrums on solid and biological samples using (time-resolved) laser induced fluorescence spectroscopy (TRLFS or LIFS respectively) has, however, the disadvantage that no statements regarding the spatial localisation of the uranium can be made. However, particularly in complex, biological samples, such statements on the localisation of the uranium enrichment in the sample are desired, in order to e.g. be able to distinguish between intra and extra-cellular uranium bonds. The fluorescent properties of uranium (VI) compounds and minerals can also be used to detect their localisation within complex samples. So the application of fluorescent microscopic methods represents one possibility to localise and visualise uranium precipitates and enrichments in biological samples, such as biofilms or cells. The confocal laser-scanning microscopy (CLSM) is especially well suited to this purpose. Coupling confocal laser-scanning microscopy (CLSM) with laser induced fluorescence spectroscopy (LIFS) makes it possible to localise and visualise fluorescent signals spatially and three-dimensionally, while at the same time being able to detect spatially resolved, fluorescent-spectroscopic data. This technology is characterised by relatively low detection limits from up to 1.10{sup -6} M for uranium (VI) compounds within the confocal volume. (orig.)

  11. Apartes desde la inteligencia artificial

    Luis Carlos Torres Soler

    1998-01-01

    El estudio y desarrollo de la inteligencia artificial no debe centrarse sólo en la creación de software o hardware que permita realizar procesos algorítmicos o heurísticos en el computador, de tal forma que produzcan soluciones óptimas y eficientes al resolver un problema complejo, ya sea de manejo de información o de toma de decisiones, o crear máquinas que tengan buena apariencia del ser humano; se debe, sobre todo, analizar la parte neurológica y sicológica que presenta el individuo al sol...

  12. Spatial Modulation Improves Performance in CTIS

    Bearman, Gregory H.; Wilson, Daniel W.; Johnson, William R.

    2009-01-01

    Suitably formulated spatial modulation of a scene imaged by a computed-tomography imaging spectrometer (CTIS) has been found to be useful as a means of improving the imaging performance of the CTIS. As used here, "spatial modulation" signifies the imposition of additional, artificial structure on a scene from within the CTIS optics. The basic principles of a CTIS were described in "Improvements in Computed- Tomography Imaging Spectrometry" (NPO-20561) NASA Tech Briefs, Vol. 24, No. 12 (December 2000), page 38 and "All-Reflective Computed-Tomography Imaging Spectrometers" (NPO-20836), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 7a. To recapitulate: A CTIS offers capabilities for imaging a scene with spatial, spectral, and temporal resolution. The spectral disperser in a CTIS is a two-dimensional diffraction grating. It is positioned between two relay lenses (or on one of two relay mirrors) in a video imaging system. If the disperser were removed, the system would produce ordinary images of the scene in its field of view. In the presence of the grating, the image on the focal plane of the system contains both spectral and spatial information because the multiple diffraction orders of the grating give rise to multiple, spectrally dispersed images of the scene. By use of algorithms adapted from computed tomography, the image on the focal plane can be processed into an image cube a three-dimensional collection of data on the image intensity as a function of the two spatial dimensions (x and y) in the scene and of wavelength (lambda). Thus, both spectrally and spatially resolved information on the scene at a given instant of time can be obtained, without scanning, from a single snapshot; this is what makes the CTIS such a potentially powerful tool for spatially, spectrally, and temporally resolved imaging. A CTIS performs poorly in imaging some types of scenes in particular, scenes that contain little spatial or spectral variation. The computed spectra of

  13. Visual perception of spatial subjects

    Osterloh, K.R.S.; Ewert, U.

    2007-01-01

    Principally, any imaging technology consists of two consecutive, though strictly separated processes: data acquisition and subsequent processing to generate an image that can be looked at, either on a monitor screen or printed on paper. Likewise, the physiological process of viewing can be separated into vision and perception, though these processes are much more overlapping. Understanding the appearance of a subject requires the entire sequence from receiving the information carried e.g. by photons up to an appropriate processing leading to the perception of the subject shown. As a consequence, the imagination of a subject is a result of both, technological and physiological processes. Whenever an evaluation of an image is critical, also the physiological part of the processing should be considered. However, an image has two dimensions in the first place and reality is spatial, it has three dimensions. This problem has been tackled on a philosophical level at least since Platon's famous discussion on the shadow image in a dark cave. The mere practical point is which structural details can be perceived and what may remain undetected depending on the mode of presentation. This problem cannot be resolved without considering each single step of visual perception. Physiologically, there are three 'tools' available to understanding the spatial structure of a subject: binocular viewing, following the course of perspective projection and motion to collect multiple aspects. Artificially, an object may be cut in various ways to display the interior or covering parts could be made transparent within a model. Samples will be shown how certain details of a subject can be emphasised or hidden depending on the way of presentation. It needs to be discussed what might help to perceive the true spatial structure of a subject with all relevant details and what could be misleading. (authors)

  14. Visual perception of spatial subjects

    Osterloh, K.R.S.; Ewert, U. [Federal Institute for Materials Research and Testing (BAM), Berlin (Germany)

    2007-07-01

    Principally, any imaging technology consists of two consecutive, though strictly separated processes: data acquisition and subsequent processing to generate an image that can be looked at, either on a monitor screen or printed on paper. Likewise, the physiological process of viewing can be separated into vision and perception, though these processes are much more overlapping. Understanding the appearance of a subject requires the entire sequence from receiving the information carried e.g. by photons up to an appropriate processing leading to the perception of the subject shown. As a consequence, the imagination of a subject is a result of both, technological and physiological processes. Whenever an evaluation of an image is critical, also the physiological part of the processing should be considered. However, an image has two dimensions in the first place and reality is spatial, it has three dimensions. This problem has been tackled on a philosophical level at least since Platon's famous discussion on the shadow image in a dark cave. The mere practical point is which structural details can be perceived and what may remain undetected depending on the mode of presentation. This problem cannot be resolved without considering each single step of visual perception. Physiologically, there are three 'tools' available to understanding the spatial structure of a subject: binocular viewing, following the course of perspective projection and motion to collect multiple aspects. Artificially, an object may be cut in various ways to display the interior or covering parts could be made transparent within a model. Samples will be shown how certain details of a subject can be emphasised or hidden depending on the way of presentation. It needs to be discussed what might help to perceive the true spatial structure of a subject with all relevant details and what could be misleading. (authors)

  15. Operation: Inherent Resolve

    Cramer-Larsen, Lars

    2015-01-01

    Kapitlet giver læseren indsigt i den internationale koalitions engagement mod IS igennem Operaton Inherent Resolve; herunder koalitionens strategi i forhold til IS strategi, ligesom det belyser kampagnens legalitet og folkeretlige grundlag, ligesom det giver et bud på overvejelser om kampagnens...

  16. Spatial photon correlations in multiple scattering media

    Smolka, Stephan; Muskens, O.; Lagendijk, A.

    2010-01-01

    We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations.......We present the first angle-resolved measurements of spatial photon correlations that are induced by multiple scattering of light. The correlation relates multiple scattered photons at different spatial positions and depends on incident photon fluctuations....

  17. Indoor Spatial Updating with Reduced Visual Information

    Legge, Gordon E.; Gage, Rachel; Baek, Yihwa; Bochsler, Tiana M.

    2016-01-01

    Purpose Spatial updating refers to the ability to keep track of position and orientation while moving through an environment. People with impaired vision may be less accurate in spatial updating with adverse consequences for indoor navigation. In this study, we asked how artificial restrictions on visual acuity and field size affect spatial updating, and also judgments of the size of rooms. Methods Normally sighted young adults were tested with artificial restriction of acuity in Mild Blur (S...

  18. Artificial Hydration and Nutrition

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  19. Artificial Disc Replacement

    ... Spondylolisthesis BLOG FIND A SPECIALIST Treatments Artificial Disc Replacement (ADR) Patient Education Committee Jamie Baisden The disc ... Disc An artificial disc (also called a disc replacement, disc prosthesis or spine arthroplasty device) is a ...

  20. Artificial life and Piaget.

    Mueller, Ulrich; Grobman, K H.

    2003-04-01

    Artificial life provides important theoretical and methodological tools for the investigation of Piaget's developmental theory. This new method uses artificial neural networks to simulate living phenomena in a computer. A recent study by Parisi and Schlesinger suggests that artificial life might reinvigorate the Piagetian framework. We contrast artificial life with traditional cognitivist approaches, discuss the role of innateness in development, and examine the relation between physiological and psychological explanations of intelligent behaviour.

  1. Spatially Resolved Hα Maps and Sizes of 57 Strongly Star-forming Galaxies at z ~ 1 from 3D-HST: Evidence for Rapid Inside-out Assembly of Disk Galaxies

    Nelson, Erica June; van Dokkum, Pieter G.; Brammer, Gabriel; Förster Schreiber, Natascha; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Rix, Hans-Walter; Skelton, Rosalind E.; Bezanson, Rachel; Da Cunha, Elisabete; Kriek, Mariska; Labbe, Ivo; Lundgren, Britt; Quadri, Ryan; Schmidt, Kasper B.

    2012-03-01

    We investigate the buildup of galaxies at z ~ 1 using maps of Hα and stellar continuum emission for a sample of 57 galaxies with rest-frame Hα equivalent widths >100 Å in the 3D-HST grism survey. We find that the Hα emission broadly follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median Hα effective radius re (Hα) is 4.2 ± 0.1 kpc but the sizes span a large range, from compact objects with re (Hα) ~ 1.0 kpc to extended disks with re (Hα) ~ 15 kpc. Comparing Hα sizes to continuum sizes, we find =1.3 ± 0.1 for the full sample. That is, star formation, as traced by Hα, typically occurs out to larger radii than the rest-frame R-band stellar continuum; galaxies are growing their radii and building up from the inside out. This effect appears to be somewhat more pronounced for the largest galaxies. Using the measured Hα sizes, we derive star formation rate surface densities, ΣSFR. We find that ΣSFR ranges from ~0.05 M ⊙ yr-1 kpc-2 for the largest galaxies to ~5 M ⊙ yr-1 kpc-2 for the smallest galaxies, implying a large range in physical conditions in rapidly star-forming z ~ 1 galaxies. Finally, we infer that all galaxies in the sample have very high gas mass fractions and stellar mass doubling times <500 Myr. Although other explanations are also possible, a straightforward interpretation is that we are simultaneously witnessing the rapid formation of compact bulges and large disks at z ~ 1.

  2. SPATIALLY RESOLVED Hα MAPS AND SIZES OF 57 STRONGLY STAR-FORMING GALAXIES AT z ∼ 1 FROM 3D-HST: EVIDENCE FOR RAPID INSIDE-OUT ASSEMBLY OF DISK GALAXIES

    Nelson, Erica June; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Bezanson, Rachel; Lundgren, Britt; Brammer, Gabriel; Förster Schreiber, Natascha; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbe, Ivo; Rix, Hans-Walter; Da Cunha, Elisabete; Schmidt, Kasper B.; Kriek, Mariska; Quadri, Ryan

    2012-01-01

    We investigate the buildup of galaxies at z ∼ 1 using maps of Hα and stellar continuum emission for a sample of 57 galaxies with rest-frame Hα equivalent widths >100 Å in the 3D-HST grism survey. We find that the Hα emission broadly follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median Hα effective radius r e (Hα) is 4.2 ± 0.1 kpc but the sizes span a large range, from compact objects with r e (Hα) ∼ 1.0 kpc to extended disks with r e (Hα) ∼ 15 kpc. Comparing Hα sizes to continuum sizes, we find e (Hα)/r e (R) > =1.3 ± 0.1 for the full sample. That is, star formation, as traced by Hα, typically occurs out to larger radii than the rest-frame R-band stellar continuum; galaxies are growing their radii and building up from the inside out. This effect appears to be somewhat more pronounced for the largest galaxies. Using the measured Hα sizes, we derive star formation rate surface densities, Σ SFR . We find that Σ SFR ranges from ∼0.05 M ☉ yr –1 kpc –2 for the largest galaxies to ∼5 M ☉ yr –1 kpc –2 for the smallest galaxies, implying a large range in physical conditions in rapidly star-forming z ∼ 1 galaxies. Finally, we infer that all galaxies in the sample have very high gas mass fractions and stellar mass doubling times <500 Myr. Although other explanations are also possible, a straightforward interpretation is that we are simultaneously witnessing the rapid formation of compact bulges and large disks at z ∼ 1.

  3. Apartes desde la inteligencia artificial

    Luis Carlos Torres Soler

    1998-05-01

    Full Text Available El estudio y desarrollo de la inteligencia artificial no debe centrarse sólo en la creación de software o hardware que permita realizar procesos algorítmicos o heurísticos en el computador, de tal forma que produzcan soluciones óptimas y eficientes al resolver un problema complejo, ya sea de manejo de información o de toma de decisiones, o crear máquinas que tengan buena apariencia del ser humano; se debe, sobre todo, analizar la parte neurológica y sicológica que presenta el individuo al solucionar problemas. Además, es importante conocer la capacidad intelectual de la persona, de ahí la variedad de carreras profesionales que existen; no puede quedar por fuera de los sistemas inteligentes la concepción del amor o admiración.

  4. Highly resolving computerized tomography

    Kurtz, B.; Petersen, D.; Walter, E.

    1984-01-01

    With the development of highly-resolving devices for computerized tomography, CT diagnosis of the lumbar vertebral column has gained increasing importance. As an ambulatory, non-invasive method it has proved in comparative studies to be at least equivalent to myelography in the detection of dislocations of inter-vertebral disks (4,6,7,15). Because with modern devices not alone the bones, but especially the spinal soft part structures are clearly and precisely presented with a resolution of distinctly below 1 mm, a further improvement of the results is expected as experience will increase. The authors report on the diagnosis of the lumbar vertebral column with the aid of a modern device for computerized tomography and wish to draw particular attention to the possibility of doing this investigation as a routine, and to the diagnostic value of secondary reconstructions. (BWU) [de

  5. Highly resolving computerized tomography

    Kurtz, B.; Petersen, D.; Walter, E.

    1984-01-01

    With the development of highly-resolving devices for computerized tomography, CT diagnosis of the lumbar vertebral column has gained increasing importance. As an ambulatory, non-invasive method it has proved in comparative studies to be at least equivalent to myelography in the detection of dislocations of inter-vertebral disks (4,6,7,15). Because with modern devices not alone the bones, but especially the spinal soft part structures are clearly and precisely presented with a resolution of distinctly below 1 mm, a further improvement of the results is expected as experience will increase. The authors report on the diagnosis of the lumbar vertebral column with the aid of a modern device for computerized tomography and wish to draw particular attention to the possibility of doing this investigation as a routine, and to the diagnostic value of secondary reconstructions.

  6. Artificial cognition architectures

    Crowder, James A; Friess, Shelli A

    2013-01-01

    The goal of this book is to establish the foundation, principles, theory, and concepts that are the backbone of real, autonomous Artificial Intelligence. Presented here are some basic human intelligence concepts framed for Artificial Intelligence systems. These include concepts like Metacognition and Metamemory, along with architectural constructs for Artificial Intelligence versions of human brain functions like the prefrontal cortex. Also presented are possible hardware and software architectures that lend themselves to learning, reasoning, and self-evolution

  7. Artificial Intelligence Study (AIS).

    1987-02-01

    ARTIFICIAL INTELLIGNECE HARDWARE ....... 2-50 AI Architecture ................................... 2-49 AI Hardware ....................................... 2...ftf1 829 ARTIFICIAL INTELLIGENCE STUDY (RIS)(U) MAY CONCEPTS 1/3 A~NLYSIS AGENCY BETHESA RD R B NOJESKI FED 6? CM-RP-97-1 NCASIFIED /01/6 M |K 1.0...p/ - - ., e -- CAA- RP- 87-1 SAOFŔ)11 I ARTIFICIAL INTELLIGENCE STUDY (AIS) tNo DTICFEBRUARY 1987 LECT 00 I PREPARED BY RESEARCH AND ANALYSIS

  8. Artificial Intelligence in Astronomy

    Devinney, E. J.; Prša, A.; Guinan, E. F.; Degeorge, M.

    2010-12-01

    From the perspective (and bias) as Eclipsing Binary researchers, we give a brief overview of the development of Artificial Intelligence (AI) applications, describe major application areas of AI in astronomy, and illustrate the power of an AI approach in an application developed under the EBAI (Eclipsing Binaries via Artificial Intelligence) project, which employs Artificial Neural Network technology for estimating light curve solution parameters of eclipsing binary systems.

  9. Quo Vadis, Artificial Intelligence?

    Berrar, Daniel; Sato, Naoyuki; Schuster, Alfons

    2010-01-01

    Since its conception in the mid 1950s, artificial intelligence with its great ambition to understand and emulate intelligence in natural and artificial environments alike is now a truly multidisciplinary field that reaches out and is inspired by a great diversity of other fields. Rapid advances in research and technology in various fields have created environments into which artificial intelligence could embed itself naturally and comfortably. Neuroscience with its desire to understand nervou...

  10. Inteligencia artificial en vehiculo

    Amador Díaz, Pedro

    2012-01-01

    Desarrollo de un robot seguidor de líneas, en el que se implementan diversas soluciones de las áreas de sistemas embebidos e inteligencia artificial. Desenvolupament d'un robot seguidor de línies, en el qual s'implementen diverses solucions de les àrees de sistemes encastats i intel·ligència artificial. Follower robot development of lines, in which various solutions are implemented in the areas of artificial intelligence embedded systems.

  11. STANFORD ARTIFICIAL INTELLIGENCE PROJECT.

    ARTIFICIAL INTELLIGENCE , GAME THEORY, DECISION MAKING, BIONICS, AUTOMATA, SPEECH RECOGNITION, GEOMETRIC FORMS, LEARNING MACHINES, MATHEMATICAL MODELS, PATTERN RECOGNITION, SERVOMECHANISMS, SIMULATION, BIBLIOGRAPHIES.

  12. Resolving inventory differences

    Weber, J.H.; Clark, J.P.

    1991-01-01

    Determining the cause of an inventory difference (ID) that exceeds warning or alarm limits should not only involve investigation into measurement methods and reexamination of the model assumptions used in the calculation of the limits, but also result in corrective actions that improve the quality of the accountability measurements. An example illustrating methods used by Savannah River Site (SRS) personnel to resolve an ID is presented that may be useful to other facilities faced with a similar problem. After first determining that no theft or diversion of material occurred and correcting any accountability calculation errors, investigation into the IDs focused on volume and analytical measurements, limit of error of inventory difference (LEID) modeling assumptions, and changes in the measurement procedures and methods prior to the alarm. There had been a gradual gain trend in IDs prior to the alarm which was reversed by the alarm inventory. The majority of the NM in the facility was stored in four large tanks which helped identify causes for the alarm. The investigation, while indicating no diversion or theft, resulted in changes in the analytical method and in improvements in the measurement and accountability that produced a 67% improvement in the LEID

  13. Artificial life and life artificialization in Tron

    Carolina Dantas Figueiredo

    2012-12-01

    Full Text Available Cinema constantly shows the struggle between the men and artificial intelligences. Fiction, and more specifically fiction films, lends itself to explore possibilities asking “what if?”. “What if”, in this case, is related to the eventual rebellion of artificial intelligences, theme explored in the movies Tron (1982 and Tron Legacy (2010 trat portray the conflict between programs and users. The present paper examines these films, observing particularly the possibility programs empowering. Finally, is briefly mentioned the concept of cyborg as a possibility of response to human concerns.

  14. Ultrafast Energy Transfer in an Artificial Photosynthetic Antenna

    van Grondelle R.

    2013-03-01

    Full Text Available We temporally resolved energy transfer kinetics in an artificial light-harvesting dyad composed of a phthalocyanine covalently linked to a carotenoid. Upon carotenoid photo-excitation, energy transfers within ≈100fs (≈52% efficiency to the phthalocyanine.

  15. Spatially resolved observation of the spectral hole burning in the Xe(L) amplifier on single (2p-bar) and double (2s-bar2p-bar) vacancy 3d -> 2p transitions in the 2.62 A < {lambda} < 2.94 A range

    Borisov, Alex B; Racz, Ervin; Khan, Shahab F; Poopalasingam, Sankar; McCorkindale, John C; Zhao Ji; Fontanarosa, Joel; Boguta, John; Longworth, James W; Rhodes, Charles K [Laboratory for X-ray Microimaging and Bioinformatics, Department of Physics, University of Illinois at Chicago, Chicago, IL 60607-7059 (United States); Dai Yang, E-mail: rhodes@uic.ed [Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607-7062 (United States)

    2010-02-28

    The analysis of spatially resolved Xe(L) spectra obtained with Z-{lambda} imaging reveals two prominent findings concerning the characteristics of the x-ray amplification occurring in self-trapped plasma channels formed by the focusing of multi-TW subpicosecond 248 nm laser pulses into a high-density gaseous Xe cluster target. They are (1) strongly saturated amplification across both lobes of the Xe(L) hollow atom 3d -> 2p emission profile, a breadth that spans a spectral width of {approx}600 eV, and (2) new evidence for the formation of x-ray spatial modes based on the signature of the transversely observed emission from the narrow trapped zone of the channel. The global characteristics of the spectral measurements, in concert with prior analyses of the strength of the amplification, indicate that the enhancement of the x-ray emission rate by intra-cluster superradiant dynamics plays a leading role in the amplification. This radiative interaction simultaneously promotes (a) a sharp boost in the effective gain, (b) the directly consequent efficient production of coherent Xe(L) x-rays from both single (2p-bar) and double (2s-bar2p-bar) vacancy 3d -> 2p transition arrays, estimated herein at {approx}30%, and (c) the development of a very short x-ray pulse width {tau}{sub x}. In the limit of sufficiently strong superradiant coupling in the cluster, the system assumes a dynamically collective character and acts as a single homogeneously broadened transition whose effective radiative width approaches the full Xe(L) bandwidth, a breadth that establishes a potential lower limit of {tau}{sub x} {approx}5-10 as, a value substantially less than the canonical atomic time a{sub o}/{alpha}c approx = 24 as.

  16. Time-resolved studies

    Mills, D.M.

    1992-01-01

    When new or more powerful probes become available that offer both shorter data-collection times and the opportunity to apply innovative approaches to established techniques, it is natural that investigators consider the feasibility of exploring the kinetics of time-evolving systems. This stimulating area of research not only can lead to insights into the metastable or excited states that a system may populate on its way to a ground state, but can also lead to a better understanding of that final state. Synchrotron radiation, with its unique properties, offers just such a tool to extend X-ray measurements from the static to the time-resolved regime. The most straight-forward application of synchrotron radiation to the study of transient phenomena is directly through the possibility of decreased data-collection times via the enormous increase in flux over that of a laboratory X-ray system. Even further increases in intensity can be obtained through the use of novel X-ray optical devices. Widebandpass monochromators, e.g., that utilize the continuous spectral distribution of synchrotron radiation, can increase flux on the sample several orders of magnitude over conventional X-ray optical systems thereby allowing a further shortening of the data-collection time. Another approach that uses the continuous spectral nature of synchrotron radiation to decrease data-collection times is the open-quote parallel data collectionclose quotes method. Using this technique, intensities as a function of X-ray energy are recorded simultaneously for all energies rather than sequentially recording data at each energy, allowing for a dramatic decrease in the data-collection time

  17. Spatially resolved nanostructural transformation in graphite under femtosecond laser irradiation

    Marcu, A., E-mail: aurelian.marcu@inflpr.ro [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Avotina, L. [Institute of Chemical Physics, University of Latvia, Kronvalda 4, LV 1010 Riga (Latvia); Porosnicu, C. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Marin, A. [Ilie Murgulescu” Institute of Physical Chemistry, 202 Splaiul Independentei 060021, Bucharest (Romania); Grigorescu, C.E.A. [National Institute R& D for Optoelectronics INOE 2000, 077125 Bucharest (Romania); Ursescu, D. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania); Lungu, M. [National Institute of Materials Physics Atomistilor Str., 105 bis, 077125, Magurele (Romania); Demitri, N. [Hard X-ray Beamline and Structural Biology, Elettra-Sincrotrone Trieste, Strada Statale 14 - km 163,5 in AREA Science Park, 34149 Basovizza TS Italy (Italy); Lungu, C.P. [National Institute for Laser, Plasma and Radiation Physics, 077125 Bucharest (Romania)

    2015-11-15

    Graphical abstract: - Highlights: • Polycrystalline graphite was irradiated with a high power fs (IR) laser. • Presence of a diamond peak was detected by synchrotron XRD. • XPS and Raman showed in-depth sp{sup 3}% increase at tens of nm below the surface. • sp{sup 3}% is increasing with laser power density but it is independent of photon absorption rate. • Graphite crystallite size locally increase at tens of nanometers below the irradiated spots. - Abstract: A polycrystalline graphite target was irradiated using infrared (800 nm) femtosecond (120 fs) laser pulses of different energies. Increase of sp{sup 3} bonds percentage and possible diamond crystal formation were investigated ‘in-depth’ and on the irradiated surfaces. Synchrotron X-ray diffraction pattern have shown the presence of a diamond peak in one of the irradiated zones while X-ray photoelectron spectroscopy investigations have shown an increasing tendency of the sp{sup 3} percent in the low power irradiated areas and similarly ‘in the depth’ of the higher power irradiated zones. Multiple wavelength Micro-Raman investigations have confirmed this trend along with an ‘in-depth’ (but not on the surface) increase of the crystallite size. Based on the wavelength dependent photon absorption into graphite, the observed effects are correlated with high density photon per atom and attributed to the melting and recrystallization processes taking place tens of nanometers below the target surface.

  18. Spatially resolved nanostructural transformation in graphite under femtosecond laser irradiation

    Marcu, A.; Avotina, L.; Porosnicu, C.; Marin, A.; Grigorescu, C.E.A.; Ursescu, D.; Lungu, M.; Demitri, N.; Lungu, C.P.

    2015-01-01

    Graphical abstract: - Highlights: • Polycrystalline graphite was irradiated with a high power fs (IR) laser. • Presence of a diamond peak was detected by synchrotron XRD. • XPS and Raman showed in-depth sp 3 % increase at tens of nm below the surface. • sp 3 % is increasing with laser power density but it is independent of photon absorption rate. • Graphite crystallite size locally increase at tens of nanometers below the irradiated spots. - Abstract: A polycrystalline graphite target was irradiated using infrared (800 nm) femtosecond (120 fs) laser pulses of different energies. Increase of sp 3 bonds percentage and possible diamond crystal formation were investigated ‘in-depth’ and on the irradiated surfaces. Synchrotron X-ray diffraction pattern have shown the presence of a diamond peak in one of the irradiated zones while X-ray photoelectron spectroscopy investigations have shown an increasing tendency of the sp 3 percent in the low power irradiated areas and similarly ‘in the depth’ of the higher power irradiated zones. Multiple wavelength Micro-Raman investigations have confirmed this trend along with an ‘in-depth’ (but not on the surface) increase of the crystallite size. Based on the wavelength dependent photon absorption into graphite, the observed effects are correlated with high density photon per atom and attributed to the melting and recrystallization processes taking place tens of nanometers below the target surface.

  19. Influence of eye micromotions on spatially resolved refractometry

    Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Osipova, Irina Y.

    2001-01-01

    The influence eye micromotions on the accuracy of estimation of Zernike coefficients form eye transverse aberration measurements was investigated. By computer modeling, the following found eye aberrations have been examined: defocusing, primary astigmatism, spherical aberration of the 3rd and the 5th orders, as well as their combinations. It was determined that the standard deviation of estimated Zernike coefficients is proportional to the standard deviation of angular eye movements. Eye micromotions cause the estimation errors of Zernike coefficients of present aberrations and produce the appearance of Zernike coefficients of aberrations, absent in the eye. When solely defocusing is present, the biggest errors, cased by eye micromotions, are obtained for aberrations like coma and astigmatism. In comparison with other aberrations, spherical aberration of the 3rd and the 5th orders evokes the greatest increase of the standard deviation of other Zernike coefficients.

  20. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  1. Spatially resolved X-ray spectra of coronal active regions

    Catura, R.C.; Acton, L.W.; Joki, E.G.; Rapley, C.G.; Culhane, J.L.

    1975-01-01

    X-ray spectra from a number of coronal active regions were obtained during ATM support rocket flights carried out by the Lockheed group on June 11 and December 19, 1973. Multi-grid collimators were used to provide fields of view of 40ins. diameter and 90ins. diameter for a number of scanning crystal spectrometers and a bent crystal spectrometer which employed a position sensitive proportional counter to register the diffracted spectrum. A solar image was produced on film and on a TV camera on board the rocket with the aid of a 1 A Hα filter. A small part of the X-ray collimator was used to generate a multiple spot diffraction pattern which was superimposed on the Hα image and the composite picture was transmitted to the ground. Pre-launch calibrations allowed the spot corresponding to the X-ray collimator axis to be identified and so the collimator pointing direction on the solar disc was controlled from the ground by means of commands sent to the rocket. (Auth.)

  2. Spatially resolved detection of mutually locked Josephson junctions in arrays

    Keck, M.; Doderer, T.; Huebener, R.P.; Traeuble, T.; Dolata, R.; Weimann, T.; Niemeyer, J.

    1997-01-01

    Mutual locking due to the internal coupling in two-dimensional arrays of Josephson junctions was investigated. The appearance of Shapiro steps in the current versus voltage curve of a coupled on-chip detector junction is used to indicate coherent oscillations in the array. A highly coherent state is observed for some range of the array bias current. By scanning the array with a low-power electron beam, mutually locked junctions remain locked while the unlocked junctions generate a beam-induced additional voltage drop at the array. This imaging technique allows the detection of the nonlocked or weakly locked Josephson junctions in a (partially) locked array state. copyright 1997 American Institute of Physics

  3. Spatially resolved fish population analysis for designing MPAs

    Christensen, Asbjørn; Mosegaard, Henrik; Jensen, Henrik

    2009-01-01

    demonstrated that ecosystem self-regulation must be included when modelling the efficiency of MPAs, and for lesser sandeel, that self-regulation partially counteracts the benefits of a fishing sanctuary. The use of realistic habitat connectivity is critical for both qualitative and quantitative MPA assessment...

  4. Spatially resolved photoionization of ultracold atoms on an atom chip

    Kraft, S.; Guenther, A.; Fortagh, J.; Zimmermann, C.

    2007-01-01

    We report on photoionization of ultracold magnetically trapped Rb atoms on an atom chip. The atoms are trapped at 5 μK in a strongly anisotropic trap. Through a hole in the chip with a diameter of 150 μm, two laser beams are focused onto a fraction of the atomic cloud. A first laser beam with a wavelength of 778 nm excites the atoms via a two-photon transition to the 5D level. With a fiber laser at 1080 nm the excited atoms are photoionized. Ionization leads to depletion of the atomic density distribution observed by absorption imaging. The resonant ionization spectrum is reported. The setup used in this experiment is suitable not only to investigate mixtures of Bose-Einstein condensates and ions but also for single-atom detection on an atom chip

  5. Spatially Resolved Images and Solar Irradiance Variability R ...

    Abstract. The Sun is the primary source of energy that governs both the terrestrial climate and near-earth space environment. Variations in UV irradiances seen at earth are the sum of global (solar dynamo) to regional. (active region, plage, network, bright points and background) solar mag- netic activities that can be ...

  6. Quantitative single shot and spatially resolved plasma wakefield diagnostics

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Levy, Matthew C; Ratan, Naren; Sadler, James; Bingham, Robert; Burrows, Philip N; Trines, Raoul; Wing, Matthew; Norreys, Peter

    2015-01-01

    Diagnosing plasma conditions can give great advantages in optimizing plasma wakefield accelerator experiments. One possible method is that of photon acceleration. By propagating a laser probe pulse through a plasma wakefield and extracting the imposed frequency modulation, one can obtain an image of the density modulation of the wakefield. In order to diagnose the wakefield parameters at a chosen point in the plasma, the probe pulse crosses the plasma at oblique angles relative to the wakefield. In this paper, mathematical expressions relating the frequency modulation of the laser pulse and the wakefield density profile of the plasma for oblique crossing angles are derived. Multidimensional particle-in-cell simulation results presented in this paper confirm that the frequency modulation profiles and the density modulation profiles agree to within 10%. Limitations to the accuracy of the measurement are discussed in this paper. This technique opens new possibilities to quantitatively diagnose the plasma wakefie...

  7. Spatially-resolved thermoluminescence from snail opercula using an EMCCD

    Duller, G.A.T.; Kook, Myung Ho; Stirling, R.J.

    2015-01-01

    In recent years opercula of the snail species Bithynia tentaculata have been shown to emit thermoluminescence (TL) signals that can be used to determine equivalent dose, and may be capable of dating events throughout the entire Quaternary period. Concentric growth lines are a notable feature of a...

  8. Spatially and temporally resolved diagnostics for microsecond, intense electron beams

    Gilgenbach, R.M.; Brake, M.; Horton, L.D.; Bidwell, S.; Lucey, R.F.; Smutek, L.; Tucker, J.E.

    1985-01-01

    Two different configurations have been developed which use Cerenkov radiation to detect electron beam current profiles as a function of time. The first uses Cerenkov emission by electrons which impinge axially on a single fiberoptic lightguide enclosed in a lucite tube. Plasma light is blocked by graphite spray or thin foil covering the end of the optical fiber. This diagnostic has the following advantages: 1) the threshold energy for Cerenkov emission effectively discriminates between high energy beam electrons and low energy (3-5 eV) plasma electrons. 2) The small, nonconducting probe introduces a minimal perturbation into the beam-plasma system. 3) Excellent signal to noise ratio is obtained because the fiberoptic signal is directly transmitted to a photomultiplier tube in the Faraday cage. 4) Quantitative data is obtained directly

  9. Femtosecond Time-resolved Optical Polarigraphy (FTOP)

    Aoshima, S.; Fujimoto, M.; Hosoda, M.; Tsuchiya, Y.

    2000-01-01

    A novel time-resolved imaging technique named FTOP (Femtosecond Time-resolved Optical Polarigraphy) for visualizing the ultrafast propagation dynamics of intense light pulses in a medium has been proposed and demonstrated. Femtosecond snapshot images can be created with a high spatial resolution by imaging only the polarization components of the probe pulse; these polarization components change due to the instantaneous birefringence induced by the pump pulse in the medium. Ultrafast temporal changes in the two-dimensional spatial distribution of the optical pulse intensity were clearly visualized in consecutive images by changing the delay between the pump and probe. We observe that several filaments appear and then come together before the vacuum focus due to nonlinear effects in air. We also prove that filamentation dynamics such as the formation position and the propagation behavior are complex and are strongly affected by the pump energy. The results collected clearly show that this method FTOP succeeds for the first time in directly visualizing the ultrafast dynamics of the self-modulated nonlinear propagation of light. (author)

  10. Time resolved two- and three-dimensional plasma diagnostics

    1991-03-01

    This collection of papers on diagnostics in fusion plasmas contains work on the data analysis of inverse problems and on the experimental arrangements presently used to obtain spatially and temporally resolved plasma radial profiles, including electron and ion temperature, plasma density and plasma current profiles. Refs, figs and tabs

  11. Artificial neural network applications in ionospheric studies

    L. R. Cander

    1998-06-01

    Full Text Available The ionosphere of Earth exhibits considerable spatial changes and has large temporal variability of various timescales related to the mechanisms of creation, decay and transport of space ionospheric plasma. Many techniques for modelling electron density profiles through entire ionosphere have been developed in order to solve the "age-old problem" of ionospheric physics which has not yet been fully solved. A new way to address this problem is by applying artificial intelligence methodologies to current large amounts of solar-terrestrial and ionospheric data. It is the aim of this paper to show by the most recent examples that modern development of numerical models for ionospheric monthly median long-term prediction and daily hourly short-term forecasting may proceed successfully applying the artificial neural networks. The performance of these techniques is illustrated with different artificial neural networks developed to model and predict the temporal and spatial variations of ionospheric critical frequency, f0F2 and Total Electron Content (TEC. Comparisons between results obtained by the proposed approaches and measured f0F2 and TEC data provide prospects for future applications of the artificial neural networks in ionospheric studies.

  12. [Total artificial heart].

    Antretter, H; Dumfarth, J; Höfer, D

    2015-09-01

    To date the CardioWest™ total artificial heart is the only clinically available implantable biventricular mechanical replacement for irreversible cardiac failure. This article presents the indications, contraindications, implantation procedere and postoperative treatment. In addition to a overview of the applications of the total artificial heart this article gives a brief presentation of the two patients treated in our department with the CardioWest™. The clinical course, postoperative rehabilitation, device-related complications and control mechanisms are presented. The total artificial heart is a reliable implant for treating critically ill patients with irreversible cardiogenic shock. A bridge to transplantation is feasible with excellent results.

  13. Bibliography: Artificial Intelligence.

    Smith, Richard L.

    1986-01-01

    Annotates reference material on artificial intelligence, mostly at an introductory level, with applications to education and learning. Topics include: (1) programing languages; (2) expert systems; (3) language instruction; (4) tutoring systems; and (5) problem solving and reasoning. (JM)

  14. Nanoscale spatial analysis of clay minerals containing cesium by synchrotron radiation photoemission electron microscopy

    Yoshigoe, Akitaka; Shiwaku, Hideaki; Kobayashi, Toru; Shimoyama, Iwao; Matsumura, Daiju; Tsuji, Takuya; Nishihata, Yasuo; Kogure, Toshihiro; Ohkochi, Takuo; Yasui, Akira; Yaita, Tsuyoshi

    2018-01-01

    A synchrotron radiation photoemission electron microscope (SR-PEEM) was applied to demonstrate the pinpoint analysis of micrometer-sized weathered biotite clay particles with artificially adsorbed cesium (Cs) atoms. Despite the insulating properties of the clay, we observed the spatial distributions of constituent elements (Si, Al, Cs, Mg, and Fe) without charging issues and clarified reciprocal site-correlations among these elements with nanometer resolution. We found that Cs atoms were likely to be adsorbed evenly over the entire particle; however, we identified an occupational conflict between Cs and Mg atoms, implying that Cs sorption involves ion exchange processes. Spatially resolved X-ray absorption spectra (XAS) of the Cs4,5 M-edge region showed Cs to be present in a monocation state (Cs+) as typically observed for Cs compounds. Further pinpoint XAS measurements were also performed at the Fe L2,3-edge to determine the chemical valence of the Fe atoms. The shapes of the spectra were similar to those for Fe2O3, indicating that Fe in the clay was in a 3+ oxidation state. From these observations, we infer that charge compensation facilitates Cs adsorption in the vicinity of a substitution site where Si4+ ions are replaced by Fe3+ ions in SiO4 tetrahedral sheets. Our results demonstrate the utility of SR-PEEM as a tool for spatially resolved chemical analyses of various environmental substances, which is not limited by the poor conductivity of samples.

  15. Artificial intelligence in medicine.

    Ramesh, A. N.; Kambhampati, C.; Monson, J. R. T.; Drew, P. J.

    2004-01-01

    INTRODUCTION: Artificial intelligence is a branch of computer science capable of analysing complex medical data. Their potential to exploit meaningful relationship with in a data set can be used in the diagnosis, treatment and predicting outcome in many clinical scenarios. METHODS: Medline and internet searches were carried out using the keywords 'artificial intelligence' and 'neural networks (computer)'. Further references were obtained by cross-referencing from key articles. An overview of ...

  16. Minimally Naturalistic Artificial Intelligence

    Hansen, Steven Stenberg

    2017-01-01

    The rapid advancement of machine learning techniques has re-energized research into general artificial intelligence. While the idea of domain-agnostic meta-learning is appealing, this emerging field must come to terms with its relationship to human cognition and the statistics and structure of the tasks humans perform. The position of this article is that only by aligning our agents' abilities and environments with those of humans do we stand a chance at developing general artificial intellig...

  17. Artificial Intelligence Project

    1990-01-01

    Symposium on Aritificial Intelligence and Software Engineering Working Notes, March 1989. Blumenthal, Brad, "An Architecture for Automating...Artificial Intelligence Project Final Technical Report ARO Contract: DAAG29-84-K-OGO Artificial Intelligence LaboratO"ry The University of Texas at...Austin N>.. ~ ~ JA 1/I 1991 n~~~ Austin, Texas 78712 ________k A,.tificial Intelligence Project i Final Technical Report ARO Contract: DAAG29-84-K-0060

  18. Artificial intelligence in cardiology

    Bonderman, Diana

    2017-01-01

    Summary Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiol...

  19. Principles of artificial intelligence

    Nilsson, Nils J

    1980-01-01

    A classic introduction to artificial intelligence intended to bridge the gap between theory and practice, Principles of Artificial Intelligence describes fundamental AI ideas that underlie applications such as natural language processing, automatic programming, robotics, machine vision, automatic theorem proving, and intelligent data retrieval. Rather than focusing on the subject matter of the applications, the book is organized around general computational concepts involving the kinds of data structures used, the types of operations performed on the data structures, and the properties of th

  20. Intelligence: Real or artificial?

    Schlinger, Henry D.

    1992-01-01

    Throughout the history of the artificial intelligence movement, researchers have strived to create computers that could simulate general human intelligence. This paper argues that workers in artificial intelligence have failed to achieve this goal because they adopted the wrong model of human behavior and intelligence, namely a cognitive essentialist model with origins in the traditional philosophies of natural intelligence. An analysis of the word “intelligence” suggests that it originally r...

  1. Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan

    2018-04-01

    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.

  2. Time resolved techniques: An overview

    Larson, B.C.; Tischler, J.Z.

    1990-06-01

    Synchrotron sources provide exceptional opportunities for carrying out time-resolved x-ray diffraction investigations. The high intensity, high angular resolution, and continuously tunable energy spectrum of synchrotron x-ray beams lend themselves directly to carrying out sophisticated time-resolved x-ray scattering measurements on a wide range of materials and phenomena. When these attributes are coupled with the pulsed time-structure of synchrotron sources, entirely new time-resolved scattering possibilities are opened. Synchrotron beams typically consist of sub-nanosecond pulses of x-rays separated in time by a few tens of nanoseconds to a few hundred nanoseconds so that these beams appear as continuous x-ray sources for investigations of phenomena on time scales ranging from hours down to microseconds. Studies requiring time-resolution ranging from microseconds to fractions of a nanosecond can be carried out in a triggering mode by stimulating the phenomena under investigation in coincidence with the x-ray pulses. Time resolution on the picosecond scale can, in principle, be achieved through the use of streak camera techniques in which the time structure of the individual x-ray pulses are viewed as quasi-continuous sources with ∼100--200 picoseconds duration. Techniques for carrying out time-resolved scattering measurements on time scales varying from picoseconds to kiloseconds at present and proposed synchrotron sources are discussed and examples of time-resolved studies are cited. 17 refs., 8 figs

  3. High resolving power spectrometer for beam analysis

    Moshammer, H.W.; Spencer, J.E.

    1992-03-01

    We describe a system designed to analyze the high energy, closely spaced bunches from individual RF pulses. Neither a large solid angle nor momentum range is required so this allows characteristics that appear useful for other applications such as ion beam lithography. The spectrometer is a compact, double-focusing QBQ design whose symmetry allows the Quads to range between F or D with a correspondingly large range of magnifications, dispersion and resolving power. This flexibility insures the possibility of spatially separating all of the bunches along the focal plane with minimal transverse kicks and bending angle for differing input conditions. The symmetry of the system allows a simple geometric interpretationof the resolving power in terms of thin lenses and ray optics. We discuss the optics and the hardware that is proposed to measure emittance, energy, energy spread and bunch length for each bunch in an RF pulse train for small bunch separations. We also discuss how to use such measurements for feedback and feedforward control of these bunch characteristics as well as maintain their stability. 2 refs

  4. Artificial intelligence in nanotechnology.

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  5. Artificial organ engineering

    Annesini, Maria Cristina; Piemonte, Vincenzo; Turchetti, Luca

    2017-01-01

    Artificial organs may be considered as small-scale process plants, in which heat, mass and momentum transfer operations and, possibly, chemical transformations are carried out. This book proposes a novel analysis of artificial organs based on the typical bottom-up approach used in process engineering. Starting from a description of the fundamental physico-chemical phenomena involved in the process, the whole system is rebuilt as an interconnected ensemble of elemental unit operations. Each artificial organ is presented with a short introduction provided by expert clinicians. Devices commonly used in clinical practice are reviewed and their performance is assessed and compared by using a mathematical model based approach. Whilst mathematical modelling is a fundamental tool for quantitative descriptions of clinical devices, models are kept simple to remain focused on the essential features of each process. Postgraduate students and researchers in the field of chemical and biomedical engineering will find that t...

  6. Artificial intelligence in nanotechnology

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  7. Artificial organs and transplantation.

    Splendiani, G; Cipriani, S; Vega, A; Casciani, C U

    2003-05-01

    Nowadays artificial devices are not able to totally and undefinitely replace the loss of function of all vital organs and artificial organs can be used only to bridge the time to transplantation, which must be considered the first choice in the therapeutical approach for many chronic diseases. Since general population aging process is leading to an increase of organ demand, the gap between performed and requested transplantation is hard to fill. Xenotransplantation is nowadays only an experimental alternative solution and we have to do our best using available artificial organs to increase and improve the survival of patients waiting for transplantation. In this meeting we particularly dealt about organ function replacing therapy, especially regarding the kidney, heart, liver, pancreas and ear.

  8. Charlas sobre inteligencia artificial

    Álvarez Sánchez, José Ramón; Ferrández Vicente, José Manuel; Paz López, Félix de la

    2014-01-01

    Serie: Informática en Radio 3 La Inteligencia Artificial es una de las ciencias que causa mayor impacto en la sociedad, mucho más si tenemos en cuenta que cambiará el futuro de la humanidad. En España existen actualmente un nutrido grupo de equipos de investigación relacionados con las tecnologías de computación natural-artificial que aúnan sus esfuerzos a través de la RTNAC la Red Temática en Tecnologías de Computación Natural-Artificial . La UNED participa en todas sus actividades desde ...

  9. Artificial Intelligence in Cardiology.

    Johnson, Kipp W; Torres Soto, Jessica; Glicksberg, Benjamin S; Shameer, Khader; Miotto, Riccardo; Ali, Mohsin; Ashley, Euan; Dudley, Joel T

    2018-06-12

    Artificial intelligence and machine learning are poised to influence nearly every aspect of the human condition, and cardiology is not an exception to this trend. This paper provides a guide for clinicians on relevant aspects of artificial intelligence and machine learning, reviews selected applications of these methods in cardiology to date, and identifies how cardiovascular medicine could incorporate artificial intelligence in the future. In particular, the paper first reviews predictive modeling concepts relevant to cardiology such as feature selection and frequent pitfalls such as improper dichotomization. Second, it discusses common algorithms used in supervised learning and reviews selected applications in cardiology and related disciplines. Third, it describes the advent of deep learning and related methods collectively called unsupervised learning, provides contextual examples both in general medicine and in cardiovascular medicine, and then explains how these methods could be applied to enable precision cardiology and improve patient outcomes. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Artificial intelligence in nanotechnology

    Sacha, G M; Varona, P

    2013-01-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  11. Enforcement actions: Significant actions resolved

    1990-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  12. Time-resolved ESR spectroscopy

    Beckert, D.

    1986-06-01

    The time-resolved ESR spectroscopy is one of the modern methods in radiospectroscopy and plays an important role in solving various problems in chemistry and biology. Proceeding from the basic ideas of time-resolved ESR spectroscopy the experimental equipment is described generally including the equipment developed at the Central Institute of Isotope and Radiation Research. The experimental methods applied to the investigation of effects of chemically induced magnetic polarization of electrons and to kinetic studies of free radicals in polymer systems are presented. The theory of radical pair mechanism is discussed and theoretical expressions are summarized in a computer code to compute the theoretical polarization for each pair of the radicals

  13. Enforcement actions: Significant actions resolved

    1989-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. Also included are a number of enforcement actions that had been previously resolved but not published in this NUREG. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  14. Artificial intelligence executive summary

    Wamsley, S.J.; Purvis, E.E. III

    1984-01-01

    Artificial intelligence (AI) is a high technology field that can be used to provide problem solving diagnosis, guidance and for support resolution of problems. It is not a stand alone discipline, but can also be applied to develop data bases for retention of the expertise that is required for its own knowledge base. This provides a way to retain knowledge that otherwise may be lost. Artificial Intelligence Methodology can provide an automated construction management decision support system, thereby restoring the manager's emphasis to project management

  15. Artificial intelligence in cardiology.

    Bonderman, Diana

    2017-12-01

    Decision-making is complex in modern medicine and should ideally be based on available data, structured knowledge and proper interpretation in the context of an individual patient. Automated algorithms, also termed artificial intelligence that are able to extract meaningful patterns from data collections and build decisions upon identified patterns may be useful assistants in clinical decision-making processes. In this article, artificial intelligence-based studies in clinical cardiology are reviewed. The text also touches on the ethical issues and speculates on the future roles of automated algorithms versus clinicians in cardiology and medicine in general.

  16. Bayesian artificial intelligence

    Korb, Kevin B

    2003-01-01

    As the power of Bayesian techniques has become more fully realized, the field of artificial intelligence has embraced Bayesian methodology and integrated it to the point where an introduction to Bayesian techniques is now a core course in many computer science programs. Unlike other books on the subject, Bayesian Artificial Intelligence keeps mathematical detail to a minimum and covers a broad range of topics. The authors integrate all of Bayesian net technology and learning Bayesian net technology and apply them both to knowledge engineering. They emphasize understanding and intuition but also provide the algorithms and technical background needed for applications. Software, exercises, and solutions are available on the authors' website.

  17. Time-resolved quantitative phosphoproteomics

    Verano-Braga, Thiago; Schwämmle, Veit; Sylvester, Marc

    2012-01-01

    proteins involved in the Ang-(1-7) signaling, we performed a mass spectrometry-based time-resolved quantitative phosphoproteome study of human aortic endothelial cells (HAEC) treated with Ang-(1-7). We identified 1288 unique phosphosites on 699 different proteins with 99% certainty of correct peptide...

  18. Time-resolved vibrational spectroscopy

    Tokmakoff, Andrei [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Champion, Paul [Northeastern Univ., Boston, MA (United States); Heilweil, Edwin J. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Nelson, Keith A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Ziegler, Larry [Boston Univ., MA (United States)

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation of reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.

  19. Resolving Ethical Issues at School

    Benninga, Jacques S.

    2013-01-01

    Although ethical dilemmas are a constant in teachers' lives, the profession has offered little in the way of training to help teachers address such issues. This paper presents a framework, based on developmental theory, for resolving professional ethical dilemmas. The Four-Component Model of Moral Maturity, when used in conjunction with a…

  20. Generality in Artificial Intelligence

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 3. Generality in Artificial Intelligence. John McCarthy. Classics Volume 19 Issue 3 March 2014 pp 283-296. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/03/0283-0296. Author Affiliations.

  1. Artificial molecular motors

    Kassem, Salma; van Leeuwen, Thomas; Lubbe, Anouk S.; Wilson, Miriam R.; Feringa, Ben L.; Leigh, David A.

    2017-01-01

    Motor proteins are nature's solution for directing movement at the molecular level. The field of artificial molecular motors takes inspiration from these tiny but powerful machines. Although directional motion on the nanoscale performed by synthetic molecular machines is a relatively new

  2. Artificial intelligence within AFSC

    Gersh, Mark A.

    1990-01-01

    Information on artificial intelligence research in the Air Force Systems Command is given in viewgraph form. Specific research that is being conducted at the Rome Air Development Center, the Space Technology Center, the Human Resources Laboratory, the Armstrong Aerospace Medical Research Laboratory, the Armamant Laboratory, and the Wright Research and Development Center is noted.

  3. Database in Artificial Intelligence.

    Wilkinson, Julia

    1986-01-01

    Describes a specialist bibliographic database of literature in the field of artificial intelligence created by the Turing Institute (Glasgow, Scotland) using the BRS/Search information retrieval software. The subscription method for end-users--i.e., annual fee entitles user to unlimited access to database, document provision, and printed awareness…

  4. Time resolved ion beam induced charge collection

    Sexton W, Frederick; Walsh S, David; Doyle L, Barney; Dodd E, Paul

    2000-01-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a -.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients

  5. Time resolved ion beam induced charge collection

    SEXTON,FREDERICK W.; WALSH,DAVID S.; DOYLE,BARNEY L.; DODD,PAUL E.

    2000-04-01

    Under this effort, a new method for studying the single event upset (SEU) in microelectronics has been developed and demonstrated. Called TRIBICC, for Time Resolved Ion Beam Induced Charge Collection, this technique measures the transient charge-collection waveform from a single heavy-ion strike with a {minus}.03db bandwidth of 5 GHz. Bandwidth can be expanded up to 15 GHz (with 5 ps sampling windows) by using an FFT-based off-line waveform renormalization technique developed at Sandia. The theoretical time resolution of the digitized waveform is 24 ps with data re-normalization and 70 ps without re-normalization. To preserve the high bandwidth from IC to the digitizing oscilloscope, individual test structures are assembled in custom high-frequency fixtures. A leading-edge digitized waveform is stored with the corresponding ion beam position at each point in a two-dimensional raster scan. The resulting data cube contains a spatial charge distribution map of up to 4,096 traces of charge (Q) collected as a function of time. These two dimensional traces of Q(t) can cover a period as short as 5 ns with up to 1,024 points per trace. This tool overcomes limitations observed in previous multi-shot techniques due to the displacement damage effects of multiple ion strikes that changed the signal of interest during its measurement. This system is the first demonstration of a single-ion transient measurement capability coupled with spatial mapping of fast transients.

  6. Artificial skin and patient simulator comprising the artificial skin

    2011-01-01

    The invention relates to an artificial skin (10, 12, 14), and relates to a patient simulator (100) comprising the artificial skin. The artificial skin is a layered structure comprising a translucent cover layer (20) configured for imitating human or animal skin, and comprising a light emitting layer

  7. Resolving runaway electron distributions in space, time, and energy

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  8. Introduction to Artificial Neural Networks

    Larsen, Jan

    1999-01-01

    The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks.......The note addresses introduction to signal analysis and classification based on artificial feed-forward neural networks....

  9. Spatial manipulation with microfluidics

    Benjamin eLin

    2015-04-01

    Full Text Available Biochemical gradients convey information through space, time, and concentration, and are ultimately capable of spatially resolving distinct cellular phenotypes, such as differentiation, proliferation, and migration. How these gradients develop, evolve, and function during development, homeostasis, and various disease states is a subject of intense interest across a variety of disciplines. Microfluidic technologies have become essential tools for investigating gradient sensing in vitro due to their ability to precisely manipulate fluids on demand in well controlled environments at cellular length scales. This minireview will highlight their utility for studying gradient sensing along with relevant applications to biology.

  10. Plan de marketing para la herramienta de inteligencia artificial Parlakuy

    Farro Flores, César Augusto; Gonzales Gaspar, Juan Francisco

    2017-01-01

    Parlakuy es una empresa tecnológica en formación dedicada a utilizar herramientas de inteligencia artificial, específicamente machine learning, en las redes sociales. Tiene por objetivo ayudar a resolver las necesidades de las empresas y personas para que puedan entender a sus clientes en redes sociales, identificar temas importantes para su estudio y tomar acciones preventivas ante un suceso o acontecimiento en tiempo real. Para esto crea la herramienta Parlakuy, que tiene el mismo nombre...

  11. Criminal Aspects of Artificial Abortion

    Hartmanová, Leona

    2016-01-01

    Criminal Aspects of Artificial Abortion This diploma thesis deals with the issue of artificial abortion, especially its criminal aspects. Legal aspects are not the most important aspects of artificial abortion. Social, ethical or ideological aspects are of the same importance but this diploma thesis cannot analyse all of them. The main issue with artificial abortion is whether it is possible to force a pregnant woman to carry a child and give birth to a child when she cannot or does not want ...

  12. An experimental biomimetic platform for artificial olfaction.

    Corrado Di Natale

    Full Text Available Artificial olfactory systems have been studied for the last two decades mainly from the point of view of the features of olfactory neuron receptor fields. Other fundamental olfaction properties have only been episodically considered in artificial systems. As a result, current artificial olfactory systems are mostly intended as instruments and are of poor benefit for biologists who may need tools to model and test olfactory models. Herewith, we show how a simple experimental approach can be used to account for several phenomena observed in olfaction. An artificial epithelium is formed as a disordered distributed layer of broadly selective color indicators dispersed in a transparent polymer layer. The whole epithelium is probed with colored light, imaged with a digital camera and the olfactory response upon exposure to an odor is the change of the multispectral image. The pixels are treated as olfactory receptor neurons, whose optical properties are used to build a convergence classifier into a number of mathematically defined artificial glomeruli. A non-homogenous exposure of the test structure to the odours gives rise to a time and spatial dependence of the response of the different glomeruli strikingly similar to patterns observed in the olfactory bulb. The model seems to mimic both the formation of glomeruli, the zonal nature of olfactory epithelium, and the spatio-temporal signal patterns at the glomeruli level. This platform is able to provide a readily available test vehicle for chemists developing optical indicators for chemical sensing purposes and for biologists to test models of olfactory system organization.

  13. Time evolution of artificial plasma cloud in atmospheric environment

    Lu Qiming; Yang Weihong; Liu Wandong

    2004-01-01

    By analyzing the time evolution of artificial plasma cloud in the high altitude of atmospheric environment, the authors found that there are two zones, an exponential attenuation zone and a linearly attenuating zone, existing in the spatial distribution of electron density of the artificial plasma clouds. The plasma generator's particle flux density only contributes to the exponential attenuation zone, and has no effect on the linear attenuation zone. The average electron density in the linear attenuation zone is about 10 -5 of neutral particle density, and can diffuse over a wider area. The conclusion will supply some valuable references to the research of electromagnetic wave and artificial plasma interaction, the plasma invisibleness research of missile and special aerocraft, and the design of artificial plasma source. (authors)

  14. Engineering considerations in the use of artificial filter beds

    Richards, R.T.

    1978-01-01

    Artificial filter bed intakes utilize a prepared granular filter material to prevent entrance of debris and aquatic life into a water withdrawal facility. The relatively large quantities of water and the service reliability required for power plant cooling water systems present major engineering problems for the artificial filter concept, many of which have not been resolved. These problems include development of a suitable and stable filter medium; design of a reliable backwash system which is both effective and environmentally acceptable; meeting of all site-imposed restrictions relating to natural river turbidity, flooding characteristics, channel stability, and ice loads; and provision of the complex civil and mechanical engineering design inherent in such a system. Extensive model testing may be required for further engineering development of this system. The preliminary engineering for an artificial filter system is discussed in connection with a proposed 1.6-m 3 /s-capacity (25,000-gpm capacity) filter in the Columbia River

  15. Penguin colony attendance under artificial lights for ecotourism.

    Rodríguez, Airam; Holmberg, Ross; Dann, Peter; Chiaradia, André

    2018-03-30

    Wildlife watching is an emerging ecotourism activity around the world. In Australia and New Zealand, night viewing of little penguins attracts hundreds of thousands of visitors per year. As penguins start coming ashore after sunset, artificial lighting is essential to allow visitors to view them in the dark. This alteration of the nightscape warrants investigation for any potential effects of artificial lighting on penguin behavior. We experimentally tested how penguins respond to different light wavelengths (colors) and intensities to examine effects on the colony attendance behavior at two sites on Phillip Island, Australia. At one site, nocturnal artificial illumination has been used for penguin viewing for decades, whereas at the other site, the only light is from the natural night sky. Light intensity did not affect colony attendance behaviors of penguins at the artificially lit site, probably due to penguin habituation to lights. At the not previously lit site, penguins preferred lit paths over dark paths to reach their nests. Thus, artificial light might enhance penguin vision at night and consequently it might reduce predation risk and energetic costs of locomotion through obstacle and path detection. Although penguins are faithful to their path, they can be drawn to artificial lights at small spatial scale, so light pollution could attract penguins to undesirable lit areas. When artificial lighting is required, we recommend keeping lighting as dim and time-restricted as possible to mitigate any negative effects on the behavior of penguins and their natural habitat. © 2018 Wiley Periodicals, Inc.

  16. Minimum resolvable power contrast model

    Qian, Shuai; Wang, Xia; Zhou, Jingjing

    2018-01-01

    Signal-to-noise ratio and MTF are important indexs to evaluate the performance of optical systems. However,whether they are used alone or joint assessment cannot intuitively describe the overall performance of the system. Therefore, an index is proposed to reflect the comprehensive system performance-Minimum Resolvable Radiation Performance Contrast (MRP) model. MRP is an evaluation model without human eyes. It starts from the radiance of the target and the background, transforms the target and background into the equivalent strips,and considers attenuation of the atmosphere, the optical imaging system, and the detector. Combining with the signal-to-noise ratio and the MTF, the Minimum Resolvable Radiation Performance Contrast is obtained. Finally the detection probability model of MRP is given.

  17. Physiological targets of artificial gravity: the sensory-motor system

    Groen, E.L.; Clarke, A.; Bles, W.; Wuyts, F.; Paloski, W.; Clément, G.

    2007-01-01

    This chapter describes the pros and cons of artificial gravity applications in relation to human sensory-motor functioning in space. Spaceflight creates a challenge for sensory-motor functions that depend on gravity, which include postural balance, locomotion, eye-hand coordination, and spatial

  18. Enforcement actions: Significant actions resolved

    1994-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October - December 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  19. Enforcement actions: Significant actions resolved

    1992-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July - September 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  20. Biomaterials for artificial organs

    Lysaght, Michael J

    2010-01-01

    The worldwide demand for organ transplants far exceeds available donor organs. Consequently some patients die whilst waiting for a transplant. Synthetic alternatives are therefore imperative to improve the quality of, and in some cases, save people's lives. Advances in biomaterials have generated a range of materials and devices for use either outside the body or through implantation to replace or assist functions which may have been lost through disease or injury. Biomaterials for artificial organs reviews the latest developments in biomaterials and investigates how they can be used to improve the quality and efficiency of artificial organs. Part one discusses commodity biomaterials including membranes for oxygenators and plasmafilters, titanium and cobalt chromium alloys for hips and knees, polymeric joint-bearing surfaces for total joint replacements, biomaterials for pacemakers, defibrillators and neurostimulators and mechanical and bioprosthetic heart valves. Part two goes on to investigate advanced and ...

  1. Artificial structures on Mars

    Van Flandern, T.

    2002-05-01

    Approximately 70,000 images of the surface of Mars at a resolution of up to 1.4 meters per pixel, taken by the Mars Global Surveyor spacecraft, are now in public archives. Approximately 1% of those images show features that can be broadly described as `special shapes', `tracks, trails, and possible vegetation', `spots, stripes, and tubes', `artistic imagery', and `patterns and symbols'. Rather than optical illusions and tricks of light and shadow, most of these have the character that, if photographed on Earth, no one would doubt that they were the products of large biology and intelligence. In a few cases, relationships, context, and fulfillment of a priori predictions provide objective evidence of artificiality that is exempt from the influence of experimenter biases. Only controlled test results can be trusted because biases are strong and operate both for and against artificiality.

  2. Artificial intelligence in medicine

    Scerri, Mariella; Grech, Victor E.

    2016-01-01

    Various types of artificial intelligence programs are already available as consultants to physicians, and these help in medical diagnostics and treatment. At the time of writing, extant programs constitute “weak” AI—lacking in consciousness and intentionality. With AI currently making rapid progress in all domains, including those of healthcare, physicians face possible competitors—or worse, claims that doctors may become obsolete. We will explore the development of AI and robotics in medicin...

  3. Essentials of artificial intelligence

    Ginsberg, Matt

    1993-01-01

    Since its publication, Essentials of Artificial Intelligence has beenadopted at numerous universities and colleges offering introductory AIcourses at the graduate and undergraduate levels. Based on the author'scourse at Stanford University, the book is an integrated, cohesiveintroduction to the field. The author has a fresh, entertaining writingstyle that combines clear presentations with humor and AI anecdotes. At thesame time, as an active AI researcher, he presents the materialauthoritatively and with insight that reflects a contemporary, first hand

  4. Intelligible Artificial Intelligence

    Weld, Daniel S.; Bansal, Gagan

    2018-01-01

    Since Artificial Intelligence (AI) software uses techniques like deep lookahead search and stochastic optimization of huge neural networks to fit mammoth datasets, it often results in complex behavior that is difficult for people to understand. Yet organizations are deploying AI algorithms in many mission-critical settings. In order to trust their behavior, we must make it intelligible --- either by using inherently interpretable models or by developing methods for explaining otherwise overwh...

  5. Intelligence in Artificial Intelligence

    Datta, Shoumen Palit Austin

    2016-01-01

    The elusive quest for intelligence in artificial intelligence prompts us to consider that instituting human-level intelligence in systems may be (still) in the realm of utopia. In about a quarter century, we have witnessed the winter of AI (1990) being transformed and transported to the zenith of tabloid fodder about AI (2015). The discussion at hand is about the elements that constitute the canonical idea of intelligence. The delivery of intelligence as a pay-per-use-service, popping out of ...

  6. Artificial neural network modelling

    Samarasinghe, Sandhya

    2016-01-01

    This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling. .

  7. Artificial sweetener; Jinko kanmiryo

    NONE

    1999-08-01

    The patents related to the artificial sweetener that it is introduced to the public in 3 years from 1996 until 1998 are 115 cases. The sugar quality which makes an oligosaccharide and sugar alcohol the subject is greatly over 28 cases of the non-sugar quality in the one by the kind as a general tendency of these patents at 73 cases in such cases as the Aspartame. The method of manufacture patent, which included new material around other peptides, the oligosaccharide and sugar alcohol isn`t inferior to 56 cases of the formation thing patent at 43 cases, and pays attention to the thing, which is many by the method of manufacture, formation. There is most improvement of the quality of sweetness with 31 cases in badness of the aftertaste which is characteristic of the artificial sweetener and so on, and much stability including the improvement in the flavor of food by the artificial sweetener, a long time and dissolution, fluid nature and productivity and improvement of the economy such as a cost are seen with effect on a purpose. (NEDO)

  8. Antithrombotic artificial organs

    Takamatsu, T; Fukada, E; Saegusa, M; Hasegawa, T

    1971-07-12

    A new antithrombotic material useful for making artificial organs (artificial blood vessel, artificial heart, etc.) can be prepared by graft-polymerizing an acrylic ester (methyl methacrylate, methyl acrylate, ethyl acrylate, etc.) with a synthetic fiber (teflon, etc.). The graft-polymerization can be carried out by means of gamma radiation with cobalt 60 (dose rate 2.6x10/sup 3/ r/min., total dose 8x10/sup 4/ to 3.5x10/sup 5/ r). A graft ratio of 5 to 80% is attainable. In one example, a tubular sample made of teflon fiber having an inner diameter of 5 to 10 mm was immersed into methyl methacrylate in an ampoule in the absence of air and exposed to cobalt 60 gamma ray at the dose rate of 3.18x10/sup 3/ rad/min. After extraction with acetone, the sample was dried. The total dose was 3.5x10/sup 5/ rad and the graft ratio was ca. 25%. The sample was transplanted to vena cava of dog. No formation of thrombus was observed by autopsy (4 months after the transplantation). In control (teflon tube not graft-polymerized) thrombus was observed by autopsy 7 days after the transplantation.

  9. A simultaneous multi-slice selective J-resolved experiment for fully resolved scalar coupling information

    Zeng, Qing; Lin, Liangjie; Chen, Jinyong; Lin, Yanqin; Barker, Peter B.; Chen, Zhong

    2017-09-01

    Proton-proton scalar coupling plays an important role in molecular structure elucidation. Many methods have been proposed for revealing scalar coupling networks involving chosen protons. However, determining all JHH values within a fully coupled network remains as a tedious process. Here, we propose a method termed as simultaneous multi-slice selective J-resolved spectroscopy (SMS-SEJRES) for simultaneously measuring JHH values out of all coupling networks in a sample within one experiment. In this work, gradient-encoded selective refocusing, PSYCHE decoupling and echo planar spectroscopic imaging (EPSI) detection module are adopted, resulting in different selective J-edited spectra extracted from different spatial positions. The proposed pulse sequence can facilitate the analysis of molecular structures. Therefore, it will interest scientists who would like to efficiently address the structural analysis of molecules.

  10. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    Kumaran Narayanan

    2011-01-01

    Full Text Available Gene expression from bacterial artificial chromosome (BAC clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo.

  11. Spatial Operations

    Anda VELICANU

    2010-09-01

    Full Text Available This paper contains a brief description of the most important operations that can be performed on spatial data such as spatial queries, create, update, insert, delete operations, conversions, operations on the map or analysis on grid cells. Each operation has a graphical example and some of them have code examples in Oracle and PostgreSQL.

  12. Spatializing Time

    Thomsen, Bodil Marie Stavning

    2011-01-01

    The article analyses some of artist Søren Lose's photographic installations in which time, history and narration is reflected in the creation of allegoric, spatial relations.......The article analyses some of artist Søren Lose's photographic installations in which time, history and narration is reflected in the creation of allegoric, spatial relations....

  13. Spatial Computation

    2003-12-01

    Computation and today’s microprocessors with the approach to operating system architecture, and the controversy between microkernels and monolithic kernels...Both Spatial Computation and microkernels break away a relatively monolithic architecture into in- dividual lightweight pieces, well specialized...for their particular functionality. Spatial Computation removes global signals and control, in the same way microkernels remove the global address

  14. Enforcement actions: Significant actions resolved

    1993-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  15. Mediation for resolving family disputes

    Kamenecka-Usova M.

    2016-01-01

    Full Text Available Nowadays the understanding of the institute of marriage and its importance in the society has changed. Marriage is no longer assumed to be a commitment for a lifetime. As the principle of equality has replaced hierarchy as the guiding principle of family law it gave more grounds for family disputes and it became socially acceptable to leave marriages that are intolerable or merely unfulfilling. The aim of this article is to suggest an alternative dispute resolution method-mediation as a worthy option for resolving family conflicts.

  16. Enforcement actions: Significant actions resolved

    1991-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  17. Enforcement actions: Significant actions resolved

    1991-02-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1990) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  18. Enforcement actions: Significant actions resolved

    1990-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  19. Enforcement actions: Significant actions resolved

    1990-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  20. Enforcement actions: Significant actions resolved

    1992-08-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  1. Enforcement actions: Significant actions resolved

    1990-09-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April--June 1990) and includes copies of letters, notices, and orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  2. Enforcement actions: Significant actions resolved

    1993-06-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  3. Enforcement actions: Significant actions resolved

    1992-05-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (January--March 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  4. Enforcement actions: Significant actions resolved

    1993-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1993) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  5. Enforcement actions: Significant actions resolved

    1993-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1992) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  6. Enforcement actions: Significant actions resolved

    1991-07-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (April-June 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  7. Enforcement actions: Significant actions resolved

    1991-11-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  8. Enforcement actions: Significant actions resolved

    1992-03-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (October--December 1991) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  9. Enforcement actions: Significant actions resolved

    1989-12-01

    This compilation summarizes significant enforcement actions that have been resolved during one quarterly period (July--September 1989) and includes copies of letters, Notices, and Orders sent by the Nuclear Regulatory Commission to licensees with respect to these enforcement actions. It is anticipated that the information in this publication will be widely disseminated to managers and employees engaged in activities licensed by the NRC, so that actions can be taken to improve safety by avoiding future violations similar to those described in this publication

  10. Impacts of Artificial Reefs on Surrounding Ecosystems

    Manoukian, Sarine

    Artificial reefs are becoming a popular biological and management component in shallow water environments characterized by soft seabed, representing both important marine habitats and tools to manage coastal fisheries and resources. An artificial reef in the marine environment acts as an open system with exchange of material and energy, altering the physical and biological characteristics of the surrounding area. Reef stability will depend on the balance of scour, settlement, and burial resulting from ocean conditions over time. Because of the unstable nature of sediments, they require a detailed and systematic investigation. Acoustic systems like high-frequency multibeam sonar are efficient tools in monitoring the environmental evolution around artificial reefs, whereas water turbidity can limit visual dive and ROV inspections. A high-frequency multibeam echo sounder offers the potential of detecting fine-scale distribution of reef units, providing an unprecedented level of resolution, coverage, and spatial definition. How do artificial reefs change over time in relation to the coastal processes? How accurately does multibeam technology map different typologies of artificial modules of known size and shape? How do artificial reefs affect fish school behavior? What are the limitations of multibeam technology for investigating fish school distribution as well as spatial and temporal changes? This study addresses the above questions and presents results of a new approach for artificial reef seafloor mapping over time, based upon an integrated analysis of multibeam swath bathymetry data and geoscientific information (backscatter data analysis, SCUBA observations, physical oceanographic data, and previous findings on the geology and sedimentation processes, integrated with unpublished data) from Senigallia artificial reef, northwestern Adriatic Sea (Italy) and St. Petersburg Beach Reef, west-central Florida continental shelf. A new approach for observation of fish

  11. W7-X vacuum and finite-β magnetic field structure resolved with the HINT 3D equilibrium code

    Hayashi, T.; Merkel, P.; Nuehrenberg, J.; Schwenn, U.

    1994-01-01

    The 3D equilibrium code HINT allows the direct investigation of finite-β effects on sizes and phases of islands in genuinely 3D configurations like the W7-X stellarator planned by the Max-Planck-Institut fuer Plasmaphysik in Germany. The code does not require the existence of nested flux surfaces. This, in contrast to the inverse formulation used in the VMEC code, leads to a considerably more complex computational goal. The HINT code combines some crucial features reducing the numerical problems and the computational effort to such an extent as to allow computation of 3D equilibria at finite-β with magnetic islands. The code is based on a two-step procedure: Starting from a given B and an initial pressure, the iteration technique for the pressure advancement is differencing in an artificial time with an explicit 4th order scheme, or - alternatively for resolving the island topology - field lines starting from all gridpoints are followed long enough to allow pressure equalization along these. B.∇p 0, for fixed B. In a second step, p is kept fixed and B is advanced with an artificial time for solving ∇p - jxB = 0 under the constraint of vanishing toroidal current J. The differential equations are discretized in space with 4th order difference approximations on an Eulerian grid spanned by a rectangular box whose toroidal rotation law follows the W7-X geometry. The two sub-iteration steps are repeated until the force balance is satisfied to an appropriate accuracy. The boundaries (where the boundary conditions are prescribed) are far enough away from the last closed magnetic surface, thus guaranteeing the motion of the plasma column not being constrained by the boundary conditions. Due to the stellarator symmetry in the toroidal direction only half of an equilibrium period is computed, using modified periodic boundary conditions guaranteeing the 4th order of the spatial discretization. (author) 5 refs., 4 figs

  12. Artificial intelligence in hematology.

    Zini, Gina

    2005-10-01

    Artificial intelligence (AI) is a computer based science which aims to simulate human brain faculties using a computational system. A brief history of this new science goes from the creation of the first artificial neuron in 1943 to the first artificial neural network application to genetic algorithms. The potential for a similar technology in medicine has immediately been identified by scientists and researchers. The possibility to store and process all medical knowledge has made this technology very attractive to assist or even surpass clinicians in reaching a diagnosis. Applications of AI in medicine include devices applied to clinical diagnosis in neurology and cardiopulmonary diseases, as well as the use of expert or knowledge-based systems in routine clinical use for diagnosis, therapeutic management and for prognostic evaluation. Biological applications include genome sequencing or DNA gene expression microarrays, modeling gene networks, analysis and clustering of gene expression data, pattern recognition in DNA and proteins, protein structure prediction. In the field of hematology the first devices based on AI have been applied to the routine laboratory data management. New tools concern the differential diagnosis in specific diseases such as anemias, thalassemias and leukemias, based on neural networks trained with data from peripheral blood analysis. A revolution in cancer diagnosis, including the diagnosis of hematological malignancies, has been the introduction of the first microarray based and bioinformatic approach for molecular diagnosis: a systematic approach based on the monitoring of simultaneous expression of thousands of genes using DNA microarray, independently of previous biological knowledge, analysed using AI devices. Using gene profiling, the traditional diagnostic pathways move from clinical to molecular based diagnostic systems.

  13. Artificial intelligence in cardiology

    Srishti Sharma

    2017-01-01

    Full Text Available Artificial intelligence (AI provides machines with the ability to learn and respond the way humans do and is also referred to as machine learning. The step to building an AI system is to provide the data to learn from so that it can map relations between inputs and outputs and set up parameters such as “weights”/decision boundaries to predict responses for inputs in the future. Then, the model is tested on a second data set. This article outlines the promise this analytic approach has in medicine and cardiology.

  14. Is Intelligence Artificial?

    Greer, Kieran

    2014-01-01

    Our understanding of intelligence is directed primarily at the level of human beings. This paper attempts to give a more unifying definition that can be applied to the natural world in general. The definition would be used more to verify a degree of intelligence, not to quantify it and might help when making judgements on the matter. A version of an accepted test for AI is then put forward as the 'acid test' for Artificial Intelligence itself. It might be what a free-thinking program or robot...

  15. Bayesian artificial intelligence

    Korb, Kevin B

    2010-01-01

    Updated and expanded, Bayesian Artificial Intelligence, Second Edition provides a practical and accessible introduction to the main concepts, foundation, and applications of Bayesian networks. It focuses on both the causal discovery of networks and Bayesian inference procedures. Adopting a causal interpretation of Bayesian networks, the authors discuss the use of Bayesian networks for causal modeling. They also draw on their own applied research to illustrate various applications of the technology.New to the Second EditionNew chapter on Bayesian network classifiersNew section on object-oriente

  16. Uncertainty in artificial intelligence

    Kanal, LN

    1986-01-01

    How to deal with uncertainty is a subject of much controversy in Artificial Intelligence. This volume brings together a wide range of perspectives on uncertainty, many of the contributors being the principal proponents in the controversy.Some of the notable issues which emerge from these papers revolve around an interval-based calculus of uncertainty, the Dempster-Shafer Theory, and probability as the best numeric model for uncertainty. There remain strong dissenting opinions not only about probability but even about the utility of any numeric method in this context.

  17. Mechanism of artificial heart

    Yamane, Takashi

    2016-01-01

    This book first describes medical devices in relation to regenerative medicine before turning to a more specific topic: artificial heart technologies. Not only the pump mechanisms but also the bearing, motor mechanisms, and materials are described, including expert information. Design methods are described to enhance hemocompatibility: main concerns are reduction of blood cell damage and protein break, as well as prevention of blood clotting. Regulatory science from R&D to clinical trials is also discussed to verify the safety and efficacy of the devices.

  18. Various Views on Spatial Prepositions

    Retz-Schmidt, Gudula

    1988-01-01

    In this article, principles involving the intrinsic, deictic, and extrinsic use of spatial prepositions are examined from linguistic, psychological, and AI approaches. First, I define some important terms. Second, those prepositions which permit intrinsic, deictic, and extrinsic use are specified. Third, I examine how the frame of reference is determined for all three cases. Fourth, I look at ambiguities in the use of prepositions and how they can be resolved. Finally, I introduce the natural...

  19. The Resolved Stellar Population of Leo A

    Tolstoy, Eline

    1996-05-01

    New observations of the resolved stellar population of the extremely metal-poor Magellanic dwarf irregular galaxy Leo A in Thuan-Gunn r, g, i, and narrowband Hα filters are presented. Using the recent Cepheid variable star distance determination to Leo A by Hoessel et al., we are able to create an accurate color-magnitude diagram (CMD). We have used the Bavesian inference method described by Tolstoy & Saha to calculate the likelihood of a Monte Carlo simulation of the stellar population of Leo A being a good match to the data within the well understood errors in the data. The magnitude limits on our data are sensitive enough to look back at ~1 Gyr of star formation history at the distance of Leo A. To explain the observed ratio of red to blue stars in the observed CMD, it is necessary to invoke either a steadily decreasing star formation rate toward the present time or gaps in the star formation history. We also compare the properties of the observed stellar population with the known spatial distribution of the H I gas and H II regions to support the conclusions from CMD modeling. We consider the possibility that currently there is a period of diminished star formation in Leo A, as evidenced by the lack of very young stars in the CMD and the faint H II regions. How the chaotic H I distribution, with no observable rotation, fits into our picture of the evolution of Leo A is as yet unclear.

  20. Enzyme reactions and their time resolved measurements

    Hajdu, Janos

    1990-01-01

    This paper discusses experimental strategies in data collection with the Laue method and summarises recent results using synchrotron radiation. Then, an assessment is made of the progress towards time resolved studies with protein crystals and the problems that remain. The paper consists of three parts which respectively describe some aspects of Laue diffraction, recent examples of structural results from Laue diffraction, and kinetic Laue crystallography. In the first part, characteristics of Laue diffraction is discussed first, focusing on the harmonics problems, spatials problem, wavelength normalization, low resolution hole, data completeness, and uneven coverage of reciprocal space. Then, capture of the symmetry unique reflection set is discussed focusing on the effect of wavelength range on the number of reciprocal lattice points occupying diffracting positions, effect of crystal to film distance and the film area and shape on the number of reflections captured, and effect of crystal symmetry on the number of unique reflections within the number of reflections captured. The second part addresses the determination of the structure of turkey egg white lysozyme, and calcium binding in tomato bushy stunt virus. The third part describes the initiation of reactions in enzyme crystals, picosecond Laue diffraction at high energy storage rings, and detectors. (N.K.)

  1. Image Chunking: Defining Spatial Building Blocks for Scene Analysis.

    1987-04-01

    mumgs0.USmusa 7.AUWOJO 4. CIUTAC Rm6ANT Wuugme*j James V/. Mlahoney DACA? 6-85-C-00 10 NOQ 1 4-85-K-O 124 Artificial Inteligence Laboratory US USS 545...0197 672 IMAGE CHUWING: DEINING SPATIAL UILDING PLOCKS FOR 142 SCENE ANRLYSIS(U) MASSACHUSETTS INST OF TECH CAIIAIDGE ARTIFICIAL INTELLIGENCE LAO J...Technical Report 980 F-Image Chunking: Defining Spatial Building Blocks for Scene DTm -Analysis S ELECTED James V. Mahoney’ MIT Artificial Intelligence

  2. How to teach artificial organs.

    Zapanta, Conrad M; Borovetz, Harvey S; Lysaght, Michael J; Manning, Keefe B

    2011-01-01

    Artificial organs education is often an overlooked field for many bioengineering and biomedical engineering students. The purpose of this article is to describe three different approaches to teaching artificial organs. This article can serve as a reference for those who wish to offer a similar course at their own institutions or incorporate these ideas into existing courses. Artificial organ classes typically fulfill several ABET (Accreditation Board for Engineering and Technology) criteria, including those specific to bioengineering and biomedical engineering programs.

  3. Artificial Photosynthesis: Beyond Mimicking Nature

    Dau, Holger; Fujita, Etsuko; Sun, Licheng

    2017-01-01

    In this Editorial, Guest Editors Holger Dau, Etsuko Fujita, and Licheng Sun introduce the Special Issue of ChemSusChem on “Artificial Photosynthesis for Sustainable Fuels”. Here, they discuss the need for non-fossil based fuels, introduce both biological and artificial photosynthesis, and outline various important concepts in artificial photosynthesis, including molecular and solid-state catalysts for water oxidation and hydrogen evolution, catalytic CO 2 reduction, and photoelectrochemical systems.

  4. Artificial Intelligence in Space Platforms.

    1984-12-01

    computer algorithms, there still appears to be a need for Artificial Inteligence techniques in the navigation area. The reason is that navigaion, in...RD-RI32 679 ARTIFICIAL INTELLIGENCE IN SPACE PLRTFORNSMU AIR FORCE 1/𔃼 INST OF TECH WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGINEERING M A WRIGHT DEC 94...i4 Preface The purpose of this study was to analyze the feasibility of implementing Artificial Intelligence techniques to increase autonomy for

  5. Artificial Intelligence and Moral intelligence

    Laura Pana

    2008-01-01

    We discuss the thesis that the implementation of a moral code in the behaviour of artificial intelligent systems needs a specific form of human and artificial intelligence, not just an abstract intelligence. We present intelligence as a system with an internal structure and the structural levels of the moral system, as well as certain characteristics of artificial intelligent agents which can/must be treated as 1- individual entities (with a complex, specialized, autonomous or selfdetermined,...

  6. Trimaran Resistance Artificial Neural Network

    2011-01-01

    11th International Conference on Fast Sea Transportation FAST 2011, Honolulu, Hawaii, USA, September 2011 Trimaran Resistance Artificial Neural Network Richard...Trimaran Resistance Artificial Neural Network 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e... Artificial Neural Network and is restricted to the center and side-hull configurations tested. The value in the parametric model is that it is able to

  7. Artificial Intelligence and Economic Theories

    Marwala, Tshilidzi; Hurwitz, Evan

    2017-01-01

    The advent of artificial intelligence has changed many disciplines such as engineering, social science and economics. Artificial intelligence is a computational technique which is inspired by natural intelligence such as the swarming of birds, the working of the brain and the pathfinding of the ants. These techniques have impact on economic theories. This book studies the impact of artificial intelligence on economic theories, a subject that has not been extensively studied. The theories that...

  8. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences...... the decay of the plasmon-field coherence. Generation of the measured signal at the tunneling junction offers the possibility to observe ultrafast effects with a spatial resolution determined by the tunneling junction...

  9. First Resolved Images of the Mira AB Symbiotic Binary at Centimeter Wavelengths

    Matthews, Lynn D.; Karovska, Margarita

    2005-01-01

    We report the first spatially resolved radio continuum measurements of the Mira AB symbiotic binary system, based on observations obtained with the Very Large Array (VLA). This is the first time that a symbiotic binary has been resolved unambiguously at centimeter wavelengths. We describe the results of VLA monitoring of both stars over a ten month period, together with constraints on their individual spectral energy distributions, variability, and radio emission mechanisms. The emission from...

  10. Artificial Enzymes, "Chemzymes"

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that successf......Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  11. The total artificial heart.

    Cook, Jason A; Shah, Keyur B; Quader, Mohammed A; Cooke, Richard H; Kasirajan, Vigneshwar; Rao, Kris K; Smallfield, Melissa C; Tchoukina, Inna; Tang, Daniel G

    2015-12-01

    The total artificial heart (TAH) is a form of mechanical circulatory support in which the patient's native ventricles and valves are explanted and replaced by a pneumatically powered artificial heart. Currently, the TAH is approved for use in end-stage biventricular heart failure as a bridge to heart transplantation. However, with an increasing global burden of cardiovascular disease and congestive heart failure, the number of patients with end-stage heart failure awaiting heart transplantation now far exceeds the number of available hearts. As a result, the use of mechanical circulatory support, including the TAH and left ventricular assist device (LVAD), is growing exponentially. The LVAD is already widely used as destination therapy, and destination therapy for the TAH is under investigation. While most patients requiring mechanical circulatory support are effectively treated with LVADs, there is a subset of patients with concurrent right ventricular failure or major structural barriers to LVAD placement in whom TAH may be more appropriate. The history, indications, surgical implantation, post device management, outcomes, complications, and future direction of the TAH are discussed in this review.

  12. THRESHOLD LOGIC IN ARTIFICIAL INTELLIGENCE

    COMPUTER LOGIC, ARTIFICIAL INTELLIGENCE , BIONICS, GEOMETRY, INPUT OUTPUT DEVICES, LINEAR PROGRAMMING, MATHEMATICAL LOGIC, MATHEMATICAL PREDICTION, NETWORKS, PATTERN RECOGNITION, PROBABILITY, SWITCHING CIRCUITS, SYNTHESIS

  13. An online, energy-resolving beam profile detector for laser-driven proton beams

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Karsch, L. [OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden, 01307 Dresden (Germany)

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  14. Spatial Theography

    van Noppen, Jean Pierre

    1995-01-01

    Descriptive theology («theography») frequently resorts to metaphorical modes of meaning. Among these metaphors, the spatial language of localization and orientation plays an important role to delineate tentative insights into the relationship between the human and the divine. These spatial metaphors are presumably based on the universal human experience of interaction between the body and its environment. It is dangerous, however, to postulate universal agreement on meanings associated with s...

  15. Generative Artificial Intelligence : Philosophy and Theory of Artificial Intelligence

    van der Zant, Tijn; Kouw, Matthijs; Schomaker, Lambertus; Mueller, Vincent C.

    2013-01-01

    The closed systems of contemporary Artificial Intelligence do not seem to lead to intelligent machines in the near future. What is needed are open-ended systems with non-linear properties in order to create interesting properties for the scaffolding of an artificial mind. Using post-structuralistic

  16. Fast time-resolved aerosol collector: proof of concept

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  17. Time-resolved fluorescence spectroscopy

    Gustavsson, Thomas; Mialocq, Jean-Claude

    2007-01-01

    This article addresses the evolution in time of light emitted by a molecular system after a brief photo-excitation. The authors first describe fluorescence from a photo-physical point of view and discuss the characterization of the excited state. Then, they explain some basic notions related to fluorescence characterization (lifetime and decays, quantum efficiency, so on). They present the different experimental methods and techniques currently used to study time-resolved fluorescence. They discuss basic notions of time resolution and spectral reconstruction. They briefly present some conventional methods: intensified Ccd cameras, photo-multipliers and photodiodes associated with a fast oscilloscope, and phase modulation. Other methods and techniques are more precisely presented: time-correlated single photon counting (principle, examples, and fluorescence lifetime imagery), streak camera (principle, examples), and optical methods like the Kerr optical effect (principle and examples) and fluorescence up-conversion (principle and theoretical considerations, examples of application)

  18. Artificial organs: recent progress in artificial hearing and vision.

    Ifukube, Tohru

    2009-01-01

    Artificial sensory organs are a prosthetic means of sending visual or auditory information to the brain by electrical stimulation of the optic or auditory nerves to assist visually impaired or hearing-impaired people. However, clinical application of artificial sensory organs, except for cochlear implants, is still a trial-and-error process. This is because how and where the information transmitted to the brain is processed is still unknown, and also because changes in brain function (plasticity) remain unknown, even though brain plasticity plays an important role in meaningful interpretation of new sensory stimuli. This article discusses some basic unresolved issues and potential solutions in the development of artificial sensory organs such as cochlear implants, brainstem implants, artificial vision, and artificial retinas.

  19. Atomic column resolved electron energy-loss spectroscopy

    Duscher, G.; Pennycook, S.J.; Browning, N.D.

    1998-01-01

    Spatially resolved electron energy-loss spectroscopy (EELS) is rapidly developing into a unique and powerful tool to characterize internal interfaces. Because atomic column resolved Z-contrast imaging can be performed simultaneously with EELS in the scanning transmission electron microscope, this combination allows the atomic structure to be correlated with the electronic structure, and thus the local properties of interfaces or defects can be determined directly. However, the ability to characterize interfaces and defects at that level requires not only high spatial resolution but also the exact knowledge of the beam location, from where the spectrum is obtained. Here we discuss several examples progressing from cases where the limitation in spatial resolution is given by the microscopes or the nature of the sample, to one example of impurity atoms at a grain boundary, which show intensity and fine structure changes from atomic column to atomic column. Such data can be interpreted as changes in valence of the impurity, depending on its exact site in the boundary plane. Analysis ofthis nature is a valuable first step in understanding the microscopic structural, optical and electronic properties of materials. (orig.)

  20. Resolving ultrafast exciton migration in organic solids at the nanoscale

    Ginsberg, Naomi

    The migration of Frenkel excitons, tightly-bound electron-hole pairs, in photosynthesis and in organic semiconducting films is critical to the efficiency of natural and artificial light harvesting. While these materials exhibit a high degree of structural heterogeneity on the nanoscale, traditional measurements of exciton migration lengths are performed on bulk samples. Since both the characteristic length scales of structural heterogeneity and the reported bulk diffusion lengths are smaller than the optical diffraction limit, we adapt far-field super-resolution fluorescence imaging to uncover the correlations between the structural and energetic landscapes that the excitons explore. By combining the ultrafast super-resolved measurements with exciton hopping simulations we furthermore specify the nature (in addition to the extent) of exciton migration as a function of the intrinsic and ensemble chromophore energy scales that determine a spatio-energetic landscape for migration. In collaboration with: Samuel Penwell, Lucas Ginsberg, University of California, Berkeley and Rodrigo Noriega University of Utah.