WorldWideScience

Sample records for spatially periodic temperature

  1. Brownian micro-engines and refrigerators in a spatially periodic temperature field: Heat flow and performances

    International Nuclear Information System (INIS)

    Ai Baoquan; Wang Liqiu; Liu Lianggang

    2006-01-01

    We study the thermodynamic features of a thermal motor driven by temperature differences, which consists of a Brownian particle moving in a sawtooth potential with an external load. The motor can work as a heat engine or a refrigerator under different conditions. The heat flow driven by both potential and kinetic energy is considered. The former is reversible when the engine works quasistatically and the latter is always irreversible. The efficiency of the heat engine (Coefficient Of Performance (COP) of a refrigerator) can never approach Carnot efficiency (COP)

  2. Performance characteristics and parametric optimum criteria of a Brownian micro-refrigerator in a spatially periodic temperature field

    International Nuclear Information System (INIS)

    Lin Bihong; Chen Jincan

    2009-01-01

    It is shown that a microscopic system consisting of Brownian particles moving in a spatially asymmetric but periodic potential (ratchet) and contacting with the alternating hot and cold reservoirs along space coordinate and an external force applying on the particles may work as a refrigerator. In order to clarify the underlying physical pictures of the system, the heat flows via both the potential energy and the kinetic energy of the particles are considered simultaneously. Based on an Arrhenius' factor describing the forward and backward particle currents, expressions for some important performance parameters of the refrigerator, such as the coefficient of performance, cooling rate and power input, are derived analytically. The maximum coefficient of performance and cooling rate are numerically calculated for some given parameters. The influence of the main parameters such as the external force, barrier height of the potential, asymmetry of the potential and temperature ratio of the heat reservoirs on the performance of the Brownian refrigerator is discussed. The optimum criteria of some characteristic parameters are given. It is found that the Brownian refrigerator may be controlled to operate in different regions through the choice of several parameters

  3. Spatially variant periodic structures in electromagnetics

    Science.gov (United States)

    Rumpf, Raymond C.; Pazos, Javier J.; Digaum, Jennefir L.; Kuebler, Stephen M.

    2015-01-01

    Spatial transforms are a popular technique for designing periodic structures that are macroscopically inhomogeneous. The structures are often required to be anisotropic, provide a magnetic response, and to have extreme values for the constitutive parameters in Maxwell's equations. Metamaterials and photonic crystals are capable of providing these, although sometimes only approximately. The problem still remains about how to generate the geometry of the final lattice when it is functionally graded, or spatially varied. This paper describes a simple numerical technique to spatially vary any periodic structure while minimizing deformations to the unit cells that would weaken or destroy the electromagnetic properties. New developments in this algorithm are disclosed that increase efficiency, improve the quality of the lattices and provide the ability to design aplanatic metasurfaces. The ability to spatially vary a lattice in this manner enables new design paradigms that are not possible using spatial transforms, three of which are discussed here. First, spatially variant self-collimating photonic crystals are shown to flow unguided waves around very tight bends using ordinary materials with low refractive index. Second, multi-mode waveguides in spatially variant band gap materials are shown to guide waves around bends without mixing power between the modes. Third, spatially variant anisotropic materials are shown to sculpt the near-field around electric components. This can be used to improve electromagnetic compatibility between components in close proximity. PMID:26217058

  4. Communication with spatial periodic chaos synchronization

    International Nuclear Information System (INIS)

    Zhou, J.; Huang, H.B.; Qi, G.X.; Yang, P.; Xie, X.

    2005-01-01

    Based on the spatial periodic chaos synchronization in coupled ring and linear arrays, we proposed a random high-dimensional chaotic encryption scheme. The transmitter can choose hyperchaotic signals randomly from the ring at any different time and simultaneously transmit the information of chaotic oscillators in the ring to receiver through public channel, so that the message can be masked by different hyperchaotic signals in different time intervals during communication, and the receiver can decode the message based on chaos synchronization but the attacker does not know the random hyperchaotic dynamics and cannot decode the message. Furthermore, the high sensitivity to the symmetry of the coupling structure makes the attacker very difficult to obtain any useful message from the channel

  5. Phase separation in fluids exposed to spatially periodic external fields.

    Science.gov (United States)

    Vink, R L C; Archer, A J

    2012-03-01

    When a fluid is confined within a spatially periodic external field, the liquid-vapor transition is replaced by a different transition called laser-induced condensation (LIC) [Götze et al., Mol. Phys. 101, 1651 (2003)]. In d=3 dimensions, the periodic field induces an additional phase, characterized by large density modulations along the field direction. At the triple point, all three phases (modulated, vapor, and liquid) coexist. At temperatures slightly above the triple point and for low (high) values of the chemical potential, two-phase coexistence between the modulated phase and the vapor (liquid) is observed; by increasing the temperature further, both coexistence regions terminate in critical points. In this paper, we reconsider LIC using the Ising model to resolve a number of open issues. To be specific, we (1) determine the universality class of the LIC critical points and elucidate the nature of the correlations along the field direction, (2) present a mean-field analysis to show how the LIC phase diagram changes as a function of the field wavelength and amplitude, (3) develop a simulation method by which the extremely low tension of the interface between modulated and vapor or liquid phase can be measured, (4) present a finite-size scaling analysis to accurately extract the LIC triple point from finite-size simulation data, and (5) consider the fate of LIC in d=2 dimensions.

  6. Periodicity in spatial data and geostatistical models: autocorrelation between patches

    Science.gov (United States)

    Volker C. Radeloff; Todd F. Miller; Hong S. He; David J. Mladenoff

    2000-01-01

    Several recent studies in landscape ecology have found periodicity in correlograms or semi-variograms calculated, for instance, from spatial data of soils, forests, or animal populations. Some of the studies interpreted this as an indication of regular or periodic landscape patterns. This interpretation is in disagreement with other studies that doubt whether such...

  7. Propagation dynamics for a spatially periodic integrodifference competition model

    Science.gov (United States)

    Wu, Ruiwen; Zhao, Xiao-Qiang

    2018-05-01

    In this paper, we study the propagation dynamics for a class of integrodifference competition models in a periodic habitat. An interesting feature of such a system is that multiple spreading speeds can be observed, which biologically means different species may have different spreading speeds. We show that the model system admits a single spreading speed, and it coincides with the minimal wave speed of the spatially periodic traveling waves. A set of sufficient conditions for linear determinacy of the spreading speed is also given.

  8. Spatial Domain Adaptive Control of Nonlinear Rotary Systems Subject to Spatially Periodic Disturbances

    Directory of Open Access Journals (Sweden)

    Yen-Hsiu Yang

    2012-01-01

    Full Text Available We propose a generic spatial domain control scheme for a class of nonlinear rotary systems of variable speeds and subject to spatially periodic disturbances. The nonlinear model of the rotary system in time domain is transformed into one in spatial domain employing a coordinate transformation with respect to angular displacement. Under the circumstances that measurement of the system states is not available, a nonlinear state observer is established for providing the estimated states. A two-degree-of-freedom spatial domain control configuration is then proposed to stabilize the system and improve the tracking performance. The first control module applies adaptive backstepping with projected parametric update and concentrates on robust stabilization of the closed-loop system. The second control module introduces an internal model of the periodic disturbances cascaded with a loop-shaping filter, which not only further reduces the tracking error but also improves parametric adaptation. The overall spatial domain output feedback adaptive control system is robust to model uncertainties and state estimated error and capable of rejecting spatially periodic disturbances under varying system speeds. Stability proof of the overall system is given. A design example with simulation demonstrates the applicability of the proposed design.

  9. Transient performance of integrated SOFC system including spatial temperature control

    OpenAIRE

    Mueller, F; Fardadi, M; Shaffer, B; Brouwer, J; Jabbari, F

    2010-01-01

    Spatial temperature feedback control has been developed for a simulated integrated non-pressurized simple cycle solid oxide fuel cell (SOFC) system. The fuel cell spatial temperature feedback controller is based on (1) feed-forward set-points that minimize temperature variation in the fuel cell electrode-electrolyte solid temperature profile for the system operating power range, and (2) decentralized proportional-integral based feedback to maintain the fuel cell spatial temperature profile du...

  10. Periodic Thomson scattering diagnostic with 16 spatial channels on ASDEX

    International Nuclear Information System (INIS)

    Meisel, D.; Murmann, H.; Roehr, H.; Steuer, K.H.; Becker, G.; Bosch, H.S.; Brocken, H.; Eberhagen, A.; Fussmann, G.; Gehre, O.; Gernhardt, J.; Gierke, G. v.; Glock, E.; Gruber, O.; Haas, G.; Hofmann, J.; Janeschitz, G.; Karger, F.; Klueber, O.; Kornherr, M.; Lackner, K.; Lenoci, M.; Lisitano, G.; Mast, F.; Mayer, H.M.; McCormick, K.; Mertens, V.; Niedermeyer, H.; Poschenrieder, W.; Rapp, H.; Roth, J.; Schneider, F.; Setzensack, C.; Siller, G.; Soeldner, F.X.; Wagner, F.; Zasche, D.; Izvozchikov, A.; Ryter, F.

    1986-01-01

    The Nd-YAG Periodic Scattering System (PSS) was developped in teamwork with IPF of Stuttgart-University. At first a PSS with only one spatial channel was successfully tested in the ASDEX-Tokamak in 1982. Subsequently an upgraded system with 16 spatial channels was constructed. This new system is capable of measuring Te, Ne-profiles at 17 ms intervals during the entire ASDEX-Tokamak-discharge. The PSS has been working successfully for the last one and a half years as a standard diagnostic method in the ASDEX-Tokamak. This means, that the measurement is being automatically performed during all plasma-discharges. The Te- and Ne-values are stored in the ASDEX-computer and every user has the possibility to get the Te(r, t), Ne(r, t)-data for his own needs. (orig.)

  11. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2013-01-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat...

  12. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    Science.gov (United States)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  13. A temperature-compensated high spatial resolution distributed strain sensor

    International Nuclear Information System (INIS)

    Belal, Mohammad; Cho, Yuh Tat; Ibsen, Morten; Newson, Trevor P

    2010-01-01

    We propose and demonstrate a scheme which utilizes the temperature dependence of spontaneous Raman scattering to provide temperature compensation for a high spatial resolution Brillouin frequency-based strain sensor

  14. Temporal and spatial variability in North Carolina piedmont stream temperature

    Science.gov (United States)

    J.L. Boggs; G. Sun; S.G. McNulty; W. Swartley; Treasure E.; W. Summer

    2009-01-01

    Understanding temporal and spatial patterns of in-stream temperature can provide useful information to managing future impacts of climate change on these systems. This study will compare temporal patterns and spatial variability of headwater in-stream temperature in six catchments in the piedmont of North Carolina in two different geological regions, Carolina slate...

  15. Spatial variability of correlated color temperature of lightning channels

    Directory of Open Access Journals (Sweden)

    Nobuaki Shimoji

    Full Text Available In this paper, we present the spatial variability of the correlated color temperature of lightning channel shown in a digital still image. In order to analyze the correlated color temperature, we calculated chromaticity coordinates of the lightning channels in the digital still image. From results, the spatial variation of the correlated color temperature of the lightning channel was confirmed. Moreover, the results suggest that the correlated color temperature and peak current of the lightning channels are related to each other. Keywords: Lightning, Color analysis, Correlated color temperature, Chromaticity coordinate, CIE 1931 xy-chromaticity diagram

  16. Engineering of spatial solitons in two-period QPM structures

    DEFF Research Database (Denmark)

    Johansen, Steffen Kjær; Carrasco, Silvia; Torner, Lluis

    2002-01-01

    We report on a scheme which might make it practically possible to engineer the effective competing nonlinearities that on average govern the light propagation in quasi-phase-matching (QPM) gratings. Modulation of the QPM period with a second longer period, introduces an extra degree of freedom...... relative lengths of the two periods and we consider the effect on solitons and the bandwidth for their generation. We derive an expression for the bandwidth of multicolor soliton generation in two-period QPM samples and we predict and confirm numerically that the bandwidth is broader in the two-period QPM...

  17. Modulation equations for spatially periodic systems: derivation and solutions

    NARCIS (Netherlands)

    Schielen, R.; Doelman, A.

    1996-01-01

    We study a class of partial dierential equations in one spatial dimension, which can be seen as model equations for the analysis of pattern formation in physical systems dened on unbounded, weakly oscillating domains. We perform a linear and weakly nonlinear stability analysis for solutions that

  18. Prediction of water temperature metrics using spatial modelling in ...

    African Journals Online (AJOL)

    Water temperature regime dynamics should be viewed regionally, where regional divisions have an inherent underpinning by an understanding of natural thermal variability. The aim of this research was to link key water temperature metrics to readily-mapped environmental surrogates, and to produce spatial images of ...

  19. The effects of incubation period and temperature on the Hydrogen ...

    African Journals Online (AJOL)

    The effects of incubation period and temperature on the Hydrogen sulphide (H 2 S) technique for detection of faecal contamination in water. ... African Journal of Environmental Science and Technology. Journal Home ... A total of 171 water samples from 3 sources were analyzed for the presence of faecal contamination by

  20. Spatially periodic structures, under femtosecond pulsed excitation of crystals

    International Nuclear Information System (INIS)

    Martynovitch, Evgueni F.; Petite, Guillaume; Dresvianski, Vladimir P.; Starchenko, Anton A.

    2004-01-01

    Measuring the luminescence intensity of specially prepared irradiation defects induced in crystals, we observe that the longitudinal structure of quasi-interferences induced by two orthogonally polarized femtosecond pulses propagating together with different velocities is insensitive to the spatial broadening due to velocity dispersion in the crystals. On the contrary, it does depend on the pulse duration when it is changed by varying the spectral width of the radiation. It thus allows a direct measurement of the coherence time of such pulses. Stability of the axial selectivity is a good sign, taking away a number of serious limitations concerning possible applications

  1. Periodical rocking long period gratings in PANDA fibers for high temperature and refractive index sensing

    Science.gov (United States)

    Jin, Wa; Bi, Wei-hong; Fu, Xing-hu; Fu, Guang-wei

    2017-09-01

    We report periodical rocking long period gratings (PR-LPGs) in PANDA fibers fabricated with CO2 laser. The PR-LPGs achieve very high coupling efficiency of 19 dB with 12 periods and a 3.5° twist angle in just one scanning cycle, which is much more effective than the conventional CO2 laser fabrication technique. This type of LPGs exhibits polarization-selective resonance dips which demonstrate different sensitivities to environmental parameters. The high temperature and external refractive index sensitivities are measured simultaneously, so it can be used as a wavelength-selective polarization filter and sensor.

  2. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  3. Spatially resolved remote measurement of temperature by neutron resonance absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tremsin, A.S., E-mail: ast@ssl.berkeley.edu [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Kockelmann, W.; Pooley, D.E. [STFC, Rutherford Appleton Laboratory, ISIS Facility, Didcot OX11 0QX (United Kingdom); Feller, W.B. [NOVA Scientific, Inc., 10 Picker Road, Sturbridge, MA 01566 (United States)

    2015-12-11

    Deep penetration of neutrons into most engineering materials enables non-destructive studies of their bulk properties. The existence of sharp resonances in neutron absorption spectra enables isotopically-resolved imaging of elements present in a sample, as demonstrated by previous studies. At the same time the Doppler broadening of resonance peaks provides a method of remote measurement of temperature distributions within the same sample. This technique can be implemented at a pulsed neutron source with a short initial pulse allowing for the measurement of the energy of each registered neutron by the time of flight technique. A neutron counting detector with relatively high timing and spatial resolution is used to demonstrate the possibility to obtain temperature distributions across a 100 µm Ta foil with ~millimeter spatial resolution. Moreover, a neutron transmission measurement over a wide energy range can provide spatially resolved sample information such as temperature, elemental composition and microstructure properties simultaneously.

  4. Developing an Effective Model for Predicting Spatially and Temporally Continuous Stream Temperatures from Remotely Sensed Land Surface Temperatures

    Directory of Open Access Journals (Sweden)

    Kristina M. McNyset

    2015-12-01

    Full Text Available Although water temperature is important to stream biota, it is difficult to collect in a spatially and temporally continuous fashion. We used remotely-sensed Land Surface Temperature (LST data to estimate mean daily stream temperature for every confluence-to-confluence reach in the John Day River, OR, USA for a ten year period. Models were built at three spatial scales: site-specific, subwatershed, and basin-wide. Model quality was assessed using jackknife and cross-validation. Model metrics for linear regressions of the predicted vs. observed data across all sites and years: site-specific r2 = 0.95, Root Mean Squared Error (RMSE = 1.25 °C; subwatershed r2 = 0.88, RMSE = 2.02 °C; and basin-wide r2 = 0.87, RMSE = 2.12 °C. Similar analyses were conducted using 2012 eight-day composite LST and eight-day mean stream temperature in five watersheds in the interior Columbia River basin. Mean model metrics across all basins: r2 = 0.91, RMSE = 1.29 °C. Sensitivity analyses indicated accurate basin-wide models can be parameterized using data from as few as four temperature logger sites. This approach generates robust estimates of stream temperature through time for broad spatial regions for which there is only spatially and temporally patchy observational data, and may be useful for managers and researchers interested in stream biota.

  5. Finite spatial volume approach to finite temperature field theory

    International Nuclear Information System (INIS)

    Weiss, Nathan

    1981-01-01

    A relativistic quantum field theory at finite temperature T=β -1 is equivalent to the same field theory at zero temperature but with one spatial dimension of finite length β. This equivalence is discussed for scalars, for fermions, and for gauge theories. The relationship is checked for free field theory. The translation of correlation functions between the two formulations is described with special emphasis on the nonlocal order parameters of gauge theories. Possible applications are mentioned. (auth)

  6. The effects of spatial sampling choices on MR temperature measurements.

    Science.gov (United States)

    Todd, Nick; Vyas, Urvi; de Bever, Josh; Payne, Allison; Parker, Dennis L

    2011-02-01

    The purpose of this article is to quantify the effects that spatial sampling parameters have on the accuracy of magnetic resonance temperature measurements during high intensity focused ultrasound treatments. Spatial resolution and position of the sampling grid were considered using experimental and simulated data for two different types of high intensity focused ultrasound heating trajectories (a single point and a 4-mm circle) with maximum measured temperature and thermal dose volume as the metrics. It is demonstrated that measurement accuracy is related to the curvature of the temperature distribution, where regions with larger spatial second derivatives require higher resolution. The location of the sampling grid relative temperature distribution has a significant effect on the measured values. When imaging at 1.0 × 1.0 × 3.0 mm(3) resolution, the measured values for maximum temperature and volume dosed to 240 cumulative equivalent minutes (CEM) or greater varied by 17% and 33%, respectively, for the single-point heating case, and by 5% and 18%, respectively, for the 4-mm circle heating case. Accurate measurement of the maximum temperature required imaging at 1.0 × 1.0 × 3.0 mm(3) resolution for the single-point heating case and 2.0 × 2.0 × 5.0 mm(3) resolution for the 4-mm circle heating case. Copyright © 2010 Wiley-Liss, Inc.

  7. Understanding the Complexity of Temperature Dynamics in Xinjiang, China, from Multitemporal Scale and Spatial Perspectives

    Directory of Open Access Journals (Sweden)

    Jianhua Xu

    2013-01-01

    Full Text Available Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including the correlation dimension (CD, classical statistics, and geostatistics. The main conclusions are as follows (1 The integer CD values indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2 The complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics, at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal, and annual scales. (3 The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics are derived from the complex landform.

  8. An analysis of spatial representativeness of air temperature monitoring stations

    Science.gov (United States)

    Liu, Suhua; Su, Hongbo; Tian, Jing; Wang, Weizhen

    2018-05-01

    Surface air temperature is an essential variable for monitoring the atmosphere, and it is generally acquired at meteorological stations that can provide information about only a small area within an r m radius ( r-neighborhood) of the station, which is called the representable radius. In studies on a local scale, ground-based observations of surface air temperatures obtained from scattered stations are usually interpolated using a variety of methods without ascertaining their effectiveness. Thus, it is necessary to evaluate the spatial representativeness of ground-based observations of surface air temperature before conducting studies on a local scale. The present study used remote sensing data to estimate the spatial distribution of surface air temperature using the advection-energy balance for air temperature (ADEBAT) model. Two target stations in the study area were selected to conduct an analysis of spatial representativeness. The results showed that one station (AWS 7) had a representable radius of about 400 m with a possible error of less than 1 K, while the other station (AWS 16) had the radius of about 250 m. The representable radius was large when the heterogeneity of land cover around the station was small.

  9. SAGA GIS based processing of spatial high resolution temperature data

    International Nuclear Information System (INIS)

    Gerlitz, Lars; Bechtel, Benjamin; Kawohl, Tobias; Boehner, Juergen; Zaksek, Klemen

    2013-01-01

    Many climate change impact studies require surface and near surface temperature data with high spatial and temporal resolution. The resolution of state of the art climate models and remote sensing data is often by far to coarse to represent the meso- and microscale distinctions of temperatures. This is particularly the case for regions with a huge variability of topoclimates, such as mountainous or urban areas. Statistical downscaling techniques are promising methods to refine gridded temperature data with limited spatial resolution, particularly due to their low demand for computer capacity. This paper presents two downscaling approaches - one for climate model output and one for remote sensing data. Both are methodically based on the FOSS-GIS platform SAGA. (orig.)

  10. Can spatial statistical river temperature models be transferred between catchments?

    Science.gov (United States)

    Jackson, Faye L.; Fryer, Robert J.; Hannah, David M.; Malcolm, Iain A.

    2017-09-01

    There has been increasing use of spatial statistical models to understand and predict river temperature (Tw) from landscape covariates. However, it is not financially or logistically feasible to monitor all rivers and the transferability of such models has not been explored. This paper uses Tw data from four river catchments collected in August 2015 to assess how well spatial regression models predict the maximum 7-day rolling mean of daily maximum Tw (Twmax) within and between catchments. Models were fitted for each catchment separately using (1) landscape covariates only (LS models) and (2) landscape covariates and an air temperature (Ta) metric (LS_Ta models). All the LS models included upstream catchment area and three included a river network smoother (RNS) that accounted for unexplained spatial structure. The LS models transferred reasonably to other catchments, at least when predicting relative levels of Twmax. However, the predictions were biased when mean Twmax differed between catchments. The RNS was needed to characterise and predict finer-scale spatially correlated variation. Because the RNS was unique to each catchment and thus non-transferable, predictions were better within catchments than between catchments. A single model fitted to all catchments found no interactions between the landscape covariates and catchment, suggesting that the landscape relationships were transferable. The LS_Ta models transferred less well, with particularly poor performance when the relationship with the Ta metric was physically implausible or required extrapolation outside the range of the data. A single model fitted to all catchments found catchment-specific relationships between Twmax and the Ta metric, indicating that the Ta metric was not transferable. These findings improve our understanding of the transferability of spatial statistical river temperature models and provide a foundation for developing new approaches for predicting Tw at unmonitored locations across

  11. Summer temperature and spatial variability of all-cause mortality in Surat city, India

    Directory of Open Access Journals (Sweden)

    S K Rathi

    2017-01-01

    Full Text Available Background: Ample information is available on extreme heat associated mortality for few Indian cities, but scant literature is available on effect of temperature on spatial variability of all-cause mortality for coastal cities. Objective: To assess the effect of daily maximum temperature, relative humidity and heat index on spatial variability of all-cause mortality for summer months (March to May from 2014 to 2015 for the urban population of Surat (coastal city. Materials and Methods: Retrospective analysis of the all-cause mortality data with temperature and humidity was performed on a total of 9,237 deaths for 184 summer days (2014-2015. Climatic and all-cause mortality data were obtained through Tutiempo website and Surat Municipal Corporation respectively. Bivariate analysis performed through SPSS. Observations: Mean daily mortality was estimated at 50.2 ± 8.5 for the study period with a rise of 20% all-cause mortality at temperature ≥ 40°C and rise of 10% deaths per day during extreme danger level (HI: > 54°C days. Spatial (Zone wise analysis revealed rise of 61% all-cause mortality for Southeast and 30% for East zones at temperature ≥ 40°C. Conclusions: All-cause mortality increased on high summer temperature days. Presence of spatial variation in all-cause mortality provided the evidence for high risk zones. Findings may be helpful in designing the interventions at micro level.

  12. Influence of limb temperature on cutaneous silent periods.

    Science.gov (United States)

    Kofler, Markus; Valls-Solé, Josep; Vasko, Peter; Boček, Václav; Štetkárová, Ivana

    2014-09-01

    The cutaneous silent period (CSP) is a spinal inhibitory reflex mediated by small-diameter afferents (A-delta fibers) and large-diameter efferents (alpha motoneurons). The effect of limb temperature on CSPs has so far not been assessed. In 27 healthy volunteers (11 males; age 22-58 years) we recorded median nerve motor and sensory action potentials, median nerve F-wave and CSPs induced by noxious digit II stimulation in thenar muscles in a baseline condition at room temperature, and after randomly submersing the forearm in 42 °C warm or 15 °C cold water for 20 min each. In cold limbs, distal and proximal motor and sensory latencies as well as F-wave latencies were prolonged. Motor and sensory nerve conduction velocities were reduced. Compound motor and sensory nerve action potential amplitudes did not differ significantly from baseline. CSP onset and end latencies were more delayed than distal and proximal median nerve motor and sensory latencies, whereas CSP duration was not affected. In warm limbs, opposite but smaller changes were seen in nerve conduction studies and CSPs. The observed CSP shift "en bloc" towards longer latencies without affecting CSP duration during limb cooling concurs with slower conduction velocity in both afferent and efferent fibers. Disparate conduction slowing in afferents and efferents, however, suggests that nociceptive EMG suppression is mediated by fibers of different size in the afferent than in the efferent arm, indirectly supporting the contribution of A-delta fibers as the main afferent input. Limb temperature should be taken into account when testing CSPs in the clinical setting, as different limb temperatures affect CSP latencies more than large-diameter fiber conduction function. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  13. The spatial and temporal behavior of brightness temperature in Tel-Aviv and its application to air temperature monitoring

    Science.gov (United States)

    Pelta, Ran; Chudnovsky, A. Alexandra; Schwarts, Joel

    2016-01-01

    This study applies remote sensing technology to assess and examine the spatial and temporal Brightness Temperature (BT) profile in the city of Tel-Aviv, Israel over the last 30 years using Landsat imagery. The location of warmest and coldest zones are constant over the studied period. Distinct diurnal and temporal BT behavior divide the city into four different segments. As an example of future application, we applied mixed regression models with daily random slopes to correlate Landsat BT data with monitored air temperature (Tair) measurements using 14 images for 1989–2014. Our preliminary results show a good model performance with R2 = 0.81. Furthermore, based on the model’s results, we analyzed the spatial profile of Tair within the study domain for representative days. PMID:26499933

  14. Temporal and spatial assessments of minimum air temperature using satellite surface temperature measurements in Massachusetts, USA.

    Science.gov (United States)

    Kloog, Itai; Chudnovsky, Alexandra; Koutrakis, Petros; Schwartz, Joel

    2012-08-15

    Although meteorological stations provide accurate air temperature observations, their spatial coverage is limited and thus often insufficient for epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate near surface air temperature (Ta). However, the derivation of Ta from surface temperature (Ts) measured by satellites is far from being straightforward. In this study, we present a novel approach that incorporates land use regression, meteorological variables and spatial smoothing to first calibrate between Ts and Ta on a daily basis and then predict Ta for days when satellite Ts data were not available. We applied mixed regression models with daily random slopes to calibrate Moderate Resolution Imaging Spectroradiometer (MODIS) Ts data with monitored Ta measurements for 2003. Then, we used a generalized additive mixed model with spatial smoothing to estimate Ta in days with missing Ts. Out-of-sample tenfold cross-validation was used to quantify the accuracy of our predictions. Our model performance was excellent for both days with available Ts and days without Ts observations (mean out-of-sample R(2)=0.946 and R(2)=0.941 respectively). Furthermore, based on the high quality predictions we investigated the spatial patterns of Ta within the study domain as they relate to urban vs. non-urban land uses. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Spatial patterns in timing of the diurnal temperature cycle

    Directory of Open Access Journals (Sweden)

    T. R. H. Holmes

    2013-10-01

    Full Text Available This paper investigates the structural difference in timing of the diurnal temperature cycle (DTC over land resulting from choice of measuring device or model framework. It is shown that the timing can be reliably estimated from temporally sparse observations acquired from a constellation of low Earth-orbiting satellites given record lengths of at least three months. Based on a year of data, the spatial patterns of mean DTC timing are compared between temperature estimates from microwave Ka-band, geostationary thermal infrared (TIR, and numerical weather prediction model output from the Global Modeling and Assimilation Office (GMAO. It is found that the spatial patterns can be explained by vegetation effects, sensing depth differences and more speculatively the orientation of orographic relief features. In absolute terms, the GMAO model puts the peak of the DTC on average at 12:50 local solar time, 23 min before TIR with a peak temperature at 13:13 (both averaged over Africa and Europe. Since TIR is the shallowest observation of the land surface, this small difference represents a structural error that possibly affects the model's ability to assimilate observations that are closely tied to the DTC. The equivalent average timing for Ka-band is 13:44, which is influenced by the effect of increased sensing depth in desert areas. For non-desert areas, the Ka-band observations lag the TIR observations by only 15 min, which is in agreement with their respective theoretical sensing depth. The results of this comparison provide insights into the structural differences between temperature measurements and models, and can be used as a first step to account for these differences in a coherent way.

  16. Trends and periodicity of daily temperature and precipitation extremes during 1960-2013 in Hunan Province, central south China

    Science.gov (United States)

    Chen, Ajiao; He, Xinguang; Guan, Huade; Cai, Yi

    2018-04-01

    In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960-2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960-1986 and 1987-2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide

  17. A spatial and temporal analysis of Japanese encephalitis in mainland China, 1963-1975: a period without Japanese encephalitis vaccination.

    Science.gov (United States)

    Li, Xiaolong; Gao, Xiaoyan; Ren, Zhoupeng; Cao, Yuxi; Wang, Jinfeng; Liang, Guodong

    2014-01-01

    More than a million Japanese encephalitis (JE) cases occurred in mainland China from the 1960s to 1970s without vaccine interventions. The aim of this study is to analyze the spatial and temporal pattern of JE cases reported in mainland China from 1965 to 1973 in the absence of JE vaccination, and to discuss the impacts of climatic and geographical factors on JE during that period. Thus, the data of reported JE cases at provincial level and monthly precipitation and monthly mean temperature from 1963 to 1975 in mainland China were collected. Local Indicators of Spatial Association analysis was performed to identify spatial clusters at the province level. During that period, The epidemic peaked in 1966 and 1971 and the JE incidence reached up to 20.58/100000 and 20.92/100000, respectively. The endemic regions can be divided into three classes including high, medium, and low prevalence regions. Through spatial cluster analysis, JE epidemic hot spots were identified; most were located in the Yangtze River Plain which lies in the southeast of China. In addition, JE incidence was shown to vary among eight geomorphic units in China. Also, the JE incidence in the Loess Plateau and the North China Plain was showed to increase with the rise of temperature. Likewise, JE incidence in the Loess Plateau and the Yangtze River Plain was observed a same trend with the increase of rainfall. In conclusion, the JE cases clustered geographically during the epidemic period. Besides, the JE incidence was markedly higher on the plains than plateaus. These results may provide an insight into the epidemiological characteristics of JE in the absence of vaccine interventions and assist health authorities, both in China and potentially in Europe and Americas, in JE prevention and control strategies.

  18. Optofluidic intracavity spectroscopy for spatially, temperature, and wavelength dependent refractometry

    Science.gov (United States)

    Kindt, Joel D.

    A microfluidic refractometer was designed based on previous optofluidic intracavity spectroscopy (OFIS) chips utilized to distinguish healthy and cancerous cells. The optofluidic cavity is realized by adding high reflectivity dielectric mirrors to the top and bottom of a microfluidic channel. This creates a plane-plane Fabry-Perot optical cavity in which the resonant wavelengths are highly dependent on the optical path length inside the cavity. Refractometry is a useful method to determine the nature of fluids, including the concentration of a solute in a solvent as well as the temperature of the fluid. Advantages of microfluidic systems are the easy integration with lab-on-chip devices and the need for only small volumes of fluid. The unique abilities of the microfluidic refractometer in this thesis include its spatial, temperature, and wavelength dependence. Spatial dependence of the transmission spectrum is inherent through a spatial filtering process implemented with an optical fiber and microscope objective. A sequence of experimental observations guided the change from using the OFIS chip as a cell discrimination device to a complimentary refractometer. First, it was noted the electrode structure within the microfluidic channel, designed to trap and manipulate biological cells with dielectrophoretic (DEP) forces, caused the resonant wavelengths to blue-shift when the electrodes were energized. This phenomenon is consistent with the negative dn/dT property of water and water-based solutions. Next, it was necessary to develop a method to separate the optical path length into physical path length and refractive index. Air holes were placed near the microfluidic channel to exclusively measure the cavity length with the known refractive index of air. The cavity length was then interpolated across the microfluidic channel, allowing any mechanical changes to be taken into account. After the separation of physical path length and refractive index, it was of interest

  19. LAND SURFACE TEMPERATURES ESTIMATED ON GROUNDOBSERVED DATA AND SATELLITE IMAGES, DURING THE VEGETATION PERIOD IN THE OLTENIA PLAIN

    Directory of Open Access Journals (Sweden)

    ONŢEL IRINA

    2015-03-01

    Full Text Available The purpose of this study is to analyze the land surface temperatures by using climatological and remote sensing data during the vegetation period in the Oltenia Plain. The data used in this study refer both to climatological data (namely monthly and seasonal air and soil temperatures, and to remote sensing data delivered by MODIS Land Surface Temperature (LST, with a spatial resolution of 1 km. The analyzed period spans from 2000 to 2013 and the vegetation period considered is April-September. As main results, there were observed four years with high temperatures, namely 2000 (20.4oC-air T, 24.6oC soil T, and 26oC LST, 2003 (20.2oC air T, 23.9oC soil T and 24.5oC LST, 2007 (20.5oC air T, 24.3oC soil T and 25oC LST and 2012 (21.3oC air T, 25.7oC soil T and 26.5oC LST. The correlations between air temperature, soil temperature and LST were statisticaly significant. The diference between air temperature and soil temperature values ranked within 3-4oC, while the difference between soil temperature and land surface temperature obtained from MODIS images was about 0.8oC. Spatially, the highest temperatures were recorded on the Leu-Rotunda Field, the Caracal Plain and the Nedeia Field, and pretty high variations of observed temperatures seemed to depend on vegetation cover. The MODIS images represent one of the most important types of satellite data available for free, which can be successfully used in determining the climatic parameters and can help to predict the changes in plant activity, due to weather phenomena.

  20. Parametric effect of a spatially periodic voltage depression on operation of Cerenkov sources of electromagnetic radiation

    International Nuclear Information System (INIS)

    Nusinovich, G.S.; Vlasov, A.N.

    1994-01-01

    In microwave sources of coherent Cerenkov radiation the electrons usually propagate near the rippled wall of a slow-wave structure. These ripples cause the periodic modulation of electron potential depression, and therefore, lead to periodic modulation of electron axial velocities. Since the period of this electrostatic pumping is the period of the slow-wave structure the parametric coupling of electrons to originally nonsynchronous spatial harmonics of the microwave field may occur. This effect can be especially important for backward-wave oscillators (BWO's) driven by high current, relativistic electron beams. In the paper both linear and nonlinear theories of the relativistic resonant BWO with periodic modulation of electron axial velocities are developed and results illustrating the evolution of the linear gain function and the efficiency of operation in the large-signal regime are presented

  1. SPATIAL AND TEMPORAL VARIATION OF LAND SURFACE TEMPERATURE IN FUJIAN PROVINCE FROM 2001 TO 2015

    Directory of Open Access Journals (Sweden)

    Y. Li

    2018-04-01

    Full Text Available Land surface temperature (LST is an essential parameter in the physics of land surface processes. The spatiotemporal variations of LST on the Fujian province were studied using AQUA Moderate Resolution Imaging Spectroradiometer LST data. Considering the data gaps in remotely sensed LST products caused by cloud contamination, the Savitzky-Golay (S-G filter method was used to eliminate the influence of cloud cover and to describe the periodical signals of LST. Observed air temperature data from 27 weather stations were employed to evaluate the fitting performance of the S-G filter method. Results indicate that S-G can effectively fit the LST time series and remove the influence of cloud cover. Based on the S-G-derived result, Spatial and temporal Variations of LST in Fujian province from 2001 to 2015 are analysed through slope analysis. The results show that: 1 the spatial distribution of annual mean LST generally exhibits consistency with altitude in the study area and the average of LST was much higher in the east than in the west. 2 The annual mean temperature of LST declines slightly among 15 years in Fujian. 3 Slope analysis reflects the spatial distribution characteristics of LST changing trend in Fujian.Improvement areas of LST are mainly concentrated in the urban areas of Fujian, especially in the eastern urban areas. Apparent descent areas are mainly distributed in the area of Zhangzhou and eastern mountain area.

  2. Spatial and Temporal Variation of Land Surface Temperature in Fujian Province from 2001 TO 2015

    Science.gov (United States)

    Li, Y.; Wang, X.; Ding, Z.

    2018-04-01

    Land surface temperature (LST) is an essential parameter in the physics of land surface processes. The spatiotemporal variations of LST on the Fujian province were studied using AQUA Moderate Resolution Imaging Spectroradiometer LST data. Considering the data gaps in remotely sensed LST products caused by cloud contamination, the Savitzky-Golay (S-G) filter method was used to eliminate the influence of cloud cover and to describe the periodical signals of LST. Observed air temperature data from 27 weather stations were employed to evaluate the fitting performance of the S-G filter method. Results indicate that S-G can effectively fit the LST time series and remove the influence of cloud cover. Based on the S-G-derived result, Spatial and temporal Variations of LST in Fujian province from 2001 to 2015 are analysed through slope analysis. The results show that: 1) the spatial distribution of annual mean LST generally exhibits consistency with altitude in the study area and the average of LST was much higher in the east than in the west. 2) The annual mean temperature of LST declines slightly among 15 years in Fujian. 3) Slope analysis reflects the spatial distribution characteristics of LST changing trend in Fujian.Improvement areas of LST are mainly concentrated in the urban areas of Fujian, especially in the eastern urban areas. Apparent descent areas are mainly distributed in the area of Zhangzhou and eastern mountain area.

  3. A comparison of spatial interpolation methods for soil temperature over a complex topographical region

    Science.gov (United States)

    Wu, Wei; Tang, Xiao-Ping; Ma, Xue-Qing; Liu, Hong-Bin

    2016-08-01

    Soil temperature variability data provide valuable information on understanding land-surface ecosystem processes and climate change. This study developed and analyzed a spatial dataset of monthly mean soil temperature at a depth of 10 cm over a complex topographical region in southwestern China. The records were measured at 83 stations during the period of 1961-2000. Nine approaches were compared for interpolating soil temperature. The accuracy indicators were root mean square error (RMSE), modelling efficiency (ME), and coefficient of residual mass (CRM). The results indicated that thin plate spline with latitude, longitude, and elevation gave the best performance with RMSE varying between 0.425 and 0.592 °C, ME between 0.895 and 0.947, and CRM between -0.007 and 0.001. A spatial database was developed based on the best model. The dataset showed that larger seasonal changes of soil temperature were from autumn to winter over the region. The northern and eastern areas with hilly and low-middle mountains experienced larger seasonal changes.

  4. Enhanced diffusion with abnormal temperature dependence in underdamped space-periodic systems subject to time-periodic driving

    Science.gov (United States)

    Marchenko, I. G.; Marchenko, I. I.; Zhiglo, A. V.

    2018-01-01

    We present a study of the diffusion enhancement of underdamped Brownian particles in a one-dimensional symmetric space-periodic potential due to external symmetric time-periodic driving with zero mean. We show that the diffusivity can be enhanced by many orders of magnitude at an appropriate choice of the driving amplitude and frequency. The diffusivity demonstrates abnormal (decreasing) temperature dependence at the driving amplitudes exceeding a certain value. At any fixed driving frequency Ω normal temperature dependence of the diffusivity is restored at low enough temperatures, T oscillation frequency at the potential minimum, the diffusivity is shown to decrease with Ω according to a power law, with the exponent related to the transient superdiffusion exponent. This behavior is found similar for the cases of sinusoidal in time and piecewise constant periodic ("square") driving.

  5. Spatial clustering of childhood cancer in Great Britain during the period 1969-1993.

    Science.gov (United States)

    McNally, Richard J Q; Alexander, Freda E; Vincent, Tim J; Murphy, Michael F G

    2009-02-15

    The aetiology of childhood cancer is poorly understood. Both genetic and environmental factors are likely to be involved. The presence of spatial clustering is indicative of a very localized environmental component to aetiology. Spatial clustering is present when there are a small number of areas with greatly increased incidence or a large number of areas with moderately increased incidence. To determine whether localized environmental factors may play a part in childhood cancer aetiology, we analyzed for spatial clustering using a large set of national population-based data from Great Britain diagnosed 1969-1993. The Potthoff-Whittinghill method was used to test for extra-Poisson variation (EPV). Thirty-two thousand three hundred and twenty-three cases were allocated to 10,444 wards using diagnosis addresses. Analyses showed statistically significant evidence of clustering for acute lymphoblastic leukaemia (ALL) over the whole age range (estimate of EPV = 0.05, p = 0.002) and for ages 1-4 years (estimate of EPV = 0.03, p = 0.015). Soft-tissue sarcoma (estimate of EPV = 0.03, p = 0.04) and Wilms tumours (estimate of EPV = 0.04, p = 0.007) also showed significant clustering. Clustering tended to persist across different time periods for cases of ALL (estimate of between-time period EPV = 0.04, p =0.003). In conclusion, we observed low level spatial clustering that is attributable to a limited number of cases. This suggests that environmental factors, which in some locations display localized clustering, may be important aetiological agents in these diseases. For ALL and soft tissue sarcoma, but not Wilms tumour, common infectious agents may be likely candidates.

  6. Context-dependent spatially periodic activity in the human entorhinal cortex.

    Science.gov (United States)

    Nadasdy, Zoltan; Nguyen, T Peter; Török, Ágoston; Shen, Jason Y; Briggs, Deborah E; Modur, Pradeep N; Buchanan, Robert J

    2017-04-25

    The spatially periodic activity of grid cells in the entorhinal cortex (EC) of the rodent, primate, and human provides a coordinate system that, together with the hippocampus, informs an individual of its location relative to the environment and encodes the memory of that location. Among the most defining features of grid-cell activity are the 60° rotational symmetry of grids and preservation of grid scale across environments. Grid cells, however, do display a limited degree of adaptation to environments. It remains unclear if this level of environment invariance generalizes to human grid-cell analogs, where the relative contribution of visual input to the multimodal sensory input of the EC is significantly larger than in rodents. Patients diagnosed with nontractable epilepsy who were implanted with entorhinal cortical electrodes performing virtual navigation tasks to memorized locations enabled us to investigate associations between grid-like patterns and environment. Here, we report that the activity of human entorhinal cortical neurons exhibits adaptive scaling in grid period, grid orientation, and rotational symmetry in close association with changes in environment size, shape, and visual cues, suggesting scale invariance of the frequency, rather than the wavelength, of spatially periodic activity. Our results demonstrate that neurons in the human EC represent space with an enhanced flexibility relative to neurons in rodents because they are endowed with adaptive scalability and context dependency.

  7. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu; Zhang, Wei; Xi, Guang

    2015-01-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher

  8. Experimental and numerical investigations of temporally and spatially periodic modulated wave trains

    Science.gov (United States)

    Houtani, H.; Waseda, T.; Tanizawa, K.

    2018-03-01

    A number of studies on steep nonlinear waves were conducted experimentally with the temporally periodic and spatially evolving (TPSE) wave trains and numerically with the spatially periodic and temporally evolving (SPTE) ones. The present study revealed that, in the vicinity of their maximum crest height, the wave profiles of TPSE and SPTE modulated wave trains resemble each other. From the investigation of the Akhmediev-breather solution of the nonlinear Schrödinger equation (NLSE), it is revealed that the dispersion relation deviated from the quadratic dependence of frequency on wavenumber and became linearly dependent instead. Accordingly, the wave profiles of TPSE and SPTE breathers agree. The range of this agreement is within the order of one wave group of the maximum crest height and persists during the long-term evolution. The findings extend well beyond the NLSE regime and can be applied to modulated wave trains that are highly nonlinear and broad-banded. This was demonstrated from the numerical wave tank simulations with a fully nonlinear potential flow solver based on the boundary element method, in combination with the nonlinear wave generation method based on the prior simulation with the higher-order spectral model. The numerical wave tank results were confirmed experimentally in a physical wave tank. The findings of this study unravel the fundamental nature of the nonlinear wave evolution. The deviation of the dispersion relation of the modulated wave trains occurs because of the nonlinear phase variation due to quasi-resonant interaction, and consequently, the wave geometry of temporally and spatially periodic modulated wave trains coincides.

  9. Theory of coherent quantum phase slips in Josephson junction chains with periodic spatial modulations

    Science.gov (United States)

    Svetogorov, Aleksandr E.; Taguchi, Masahiko; Tokura, Yasuhiro; Basko, Denis M.; Hekking, Frank W. J.

    2018-03-01

    We study coherent quantum phase slips which lift the ground state degeneracy in a Josephson junction ring, pierced by a magnetic flux of the magnitude equal to half of a flux quantum. The quantum phase-slip amplitude is sensitive to the normal mode structure of superconducting phase oscillations in the ring (Mooij-Schön modes). These, in turn, are affected by spatial inhomogeneities in the ring. We analyze the case of weak periodic modulations of the system parameters and calculate the corresponding modification of the quantum phase-slip amplitude.

  10. Estimating spatially distributed monthly evapotranspiration rates by linear transformations of MODIS daytime land surface temperature data

    Directory of Open Access Journals (Sweden)

    J. Szilagyi

    2009-05-01

    Full Text Available Under simplifying conditions catchment-scale vapor pressure at the drying land surface can be calculated as a function of its watershed-representative temperature (<Ts> by the wet-surface equation (WSE, similar to the wet-bulb equation in meteorology for calculating the dry-bulb thermometer vapor pressure of the Complementary Relationship of evaporation. The corresponding watershed ET rate, , is obtained from the Bowen ratio with the help of air temperature, humidity and percent possible sunshine data. The resulting (<Ts>, pair together with the wet-environment surface temperature (<Tws> and ET rate (ETw, obtained by the Priestley-Taylor equation, define a linear transformation on a monthly basis by which spatially distributed ET rates can be estimated as a sole function of MODIS daytime land surface temperature, Ts, values within the watershed. The linear transformation preserves the mean which is highly desirable. <Tws>, in the lack of significant open water surfaces within the study watershed (Elkhorn, Nebraska, was obtained as the mean of the smallest MODIS Ts values each month. The resulting period-averaged (2000–2007 catchment-scale ET rate of 624 mm/yr is very close to the water-balance derived ET rate of about 617 mm/yr. The latter is a somewhat uncertain value due to the effects of (a observed groundwater depletion of about 1m over the study period caused by extensive irrigation, and; (b the uncertain rate of net regional groundwater supply toward the watershed. The spatially distributed ET rates correspond well with soil/aquifer properties and the resulting land use type (i.e. rangeland versus center-pivot irrigated crops.

  11. Selection of doublet cellular patterns in directional solidification through spatially periodic perturbations

    International Nuclear Information System (INIS)

    Losert, W.; Stillman, D.A.; Cummins, H.Z.; Kopczynski, P.; Rappel, W.; Karma, A.

    1998-01-01

    Pattern formation at the solid-liquid interface of a growing crystal was studied in directional solidification using a perturbation technique. We analyzed both experimentally and numerically the stability range and dynamical selection of cellular arrays of 'doublets' with asymmetric tip shapes, separated by alternate deep and shallow grooves. Applying an initial periodic perturbation of arbitrary wavelength to the unstable planar interface allowed us to force the interface to evolve into doublet states that would not otherwise be dynamically accessible from a planar interface. We determined systematically the ranges of wavelength corresponding to stable singlets, stable doublets, and transient unstable patterns. Experimentally, this was accomplished by applying a brief UV light pulse of a desired spatial periodicity to the planar interface during the planar-cellular transient using the model alloy Succinonitrile-Coumarin 152. Numerical simulations of the nonlinear evolution of the interface were performed starting from a small sinusoidal perturbation of the steady-state planar interface. These simulations were carried out using a computationally efficient phase-field symmetric model of directional solidification with recently reformulated asymptotics and vanishing kinetics [A. Karma and W.-J. Rappel, Phys. Rev. E 53 R3017 (1996); Phys. Rev. Lett. 77, 4050 (1996); Phys. Rev. E 57, 4323 (1998)], which allowed us to simulate spatially extended arrays that can be meaningfully compared to experiments. Simulations and experiments show remarkable qualitative agreement in the dynamic evolution, steady-state structure, and instability mechanisms of doublet cellular arrays. copyright 1998 The American Physical Society

  12. Influence of spatial temperature estimation method in ecohydrologic modeling in the western Oregon Cascades

    Science.gov (United States)

    E. Garcia; C.L. Tague; J. Choate

    2013-01-01

    Most spatially explicit hydrologic models require estimates of air temperature patterns. For these models, empirical relationships between elevation and air temperature are frequently used to upscale point measurements or downscale regional and global climate model estimates of air temperature. Mountainous environments are particularly sensitive to air temperature...

  13. Study on temperature sensitivity of topological insulators based on long-period fiber grating

    Science.gov (United States)

    Luo, Jianhua; Zhao, Chenghai; Li, Jianbo; He, Mengdong

    2017-06-01

    Based on a long-period fiber grating, we conducted experimental research on the temperature sensitivity of topological insulators. The long-period fiber grating and topological insulators solution were encapsulated in a capillary tube using UV glue, and the temperature response was measured. Within a range of 35 to 75 centigrade, one resonance dip of a long-period fiber grating exhibits a redshift of 1.536 nm. The temperature sensitivity is about 7.7 times of an ordinary long-period fiber grating's sensitivity (0.005 nm/°C). A numerical simulation is also performed on the basis of the experiments.

  14. Spatial coherence of flood-rich and flood-poor periods across Germany

    Science.gov (United States)

    Merz, Bruno; Dung, Nguyen Viet; Apel, Heiko; Gerlitz, Lars; Schröter, Kai; Steirou, Eva; Vorogushyn, Sergiy

    2018-04-01

    Despite its societal relevance, the question whether fluctuations in flood occurrence or magnitude are coherent in space has hardly been addressed in quantitative terms. We investigate this question for Germany by analysing fluctuations in annual maximum series (AMS) values at 68 discharge gauges for the common time period 1932-2005. We find remarkable spatial coherence across Germany given its different flood regimes. For example, there is a tendency that flood-rich/-poor years in sub-catchments of the Rhine basin, which are dominated by winter floods, coincide with flood-rich/-poor years in the southern sub-catchments of the Danube basin, which have their dominant flood season in summer. Our findings indicate that coherence is caused rather by persistence in catchment wetness than by persistent periods of higher/lower event precipitation. Further, we propose to differentiate between event-type and non-event-type coherence. There are quite a number of hydrological years with considerable non-event-type coherence, i.e. AMS values of the 68 gauges are spread out through the year but in the same magnitude range. Years with extreme flooding tend to be of event-type and non-coherent, i.e. there is at least one precipitation event that affects many catchments to various degree. Although spatial coherence is a remarkable phenomenon, and large-scale flooding across Germany can lead to severe situations, extreme magnitudes across the whole country within one event or within one year were not observed in the investigated period.

  15. Tropical temperature altitude amplification in the hiatus period (1998-2012

    Directory of Open Access Journals (Sweden)

    Ducić Vladan D.

    2015-01-01

    Full Text Available In the period 1998-2012 there was a stagnation in temperature rise, despite the GHGs radiation forcing is increased (hiatus period. According to Global Circulation Models simulations, expected response on the rise of GHGs forcing is tropical temperature altitude amplification - temperature increases faster in higher troposphere than in lower troposphere. In this paper, two satellite data sets, UAH MSU and RSS, were used to test altitude temperature amplification in tropic (20°N-20°S in the hiatus period. We compared data from satellite data sets from lower troposphere (TLT and middle troposphere (TMT in general and particularly for land and ocean (for UAH MSU. The results from both satellite measurements showed the presence of hiatus, i.e. slowdown of the temperature rise in the period 1998-2012 compared to period 1979-2012 (UAH MSU and temperature fall for RSS data. Smaller increase, i.e. temperature fall over ocean showed that hiatus is an ocean phenomenon above all. Data for UAH MSU showed that temperature altitude amplification in tropic was not present either for period 1979-2012, or 1998-2012. RSS data set also do not show temperature altitude amplification either for longer (1979-2012, or for shorter period (1998-2012. RSS data for successive 15-year periods from 1979-1993 till 1998-2012 does not show tropical temperature altitude amplification and in one case negative trend is registered in TLT and in two cases in TMT. In general, our results do not show presence of temperature altitude amplification in tropic in the hiatus period. [Projekat Ministarstva nauke Republike Srbije, br. III47007

  16. Skin sites to predict deep-body temperature while wearing firefighters' personal protective equipment during periodical changes in air temperature.

    Science.gov (United States)

    Kim, Siyeon; Lee, Joo-Young

    2016-04-01

    The aim of this study was to investigate stable and valid measurement sites of skin temperatures as a non-invasive variable to predict deep-body temperature while wearing firefighters' personal protective equipment (PPE) during air temperature changes. Eight male firefighters participated in an experiment which consisted of 60-min exercise and 10-min recovery while wearing PPE without self-contained breathing apparatus (7.75 kg in total PPE mass). Air temperature was periodically fluctuated from 29.5 to 35.5 °C with an amplitude of 6 °C. Rectal temperature was chosen as a deep-body temperature, and 12 skin temperatures were recorded. The results showed that the forehead and chest were identified as the most valid sites to predict rectal temperature (R(2) = 0.826 and 0.824, respectively) in an environment with periodically fluctuated air temperatures. This study suggests that particular skin temperatures are valid as a non-invasive variable when predicting rectal temperature of an individual wearing PPE in changing ambient temperatures. Practitioner Summary: This study should offer assistance for developing a more reliable indirect indicating system of individual heat strain for firefighters in real time, which can be used practically as a precaution of firefighters' heat-related illness and utilised along with physiological monitoring.

  17. Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America.

    Science.gov (United States)

    Wang, Tongli; Hamann, Andreas; Spittlehouse, Dave; Carroll, Carlos

    2016-01-01

    Large volumes of gridded climate data have become available in recent years including interpolated historical data from weather stations and future predictions from general circulation models. These datasets, however, are at various spatial resolutions that need to be converted to scales meaningful for applications such as climate change risk and impact assessments or sample-based ecological research. Extracting climate data for specific locations from large datasets is not a trivial task and typically requires advanced GIS and data management skills. In this study, we developed a software package, ClimateNA, that facilitates this task and provides a user-friendly interface suitable for resource managers and decision makers as well as scientists. The software locally downscales historical and future monthly climate data layers into scale-free point estimates of climate values for the entire North American continent. The software also calculates a large number of biologically relevant climate variables that are usually derived from daily weather data. ClimateNA covers 1) 104 years of historical data (1901-2014) in monthly, annual, decadal and 30-year time steps; 2) three paleoclimatic periods (Last Glacial Maximum, Mid Holocene and Last Millennium); 3) three future periods (2020s, 2050s and 2080s); and 4) annual time-series of model projections for 2011-2100. Multiple general circulation models (GCMs) were included for both paleo and future periods, and two representative concentration pathways (RCP4.5 and 8.5) were chosen for future climate data.

  18. Frequency downshifting and trapping of an electromagnetic wave by a rapidly created spatially periodic plasma

    International Nuclear Information System (INIS)

    Faith, J.; Kuo, S.P.; Huang, J.

    1997-01-01

    Experimental and numerical results of the interaction of electromagnetic waves with rapidly time varying spatially periodic plasmas are presented. It is shown that a number of Floquet modes, each with their own oscillation frequency, are created during the interaction. Included among these modes are downshifted waves which will not exist in the single slab case, and also waves with a larger upshifted frequency than one can obtain with a single plasma layer of the same density. In addition, the periodic structure is characterized by pass and stop bands that are different from those of a single plasma layer, and the frequencies of the downshifted modes falling in the stop band of a single plasma layer. Therefore these waves are trapped within the plasma structure until the plasma decays away. To show this phenomenon a chamber experiment is conducted, with the periodic plasma being produced by a capacitive discharge. The power spectrum recorded for waves interacting with the plasma shows vastly improved efficiency in the downshift mechanism, which the numerical calculations suggest is related to the trapping of the wave within the plasma. Reproducible results are recorded which are found to agree well with the numerical simulation. copyright 1997 The American Physical Society

  19. Spatial noise-aware temperature retrieval from infrared sounder data

    DEFF Research Database (Denmark)

    Malmgren-Hansen, David; Laparra, Valero; Nielsen, Allan Aasbjerg

    2017-01-01

    Principal Component Analysis (PCA) and Minimum Noise Fraction (MNF) for dimensionality reduction, and study the compactness and information content of the extracted features. Assessment of the results is done on a big dataset covering many spatial and temporal situations. PCA is widely used...... for these purposes but our analysis shows that one can gain significant improvements of the error rates when using MNF instead. In our analysis we also investigate the relationship between error rate improvements when including more spectral and spatial components in the regression model, aiming to uncover the trade...

  20. Fourier mode analysis of slab-geometry transport iterations in spatially periodic media

    International Nuclear Information System (INIS)

    Larsen, E W; Zika, M R

    1999-01-01

    We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at ''resonant'' wave numbers. In the presence of material heterogeneities, error modes corresponding to these resonant wave numbers are ''excited'' more than other error modes. For DSA and TSA, the iteration spectral radius may occur at these resonant wave numbers, in which case the material heterogeneities most strongly affect iterative performance

  1. Effects of Warmness and Spatial Nonuniformity of the Plasma Waveguide on Periodic Absolute Parametric Instability

    International Nuclear Information System (INIS)

    Zaki, N.G.; Bekheit, A.H.

    2011-01-01

    The periodic absolute parametric instability (API) of the low-frequency oscillations excited by a monochromatic pumping field of arbitrary amplitude in a warm I-D nonuniform magneto active plasma is investigated. One can use the separation method to solve the two-fluid plasma equations which describe the system. The method used enables us to determine the frequencies and growth rates of unstable modes and the self-consistent electric field. Plasma electrons are considered to have a thermal velocity. One can examine different solutions for the spatial equation in the following cases: A) API in uniform Plasma B) API in nonuniform plasma, we study this case for two variants: B.1) Exact harmonic oscillator and B.2) Bounded harmonic oscillator (bounded plasma). Increment is found in the buildup of the oscillations, and it is shown that the spatial nonuniformity of the plasma exerts a stabilizing effect on the parametric instability. It is shown that the growth rate of API in warm plasma is reduced compared to cold plasma. It is found also that the warmness of the plasma has no effect on the solution of the space part of the problem ( only through the separation constant )

  2. Directed transport in a periodic tube driven by asymmetric unbiased forces coexisting with spatially modulated noises

    International Nuclear Information System (INIS)

    Li Fengguo; Ai Baoquan

    2011-01-01

    Graphical abstract: The current J as a function of the phase shift φ and ε at a = 1/2π, b = 0.5/2π, k B T = 0.5, α = 0.1, and F 0 = 0.5. Highlights: → Unbiased forces and spatially modulated white noises affect the current. → In the adiabatic limit, the analytical expression of directed current is obtained. → Their competition will induce current reversals. → For negative asymmetric parameters of the force, there exists an optimum parameter. → The current increases monotonously for positive asymmetric parameters. - Abstract: Transport of Brownian particles in a symmetrically periodic tube is investigated in the presence of asymmetric unbiased external forces and spatially modulated Gaussian white noises. In the adiabatic limit, we obtain the analytical expression of the directed current. It is found that the temporal asymmetry can break thermodynamic equilibrium and induce a net current. Their competition between the temporal asymmetry force and the phase shift between the noise modulation and the tube shape will induce some peculiar phenomena, for example, current reversals. The current changes with the phase shift in the form of the sine function. For negative asymmetric parameters of the force, there exists an optimum parameter at which the current takes its maximum value. However, the current increases monotonously for positive asymmetric parameters.

  3. Effects of warmness and spatial nonuniformity of plasma waveguide on periodic absolute parametric instability

    International Nuclear Information System (INIS)

    Zaki, N.G.; Bekheit, A.H.

    2011-01-01

    The periodic absolute parametric instability (API) of the low-frequency oscillations excited by a monochromatic pumping field of an arbitrary amplitude in a warm 1-D (one-dimensional) nonuniform magnetoactive plasma is investigated. The separation method can be used for solving the two-fluid plasma equations describing the system. By applying this method we were able to determine the frequencies and growth rates of unstable modes and the self-consistent electric field. Plasma electrons are considered to have a thermal velocity. Different solutions for the spatial equation can be obtained the following cases: A) API in a uniform plasma, B) API in a nonuniform plasma. The latter has been studied here for two cases: B.1) the exact harmonic oscillator and B.2) the bounded harmonic oscillator (a bounded plasma). An increment has been found in the build-up of the oscillations, and it has been shown that the spatial nonuniformity of the plasma exerts the stabilizing effect on the parametric instability. A reduced growth rate of API in the warm plasma, in comparison to the cold plasma, is reported. It has also been found that the warmness of the plasma has no effect on the solution of the space part of the problem (only through the separation constant). (authors)

  4. Spatial variability in oviposition damage by periodical cicadas in a fragmented landscape.

    Science.gov (United States)

    Cook, William M; Holt, Robert D; Yao, Jin

    2001-03-01

    Effects of the periodical cicada (Magicicada spp.) on forest dynamics are poorly documented. A 1998 emergence of M. cassini in eastern Kansas led to colonization of a fragmented experimental landscape undergoing secondary succession. We hypothesized that per-tree rates of oviposition damage by cicadas would reflect: (1) distance from the source of the emergence, (2) patch size, and (3) local tree density. Ovipositing females displayed clear preferences for host species and damage incidence showed predictable spatial patterns. Two species (smooth sumac, Rhus glabra, and eastern red cedar, Juniperus virginiana) were rarely attacked, whereas others (rough-leaved dogwood, Cornus drummondii; slippery elm, Ulmus rubra; box elder, Acer negundo, and honey locust, Gleditsia triacanthos) were strongly attacked. The dominant early successional tree, dogwood, received on average the most attacks. As predicted, attacks per stem declined strongly with distance from the emergence source, and with local stem density (a "dilution" effect). Contrary to expectations, there were more attacks per stem on larger patches. Because ovipositing cicadas cut damaging slits in host tree branches, potentially affecting tree growth rate, competitive ability, and capacity to reproduce, cicada damage could potentially influence spatial variation in secondary succession.

  5. Spatial Modeling of Urban Vegetation and Land Surface Temperature: A Case Study of Beijing

    Directory of Open Access Journals (Sweden)

    Chudong Huang

    2015-07-01

    Full Text Available The coupling relationship between urban vegetation and land surface temperature (LST has been heatedly debated in a variety of environmental studies. This paper studies the urban vegetation information and LST by utilizing a series of remote sensing imagery covering the period from 1990 to 2007. Their coupling relationship is analyzed, in order to provide the basis for ecological planning and environment protection. The results show that the normalized difference vegetation index (NDVI, urban vegetation abundance (UVA and urban forest abundance (UFA are negatively correlated with LST, which means that both urban vegetation and urban forest are capable in decreasing LST. The apparent influence of urban vegetation and urban forest on LST varies with the spatial resolution of the imagery, and peaks at the resolutions ranging from 90 m to 120 m.

  6. Spatial variability of maximum annual daily rain under different return periods at the Rio de Janeiro state, Brazil

    Directory of Open Access Journals (Sweden)

    Roriz Luciano Machado

    2010-01-01

    Full Text Available Knowledge of maximum daily rain and its return period in a region is an important tool to soil conservation, hydraulic engineering and preservation of road projects. The objective of this work was to evaluate the spatial variability of maximum annual daily rain considering different return periods, at the Rio de Janeiro State. The data set was composed by historical series of 119 rain gauges, for 36 years of observation. The return periods, estimated by Gumbel distribution, were 2, 5, 10, 25, 50 and 100 years. The spatial variability of the return periods was evaluated by semivariograms. All the return periods presented spatial dependence, with exponential and spherical model fitted to the experimental semivariograms. The parameters of the fitted semivariogram model were very similar; however, it was observed the presence of higher nugget effects for semivariograms of longer return periods. The values of maximum annual daily average rain in all the return periods increased from north to south and from countryside to the coast. In the region between the Serra do Mar range and the coast, besides increasing in magnitude, an increase in the spatial variability of the studied values with increasing return periods was also noticed. This behavior is probably caused by the orographic effect. The interpolated maps were more erratic for higher return periods and at the North, Northeast and Coastal Plain regions, in which the installation of new pluviometric stations are recommended.

  7. Spatial and Temporal Analysis of Bias HAST System Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Pfeifer, Kent B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Furrer, III, Clint T [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sandoval, Paul Anthony [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Garrett, Stephen E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pfeifer, Nathaniel Bryant [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-03-01

    High-reliability components for high-consequence systems require detailed testing of operation after having undergone highly accelerated stress testing (HAST) under unusual conditions of high-temperature and humidity. This paper describes the design and operation of a system called "Wormwood" that is a highly multiplexed temperature measurement system that is designed to operate under HAST conditions to allow measurement of the temperature as a function of time and position in a HAST chamber. HAST chambers have single-point temperature measurements that can be traceable to NIST standards. The objective of these "Wormwood" measurements is to verify the uniformity and stability of the remaining volume of the HAST chamber with respect to the single traceable standard.

  8. Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013

    Science.gov (United States)

    Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua

    2018-05-01

    In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for

  9. Spatial and temporal variability of precipitation in Serbia for the period 1961-2010

    Science.gov (United States)

    Milovanović, Boško; Schuster, Phillip; Radovanović, Milan; Vakanjac, Vesna Ristić; Schneider, Christoph

    2017-10-01

    Monthly, seasonal and annual sums of precipitation in Serbia were analysed in this paper for the period 1961-2010. Latitude, longitude and altitude of 421 precipitation stations and terrain features in their close environment (slope and aspect of terrain within a radius of 10 km around the station) were used to develop a regression model on which spatial distribution of precipitation was calculated. The spatial distribution of annual, June (maximum values for almost all of the stations) and February (minimum values for almost all of the stations) precipitation is presented. Annual precipitation amounts ranged from 500 to 600 mm to over 1100 mm. June precipitation ranged from 60 to 140 mm and February precipitation from 30 to 100 mm. The validation results expressed as root mean square error (RMSE) for monthly sums ranged from 3.9 mm in October (7.5% of the average precipitation for this month) to 6.2 mm in April (10.4%). For seasonal sums, RMSE ranged from 10.4 mm during autumn (6.1% of the average precipitation for this season) to 20.5 mm during winter (13.4%). On the annual scale, RMSE was 68 mm (9.5% of the average amount of precipitation). We further analysed precipitation trends using Sen's estimation, while the Mann-Kendall test was used for testing the statistical significance of the trends. For most parts of Serbia, the mean annual precipitation trends fell between -5 and +5 and +5 and +15 mm/decade. June precipitation trends were mainly between -8 and +8 mm/decade. February precipitation trends generally ranged from -3 to +3 mm/decade.

  10. Lunar Polar Cold Traps: Spatial Distribution and Temperatures

    Science.gov (United States)

    Paige, David A.; Siegler, M.; Lawrence, D. J.

    2006-09-01

    We have developed a ray-tracing and radiosity model that can accurately calculate lunar surface and subsurface temperatures for arbitrary topography. Using available digital elevation models for the lunar north and south polar regions derived from Clementine laser altimeter and image data, as well as ground-based radar data, we have calculated lunar surface and subsurface temperatures at 2 km resolution that include full effects of indirect solar and infrared radiation due to topography. We compare our thermal model results with maps of epithermal neutron flux measured by Lunar Prospector. When we use the ray tracing and thermal model to account for the effects of temperature and topography on the neutron measurements, our results show that the majority of the moon's polar cold traps are not filled with water ice.

  11. Temporal and Spatial Variabilities of Japan Sea Surface Temperature and Atmospheric Forcings

    National Research Council Canada - National Science Library

    Chu, Peter C; Chen, Yuchun; Lu, Shihua

    1998-01-01

    ...) and surface air temperature (SAT) data during 1982-1994 and the National Center for Atmospheric Research surface wind stress curl data during 1982-1989 to investigate the Japan Sea SST temporal and spatial variabilities...

  12. Disruption of the circadian period of body temperature by the anesthetic propofol.

    Science.gov (United States)

    Touitou, Yvan; Mauvieux, Benoit; Reinberg, Alain; Dispersyn, Garance

    2016-01-01

    The circadian time structure of an organism can be desynchronized in a large number of instances, including the intake of specific drugs. We have previously found that propofol, which is a general anesthetic, induces a desynchronization of the circadian time structure in rats, with a 60-80 min significant phase advance of body temperature circadian rhythm. We thus deemed it worthwhile to examine whether this phase shift of body temperature was related to a modification of the circadian period Tau. Propofol was administered at three different Zeitgeber Times (ZTs): ZT6 (middle of the rest period), ZT10 (2 h prior to the beginning of activity period), ZT16 (4 h after the beginning of the activity period), with ZT0 being the beginning of the rest period (light onset) and ZT12 being the beginning of the activity period (light offset). Control rats (n = 20) were injected at the same ZTs with 10% intralipid, which is a control lipidic solution. Whereas no modification of the circadian period of body temperature was observed in the control rats, propofol administration resulted in a significant shortening of the period by 96 and 180 min at ZT6 and ZT10, respectively. By contrast, the period was significantly lengthened by 90 min at ZT16. We also found differences in the time it took for the rats to readjust their body temperature to the original 24-h rhythm. At ZT16, the speed of readjustment was more rapid than at the two other ZTs that we investigated. This study hence shows (i) the disruptive effects of the anesthetic propofol on the body temperature circadian rhythm, and it points out that (ii) the period Tau for body temperature responds to this anesthetic drug according to a Tau-response curve. By sustaining postoperative sleep-wake disorders, the disruptive effects of propofol on circadian time structure might have important implications for the use of this drug in humans.

  13. Development of temperature profile sensor at high temporal and spatial resolution

    International Nuclear Information System (INIS)

    Takiguchi, Hiroki; Furuya, Masahiro; Arai, Takahiro

    2017-01-01

    In order to quantify thermo-physical flow field for the industrial applications such as nuclear and chemical reactors, high temporal and spatial measurements for temperature, pressure, phase velocity, viscosity and so on are required to validate computational fluid dynamics (CFD) and subchannel analyses. The paper proposes a novel temperature profile sensor, which can acquire temperature distribution in water at high temporal (a millisecond) and spatial (millimeter) resolutions. The devised sensor acquires electric conductance between transmitter and receiver wires, which is a function of temperature. The sensor comprise wire mesh structure for multipoint and simultaneous temperature measurement in water, which indicated that three-dimensional temperature distribution can be detected in flexible resolutions. For the demonstration of the principle, temperature profile in water was estimated according to pre-determined temperature calibration line against time-averaged impedance. The 16×16 grid sensor visualized fast and multi-dimensional mixing process of a hot water jet into a cold water pool. (author)

  14. Occupant Time Period of Thermal Adaption to Change of Outdoor Air Temperature in Naturally Ventilated Buildings

    DEFF Research Database (Denmark)

    liu, weiwei; Wargocki, Pawel; Xiong, Jing

    2014-01-01

    The present work proposed a method to determine time period of thermal adaption of occupants in naturally ventilated building, based on the relationship between their neutral temperatures and running mean outdoor air temperature. Based on the data of the field investigation, the subjects’ time...

  15. Localized and periodic exact solutions to the nonlinear Schroedinger equation with spatially modulated parameters: Linear and nonlinear lattices

    International Nuclear Information System (INIS)

    Belmonte-Beitia, Juan; Konotop, Vladimir V.; Perez-Garcia, Victor M.; Vekslerchik, Vadym E.

    2009-01-01

    Using similarity transformations we construct explicit solutions of the nonlinear Schroedinger equation with linear and nonlinear periodic potentials. We present explicit forms of spatially localized and periodic solutions, and study their properties. We put our results in the framework of the exploited perturbation techniques and discuss their implications on the properties of associated linear periodic potentials and on the possibilities of stabilization of gap solitons using polychromatic lattices.

  16. Spatially-Aggregated Temperature Derivatives: Agricultural Risk Management in China

    Directory of Open Access Journals (Sweden)

    Lu Zong

    2016-09-01

    Full Text Available In this paper, a new form of weather derivative contract, namely the climatic zone-based growth degree-day (GDD contract, is introduced. The objective is to increase the risk management efficiency in the agricultural sector of China and to reduce the model dimension of multi-regional temperature-based weather derivatives pricing. Since the proposed contract serves as a risk management tool for all of the cities in the same climatic zone, we compare the risk hedging power between the climatic zone-based and the city-based GDD contracts. As a result, we find that the differences between the two types of temperature-based weather contracts are maintained within a certain range.

  17. Long-term sea surface temperature baselines - time series, spatial covariation and implications for biological processes

    DEFF Research Database (Denmark)

    MacKenzie, Brian; Schiedek, D.

    2007-01-01

    to 2 years. These differences suggest that spatial variations in physical oceanographic phenomena and sampling heterogeneities associated with opportunistic sampling could affect perceptions of biological responses to temperature fluctuations. The documentation that the coastally measured temperatures...... questions at large spatial scales, such as the response of species distributions and phenologies to climate change. In this study we investigate the spatial synchrony of long-term sea surface temperatures in the North Sea-Baltic Sea region as measured daily at four coastal sites (Marsdiep, Netherlands...... at coastal sites co-varied strongly with each other and with opportunistically measured offshore temperatures despite separation distances between measuring locations of 20-1200 km. This covariance is probably due to the influence of large-scale atmospheric processes on regional temperatures...

  18. Natural convection in square enclosure induced by inner circular cylinder with time-periodic pulsating temperature

    KAUST Repository

    Huang, Zhu

    2015-03-01

    The periodic unsteady natural convection flow and heat transfer in a square enclosure containing a concentric circular cylinder is numerically studied. The temperature of the inner circular cylinder fluctuates periodically with time at higher averaged value while the temperature of the enclosure keeps lower constant, and the natural convection is driven by the temperature difference. The two-dimensional natural convection is simulated with high accuracy temporal spectral method and local radial basis functions method. The Rayleigh number is studied in the range 103 ≤ Ra ≤ 106, the temperature pulsating period ranges from 0.01 to 100 and the temperature pulsating amplitudes are a = 0.5, 1.0 and 1.5. Numerical results reveal that the fluid flow and heat transfer is strongly dependent on the pulsating temperature of inner cylinder. Comparing with the steady state natural convection, the heat transfer is enhanced generally for the time-periodic unsteady natural convection, and the local maximum heat transfer rate is observed for Ra = 105 and 106. Moreover, the phenomenon of backward heat transfer is discussed quantitatively. Also, the influence of pulsating temperature on the unsteady fluid flow and heat transfer are discussed and analyzed.

  19. Tannat grape composition responses to spatial variability of temperature in an Uruguay's coastal wine region

    Science.gov (United States)

    Fourment, Mercedes; Ferrer, Milka; González-Neves, Gustavo; Barbeau, Gérard; Bonnardot, Valérie; Quénol, Hervé

    2017-09-01

    Spatial variability of temperature was studied in relation to the berry basic composition and secondary compounds of the Tannat cultivar at harvest from vineyards located in Canelones and Montevideo, the most important wine region of Uruguay. Monitoring of berries and recording of temperature were performed in 10 commercial vineyards of Tannat situated in the southern coastal wine region of the country for three vintages (2012, 2013, and 2014). Results from a multivariate correlation analysis between berry composition and temperature over the three vintages showed that (1) Tannat responses to spatial variability of temperature were different over the vintages, (2) correlations between secondary metabolites and temperature were higher than those between primary metabolites, and (3) correlation values between berry composition and climate variables increased when ripening occurred under dry conditions (below average rainfall). For a particular studied vintage (2013), temperatures explained 82.5% of the spatial variability of the berry composition. Daily thermal amplitude was found to be the most important spatial mode of variability with lower values recorded at plots nearest to the sea and more exposed to La Plata River. The highest levels in secondary compounds were found in berries issued from plots situated as far as 18.3 km from La Plata River. The increasing knowledge of temperature spatial variability and its impact on grape berry composition contributes to providing possible issues to adapt grapevine to climate change.

  20. Appearance probability of certain precipitation quantities and temperature sums > 100S during the growing period

    International Nuclear Information System (INIS)

    Dimitrovska, Blaga; Dimitrovski, Zoran; Ristevski, Pece

    2004-01-01

    In this paper are given probabilities for determined precipitation amounts existence and temperature sums >10 o C (in percentages) for fifteen measure stations in the Republic of Macedonia for the vegetative period of the year (from 1 st of April until 31st of October) and for period 1951-2000. Using the precipitation amounts and sums of temperatures >10 o C for the vegetative period of the year we, calculated hydro thermic coefficient (HTC) by Seljaninov for each year of the period 1951-2000. From the HTC values we categorized the drought for each measure station using criteria by S.Otorepec. Calculating the probabilities for determined precipitation amounts existence and temperature summes > 10 o C occurrence is very important for water balance calculation, irrigation norms etc.(Author)

  1. Effect of Temperature on Feeding Period of Larval Blacklegged Ticks (Acari: Ixodidae) on Eastern Fence Lizards.

    Science.gov (United States)

    Rulison, Eric L; Lebrun, Roger A; Ginsberg, Howard S

    2014-11-01

    Ambient temperature can influence tick development time, and can potentially affect tick interactions with pathogens and with vertebrate hosts. We studied the effect of ambient temperature on duration of attachment of larval blacklegged ticks, Ixodes scapularis Say, to eastern fence lizards, Sceloporus undulatus (Bosc & Daudin). Feeding periods of larvae that attached to lizards under preferred temperature conditions for the lizards (WARM treatment: temperatures averaged 36.6°C at the top of the cage and 25.8°C at the bottom, allowing behavioral thermoregulation) were shorter than for larvae on lizards held under cool conditions (COOL treatment temperatures averaged 28.4°C at top of cage and 24.9°C at the bottom). The lizards were infested with larvae four times at roughly monthly intervals. Larval numbers successfully engorging and dropping declined and feeding period was longer after the first infestation. © 2014 Entomological Society of America.

  2. Effect of temperature on the egg incubation period of Taeniopteryx nebulosa (Plecoptera)

    Energy Technology Data Exchange (ETDEWEB)

    Brittain, J.E.

    1977-01-01

    Eggs of Taeniopteryx nebulosa (L.) were incubated in the laboratory at constant temperatures between 2/sup 0/C and 24/sup 0/C and at field temperatures. A relationship, linear on logarithmic scales, was found between water temperature (T/sup 0/C) and mean egg incubation period (Y days) for the temperature range 2 to 24/sup 0/C. The relationship is given by the regression equation: Y = 313 T/sup -1/./sup 03/ (r = 0.998, p < 0.001). Hatching success was low below 4/sup 0/C and above 20/sup 0/C.

  3. Effect of periodic temperature variations on the microstructure of neutron-irradiated metals

    DEFF Research Database (Denmark)

    Zinkle, S.J.; Hashimoto, N.; Hoelzer, D.T.

    2002-01-01

    Specimens of pure copper, a high purity austenitic stainless steel, and V–4Cr–4Ti were exposed to eight cycles of either constant temperature or periodic temperature variations during neutron irradiation in the High Flux Isotopes Reactor to a cumulative damage level of 4–5 displacements per atom.......-induced microstructural features consisted of dislocation loops, stacking fault tetrahedra and voids in the stainless steel, Ti-rich precipitates in the V alloy, and voids (along with a low density of stacking fault tetrahedra) in copper.......Specimens of pure copper, a high purity austenitic stainless steel, and V–4Cr–4Ti were exposed to eight cycles of either constant temperature or periodic temperature variations during neutron irradiation in the High Flux Isotopes Reactor to a cumulative damage level of 4–5 displacements per atom....... Specimens exposed to periodic temperature variations experienced a low temperature (360 °C) during the initial 10% of accrued dose in each of the eight cycles, and a higher temperature (520 °C) during the remaining 90% of accrued dose in each cycle. The microstructures of the irradiated stainless steel...

  4. Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands

    Science.gov (United States)

    Jian Yang; Hong S. Healy; Stephen R. Shifley; Eric J. Gustafson

    2007-01-01

    The spatial pattern of forest fire locations is important in the study of the dynamics of fire disturbance. In this article we used a spatial point process modeling approach to quantitatively study the effects of land cover, topography, roads, municipalities, ownership, and population density on fire occurrence reported between 1970 and 2002 in the Missouri Ozark...

  5. Geographic variation in avian incubation periods and parental influences on embryonic temperature.

    Science.gov (United States)

    Martin, Thomas E; Auer, Sonya K; Bassar, Ronald D; Niklison, Alina M; Lloyd, Penn

    2007-11-01

    Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incubation periods independent of nest predation risk or body size. We experimentally tested this correlation by swapping eggs of species with cool incubation temperatures with eggs of species with warm incubation temperatures and similar egg mass. Incubation periods changed (shortened or lengthened) as expected and verified the importance of egg temperature on development rate. Slower development resulting from cooler temperatures may simply be a cost imposed on embryos by parents and may not enhance offspring quality. At the same time, incubation periods of transferred eggs did not match host species and reflect intrinsic differences among species that may result from nest predation and other selection pressures. Thus, geographic variation in embryonic development may reflect more complex interactions than previously recognized.

  6. Geographic variation in avian incubation periods and parental influences on embryonic temperature

    Science.gov (United States)

    Martin, T.E.; Auer, S.K.; Bassar, R.D.; Niklison, Alina M.; Lloyd, P.

    2007-01-01

    Theory predicts shorter embryonic periods in species with greater embryo mortality risk and smaller body size. Field studies of 80 passerine species on three continents yielded data that largely conflicted with theory; incubation (embryonic) periods were longer rather than shorter in smaller species, and egg (embryo) mortality risk explained some variation within regions, but did not explain larger differences in incubation periods among geographic regions. Incubation behavior of parents seems to explain these discrepancies. Bird embryos are effectively ectothermic and depend on warmth provided by parents sitting on the eggs to attain proper temperatures for development. Parents of smaller species, plus tropical and southern hemisphere species, commonly exhibited lower nest attentiveness (percent of time spent on the nest incubating) than larger and northern hemisphere species. Lower nest attentiveness produced cooler minimum and average embryonic temperatures that were correlated with longer incubation periods independent of nest predation risk or body size. We experimentally tested this correlation by swapping eggs of species with cool incubation temperatures with eggs of species with warm incubation temperatures and similar egg mass. Incubation periods changed (shortened or lengthened) as expected and verified the importance of egg temperature on development rate. Slower development resulting from cooler temperatures may simply be a cost imposed on embryos by parents and may not enhance offspring quality. At the same time, incubation periods of transferred eggs did not match host species and reflect intrinsic differences among species that may result from nest predation and other selection pressures. Thus, geographic variation in embryonic development may reflect more complex interactions than previously recognized. ?? 2007 The Author(s).

  7. Tracing temperature in a nanometer size region in a picosecond time period.

    Science.gov (United States)

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  8. Effect of Different Storage Periods and Temperatures on the Hatchability of Broiler Breeder Eggs

    Directory of Open Access Journals (Sweden)

    A. Mahmud*, M. Z. U. Khan1, Saima1 and M. A. Javed

    2011-01-01

    Full Text Available Temperature and humidity have been the two most common variables used to manipulate the storage environment of hatching eggs. To ascertain the effects of different egg storage periods and temperatures on hatchability; 400 eggs were obtained from a broiler breeder flock of 32 weeks of age on a single day collection basis. These eggs were randomly divided into 5 equal groups of 80 eggs each. After collection these were cleaned, fumigated and stored on four temperatures viz 4oC, 16oC, room temperature (25oC and ambient temperature (29oC. Each group was further subdivided into 4 replicates having 20 eggs each. Eggs of Group A (control were set in incubator with temperature of 37.5oC and relative humidity 60% after the storage of one day. Eggs of rest of the four groups were set in the incubator after the storage of 3, 6, 9 and 12 days. Subsequently, these were shifted to hatchers on 18th day where the temperature and humidity were maintained at 36.5oC and 75%, respectively. The data on hatchability and dead-in-shell embryos for various groups were recorded. The results revealed that as the storage period increased at different temperatures, the hatchability decreased significantly (P<0.01. Similarly, as the storage time increased, the percentage of dead-in-shell embryos increased (P<0.01.

  9. Spatial distribution of soil moisture and hydrophobicity in the immediate period after a grassland fire in Lithuania

    Science.gov (United States)

    Pereira, P.; Pundyte, N.; Vaitkute, D.; Cepanko, V.; Pranskevicius, M.; Ubeda, X.; Mataix-Solera, J.; Cerda, A.

    2012-04-01

    Fire can affect significantly soil moisture (SM) and water repellency (WR) in the immediate period after the fire due the effect of the temperatures into soil profile and ash. This impact can be very heterogeneous, even in small distances, due to different conditions of combustion (e.g. fuel and soil moisture, fuel amount and type, distribution and connection, and geomorphological variables as aspect and slope) that influences fire temperature and severity. The aim of this work it is study the spatial distribution of SM and WR in a small plot (400 m2 with a sampling distance of 5 m) immediately after the a low severity grassland fire.. This was made in a burned but also in a control (unburned) plot as reference to can compare. In each plot we analyzed a total of 25 samples. SM was measured gravimetrically and WR with the water drop penetration time test (WDPT). Several interpolation methods were tested in order to identify the best predictor of SM and WR, as the Inverse Distance to a Weight (IDW) (with the power of 1,2,3,4 and 5), Local Polynomial with the first and second polynomial order, Polynomial Regression (PR), Radial Basis Functions (RBF) as Multilog (MTG), Natural Cubic Spline (NCS), Multiquadratic (MTQ), Inverse Multiquadratic (IMTQ) and Thin Plate Spline (TPS) and Ordinary Kriging. Interpolation accuracy was observed with the cross-validation method that is achieved by taking each observation in turn out of the sample and estimating from the remaining ones. The errors produced in each interpolation allowed us to calculate the Root Mean Square Error (RMSE). The best method is the one that showed the lower RMSE. The results showed that on average the SM in the control plot was 13.59 % (±2.83) and WR 2.9 (±1.3) seconds (s). The majority of the soils (88%) were hydrophilic (WDPT 5s). We did not identify significant relationships among the variables (r=0.06, p>0.05) and the CV% was higher in WR (65.85%) than SM (19.96%). Overall we identified no significant

  10. Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields

    Science.gov (United States)

    Zscheischler, Jakob; Orth, Rene; Seneviratne, Sonia I.

    2017-07-01

    Crops are vital for human society. Crop yields vary with climate and it is important to understand how climate and crop yields are linked to ensure future food security. Temperature and precipitation are among the key driving factors of crop yield variability. Previous studies have investigated mostly linear relationships between temperature and precipitation and crop yield variability. Other research has highlighted the adverse impacts of climate extremes, such as drought and heat waves, on crop yields. Impacts are, however, often non-linearly related to multivariate climate conditions. Here we derive bivariate return periods of climate conditions as indicators for climate variability along different temperature-precipitation gradients. We show that in Europe, linear models based on bivariate return periods of specific climate conditions explain on average significantly more crop yield variability (42 %) than models relying directly on temperature and precipitation as predictors (36 %). Our results demonstrate that most often crop yields increase along a gradient from hot and dry to cold and wet conditions, with lower yields associated with hot and dry periods. The majority of crops are most sensitive to climate conditions in summer and to maximum temperatures. The use of bivariate return periods allows the integration of non-linear impacts into climate-crop yield analysis. This offers new avenues to study the link between climate and crop yield variability and suggests that they are possibly more strongly related than what is inferred from conventional linear models.

  11. Non-iterative method to calculate the periodical distribution of temperature in reactors with thermal regeneration

    International Nuclear Information System (INIS)

    Sanchez de Alsina, O.L.; Scaricabarozzi, R.A.

    1982-01-01

    A matrix non-iterative method to calculate the periodical distribution in reactors with thermal regeneration is presented. In case of exothermic reaction, a source term will be included. A computer code was developed to calculate the final temperature distribution in solids and in the outlet temperatures of the gases. The results obtained from ethane oxidation calculation in air, using the Dietrich kinetic data are presented. This method is more advantageous than iterative methods. (E.G.) [pt

  12. Exploring the relation between spatial configuration of buildings and remotely sensed temperatures

    Science.gov (United States)

    Myint, S. W.; Zheng, B.; Kaplan, S.; Huang, H.

    2013-12-01

    While the relationship between fractional cover of buildings and the UHI has been well studied, relationships of how spatial arrangements (e.g., clustered, dispersed) of buildings influence urban warming are not well understood. Since a diversity of spatial patterns can be observed under the same percentage of buildings cover, it is of great interest and importance to investigate the amount of variation in certain urban thermal feature such as surface temperature that is accounted for by the inclusion of spatial arrangement component. The various spatial arrangements of buildings cover can give rise to different urban thermal behaviors that may not be uncovered with the information of buildings fraction only, but can be captured to some extent using spatial analysis. The goal of this study is to examine how spatial arrangements of buildings influence and shape surface temperature in different urban settings. The study area selected is the Las-Vegas metropolitan area in Nevada, located in the Mojave Desert. An object-oriented approach was used to identify buildings using a Geoeye-1 image acquired on October 12, 2011. A spatial autocorrelation technique (i.e., Moran's I) that can measure spatial pattern (clustered, dispersed) was used to determine spatial configuration of buildings. A daytime temperature layer in degree Celsius, generated from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image, was integrated with Moran's I values of building cover and building fractions to achieve the goals set in the study. To avoid uncertainty and properly evaluate if spatial pattern of buildings has an impact on urban warming, the relation between Moran's I values and surface temperatures was observed at different levels according to their fractions (e.g., 0-0.1, 0.5-0.6, 0.9-1). There is a negative correlation exists between spatial pattern of buildings and surface temperatures implying that dispersed building arrangements elevate surface temperatures

  13. Spatially Resolved Gas Temperature Measurements in an Atmospheric Pressure DC Glow Microdischarge with Raman Scattering

    Science.gov (United States)

    Belostotskiy, S.; Wang, Q.; Donnelly, V.; Economou, D.; Sadeghi, N.

    2006-10-01

    Spatially resolved rotational Raman spectroscopy of ground state nitrogen N2(X^1σg^+) was used to measure the gas temperature (Tg) in a nitrogen dc glow microdischarge (gap between electrodes d˜500 μm). An original backscattering, confocal optical system was developed for collecting Raman spectra. Stray laser light and Raleigh scattering were blocked by using a triple grating monochromator and spatial filters, designed specifically for these experiments. The optical system provided a spatial resolution of electrodes, Tg increased linearly with jd, reaching 500 K at 1000 mA/cm^2 jd for a pressure of 720 Torr. Spatially resolved gas temperature measurements will also be presented and discussed in combination with a mathematical model for gas heating in the microplasma. This work is supported by DoE/NSF.

  14. Spatial Variation of Temperature and Precipitation in Bhutan and Links to Vegetation and Land Cover

    Directory of Open Access Journals (Sweden)

    Ugyen Dorji

    2016-02-01

    Full Text Available Bhutan, located in the Himalayas in the South Asian monsoon region, has extremely high variation in elevation, climatic conditions, and land cover despite its small geographical area, as well as great biodiversity. This paper provides the first comprehensive description of climatic conditions in Bhutan. It assesses the spatial variation of temperature and precipitation across the country and evaluates the causes for this variation based on daily data from 70 meteorological stations that have been recording data for time spans ranging from 3 to 21 years. Temperature and precipitation show contrasting spatial variation, with temperature primarily affected by elevation and precipitation by latitude. Models were developed using mixed linear regression models to predict seasonal and annual mean temperature and precipitation based on geographical location. Using linear regression we found that temperatures changed by about 0.5°C for every 100 m of change in elevation, with lapse rates being highest in February, March, and November and lowest from June to August. The lapse rate was highest for minimum temperatures and lowest for maximum temperatures, with the greatest difference during winter. The spatial distribution of precipitation was mainly controlled by latitude, having a quadratic relationship, with the highest rates in the southern foothills of the Himalayan range and the lowest at midlatitudes. The land cover is affected by topography and local climate, with variations in temperature being a main deciding factor for vegetation types; most human settlements and associated land uses are concentrated at lower elevations.

  15. TEMPERATURE AND PRECIPITATION CHANGES IN TÂRGU-MURES (ROMANIA FROM PERIOD 1951-2010

    Directory of Open Access Journals (Sweden)

    O.Rusz

    2012-03-01

    Full Text Available Temperature and precipitation changes in Târgu Mures (Romania from period 1951-2010. The analysis was made based upon meteorological data collected at Târgu Mures meteorological station (Romania, Mures county, lat. 46°32’N, lon. 24°32’E, elevation 308 m, between 1951 and 2010. Several climatic parameters were studied (for instance, annual and monthly mean temperature, maximum precipitation in 24 hours, number of summer days, etc. Detected inhomogeneities are not related to instrumental causes or geographical relocation. Positive and statistical significant trends (Mann-Kendall test are indicated for: mean annual temperatures, mean temperatures of warm months, average of the maximum and minimum temperatures (annual and warm months data, number of days with mean temperature between 20.1-25.0 °C, number of days with precipitation ≥0 mm, and for all parameters of precipitation of September. The sequential version of Mann-Kendall test show a beginning of a trend in 1956 in the case of mean temperature (at same, the two and three parts regression denote this year like a moment of change, years 1965 and 1992 in the case of annual amount of precipitation. CUSUM charts indicate occurs of changes points at 1988, 2005, 2009 (mean temperature respectively at 1989, 2004 (precipitation, and at 1968, 1992 (daily temperature range. Tendencies of overlapped time series reveal a more important increase at the end of period (mainly for mean temperature. The analysis with RClimDex show for 5 extreme climate indices a significant trend: positive for summer days, warm nights, warm spell duration indicator and negative for cold nights and cold days.

  16. Periodical low eggshell temperatures during incubation and post hatch dietary arginine supplementation

    NARCIS (Netherlands)

    Afsarian, O.; Shahir, M.H.; Akhlaghi, A.; Lotfolahian, H.; Hoseini, A.; Lourens, A.

    2016-01-01

    An experiment was conducted to evaluate the effects of a periodically low eggshell temperature exposure during incubation and dietary supplementation of arginine on performance, ascites incidence, and cold tolerance acquisition in broilers. A total of 2,400 hatching eggs were randomly assigned to

  17. Time series modelling of increased soil temperature anomalies during long period

    Science.gov (United States)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  18. The Pressure-Temperature Regime of Iraq during the Period of 1948–2013

    Directory of Open Access Journals (Sweden)

    Yu.P. Perevedentsev

    2016-03-01

    Full Text Available We have considered spatiotemporal changes in the pressure-temperature regime at the territory of Iraq and Middle Eastern countries, which is limited by the following geographical coordinates: 27.5–37.5° N, 37.5–50.0° E. The initial data have been obtained from NCEP/NCAR reanalysis in the nodes of 2.5° × 2.5° grids, as well as from the indices of atmospheric circulation during the period of 1948–2013. Statistical processing of the material and construction of the linear trends and composites have allowed to reveal the dynamics of changes in the air temperature and pressure, its dependence on fluctuations in the atmospheric circulation. A tendency has been revealed towards a decrease in the temperature during the cold period and its increase during the warm period. Deviations (anomalies of the distribution of actual temperature and atmospheric pressure from the climatological norm have been estimated. Maps of temperature and pressure distribution in the regions have been created.

  19. Research on early-warning index of the spatial temperature field in concrete dams.

    Science.gov (United States)

    Yang, Guang; Gu, Chongshi; Bao, Tengfei; Cui, Zhenming; Kan, Kan

    2016-01-01

    Warning indicators of the dam body's temperature are required for the real-time monitoring of the service conditions of concrete dams to ensure safety and normal operations. Warnings theories are traditionally targeted at a single point which have limitations, and the scientific warning theories on global behavior of the temperature field are non-existent. In this paper, first, in 3D space, the behavior of temperature field has regional dissimilarity. Through the Ward spatial clustering method, the temperature field was divided into regions. Second, the degree of order and degree of disorder of the temperature monitoring points were defined by the probability method. Third, the weight values of monitoring points of each regions were explored via projection pursuit. Forth, a temperature entropy expression that can describe degree of order of the spatial temperature field in concrete dams was established. Fifth, the early-warning index of temperature entropy was set up according to the calculated sequential value of temperature entropy. Finally, project cases verified the feasibility of the proposed theories. The early-warning index of temperature entropy is conducive to the improvement of early-warning ability and safety management levels during the operation of high concrete dams.

  20. Mapping spatial and temporal variation of stream water temperature in the upper Esopus Creek watershed

    Science.gov (United States)

    Chien, H.; McGlinn, L.

    2017-12-01

    The upper Esopus Creek and its tributary streams located in the Catskill Mountain region of New York State provide habitats for cold-adapted aquatic species. However, ongoing global warming may change the stream water temperature within a watershed and disturb the persistence of coldwater habitats. Characterizing thermal regimes within the upper Esopus Creek watershed is important to provide information of thermally suitable habitats for aquatic species. The objectives of this study are to measure stream water temperature and map thermal variability among tributaries to the Esopus Creek and within Esopus Creek. These objectives will be achieved by measuring stream water temperature for at least two years. More than 100 water temperature data loggers have been placed in the upper Esopus Creek and their tributaries to collect 30-minute interval water temperatures. With the measured water temperature, we will use spatial interpolation in ArcGIS to create weekly and monthly water temperature surface maps to evaluate the thermal variation over time and space within the upper Esopus Creek watershed. We will characterize responsiveness of water temperature in tributary streams to air temperature as well. This information of spatial and temporal variation of stream water temperature will assist stream managers with prioritizing management practices that maintain or enhance connectivity of thermally suitable habitats in high priority areas.

  1. Fluxon dynamics in long Josephson junctions in the presence of a temperature gradient or spatial nonuniformity

    DEFF Research Database (Denmark)

    Krasnov, V.M.; Oboznov, V.A.; Pedersen, Niels Falsig

    1997-01-01

    Fluxon dynamics in nonuniform Josephson junctions was studied both experimentally and theoretically. Two types of nonuniform junctions were considered: the first type had a nonuniform spatial distribution of critical and bias currents and the second had a temperature gradient applied along...... the junction. An analytical expression for the I-V curve in the presence of a temperature gradient or spatial nonuniformity was derived. It was shown that there is no static thermomagnetic Nernst effect due to Josephson fluxon motion despite the existence of a force pushing fluxons in the direction of smaller...

  2. Reactivity effect of spent fuel due to spatial distributions for coolant temperature and burnup

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, T.; Yamane, Y. [Nagoya Univ., Dept. of Nuclear Engineering, Nagoya, Aichi (Japan); Suyama, K. [OECD/NEA, Paris (France); Mochizuki, H. [Japan Research Institute, Ltd., Tokyo (Japan)

    2002-03-01

    We investigated the reactivity effect of spent fuel caused by the spatial distributions of coolant temperature and burnup by using the integrated burnup calculation code system SWAT. The reactivity effect which arises from taking account of the spatial coolant temperature distribution increases as the average burnup increases, and reaches the maximum value of 0.69%{delta}k/k at 50 GWd/tU when the burnup distribution is concurrently considered. When the burnup distribution is ignored, the reactivity effect decreases by approximately one-third. (author)

  3. The Influence of Aging Period, Freezing Temperature and Packaging Material on Frozen Beef Chemical Quality

    Directory of Open Access Journals (Sweden)

    Aris Sri Widati

    2012-04-01

    Full Text Available The objective of the study was to evaluate the influences of aging period, freezing temperature and packaging material on the frozen beef chemical quality. The material of the study was 2-3 years old Ongole grade beef of the Longissimus dorsi part,  and was then classified into 3 treat­ments, namely A (aging periode; 0, 12 and 24 hours, B (freezing temperature; -10°C and -20°C and C (packaging material; aluminum foil (Al, polyprophylene (PP, poly­ethylene (PE and without packaging material. The ob­served variables were water content, crude protein, fat, ash content. The data were analyzed by the Completely Randomized Design (CRD in the Factorial (3x2x4 pattern. The results indicated that the aging periode de­creased the water content, and ash content significantly (P<0.05, and decreased the crude protein but increased the fat content insignificantly. The lower freezing temperature prevented the decreases of the water content, and ash content significantly (P<0.05, but prevented the decrease of crude protein, fat content insignificantly. The packaging material could prevent the decreases of water content, ash content sig­nificantly (P<0.05, but prevent the decreases of protein, and fat content insignificantly. A significant interaction (P<0.05 occured between the freezing temperature and packaging material factors on ash content of the frozen beef. The conclusion was the frozen beef without aging has a high of water content, protein, and ash, but has a low fat content.Temperature at -200C and using aluminium foil packaging can prevent decreasing quality of frozen beef. Keywords : Aging period, freezing temperature,  packaging material

  4. Periodic flow hydrodynamic resistance parameters for woven screen matrices at cryogenic temperatures

    Science.gov (United States)

    Perrella, M. D.; Ghiaasiaan, S. M.

    2017-12-01

    The regenerator is a critical component in all Stirling and Pulse Tube cryocoolers. It generally consists of a microporous metallic or rare-earth filler material contained within a cylindrical shell. Accurate modelling of the hydrodynamic and thermal behaviour of different regenerator materials is crucial to the successful design of cryogenic systems. Previous investigations have used experimental measurements at steady and periodic flow conditions in conjunction with pore-level CFD analysis to determine the pertinent hydrodynamic parameters, namely the Darcy permeability and Forchheimer coefficients. Due to the difficulty associated with experimental measurement at cryogenic temperatures, past investigations were mostly performed at ambient conditions and their results are assumed to be appropriate for cryogenic temperatures. In this study, a regenerator filled with woven screen matrices such as 400 mesh T316 stainless steel were assembled and experimentally tested under periodic helium flow at cryogenic temperatures. The mass flow and pressure drop data were analysed using CFD to determine the dimensionless friction factor, Darcy Permeability and Forchheimer coefficients. These results are compared to previous investigations at ambient temperature conditions, and the relevance of room-temperature models and correlations to cryogenic temperatures is critically assessed.

  5. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring.

    Science.gov (United States)

    Reilly, John; Glisic, Branko

    2018-03-01

    Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM) analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc.) and generalized displacement (deflection, rotation, etc.) to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature-deformation-displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i) the range of raw temperatures on the structure, and (ii) the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  6. Transport lattice models of heat transport in skin with spatially heterogeneous, temperature-dependent perfusion

    Directory of Open Access Journals (Sweden)

    Martin Gregory T

    2004-11-01

    Full Text Available Abstract Background Investigation of bioheat transfer problems requires the evaluation of temporal and spatial distributions of temperature. This class of problems has been traditionally addressed using the Pennes bioheat equation. Transport of heat by conduction, and by temperature-dependent, spatially heterogeneous blood perfusion is modeled here using a transport lattice approach. Methods We represent heat transport processes by using a lattice that represents the Pennes bioheat equation in perfused tissues, and diffusion in nonperfused regions. The three layer skin model has a nonperfused viable epidermis, and deeper regions of dermis and subcutaneous tissue with perfusion that is constant or temperature-dependent. Two cases are considered: (1 surface contact heating and (2 spatially distributed heating. The model is relevant to the prediction of the transient and steady state temperature rise for different methods of power deposition within the skin. Accumulated thermal damage is estimated by using an Arrhenius type rate equation at locations where viable tissue temperature exceeds 42°C. Prediction of spatial temperature distributions is also illustrated with a two-dimensional model of skin created from a histological image. Results The transport lattice approach was validated by comparison with an analytical solution for a slab with homogeneous thermal properties and spatially distributed uniform sink held at constant temperatures at the ends. For typical transcutaneous blood gas sensing conditions the estimated damage is small, even with prolonged skin contact to a 45°C surface. Spatial heterogeneity in skin thermal properties leads to a non-uniform temperature distribution during a 10 GHz electromagnetic field exposure. A realistic two-dimensional model of the skin shows that tissue heterogeneity does not lead to a significant local temperature increase when heated by a hot wire tip. Conclusions The heat transport system model of the

  7. Coupling between temporal and spatial chaos of vortex state in superconductors with periodical pinning arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lin, H.T. [Department of Information Management, Cheng Shiu University, Kaoshuing, Taiwan (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Ke, C.; Pan, M. [School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y., E-mail: yzhao@swjtu.edu.cn [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)] [School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)

    2011-11-15

    Mean field approach is a good way of dealing with chaos of vortex motion in a background of many vortices. The vortex motion under the damping mode is a kind of self-organized motion. The spatial chaos can dominate the chaotic behavior of the system. Vortex motion in the background of many vortices is investigated by a mean field approach. Effects of the vortex-vortex coupling, the driving frequency, and the vortex viscosity on the vortex motion have been studied to reveal the interaction between the spatial and temporal chaos. It is found that the mean-field approach is a good approximation to describe the vortex motion in one dimensional vortex system. The vortex motion under the damping mode is a kind of self-organized motion. The spatial chaos can dominate the chaotic behavior of the system.

  8. Bifurcation and spatial pattern formation in spreading of disease with incubation period in a phytoplankton dynamics

    Directory of Open Access Journals (Sweden)

    Randhir Singh Baghel

    2012-02-01

    Full Text Available In this article, we propose a three dimensional mathematical model of phytoplankton dynamics with the help of reaction-diffusion equations that studies the bifurcation and pattern formation mechanism. We provide an analytical explanation for understanding phytoplankton dynamics with three population classes: susceptible, incubated, and infected. This model has a Holling type II response function for the population transformation from susceptible to incubated class in an aquatic ecosystem. Our main goal is to provide a qualitative analysis of Hopf bifurcation mechanisms, taking death rate of infected phytoplankton as bifurcation parameter, and to study further spatial patterns formation due to spatial diffusion. Here analytical findings are supported by the results of numerical experiments. It is observed that the coexistence of all classes of population depends on the rate of diffusion. Also we obtained the time evaluation pattern formation of the spatial system.

  9. Spatial patterns of stream temperatures and electric conductivity in a mesoscale catchment

    Science.gov (United States)

    Lieder, Ernestine; Weiler, Markus; Blume, Theresa

    2017-04-01

    Stream temperature and electric conductivity (EC) are both relatively easily measured and can provide valuable information on runoff generation processes and catchment storage.This study investigates the spatial variability of stream temperature and EC in a mesoscale basin. We focus on the mesoscale (sub-catchments and reach scale), and long term (seasonal / annual) stream temperature and EC patterns. Our study basin is the Attert catchment in Luxembourg (288km2), which contains multiple sub-catchments of different geology, topography and land use patterns. We installed 90 stream temperature and EC sensors at sites across the basin in summer 2015. The collected data is complemented by land use and discharge data and an extensive climate data set. Thermal sensitivity was calculated as the slope of daily air temperature-water-temperature regression line and describes the sensitivity of stream temperature to long term environmental change. Amplitude sensitivity was calculated as slope of the daily air and water temperature amplitude regression and describes the short term warming capacity of the stream. We found that groups with similar long term thermal and EC patterns are strongly related to different geological units. The sandstone reaches show the coldest temperatures and lowest annual thermal sensitivity to air temperature. The slate reaches are characterized by comparably low EC and high daily temperature amplitudes and amplitude sensitivity. Furthermore, mean annual temperatures and thermal sensitivities increase exponentially with drainage area, which can be attributed to the accumulation of heat throughout the system. On the reach scale, daily stream temperature fluctuations or sensitivities were strongly influenced by land cover distribution, stream shading and runoff volume. Daily thermal sensitivities were low for headwater streams; peaked for intermediate reaches in the middle of the catchment and then decreased again further downstream with increasing

  10. Two-Dimensional Simulation of Spatial-Temporal Behaviors About Period Doubling Bifurcation in an Atmospheric-Pressure Dielectric Barrier Discharge

    International Nuclear Information System (INIS)

    Zhang Jiao; Wang Yanhui; Wang Dezhen; Zhuang Juan

    2014-01-01

    As a spatially extended dissipated system, atmospheric-pressure dielectric barrier discharges (DBDs) could in principle possess complex nonlinear behaviors. In order to improve the stability and uniformity of atmospheric-pressure dielectric barrier discharges, studies on temporal behaviors and radial structure of discharges with strong nonlinear behaviors under different controlling parameters are much desirable. In this paper, a two-dimensional fluid model is developed to simulate the radial discharge structure of period-doubling bifurcation, chaos, and inverse period-doubling bifurcation in an atmospheric-pressure DBD. The results show that the period-2n (n = 1, 2…) and chaotic discharges exhibit nonuniform discharge structure. In period-2n or chaos, not only the shape of current pulses doesn't remains exactly the same from one cycle to another, but also the radial structures, such as discharge spatial evolution process and the strongest breakdown region, are different in each neighboring discharge event. Current-voltage characteristics of the discharge system are studied for further understanding of the radial structure. (low temperature plasma)

  11. Spatial variation in near-ground radiation and low temperature. Interactions with forest vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, K.

    1997-10-01

    Low temperature has a large impact on the survival and distribution of plants. Interactive effects with high irradiance lead to cold-induced photo inhibition, which may impact on the establishment and growth of tree seedlings. In this thesis, novel approaches are applied for relating the spatial variability in low temperature and irradiance to photosynthetic performance and growth of tree seedlings, and for modelling the micro- and local-scale spatial variations in low temperature for heterogeneous terrain. The methodologies include the development and use of a digital image analysis system for hemispherical photographs, the use of Geographic Information Systems (GIS) and statistical methods, field data acquisition of meteorological elements, plant structure, growth and photosynthetic performance. Temperature and amounts of intercepted direct radiant energy for seedlings on clear days (IDRE) were related to chlorophyll a fluorescence, and the dry weight of seedlings. The combination of increased IDRE with reduced minimum temperatures resulted in persistent and strong photo inhibition as the season progressed, with likely implications for the establishment of tree seedlings at forest edges, and within shelter wood. For models of spatial distribution of low air temperature, the sky view factor was used to parameterize the radiative cooling, whilst drainage, ponding and stagnation of cold air, and thermal properties of the ground were all considered. The models hint at which scales and processes govern the development of spatial variations in low temperature for the construction of corresponding mechanistic models. The methodology is well suited for detecting areas that will be frost prone after clearing of forest and for comparing the magnitudes of impacts on low air temperature of forest management practices, such as shelter wood and soil preparation. The results can be used to formulate ground rules for use in practical forestry 141 refs, 5 figs, 1 tab

  12. How and Why Does Stream Water Temperature Vary at Small Spatial Scales in a Headwater Stream?

    Science.gov (United States)

    Morgan, J. C.; Gannon, J. P.; Kelleher, C.

    2017-12-01

    The temperature of stream water is controlled by climatic variables, runoff/baseflow generation, and hyporheic exchange. Hydrologic conditions such as gaining/losing reaches and sources of inflow can vary dramatically along a stream on a small spatial scale. In this work, we attempt to discern the extent that the factors of air temperature, groundwater inflow, and precipitation influence stream temperature at small spatial scales along the length of a stream. To address this question, we measured stream temperature along the perennial stream network in a 43 ha catchment with a complex land use history in Cullowhee, NC. Two water temperature sensors were placed along the stream network on opposite sides of the stream at 100-meter intervals and at several locations of interest (i.e. stream junctions). The forty total sensors recorded the temperature every 10 minutes for one month in the spring and one month in the summer. A subset of sampling locations where stream temperature was consistent or varied from one side of the stream to the other were explored with a thermal imaging camera to obtain a more detailed representation of the spatial variation in temperature at those sites. These thermal surveys were compared with descriptions of the contributing area at the sample sites in an effort to discern specific causes of differing flow paths. Preliminary results suggest that on some branches of the stream stormflow has less influence than regular hyporheic exchange, while other tributaries can change dramatically with stormflow conditions. We anticipate this work will lead to a better understanding of temperature patterns in stream water networks. A better understanding of the importance of small-scale differences in flow paths to water temperature may be able to inform watershed management decisions in the future.

  13. Identifying Time Periods of Minimal Thermal Gradient for Temperature-Driven Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    John Reilly

    2018-03-01

    Full Text Available Temperature changes play a large role in the day to day structural behavior of structures, but a smaller direct role in most contemporary Structural Health Monitoring (SHM analyses. Temperature-Driven SHM will consider temperature as the principal driving force in SHM, relating a measurable input temperature to measurable output generalized strain (strain, curvature, etc. and generalized displacement (deflection, rotation, etc. to create three-dimensional signatures descriptive of the structural behavior. Identifying time periods of minimal thermal gradient provides the foundation for the formulation of the temperature–deformation–displacement model. Thermal gradients in a structure can cause curvature in multiple directions, as well as non-linear strain and stress distributions within the cross-sections, which significantly complicates data analysis and interpretation, distorts the signatures, and may lead to unreliable conclusions regarding structural behavior and condition. These adverse effects can be minimized if the signatures are evaluated at times when thermal gradients in the structure are minimal. This paper proposes two classes of methods based on the following two metrics: (i the range of raw temperatures on the structure, and (ii the distribution of the local thermal gradients, for identifying time periods of minimal thermal gradient on a structure with the ability to vary the tolerance of acceptable thermal gradients. The methods are tested and validated with data collected from the Streicker Bridge on campus at Princeton University.

  14. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N., E-mail: trushin@phys.unn.ru; Chuprunov, E. V. [Nizhni Novgorod State University (Russian Federation)

    2013-12-15

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  15. Spatial-temporal analysis of building surface temperatures in Hung Hom

    Science.gov (United States)

    Zeng, Ying; Shen, Yueqian

    2015-12-01

    This thesis presents a study on spatial-temporal analysis of building surface temperatures in Hung Hom. Observations were collected from Aug 2013 to Oct 2013 at a 30-min interval, using iButton sensors (N=20) covering twelve locations in Hung Hom. And thermal images were captured in PolyU from 05 Aug 2013 to 06 Aug 2013. A linear regression model of iButton and thermal records is established to calibrate temperature data. A 3D modeling system is developed based on Visual Studio 2010 development platform, using ArcEngine10.0 component, Microsoft Access 2010 database and C# programming language. The system realizes processing data, spatial analysis, compound query and 3D face temperature rendering and so on. After statistical analyses, building face azimuths are found to have a statistically significant relationship with sun azimuths at peak time. And seasonal building temperature changing also corresponds to the sun angle and sun azimuth variations. Building materials are found to have a significant effect on building surface temperatures. Buildings with lower albedo materials tend to have higher temperatures and larger thermal conductivity material have significant diurnal variations. For the geographical locations, the peripheral faces of campus have higher temperatures than the inner faces during day time and buildings located at the southeast are cooler than the western. Furthermore, human activity is found to have a strong relationship with building surface temperatures through weekday and weekend comparison.

  16. Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across Northern Europe

    DEFF Research Database (Denmark)

    Lenoir, Jonathan; Graae, Bente; Aarrestad, Per

    2013-01-01

    -change impacts. Is this local spatial buffering restricted to topographically complex terrains? To answer this, we here study fine-grained thermal variability across a 2500-km wide latitudinal gradient in Northern Europe encompassing a large array of topographic complexities. We first combined plant community...... data, Ellenberg temperature indicator values, locally measured temperatures (LmT) and globally interpolated temperatures (GiT) in a modelling framework to infer biologically relevant temperature conditions from plant assemblages within community-inferred temperatures: CiT). We...... temperature indicator values in combination with plant assemblages explained 46-72% of variation in LmT and 92-96% of variation in GiT during the growing season (June, July, August). Growing-season CiT range within 1-km(2) units peaked at 60-65°N and increased with terrain roughness, averaging 1.97 °C (SD = 0...

  17. HANS OF THE OTTOMAN PERIOD: AN ANALYSIS OF THE SPATIAL CONCEPT IN FUNCTION OF A MODERN TOURIST PURPOSE

    Directory of Open Access Journals (Sweden)

    Petar Namicev

    2017-10-01

    Full Text Available The highest developed form of a spatial concept of ainn in the urban area of the Ottoman period is the rectangular form of the spatial organization of the hans from the 15th and the 16th centuries. The most important examples are Kurshumlihan, Sulihan and Kapan han in the old bazaar in Skopje, which are part of a complex spatial system of the historical part of the city. According to the urban concept of the Ottoman builders, a group of public buildings has been formed, where mosque, bedesten, hamam, etc. appear beside another. Spatial analysis of auxiliary rooms and overnight accommodation, or open spaces (atrium, porch has a certain specific ratio. The experience of the organization from historical buildings is a valuable experience in terms of balancing different contents of the used space, its purpose and adjustment to the current needs of the object. The experiences from the study of certain spatial elements of the hans and from the analysis of the current tourism development in which they are included, can be applied in the concept of modern tourist objects.

  18. Spatial Model of Deforestation in Jambi Province for The Periode 1990–2011

    Directory of Open Access Journals (Sweden)

    Putu Ananta Wijaya

    2015-12-01

    Full Text Available In the last 2 decades, deforestation had been an international issue due to its effect to climate change. This study describes a spatial modelling for predicting deforestation in Jambi Province. The main study objective was to find out the best spatial model for predicting deforestation by considering the spatial contexts. The main data used for the analysis were multitemporal Landsat TM images acquired in 1990, 2000, and 2011, the existing land cover maps published by the Ministry of Forestry, statistical data and ground truth. Prior to any other analyses, all districts within the study area were classified into 2 typologies, i.e. low-rate and high-rate deforestation districs on the basis of social and economic factors by using clustering approaches. The spatial models of deforestation were developed by using least-square methods. The study found that the spatial model of deforestation for low-rate deforestation area is Logit (Deforestation = -2.7046 – 0.000397*JH90 + 0.000002*JJ – 0.000111*JKBN90 (distance from forest edge (distance from road + 0.000096 *JP90 + 0.044227*PDK90 + 0.148187 *E – (distance from estate crop edge (distance from agricultural crop edge (population density (elevation 0.131178*S(slope; while for the high-speed deforestation area is Logit (Deforestation = 9.1727 – 0.000788*JH90(distance – 0.000065 *JJ – 0.000091*JKBN90 + 0.000005 *JP90 – from forest edge (distance from road (distance from estate crop edge (distance from agricultural crop edge 0.070372*PDK90 + 11.268539*E – 1.495198*S . The low-rate and high-rate deforestation (population density (elevation (slope models had relatively good ROC (Relative Operating Characteristics values of 91.32% and 99.08%, respectively. The study concludes that the deforestation rate was significantly affected by accessibility (distance from forest edge, distance from estate crop edge, edge from agricultural land, biophysical condition (elevation and slope as well as

  19. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia

    OpenAIRE

    Evans, John; Kirkegaard, John; Hunt, James; Flohr, Bonnie

    2017-01-01

    Across the Australian wheat belt, the time at which wheat flowers is a critical determinant of yield. In all environments an optimal flowering period (OFP) exists which is defined by decreasing frost risk, and increasing water and heat stress. Despite their critical importance, OFPs have not been comprehensively defined across south eastern Australia′s (SEA) cropping zone using yield estimates incorporating temperature, radiation and water-stress. In this study, the widely validated cropping ...

  20. Temperature and precipitation fluctuations in the Czech Republic during the period of instrumental measurements

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Zahradníček, Pavel; Pisoft, P.; Štěpánek, Petr; Bělinová, M.; Dobrovolný, Petr

    2012-01-01

    Roč. 110, 1-2 (2012), s. 17-34 ISSN 0177-798X R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : secular station * instrumental period * homogenization * air temperature * precipitation * fluctuation * cyclicity * wavelet analysis * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.759, year: 2012

  1. PID temperature controller in pig nursery: spatial characterization of thermal environment

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  2. PID temperature controller in pig nursery: spatial characterization of thermal environment

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2018-05-01

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  3. PID temperature controller in pig nursery: spatial characterization of thermal environment.

    Science.gov (United States)

    de Souza Granja Barros, Juliana; Rossi, Luiz Antonio; Menezes de Souza, Zigomar

    2017-11-28

    The use of enhanced technologies of temperature control can improve the thermal conditions in environments of livestock facilities. The objective of this study was to evaluate the spatial distribution of the thermal environment variables in a pig nursery with a heating system with two temperature control technologies based on the geostatistical analysis. The following systems were evaluated: overhead electrical resistance with Proportional, Integral, and Derivative (PID) controller and overhead electrical resistance with a thermostat. We evaluated the climatic variables: dry bulb temperature (Tbs), air relative humidity (RH), temperature and humidity index (THI), and enthalpy in the winter, at 7:00, 12:00, and 18:00 h. The spatial distribution of these variables was mapped by kriging. The results showed that the resistance heating system with PID controllers improved the thermal comfort conditions in the pig nursery in the coldest hours, maintaining the spatial distribution of the air temperature more homogeneous in the pen. During the hottest weather, neither system provided comfort.

  4. Climate Change Impacts on Projections of Excess Mortality at 2030 using Spatially-Varying Ozone-Temperature Risk Surfaces

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J.; Nolte, Christopher G.; Spero, Tanya L.; Hubbell, Bryan; Rappold, Ana G.

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995–2005) and near-future (2025–2035) time period while incorporating a nonlinear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate nonlinear, spatially-varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 ppb (moderate level) and 75 ppb (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 ppb and 1.94°F; however, the results varied by region. Increases in ozone due to climate change result in an increase in ozone-mortality burden. Mortality attributed to ozone exceeding 40 ppb increases by 7.7% (1.6%, 14.2%). Mortality attributed to ozone exceeding 75 ppb increases by 14.2% (1.6%, 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. PMID:27005744

  5. Spatial Correlations of Anomaly Time Series of AIRS Version-6 Land Surface Skin Temperatures with the Nino-4 Index

    Science.gov (United States)

    Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2013-01-01

    The AIRS Science Team Version-6 data set is a valuable resource for meteorological studies. Quality Controlled earth's surface skin temperatures are produced on a 45 km x 45 km spatial scale under most cloud cover conditions. The same retrieval algorithm is used for all surface types under all conditions. This study used eleven years of AIRS monthly mean surface skin temperature and cloud cover products to show that land surface skin temperatures have decreased significantly in some areas and increased significantly in other areas over the period September 2002 through August 2013. These changes occurred primarily at 1:30 PM but not at 1:30 AM. Cooling land areas contained corresponding increases in cloud cover over this time period, with the reverse being true for warming land areas. The cloud cover anomaly patterns for a given month are affected significantly by El Nino/La Nina activity, and anomalies in cloud cover are a driving force behind anomalies in land surface skin temperature.

  6. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions

    Science.gov (United States)

    Anchukaitis, Kevin J.; Wilson, Rob; Briffa, Keith R.; Büntgen, Ulf; Cook, Edward R.; D'Arrigo, Rosanne; Davi, Nicole; Esper, Jan; Frank, David; Gunnarson, Björn E.; Hegerl, Gabi; Helama, Samuli; Klesse, Stefan; Krusic, Paul J.; Linderholm, Hans W.; Myglan, Vladimir; Osborn, Timothy J.; Zhang, Peng; Rydval, Milos; Schneider, Lea; Schurer, Andrew; Wiles, Greg; Zorita, Eduardo

    2017-05-01

    Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regional-scale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (May-August) mean temperatures across the extratropical Northern Hemisphere (40-90°N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750-1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.

  7. Comparing daily temperature averaging methods: the role of surface and atmosphere variables in determining spatial and seasonal variability

    Science.gov (United States)

    Bernhardt, Jase; Carleton, Andrew M.

    2018-05-01

    The two main methods for determining the average daily near-surface air temperature, twice-daily averaging (i.e., [Tmax+Tmin]/2) and hourly averaging (i.e., the average of 24 hourly temperature measurements), typically show differences associated with the asymmetry of the daily temperature curve. To quantify the relative influence of several land surface and atmosphere variables on the two temperature averaging methods, we correlate data for 215 weather stations across the Contiguous United States (CONUS) for the period 1981-2010 with the differences between the two temperature-averaging methods. The variables are land use-land cover (LULC) type, soil moisture, snow cover, cloud cover, atmospheric moisture (i.e., specific humidity, dew point temperature), and precipitation. Multiple linear regression models explain the spatial and monthly variations in the difference between the two temperature-averaging methods. We find statistically significant correlations between both the land surface and atmosphere variables studied with the difference between temperature-averaging methods, especially for the extreme (i.e., summer, winter) seasons (adjusted R2 > 0.50). Models considering stations with certain LULC types, particularly forest and developed land, have adjusted R2 values > 0.70, indicating that both surface and atmosphere variables control the daily temperature curve and its asymmetry. This study improves our understanding of the role of surface and near-surface conditions in modifying thermal climates of the CONUS for a wide range of environments, and their likely importance as anthropogenic forcings—notably LULC changes and greenhouse gas emissions—continues.

  8. Spatial Characteristics of Geothermal Spring Temperatures and Discharge Rates in the Tatun Volcanic Area, Taiwan

    Science.gov (United States)

    Jang, C. S.; Liu, C. W.

    2014-12-01

    The Tatun volcanic area is the only potential volcanic geothermal region in the Taiwan island, and abundant in hot spring resources owing to stream water mixing with fumarolic gases. According to the Meinzer's classification, spring temperatures and discharge rates are the most important properties for characterizing spring classifications. This study attempted to spatially characterize spring temperatures and discharge rates in the Tatun volcanic area, Taiwanusing indicator kriging (IK). First, data on spring temperatures and discharge rates, which were collected from surveyed data of the Taipei City Government, were divided into high, moderate and low categories according to spring classification criteria, and the various categories were regarded as estimation thresholds. Then, IK was adopted to model occurrence probabilities of specified temperatures and discharge rates in springs, and to determine their classifications based on estimated probabilities. Finally, nine combinations were obtained from the classifications of temperatures and discharge rates in springs. Moreover, the combinations and features of spring water were spatially quantified according to seven sub-zones of spring utilization. A suitable and sustainable development strategy of the spring area was proposed in each sub-zone based on probability-based combinations and features of spring water.The research results reveal that the probability-based classifications using IK provide an excellent insight in exploring the uncertainty of spatial features in springs, and can provide Taiwanese government administrators with detailed information on sustainable spring utilization and conservation in the overexploited spring tourism areas. The sub-zones BT (Beitou), RXY (Rd. Xingyi), ZSL (Zhongshanlou) and LSK (Lengshuikeng) with high or moderate discharge rates are suitable to supply spring water for tourism hotels.Local natural hot springs should be planned in the sub-zones DBT (Dingbeitou), ZSL, XYK

  9. Spatial and Temporal Inter-Relationship between Anomalies and Trends of Temperature, Moisture, Cloud Cover and OLR as Observed by AIRS/AMSU on Aqua

    Science.gov (United States)

    Susskind, Joel; Molnar, Gyula

    2009-01-01

    AIRS/AMSU is the advanced IR/MW atmospheric sounding system launched on EOS Aqua in May 2002. Products derived from AIRS/AMSU by the AIRS Science Team include surface skin temperature and atmospheric temperature profiled; atmospheric humidity profiles, fractional cloud clover and cloud top pressure, and OLR. Products covering the period September 2002 through the present have been derived from AIRS/AMSU using the AIRS Science Team Version 5 retrieval algorithm. In this paper, we will show results covering the time period September 2006 - November 2008. This time period is marked by a substantial warming trend of Northern Hemisphere Extra-tropical land surface skin temperatures, as well as pronounced El Nino - La Nina episodes. These both influence the spatial and temporal anomaly patterns of atmospheric temperature and moisture profiles, as well as of cloud cover and Clear Sky and All Sky OLR. The relationships between temporal and spatial anomalies of these parameters over this time period, as determined from AIRS/AMSU observations, will be shown with particular emphasis on which contribute significantly to OLR anomalies in each of the tropics and extra-tropics. Results will also be shown to evaluate the anomalies and trends of temperature profiles and OLR as determined from analysis of AIRS/AMSU data. Global and regional trends during the 6 1/3 year time period are not necessarily indicative of what has happened in the past, or what may happen in the future. Nevertheless, the inter-relationships of spatial and temporal anomalies of atmospheric geophysical parameters with those of surface skin temperature are indicative of climate processes, and can be used to test the performance of climate models when driven by changes in surface temperatures.

  10. On time-periodic Navier-Stokes flows with fast spatial decay in the whole space

    Czech Academy of Sciences Publication Activity Database

    Nakatsuka, Tomoyuki

    2018-01-01

    Roč. 4, č. 1 (2018), s. 51-67 ISSN 2296-9020 Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * time-periodic solution * asymptotic property Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics https://link.springer.com/article/10. 1007 %2Fs41808-018-0011-8

  11. On time-periodic Navier-Stokes flows with fast spatial decay in the whole space

    Czech Academy of Sciences Publication Activity Database

    Nakatsuka, Tomoyuki

    2018-01-01

    Roč. 4, č. 1 (2018), s. 51-67 ISSN 2296-9020 Institutional support: RVO:67985840 Keywords : Navier-Stokes equation * time-periodic solution * asymptotic property Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics https://link.springer.com/article/10.1007%2Fs41808-018-0011-8

  12. The influence of riparian woodland on the spatial and temporal variability of stream water temperatures in an upland salmon stream

    Directory of Open Access Journals (Sweden)

    I. A. Malcolm

    2004-01-01

    Full Text Available The spatio-temporal variability of stream water temperatures was investigated at six locations on the Girnock Burn (30km2 catchment, Cairngorms, Scotland over three hydrological years between 1998 and 2002. The key site-specific factors affecting the hydrology and climatology of the sampling points were investigated as a basis for physical process inference. Particular emphasis was placed on assessing the effects of riparian forest in the lower catchment versus the heather moorland riparian zones that are spatially dominant in the upper catchment. The findings were related to river heat budget studies that provided process detail. Gross changes in stream temperature were affected by the annual cycle of incoming solar radiation and seasonal changes in hydrological and climatological conditions. Inter-annual variation in these controlling variables resulted in inter-annual variability in thermal regime. However, more subtle inter-site differences reflected the impact of site-specific characteristics on various components of the river energy budget. Inter-site variability was most apparent at shorter time scales, during the summer months and for higher stream temperatures. Riparian woodland in the lower catchment had a substantial impact on thermal regime, reducing diel variability (over a period of 24 hours and temperature extremes. Observed inter-site differences are likely to have a substantial effect on freshwater ecology in general and salmonid fish in particular. Keywords: temperature, thermal regime, forest, salmon, hydrology, Girnock Burn, Cairngorm

  13. Compensation for the phase-type spatial periodic modulation of the near-field beam at 1053 nm

    Science.gov (United States)

    Gao, Yaru; Liu, Dean; Yang, Aihua; Tang, Ruyu; Zhu, Jianqiang

    2017-10-01

    A phase-only spatial light modulator is used to provide and compensate for the spatial periodic modulation (SPM) of the near-field beam at the near infrared at 1053nm wavelength with an improved iterative weight-based method. The transmission characteristics of the incident beam has been changed by a spatial light modulator (SLM) to shape the spatial intensity of the output beam. The propagation and reverse propagation of the light in free space are two important processes in the iterative process. The based theory is the beam angular spectrum transmit formula (ASTF) and the principle of the iterative weight-based method. We have made two improvements to the originally proposed iterative weight-based method. We select the appropriate parameter by choosing the minimum value of the output beam contrast degree and use the MATLAB built-in angle function to acquire the corresponding phase of the light wave function. The required phase that compensates for the intensity distribution of the incident SPM beam is iterated by this algorithm, which can decrease the magnitude of the SPM of the intensity on the observation plane. The experimental results show that the phase-type SPM of the near-field beam is subject to a certain restriction. We have also analyzed some factors that make the results imperfect. The experiment results verifies the possible applicability of this iterative weight-based method to compensate for the SPM of the near-field beam.

  14. On the Origin of Quasi-Periodic Temperature Variations in Kun-1 Well (Kunashir Island)

    Science.gov (United States)

    Demezhko, D. Yu.; Yurkov, A. K.

    2017-12-01

    The results of temperature monitoring in the 300-m kun-1 well (Kunashir Island) in 2011-2015 are considered. Quasi-periodic temperature variations with an amplitude of up to 0.3°C and a variation period of 14-26 h were added from November 2011 to the previously observed temperature variations caused by tidal deformations, free thermal convection, and deformation processes associated with the preparation and occurrence of tectonic earthquakes. Five cycles of such variations lasting from 2 to 6 months have been recorded. Each cycle was initiated by an earthquake with magnitude M > 2.5log( R), where R is the epicentral distance (km). According to their characteristics, the variations are unique and have not been described previously. Assumptions have been made about the possible connection of the registered variations with the inertial currents of the ocean or with hydrothermal processes in the Earth's subsurface. The phenomenon discovered requires further study not only as an object of fundamental science, but also as a feature of an earlier unknown type of geodynamic activity that can be a significant threat to the regional population.

  15. Quasi-16-day period oscillations observed in middle atmospheric ozone and temperature in Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Demissie, T.D.; Hibbins, R.E.; Espy, P.J. [Norwegian Univ. of Science and Technology (NTNU), Trondheim (Norway); Birkeland Centre for Space Science, Bergen (Norway); Kleinknecht, N.H.; Straub, C. [Norwegian Univ. of Science and Technology (NTNU), Trondheim (Norway)

    2013-09-01

    Nightly averaged mesospheric temperature derived from the hydroxyl nightglow at Rothera station (67 34' S, 68 08' W) and nightly midnight measurements of ozone mixing ratio obtained from Troll station (72 01' S, 2 32' E) in Antarctica have been used to investigate the presence and vertical profile of the quasi-16-day planetary wave in the stratosphere and mesosphere during the Antarctic winter of 2009. The variations caused by planetary waves on the ozone mixing ratio and temperature are discussed, and spectral and cross-correlation analyses are performed to extract the wave amplitudes and to examine the vertical structure of the wave from 34 to 80 km. The results show that while planetary-wave signatures with periods 3-12 days are strong below the stratopause, the oscillations associated with the 16-day wave are the strongest and present in both the mesosphere and stratosphere. The period of the wave is found to increase below 42 km due to the Doppler shifting by the strong eastward zonal wind. The 16-day oscillation in the temperature is found to be correlated and phase coherent with the corresponding oscillation observed in O{sub 3} volume mixing ratio at all levels, and the wave is found to have vertical phase fronts consistent with a normal mode structure. (orig.)

  16. Comparison of different statistical modelling approaches for deriving spatial air temperature patterns in an urban environment

    Science.gov (United States)

    Straub, Annette; Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Geruschkat, Uta; Jacobeit, Jucundus; Kühlbach, Benjamin; Kusch, Thomas; Richter, Katja; Schneider, Alexandra; Umminger, Robin; Wolf, Kathrin

    2017-04-01

    Frequently spatial variations of air temperature of considerable magnitude occur within urban areas. They correspond to varying land use/land cover characteristics and vary with season, time of day and synoptic conditions. These temperature differences have an impact on human health and comfort directly by inducing thermal stress as well as indirectly by means of affecting air quality. Therefore, knowledge of the spatial patterns of air temperature in cities and the factors causing them is of great importance, e.g. for urban planners. A multitude of studies have shown statistical modelling to be a suitable tool for generating spatial air temperature patterns. This contribution presents a comparison of different statistical modelling approaches for deriving spatial air temperature patterns in the urban environment of Augsburg, Southern Germany. In Augsburg there exists a measurement network for air temperature and humidity currently comprising 48 stations in the city and its rural surroundings (corporately operated by the Institute of Epidemiology II, Helmholtz Zentrum München, German Research Center for Environmental Health and the Institute of Geography, University of Augsburg). Using different datasets for land surface characteristics (Open Street Map, Urban Atlas) area percentages of different types of land cover were calculated for quadratic buffer zones of different size (25, 50, 100, 250, 500 m) around the stations as well for source regions of advective air flow and used as predictors together with additional variables such as sky view factor, ground level and distance from the city centre. Multiple Linear Regression and Random Forest models for different situations taking into account season, time of day and weather condition were applied utilizing selected subsets of these predictors in order to model spatial distributions of mean hourly and daily air temperature deviations from a rural reference station. Furthermore, the different model setups were

  17. Thermodynamics of Micro- and Nano-Systems Driven by Periodic Temperature Variations

    Directory of Open Access Journals (Sweden)

    Kay Brandner

    2015-08-01

    Full Text Available We introduce a general framework for analyzing the thermodynamics of small systems that are driven by both a periodic temperature variation and some external parameter modulating their energy. This setup covers, in particular, periodic micro- and nano-heat engines. In a first step, we show how to express total entropy production by properly identified time-independent affinities and currents without making a linear response assumption. In linear response, kinetic coefficients akin to Onsager coefficients can be identified. Specializing to a Fokker-Planck-type dynamics, we show that these coefficients can be expressed as a sum of an adiabatic contribution and one reminiscent of a Green-Kubo expression that contains deviations from adiabaticity. Furthermore, we show that the generalized kinetic coefficients fulfill an Onsager-Casimir-type symmetry tracing back to microscopic reversibility. This symmetry allows for nonidentical off-diagonal coefficients if the driving protocols are not symmetric under time reversal. We then derive a novel constraint on the kinetic coefficients that is sharper than the second law and provides an efficiency-dependent bound on power. As one consequence, we can prove that the power vanishes at least linearly when approaching Carnot efficiency. We illustrate our general framework by explicitly working out the paradigmatic case of a Brownian heat engine realized by a colloidal particle in a time-dependent harmonic trap subject to a periodic temperature profile. This case study reveals inter alia that our new general bound on power is asymptotically tight.

  18. Spatial glass transition temperature variations in polymer glass: application to a maltodextrin-water system.

    Science.gov (United States)

    van Sleeuwen, Rutger M T; Zhang, Suying; Normand, Valéry

    2012-03-12

    A model was developed to predict spatial glass transition temperature (T(g)) distributions in glassy maltodextrin particles during transient moisture sorption. The simulation employed a numerical mass transfer model with a concentration dependent apparent diffusion coefficient (D(app)) measured using Dynamic Vapor Sorption. The mass average moisture content increase and the associated decrease in T(g) were successfully modeled over time. Large spatial T(g) variations were predicted in the particle, resulting in a temporary broadening of the T(g) region. Temperature modulated differential scanning calorimetry confirmed that the variation in T(g) in nonequilibrated samples was larger than in equilibrated samples. This experimental broadening was characterized by an almost doubling of the T(g) breadth compared to the start of the experiment. Upon reaching equilibrium, both the experimental and predicted T(g) breadth contracted back to their initial value.

  19. Reconstruction and analysis of temperature and density spatial profiles inertial confinement fusion implosion cores

    International Nuclear Information System (INIS)

    Mancini, R. C.

    2007-01-01

    We discuss several methods for the extraction of temperature and density spatial profiles in inertial confinement fusion implosion cores based on the analysis of the x-ray emission from spectroscopic tracers added to the deuterium fuel. The ideas rely on (1) detailed spectral models that take into account collisional-radiative atomic kinetics, Stark broadened line shapes, and radiation transport calculations, (2) the availability of narrow-band, gated pinhole and slit x-ray images, and space-resolved line spectra of the core, and (3) several data analysis and reconstruction methods that include a multi-objective search and optimization technique based on a novel application of Pareto genetic algorithms to plasma spectroscopy. The spectroscopic analysis yields the spatial profiles of temperature and density in the core at the collapse of the implosion, and also the extent of shell material mixing into the core. Results are illustrated with data recorded in implosion experiments driven by the OMEGA and Z facilities

  20. Upscaling of dilution and mixing using a trajectory based Spatial Markov random walk model in a periodic flow domain

    Science.gov (United States)

    Sund, Nicole L.; Porta, Giovanni M.; Bolster, Diogo

    2017-05-01

    The Spatial Markov Model (SMM) is an upscaled model that has been used successfully to predict effective mean transport across a broad range of hydrologic settings. Here we propose a novel variant of the SMM, applicable to spatially periodic systems. This SMM is built using particle trajectories, rather than travel times. By applying the proposed SMM to a simple benchmark problem we demonstrate that it can predict mean effective transport, when compared to data from fully resolved direct numerical simulations. Next we propose a methodology for using this SMM framework to predict measures of mixing and dilution, that do not just depend on mean concentrations, but are strongly impacted by pore-scale concentration fluctuations. We use information from trajectories of particles to downscale and reconstruct pore-scale approximate concentration fields from which mixing and dilution measures are then calculated. The comparison between measurements from fully resolved simulations and predictions with the SMM agree very favorably.

  1. THE DEPENDENCE OF HEAT CONSUMPTION ON THE DYNAMICS OF EXTERNAL AIR TEMPERATURE DURING COLD SNAP PERIODS

    Directory of Open Access Journals (Sweden)

    Rymarov Andrey Georgievich

    2014-09-01

    Full Text Available The dynamics of outdoor temperature variations during the cold period of the year influences the operation of the systems providing the required microclimate in the premises, which may be subject to automation systems that affects the IQ of a building, it is important to note that in the last decade there has been a growth in the participation of intelligent technologies in the formation of a microclimate of buildings. Studying the microclimate quality in terms of energy consumption of the premises and the building considers climate variability and outdoor air pollution, which is connected with the economic aspects of energy efficiency and productivity, and health of workers, as a short-term temperature fall in the premises has harmful consequences. Low outdoor temperatures dry the air in the premises that requires accounting for climate control equipment and, if necessary, the personal account of its work. Excess heat in the premises, including office equipment, corrects the temperature conditions, which reduces the adverse effect of cold snap.

  2. Fast and Accurate Prediction of Stratified Steel Temperature During Holding Period of Ladle

    Science.gov (United States)

    Deodhar, Anirudh; Singh, Umesh; Shukla, Rishabh; Gautham, B. P.; Singh, Amarendra K.

    2017-04-01

    Thermal stratification of liquid steel in a ladle during the holding period and the teeming operation has a direct bearing on the superheat available at the caster and hence on the caster set points such as casting speed and cooling rates. The changes in the caster set points are typically carried out based on temperature measurements at the end of tundish outlet. Thermal prediction models provide advance knowledge of the influence of process and design parameters on the steel temperature at various stages. Therefore, they can be used in making accurate decisions about the caster set points in real time. However, this requires both fast and accurate thermal prediction models. In this work, we develop a surrogate model for the prediction of thermal stratification using data extracted from a set of computational fluid dynamics (CFD) simulations, pre-determined using design of experiments technique. Regression method is used for training the predictor. The model predicts the stratified temperature profile instantaneously, for a given set of process parameters such as initial steel temperature, refractory heat content, slag thickness, and holding time. More than 96 pct of the predicted values are within an error range of ±5 K (±5 °C), when compared against corresponding CFD results. Considering its accuracy and computational efficiency, the model can be extended for thermal control of casting operations. This work also sets a benchmark for developing similar thermal models for downstream processes such as tundish and caster.

  3. Nonuniformity correction of infrared cameras by reading radiance temperatures with a spatially nonhomogeneous radiation source

    International Nuclear Information System (INIS)

    Gutschwager, Berndt; Hollandt, Jörg

    2017-01-01

    We present a novel method of nonuniformity correction (NUC) of infrared cameras and focal plane arrays (FPA) in a wide optical spectral range by reading radiance temperatures and by applying a radiation source with an unknown and spatially nonhomogeneous radiance temperature distribution. The benefit of this novel method is that it works with the display and the calculation of radiance temperatures, it can be applied to radiation sources of arbitrary spatial radiance temperature distribution, and it only requires sufficient temporal stability of this distribution during the measurement process. In contrast to this method, an initially presented method described the calculation of NUC correction with the reading of monitored radiance values. Both methods are based on the recording of several (at least three) images of a radiation source and a purposeful row- and line-shift of these sequent images in relation to the first primary image. The mathematical procedure is explained in detail. Its numerical verification with a source of a predefined nonhomogeneous radiance temperature distribution and a thermal imager of a predefined nonuniform FPA responsivity is presented. (paper)

  4. Electrical conductivity testing of corn seeds as influenced by temperature and period of storage

    OpenAIRE

    Fessel,Simone Aparecida; Vieira,Roberval Daiton; Cruz,Mara Cristina Pessoa da; Paula,Rinaldo Cesar de; Panobianco,Maristela

    2006-01-01

    The objective of this work was to evaluate the effects of temperature (10, 20, 30, 20/10 and 30/10ºC) and period of storage on electrical conductivity (EC) in four seed lots of corn (Zea mays L.), as well as the mineral composition of the soaking solution. EC test determines indirectly the integrity of seed membrane systems, and is used for the assessment of seed vigor, because this test detects the seed deterioration process since its early phase. The research comprised determinations o...

  5. Similarities between the Hubbard and Periodic Anderson Models at Finite Temperatures

    International Nuclear Information System (INIS)

    Held, K.; Huscroft, C.; Scalettar, R. T.; McMahan, A. K.

    2000-01-01

    The single band Hubbard and the two band periodic Anderson Hamiltonians have traditionally been applied to rather different physical problems--the Mott transition and itinerant magnetism, and Kondo singlet formation and scattering off localized magnetic states, respectively. In this paper, we compare the magnetic and charge correlations, and spectral functions, of the two systems. We show quantitatively that they exhibit remarkably similar behavior, including a nearly identical topology of the finite temperature phase diagrams at half filling. We address potential implications of this for theories of the rare earth ''volume collapse'' transition. (c) 2000 The American Physical Society

  6. Air temperature and humidity diversity in the Hornsund fjord area (Spitsbergen) in the period 1 July 2014 - 30 June 2015

    Science.gov (United States)

    Przybylak, Rajmund; Araźny, Andrzej; Wyszyński, Przemysław; Budzik, Tomasz; Wawrzyniak, Tomasz

    2016-04-01

    The article presents preliminary results of studies into the spatial diversity of air temperature and relative humidity (overground layer, 2 m a.g.l.) in the area of the Hornsund fjord (S Spitsbergen, approx. 77°N), based on data collected between 1 July 2014 and 30 June 2015. The Hornsund fjord runs latitudinal along approx. 40 km and its average width is about 10 km. Numerous glaciers flow into the fjord and the mountain ridges around it often exceed 700 m a.s.l. Data series obtained from 11 sites equipped with automatic weather stations (Vaisala, Campbell, Davis) or HOBO temperature and humidity sensors were used. Two sites (Hornsund HOR and the Hans Glacier HG4) have been operating for years, whereas 9 new ones (Bogstranda BOG, Fugleberget FUG, Gnålodden GNA, Gåshamnoyra GAS, Hyttevika HYT, Lisbetdalen LIS, Ostrogradskijfjella OST, Treskelodden TRE and Wilczekodden WIL) were established within the Polish-Norwegian AWAKE-2 project. Three of the sites (BOG, GAS and OST) were damaged by polar bears, hence their measurement series are shorter. A substantial spatial diversity was found in the air temperature and relative humidity in the area, mostly influenced by elevation, type of surface and distance from the Greenland Sea's open water. During the year (July 2014 - June 2015), the areas of HYT (-1.1°C) and WIL (-1.9°C) were the warmest. Both sites are located on the west coast of the fjord. The HYT demonstrates the most favourable temperature conditions, being orographically sheltered from the east and its cold and dry air masses. The coldest sites were the mountain-top site of FUG (-5.9°C) and the glacier-located HG4 (-4.3°C). The low temperature at FUG resulted from its elevation (568 m a.s.l.), whereas at HG4 (184 m a.s.l) the glaciated surface also added up to the result. In the analysed period, the annual course of air temperature in the area had a clear minimum in February, when the lowest mean monthly values ranged from -9.4°C at HYT to -15.1°C at

  7. Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies

    KAUST Repository

    Philbin, R.

    2015-05-22

    This study validates the near-surface temperature and precipitation output from decadal runs of eight atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis temperatures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribution of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two fields\\' spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however, are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for observational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

  8. Bivariate spatial analysis of temperature and precipitation from general circulation models and observation proxies

    KAUST Repository

    Philbin, R.; Jun, M.

    2015-01-01

    This study validates the near-surface temperature and precipitation output from decadal runs of eight atmospheric ocean general circulation models (AOGCMs) against observational proxy data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis temperatures and Global Precipitation Climatology Project (GPCP) precipitation data. We model the joint distribution of these two fields with a parsimonious bivariate Matérn spatial covariance model, accounting for the two fields' spatial cross-correlation as well as their own smoothnesses. We fit output from each AOGCM (30-year seasonal averages from 1981 to 2010) to a statistical model on each of 21 land regions. Both variance and smoothness values agree for both fields over all latitude bands except southern mid-latitudes. Our results imply that temperature fields have smaller smoothness coefficients than precipitation fields, while both have decreasing smoothness coefficients with increasing latitude. Models predict fields with smaller smoothness coefficients than observational proxy data for the tropics. The estimated spatial cross-correlations of these two fields, however, are quite different for most GCMs in mid-latitudes. Model correlation estimates agree well with those for observational proxy data for Australia, at high northern latitudes across North America, Europe and Asia, as well as across the Sahara, India, and Southeast Asia, but elsewhere, little consistent agreement exists.

  9. Spatial and temporal distribution of rabies in northern Tanzania in the period of 1993-2002.

    Science.gov (United States)

    Swai, E S; Moshy, W E; Kaaya, J E; Mtui, P F

    2010-01-01

    A retrospective study was carried out to investigate the occurrence and distribution patterns of rabies cases in northern Tanzania. Data on laboratory confirmed brain samples and associated case reports submitted to the Arusha Veterinary Investigation Centre, for a period of ten years (1993-2002) was retrieved and reviewed. A total of 98 suspected rabies brain specimens from different animal species and geographical areas were submitted and processed during the period under review. Rabies was confirmed using Fluorescent Antibody Technique test. Of the 98 brain specimens processed, 65 (66.3%) were confirmed to be rabies cases. Canine rabies accounted for 73.8% of the cases and was diagnosed in dogs (43), jackals (4) and hyenas (1). Rabies in wildlife accounted for 5 out of 48 canine confirmed cases. Most of the cases were from Arusha Municipality (20) followed by Arumeru (19), Ngorongoro (9) and Moshi (8) districts. Rabies positive cases in other animal species were in the following order of frequencies: bovine (9 out of 11); feline (5 out of 10); equine (1 out of 2); caprine (2 out of 2). One porcine brain specimen was rabies negative. The high proportion of rabies positive cases confirmed suggests the level of their endemicity in the northern regions of Tanzania. Moreover, the findings highlights the need for sustained surveillance and institution of control measures among dog population and awareness creation particularly among general public and children whom are at high risk of contracting rabies because of their close contact with dogs.

  10. Temporal and spatial dispersion of human body temperature during deep hypothermia.

    Science.gov (United States)

    Opatz, O; Trippel, T; Lochner, A; Werner, A; Stahn, A; Steinach, M; Lenk, J; Kuppe, H; Gunga, H C

    2013-11-01

    Clinical temperature management remains challenging. Choosing the right sensor location to determine the core body temperature is a particular matter of academic and clinical debate. This study aimed to investigate the relationship of measured temperatures at different sites during surgery in deep hypothermic patients. In this prospective single-centre study, we studied 24 patients undergoing cardiothoracic surgery: 12 in normothermia, 3 in mild, and 9 in deep hypothermia. Temperature recordings of a non-invasive heat flux sensor at the forehead were compared with the arterial outlet temperature of a heart-lung machine, with the temperature on a conventional vesical bladder thermistor and, for patients undergoing deep hypothermia, with oesophageal temperature. Using a linear model for sensor comparison, the arterial outlet sensor showed a difference among the other sensor positions between -0.54 and -1.12°C. The 95% confidence interval ranged between 7.06 and 8.82°C for the upper limit and -8.14 and -10.62°C for the lower limit. Because of the hysteretic shape, the curves were divided into phases and fitted into a non-linear model according to time and placement of the sensors. During cooling and warming phases, a quadratic relationship could be observed among arterial, oesophageal, vesical, and cranial temperature recordings, with coefficients of determination ranging between 0.95 and 0.98 (standard errors of the estimate 0.69-1.12°C). We suggest that measured surrogate temperatures as indices of the cerebral temperature (e.g. vesical bladder temperature) should be interpreted with respect to the temporal and spatial dispersion during cooling and rewarming phases.

  11. Spatial and temporal modeling of wetland surface temperature using Landsat-8 imageries in Sulduz, Iran

    Directory of Open Access Journals (Sweden)

    Vahid Eisavi

    2016-01-01

    Full Text Available Wetland Surface Temperature (WST maps are an increasingly important parameter to understand the extensive range of existing processes in wetlands. The Wetlands placed in neighborhoods of agricultural and industrial lands are exposed to more chemical pollutants and pesticides that can lead to spatial and temporal variations of their surface temperature. Therefore, more studies are required for temperature modeling and the management and conservation of these variations in their ecosystem. Landsat 8 time series data of Sulduz region, Western Azerbaijan province, Iran were used in this study. The WST was derived using a mono-window algorithm after implementation of atmospheric correction. The NDVI (Normalized Differential Vegetation Index threshold method was also employed to determine the surface emissivity. Our findings show that the WST experienced extensive spatial and temporal variations. It reached its maximum value in June and also experienced the highest mean in the same month. In this research, August (2013.12.08 had a lowest spatial standard deviation regarding surface temperature and June (2013.06.28 had the highest one. Wetlands' watersides adjacent to industrial zones have a higher surface temperature than the middle lands of these places. The map obtained from the WST variance over time can be exploited to reveal thermal stable and unstable zones. The outcome demonstrates that land use, land cover effectively contribute to wetland ecosystem health. The results are useful in the water management, preventive efforts against drying of wetland and evapotranspiration modeling. The approach employed in this research indicates that remote sensing is a valuable, low-cost and stable tool for thermal monitoring of wetlands health.

  12. Spatial interaction creates period-doubling bifurcation and chaos of urbanization

    International Nuclear Information System (INIS)

    Chen Yanguang

    2009-01-01

    This paper provides a new way of looking at complicated dynamics of simple mathematical models. The complicated behavior of simple equations is one of the headstreams of chaos theory. However, a recent study based on dynamical equations of urbanization shows that there are still some undiscovered secrets behind the simple mathematical models such as logistic equation. The rural-urban interaction model can also display varied kinds of complicated dynamics, including period-doubling bifurcation and chaos. The two-dimension map of urbanization presents the same dynamics as that from the one-dimension logistic map. In theory, the logistic equation can be derived from the two-population interaction model. This seems to suggest that the complicated behavior of simple models results from interaction rather than pure intrinsic randomicity. In light of this idea, the classical predator-prey interaction model can be revised to explain the complex dynamics of logistic equation in physical and social sciences.

  13. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections

    International Nuclear Information System (INIS)

    Gourdji, Sharon M; Sibley, Adam M; Lobell, David B

    2013-01-01

    Long-term warming trends across the globe have shifted the distribution of temperature variability, such that what was once classified as extreme heat relative to local mean conditions has become more common. This is also true for agricultural regions, where exposure to extreme heat, particularly during key growth phases such as the reproductive period, can severely damage crop production in ways that are not captured by most crop models. Here, we analyze exposure of crops to physiologically critical temperatures in the reproductive stage (T crit ), across the global harvested areas of maize, rice, soybean and wheat. Trends for the 1980–2011 period show a relatively weak correspondence (r = 0.19) between mean growing season temperature and T crit exposure trends, emphasizing the importance of separate analyses for T crit . Increasing T crit exposure in the past few decades is apparent for wheat in Central and South Asia and South America, and for maize in many diverse locations across the globe. Maize had the highest percentage (15%) of global harvested area exposed to at least five reproductive days over T crit in the 2000s, although this value is somewhat sensitive to the exact temperature used for the threshold. While there was relatively little sustained exposure to reproductive days over T crit for the other crops in the past few decades, all show increases with future warming. Using projections from climate models we estimate that by the 2030s, 31, 16, and 11% respectively of maize, rice, and wheat global harvested area will be exposed to at least five reproductive days over T crit in a typical year, with soybean much less affected. Both maize and rice exhibit non-linear increases with time, with total area exposed for rice projected to grow from 8% in the 2000s to 27% by the 2050s, and maize from 15 to 44% over the same period. While faster development should lead to earlier flowering, which would reduce reproductive extreme heat exposure for wheat on a

  14. Effects of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride.

    Science.gov (United States)

    Daryaei, A; Jones, E E; Ghazalibiglar, H; Glare, T R; Falloon, R E

    2016-04-01

    The goal was to determine the effect of temperature, light and incubation period on production, germination and bioactivity of Trichoderma atroviride LU132 against Rhizoctonia solani. The incubation temperatures of 20, 25 or 30°C were assessed on the production of T. atroviride conidia under constant light over a 25 and 50 days periods. The resulting conidia were also studied for germination and bioactivity. Conidium production was maximum at 25°C after 20 days. The second peak of conidium production occurred at 45-50 days. Incubation at 25°C after 15 days showed optimum production of T. atroviride LU132. Conidia produced at 30°C gave the greatest germination and bioactivity in comparison with incubation at 20 or 25°C. This study indicates that the temperature at which conidia of T. atroviride are produced affects germination and bioactivity. Formulations based on production of the high conidia yield may not result in optimal bioactivity and there is a trade-off between quantity and quality of T. atroviride LU132 conidia. Conidium production was shown to be a continuous process, and increased under a dark/light regime. This is the first report of bimodal conidium production in a Trichoderma biological control agent (BCA), which is likely to be on 20 days cycle, and is dependent on colony age rather than abiotic factors. Conidia produced after 15 days are likely to be the most suitable for use in commercial production of this strain as a BCA. Most studies on Trichoderma-based BCA have only shown the effect of culture conditions on the high conidia yield regardless of conidium quality. This study is the first report on conidium quality affected by principal culture conditions for Trichoderma biological control formulations. © 2016 The Society for Applied Microbiology.

  15. Predicting temperature drop rate of mass concrete during an initial cooling period using genetic programming

    Science.gov (United States)

    Bhattarai, Santosh; Zhou, Yihong; Zhao, Chunju; Zhou, Huawei

    2018-02-01

    Thermal cracking on concrete dams depends upon the rate at which the concrete is cooled (temperature drop rate per day) within an initial cooling period during the construction phase. Thus, in order to control the thermal cracking of such structure, temperature development due to heat of hydration of cement should be dropped at suitable rate. In this study, an attempt have been made to formulate the relation between cooling rate of mass concrete with passage of time (age of concrete) and water cooling parameters: flow rate and inlet temperature of cooling water. Data measured at summer season (April-August from 2009 to 2012) from recently constructed high concrete dam were used to derive a prediction model with the help of Genetic Programming (GP) software “Eureqa”. Coefficient of Determination (R) and Mean Square Error (MSE) were used to evaluate the performance of the model. The value of R and MSE is 0.8855 and 0.002961 respectively. Sensitivity analysis was performed to evaluate the relative impact on the target parameter due to input parameters. Further, testing the proposed model with an independent dataset those not included during analysis, results obtained from the proposed GP model are close enough to the real field data.

  16. Evolution of temperature and humidity in an underground repository over the exploitation period

    International Nuclear Information System (INIS)

    Benet, L.V.; Tulita, C.; Calsyn, L.; Wendling, J.

    2012-01-01

    Document available in extended abstract form only. The ANDRA waste repository will be operated for about a hundred years. During this period, the ventilation scheme will follow the development of the different storage zones. The ventilation system will ensure adequate air condition for the staff in the working zone and prevent high humidity and temperature damageable for the infrastructures. The untreated incoming air is characterized by great temperature and humidity variations in time, between day and night as well as between winter and summer time. The air from the surface enters the repository through the supply shaft and flows in full section along the main galleries of the central zone until the storage zones. In each storage zone, the air is distributed between storage modules via access galleries and collected at the outflow of each module before being extracted from the repository, retreated and finally released into the atmosphere. Throughout its journey within the repository, the ventilation air will undergo a set of temperature and moisture changes by interacting with its host environment. The aim of this study is to foresee how the air condition will evolve in time all over the exploitation period, along the ventilation network. Air condition assessment in the waste repository has been achieved by means of numerical simulation and analyzed in terms of bulk temperature and moisture in the air and on contact with walls. The physical modeling takes into account (i) air/wall heat exchanges due to forced and free advection, (ii) advection flux in the air, (iii) thermal storage and conduction flux into concrete structure and host rock, (iv) condensation flux on the wall, (v) time functions of wall evaporation flux and (vi) climate variations data from 7 years of meteorological measurements at the site of Bure. In bi-flux galleries, air/air heat exchanges between incoming air in full section and outgoing air through ceiling ducts are modeled. Temperature and

  17. Assessing spatial patterns of extreme droughts associated to return periods from observed dataset: Case study of Segura River Basin (Spain)

    Science.gov (United States)

    García Galiano, Sandra G.; Diego Giraldo Osorio, Juan

    2013-04-01

    In basins of South-eastern Spain, such as the Segura River Basin (SRB), a strong decrease in runoff from the end of the 1970s has been observed. In the SRB, due to intensive reforestation aimed at halting desertification and erosion, added to climate variability and change, the default assumption of stationarity in water resources systems cannot be guaranteed. Therefore there is an important need for improvement in the ability of monitoring and predicting the impacts associated with the change of hydrologic regime. It is thus necessary to apply non-stationary probabilistic models, which are able to reproduce probability density functions whose parameters vary with time. From a high-resolution daily gridded rainfall dataset of more than 50 years (1950-2007 time period), the spatial distribution of lengths of maximum dry spells for several thresholds are assessed, applying GAMLSS (Generalized Additive Models for Location Scale and Shape) models at grid site. Results reveal an intensification of extreme drought events in some headbasins of the SRB important for water supply. The identification of spatial patterns of drought hazards at basin scale, associated to return periods, contribute to designing strategies of drought contingency preparedness and recovery operations, which are the leading edge of adaptation strategies.

  18. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature

    Science.gov (United States)

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quali...

  19. Estimation of the temperature spatial variability in confined spaces based on thermal imaging

    Science.gov (United States)

    Augustyn, Grzegorz; Jurasz, Jakub; Jurczyk, Krzysztof; Korbiel, Tomasz; Mikulik, Jerzy; Pawlik, Marcin; Rumin, Rafał

    2017-11-01

    In developed countries the salaries of office workers are several times higher than the total cost of maintaining and operating the building. Therefore even a small improvement in human work productivity and performance as a result of enhancing the quality of their work environment may lead to a meaningful economic benefits. The air temperature is the most commonly used indicator in assessing the indoor environment quality. What is more, it is well known that thermal comfort has the biggest impact on employees performance and their ability to work efficiently. In majority of office buildings, indoor temperature is managed by heating, ventilation and air conditioning (HVAC) appliances. However the way how they are currently managed and controlled leads to the nonhomogeneous distribution of temperature in certain space. An approach to determining the spatial variability of temperature in confined spaces was introduced based on thermal imaging temperature measurements. The conducted research and obtained results enabled positive verification of the method and creation of surface plot illustrating the temperature variability.

  20. Estimation of the temperature spatial variability in confined spaces based on thermal imaging

    Directory of Open Access Journals (Sweden)

    Augustyn Grzegorz

    2017-01-01

    Full Text Available In developed countries the salaries of office workers are several times higher than the total cost of maintaining and operating the building. Therefore even a small improvement in human work productivity and performance as a result of enhancing the quality of their work environment may lead to a meaningful economic benefits. The air temperature is the most commonly used indicator in assessing the indoor environment quality. What is more, it is well known that thermal comfort has the biggest impact on employees performance and their ability to work efficiently. In majority of office buildings, indoor temperature is managed by heating, ventilation and air conditioning (HVAC appliances. However the way how they are currently managed and controlled leads to the nonhomogeneous distribution of temperature in certain space. An approach to determining the spatial variability of temperature in confined spaces was introduced based on thermal imaging temperature measurements. The conducted research and obtained results enabled positive verification of the method and creation of surface plot illustrating the temperature variability.

  1. What spatial scales are believable for climate model projections of sea surface temperature?

    Science.gov (United States)

    Kwiatkowski, Lester; Halloran, Paul R.; Mumby, Peter J.; Stephenson, David B.

    2014-09-01

    Earth system models (ESMs) provide high resolution simulations of variables such as sea surface temperature (SST) that are often used in off-line biological impact models. Coral reef modellers have used such model outputs extensively to project both regional and global changes to coral growth and bleaching frequency. We assess model skill at capturing sub-regional climatologies and patterns of historical warming. This study uses an established wavelet-based spatial comparison technique to assess the skill of the coupled model intercomparison project phase 5 models to capture spatial SST patterns in coral regions. We show that models typically have medium to high skill at capturing climatological spatial patterns of SSTs within key coral regions, with model skill typically improving at larger spatial scales (≥4°). However models have much lower skill at modelling historical warming patters and are shown to often perform no better than chance at regional scales (e.g. Southeast Asian) and worse than chance at finer scales (coral bleaching frequency and other marine processes linked to SST warming.

  2. Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces.

    Science.gov (United States)

    Wilson, Ander; Reich, Brian J; Nolte, Christopher G; Spero, Tanya L; Hubbell, Bryan; Rappold, Ana G

    2017-01-01

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observed data. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results varied by region. Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1.6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.6 28.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels.

  3. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    Science.gov (United States)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  4. A soft-computing methodology for noninvasive time-spatial temperature estimation.

    Science.gov (United States)

    Teixeira, César A; Ruano, Maria Graça; Ruano, António E; Pereira, Wagner C A

    2008-02-01

    The safe and effective application of thermal therapies is restricted due to lack of reliable noninvasive temperature estimators. In this paper, the temporal echo-shifts of backscattered ultrasound signals, collected from a gel-based phantom, were tracked and assigned with the past temperature values as radial basis functions neural networks input information. The phantom was heated using a piston-like therapeutic ultrasound transducer. The neural models were assigned to estimate the temperature at different intensities and points arranged across the therapeutic transducer radial line (60 mm apart from the transducer face). Model inputs, as well as the number of neurons were selected using the multiobjective genetic algorithm (MOGA). The best attained models present, in average, a maximum absolute error less than 0.5 degrees C, which is pointed as the borderline between a reliable and an unreliable estimator in hyperthermia/diathermia. In order to test the spatial generalization capacity, the best models were tested using spatial points not yet assessed, and some of them presented a maximum absolute error inferior to 0.5 degrees C, being "elected" as the best models. It should be also stressed that these best models present implementational low-complexity, as desired for real-time applications.

  5. Influence of the harvesting time, temperature and drying period on basil (Ocimum basilicum L. essential oil

    Directory of Open Access Journals (Sweden)

    José Luiz S. Carvalho Filho

    Full Text Available Ocimum basilicum L. essential oil with high concentration of linalool is valuable in international business. O. basilicum essential oil is widely used as seasoning and in cosmetic industry. To assure proper essential oil yield and quality, it is crucial to determine which environmental and processing factors are affecting its composition. The goal of our work is to evaluate the effects of harvesting time, temperature, and drying period on the yield and chemical composition of O. basilicum essential oil. Harvestings were performed 40 and 93 days after seedling transplantation. Harvesting performed at 8:00 h and 12:00 h provided higher essential oil yield. After five days drying, the concentration of linalool raised from 45.18% to 86.80%. O. basilicum should be harvested during morning and the biomass dried at 40ºC for five days to obtain linalool rich essential oil.

  6. Spatially Resolved Temperature and Water Vapor Concentration Distributions in Supersonic Combustion Facilities by TDLAT

    Science.gov (United States)

    Busa, K. M.; McDaniel J. C.; Diskin, G. S.; DePiro, M. J.; Capriotti, D. P.; Gaffney, R. L.

    2012-01-01

    Detailed knowledge of the internal structure of high-enthalpy flows can provide valuable insight to the performance of scramjet combustors. Tunable Diode Laser Absorption Spectroscopy (TDLAS) is often employed to measure temperature and species concentration. However, TDLAS is a path-integrated line-of-sight (LOS) measurement, and thus does not produce spatially resolved distributions. Tunable Diode Laser Absorption Tomography (TDLAT) is a non-intrusive measurement technique for determining two-dimensional spatially resolved distributions of temperature and species concentration in high enthalpy flows. TDLAT combines TDLAS with tomographic image reconstruction. More than 2500 separate line-of-sight TDLAS measurements are analyzed in order to produce highly resolved temperature and species concentration distributions. Measurements have been collected at the University of Virginia's Supersonic Combustion Facility (UVaSCF) as well as at the NASA Langley Direct-Connect Supersonic Combustion Test Facility (DCSCTF). Due to the UVaSCF s unique electrical heating and ability for vitiate addition, measurements collected at the UVaSCF are presented as a calibration of the technique. Measurements collected at the DCSCTF required significant modifications to system hardware and software designs due to its larger measurement area and shorter test duration. Tomographic temperature and water vapor concentration distributions are presented from experimentation on the UVaSCF operating at a high temperature non-reacting case for water vitiation level of 12%. Initial LOS measurements from the NASA Langley DCSCTF operating at an equivalence ratio of 0.5 are also presented. Results show the capability of TDLAT to adapt to several experimental setups and test parameters.

  7. Manufacturing a Long-Period Grating with Periodic Thermal Diffusion Technology on High-NA Fiber and Its Application as a High-Temperature Sensor.

    Science.gov (United States)

    Shen, Xiang; Dai, Bin; Xing, Yingbin; Yang, Luyun; Li, Haiqing; Li, Jinyan; Peng, Jingang

    2018-05-08

    We demonstrated a kind of long-period fiber grating (LPFG), which is manufactured with a thermal diffusion treatment. The LPFG was inscribed on an ultrahigh-numerical-aperture (UHNA) fiber, highly doped with Ge and P, which was able to easily diffuse at high temperatures within a few seconds. We analyzed how the elements diffused at a high temperature over 1300 °C in the UHNA fiber. Then we developed a periodically heated technology with a CO₂ laser, which was able to cause the diffusion of the elements to constitute the modulations of an LPFG. With this technology, there is little damage to the outer structure of the fiber, which is different from the traditional LPFG, as it is periodically tapered. Since the LPFG itself was manufactured under high temperature, it can withstand higher temperatures than traditional LPFGs. Furthermore, the LPFG presents a higher sensitivity to high temperature due to the large amount of Ge doping, which is approximately 100 pm/°C. In addition, the LPFG shows insensitivity to the changing of the environment’s refractive index and strain.

  8. Explaining growth variation over large spatial scales: Effects of temperature and food on walleye growth

    DEFF Research Database (Denmark)

    Mosgaard, Thomas; Venturelli, Paul; Lester, Nigel P.

    2012-01-01

    freshwater fish species in North America. We then use length at age data from yellow perch (Perca flavescens) to identify the mechanisms behind the remaining variation in the length at age – temperature relationship for walleye. A positive perch – walleye relationship indicates that the mechanism behind......Most fishes exhibit strong spatial variation in growth. Because fish growth and production are tightly linked, quantifying and explaining variation in growth can mean the difference between successful management and unforeseen collapse. However, disentangling the factors that are responsible...

  9. Spatial Variation of Temperature and Precipitation in Bhutan and Links to Vegetation and Land Coveropen access

    DEFF Research Database (Denmark)

    Dorji, Ugyen; Olesen, Jørgen Eivind; Bøcher, Peder Klith

    2016-01-01

    Bhutan, located in the Himalayas in the South Asian monsoon region, has extremely high variation in elevation, climatic conditions, and land cover despite its small geographical area, as well as great biodiversity. This paper provides the first comprehensive description of climatic conditions....... The spatial distribution of precipitation was mainly controlled by latitude, having a quadratic relationship, with the highest rates in the southern foothills of the Himalayan range and the lowest at midlatitudes. The land cover is affected by topography and local climate, with variations in temperature being...... a main deciding factor for vegetation types; most human settlements and associated land uses are concentrated at lower elevations....

  10. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    DEFF Research Database (Denmark)

    Frahm, Ken Steffen; Andersen, Ole K.; Arendt-Nielsen, Lars

    2010-01-01

    Background: CO(2) lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial...... to deeper skin layers. Methods: In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO(2) laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were...... compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. Results: The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p

  11. One-Way Flow of a Rarefied Gas Induced in a Circular Pipe with a Periodic Temperature Distribution

    National Research Council Canada - National Science Library

    Aoki, K

    2000-01-01

    The steady behavior of a rarefied gas in a circular pipe with a saw-like temperature distribution increasing and decreasing periodically in the direction of the pipe axis is investigated numerically...

  12. Temperature buffer test. Sensors data report (Period 030326-100301) Report No: 13

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Aakesson, Mattias; Nilsson, Ulf

    2010-12-01

    displacement was measured in three points. The water inflow and water pressure in the outer sand filter was also measured. A general conclusion is that the measuring systems and transducers have worked well and almost all sensors have delivered reliable values. An exception is the Relative Humidity sensors in the high temperature area around the lower heater, where some sensors have failed. The dense arrays of thermocouples at the mid-height of the two heaters appear to be useful for examining the dehydration/hydration process qualitatively. In the lower section there were clear signs of early dehydration in a 0.15 m annular zone around the heater. The resaturation of this part has been followed during the test period. Most humidity sensors measurements in the bentonite buffer have been insignificant during the second half of the test period, indicating that the material was close to saturation. However in the upper section (Ring 9), the fact that the pore pressure started to equilibrate with the water pressure in the sand filter indicated that fill water saturation was reached in this part. This sand slot between the bentonite column and the surrounding rock has been used for artificial wetting. More than the water theoretically needed to fill up the sand slot and to saturate the bentonite has been injected, which proves that the system was not hydraulically closed but leaked towards the rock (EDZ). The high sand slot injection pressure required to maintain the inflow shows the weakness of the injection system (clogging of the filter tips). An unclogging action was therefore performed by injecting demineralised water instead of ground water, as it was done since the beginning of the experiment. This action proved successful, and after this modification it was possible to maintain a hydraulic pressure in the filter around 4 bar absolute. The decrease in total pressure and increase in suction that was recorded around the upper heater from day 225 to day 370 has been caused by

  13. Temperature buffer test. Sensors data report (Period 030326-100301) Report No: 13

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Aakesson, Mattias; Nilsson, Ulf [Clay Technology AB, Lund (Sweden)

    2010-12-15

    displacement was measured in three points. The water inflow and water pressure in the outer sand filter was also measured. A general conclusion is that the measuring systems and transducers have worked well and almost all sensors have delivered reliable values. An exception is the Relative Humidity sensors in the high temperature area around the lower heater, where some sensors have failed. The dense arrays of thermocouples at the mid-height of the two heaters appear to be useful for examining the dehydration/hydration process qualitatively. In the lower section there were clear signs of early dehydration in a 0.15 m annular zone around the heater. The resaturation of this part has been followed during the test period. Most humidity sensors measurements in the bentonite buffer have been insignificant during the second half of the test period, indicating that the material was close to saturation. However in the upper section (Ring 9), the fact that the pore pressure started to equilibrate with the water pressure in the sand filter indicated that fill water saturation was reached in this part. This sand slot between the bentonite column and the surrounding rock has been used for artificial wetting. More than the water theoretically needed to fill up the sand slot and to saturate the bentonite has been injected, which proves that the system was not hydraulically closed but leaked towards the rock (EDZ). The high sand slot injection pressure required to maintain the inflow shows the weakness of the injection system (clogging of the filter tips). An unclogging action was therefore performed by injecting demineralised water instead of ground water, as it was done since the beginning of the experiment. This action proved successful, and after this modification it was possible to maintain a hydraulic pressure in the filter around 4 bar absolute. The decrease in total pressure and increase in suction that was recorded around the upper heater from day 225 to day 370 has been caused by

  14. Empirical Mode Decomposition on the sphere: application to the spatial scales of surface temperature variations

    Directory of Open Access Journals (Sweden)

    N. Fauchereau

    2008-06-01

    Full Text Available Empirical Mode Decomposition (EMD is applied here in two dimensions over the sphere to demonstrate its potential as a data-adaptive method of separating the different scales of spatial variability in a geophysical (climatological/meteorological field. After a brief description of the basics of the EMD in 1 then 2 dimensions, the principles of its application on the sphere are explained, in particular via the use of a zonal equal area partitioning. EMD is first applied to an artificial dataset, demonstrating its capability in extracting the different (known scales embedded in the field. The decomposition is then applied to a global mean surface temperature dataset, and we show qualitatively that it extracts successively larger scales of temperature variations related, for example, to topographic and large-scale, solar radiation forcing. We propose that EMD can be used as a global data-adaptive filter, which will be useful in analysing geophysical phenomena that arise as the result of forcings at multiple spatial scales.

  15. Comparative Analysis of Spatial Interpolation Methods in the Mediterranean Area: Application to Temperature in Sicily

    Directory of Open Access Journals (Sweden)

    Annalisa Di Piazza

    2015-04-01

    Full Text Available An exhaustive comparison among different spatial interpolation algorithms was carried out in order to derive annual and monthly air temperature maps for Sicily (Italy. Deterministic, data-driven and geostatistics algorithms were used, in some cases adding the elevation information and other physiographic variables to improve the performance of interpolation techniques and the reconstruction of the air temperature field. The dataset is given by air temperature data coming from 84 stations spread around the island of Sicily. The interpolation algorithms were optimized by using a subset of the available dataset, while the remaining subset was used to validate the results in terms of the accuracy and bias of the estimates. Validation results indicate that univariate methods, which neglect the information from physiographic variables, significantly entail the largest errors, while performances improve when such parameters are taken into account. The best results at the annual scale have been obtained using the the ordinary kriging of residuals from linear regression and from the artificial neural network algorithm, while, at the monthly scale, a Fourier-series algorithm has been used to downscale mean annual temperature to reproduce monthly values in the annual cycle.

  16. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    Directory of Open Access Journals (Sweden)

    Arendt-Nielsen Lars

    2010-11-01

    Full Text Available Abstract Background CO2 lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial to deeper skin layers. Methods In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO2 laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. Results The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p 0.90, p 2 (5 W, 0.12 s, d1/e2 = 11.4 mm only two reported pain to glabrous skin stimulation using the same stimulus intensity. The temperature at the epidermal-dermal junction (depth 50 μm in hairy and depth 133 μm in glabrous skin was estimated to 46°C for hairy skin stimulation and 39°C for glabrous skin stimulation. Conclusions As compared to previous one dimensional heat distribution models, the current two dimensional model provides new possibilities for detailed studies regarding CO2 laser stimulation intensity, temperature levels and nociceptor activation.

  17. Spatial and Seasonal Variability of Temperature in CO2 Emission from Mars' Mesosphere

    Science.gov (United States)

    Livengood, Timothy A.; Kostiuk, Theodor; Hewagama, Tilak; Kolasinski, John R.; Henning, Wade; Fast, Kelly Elizabeth; Sonnabend, Guido; Sornig, Manuela

    2017-10-01

    We have observed non-local thermodynamic equilibrium (non-LTE) emission of carbon dioxide that probes Mars’ mesosphere in 2001, 2003, 2007, 2012, 2014, and 2016. These measurements were conducted at 10.6 μm wavelength using the Goddard Space Flight Center Heterodyne Instrument for Planetary Winds and Composition (HIPWAC) from the NASA Infrared Telescope Facility (IRTF) at resolving power (1-33)×106. The Maxwellian broadening of the emission line can be measured at this resolution, providing a direct determination of temperature in the mesosphere. The nonLTE line appears as a narrow emission core within a broad absorption formed by tropospheric CO2, which provides temperature information reaching down to the martian surface, while the mesospheric line probes temperature at about 60-80 km altitude. We will report on the spatial distribution of temperature and emission line strength with local solar time on Mars, with latitude, as well as long-term variability including seasonal effects that modify the overall thermal structure of the atmosphere. These remote measurements complement results from orbital spacecraft through access to a broad range of local solar time on each occasion.This work has been supported by the NASA Planetary Astronomy and Solar Systems Observations Programs

  18. Microbial habitat connectivity across spatial scales and hydrothermal temperature gradients at Guaymas Basin

    Directory of Open Access Journals (Sweden)

    Stefanie eMeyer

    2013-07-01

    Full Text Available The Guaymas Basin (Gulf of California hydrothermal vent area is known as a dynamic and hydrothermally vented sedimentary system, where the advection and production of a variety of different metabolic substrates support a high microbial diversity and activity in the seafloor. The main objective of our study was to explore the role of temperature and other environmental factors on community diversity, such as the presence of microbial mats and seafloor bathymetry within one hydrothermally vented field of 200 × 250 m dimension. In this field, temperature increased strongly with sediment depth reaching the known limit to life within a few decimeters. Potential sulfate reduction rate as a key community activity parameter was strongly affected by in situ temperature and sediment depth, declining from high rates of 1-5 μmol ml-1 d-1 at the surface to the detection limit below 5 cm sediment depth, despite the presence of sulfate and hydrocarbons. Automated Ribosomal Intergenic Spacer Analysis yielded a high-resolution fingerprint of the dominant members of the bacterial community. Our analyses showed strong temperature and sediment depth effects on bacterial cell abundance and Operational Taxonomic Units (OTUs number, both declining by more than one order of magnitude below the top 5 cm of the sediment surface. Another fraction of the variation in diversity and community structure was explained by differences in the local bathymetry and spatial position within the vent field. Nevertheless, more than 80% of all detected OTUs were shared among the different temperature realms and sediment depths, after being classified as cold (T<10°C, medium (10°C≤T<40°C or hot (T≥40°C temperature conditions, with significant OTU overlap with the richer surface communities. Overall, this indicates a high connectivity of benthic bacterial habitats in this dynamic and heterogeneous marine ecosystem influenced by strong hydrothermalism.

  19. Spatial and temporal variation in the association between temperature and salmonellosis in NZ.

    Science.gov (United States)

    Lal, Aparna; Hales, Simon; Kirk, Martyn; Baker, Michael G; French, Nigel P

    2016-04-01

    Modelling the relationship between weather, climate and infectious diseases can help identify high-risk periods and provide understanding of the determinants of longer-term trends. We provide a detailed examination of the non-linear and delayed association between temperature and salmonellosis in three New Zealand cities (Auckland, Wellington and Christchurch). Salmonella notifications were geocoded to the city of residence for the reported case. City-specific associations between weekly maximum temperature and the onset date for reported salmonella infections (1997-2007) were modelled using non-linear distributed lag models, while controlling for season and long-term trends. Relatively high temperatures were positively associated with infection risk in Auckland (n=3,073) and Christchurch (n=880), although the former showed evidence of a more immediate relationship with exposure to high temperatures. There was no significant association between temperature and salmonellosis risk in Wellington. Projected increases in temperature with climate change may have localised health impacts, suggesting that preventative measures will need to be region-specific. This evidence contributes to the increasing concern over the public health impacts of climate change. © 2015 Public Health Association of Australia.

  20. The Effects of Data Gaps on the Calculated Monthly Mean Maximum and Minimum Temperatures in the Continental United States: A Spatial and Temporal Study.

    Science.gov (United States)

    Stooksbury, David E.; Idso, Craig D.; Hubbard, Kenneth G.

    1999-05-01

    Gaps in otherwise regularly scheduled observations are often referred to as missing data. This paper explores the spatial and temporal impacts that data gaps in the recorded daily maximum and minimum temperatures have on the calculated monthly mean maximum and minimum temperatures. For this analysis 138 climate stations from the United States Historical Climatology Network Daily Temperature and Precipitation Data set were selected. The selected stations had no missing maximum or minimum temperature values during the period 1951-80. The monthly mean maximum and minimum temperatures were calculated for each station for each month. For each month 1-10 consecutive days of data from each station were randomly removed. This was performed 30 times for each simulated gap period. The spatial and temporal impact of the 1-10-day data gaps were compared. The influence of data gaps is most pronounced in the continental regions during the winter and least pronounced in the southeast during the summer. In the north central plains, 10-day data gaps during January produce a standard deviation value greater than 2°C about the `true' mean. In the southeast, 10-day data gaps in July produce a standard deviation value less than 0.5°C about the mean. The results of this study will be of value in climate variability and climate trend research as well as climate assessment and impact studies.

  1. Evaluating the impact of sea surface temperature (SST) on spatial distribution of chlorophyll-a concentration in the East China Sea

    Science.gov (United States)

    Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Tsou, JinYeu; Jiang, Tingchen; Liang, X. San

    2018-06-01

    In this study, we analyze spatial and temporal sea surface temperature (SST) and chlorophylla (Chl-a) concentration in the East China Sea (ECS) during the period 2003-2016. Level 3 (4 km) monthly SST and Chl-a data from the Moderate Resolution Imaging Spectroradiometer Satellite (MODIS-Aqua) were reconstructed using the data interpolation empirical orthogonal function (DINEOF) method and used to evaluated the relationship between the two variables. The approaches employed included correlation analysis, regression analysis, and so forth. Our results show that certain strong oceanic SSTs affect Chl-a concentration, with particularly high correlation seen in the coastal area of Jiangsu and Zhejiang provinces. The mean temperature of the high correlated region was 18.67 °C. This finding may suggest that the SST has an important impact on the spatial distribution of Chl-a concentration in the ECS.

  2. Effects of stress and corticosterone in two post-training periods, on spatial memory consolidation in adult male Wistar rats.

    Directory of Open Access Journals (Sweden)

    Jeimmy Marcela Cerón

    2015-04-01

    final product of HPA axis activity. These hormones act on specialized receptors located within all body cells; upon activation by ligand binding, these receptors interact with specific regions of DNA, thereby regulating gene expression (Tsigos & Chrousos, 2002. The lipidic nature of glucocorticoids allows them to cross the blood-brain barrier and enter the brain, which may influence cognitive function. The aim of this study was to determine the effects of stress (movement restriction or the stress hormone corticosterone (intraperitoneal injection of corticosterone, on spatial memory consolidation in adult male Wistar rats in two different post-training time windows (immediately or 3 hours after training involved in memory consolidation. Rats were trained in a spatial memory task in the Barnes maze and a memory retention test was performed twenty-four hours after training. The results showed that both stress and corticosterone were able to enhance memory consolidation when they were administered immediately after training. However, when the same treatments were administered three hours after training, there was not a significant change in the performance during the test carried out after twenty-four hours. These results suggest, on the one hand, that memory consolidation process can be improved using treatments that modulate cellular gene expression programs, as stress and corticosterone, when they are applied during the first window of memory consolidation. Additionally, although the second period of memory consolidation is also related to a particular gene expression and protein synthesis program, the treatments used in the present study were not able to modulate memory consolidation when administered during this period. As the molecular events involved in the second window of memory consolidation may be different from those involved in the first one, it is possible that the molecular changes generated by stress and corticosterone do not interact with them in a way

  3. Sea Surface Temperatures in the Indo-Pacific Warm Pool During the Early Pliocene Warm Period

    Science.gov (United States)

    Dekens, P. S.; Ravelo, A. C.; Griffith, E. M.

    2010-12-01

    The Indo-Pacific warm pool (IPWP) plays an important role in both regional and global climate, but the response of this region to anthropogenic climate change is not well understood. While the early Pliocene is not a perfect analogue for anthropogenic climate change, it is the most recent time in Earth history when global temperatures were warmer than they are today for a sustained period of time. SST in the eastern equatorial Pacific was 2-4○C warmer in the early Pliocene compared to today. A Mg/Ca SST at ODP site 806 in the western equatorial Pacific indicates that SST were stable through the last 5Ma (Wara et al., 2005). We generated a G. sacculifer Mg/Ca record in the Indian Ocean (ODP sit 758) for the last 5 Ma, which also shows that IPWP SST has remained relatively stable through the last 5 Ma and was not warmer in the early Pliocene compared today. A recent paper suggests that the Mg/Ca of seawater may have varied through the last 5 Ma and significantly affected Mg/Ca SST estimates (Medina-Elizalde et al., 2008). However, there is considerable uncertainty in the estimates of seawater Mg/Ca variations through time. We will present a detailed examination of these uncertainties to examine the possible range of seawater Mg/Ca through the last 5 Ma. Due to the lack of culturing work of foraminifera at different Mg/Ca ratios in the growth water there is also uncertainty in how changes in seawater Mg/Ca will affect the temperatures signal in the proxy. We will explore how uncertainties in the record of seawater Mg/Ca variations through time and its effect on the Mg/Ca SST proxy potentially influence the interpretation of the Mg/Ca SST records at ODP sites 806 and 758 in the IPWP, and ODP site 847 in the eastern equatorial Pacific. We will also explore how adjustment of the Mg/Ca SST estimates (due to reconstructed Mg/Ca seawater variations) affects the δ18O of water when adjusted Mg/Ca SST estimates are paired with δ18O measurements of the same samples.

  4. Spatial regression test for ensuring temperature data quality in southern Spain

    Science.gov (United States)

    Estévez, J.; Gavilán, P.; García-Marín, A. P.

    2018-01-01

    Quality assurance of meteorological data is crucial for ensuring the reliability of applications and models that use such data as input variables, especially in the field of environmental sciences. Spatial validation of meteorological data is based on the application of quality control procedures using data from neighbouring stations to assess the validity of data from a candidate station (the station of interest). These kinds of tests, which are referred to in the literature as spatial consistency tests, take data from neighbouring stations in order to estimate the corresponding measurement at the candidate station. These estimations can be made by weighting values according to the distance between the stations or to the coefficient of correlation, among other methods. The test applied in this study relies on statistical decision-making and uses a weighting based on the standard error of the estimate. This paper summarizes the results of the application of this test to maximum, minimum and mean temperature data from the Agroclimatic Information Network of Andalusia (southern Spain). This quality control procedure includes a decision based on a factor f, the fraction of potential outliers for each station across the region. Using GIS techniques, the geographic distribution of the errors detected has been also analysed. Finally, the performance of the test was assessed by evaluating its effectiveness in detecting known errors.

  5. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation

    Science.gov (United States)

    2010-01-01

    Background CO2 lasers have been used for several decades as an experimental non-touching pain stimulator. The laser energy is absorbed by the water content in the most superficial layers of the skin. The deeper located nociceptors are activated by passive conduction of heat from superficial to deeper skin layers. Methods In the current study, a 2D axial finite element model was developed and validated to describe the spatial temperature distribution in the skin after infrared CO2 laser stimulation. The geometry of the model was based on high resolution ultrasound scans. The simulations were compared to the subjective pain intensity ratings from 16 subjects and to the surface skin temperature distributions measured by an infrared camera. Results The stimulations were sensed significantly slower and less intense in glabrous skin than they were in hairy skin (MANOVA, p 0.90, p < 0.001). Of the 16 subjects tested; eight subjects reported pricking pain in the hairy skin following a stimulus of 0.6 J/cm2 (5 W, 0.12 s, d1/e2 = 11.4 mm) only two reported pain to glabrous skin stimulation using the same stimulus intensity. The temperature at the epidermal-dermal junction (depth 50 μm in hairy and depth 133 μm in glabrous skin) was estimated to 46°C for hairy skin stimulation and 39°C for glabrous skin stimulation. Conclusions As compared to previous one dimensional heat distribution models, the current two dimensional model provides new possibilities for detailed studies regarding CO2 laser stimulation intensity, temperature levels and nociceptor activation. PMID:21059226

  6. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development.

    Science.gov (United States)

    Nordey, Thibault; Léchaudel, Mathieu; Saudreau, Marc; Joas, Jacques; Génard, Michel

    2014-01-01

    Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.

  7. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development.

    Directory of Open Access Journals (Sweden)

    Thibault Nordey

    Full Text Available Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.

  8. Locking of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with one-dimensional spatial periodic forcing.

    Science.gov (United States)

    Dolnik, Milos; Bánsági, Tamás; Ansari, Sama; Valent, Ivan; Epstein, Irving R

    2011-07-21

    We use the photosensitive chlorine dioxide-iodine-malonic acid reaction-diffusion system to study wavenumber locking of Turing patterns with spatial periodic forcing. Wavenumber-locked stripe patterns are the typical resonant structures that labyrinthine patterns exhibit in response to one-dimensional forcing by illumination when images of stripes are projected on a working medium. Our experimental results reveal that segmented oblique, hexagonal and rectangular patterns can also be obtained. However, these two-dimensional resonant structures only develop in a relatively narrow range of forcing parameters, where the unforced stripe pattern is in close proximity to the domain of hexagonal patterns. Numerical simulations based on a model that incorporates the forcing by illumination using an additive term reproduce well the experimental observations. These findings confirm that additive one-dimensional forcing can generate a two-dimensional resonant response. However, such a response is considerably less robust than the effect of multiplicative forcing. This journal is © the Owner Societies 2011

  9. Stationary solution of the Rayleigh-Taylor instability for spatially periodic flows: questions of uniqueness, dimensionality, and universality

    International Nuclear Information System (INIS)

    Abarzhi, S.I.

    1996-01-01

    The stationary solutions of the Rayleigh-Taylor instability for spatially periodic flows with general symmetry are investigated here for the first time. The existence of a set of stationary solutions is established. The question of its dimensionality in function space is resolved on the basis of an analysis of the symmetry of the initial perturbation. The interrelationship between the dimensionality of the solution set and the symmetry of the flow is found. The dimensionality of the solution set is established for flows invariant with respect to one of five symmorphic two-dimensional groups. The nonuniversal character of the set of stationary solutions of the Rayleigh-Taylor instability is demonstrated. For flows in a tube, on the contrary, universality of the solution set, along with its independence of the symmetry of the initial perturbation, is assumed. The problem of the free boundary in the Rayleigh-Taylor instability is solved in the first two approximations, and their convergence is investigated. The dependence of the velocity and Fourier harmonics on the parameters of the problem is found. Possible symmetry violations of the flow are analyzed. Limits to previously studied cases are investigated, and their accuracy is established. Questions of the stability of the solutions obtained and the possibility of a physically correct statement of the problem are discussed

  10. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics

    Science.gov (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao

    2016-08-01

    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz < ±0.05 m/d) to ±1.0 m/d, while the vertical hydraulic gradients were within the range of -0.2 to 0.15 m/m. The highest and most variable fluxes occurred adjacent to a debris-dam and bridge pier. This phenomenon is very likely

  11. Temperature and pinning strength dependence of the critical current of a superconductor with a square periodic array of pinning sites

    International Nuclear Information System (INIS)

    Benkraouda, M.; Obaidat, I.M.; Al Khawaja, U.

    2006-01-01

    We have conducted extensive series of molecular dynamic simulations on driven vortex lattices interacting with periodic square arrays of pinning sites. In solving the over damped equation of vortex motion we took into account the vortex-vortex repulsion interaction, the attractive vortex-pinning interaction, and the driving Lorentz force at several values of temperature. We have studied the effect of varying the driving Lorentz force and varying the pinning strength on the critical current for several pinning densities, and temperature values. We have found that the pinning strength play an important role in enhancing the critical current over the whole temperature range. At low temperatures, the critical current was found to increase linearly with increasing the pinning strengths for all pinning densities. As the temperature increases, the effect of small pinning strengths diminishes and becomes insignificant at high temperatures

  12. Airborne-Measured Spatially-Averaged Temperature and Moisture Turbulent Structure Parameters Over a Heterogeneous Surface

    Science.gov (United States)

    Platis, Andreas; Martinez, Daniel; Bange, Jens

    2014-05-01

    Turbulent structure parameters of temperature and humidity can be derived from scintillometer measurements along horizontal paths of several 100 m to several 10 km. These parameters can be very useful to estimate the vertical turbulent heat fluxes at the surface (applying MOST). However, there are many assumptions required by this method which can be checked using in situ data, e.g. 1) Were CT2 and CQ2 correctly derived from the initial CN2 scintillometer data (structure parameter of density fluctuations or refraction index, respectively)? 2) What is the influence of the surround hetereogeneous surface regarding its footprint and the weighted averaging effect of the scintillometer method 3) Does MOST provide the correct turbulent fluxes from scintillometer data. To check these issues, in situ data from low-level flight measurements are well suited, since research aircraft cover horizontal distances in very short time (Taylor's hypothesis of a frozen turbulence structure can be applyed very likely). From airborne-measured time series the spatial series are calculated and then their structure functions that finally provide the structure parameters. The influence of the heterogeneous surface can be controlled by the definition of certain moving-average window sizes. A very useful instrument for this task are UAVs since they can fly very low and maintain altitude very precisely. However, the data base of such unmanned operations is still quite thin. So in this contribution we want to present turbulence data obtained with the Helipod, a turbulence probe hanging below a manned helicopter. The structure parameters of temperature and moisture, CT2 and CQ2, in the lower convective boundary layer were derived from data measured using the Helipod in 2003. The measurements were carried out during the LITFASS03 campaign over a heterogeneous land surface around the boundary-layer field site of the Lindenberg Meteorological Observatory-Richard-Aßmann-Observatory (MOL) of the

  13. The Role of Auxiliary Variables in Deterministic and Deterministic-Stochastic Spatial Models of Air Temperature in Poland

    Science.gov (United States)

    Szymanowski, Mariusz; Kryza, Maciej

    2017-02-01

    Our study examines the role of auxiliary variables in the process of spatial modelling and mapping of climatological elements, with air temperature in Poland used as an example. The multivariable algorithms are the most frequently applied for spatialization of air temperature, and their results in many studies are proved to be better in comparison to those obtained by various one-dimensional techniques. In most of the previous studies, two main strategies were used to perform multidimensional spatial interpolation of air temperature. First, it was accepted that all variables significantly correlated with air temperature should be incorporated into the model. Second, it was assumed that the more spatial variation of air temperature was deterministically explained, the better was the quality of spatial interpolation. The main goal of the paper was to examine both above-mentioned assumptions. The analysis was performed using data from 250 meteorological stations and for 69 air temperature cases aggregated on different levels: from daily means to 10-year annual mean. Two cases were considered for detailed analysis. The set of potential auxiliary variables covered 11 environmental predictors of air temperature. Another purpose of the study was to compare the results of interpolation given by various multivariable methods using the same set of explanatory variables. Two regression models: multiple linear (MLR) and geographically weighted (GWR) method, as well as their extensions to the regression-kriging form, MLRK and GWRK, respectively, were examined. Stepwise regression was used to select variables for the individual models and the cross-validation method was used to validate the results with a special attention paid to statistically significant improvement of the model using the mean absolute error (MAE) criterion. The main results of this study led to rejection of both assumptions considered. Usually, including more than two or three of the most significantly

  14. Impact of high temperature and short period annealing on SnS films deposited by E-beam evaporation

    International Nuclear Information System (INIS)

    Gedi, Sreedevi; Reddy, Vasudeva Reddy Minnam; Kang, Jeong-yoon; Jeon, Chan-Wook

    2017-01-01

    Highlights: • Preparation SnS films using electron beam evaporation at room temperature. • SnS films were annealed at a high temperaure for different short period of times. • The films showed highly oriented (111) planes with orthorhombic crystal structure. • Surface morphology showed bigger and faceted grains embedded in orthorombic. • The TEM confirmed that big orthorombic slabs had single-crystalline nature. - Abstract: Thin films of SnS were deposited on Mo-substrate using electron beam evaporation at room temperature. As-deposited SnS films were annealed at a constant high temperaure of 860 K for different short period of times, 1 min, 3 min, and 5 min. The impact of heat treatment period on the physical properties of SnS films was investigated using appropriate characterization tools. XRD analysis revealed that the films were highly oriented along (111) plane with orthorhombic crystal structure. Surface morphology of as-deposited SnS films showed an identical leaf texture where as the annealed films showed large orthorombic slab shape grains in adidition to the leaf shape grains, which indicates the significance of short period annealing at high temperature. The transmission electron microscopy confirmed that those large orthorombic slabs had single-crystalline nature. The results emphasized that the short period annealing treatment at high temperature stimulated the growth of film towards the single crystallinity.

  15. Impact of high temperature and short period annealing on SnS films deposited by E-beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Gedi, Sreedevi; Reddy, Vasudeva Reddy Minnam; Kang, Jeong-yoon; Jeon, Chan-Wook, E-mail: cwjeon@ynu.ac.kr

    2017-04-30

    Highlights: • Preparation SnS films using electron beam evaporation at room temperature. • SnS films were annealed at a high temperaure for different short period of times. • The films showed highly oriented (111) planes with orthorhombic crystal structure. • Surface morphology showed bigger and faceted grains embedded in orthorombic. • The TEM confirmed that big orthorombic slabs had single-crystalline nature. - Abstract: Thin films of SnS were deposited on Mo-substrate using electron beam evaporation at room temperature. As-deposited SnS films were annealed at a constant high temperaure of 860 K for different short period of times, 1 min, 3 min, and 5 min. The impact of heat treatment period on the physical properties of SnS films was investigated using appropriate characterization tools. XRD analysis revealed that the films were highly oriented along (111) plane with orthorhombic crystal structure. Surface morphology of as-deposited SnS films showed an identical leaf texture where as the annealed films showed large orthorombic slab shape grains in adidition to the leaf shape grains, which indicates the significance of short period annealing at high temperature. The transmission electron microscopy confirmed that those large orthorombic slabs had single-crystalline nature. The results emphasized that the short period annealing treatment at high temperature stimulated the growth of film towards the single crystallinity.

  16. Temperature affects Chrysanthemum flower characteristics differently during three phases of the cultivation period

    NARCIS (Netherlands)

    Carvalho, S.M.P.; Abi-Tarabay, H.; Heuvelink, E.

    2005-01-01

    The sensitivity to temperature of the number of flowers per plant including flower buds (NFPP), flower size, position and colour was investigated in cut chrysanthemum (Chrysanthemum morifolium cv. `Reagan Improved¿). Plants were grown either in a glasshouse at constant 24 h mean temperatures

  17. Effect of transportation during periods of high ambient temperature on physiologic and behavioral indices of beef heifers.

    Science.gov (United States)

    Theurer, Miles E; White, Brad J; Anderson, David E; Miesner, Matt D; Mosier, Derek A; Coetzee, Johann F; Amrine, David E

    2013-03-01

    To determine the effect of transportation during periods of high ambient temperature on physiologic and behavioral indices of beef heifers. 20 heifers (mean body weight, 217.8 kg). Ten heifers were transported 518 km when the maximum ambient temperature was ≥ 32.2°C while the other 10 heifers served as untransported controls. Blood samples were collected from transported heifers at predetermined intervals during the transportation period. For all heifers, body weights, nasal and rectal temperatures, and behavioral indices were measured at predetermined intervals for 3 days after transportation. A week later, the entire process was repeated such that each group was transported twice and served as the control twice. Transported heifers spent more time near the hay feeder on the day of transportation, had lower nasal and rectal temperatures for 24 hours after transportation, and spent more time lying down for 2 days after transportation, compared with those indices for control heifers. Eight hours after transportation, the weight of transported heifers decreased 6%, whereas that of control heifers increased 0.6%. At 48 hours after initiation of transportation, weight, rectal temperature, and time spent at various pen locations did not differ between transported and control heifers. Cortisol concentrations were higher 4 hours after initiation of transportation, compared with those determined just prior to transportation. Results indicated transportation during periods of high ambient temperatures caused transient changes in physiologic and behavioral indices of beef heifers.

  18. Effect of temperature on incubation period, embryonic mortality, hatch rate, egg water loss and partridge chick weight (Rhynchotus rufescens

    Directory of Open Access Journals (Sweden)

    Nakage ES

    2003-01-01

    Full Text Available The aim of this study was to determine the effects of incubation temperature (34.5; 35.5; 36.5; 37.5 and 38.5ºC, on incubation period, embryonic mortality, hatching rate, water loss and chick weight at hatch, using daily incubation of partridge (Rhynchotus rufescens eggs. The highest hatching percentage was obtained between 35.5 and 36.5ºC. Incubation length and temperature were inversely proportional. Water loss was lower in eggs incubated at low temperatures as compared to high temperatures. There was no difference among incubation temperatures in absolute and relative hatchling weights. Early embryonic mortality increased at low temperatures (36.5ºC. Our results show that, under conditions of daily incubation of eggs in the same incubator, higher hatching rate can be obtained using temperatures between 35.5ºC and 36.5ºC; incubation temperature is inversely proportional to incubation length, and absolute and relative weights of partridge chicks are not affected by incubation temperature.

  19. Bivariate return periods of temperature and precipitation explain a large fraction of European crop yields

    Directory of Open Access Journals (Sweden)

    J. Zscheischler

    2017-07-01

    Full Text Available Crops are vital for human society. Crop yields vary with climate and it is important to understand how climate and crop yields are linked to ensure future food security. Temperature and precipitation are among the key driving factors of crop yield variability. Previous studies have investigated mostly linear relationships between temperature and precipitation and crop yield variability. Other research has highlighted the adverse impacts of climate extremes, such as drought and heat waves, on crop yields. Impacts are, however, often non-linearly related to multivariate climate conditions. Here we derive bivariate return periods of climate conditions as indicators for climate variability along different temperature–precipitation gradients. We show that in Europe, linear models based on bivariate return periods of specific climate conditions explain on average significantly more crop yield variability (42 % than models relying directly on temperature and precipitation as predictors (36 %. Our results demonstrate that most often crop yields increase along a gradient from hot and dry to cold and wet conditions, with lower yields associated with hot and dry periods. The majority of crops are most sensitive to climate conditions in summer and to maximum temperatures. The use of bivariate return periods allows the integration of non-linear impacts into climate–crop yield analysis. This offers new avenues to study the link between climate and crop yield variability and suggests that they are possibly more strongly related than what is inferred from conventional linear models.

  20. Thermal characteristics of shape-stabilized phase change material wallboard with periodical outside temperature waves

    International Nuclear Information System (INIS)

    Zhou, Guobing; Yang, Yongping; Wang, Xin; Cheng, Jinming

    2010-01-01

    Thermal characteristics of shape-stabilized phase change material (SSPCM) wallboard with sinusoidal temperature wave on the outer surface were investigated numerically and compared with traditional building materials such as brick, foam concrete and expanded polystyrene (EPS). One-dimensional enthalpy equation under convective boundary conditions was solved using fully implicit finite-difference scheme. The simulation results showed that the SSPCM wallboard presents distinct characteristics from other ordinary building materials. Phase transition keeping time of inner surface and decrement factor were applied to analyze the effects of PCM thermophysical properties (melting temperature, heat of fusion, phase transition zone and thermal conductivity), inner surface convective heat transfer coefficient and thickness of SSPCM wallboard. It was found that melting temperature is one important factor which influences both the phase transition keeping time and the decrement factor; for a certain outside temperature wave, there exist critical values of latent heat of fusion and thickness of SSPCM above which the phase transition keeping time or the decrement factor are scarcely influenced; thermal conductivity of PCM and inner surface convective coefficient have little effect on the phase transition keeping time but significantly influence the decrement factor; and the phase transition zone leads to small fluctuations of the original flat segment of inner surface temperature line. The results aim to be useful for the selection of SSPCMs and their applications in passive solar buildings.

  1. Spatially resolved electronic structure inside and outside the vortex cores of a high-temperature superconductor

    Science.gov (United States)

    Mitrović, V. F.; Sigmund, E. E.; Eschrig, M.; Bachman, H. N.; Halperin, W. P.; Reyes, A. P.; Kuhns, P.; Moulton, W. G.

    2001-10-01

    Puzzling aspects of high-transition-temperature (high-Tc) superconductors include the prevalence of magnetism in the normal state and the persistence of superconductivity in high magnetic fields. Superconductivity and magnetism generally are thought to be incompatible, based on what is known about conventional superconductors. Recent results, however, indicate that antiferromagnetism can appear in the superconducting state of a high-Tc superconductor in the presence of an applied magnetic field. Magnetic fields penetrate a superconductor in the form of quantized flux lines, each of which represents a vortex of supercurrents. Superconductivity is suppressed in the core of the vortex and it has been suggested that antiferromagnetism might develop there. Here we report the results of a high-field nuclear-magnetic-resonance (NMR) imaging experiment in which we spatially resolve the electronic structure of near-optimally doped YBa2Cu3O7-δ inside and outside vortex cores. Outside the cores, we find strong antiferromagnetic fluctuations, whereas inside we detect electronic states that are rather different from those found in conventional superconductors.

  2. Quantifying changes in spatial patterns of surface air temperature dynamics over several decades

    Science.gov (United States)

    Zappalà, Dario A.; Barreiro, Marcelo; Masoller, Cristina

    2018-04-01

    We study daily surface air temperature (SAT) reanalysis in a grid over the Earth's surface to identify and quantify changes in SAT dynamics during the period 1979-2016. By analysing the Hilbert amplitude and frequency we identify the regions where relative variations are most pronounced (larger than ±50 % for the amplitude and ±100 % for the frequency). Amplitude variations are interpreted as due to changes in precipitation or ice melting, while frequency variations are interpreted as due to a northward shift of the inter-tropical convergence zone (ITCZ) and to a widening of the rainfall band in the western Pacific Ocean. The ITCZ is the ascending branch of the Hadley cell, and thus by affecting the tropical atmospheric circulation, ITCZ migration has far-reaching climatic consequences. As the methodology proposed here can be applied to many other geophysical time series, our work will stimulate new research that will advance the understanding of climate change impacts.

  3. Periodicity in melting temperature changes of mixed-ligand rare earth β-diketonates

    International Nuclear Information System (INIS)

    Karasev, V.E.; Stebelevskaya, N.I.; Shchelokov, R.N.

    1982-01-01

    By means of heating the crystalline samples in a capillary the melting temperatures of the compounds of the composition [M(DBM) 2 CH 3 COO]x2H 2 O and [M(DBM) 2 (TPPO) 2 xNO 3 ], where M-rare earth ion, DBM-dibenzoyl methane, TPPO-triphen hosphineylpxide, are measured. Dependences of the melting temperatures of the compounds on quantum number L and S as well as on the value of energy decrease of the ground state as to the centre of gravity of multiplet therm of lanthanide ion are studied. The presence of ''tetrad effect'' in the change of melting temperatures depending on the nuclear charge for the chelates studied is shown [ru

  4. March-June temperature reconstruction in the Czech Lands based on cereal harvest dates in the 1501-2008 period

    Science.gov (United States)

    Brázdil, Rudolf; Možný, Martin; Dobrovolný, Petr; Trnka, Mirek

    2010-05-01

    Cereal crop harvests reflect the weather patterns of the period immediately preceding them, and thus the dates at which they begin may be used as a source of proxy data on regional climate. Using systematic phenological observations in the Czech Lands (now known as the Czech Republic) after 1848, together with exploration of further surviving documentary evidence (chronicles, diaries, financial accounts etc.), it has proved possible to create series of winter wheat harvest dates for the period 1501-2008. Employing linear regression, the harvesting dates of the main cereal species (wheat, rye, barley, oats) were first converted to winter wheat harvest days and then normalised to the same altitude above sea level. The next step consisted of using series of winter wheat harvest dates to reconstruct mean March-June temperatures in the Czech Lands, applying standard palaeoclimatological methods. Series reconstructed by linear regression explain 70% of temperature variability. A profound cold period corresponding with late winter wheat harvests was noted between 1659 and 1705. In contrast, warm periods (i.e. early winter wheat harvests) were found for the periods of 1517-1542, 1788-1834 and 1946-2008. The period after 1951 is the warmest of all throughout the entire 1501-2008 period. Comparisons with other European temperature reconstructions derived from documentary sources (including grape harvest dates), tree-ring and instrumental data reveal generally close agreement, with significant correlations. Lower correlations around A.D. 1650 and 1750 may be partly related to deterioration of socio-economic conditions in the Czech Lands resulting from prolonged wars. The results obtained demonstrate that it is possible to use widely-available cereal harvest data for climate analysis and also that such data constitute an independent proxy data series for the region of Central Europe crucial to further studies of the potential impact of climatic variability and climate change

  5. Effect of olive storage period at two different temperatures on oil ...

    African Journals Online (AJOL)

    ambient and 5°C) for different periods before oil extraction at 0, 7, 14, 21 and 28 days to investigate the effect of postharvest fruit storage on olive oil quality. Conventional analyses (acidity, peroxide value, specific extinction coefficient at 232 and 270 ...

  6. Nest attentiveness and egg temperature do not explain the variation in incubation periods in tropical birds

    NARCIS (Netherlands)

    Tieleman, Bernadine; Ricklefs, R.E.; Williams, J.B.

    2004-01-01

    The wide range in incubation periods among bird species has puzzled biologists for decades, because an extended egg-phase increases time-dependent mortality of the eggs. We investigated a recently proposed mechanistic explanation inspired by life-history theory, suggesting that adults may increase

  7. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Directory of Open Access Journals (Sweden)

    Junguo Hu

    Full Text Available Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK and Co-Kriging (Co-OK methods. The results indicated that the root mean squared errors (RMSEs and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193 were less than those for the OK method (1.146 and 1.539 when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  8. Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data.

    Science.gov (United States)

    Hu, Junguo; Zhou, Jian; Zhou, Guomo; Luo, Yiqi; Xu, Xiaojun; Li, Pingheng; Liang, Junyi

    2016-01-01

    Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.

  9. Modelling the effect of temperature change on the extrinsic incubation period and reproductive number of Plasmodium falciparum in Malaysia.

    Science.gov (United States)

    Chua, T H

    2012-03-01

    According to the report of the Intergovernmental Panel on Climate Change (IPCC), Malaysia will experience an increase of 3-5°C in the future. As the development of the malaria parasite, Plasmodium falciparum, is sensitive to temperature, we investigated, using computer models, the effect of increase of 3º and 5ºC on the possible changes in the epidemiology of malaria transmission of P. falciparum in Malaysia. Four environmentally different locations were selected: Kuala Lumpur (KL), Cameron Highlands (CH), Kota Kinabalu (KK) and Kinabalu Park (KP). The extrinsic incubation period (EIP) was estimated using hourly temperatures and the mean daily temperatures. The EIP values estimated using the mean daily temperature were lower than those computed from hourly temperatures in warmer areas (KL, KK), but higher in the cooler areas (CH, KP). The computer simulations also indicated that the EIP will be decreased if the temperature was raised by 3º or 5ºC, with the effect more pronounced for the greater temperature increase, and for the cooler places. The vector cohort that is still alive at a time to transmit malaria (s(EIP)) also increased when the temperature was raised, with the increase more pronounced in the cooler areas. This study indicates an increase in temperature will have more significant effect in shortening the EIP in a cooler place (eg CH, KP), resulting in a greater s(EIP), and consequently increasing the transmission intensity and malaria risk. A temperature increase arising from the global climate change will likely affect the epidemiology of malaria in Malaysia, especially in the cooler areas.

  10. Synthesis of coesite nanocrystals from ethane bridged periodic mesoporous organosilica at low temperature and extreme pressure.

    Science.gov (United States)

    Liang, Zhili; Mohanty, Paritosh; Fei, Yingwei; Landskron, Kai

    2010-12-14

    Coesite nanocrystals have been synthesized from periodic mesoporous organosilica (PMO) with (CH(2))(2) bridges heated at 300 °C for 150 min and 12 GPa. The crystals are not sintered, single crystalline, and have diameters of ca. 100-300 nm. Below 300 °C, an amorphous non-porous organosilica glass was obtained. Heating above 300 °C at 12 GPa results in the rapid crystal growth and micron size coesite crystals were formed.

  11. Impacts of ozone air pollution and temperature extremes on crop yields: Spatial variability, adaptation and implications for future food security

    Science.gov (United States)

    Tai, Amos P. K.; Val Martin, Maria

    2017-11-01

    Ozone air pollution and climate change pose major threats to global crop production, with ramifications for future food security. Previous studies of ozone and warming impacts on crops typically do not account for the strong ozone-temperature correlation when interpreting crop-ozone or crop-temperature relationships, or the spatial variability of crop-to-ozone sensitivity arising from varietal and environmental differences, leading to potential biases in their estimated crop losses. Here we develop an empirical model, called the partial derivative-linear regression (PDLR) model, to estimate the spatial variations in the sensitivities of wheat, maize and soybean yields to ozone exposures and temperature extremes in the US and Europe using a composite of multidecadal datasets, fully correcting for ozone-temperature covariation. We find generally larger and more spatially varying sensitivities of all three crops to ozone exposures than are implied by experimentally derived concentration-response functions used in most previous studies. Stronger ozone tolerance is found in regions with high ozone levels and high consumptive crop water use, reflecting the existence of spatial adaptation and effect of water constraints. The spatially varying sensitivities to temperature extremes also indicate stronger heat tolerance in crops grown in warmer regions. The spatial adaptation of crops to ozone and temperature we find can serve as a surrogate for future adaptation. Using the PDLR-derived sensitivities and 2000-2050 ozone and temperature projections by the Community Earth System Model, we estimate that future warming and unmitigated ozone pollution can combine to cause an average decline in US wheat, maize and soybean production by 13%, 43% and 28%, respectively, and a smaller decline for European crops. Aggressive ozone regulation is shown to offset such decline to various extents, especially for wheat. Our findings demonstrate the importance of considering ozone regulation

  12. Spatial Patterns of Variability in Antarctic Surface Temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation

    Science.gov (United States)

    Kwok, Ron; Comiso, Josefino C.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The 17-year (1982-1998) trend in surface temperature shows a general cooling over the Antarctic continent, warming of the sea ice zone, with moderate changes over the oceans. Warming of the peripheral seas is associated with negative trends in the regional sea ice extent. Effects of the Southern Hemisphere Annular Mode (SAM) and the extrapolar Southern Oscillation (SO) on surface temperature are quantified through regression analysis. Positive polarities of the SAM are associated with cold anomalies over most of Antarctica, with the most notable exception of the Antarctic Peninsula. Positive temperature anomalies and ice edge retreat in the Pacific sector are associated with El Nino episodes. Over the past two decades, the drift towards high polarity in the SAM and negative polarity in the SO indices couple to produce a spatial pattern with warmer temperatures in the Antarctic Peninsula and peripheral seas, and cooler temperatures over much of East Antarctica.

  13. Spatially variable stage-driven groundwater-surface water interaction inferred from time-frequency analysis of distributed temperature sensing data

    Science.gov (United States)

    Mwakanyamale, Kisa; Slater, Lee; Day-Lewis, Frederick D.; Elwaseif, Mehrez; Johnson, Carole D.

    2012-01-01

    Characterization of groundwater-surface water exchange is essential for improving understanding of contaminant transport between aquifers and rivers. Fiber-optic distributed temperature sensing (FODTS) provides rich spatiotemporal datasets for quantitative and qualitative analysis of groundwater-surface water exchange. We demonstrate how time-frequency analysis of FODTS and synchronous river stage time series from the Columbia River adjacent to the Hanford 300-Area, Richland, Washington, provides spatial information on the strength of stage-driven exchange of uranium contaminated groundwater in response to subsurface heterogeneity. Although used in previous studies, the stage-temperature correlation coefficient proved an unreliable indicator of the stage-driven forcing on groundwater discharge in the presence of other factors influencing river water temperature. In contrast, S-transform analysis of the stage and FODTS data definitively identifies the spatial distribution of discharge zones and provided information on the dominant forcing periods (≥2 d) of the complex dam operations driving stage fluctuations and hence groundwater-surface water exchange at the 300-Area.

  14. Temporal and spatial distribution of lumpy skin disease outbreaks in Ethiopia in the period 2000 to 2015

    NARCIS (Netherlands)

    Molla, W.; Jong, de M.C.M.; Frankena, K.

    2017-01-01

    Background: Lumpy skin disease (LSD) is an infectious viral disease of cattle caused by a virus of the genus Capripoxvirus. LSD was reported for the first time in Ethiopia in 1981 and subsequently became endemic. This time series study was undertaken with the aims of identifying the spatial and

  15. Cell enlargement of plant tissue explants oscillates with a temperature-compensated period of ca. 24 min

    Science.gov (United States)

    Morre, D. James; Ternes, Philipp; Morre, Dorothy M.

    2002-01-01

    Rate of plant cell enlargement, measured at intervals of 3 min using a sensitive linear transducer, oscillates with a minimum period of about 24 min that parallels the 24-min periodicity observed with the oxidation of NADH by the external plasma membrane NADH oxidase and of single cells measured previously by video-enhanced light microscopy. Also exhibiting 24-min oscillations is the steady-state rate of cell enlargement induced by the addition of the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges. The length of the 24-min period is temperature compensated and remains constant at 24 min when measured at 15, 25 or 35 degrees C, despite the fact that the rate of cell enlargement approximately doubles for each 10 degree C rise over this same range of temperatures.

  16. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    Science.gov (United States)

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  17. Modeling the Lag Period and Exponential Growth of Listeria monocytogenes under Conditions of Fluctuating Temperature and Water Activity Values▿

    Science.gov (United States)

    Muñoz-Cuevas, Marina; Fernández, Pablo S.; George, Susan; Pin, Carmen

    2010-01-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (aw) values. To model the duration of the lag phase, the dependence of the parameter h0, which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or aw were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase. PMID:20208022

  18. High and low temperatures have unequal reinforcing properties in Drosophila spatial learning.

    Science.gov (United States)

    Zars, Melissa; Zars, Troy

    2006-07-01

    Small insects regulate their body temperature solely through behavior. Thus, sensing environmental temperature and implementing an appropriate behavioral strategy can be critical for survival. The fly Drosophila melanogaster prefers 24 degrees C, avoiding higher and lower temperatures when tested on a temperature gradient. Furthermore, temperatures above 24 degrees C have negative reinforcing properties. In contrast, we found that flies have a preference in operant learning experiments for a low-temperature-associated position rather than the 24 degrees C alternative in the heat-box. Two additional differences between high- and low-temperature reinforcement, i.e., temperatures above and below 24 degrees C, were found. Temperatures equally above and below 24 degrees C did not reinforce equally and only high temperatures supported increased memory performance with reversal conditioning. Finally, low- and high-temperature reinforced memories are similarly sensitive to two genetic mutations. Together these results indicate the qualitative meaning of temperatures below 24 degrees C depends on the dynamics of the temperatures encountered and that the reinforcing effects of these temperatures depend on at least some common genetic components. Conceptualizing these results using the Wolf-Heisenberg model of operant conditioning, we propose the maximum difference in experienced temperatures determines the magnitude of the reinforcement input to a conditioning circuit.

  19. Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective.

    Science.gov (United States)

    Peng, Jian; Ma, Jing; Liu, Qianyuan; Liu, Yanxu; Hu, Yi'na; Li, Yingru; Yue, Yuemin

    2018-09-01

    As an important theme in global climate change and urban sustainable development, the changes of land surface temperature (LST) and surface urban heat island (SUHI) have been more and more focused by urban ecologists. This study used land-use data to identify the urban-rural areas in 285 cities in China and comparatively analyzed LST in urban-rural areas with the perspective of spatial-temporal dynamics heterogeneity. The results showed that, 98.9% of the cities exhibited SUHI effect in summer nighttime and the effect was stronger in northern cities than that in southern cities. In 2010, the mean SUHI intensity was the largest in summer daytime, with 4.6% of the cities having extreme SUHI of over 4°C. From 2001 to 2010, the nighttime LST of most cities increased more quickly in urban areas compared with rural areas, with an increasing tendency of the urban-rural LST difference. The difference in the urban- rural LST change rate was concentrated in the range of 0-0.1°C/year for 68.0% of cities in winter and 70.8% of cities in summer. For the higher LST increasing in urban areas compared with rural areas, there were more cities in summer than winter, indicating that the summer nighttime was the key temporal period for SUHI management. Based on the change slope of urban-rural LST, cities were clustered into four types and the vital and major zones for urban thermal environment management were identified in China. The vital zone included cities in Hunan, Hubei and other central rising provinces as well as the Beibu Gulf of Guangxi Province. The major zone included most of the cities in Central Plain Urban Agglomeration, Yangtze River Delta and Pearl River Delta. These results can provide scientific basis for SUHI adaptation in China. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Contingent capture of visual-spatial attention depends on capacity-limited central mechanisms: evidence from human electrophysiology and the psychological refractory period.

    Science.gov (United States)

    Brisson, Benoit; Leblanc, Emilie; Jolicoeur, Pierre

    2009-02-01

    It has recently been demonstrated that a lateralized distractor that matches the individual's top-down control settings elicits an N2pc wave, an electrophysiological index of the focus of visual-spatial attention, indicating that contingent capture has a visual-spatial locus. Here, we investigated whether contingent capture required capacity-limited central resources by incorporating a contingent capture task as the second task of a psychological refractory period (PRP) dual-task paradigm. The N2pc was used to monitor where observers were attending while they performed concurrent central processing known to cause the PRP effect. The N2pc elicited by the lateralized distractor that matched the top-down control settings was attenuated in high concurrent central load conditions, indicating that although involuntary, the deployment of visual-spatial attention occurring during contingent capture depends on capacity-limited central resources.

  1. Data set: 31 years of spatially distributed air temperature, humidity, precipitation amount and precipitation phase from a mountain catchment in the rain-snow transition zone

    Science.gov (United States)

    Thirty one years of spatially distributed air temperature, relative humidity, dew point temperature, precipitation amount, and precipitation phase data are presented for the Reynolds Creek Experimental Watershed. The data are spatially distributed over a 10m Lidar-derived digital elevation model at ...

  2. A glucose concentration and temperature sensor based on long period fiber gratings induced by electric-arc discharge

    Science.gov (United States)

    Du, Chao; Wang, Qi

    2017-10-01

    As one of the key parameters in biological and chemical reactions, glucose concentration objectively reflects the characteristics of reactions, so the real-time monitoring of glucose concentration is important in the field of biochemical. Meanwhile, the influence from temperature should be considered. The fiber sensors have been studied extensively for decades due to the advantages of small size, immunity to electromagnetic interference and high sensitivity, which are suitable for the application of biochemical sensing. A long period fiber grating (LPFG) sensor induced by electric-arc discharge has been fabricated and demonstrated for simultaneous measurement of glucose concentration and temperature. The proposed sensor was fabricated by inscribing a sing mode fiber (SMF) with periodic electric-arc discharge technology. During the fabrication process, the electric-arc discharge technology was produced by a commercial fusion splicer, and the period of inscribed LPFG was determined by the movement of translation stages. A serials of periodic geometrical deformations would be formed in SMF after the fabrication, and the discharge intensity and discharge time can be adjusted though the fusion splicer settings screen. The core mode can be coupled into the cladding modes at certain wavelength when they satisfy the phase-matching conditions, and there will be several resonance dips in the transmission spectrum in LPFG. The resonance dips formed by the coupling between cladding modes and core mode have different sensitivity responses, so the simultaneous measurement for multi-parameter can be realized by monitoring the wavelength shifts of the resonance dips. Compared with the LPFG based on conventional SMF, the glucose concentration sensitivity has been obviously enhanced by etching the cladding with hydrofluoric acid solution. Based on the independent measured results, a dual-parameter measurement matrix has been built for signal demodulation. Because of the easy

  3. Engineered, Spatially Varying Isothermal Holds: Enabling Combinatorial Studies of Temperature Effects, as Applied to Metastable Titanium Alloy β-21S

    International Nuclear Information System (INIS)

    Martin, Brian; Colorado School of Mines, Golden, CO; Samimi, Peyman; Colorado School of Mines, Golden, CO; Collins, Peter

    2017-01-01

    A novel method to systematically vary temperature and thus study the resulting microstructure of a material is presented. This new method has the potential to be used in a combinatorial fashion, allowing the rapid study of thermal holds on microstructures to be conducted. This is demonstrated on a beta titanium alloy, where the thermal history has a strong effect on microstructure. It is informed by simulation and executed using the resistive heating capabilities of a Gleeble 3800 thermomechanical simulator. Spatially varying isothermal holds of 4 h were affected, where the temperature range of the multiple isothermal holds varied by ~175 °C.

  4. A new integrated and homogenized global monthly land surface air temperature dataset for the period since 1900

    Science.gov (United States)

    Xu, Wenhui; Li, Qingxiang; Jones, Phil; Wang, Xiaolan L.; Trewin, Blair; Yang, Su; Zhu, Chen; Zhai, Panmao; Wang, Jinfeng; Vincent, Lucie; Dai, Aiguo; Gao, Yun; Ding, Yihui

    2018-04-01

    A new dataset of integrated and homogenized monthly surface air temperature over global land for the period since 1900 [China Meteorological Administration global Land Surface Air Temperature (CMA-LSAT)] is developed. In total, 14 sources have been collected and integrated into the newly developed dataset, including three global (CRUTEM4, GHCN, and BEST), three regional and eight national sources. Duplicate stations are identified, and those with the higher priority are chosen or spliced. Then, a consistency test and a climate outlier test are conducted to ensure that each station series is quality controlled. Next, two steps are adopted to assure the homogeneity of the station series: (1) homogenized station series in existing national datasets (by National Meteorological Services) are directly integrated into the dataset without any changes (50% of all stations), and (2) the inhomogeneities are detected and adjusted for in the remaining data series using a penalized maximal t test (50% of all stations). Based on the dataset, we re-assess the temperature changes in global and regional areas compared with GHCN-V3 and CRUTEM4, as well as the temperature changes during the three periods of 1900-2014, 1979-2014 and 1998-2014. The best estimates of warming trends and there 95% confidence ranges for 1900-2014 are approximately 0.102 ± 0.006 °C/decade for the whole year, and 0.104 ± 0.009, 0.112 ± 0.007, 0.090 ± 0.006, and 0.092 ± 0.007 °C/decade for the DJF (December, January, February), MAM, JJA, and SON seasons, respectively. MAM saw the most significant warming trend in both 1900-2014 and 1979-2014. For an even shorter and more recent period (1998-2014), MAM, JJA and SON show similar warming trends, while DJF shows opposite trends. The results show that the ability of CMA-LAST for describing the global temperature changes is similar with other existing products, while there are some differences when describing regional temperature changes.

  5. Spectroscopic and probe measurements of the electron temperature in the plasma of a pulse-periodic microwave discharge in argon

    Energy Technology Data Exchange (ETDEWEB)

    Andreev, V. V., E-mail: vvandreev@mail.ru; Vasileska, I., E-mail: ivonavasileska@yahoo.com; Korneeva, M. A., E-mail: korneevama@mail.ru [Peoples’ Friendship University of Russia (Russian Federation)

    2016-07-15

    A pulse-periodic 2.45-GHz electron-cyclotron resonance plasma source on the basis of a permanent- magnet mirror trap has been constructed and tested. Variations in the discharge parameters and the electron temperature of argon plasma have been investigated in the argon pressure range of 1 × 10{sup –4} to 4 × 10{sup –3} Torr at a net pulsed input microwave power of up to 600 W. The plasma electron temperature in the above ranges of gas pressures and input powers has been measured by a Langmuir probe and determined using optical emission spectroscopy (OES) from the intensity ratios of spectral lines. The OES results agree qualitatively and quantitatively with the data obtained using the double probe.

  6. Refractive index and temperature sensors based on no-core fiber cascaded with long period fiber grating

    Science.gov (United States)

    Zhang, Jianming; Pu, Shengli; Rao, Jie; Yao, Tianjun

    2018-05-01

    A kind of compact fibre-optic sensor based on no-core fibre (NCF) cascaded with a strong coupling long-period fibre grating (LPFG) is proposed and experimentally demonstrated. The sensing mechanism is based on the Mach-Zehnder-like interference between the core fundamental mode and cladding mode of the fibre structure. The NCF and LPFG are used as the mode exciter and combiner, respectively. Due to the particular properties of the strong coupling LPFG, the measurements of refractive index (RI) and temperature with high sensitivity are realized by monitoring the transmission spectrum with intensity and wavelength interrogation techniques, respectively. The achieved RI sensitivity reaches -580.269 dB/RIU in the range of 1.436-1.454 and the temperature sensitivity reaches 27.2 pm/°C.

  7. Task-irrelevant distractors in the delay period interfere selectively with visual short-term memory for spatial locations.

    Science.gov (United States)

    Marini, Francesco; Scott, Jerry; Aron, Adam R; Ester, Edward F

    2017-07-01

    Visual short-term memory (VSTM) enables the representation of information in a readily accessible state. VSTM is typically conceptualized as a form of "active" storage that is resistant to interference or disruption, yet several recent studies have shown that under some circumstances task-irrelevant distractors may indeed disrupt performance. Here, we investigated how task-irrelevant visual distractors affected VSTM by asking whether distractors induce a general loss of remembered information or selectively interfere with memory representations. In a VSTM task, participants recalled the spatial location of a target visual stimulus after a delay in which distractors were presented on 75% of trials. Notably, the distractor's eccentricity always matched the eccentricity of the target, while in the critical conditions the distractor's angular position was shifted either clockwise or counterclockwise relative to the target. We then computed estimates of recall error for both eccentricity and polar angle. A general interference model would predict an effect of distractors on both polar angle and eccentricity errors, while a selective interference model would predict effects of distractors on angle but not on eccentricity errors. Results showed that for stimulus angle there was an increase in the magnitude and variability of recall errors. However, distractors had no effect on estimates of stimulus eccentricity. Our results suggest that distractors selectively interfere with VSTM for spatial locations.

  8. The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic

    Directory of Open Access Journals (Sweden)

    Dobrovolný Petr

    2015-09-01

    Full Text Available This study seeks to quantify the effects of a number of factors on the nocturnal air temperature field in a medium-sized central European city located in complex terrain. The main data sources consist of mobile air temperature measurements and a geographical database. Temperature measurements were taken along several profiles through the city centre and were made under a clear sky with no advection. Altogether nine sets of detailed measurements, in all seasons, were assembled. Altitude, quantity of vegetation, density of buildings and the structure of the transportation (road system were considered as explanatory variables. The result is that the normalized difference vegetation index (NDVI and the density of buildings were the most important factors, each of them explaining a substantial part (more than 50% of overall air temperature variability. Mobile measurements with NDVI values as a covariate were used for interpolation of air temperature for the entire study area. The spatial variability of nocturnal air temperature and UHI intensity in Brno is the main output presented. Air temperatures interpolated from mobile measurements and NDVI values indicate that the mean urban heat island (UHI intensity in the early night in summer is at its highest (approximately 5 °C in the city centre and decreases towards the suburban areas.

  9. Delimitation of the warm and cold period of the year based on the variation of the Aegean sea surface temperature

    Directory of Open Access Journals (Sweden)

    A. MAVRAKIS

    2004-06-01

    Full Text Available Knowledge of the warm and cold season onset is important for the living conditions and the occupational activities of the inhabitants of a given area, and especially for agriculture and tourism. This paper presents a way to estimate the onset/end of the cold and warm period of the year, based on the sinusoidal annual variation of the Sea Surface Temperature. The method was applied on data from 8 stations of the Hellenic Navy Hydrographic Service, covering the period from 1965-1995. The results showed that the warm period starts sometime between April 28th and May 21st while it ends between October 27th and November 19th in accordance with the findings of other studies. Characteristic of the nature of the parameter used is the very low variance per station – 15 days at maximum. The average date of warm period onset is statistically the same for the largest part of the Aegean, with only one differentiation, that between Kavala and the southern stations ( Thira and Heraklion.

  10. Investigating spatial self-shielding and temperature effects for homogeneous and double heterogeneous pebble models with MCNP

    International Nuclear Information System (INIS)

    Li, J.; Nuenighoff; Pohl, C.; Allelein, H.J.

    2010-01-01

    The gas-cooled, high temperature reactor (HTR) represents a valuable option for the future development of nuclear technology, because of its excellent safety features. One main safety feature is the negative temperature coefficient which is due to the Doppler broadening of the (n,y) resonance absorption cross section. A second important effect is the spatial self-shielding due to the double heterogeneous geometry of a pebble bed reactor. At FZ-Juelich two reactor analysis codes have been developed: VSOP for core design and MGT for transient analysis. Currently an update of the nuclear cross section libraries to ENDF/B-VII.0 of both codes takes place. In order to take the temperature dependency as well as the spatial self-shielding into account the absorption cross sections σ (n,y) for the resonance absorbers like 232 Th and 238 U have to be provided as function of incident neutron energy, temperature and nuclide concentration. There are two reasons for choosing the Monte-Carlo approach to calculate group wise cross sections. First, the former applied ZUT-DGL code to generate the resonance cross section tables for MGT is so far not able to handle the new resonance description based on Reich-Moore instead of Single-level Breit-Wigner. Second, the rising interest in PuO 2 fuel motivated an investigation on the generation of group wise cross sections describing thermal resonances of 240 Pu and 242 Pu. (orig.)

  11. SPATIAL PREDICTION OF AIR TEMPERATURE IN EAST CENTRAL ANATOLIA OF TURKEY

    Directory of Open Access Journals (Sweden)

    B. C. Bilgili

    2017-11-01

    Full Text Available Air temperature is an essential component of the factors used in landscape planning. At similar topographic conditions, vegetation may show considerable differences depending on air temperature and precipitation. In large areas, measuring temperature is a cost and time-consuming work. Therefore, prediction of climate variables at unmeasured sites at an acceptable accuracy is very important in regional resource planning. In addition, use a more proper prediction method is crucial since many different prediction techniques yield different performance in different landscape and geographical conditions. We compared inverse distance weighted (IDW, ordinary kriging (OK, and ordinary cokriging (OCK to predict air temperature at unmeasured sites in Malatya region (East Central Anatolia of Turkey. Malatya region is the most important apricot production area of Turkey and air temperature is the most important factor determining the apricot growing zones in this region. We used mean monthly temperatures from 1975 to 2010 measured at 28 sites in the study area and predicted temperature with IDW, OC, and OCK techniques, mapped temperature in the region, and tested the reliability of these maps. The OCK with elevation as an auxiliary variable occurred the best procedure to predict temperature against the criteria of model efficiency and relative root mean squared error.

  12. Spatial structure changes in 4He at fixed density as a function of temperature

    International Nuclear Information System (INIS)

    Wirth, F.W.; Ewen, D.A.; Hallock, R.B.

    1983-01-01

    X-ray scattering techniques have been used to determine changes in spatial order when cooling 4 He below T/sub lambda/ at several fixed values of the density. The results show surprisingly little density dependence and are relevant to the discussion of condensate fraction determinations in 4 He

  13. Rock bream iridovirus (RBIV) replication in rock bream (Oplegnathus fasciatus) exposed for different time periods to susceptible water temperatures.

    Science.gov (United States)

    Jung, Myung-Hwa; Nikapitiya, Chamilani; Vinay, Tharabenahalli-Nagaraju; Lee, Jehee; Jung, Sung-Ju

    2017-11-01

    Rock bream iridovirus (RBIV) is a member of the Megalocytivirus genus that causes severe mortality to rock bream. Water temperature is known to affect the immune system and susceptibility of fish to RBIV infection. In this study, we evaluated the time dependent virus replication pattern and time required to completely eliminate virus from the rock bream body against RBIV infection at different water temperature conditions. The rock bream was exposed to the virus and held at 7 (group A1), 4 (group A2) and 2 days (group A3) at 23 °C before the water temperature was reduced to 17 °C. A total of 28% mortality was observed 24-35 days post infection (dpi) in only the 7 day exposure group at 23 °C. In all 23 °C exposure groups, virus replication peaked at 20 to 22 dpi (10 6 -10 7 /μl). In recovery stages (30-100 dpi), the virus copy number was gradually reduced, from 10 6 to 10 1 with faster decreases in the shorter exposure period group at 23 °C. When the water temperature was increased in surviving fish from 17 to 26 °C at 70 dpi, they did not show any mortality or signs of disease and had low virus copy numbers (below 10 2 /μl). Thus, fish need at least 50 days from peaked RBIV levels (approximately 20-25 dpi) to inhibit the virus. This indicates that maintaining the fish at low water temperature (17 °C) for 70 days is sufficient to eradicate RBIV from fish body. Thus, RBIV could be eliminated slowly from the fish body and the virus may be completely eliminated under the threshold of causing mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Improved Reversed Phase Chromatography of Hydrophilic Peptides from Spatial and Temporal Changes in Column Temperature

    DEFF Research Database (Denmark)

    Young, Clifford; Podtelejnikov, Alexandre V; Nielsen, Michael Lund

    2017-01-01

    implementation requires additional equipment and method optimization. An apparatus that allows temperature manipulation in three areas of a two-column setup was evaluated for improvements in chromatography. Using commercially available standards, we demonstrate that a low column temperature (0 °C) during sample...

  15. Stability of sodium bicarbonate injection 8.4% in syringes over a six-week period in refrigerated temperature.

    Science.gov (United States)

    Seki, Jack T; Wang, Tian Q; Yip, Paul M; Mazzulli, Tony; Minden, Mark D

    2018-04-01

    Background Dysfunctional central venous catheter prohibits the administration of potential life-saving chemotherapy and the delivery of essential supportive care needs to patients. Sodium bicarbonate injection has been shown to impede against fibrin clot formation and prolong prothrombin time and thrombin clotting time. Sodium bicarbonate injection has been tried as a second-line agent with good results in a small number of patients (internal data not published) when alteplase failed. We assessed whether the pre-filled sodium bicarbonate injection in 5 mL syringes would not only preserve sterility and retain its pH and concentration but also amount to the potential cost savings for future use when stored in a refrigerated environment. Methodology Twelve pre-filled 5 mL syringes were prepared aseptically, of which four each were tested for pH, sodium bicarbonate injection concentration and sterility when stored in refrigerated temperature over a six-week period. A standard pH meter, enzymatic carbon dioxide analyzer, and a 14-day incubation for microbial detection were employed for this study. Results Sodium bicarbonate concentration measured in the form of carbon dioxide ranged from 923 mmol/L or (1846 mosol/L) to 1006 mmol/L or (2012 mosmol/L), and pH ranged from (7.88 to 8.05) were reported over the duration of the study period. The 14-day incubation period resulted in no microbial growth. Conclusion Our study results have indicated that the pH and sodium bicarbonate injection concentration values were stable and within range, comparable to those reported by the manufacturer within the study period. The contents of the subdivided sodium bicarbonate injection 5 mL syringes retained sterility over a 14-day incubation period.

  16. Full spatial-field visualization of gas temperature in an air micro-glow discharge by calibrated Schlieren photography

    Science.gov (United States)

    Xiong, Qing; Xu, Le; Wang, Xia; Xiong, Lin; Huang, Qinghua; Chen, Qiang; Wang, Jingang; Peng, Wenxiong; Li, Jiarui

    2018-03-01

    Gas temperature is an important basic parameter for both fundamental research and applications of plasmas. In this work, efforts were made to visualize the full spatial field of gas temperature (T g) in a microdischarge with sharp T g gradients by a method of calibrated Schlieren (CS) photography. Compared to other two typical diagnostic approaches, optical emission spectroscopy (OES) and Rayleigh scattering, the proposed CS method exhibits the ability to capture the whole field of gas temperature using a single Schlieren image, even the discharge is of non-luminous zones like Faraday dark space (FDS). The image shows that the T g field in the studied micro-glow air discharge expands quickly with the increase of discharge currents, especially in the cathode region. The two-dimensional maps of gas temperature display a ‘W-shape’ with sharp gradients in both areas of negative and positive glows, slightly arched distributions in the positive column, and cooling zones in the FDS. The obtained T g fields show similar patterns to that of the discharge luminance. With an increase in discharge currents, more electric energy is dissipated by heating air gas and inducing constriction of the low-temperature FDS. Except in the vicinities of electrode boundaries, due to the interference from optical diffraction, the estimated gas temperature distributions are of acceptable accuracy, confirmed by the approaches of OES and UV Rayleigh scattering.

  17. Spatial neutronics modelling to evaluate the temperature reactivity feedbacks in a lead-cooled fast reactor - 15288

    International Nuclear Information System (INIS)

    Lorenzi, S.; Cammi, A.; Luzzi, L.

    2015-01-01

    The qualitative and quantitative assessment of the thermal reactivity feedbacks occurring in a nuclear reactor is a crucial issue for the time-dependent evolution of the system and, in turn, it has a great impact on the development and validation of advanced control techniques. In the present work, in order to overcome the limitations of the classic Point Kinetics adopted in the control simulators, a spatial neutronics model, representing the neutron flux as sum of a spatial basis weighted by time-dependent coefficients, has been considered. The reference reactor is ALFRED, the European demonstrator of the Lead-cooled Fast Reactor technology. Average cross-sections for each fuel assembly, calculated by means of a Monte Carlo code, have been used to solve the partial differential equations of the neutron diffusion, exploiting the capabilities of the COMSOL software. Once obtained the spatial functions, the set of equations for studying the reactivity effects has been implemented in the MATLAB environment. Among the several temperature reactivity feedbacks, specific attention has been paid to the Doppler effect in the fuel and to the lead density effect. Several spatial bases have been calculated and their capability of representing the reactivity variation have been assessed. (authors)

  18. Spatial and temporal patterns of land surface fluxes from remotely sensed surface temperatures within an uncertainty modelling framework

    Directory of Open Access Journals (Sweden)

    M. F. McCabe

    2005-01-01

    Full Text Available Characterising the development of evapotranspiration through time is a difficult task, particularly when utilising remote sensing data, because retrieved information is often spatially dense, but temporally sparse. Techniques to expand these essentially instantaneous measures are not only limited, they are restricted by the general paucity of information describing the spatial distribution and temporal evolution of evaporative patterns. In a novel approach, temporal changes in land surface temperatures, derived from NOAA-AVHRR imagery and a generalised split-window algorithm, are used as a calibration variable in a simple land surface scheme (TOPUP and combined within the Generalised Likelihood Uncertainty Estimation (GLUE methodology to provide estimates of areal evapotranspiration at the pixel scale. Such an approach offers an innovative means of transcending the patch or landscape scale of SVAT type models, to spatially distributed estimates of model output. The resulting spatial and temporal patterns of land surface fluxes and surface resistance are used to more fully understand the hydro-ecological trends observed across a study catchment in eastern Australia. The modelling approach is assessed by comparing predicted cumulative evapotranspiration values with surface fluxes determined from Bowen ratio systems and using auxiliary information such as in-situ soil moisture measurements and depth to groundwater to corroborate observed responses.

  19. Enzyme activity deviates due to spatial and temporal temperature profiles in commercial microtiter plate readers.

    Science.gov (United States)

    Grosch, Jan-Hendrik; Sieben, Michaela; Lattermann, Clemens; Kauffmann, Kira; Büchs, Jochen; Spieß, Antje C

    2016-03-01

    Microtiter plates (MTP) and automatized techniques are increasingly applied in the field of biotechnology. However, the susceptibility of MTPs to edge effects such as thermal gradients can lead to high variation of measured enzyme activities. In an effort to enhance experimental reliability, to quantify, and to minimize instrument-caused deviations in enzyme kinetics between two MTP-readers, we comprehensively quantified temperature distribution in 96-well MTPs. We demonstrated the robust application of the absorbance dye cresol red as easily applicable temperature indicator in cuvettes and MTPs and determined its accuracy to ±0.16°C. We then quantified temperature distributions in 96-well MTPs revealing temperature deviations over single MTP of up to 2.2°C and different patterns in two commercial devices (BioTek Synergy 4 and Synergy Mx). The obtained liquid temperature was shown to be substantially controlled by evaporation. The temperature-induced enzyme activity variation within MTPs amounted to about 20 %. Activity deviations between MTPs and to those in cuvettes were determined to 40 % due to deviations from the set temperature in MTPs. In conclusion, we propose a better control of experimental conditions in MTPs or alternative experimental systems for reliable determination of kinetic parameters for bioprocess development. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Streams in the urban heat island: spatial and temporal variability in temperature

    Science.gov (United States)

    Somers, Kayleigh A.; Bernhardt, Emily S.; Grace, James B.; Hassett, Brooke A.; Sudduth, Elizabeth B.; Wang, Siyi; Urban, Dean L.

    2013-01-01

    Streams draining urban heat islands tend to be hotter than rural and forested streams at baseflow because of warmer urban air and ground temperatures, paved surfaces, and decreased riparian canopy. Urban infrastructure efficiently routes runoff over hot impervious surfaces and through storm drains directly into streams and can lead to rapid, dramatic increases in temperature. Thermal regimes affect habitat quality and biogeochemical processes, and changes can be lethal if temperatures exceed upper tolerance limits of aquatic fauna. In summer 2009, we collected continuous (10-min interval) temperature data in 60 streams spanning a range of development intensity in the Piedmont of North Carolina, USA. The 5 most urbanized streams averaged 21.1°C at baseflow, compared to 19.5°C in the 5 most forested streams. Temperatures in urban streams rose as much as 4°C during a small regional storm, whereas the same storm led to extremely small to no changes in temperature in forested streams. Over a kilometer of stream length, baseflow temperature varied by as much as 10°C in an urban stream and as little as 2°C in a forested stream. We used structural equation modeling to explore how reach- and catchment-scale attributes interact to explain maximum temperatures and magnitudes of storm-flow temperature surges. The best predictive model of baseflow temperatures (R2  =  0.461) included moderately strong pathways directly (extent of development and road density) and indirectly, as mediated by reach-scale factors (canopy closure and stream width), from catchment-scale factors. The strongest influence on storm-flow temperature surges appeared to be % development in the catchment. Reach-scale factors, such as the extent of riparian forest and stream width, had little mitigating influence (R2  =  0.448). Stream temperature is an essential, but overlooked, aspect of the urban stream syndrome and is affected by reach-scale habitat variables, catchment-scale urbanization

  1. Spatial-Temporal Hotspot Pattern Analysis of Provincial Environmental Pollution Incidents and Related Regional Sustainable Management in China in the Period 1995–2012

    Directory of Open Access Journals (Sweden)

    Lei Ding

    2015-10-01

    Full Text Available Spatial-temporal hotspot pattern analysis of environmental pollution incidents provides an indispensable source of information for the further development of incident prevention measures. In this study, the spatial-temporal patterns of environmental pollution incidents in China in the period of 1995–2012 were analyzed, using the Spatial Getis-Ord statistic and an Improved Prediction Accuracy Index (IAPI. The results show that, in this period, the occurrence of environmental incidents exhibited a dynamic growth pattern but then dropped and continued to drop after the year 2006, which was considered a crucial turning point. Not coincidentally, this corresponds to the year when the State Council issued its National Environmental Emergency Plan, and following the examination of major incidents, special actions were taken to strengthen the control of incidents and emergency responses. The results from Getis-Ord General G statistical analysis show that the spatial agglomeration phenomenon was statistically significant after 1999 and that the level of spatial agglomeration was rising, while the Getis-Ord Gi* statistical analysis reveals that environmental pollution incidents were mainly agglomerated in the Pan Yangtze River Delta and Pan Pearl River Delta regions. Accordingly, the spatial-temporal hotspot pattern based on the IAPI values at the provincial scale could be categorized into: stable hotspots, unstable hotspots, and cold-spot areas. The stable hotspots category was further divided into three subtypes: industrial distribution type, industrial transfer type, and extensive economic growth type. Finally, the corresponding measures for sustainable management were proposed: stable hotspots were classified as essential regions requiring the immediate prevention and control of environmental pollution incidents; unstable hotspots were characterized by their need for ongoing and continual prevention measures, and cold-spots were those areas that

  2. Invasive Macrophytes Control the Spatial and Temporal Patterns of Temperature and Dissolved Oxygen in a Shallow Lake: A Proposed Feedback Mechanism of Macrophyte Loss

    Directory of Open Access Journals (Sweden)

    Maria P. Vilas

    2017-12-01

    Full Text Available Submerged macrophytes can have a profound effect on shallow lake ecosystems through their ability to modify the thermal structure and dissolved oxygen levels within the lake. Invasive macrophytes, in particular, can grow rapidly and induce thermal gradients in lakes that may substantially change the ecosystem structure and challenge the survival of aquatic organisms. We performed fine-scale measurements and 3D numerical modeling at high spatiotemporal resolution to assess the effect of the seasonal growth of Potamogeton crispus L. on the spatial and temporal dynamics of temperature and dissolved oxygen in a shallow urban lake (Lake Monger, Perth, WA, Australia. Daytime stratification developed during the growing season and was clearly observed throughout the macrophyte bed. At all times measured, stratification was stronger at the center of the macrophyte bed compared to the bed edges. By fitting a logistic growth curve to changes in plant height over time (r2 = 0.98, and comparing this curve to temperature data at the center of the macrophyte bed, we found that stratification began once the macrophytes occupied at least 50% of the water depth. This conclusion was strongly supported by a 3D hydrodynamic model fitted to weekly temperature profiles measured at four time periods throughout the growing season (r2 > 0.78 at all times. As the macrophyte height increased and stratification developed, dissolved oxygen concentration profiles changed from vertically homogeneous oxic conditions during both the day and night to expression of night-time anoxic conditions close to the sediments. Spatially interpolated maps of dissolved oxygen and 3D numerical modeling results indicated that the plants also reduced horizontal exchange with surrounding unvegetated areas, preventing flushing of low dissolved oxygen water out of the center of the bed. Simultaneously, aerial imagery showed central dieback occurring toward the end of the growing season. Thus, we

  3. Invasive Macrophytes Control the Spatial and Temporal Patterns of Temperature and Dissolved Oxygen in a Shallow Lake: A Proposed Feedback Mechanism of Macrophyte Loss.

    Science.gov (United States)

    Vilas, Maria P; Marti, Clelia L; Adams, Matthew P; Oldham, Carolyn E; Hipsey, Matthew R

    2017-01-01

    Submerged macrophytes can have a profound effect on shallow lake ecosystems through their ability to modify the thermal structure and dissolved oxygen levels within the lake. Invasive macrophytes, in particular, can grow rapidly and induce thermal gradients in lakes that may substantially change the ecosystem structure and challenge the survival of aquatic organisms. We performed fine-scale measurements and 3D numerical modeling at high spatiotemporal resolution to assess the effect of the seasonal growth of Potamogeton crispus L. on the spatial and temporal dynamics of temperature and dissolved oxygen in a shallow urban lake (Lake Monger, Perth, WA, Australia). Daytime stratification developed during the growing season and was clearly observed throughout the macrophyte bed. At all times measured, stratification was stronger at the center of the macrophyte bed compared to the bed edges. By fitting a logistic growth curve to changes in plant height over time ( r 2 = 0.98), and comparing this curve to temperature data at the center of the macrophyte bed, we found that stratification began once the macrophytes occupied at least 50% of the water depth. This conclusion was strongly supported by a 3D hydrodynamic model fitted to weekly temperature profiles measured at four time periods throughout the growing season ( r 2 > 0.78 at all times). As the macrophyte height increased and stratification developed, dissolved oxygen concentration profiles changed from vertically homogeneous oxic conditions during both the day and night to expression of night-time anoxic conditions close to the sediments. Spatially interpolated maps of dissolved oxygen and 3D numerical modeling results indicated that the plants also reduced horizontal exchange with surrounding unvegetated areas, preventing flushing of low dissolved oxygen water out of the center of the bed. Simultaneously, aerial imagery showed central dieback occurring toward the end of the growing season. Thus, we hypothesized

  4. Thermally induced optical deformation of a Nd:YVO4 active disk under the action of multi-beam spatially periodic diode pumping

    Science.gov (United States)

    Guryev, D. A.; Nikolaev, D. A.; Tsvetkov, V. B.; Shcherbakov, I. A.

    2018-05-01

    A study of how the transverse distribution of an optical path changes in a Nd:YVO4 active disk was carried out in a ten-beam spatially periodic diode pumping in the one-dimensional case. The pumping beams’ transverse dimensions were comparable with the distances between them. The investigations were carried out using laser interferometry methods. It was found that the optical thickness changing in the active disk along the line of pumping spots was well described by a Gaussian function.

  5. The Spatial and Temporal Variation of Temperature in the Qinghai-Xizang (Tibetan Plateau during 1971–2015

    Directory of Open Access Journals (Sweden)

    Zhaochen Liu

    2017-11-01

    Full Text Available The Tibetan Plateau (TP, which is well known as “The Third Pole”, is of great importance to climate change in East Asia, and even the whole world. In this paper, we selected the monthly temperature (including the monthly mean and the maximum and minimum temperature during 1971–2015 from 88 meteorological stations on the TP. The data were tested and corrected by using Penalized Maximal F Test (PMFT based on RHtest. Afterwards, based on the Mann-Kendall test, we analyzed the seasonal and time-interval characteristics on each station in detail. The results show that the TP has experienced significant warming during 1971–2015. When comparing the selected elements, the warming rate of minimum temperature (Tmin is the largest, the mean temperature (Tmean comes second, and the maximum temperature (Tmax is the smallest. The warming trends in four seasons are significant, and the highest warming rate occurs in winter. The warming trend on the TP has a prominent spatial difference, with a large warming rate on the eastern parts and a small one on the central regions. In different seasons, the warming trends on the TP have different characteristics in the time interval. Since 1998, the warming rate in spring increased markedly, spring has displaced winter as the season with the highest warming rate recently.

  6. Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser

    Science.gov (United States)

    Lu, Pen-Li; Hsu, Shu-Shen; Tsai, Meng-Li; Jaw, Fu-Shan; Wang, An-Bang; Yen, Chen-Tung

    2012-11-01

    Pain is a natural alarm that aids the body in avoiding potential danger and can also present as an important indicator in clinics. Infrared laser-evoked potentials can be used as an objective index to evaluate nociception. In animal studies, a short-pulse laser is crucial because it completes the stimulation before escape behavior. The objective of the present study was to obtain the temporal and spatial temperature distributions in the skin caused by the irradiation of a short-pulse laser. A fast speed infrared camera was used to measure the surface temperature caused by a CO2 laser of different durations (25 and 35 ms) and power. The measured results were subsequently implemented with a three-layer finite element model to predict the subsurface temperature. We found that stratum corneum was crucial in the modeling of fast temperature response, and escape behaviors correlated with predictions of temperature at subsurface. Results indicated that the onset latency and duration of activated nociceptors must be carefully considered when interpreting physiological responses evoked by infrared irradiation.

  7. Temporal and spatial variations of canopy temperature over a C3C4 mixture grassland

    Science.gov (United States)

    Shimoda, S.; Oikawa, T.

    2006-10-01

    This study discusses the photosynthetic pathway types involved in canopy temperature measurements on a mixed grassland consisting of C3 and C4 plants (dominant species in biomass were Solidago altissima (C3), Miscanthus sinensis (C4), and Imperata cylindrica (C4)). In the wet conditions immediately after the rainy season, the mean canopy temperature for S. altissima was the lowest among the dominant species, mainly due to its leaf conductance being twice as large as the other two species. Despite using the same C4 photosynthetic pathway, M. sinensis had a lower apparent canopy temperature than I. cylindrica due to a smaller proportion of sunlit elements in the field of view. In the dry conditions during late July, the mean canopy temperatures of the three dominant species were within 0.3 °C of one another. These results can be explained by poor water conditions for C3 species (S. altissima). The simultaneous survey of vegetation and thermal imaging can help clarify characteristics of C3 and C4 canopy temperature over complicated grassland.

  8. Two-Dimensional Spatial Imaging of Charge Transport in Germanium Crystals at Cryogenic Temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Moffatt, Robert [Stanford Univ., CA (United States)

    2016-03-01

    In this dissertation, I describe a novel apparatus for studying the transport of charge in semiconductors at cryogenic temperatures. The motivation to conduct this experiment originated from an asymmetry observed between the behavior of electrons and holes in the germanium detector crystals used by the Cryogenic Dark Matter Search (CDMS). This asymmetry is a consequence of the anisotropic propagation of electrons in germanium at cryogenic temperatures. To better model our detectors, we incorporated this effect into our Monte Carlo simulations of charge transport. The purpose of the experiment described in this dissertation is to test those models in detail. Our measurements have allowed us to discover a shortcoming in our most recent Monte Carlo simulations of electrons in germanium. This discovery would not have been possible without the measurement of the full, two-dimensional charge distribution, which our experimental apparatus has allowed for the first time at cryogenic temperatures.

  9. Analyzing Snowpack Metrics Over Large Spatial Extents Using Calibrated, Enhanced-Resolution Brightness Temperature Data and Long Short Term Memory Artificial Neural Networks

    Science.gov (United States)

    Norris, W.; J Q Farmer, C.

    2017-12-01

    Snow water equivalence (SWE) is a difficult metric to measure accurately over large spatial extents; snow-tell sites are too localized, and traditional remotely sensed brightness temperature data is at too coarse of a resolution to capture variation. The new Calibrated Enhanced-Resolution Brightness Temperature (CETB) data from the National Snow and Ice Data Center (NSIDC) offers remotely sensed brightness temperature data at an enhanced resolution of 3.125 km versus the original 25 km, which allows for large spatial extents to be analyzed with reduced uncertainty compared to the 25km product. While the 25km brightness temperature data has proved useful in past research — one group found decreasing trends in SWE outweighed increasing trends three to one in North America; other researchers used the data to incorporate winter conditions, like snow cover, into ecological zoning criterion — with the new 3.125 km data, it is possible to derive more accurate metrics for SWE, since we have far more spatial variability in measurements. Even with higher resolution data, using the 37 - 19 GHz frequencies to estimate SWE distorts the data during times of melt onset and accumulation onset. Past researchers employed statistical splines, while other successful attempts utilized non-parametric curve fitting to smooth out spikes distorting metrics. In this work, rather than using legacy curve fitting techniques, a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) was trained to perform curve fitting on the data. LSTM ANN have shown great promise in modeling time series data, and with almost 40 years of data available — 14,235 days — there is plenty of training data for the ANN. LSTM's are ideal for this type of time series analysis because they allow important trends to persist for long periods of time, but ignore short term fluctuations; since LSTM's have poor mid- to short-term memory, they are ideal for smoothing out the large spikes generated in the melt

  10. Nonlinear convective flows in a two-layer system under the action of spatial temperature modulation of heat release/consumption at the interface

    Science.gov (United States)

    Simanovskii, Ilya B.; Viviani, Antonio; Dubois, Frank

    2018-06-01

    An influence of a spatial temperature modulation of the interfacial heat release/consumption on nonlinear convective flows in the 47v2 silicone oil - water system, is studied. Rigid heat-insulated lateral walls, corresponding to the case of closed cavities, have been considered. Transitions between the flows with different spatial structures, have been investigated. It is shown that the spatial modulation can change the sequence of bifurcations and lead to the appearance of specific steady and oscillatory flows in the system.

  11. Spatially resolved quantitative mapping of thermomechanical properties and phase transition temperatures using scanning probe microscopy

    Science.gov (United States)

    Jesse, Stephen; Kalinin, Sergei V; Nikiforov, Maxim P

    2013-07-09

    An approach for the thermomechanical characterization of phase transitions in polymeric materials (polyethyleneterephthalate) by band excitation acoustic force microscopy is developed. This methodology allows the independent measurement of resonance frequency, Q factor, and oscillation amplitude of a tip-surface contact area as a function of tip temperature, from which the thermal evolution of tip-surface spring constant and mechanical dissipation can be extracted. A heating protocol maintained a constant tip-surface contact area and constant contact force, thereby allowing for reproducible measurements and quantitative extraction of material properties including temperature dependence of indentation-based elastic and loss moduli.

  12. A Reanalysis for the Seasonal and Longer-Period Cycles and the Trends in Middle Atmosphere Temperature from the HALOE

    Science.gov (United States)

    Remsberg, Ellis E.

    2007-01-01

    Previously published analyses for the seasonal and longer-period cycles in middle atmosphere temperature versus pressure (or T(p)) from the Halogen Occultation Experiment (HALOE) are extended to just over 14 years and updated to properly account for the effects of autocorrelation in its time series of zonally-averaged data. The updated seasonal terms and annual averages are provided, and they can be used to generate temperature distributions that are representative of the period 1991-2005. QBO-like terms have also been resolved and are provided, and they exhibit good consistency across the range of latitudes and pressure-altitudes. Further, exploratory analyses of the residuals from each of the 221 time series have yielded significant 11-yr solar cycle (or SC-like) and linear trend terms at a number of latitudes and levels. The amplitudes of the SC-like terms for the upper mesosphere agree reasonably with calculations of the direct solar radiative effects for T(p). Those SC amplitudes increase by about a factor of 2 from the lower to the upper mesosphere and are also larger at the middle than at the low latitudes. The diagnosed cooling trends for the subtropical latitudes are in the range, -0.5 to -1.0 K/decade, which is in good agreement with the findings from models of the radiative effects on pressure surfaces due to known increases in atmospheric CO2. The diagnosed trends are somewhat larger than predicted with models for the upper mesosphere of the northern hemisphere middle latitudes.

  13. ATLASGAL-selected massive clumps in the inner Galaxy. VI. Kinetic temperature and spatial density measured with formaldehyde

    Science.gov (United States)

    Tang, X. D.; Henkel, C.; Wyrowski, F.; Giannetti, A.; Menten, K. M.; Csengeri, T.; Leurini, S.; Urquhart, J. S.; König, C.; Güsten, R.; Lin, Y. X.; Zheng, X. W.; Esimbek, J.; Zhou, J. J.

    2018-03-01

    Context. Formaldehyde (H2CO) is a reliable tracer to accurately measure the physical parameters of dense gas in star-forming regions. Aim. We aim to determine directly the kinetic temperature and spatial density with formaldehyde for the 100 brightest ATLASGAL-selected clumps (the TOP100 sample) at 870 μm representing various evolutionary stages of high-mass star formation. Methods: Ten transitions (J = 3-2 and 4-3) of ortho- and para-H2CO near 211, 218, 225, and 291 GHz were observed with the Atacama Pathfinder EXperiment (APEX) 12 m telescope. Results: Using non-LTE models with RADEX, we derived the gas kinetic temperature and spatial density with the measured para-H2CO 321-220/303-202, 422-321/404-303, and 404-303/303-202 ratios. The gas kinetic temperatures derived from the para-H2CO 321-220/303-202 and 422-321/404-303 line ratios are high, ranging from 43 to >300 K with an unweighted average of 91 ± 4 K. Deduced Tkin values from the J = 3-2 and 4-3 transitions are similar. Spatial densities of the gas derived from the para-H2CO 404-303/303-202 line ratios yield 0.6-8.3 × 106 cm-3 with an unweighted average of 1.5 (±0.1) × 106 cm-3. A comparison of kinetic temperatures derived from para-H2CO, NH3, and dust emission indicates that para-H2CO traces a distinctly higher temperature than the NH3 (2, 2)/(1, 1) transitions and the dust, tracing heated gas more directly associated with the star formation process. The H2CO line widths are found to be correlated with bolometric luminosity and increase with the evolutionary stage of the clumps, which suggests that higher luminosities tend to be associated with a more turbulent molecular medium. It seems that the spatial densities measured with H2CO do not vary significantly with the evolutionary stage of the clumps. However, averaged gas kinetic temperatures derived from H2CO increase with time through the evolution of the clumps. The high temperature of the gas traced by H2CO may be mainly caused by radiation from

  14. Assessing non-linear variation of temperature and precipitation for different growth periods of maize and their impacts on phenology in the Midwest of Jilin Province, China

    Science.gov (United States)

    Guo, Enliang; Zhang, Jiquan; Wang, Yongfang; Alu, Si; Wang, Rui; Li, Danjun; Ha, Si

    2018-05-01

    In the past two decades, the regional climate in China has undergone significant change, resulting in crop yield reduction and complete failure. The goal of this study is to detect the variation of temperature and precipitation for different growth periods of maize and assess their impact on phenology. The daily meteorological data in the Midwest of Jilin Province during 1960-2014 were used in the study. The ensemble empirical mode decomposition method was adopted to analyze the non-linear trend and fluctuation in temperature and precipitation, and the sensitivity of the length of the maize growth period to temperature and precipitation was analyzed by the wavelet cross-transformation method. The results show that the trends of temperature and precipitation change are non-linear for different growth periods of maize, and the average temperature in the sowing-jointing stage was different from that in the other growth stages, showing a slight decrease trend, while the variation amplitude of maximum temperature is smaller than that of the minimum temperature. This indicates that the temperature difference between day and night shows a gradually decreasing trend. Precipitation in the growth period also showed a decreasing non-linear trend, while the inter-annual variability with period of quasi-3-year and quasi-6-year dominated the variation of temperature and precipitation. The whole growth period was shortened by 10.7 days, and the sowing date was advanced by approximately 11 days. We also found that there was a significant resonance period among temperature, precipitation, and phenology. Overall, a negative correlation between phenology and temperature is evident, while a positive correlation with precipitation is exhibited. The results illustrate that the climate suitability for maize has reduced over the past decades.

  15. Long-period variables in the Large Magellanic Cloud. II. Infrared photometry, spectral classification, AGB evolution, and spatial distribution

    International Nuclear Information System (INIS)

    Hughes, S.M.G.; Wood, P.R.

    1990-01-01

    Infrared JHK photometry and visual spectra have been obtained for a large sample of long-period variables (LPVs) in the Large Magellanic Cloud (LMC). Various aspects of the asymptotic giant branch (AGB) evolution of LPVs are discussed using these data. The birth/death rate of LPVs of different ages in the LMC is compared with the birth rates of appropriate samples of planetary nebulas, clump stars, Cepheids, and OH/IR stars. It appears that there are much fewer large-amplitude LPVs per unit galactic stellar mass in the LMC than in the Galaxy. It is suggested that this may be due to the fact that the evolved intermediate-age AGB stars in the LMC often turn into carbon stars, which tend to have smaller pulsation amplitudes than M stars. There is also a major discrepancy between the number of LPVs in the LMC (and in the Galaxy) and the number predicted by the theories of AGB evolution, pulsation, and mass loss. A distance modulus to the LMC of 18.66 + or - 0.05 is derived by comparing the LMC LPVs with P about 200 days with the 47 Tucanae Mira variables in the (K, log P) plane. 64 refs

  16. Elevated temperatures and long drought periods have a negative impact on survival and fitness of strongylid third stage larvae.

    Science.gov (United States)

    Knapp-Lawitzke, Friederike; von Samson-Himmelstjerna, Georg; Demeler, Janina

    2016-04-01

    In grazing cattle, infections with gastrointestinal nematodes pose some of the most important health threats and subclinical infections result in considerable production losses. While there is little doubt that climate change will affect grazing ruminants directly, mean temperature increases of ∼ 3°C and longer drought stress periods in summer may also influence the free-living stages of parasitic nematodes. Hostile climatic conditions reduce the number of L3s on pasture and therefore the refugium, which is expected to result in a higher selection pressure, accelerating development of resistance against anthelmintic drugs. The aim of the current experiments was to investigate the effects of drought stress and different temperature/humidity ranges over time on the survival and fitness of Cooperia oncophora L3s and their distribution in grass and soil under controlled conditions using a climate chamber. Grass containers inoculated with L3s were analysed after 1-6weeks using descriptive statistics as well as linear models. A large proportion of L3s was recovered from soil where fitness was also better preserved than on grass. Numbers and fitness of recovered L3s declined with duration in the climate chamber under both temperature profiles. However, the results of the linear models confirmed that higher temperatures (20-33°C versus 17-22.6°C) significantly impaired survival, distribution and fitness of L3s. Application of drought stress, known as another important factor, had a surprisingly smaller impact than its duration or higher temperatures. The climate chamber enabled exclusion of confounding factors and therefore accurate interpretation of the investigated climatic aspects. The obtained results highlight the relative importance of those factors, and will help to design better models for the population dynamics of L3s on pasture in the future. Additionally, the outcomes of these investigations may offer explanations regarding interdependencies of development

  17. Spatial Statistical Network Models for Stream and River Temperatures in the Chesapeake Bay Watershed

    Science.gov (United States)

    Numerous metrics have been proposed to describe stream/river thermal regimes, and researchers are still struggling with the need to describe thermal regimes in a parsimonious fashion. Regional temperature models are needed for characterizing and mapping current stream thermal re...

  18. Construction of a surface air temperature series for Qingdao in China for the period 1899 to 2014

    Science.gov (United States)

    Li, Yan; Tinz, Birger; von Storch, Hans; Wang, Qingyuan; Zhou, Qingliang; Zhu, Yani

    2018-03-01

    We present a homogenized surface air temperature (SAT) time series at 2 m height for the city of Qingdao in China from 1899 to 2014. This series is derived from three data sources: newly digitized and homogenized observations of the German National Meteorological Service from 1899 to 1913, homogenized observation data of the China Meteorological Administration (CMA) from 1961 to 2014 and a gridded dataset of Willmott and Matsuura (2012) in Delaware to fill the gap from 1914 to 1960. Based on this new series, long-term trends are described. The SAT in Qingdao has a significant warming trend of 0.11 ± 0.03 °C decade-1 during 1899-2014. The coldest period occurred during 1909-1918 and the warmest period occurred during 1999-2008. For the seasonal mean SAT, the most significant warming can be found in spring, followed by winter. The homogenized time series of Qingdao is provided and archived by the Deutscher Wetterdienst (DWD) web page under overseas stations of the Deutsche Seewarte (http://www.dwd.de/EN/ourservices/overseas_stations/ueberseedoku/doi_qingdao.html) in ASCII format. Users can also freely obtain a short description of the data at https://doi.org/https://dx.doi.org/10.5676/DWD/Qing_v1" target="_blank">https://doi.org/https://dx.doi.org/10.5676/DWD/Qing_v1. And the data can be downloaded at http://dwd.de/EN/ourservices/overseas_stations/ueberseedoku/data_qingdao.txt.

  19. Spatial variability of night temperatures at a fine scale over the Stellenbosch wine district, South Africa

    Directory of Open Access Journals (Sweden)

    Valérie Bonnardot

    2012-03-01

    Significance and impact of the study: In the context of climate change, it is crucial to improve knowledge of current climatic conditions at fine scale during periods of grapevine growth and berry ripening in order to have a baseline from which to work when discussing and considering future local adaptations to accommodate to a warmer environnement.

  20. A spatial model for a stream networks of Citarik River with the environmental variables: potential of hydrogen (PH) and temperature

    Science.gov (United States)

    Bachrudin, A.; Mohamed, N. B.; Supian, S.; Sukono; Hidayat, Y.

    2018-03-01

    Application of existing geostatistical theory of stream networks provides a number of interesting and challenging problems. Most of statistical tools in the traditional geostatistics have been based on a Euclidean distance such as autocovariance functions, but for stream data is not permissible since it deals with a stream distance. To overcome this autocovariance developed a model based on the distance the flow with using convolution kernel approach (moving average construction). Spatial model for a stream networks is widely used to monitor environmental on a river networks. In a case study of a river in province of West Java, the objective of this paper is to analyze a capability of a predictive on two environmental variables, potential of hydrogen (PH) and temperature using ordinary kriging. Several the empirical results show: (1) The best fit of autocovariance functions for temperature and potential hydrogen (ph) of Citarik River is linear which also yields the smallest root mean squared prediction error (RMSPE), (2) the spatial correlation values between the locations on upstream and on downstream of Citarik river exhibit decreasingly

  1. A diagnostic for time-resolved spatial profiles measurements on the ion temperature on JET

    International Nuclear Information System (INIS)

    Brocken, H.J.B.M.; Ven, H.W van der.

    1980-05-01

    A neutral particle scattering experiment for a continuous measurement of the ion temperature and ion density of the JET plasma in the hydrogen and deuterium phase is proposed. Space- and time-resolved measurements are possible by injection of a mono-energetic particle beam into the plasma and from the analysis of the velocity distribution of the scattered particles. The requirements on the injection system are specified and a suitable analyzer system is described

  2. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA Great Plains: Part I. Spatial trends

    Science.gov (United States)

    Kukal, M.; Irmak, S.

    2016-11-01

    Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development

  3. Effects of climate change on water requirements and phenological period of major crops in Heihe River basin, China - Based on the accumulated temperature threshold method

    Science.gov (United States)

    Han, Dongmei; Xu, Xinyi; Yan, Denghua

    2016-04-01

    In recent years, global climate change has significantly caused a serious crisis of water resources throughout the world. However, mainly through variations in temperature, climate change will affect water requirements of crop. It is obvious that the rise of temperature affects growing period and phenological period of crop directly, then changes the water demand quota of crop. Methods including accumulated temperature threshold and climatic tendency rate were adopted, which made up for the weakness of phenological observations, to reveal the response of crop phenological change during the growing period. Then using Penman-Menteith model and crop coefficients from the United Nations Food& Agriculture Organization (FAO), the paper firstly explored crop water requirements in different growth periods, and further forecasted quantitatively crop water requirements in Heihe River Basin, China under different climate change scenarios. Results indicate that: (i) The results of crop phenological change established in the method of accumulated temperature threshold were in agreement with measured results, and (ii) there were many differences in impacts of climate warming on water requirement of different crops. The growth periods of wheat and corn had tendency of shortening as well as the length of growth periods. (ii)Results of crop water requirements under different climate change scenarios showed: when temperature increased by 1°C, the start time of wheat growth period changed, 2 days earlier than before, and the length of total growth period shortened 2 days. Wheat water requirements increased by 1.4mm. However, corn water requirements decreased by almost 0.9mm due to the increasing temperature of 1°C. And the start time of corn growth period become 3 days ahead, and the length of total growth period shortened 4 days. Therefore, the contradiction between water supply and water demands are more obvious under the future climate warming in Heihe River Basin, China.

  4. Two-color spatial and temporal temperature measurements using a streaked soft x-ray imager

    Energy Technology Data Exchange (ETDEWEB)

    Moore, A. S., E-mail: alastair.moore@physics.org; Ahmed, M. F.; Soufli, R.; Pardini, T.; Hibbard, R. L.; Bailey, C. G.; Bell, P. M.; Hau-Riege, S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Benstead, J.; Morton, J.; Guymer, T. M.; Garbett, W. J.; Rubery, M. S.; Skidmore, J. W. [Directorate Science and Technology, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Bedzyk, M.; Shoup, M. J.; Regan, S. P.; Agliata, T.; Jungquist, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Schmidt, D. W. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); and others

    2016-11-15

    A dual-channel streaked soft x-ray imager has been designed and used on high energy-density physics experiments at the National Ignition Facility. This streaked imager creates two images of the same x-ray source using two slit apertures and a single shallow angle reflection from a nickel mirror. Thin filters are used to create narrow band pass images at 510 eV and 360 eV. When measuring a Planckian spectrum, the brightness ratio of the two images can be translated into a color-temperature, provided that the spectral sensitivity of the two images is well known. To reduce uncertainty and remove spectral features in the streak camera photocathode from this photon energy range, a thin 100 nm CsI on 50 nm Al streak camera photocathode was implemented. Provided that the spectral shape is well-known, then uncertainties on the spectral sensitivity limits the accuracy of the temperature measurement to approximately 4.5% at 100 eV.

  5. [Spatial variation in diurnal courses of stem temperature of Betula platyphylla and Fraxinus mandshurica and its influencing factors].

    Science.gov (United States)

    Li, Yu Ran; Wang, Xing Chang; Wang, Chuan Kuan; Liu, Fan; Zhang, Quan Zhi

    2017-10-01

    Plant temperature is an important parameter for estimating energy balance and vegetation respiration of forest ecosystem. To examine spatial variation in diurnal courses of stem temperatures (T s ) and its influencing factors, we measured the T s with copper constantan thermocouples at different depths, heights and azimuths within the stems of two broadleaved tree species with contrasting bark and wood properties, Betula platyphylla and Fraxinus mandshurica. The results showed that the monthly mean diurnal courses of the T s largely followed that of air temperature with a 'sinusoi dal' pattern, but the T s lagged behind the air temperature by 0 h at the stem surface to 4 h at 6 cm depth. The daily maximal values and ranges of the diurnal course of T s decreased gradually with increasing measuring depth across the stem and decreasing measuring height along the stem. The circumferential variation in T s was marginal, with slightly higher daily maximal values in the south and west directions during the daytime of the dormant season. Differences in thermal properties (i.e. , specific heat capacity and thermal conductivity) of both bark and wood tissue between the two species contributed to the inter specific variations in the radial variation in T s through influencing the heat exchange between the stem surface and ambient air as well as heat diffusion within the stem. The higher reflectance of the bark of B. platyphylla decreased the influence of solar radiation on T s . The stepwise regression showed that the diurnal courses of T s could be well predicted by the environmental factors (R 2 > 0.85) with an order of influence ranking as air temperature > water vapor pressure > net radiation > wind speed. It is necessary to take the radial, vertical and inter specific varia-tions in T s into account when estimating biomass heat storage and stem CO2 efflux.

  6. Three-dimensional spin mapping of antiferromagnetic nanopyramids having spatially alternating surface anisotropy at room temperature.

    Science.gov (United States)

    Wang, Kangkang; Smith, Arthur R

    2012-11-14

    Antiferromagnets play a key role in modern spintronic devices owing to their ability to modify the switching behavior of adjacent ferromagnets via the exchange bias effect. Consequently, detailed measurements of the spin structure at antiferromagnetic interfaces and surfaces are highly desirable, not only for advancing technologies but also for enabling new insights into the underlying physics. Here using spin-polarized scanning tunneling microscopy at room-temperature, we reveal in three-dimensions an orthogonal spin structure on antiferromagnetic compound nanopyramids. Contrary to expected uniaxial anisotropy based on bulk properties, the atomic terraces are found to have alternating in-plane and out-of-plane magnetic anisotropies. The observed layer-wise alternation in anisotropy could have strong influences on future nanoscale spintronic applications.

  7. Spatial estimation of mean temperature and precipitation in areas of scarce meteorological information

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, J.D. [Universidad Autonoma Chapingo, Chapingo (Mexico)]. E-mail: dgomez@correo.chapingo.mx; Etchevers, J.D. [Instituto de Recursos Naturales, Colegio de Postgraduados, Montecillo, Edo. de Mexico (Mexico); Monterroso, A.I. [departamento de Suelos, Universidad Autonoma Chapingo, Chapingo (Mexico); Gay, G. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Campo, J. [Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Martinez, M. [Instituto de Recursos Naturales, Montecillo, Edo. de Mexico (Mexico)

    2008-01-15

    In regions of complex relief and scarce meteorological information it becomes difficult to implement techniques and models of numerical interpolation to elaborate reliable maps of climatic variables essential for the study of natural resources using the new tools of the geographic information systems. This paper presents a method for estimating annual and monthly mean values of temperature and precipitation, taking elements from simple interpolation methods and complementing them with some characteristics of more sophisticated methods. To determine temperature, simple linear regression equations were generated associating temperature with altitude of weather stations in the study region, which had been previously subdivided in accordance with humidity conditions and then applying such equations to the area's digital elevation model to obtain temperatures. The estimation of precipitation was based on the graphic method through the analysis of the meteorological systems that affect the regions of the study area throughout the year and considering the influence of mountain ridges on the movement of prevailing winds. Weather stations with data in nearby regions were analyzed according to their position in the landscape, exposure to humid winds, and false color associated with vegetation types. Weather station sites were used to reference the amount of rainfall; interpolation was attained using analogies with satellite images of false color to which a model of digital elevation was incorporated to find similar conditions within the study area. [Spanish] En las regiones de relieve complejo y con escasa informacion meteorologica se dificulta la aplicacion de las diferentes tecnicas y modelos de interpolacion numericos para elaborar mapas de variables climaticas confiables, indispensables para realizar estudios de los recursos naturales, con la utilizacion de las nuevas herramientas de los sistemas de informacion geografica. En este trabajo se presenta un metodo para

  8. Spatial distribution and mobility of organic carbon (POC and DOC) in a coastal Mediterranean environment (Saronikos Gulf, Greece) during 2007-2009 period.

    Science.gov (United States)

    Evangeliou, Nikolaos; Florou, Heleny

    2013-08-01

    Particulate (POC) and dissolved organic carbon (DOC) is an important parameter for the pollution assessment of coastal marine systems, especially those affected by anthropogenic, domestic, and industrial activities. In the present paper, a similar marine system (Saronikos Gulf) located in the west-central Aegean Sea (eastern Mediterranean Sea) was examined, in terms of the temporal and spatial distribution of organic carbon (POC and DOC), with respect to marine sources and pathways. POC was maximum in winter in the Saronikos Gulf, due to the bloom of phytoplankton, whereas in the Elefsis Bay (located in the north side of the Saronikos Gulf) in summer, since phytoplankton grazes in the Bay in the end of summer (except for winter). Approximately 60 % of the bulk DOC of the water column was estimated as non-refractory (labile and semi-labile), due to the major anthropogenic, domestic, and industrial effects of the region and the shallow depths. The spatial distribution of POC and DOC mainly affects the northeastern section of the Gulf, since that region has been accepted major organic discharges for a long time period, in connection to the relatively long renewal times of its waters.

  9. The spatial-temporal distribution of the atmospheric polluting agents during the period 2000-2005 in the Urban Area of Guadalajara, Jalisco, Mexico.

    Science.gov (United States)

    Sánchez, Hermes U Ramírez; García, María D Andrade; Bejaran, Rubén; Guadalupe, Mario E García; Vázquez, Antonio Wallo; Toledano, Ana C Pompa; Villasenor, Odila de la Torre

    2009-06-15

    In the large cities, the disordered urban development, the industrial activities, and the transport, have caused elevated concentrations of polluting agents and possible risks to the health of the population. The metropolises located in valleys with little ventilation (such as the Urban Area of Guadalajara: UAG) present low dispersion of polluting agents can cause high risk of respiratory and cardiovascular diseases. The objective of this work was to describe the spatial-temporal distribution of the atmospheric polluting agents: carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), particles smaller than 10 microns (microm) (PM(10)) and ozone (O(3)) in the UAG during the period 2000-2005. A spatial-temporal distribution analysis was made by means of graphic interpolation (Kriging method) of the statistical parameters of CO, NO(2), SO(2), PM(10) and O(3) with the collected data from eight stations of atmospheric monitoring in the UAG. The results show that the distributions of the atmospheric polluting agents are variable during the analyzed years. The polluting agent with highest concentration is PM(10) (265.42 microg/m(3)), followed by O(3) (0.11 ppm), NO(2) (0.11 ppm), CO (9.17 ppm) and SO(2) (0.05 ppm). The most affected zone is the southeast of the UAG. The results showed that an important percentage of days exceed the Mexican norms of air quality (93-199 days/year).

  10. Evaluation of passive avoidance learning and spatial memory in rats exposed to low levels of lead during specific periods of early brain development.

    Science.gov (United States)

    Rao Barkur, Rajashekar; Bairy, Laxminarayana K

    2015-01-01

    Widespread use of heavy metal lead (Pb) for various commercial purposes has resulted in the environmental contamination caused by this metal. The studies have shown a definite relationship between low level lead exposure during early brain development and deficit in children's cognitive functions. This study investigated the passive avoidance learning and spatial learning in male rat pups exposed to lead through their mothers during specific periods of early brain development. Experimental male rats were divided into 5 groups: i) the normal control group (NC) (N = 12) consisted of rat offspring born to mothers who were given normal drinking water throughout gestation and lactation, ii) the pre-gestation lead exposed group (PG) (N = 12) consisted of rat offspring, mothers of these rats had been exposed to 0.2% lead acetate in the drinking water for 1 month before conception, iii) the gestation lead exposed group (G) (N = 12) contained rat offspring born to mothers who had been exposed to 0.2% lead acetate in the drinking water throughout gestation, iv) the lactation lead exposed group (L) (N = 12) had rat offspring, mothers of these rats exposed to 0.2% lead acetate in the drinking water throughout lactation and v) the gestation and lactation lead exposed group (GL) (N = 12) contained rat offspring, mothers of these rats were exposed to 0.2% lead acetate throughout gestation and lactation. The study found deficit in passive avoidance learning in the G, L and GL groups of rats. Impairment in spatial learning was found in the PG, G, L and GL groups of rats. Interestingly, the study found that gestation period only and lactation period only lead exposure was sufficient to cause deficit in learning and memory in rats. The extent of memory impairment in the L group of rats was comparable with the GL group of rats. So it can be said that postnatal period of brain development is more sensitive to neurotoxicity compared to prenatal exposure. This work is available in Open

  11. Measured winter and spring-time indoor temperatures in UK homes over the period 1969–2010: A review and synthesis

    International Nuclear Information System (INIS)

    Vadodaria, K.; Loveday, D.L.; Haines, V.

    2014-01-01

    This paper presents a review and synthesis of average winter and spring-time indoor temperatures in UK homes measured over the period 1969–2010. Analysis of measured temperatures in a sample of solid wall dwellings in the UK, conducted as part of the CALEBRE research project, is included. The review suggests that, for periods when occupation was likely, there has been little or no increase in winter and spring-time average living room temperatures over the last 40 years, with average recorded living room temperatures having been historically lower than the WHO-recommended value of 21 °C. Correspondingly, for periods of likely occupation, average bedroom temperatures appear to have increased. Compared with non-domestic buildings, there have been fewer investigations of domestic thermal comfort, either in the UK or elsewhere, and hence the paper also calls for further detailed investigations of domestic indoor temperatures during occupied hours together with thermal comfort evaluations in order to better understand domestic thermal environments. Based on suggestions from the limited range of studies available to date, living room temperatures may need to be maintained within the range 20–22 °C for thermal satisfaction, though this requires confirmation through further research. The study also emphasises that improving the energy efficiency of homes should be the primary means to effect any increases in indoor temperatures that are deemed essential. Considerations for future policy are discussed. - Highlights: • We review indoor temperatures measured in UK homes during 1960-2010. • We present analysis of temperature recorded by our study in 20 UK homes. • Little or no increase observed in living room temperatures for the last 40 years. • Occupied bedroom temperatures appear to have increased. • Living room temperatures have been historically lower than the WHO guidelines

  12. The effect of temperature and extraction period of time on the chemicals content of emprit ginger ethanol extract (Zingiber officinale var. Rubrum)

    Science.gov (United States)

    Ratnaningrum, Diah; Endah, Een Sri; Pudjiraharti, Sri

    2017-01-01

    Research on extraction method of emprit ginger using ethanol with agitation of 100 rpm at different temperatures (ambient temperature, 40, and 50°C) and various extraction period of times (30, 60, and 90 minutes) was conducted. Analysis of chemicals content i.e. total phenolic and total flavonoid. The objective of this work was to study the effect of temperatures and extraction period of times on the chemicals content of its ethanol extract. Based on the results of the test, the highest content total flavonoid (5.17% w/w) was resulted at 40°C for 90 minutes, while the total phenolic content was not affected by either temperature or extraction period of times used. The content of total phenolic was around 2.39% to 2.65% w/w.

  13. Increasing parameter certainty and data utility through multi-objective calibration of a spatially distributed temperature and solute model

    Directory of Open Access Journals (Sweden)

    C. Bandaragoda

    2011-05-01

    Full Text Available To support the goal of distributed hydrologic and instream model predictions based on physical processes, we explore multi-dimensional parameterization determined by a broad set of observations. We present a systematic approach to using various data types at spatially distributed locations to decrease parameter bounds sampled within calibration algorithms that ultimately provide information regarding the extent of individual processes represented within the model structure. Through the use of a simulation matrix, parameter sets are first locally optimized by fitting the respective data at one or two locations and then the best results are selected to resolve which parameter sets perform best at all locations, or globally. This approach is illustrated using the Two-Zone Temperature and Solute (TZTS model for a case study in the Virgin River, Utah, USA, where temperature and solute tracer data were collected at multiple locations and zones within the river that represent the fate and transport of both heat and solute through the study reach. The result was a narrowed parameter space and increased parameter certainty which, based on our results, would not have been as successful if only single objective algorithms were used. We also found that the global optimum is best defined by multiple spatially distributed local optima, which supports the hypothesis that there is a discrete and narrowly bounded parameter range that represents the processes controlling the dominant hydrologic responses. Further, we illustrate that the optimization process itself can be used to determine which observed responses and locations are most useful for estimating the parameters that result in a global fit to guide future data collection efforts.

  14. Displacement response of a concrete arch dam to seasonal temperature fluctuations and reservoir level rise during the first filling period: evidence from geodetic data

    Directory of Open Access Journals (Sweden)

    Cemal Ozer Yigit

    2016-07-01

    Full Text Available The present study evaluates the dynamic behaviour of the Ermenek Dam, the second highest dam in Turkey, based on conventional geodetic measurements and Finite Element Model (FEM analyses during its first filling period. In total, eight periods of measured deformation are considered from the end of construction until the reservoir reached its full capacity. The displacement response of the dam to the reservoir level and to seasonal temperature variations is examined in detail. Time series of apparent total displacements at the middle of the crest of the dam exhibits periodicity and linear trends. Correlation analysis revealed that periodic and linear displacement responses of the dam are related to variations of seasonal temperature and linearly increased reservoir level, respectively, indicating a relation between temperature, water load and dam deformation. It is also concluded that measured deformations based on geodetic data show good agreement with the predicted deformation obtained by the FEM analysis.

  15. Probability-based classifications for spatially characterizing the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region, Taiwan.

    Science.gov (United States)

    Jang, Cheng-Shin

    2015-05-01

    Accurately classifying the spatial features of the water temperatures and discharge rates of hot springs is crucial for environmental resources use and management. This study spatially characterized classifications of the water temperatures and discharge rates of hot springs in the Tatun Volcanic Region of Northern Taiwan by using indicator kriging (IK). The water temperatures and discharge rates of the springs were first assigned to high, moderate, and low categories according to the two thresholds of the proposed spring classification criteria. IK was then used to model the occurrence probabilities of the water temperatures and discharge rates of the springs and probabilistically determine their categories. Finally, nine combinations were acquired from the probability-based classifications for the spatial features of the water temperatures and discharge rates of the springs. Moreover, various combinations of spring water features were examined according to seven subzones of spring use in the study region. The research results reveal that probability-based classifications using IK provide practicable insights related to propagating the uncertainty of classifications according to the spatial features of the water temperatures and discharge rates of the springs. The springs in the Beitou (BT), Xingyi Road (XYR), Zhongshanlou (ZSL), and Lengshuikeng (LSK) subzones are suitable for supplying tourism hotels with a sufficient quantity of spring water because they have high or moderate discharge rates. Furthermore, natural hot springs in riverbeds and valleys should be developed in the Dingbeitou (DBT), ZSL, Xiayoukeng (XYK), and Macao (MC) subzones because of low discharge rates and low or moderate water temperatures.

  16. Modeling and preliminary characterization of passive, wireless temperature sensors for harsh environment applications based on periodic structures

    Science.gov (United States)

    Delfin Manriquez, Diego I.

    Wireless temperature sensing has attained significant attention in recent years due to the increasing need to develop reliable and affordable sensing solutions for energy conversion systems and other harsh environment applications. The development of next generation sensors for energy production processing parameters, such as temperature and pressure, can result in better performance of the system. Particularly, continuous temperature monitoring in energy conversion systems can result in enhancements such as better system integrity, less pollution and higher thermal efficiencies. However, the conditions experienced in these system components hinder the performance of current solutions due to the presence of semi-conductor materials and welded joints. Additionally, the use of wired systems can result in complex wiring networks, increasing the cost of installation, maintenance and sensor replacement. Therefore, next generation sensing solutions must be developed to overcome current challenges in systems where adverse conditions are present. This research project proposes two novel passive, wireless temperature sensor designs based on concepts of guided mode resonance filters (GMRF) and metamaterials. For the GMRF, a tri-layer structure using a metallic encasing and a circular aperture grating layer was developed to have a resonance frequency of 10 GHz. While for the metamaterial-based sensor a continuation of previous work was presented by utilizing a dielectric substrate and an array of commercially available metallic washers divided in two layers. For both designs, High Frequency Structure Simulator (HFSS) from ANSYSRTM was employed to assess the feasibility of the sensor as well as to optimize the geometry and guide the fabrication process. A systematic approach consisting of evaluating the unit cell, then assessing the number of periods needed, and finally characterizing the response of the final sensor was followed for each case. After the modeling process was

  17. Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China

    International Nuclear Information System (INIS)

    Pan, Tao; Wu, Shaohong; Dai, Erfu; Liu, Yujie

    2013-01-01

    Highlights: ► Bristow–Campbell model was calibrated and validated over the Tibetan Plateau. ► Develop a simple method to rasterise the daily global solar radiation and get gridded information. ► The daily global solar radiation spatial distribution over the Tibetan Plateau was estimated. - Abstract: Daily global solar radiation is fundamental to most ecological and biophysical processes because it plays a key role in the local and global energy budget. However, gridded information about the spatial distribution of solar radiation is limited. This study aims to parameterise the Bristow–Campbell model for the daily global solar radiation estimation in the Tibetan Plateau and propose a method to rasterise the daily global solar radiation. Observed daily solar radiation and diurnal temperature data from eleven stations over the Tibetan Plateau during 1971–2010 were used to calibrate and validate the Bristow–Campbell radiation model. The extra-terrestrial radiation and clear sky atmospheric transmittance were calculated on a Geographic Information System (GIS) platform. Results show that the Bristow–Campbell model performs well after adjusting the parameters, the average Pearson’s correlation coefficients (r), Nash–Sutcliffe equation (NSE), ratio of the root mean square error to the standard deviation of measured data (RSR), and root mean-square error (RMSE) of 11 stations are 0.85, 2.81 MJ m −2 day −1 , 0.3 and 0.77 respectively. Gridded maximum and minimum average temperature data were obtained using Parameter-elevation Regressions on Independent Slopes Model (PRISM) and validated by the Chinese Ecosystem Research Network (CERN) stations’ data. The spatial daily global solar radiation distribution pattern was estimated and analysed by combining the solar radiation model (Bristow–Campbell model) and meteorological interpolation model (PRISM). Based on the overall results, it can be concluded that a calibrated Bristow–Campbell performs well

  18. Dependence of trapped-flux-induced surface resistance of a large-grain Nb superconducting radio-frequency cavity on spatial temperature gradient during cooldown through Tc

    Science.gov (United States)

    Huang, Shichun; Kubo, Takayuki; Geng, R. L.

    2016-08-01

    Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80 K /m are studied under various applied magnetic fields from 5 to 20 μ T . We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results support and enforce the previous studies. We then analyze all rf measurement results obtained under different applied magnetic fields together by plotting the trapped-flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped-flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. The sensitivity rfl of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of d T /d s dependence of Rfl/Ba are also discussed.

  19. One- and two-dimensional gap solitons and dynamics in the PT-symmetric lattice potential and spatially-periodic momentum modulation

    Science.gov (United States)

    Chen, Yong; Yan, Zhenya; Li, Xin

    2018-02-01

    The influence of spatially-periodic momentum modulation on beam dynamics in parity-time (PT) symmetric optical lattice is systematically investigated in the one- and two-dimensional nonlinear Schrödinger equations. In the linear regime, we demonstrate that the momentum modulation can alter the first and second PT thresholds of the classical lattice, periodically or regularly change the shapes of the band structure, rotate and split the diffraction patterns of beams leading to multiple refraction and emissions. In the Kerr-nonlinear regime for one-dimension (1D) case, a large family of fundamental solitons within the semi-infinite gap can be found to be stable, even beyond the second PT threshold; it is shown that the momentum modulation can shrink the existing range of fundamental solitons and not change their stability. For two-dimension (2D) case, most solitons with higher intensities are relatively unstable in their existing regions which are narrower than those in 1D case, but we also find stable fundamental solitons corroborated by linear stability analysis and direct beam propagation. More importantly, the momentum modulation can also utterly change the direction of the transverse power flow and control the energy exchange among gain or loss regions.

  20. Effect of temperature on terahertz photonic and omnidirectional band gaps in one-dimensional quasi-periodic photonic crystals composed of semiconductor InSb.

    Science.gov (United States)

    Singh, Bipin K; Pandey, Praveen C

    2016-07-20

    Engineering of thermally tunable terahertz photonic and omnidirectional bandgaps has been demonstrated theoretically in one-dimensional quasi-periodic photonic crystals (PCs) containing semiconductor and dielectric materials. The considered quasi-periodic structures are taken in the form of Fibonacci, Thue-Morse, and double periodic sequences. We have shown that the photonic and omnidirectional bandgaps in the quasi-periodic structures with semiconductor constituents are strongly depend on the temperature, thickness of the constituted semiconductor and dielectric material layers, and generations of the quasi-periodic sequences. It has been found that the number of photonic bandgaps increases with layer thickness and generation of the quasi-periodic sequences. Omnidirectional bandgaps in the structures have also been obtained. Results show that the bandwidths of photonic and omnidirectional bandgaps are tunable by changing the temperature and lattice parameters of the structures. The generation of quasi-periodic sequences can also change the properties of photonic and omnidirectional bandgaps remarkably. The frequency range of the photonic and omnidirectional bandgaps can be tuned by the change of temperature and layer thickness of the considered quasi-periodic structures. This work will be useful to design tunable terahertz PC devices.

  1. Batch statistical process control of a fluid bed granulation process using in-line spatial filter velocimetry and product temperature measurements.

    Science.gov (United States)

    Burggraeve, A; Van den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T

    2011-04-18

    Fluid bed granulation is a batch process, which is characterized by the processing of raw materials for a predefined period of time, consisting of a fixed spraying phase and a subsequent drying period. The present study shows the multivariate statistical modeling and control of a fluid bed granulation process based on in-line particle size distribution (PSD) measurements (using spatial filter velocimetry) combined with continuous product temperature registration using a partial least squares (PLS) approach. Via the continuous in-line monitoring of the PSD and product temperature during granulation of various reference batches, a statistical batch model was developed allowing the real-time evaluation and acceptance or rejection of future batches. Continuously monitored PSD and product temperature process data of 10 reference batches (X-data) were used to develop a reference batch PLS model, regressing the X-data versus the batch process time (Y-data). Two PLS components captured 98.8% of the variation in the X-data block. Score control charts in which the average batch trajectory and upper and lower control limits are displayed were developed. Next, these control charts were used to monitor 4 new test batches in real-time and to immediately detect any deviations from the expected batch trajectory. By real-time evaluation of new batches using the developed control charts and by computation of contribution plots of deviating process behavior at a certain time point, batch losses or reprocessing can be prevented. Immediately after batch completion, all PSD and product temperature information (i.e., a batch progress fingerprint) was used to estimate some granule properties (density and flowability) at an early stage, which can improve batch release time. Individual PLS models relating the computed scores (X) of the reference PLS model (based on the 10 reference batches) and the density, respectively, flowabililty as Y-matrix, were developed. The scores of the 4 test

  2. Characterizing Temporal and Spatial Changes in Land Surface Temperature across the Amazon Basin using Thermal and Infrared Satellite Data

    Science.gov (United States)

    Cak, A. D.

    2017-12-01

    The Amazon Basin has faced innumerable pressures in recent years, including logging, mining and resource extraction, agricultural expansion, road building, and urbanization. These changes have drastically altered the landscape, transforming a predominantly forested environment into a mosaic of different types of land cover. The resulting fragmentation has caused dramatic and negative impacts on its structure and function, including on biodiversity and the transfer of water and energy to and from soil, vegetation, and the atmosphere (e.g., evapotranspiration). Because evapotranspiration from forested areas, which is affected by factors including temperature and water availability, plays a significant role in water dynamics in the Amazon Basin, measuring land surface temperature (LST) across the region can provide a dynamic assessment of hydrological, vegetation, and land use and land cover changes. It can also help to identify widespread urban development, which often has a higher LST signal relative to surrounding vegetation. Here, we discuss results from work to measure and identify drivers of change in LST across the entire Amazon Basin through analysis of past and current thermal and infrared satellite imagery. We leverage cloud computing resources in new ways to allow for more efficient analysis of imagery over the Amazon Basin across multiple years and multiple sensors. We also assess potential drivers of change in LST using spatial and multivariate statistical analyses with additional data sources of land cover, urban development, and demographics.

  3. Spatial interpolation of hourly precipitation and dew point temperature for the identification of precipitation phase and hydrologic response in a mountainous catchment

    Science.gov (United States)

    Garen, D. C.; Kahl, A.; Marks, D. G.; Winstral, A. H.

    2012-12-01

    In mountainous catchments, it is well known that meteorological inputs, such as precipitation, air temperature, humidity, etc. vary greatly with elevation, spatial location, and time. Understanding and monitoring catchment inputs is necessary in characterizing and predicting hydrologic response to these inputs. This is true all of the time, but it is the most dramatically critical during large storms, when the input to the stream system due to rain and snowmelt creates the potential for flooding. Besides such crisis events, however, proper estimation of catchment inputs and their spatial distribution is also needed in more prosaic but no less important water and related resource management activities. The first objective of this study is to apply a geostatistical spatial interpolation technique (elevationally detrended kriging) to precipitation and dew point temperature on an hourly basis and explore its characteristics, accuracy, and other issues. The second objective is to use these spatial fields to determine precipitation phase (rain or snow) during a large, dynamic winter storm. The catchment studied is the data-rich Reynolds Creek Experimental Watershed near Boise, Idaho. As part of this analysis, precipitation-elevation lapse rates are examined for spatial and temporal consistency. A clear dependence of lapse rate on precipitation amount exists. Certain stations, however, are outliers from these relationships, showing that significant local effects can be present and raising the question of whether such stations should be used for spatial interpolation. Experiments with selecting subsets of stations demonstrate the importance of elevation range and spatial placement on the interpolated fields. Hourly spatial fields of precipitation and dew point temperature are used to distinguish precipitation phase during a large rain-on-snow storm in December 2005. This application demonstrates the feasibility of producing hourly spatial fields and the importance of doing

  4. Spatial characteristics of groundwater temperature in the Ishikari Lowland, Hokkaido, northern Japan: analytical and numerical applications

    Science.gov (United States)

    Dim, J. R.; Sakura, Y.; Fukami, H.; Miyakoshi, A.

    2002-03-01

    In porous sediments of the Ishikari Lowland, there is a gradual increase in the background geothermal gradient from the Ishikari River (3-4 °C 100 m-1) to the southwest highland area (10 °C 100 m-1). However, the geothermal gradient at shallow depths differs in detail from the background distribution. In spite of convective heat-flow loss generally associated with groundwater flow, heat flow remains high (100 mW m-2) in the recharge area in the southwestern part of the Ishikari basin, which is part of an active geothermal field. In the northeastern part of the lowland, heat flow locally reaches 140 mW m-2, probably due to upward water flow from the deep geothermal field. Between the two areas the heat flow is much lower. To examine the role of hydraulic flow in the distortion of the isotherms in this area, thermal gradient vs. temperature analyses were made, and they helped to define the major components of the groundwater-flow system of the region. Two-dimensional simulation modeling aided in understanding not only the cause of horizontal heat-flow variations in this field but also the contrast between thermal properties of shallow and deep groundwater reservoirs. Résumé. Dans les sédiments poreux des basses terres d'Ishikari, on observe une augmentation graduelle du gradient géothermal général depuis la rivière Ishikari (3-4 °C 100 m-1) vers la zone élevée située au sud-ouest (10 °C 100 m-1). Toutefois, le gradient géothermal aux faibles profondeurs diffère dans le détail de la distribution générale. Malgré la perte de flux de chaleur par convection, généralement associée aux écoulements souterrains, le flux de chaleur reste élevé (100 mW m-2) dans la zone de recharge de la partie sud-ouest du bassin de l'Ishikari, qui appartient à un champ géothermal actif. Dans la partie nord-est des basses terres, le flux de chaleur atteint localement 140 mW m-2, probablement à cause d'un écoulement souterrain ascendant depuis le champ g

  5. Spatial-temporal changes of maximum and minimum temperatures in the Wei River Basin, China: Changing patterns, causes and implications

    Science.gov (United States)

    Liu, Saiyan; Huang, Shengzhi; Xie, Yangyang; Huang, Qiang; Leng, Guoyong; Hou, Beibei; Zhang, Ying; Wei, Xiu

    2018-05-01

    Due to the important role of temperature in the global climate system and energy cycles, it is important to investigate the spatial-temporal change patterns, causes and implications of annual maximum (Tmax) and minimum (Tmin) temperatures. In this study, the Cloud model were adopted to fully and accurately analyze the changing patterns of annual Tmax and Tmin from 1958 to 2008 by quantifying their mean, uniformity, and stability in the Wei River Basin (WRB), a typical arid and semi-arid region in China. Additionally, the cross wavelet analysis was applied to explore the correlations among annual Tmax and Tmin and the yearly sunspots number, Arctic Oscillation, Pacific Decadal Oscillation, and soil moisture with an aim to determine possible causes of annual Tmax and Tmin variations. Furthermore, temperature-related impacts on vegetation cover and precipitation extremes were also examined. Results indicated that: (1) the WRB is characterized by increasing trends in annual Tmax and Tmin, with a more evident increasing trend in annual Tmin, which has a higher dispersion degree and is less uniform and stable than annual Tmax; (2) the asymmetric variations of Tmax and Tmin can be generally explained by the stronger effects of solar activity (primarily), large-scale atmospheric circulation patterns, and soil moisture on annual Tmin than on annual Tmax; and (3) increasing annual Tmax and Tmin have exerted strong influences on local precipitation extremes, in terms of their duration, intensity, and frequency in the WRB. This study presents new analyses of Tmax and Tmin in the WRB, and the findings may help guide regional agricultural production and water resources management.

  6. Characterizing the Diurnal Cycle of Land Surface Temperature and Evapotranspiration at High Spatial Resolution Using Thermal Observations from sUAS.

    Science.gov (United States)

    Dutta, D.; Drewry, D.; Johnson, W. R.

    2017-12-01

    The surface temperature of plant canopies is an important indicator of the stomatal regulation of plant water use and the associated water flux from plants to atmosphere (evapotranspiration (ET)). Remotely sensed thermal observations using compact, low-cost, lightweight sensors from small unmanned aerial systems (sUAS) have the potential to provide surface temperature (ST) and ET estimates at unprecedented spatial and temporal resolutions, allowing us to characterize the intra-field diurnal variations in canopy ST and ET for a variety of vegetation systems. However, major challenges exist for obtaining accurate surface temperature estimates from low-cost uncooled microbolometer-type sensors. Here we describe the development of calibration methods using thermal chamber experiments, taking into account the ambient optics and sensor temperatures, and applying simple models of spatial non-uniformity correction to the sensor focal-plane-array. We present a framework that can be used to derive accurate surface temperatures using radiometric observations from low-cost sensors, and demonstrate this framework using a sUAS-mounted sensor across a diverse set of calibration and vegetation targets. Further, we demonstrate the use of the Surface Temperature Initiated Closure (STIC) model for computing spatially explicit, high spatial resolution ET estimates across several well-monitored agricultural systems, as driven by sUAS acquired surface temperatures. STIC provides a physically-based surface energy balance framework for the simultaneous retrieval of the surface and atmospheric vapor conductances and surface energy fluxes, by physically integrating radiometric surface temperature information into the Penman-Monteith equation. Results of our analysis over agricultural systems in Ames, IA and Davis, CA demonstrate the power of this approach for quantifying the intra-field spatial variability in the diurnal cycle of plant water use at sub-meter resolutions.

  7. Spatial distribution of unspecified chronic kidney disease in El Salvador by crop area cultivated and ambient temperature.

    Science.gov (United States)

    VanDervort, Darcy R; López, Dina L; Orantes, Carlos M; Rodríguez, David S

    2014-04-01

    Chronic kidney disease of unknown etiology is occurring in various geographic areas worldwide. Cases lack typical risk factors associated with chronic kidney disease, such as diabetes and hypertension. It is epidemic in El Salvador, Central America, where it is diagnosed with increasing frequency in young, otherwise-healthy male farmworkers. Suspected causes include agrochemical use (especially in sugarcane fields), physical heat stress, and heavy metal exposure. To evaluate the geographic relationship between unspecified chronic kidney disease (unCKD) and nondiabetic chronic renal failure (ndESRD) hospital admissions in El Salvador with the proximity to cultivated crops and ambient temperatures. Data on unCKD and ndESRD were compared with environmental variables, crop area cultivated (indicator of agrochemical use) and high ambient temperatures. Using geographically weighted regression analysis, two model sets were created using reported municipal hospital admission rates are per thousand population for unCKD 2006-2010 and rates of ndESRD 2005-2010 [corrected]. These were assessed against local percent of land cultivated by crop (sugarcane, coffee, corn, cotton, sorghum, and beans) and mean maximum ambient temperature, with Moran's indices determining data clustering. Two-dimensional geographic models illustrated parameter spatial distribution. Bivariate geographically weighted regressions showed statistically significant correlations between percent area of sugarcane, corn, cotton, coffee, and bean cultivation, as well as mean maximum ambient temperature with both unCKD and ndESRD hospital admission rates. Percent area of sugarcane cultivation had greatest statistical weight (p ≤ 0.001; Rp2 = 0.77 for unCKD). The most statistically significant multivariate geographically weighted regression model for unCKD included percent area of sugarcane, cotton and corn cultivation (p ≤ 0.001; Rp2 = 0.80), while, for ndESRD, it included the percent area of sugarcane, corn

  8. Detection of Variations in Air Temperature at Different Time Scales During the Period 1889-1998 at Firenze, Italy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P.V. [Central Research Institute for Dryland Agriculture, Santoshnagar, Saidabad, Hyderabad, 500059, Andhra Pradesh (India); Bindi, M. [DISAT-UNIFI, P.le delle Cascine 18, 50144, Firenze (Italy); Crisci, A. [LaMMA-Laboratorio per la Meteorologia, Climatologia e la Modellistica Ambientale, Campi Bisenzio (Italy); Maracchi, G. [IATA-CNR, P.le delle Cascine 18, 50144 Firenze (Italy)

    2005-09-01

    In an attempt to contribute to studies on global climatic change, 110 years of temperature data for Firenze, Italy, were analysed. Means and trends of annual and monthly temperatures (minimum, maximum and average) were analysed at three different time scales: short (20 years), medium (36-38 years) and long (55 years). Comparative changes in extreme events viz. frosts in the first and second parts of the 20th century were also analysed. At short time scales, climatic change was found in minimum and average temperatures but not in maximum temperatures. At all three time scales, the annual means of minimum, maximum and average temperatures were significantly warmer in the last part than in the early part of the 20th century. The monthly mean temperatures showed significant warming of winter months. Over the last four decades, minimum, maximum and average temperatures had warmed by 0.4, 0.43 and 0.4C per decade, respectively, and if this trend continues, they will be warmer by 4C by the end of the 21st century. The significant decline in days with subzero temperatures and frosts in the last half of the 20th century, further substantiated the occurrence of climate change at this site.

  9. Comparison Spatial Pattern of Land Surface Temperature with Mono Window Algorithm and Split Window Algorithm: A Case Study in South Tangerang, Indonesia

    Science.gov (United States)

    Bunai, Tasya; Rokhmatuloh; Wibowo, Adi

    2018-05-01

    In this paper, two methods to retrieve the Land Surface Temperature (LST) from thermal infrared data supplied by band 10 and 11 of the Thermal Infrared Sensor (TIRS) onboard the Landsat 8 is compared. The first is mono window algorithm developed by Qin et al. and the second is split window algorithm by Rozenstein et al. The purpose of this study is to perform the spatial distribution of land surface temperature, as well as to determine more accurate algorithm for retrieving land surface temperature by calculated root mean square error (RMSE). Finally, we present comparison the spatial distribution of land surface temperature by both of algorithm, and more accurate algorithm is split window algorithm refers to the root mean square error (RMSE) is 7.69° C.

  10. Investigating spatial variability of vertical water fluxes through the streambed in distinctive stream morphologies using temperature and head data

    Science.gov (United States)

    Wang, Liping; Jiang, Weiwei; Song, Jinxi; Dou, Xinyi; Guo, Hongtao; Xu, Shaofeng; Zhang, Guotao; Wen, Ming; Long, Yongqing; Li, Qi

    2017-08-01

    Investigating the interaction of groundwater and surface water is key to understanding the hyporheic processes. The vertical water fluxes through a streambed were determined using Darcian flux calculations and vertical sediment temperature profiles to assess the pattern and magnitude of groundwater/surface-water interaction in Beiluo River, China. Field measurements were taken in January 2015 at three different stream morphologies including a meander bend, an anabranching channel and a straight stream channel. Despite the differences of flux direction and magnitude, flux directions based on vertical temperature profiles are in good agreement with results from Darcian flux calculations at the anabranching channel, and the Kruskal-Wallis tests show no significant differences between the estimated upward fluxes based on the two methods at each site. Also, the upward fluxes based on the two methods show similar spatial distributions on the streambed, indicating (1) that higher water fluxes at the meander bend occur from the center of the channel towards the erosional bank, (2) that water fluxes at the anabranching channel are higher near the erosional bank and in the center of the channel, and (3) that in the straight channel, higher water fluxes appear from the center of the channel towards the depositional bank. It is noted that higher fluxes generally occur at certain locations with higher streambed vertical hydraulic conductivity ( K v) or where a higher vertical hydraulic gradient is observed. Moreover, differences of grain size, induced by stream morphology and contrasting erosional and depositional conditions, have significant effects on streambed K v and water fluxes.

  11. Evaluation of in-core neutron flux and temperature field measurements during the second period of power commissioning of the KS-150 reactor

    International Nuclear Information System (INIS)

    Rana, S.B.; Pecho, J.

    1975-01-01

    The in-core flux mapping system in the KS-150 reactor using mapping fuel elements with self-powered detectors is described. Experimental data evaluation using the Fourier analysis and determination of important operation parameters from the detectors and temperature field distribution using thermocouples for measuring coolant outlet temperatures and fuel temperatures are given. The DPZ-1 detectors used, mapping fuel elements and the method of signal registration are described. The results of operation of mapping fuel elements during the 2nd period of the KS-150 reactor commissioning are given. (author)

  12. Use of first-order diffraction wavelengths corresponding to dual-grating periodicities in a single fibre Bragg grating for simultaneous temperature and strain measurement

    International Nuclear Information System (INIS)

    Yam, Sui P; Brodzeli, Zourab; Rollinson, Claire M; Baxter, Greg W; Collins, Stephen F; Wade, Scott A

    2009-01-01

    A fibre Bragg grating (FBG) sensor, fabricated using a phase mask with 536 nm uniform pitch, for simultaneous temperature and strain measurement is presented. Two peaks/dips occur, at 785 and 1552 nm, due to reflection/transmission at the Bragg wavelength and at twice the Bragg wavelength, and arising primarily from FBG periodicities associated with half the phase mask periodicity and the phase mask periodicity, respectively. This grating was simple to fabricate and by having greater reflectivity at 785 nm, compared with 1552 nm, it is better suited for long-distance operation compared with similar schemes where the greater fibre attenuation at 785 nm is a significant limitation

  13. Analysis of the spatial and temporal accuracy of heating in the prostate gland using transurethral ultrasound therapy and active MR temperature feedback

    International Nuclear Information System (INIS)

    Chopra, Rajiv; Tang, Kee; Burtnyk, Mathieu; Boyes, Aaron; Bronskill, Michael; Sugar, Linda; Appu, Sree; Klotz, Laurence

    2009-01-01

    A new MRI-guided therapy is being developed as a minimally invasive treatment for localized prostate cancer utilizing high-intensity ultrasound energy to generate a precise region of thermal coagulation within the prostate gland. The purpose of this study was to evaluate in vivo the capability to produce a spatial heating pattern in the prostate that accurately matched the shape of a target region using transurethral ultrasound heating and active MR temperature feedback. Experiments were performed in a canine model (n = 9) in a 1.5 T MR imager using a prototype device comprising a single planar transducer operated under rotational control. The spatial temperature distribution, measured every 5 s with MR thermometry, was used to adjust the acoustic power and rotation rate in order to achieve a temperature of 55 0 C along the outer boundary of the target region. The results demonstrated the capability to produce accurate spatial heating patterns within the prostate gland. An average temperature of 56.2 ± 0.6 0 C was measured along the outer boundary of the target region across all experiments in this study. The average spatial error between the target boundary and the 55 0 C isotherm was 0.8 ± 0.7 mm (-0.2 to 3.2 mm), and the overall treatment time was ≤20 min for all experiments. Excellent spatial agreement was observed between the temperature information acquired with MRI and the pattern of thermal damage measured on H and E-stained tissue sections. This study demonstrates the benefit of adaptive energy delivery using active MR temperature feedback, and an excellent capability to treat precise regions within the prostate gland with this technology.

  14. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    Science.gov (United States)

    Reichstein, Markus; Rey, Ana; Freibauer, Annette; Tenhunen, John; Valentini, Riccardo; Banza, Joao; Casals, Pere; Cheng, Yufu; Grünzweig, Jose M.; Irvine, James; Joffre, Richard; Law, Beverly E.; Loustau, Denis; Miglietta, Franco; Oechel, Walter; Ourcival, Jean-Marc; Pereira, Joao S.; Peressotti, Alessandro; Ponti, Francesca; Qi, Ye; Rambal, Serge; Rayment, Mark; Romanya, Joan; Rossi, Federica; Tedeschi, Vanessa; Tirone, Giampiero; Xu, Ming; Yakir, Dan

    2003-12-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, interannual and spatial variability of soil respiration as affected by water availability, temperature, and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g., leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical nonlinear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content, and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and intersite variability of soil respiration with a mean absolute error of 0.82 μmol m-2 s-1. The parameterized model exhibits the following principal properties: (1) At a relative amount of upper-layer soil water of 16% of field capacity, half-maximal soil respiration rates are reached. (2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. (3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly timescale, we employed the approach by [2002] that used monthly precipitation and air temperature to globally predict soil respiration (T&P model). While this model was able to

  15. Modelling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices

    Science.gov (United States)

    Reichstein, M.; Rey, A.; Freibauer, A.; Tenhunen, J.; Valentini, R.; Soil Respiration Synthesis Team

    2003-04-01

    Field-chamber measurements of soil respiration from 17 different forest and shrubland sites in Europe and North America were summarized and analyzed with the goal to develop a model describing seasonal, inter-annual and spatial variability of soil respiration as affected by water availability, temperature and site properties. The analysis was performed at a daily and at a monthly time step. With the daily time step, the relative soil water content in the upper soil layer expressed as a fraction of field capacity was a good predictor of soil respiration at all sites. Among the site variables tested, those related to site productivity (e.g. leaf area index) correlated significantly with soil respiration, while carbon pool variables like standing biomass or the litter and soil carbon stocks did not show a clear relationship with soil respiration. Furthermore, it was evidenced that the effect of precipitation on soil respiration stretched beyond its direct effect via soil moisture. A general statistical non-linear regression model was developed to describe soil respiration as dependent on soil temperature, soil water content and site-specific maximum leaf area index. The model explained nearly two thirds of the temporal and inter-site variability of soil respiration with a mean absolute error of 0.82 µmol m-2 s-1. The parameterised model exhibits the following principal properties: 1) At a relative amount of upper-layer soil water of 16% of field capacity half-maximal soil respiration rates are reached. 2) The apparent temperature sensitivity of soil respiration measured as Q10 varies between 1 and 5 depending on soil temperature and water content. 3) Soil respiration under reference moisture and temperature conditions is linearly related to maximum site leaf area index. At a monthly time-scale we employed the approach by Raich et al. (2002, Global Change Biol. 8, 800-812) that used monthly precipitation and air temperature to globally predict soil respiration (T

  16. Sediment-palaeosol successions in Calabria and Sardinia suggest spatially differentiated palaeo-vegetation patterns in southern Italy during the Last Glacial period

    Science.gov (United States)

    Sauer, Daniela; Zucca, Claudio; Al-Sharif, Riyad; Zwanzig, Lisa; Madrau, Salvatore; Andreucci, Stefano; Pascucci, Vincenzo; Kadereit, Annette; Scarciglia, Fabio; Brückner, Helmut

    2016-04-01

    Several lakes on the southern Italian peninsula provide valuable palaeoenvironmental archives of the Last Glacial period. These archives include, e.g., the long high-resolution record from varved lake sediments of Lago Grande di Monticchio, the bigger one of two maar lakes situated on top of Mt. Vulture. Its pollen record indicates (1) temperate deciduous forest during MIS5.2-MIS5.1 (St. Germain 2); (2) frequent vegetation fluctuations, then Artemisia steppe during MIS5.1-MIS4; (3) alternations between open steppe (stadials) and wooded steppe (interstadials) during MIS3; and (4) open steppe during MIS2 (Last Glacial Maximum). However, only few palaeosol records of this period have been reported from southern Italy in the literature so far. Such records would allow for gaining insight also into spatial patterns of the vegetation cover during this period that should have formed, e.g., according to relief, elevation, and continentality gradient (related to the much lower coastline during the last glacial period). So far, we have studied three sediment-palaeosol successions in southern Italy, two in the Calabria region, and one in north-western Sardinia. All of them have developed in alluvial fan deposits resting on littoral sediments of the Last Interglacial period (MIS 5). The southernmost succession studied is located near Lazzaro (south of Reggio di Calabria). It is exposed in an alluvial fan overlying the MIS5.5 terrace. Due to strong tectonic uplift (1.3 m ka-1) the alluvial fan has been dissected by the same creek which previously had built it up. Therefore, its internal structure is exposed, exhibiting a detailed sediment-palaeosol sequence. The palaeosols are mainly characterized by accumulation of soil organic matter (SOM), bioturbation and secondary carbonates. They represent Chernozem- and Phaeozem-like soils that most likely formed under steppe to forest steppe. SOM of the two uppermost Lazzaro palaeosols was 14C-dated to 26.8-28.8 ka cal BP and 28

  17. Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: A multi-model comparison

    Science.gov (United States)

    Tucker, Colin; Reed, Sasha C.

    2016-01-01

    Arid and semiarid ecosystems (drylands) may dominate the trajectory of biosphere-to-atmosphere carbon (C) flux over the coming century. Accordingly, understanding dryland CO2 efflux controls is important for understanding C cycling at the global-scale: key unknowns regarding how temperature and moisture interact to regulate dryland C cycling remain. Further, the patchiness of dryland vegetation can create ‘islands of fertility’, with spatially heterogeneous rates of soil respiration (Rs). At our study site in southeastern Utah, USA we added or removed litter (0 to 650% of control) in paired plots that were either associated with a shrub or with interspaces between vascular plants. We measured Rs, soil temperature, and water content (θ) on eight sampling dates between October 2013 and November 2014. Rs was highest following monsoon rains in late summer when soil temperature was ~30°C. During mid-summer, Rs was low, associated with high soil temperatures (>40°C), resulting in an apparent negative temperature sensitivity of Rs at high temperatures, and positive temperature sensitivity at low-moderate temperatures. We used Bayesian statistical methods to compare multiple competing models capturing a wide range of hypothesized relationships between temperature, moisture, and Rs. The best fit model indicates apparent negative temperature sensitivity of soil respiration at high temperatures reflects the control of soil moisture – not high temperatures – in limiting Rs. The modeled Q10 ranged from 2.7 at 5°C to 1.4 at 45°C. Litter addition had no effect on temperature sensitivity or reference respiration (Rref = Rs at 20°C and optimum moisture) beneath shrubs, and little effect on Rref in interspaces, yet Rref was 1.5 times higher beneath shrubs than in interspaces. Together, these results suggest reduced Rs often observed at high temperatures in drylands is dominated by the control of moisture, and that variable litter inputs – at least over the short

  18. Evaluating the coefficient of thermal expansion using time periods of minimal thermal gradient for a temperature driven structural health monitoring

    Science.gov (United States)

    Reilly, J.; Abdel-Jaber, H.; Yarnold, M.; Glisic, B.

    2017-04-01

    Structural Health Monitoring aims to characterize the performance of a structure from a combination of recorded sensor data and analytic techniques. Many methods are concerned with quantifying the elastic response of the structure, treating temperature changes as noise in the analysis. While these elastic profiles do demonstrate a portion of structural behavior, thermal loads on a structure can induce comparable strains to elastic loads. Understanding this relationship between the temperature of the structure and the resultant strain and displacement can provide in depth knowledge of the structural condition. A necessary parameter for this form of analysis is the Coefficient of Thermal Expansion (CTE). The CTE of a material relates the amount of expansion or contraction a material undergoes per degree change in temperature, and can be determined from temperature-strain relationship given that the thermal strain can be isolated. Many times with concrete, the actual amount of expansion with temperature in situ varies from the given values for the CTE due to thermally generated elastic strain, which complicates evaluation of the CTE. To accurately characterize the relationship between temperature and strain on a structure, the actual thermal behavior of the structure needs to be analyzed. This rate can vary for different parts of a structure, depending on boundary conditions. In a case of unrestrained structures, the strain in the structure should be linearly related to the temperature change. Thermal gradients in a structure can affect this relationship, as they induce curvature and deplanations in the cross section. This paper proposes a method that addresses these challenges in evaluating the CTE.

  19. Effects of temperature on the transmission of Yersinia Pestis by the flea, Xenopsylla Cheopis, in the late phase period.

    Science.gov (United States)

    Schotthoefer, Anna M; Bearden, Scott W; Holmes, Jennifer L; Vetter, Sara M; Montenieri, John A; Williams, Shanna K; Graham, Christine B; Woods, Michael E; Eisen, Rebecca J; Gage, Kenneth L

    2011-09-29

    Traditionally, efficient flea-borne transmission of Yersinia pestis, the causative agent of plague, was thought to be dependent on a process referred to as blockage in which biofilm-mediated growth of the bacteria physically blocks the flea gut, leading to the regurgitation of contaminated blood into the host. This process was previously shown to be temperature-regulated, with blockage failing at temperatures approaching 30°C; however, the abilities of fleas to transmit infections at different temperatures had not been adequately assessed. We infected colony-reared fleas of Xenopsylla cheopis with a wild type strain of Y. pestis and maintained them at 10, 23, 27, or 30°C. Naïve mice were exposed to groups of infected fleas beginning on day 7 post-infection (p.i.), and every 3-4 days thereafter until day 14 p.i. for fleas held at 10°C, or 28 days p.i. for fleas held at 23-30°C. Transmission was confirmed using Y. pestis-specific antigen or antibody detection assays on mouse tissues. Although no statistically significant differences in per flea transmission efficiencies were detected between 23 and 30°C, efficiencies were highest for fleas maintained at 23°C and they began to decline at 27 and 30°C by day 21 p.i. These declines coincided with declining median bacterial loads in fleas at 27 and 30°C. Survival and feeding rates of fleas also varied by temperature to suggest fleas at 27 and 30°C would be less likely to sustain transmission than fleas maintained at 23°C. Fleas held at 10°C transmitted Y. pestis infections, although flea survival was significantly reduced compared to that of uninfected fleas at this temperature. Median bacterial loads were significantly higher at 10°C than at the other temperatures. Our results suggest that temperature does not significantly effect the per flea efficiency of Y. pestis transmission by X. cheopis, but that temperature is likely to influence the dynamics of Y. pestis flea-borne transmission, perhaps by affecting

  20. Influence of temperature histories during reactor startup periods on microstructural evolution and mechanical properties of austenitic stainless steel irradiated with neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kasahara, Shigeki, E-mail: kasahara.shigeki@jaea.go.jp [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kitsunai, Yuji [Nippon Nuclear Fuel Development, 2163 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1313 (Japan); Chimi, Yasuhiro [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Chatani, Kazuhiro; Koshiishi, Masato [Nippon Nuclear Fuel Development, 2163 Narita-cho, Oarai-machi, Higashi-ibaraki-gun, Ibaraki 311-1313 (Japan); Nishiyama, Yutaka [Japan Atomic Energy Agency (JAEA), 2-4 Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2016-11-15

    This paper addresses influence of two different temperature profiles during startup periods in the Japan Materials Testing Reactor and a boiling water reactor upon microstructural evolution and mechanical properties of austenitic stainless steel irradiated with neutrons to about 1 dpa and 3 dpa. One of the temperature profiles was that the specimens experienced neutron irradiation in both reactors, under which the irradiation temperature transiently increased to 290 °C from room temperature with increasing reactor power during reactor startup periods. Another was that the specimens were pre-heated to about 150 °C prior to the irradiation to suppress the transient temperature increase. Tensile tests at 290 °C and Vickers hardness tests at room temperature were carried out, and their microstructures were observed by FEG-TEM. Difference of the temperature profiles was observed obviously in interstitial cluster formation, in particular, growth of Frank loops. Although influence of neutron irradiation involving transient temperature increase to 290 °C from room temperature on the yield strength and the Vickers hardness is buried in the trend curves of existing data, the influence was also found certainly in increment of in yield strength, existence of modest yield drop, and loss of strain hardening capacity and ductility. As a result, Frank loops, which were observed in austenitic stainless steel irradiated at doses of 1 dpa or more, seemed to have important implications regarding the interpretation of not irradiation hardening, but deformation of the austenitic stainless steel.

  1. Spatial Distribution of b-value of the Copahue volcano during 2012-2014 eruptive period: Relationship between magmatic and hydrothermal system

    Science.gov (United States)

    Lazo, Jonathan; Basualto, Daniel; Bengoa, Cintia; Cardona, Carlos; Franco, Luis; Gil-Cruz, Fernando; Hernández, Erasmo; Lara, Luis; Lundgren, Paul; Medina, Roxana; Morales, Sergio; Peña, Paola; Quijada, Jonathan; Samsonov, Sergey; San Martin, Juan; Valderrama, Oscar

    2015-04-01

    Temporal and spatial variations of b-value have been interpreted as regional stress changes on active tectonic zones or magma ascent and/or hydrothermal fluids mobilization that could affect to active volcanic arc. Increasing of fluids pressure, medium heterogeneities or temperature changes would be the cause of these variations. The Copahue volcano is a shield strato-volcano that has been edified on the western margin of the Caviahue Caldera, located in the international border between Chile and Argentina, which contain an important geothermic field and is located at a horse-tail structure of the Liquiñe-Ofqui Fault Zone. The pre-fracture nature of its basement, as well as an extensive geothermic field, would be producing very complex conditions to fluids movement that could be exploring to use the 'b' value of the recorded seismicity between 2012 and 2014. Based in the database of VT seismic events, we used 2.073 events to calculate the b-value to obtain the 2D and 3D distribution maps. Results showed two anomalous zones: the first one located 9 Km to NE of the active crater, 3-6 Km depth, with high b-values (>1.2) that is associated with a very high production rate of small earthquakes that could suggest a brittle zone, located in the active geothermal field. The second zone, showed a low b-values (~ 0.7), located to east of the volcano edifice at volcano sitting on top of a geothermal system, the b-value offers a tool to understand the distribution of the seismic sources and hence a physical constrain for the coupled magmatic/hydrothermal system.

  2. Factors affecting the thermal environment of Agassiz’s Desert Tortoise (Gopherus agassizii) cover sites in the Central Mojave Desert during periods of temperature extremes

    Science.gov (United States)

    Mack, Jeremy S.; Berry, Kristin H.; Miller, David; Carlson, Andrea S.

    2015-01-01

    Agassiz's Desert Tortoises (Gopherus agassizii) spend >95% of their lives underground in cover sites that serve as thermal buffers from temperatures, which can fluctuate >40°C on a daily and seasonal basis. We monitored temperatures at 30 active tortoise cover sites within the Soda Mountains, San Bernardino County, California, from February 2004 to September 2006. Cover sites varied in type and structural characteristics, including opening height and width, soil cover depth over the opening, aspect, tunnel length, and surficial geology. We focused our analyses on periods of extreme temperature: in summer, between July 1 and September 1, and winter, between November 1 and February 15. With the use of multivariate regression tree analyses, we found cover-site temperatures were influenced largely by tunnel length and subsequently opening width and soil cover. Linear regression models further showed that increasing tunnel length increased temperature stability and dampened seasonal temperature extremes. Climate change models predict increased warming for southwestern North America. Cover sites that buffer temperature extremes and fluctuations will become increasingly important for survival of tortoises. In planning future translocation projects and conservation efforts, decision makers should consider habitats with terrain and underlying substrate that sustain cover sites with long tunnels and expanded openings for tortoises living under temperature extremes similar to those described here or as projected in the future.

  3. Ciguatera incidence in the US Virgin Islands has not increased over a 30-year time period despite rising seawater temperatures.

    Science.gov (United States)

    Radke, Elizabeth G; Grattan, Lynn M; Cook, Robert L; Smith, Tyler B; Anderson, Donald M; Morris, J Glenn

    2013-05-01

    Ciguatera fish poisoning is the most common marine food poisoning worldwide. It has been hypothesized that increasing seawater temperature will result in increasing ciguatera incidence. In St. Thomas, US Virgin Islands, we performed an island-wide telephone survey (N = 807) and a medical record review of diagnosed ciguatera cases at the emergency department of the sole hospital and compared these data with comparable data sources collected in 1980. Annual incidence from both recent data sources remained high (12 per 1,000 among adults in the telephone survey). However, the combined data sources suggest that incidence has declined by 20% or more or remained stable over 30 years, whereas seawater temperatures were increasing. Illness was associated with lower education levels, higher levels of fish consumption, and having previous episodes of ciguatera; population shifts from 1980 to 2010 in these factors could explain an incidence decline of approximately 3 per 1,000, obscuring effects from rising seawater temperature.

  4. Effect of wound healing period and temperature, irradiation and post-irradiation storage temperature on the rot incidence of potatoes, after infection with Fasurium sulfurium

    NARCIS (Netherlands)

    Langerak, D.I.; Wolters, T.C.; Quan, V.H.; Oularbi, S.; Tayeb, Y.; Vroomen, L.H.M.

    1988-01-01

    Losses during star age in potatoes are mainly due to sprouting and rotting. It has indicated that irradiation by low dose (50 to 100 Gy) during the dormancy period is most e ffective for sprout inhibition. Some investigators, however , stated an increase of storage rot after an irradiation

  5. Spatial Patterns and Temperature Predictions of Tuna Fatty Acids: Tracing Essential Nutrients and Changes in Primary Producers.

    Directory of Open Access Journals (Sweden)

    Heidi R Pethybridge

    Full Text Available Fatty acids are among the least understood nutrients in marine environments, despite their profile as key energy components of food webs and that they are essential to all life forms. Presented here is a novel approach to predict the spatial-temporal distributions of fatty acids in marine resources using generalized additive mixed models. Fatty acid tracers (FAT of key primary producers, nutritional condition indices and concentrations of two essential long-chain (≥C20 omega-3 fatty acids (EFA measured in muscle of albacore tuna, Thunnus alalunga, sampled in the south-west Pacific Ocean were response variables. Predictive variables were: location, time, sea surface temperature (SST and chlorophyll-a (Chla, and phytoplankton biomass at time of catch and curved fork length. The best model fit for all fatty acid parameters included fish length and SST. The first oceanographic contour maps of EFA and FAT (FATscapes were produced and demonstrated clear geographical gradients in the study region. Predicted changes in all fatty acid parameters reflected shifts in the size-structure of dominant primary producers. Model projections show that the supply and availability of EFA are likely to be negatively affected by increases in SST especially in temperate waters where a 12% reduction in both total fatty acid content and EFA proportions are predicted. Such changes will have large implications for the availability of energy and associated health benefits to high-order consumers. Results convey new concerns on impacts of projected climate change on fish-derived EFA in marine systems.

  6. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    Science.gov (United States)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  7. Molecular Dynamics Simulations of a Cyclic DP-240 Amylose Fragment in a Periodic Cell: Glass Transition Temperature and Water Diffusion

    Science.gov (United States)

    Molecular dynamics simulations using AMB06C, an in-house carbohydrate force field, (NPT ensembles, 1atm) were carried out on a periodic cell that contained a cyclic-DP-240 amylose fragment and TIP3P water molecules. Molecular conformation and movement of the amylose fragment and water molecules at ...

  8. The effect of temperature and the control rod position on the spatial neutron flux distribution in the Syrian Miniature Neutron Source Reactor

    International Nuclear Information System (INIS)

    Khattab, K.; Omar, H.; Ghazi, N.

    2007-01-01

    The effect of water and fuel temperature increase and changes in the control rod positions on the spatial neutron flux distribution in the Syrian Miniature Neutron Source Reactor (MNSR) is discussed. The cross sections of all the reactor components at different temperatures are generated using the WIMSD4 code. These group constants are used then in the CITATION code to calculate the special neutron flux distribution using four energy groups. This work shows that water and fuel temperature increase in the reactor during the reactor daily operating time does not affect the spatial neutron flux distribution in the reactor. Changing the control rod position does not affect as well the spatial neutron flux distribution except in the region around the control rod position. This stability in the spatial neutron flux distribution, especially in the inner and outer irradiation sites, makes MNSR as a good tool for the neutron activation analysis (NAA) technique and production of radioisotopes with medium or short half lives during the reactor daily operating time. (author)

  9. Spatial and temporal variations of diffuse CO_{2} degassing at the Tenerife North-South Rift Zone (NSRZ) volcano (Canary Islands) during the period 2002-2016

    Science.gov (United States)

    Rodríguez, Fátima; McCollum, John J. K.; Orland, Elijah D. M.; Barrancos, José; Padilla, Germán D.; Calvo, David; Amonte, Cecilia; Pérez, Nemesio M.

    2017-04-01

    Subaerial volcanic activity on Tenerife (2034 km2), the largest island of the Canary archipelago, started 14 My ago and 4 volcanic eruptions have occurred in historical times during the last 300 years. The main volcano-structural and geomorphological features of Tenerife are (i) the central volcanic complex, nowadays formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and partially filled by post-caldera volcanic products and (ii) the triple junction-shaped rift system, formed by numerous aligned monogenetic cones. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 My (Dóniz et al., 2008). The North-South Rift Zone (NSRZ) of Tenerife comprises at least 139 cones. The main structural characteristic of the NSRZ of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Since there are currently no visible gas emissions at the NSRZ, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. Five diffuse CO2 degassing surveys have been carried out at NSRZ of Tenerife since 2002, the last one in the summer period of 2016, to evaluate the spatio-temporal variations of CO2 degassing as a volcanic surveillance tool for the NSRZ of Tenerife. At each survey, around 600 sampling sites were selected to cover homogenously the study area (325 km2) using the accumulation chamber method. The diffuse CO2 output ranged from 78 to 707 t/d in the study period, with the highest emission rate measured in 2015. The backgroung emission rate was estimated in 300 t/d. The last results the soil CO2 efflux values ranged from non-detectable up to 24.7 g m-2 d-1. The spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, showed the highest CO2 values as multiple

  10. Spatial and temporal variations of diffuse CO_{2} degassing at the N-S volcanic rift-zone of Tenerife (Canary Islands, Spain) during 2002-2015 period

    Science.gov (United States)

    Alonso, Mar; Ingman, Dylan; Alexander, Scott; Barrancos, José; Rodríguez, Fátima; Melián, Gladys; Pérez, Nemesio M.

    2016-04-01

    Tenerife is the largest of the Canary Islands and, together with Gran Canaria Island, is the only one with a central volcanic complex that started to grow at about 3.5 Ma. Nowadays the central complex is formed by Las Cañadas caldera, a volcanic depression measuring 16×9 km that resulted from multiple vertical collapses and was partially filled by post-caldera volcanic products. Up to 297 mafic monogenetic cones have been recognized on Tenerife, and they represent the most common eruptive activity occurring on the island during the last 1 Ma (Dóniz et al., 2008). Most of the monogenetic cones are aligned following a triple junction-shaped rift system, as result of inflation produced by the concentration of emission vents and dykes in bands at 120o to one another as a result of minimum stress fracturing of the crust by a mantle upwelling. The main structural characteristic of the southern volcanic rift (N-S) of the island is an apparent absence of a distinct ridge, and a fan shaped distribution of monogenetic cones. Four main volcanic successions in the southern volcanic rift zone of Tenerife, temporally separated by longer periods (˜70 - 250 ka) without volcanic activity, have been identified (Kröchert and Buchner, 2008). Since there are currently no visible gas emissions at the N-S rift, diffuse degassing surveys have become an important geochemical tool for the surveillance of this volcanic system. We report here the last results of diffuse CO2 efflux survey at the N-S rift of Tenerife, performed using the accumulation chamber method in the summer period of 2015. The objectives of the surveys were: (i) to constrain the total CO2 output from the studied area and (ii) to evaluate occasional CO2 efflux surveys as a volcanic surveillance tool for the N-S rift of Tenerife. Soil CO2 efflux values ranged from non-detectable up to 31.7 g m-2 d-1. A spatial distribution map, constructed following the sequential Gaussian simulation (sGs) procedure, did not show an

  11. Sea surface temperatures and seagrass mortality in Florida Bay: Spatial and temporal patterns discerned from MODIS and AVHRR data

    DEFF Research Database (Denmark)

    Carlson, Daniel Frazier; Yarbro, Laura; Scolaro, Sheila

    2018-01-01

    spatial coverage to include the entire Florida Bay ecosystem and to extend the record length to include the 1987-91 die-off event. 1 km MODIS SST show that shallow mudbanks were consistently warmer (by up to 6degC) than nearby deeper basins. While water depth is likely the primary driver of spatial...

  12. High temperature electron beam ion source for the production of single charge ions of most elements of the Periodic Table

    CERN Document Server

    Panteleev, V N; Barzakh, A E; Fedorov, D V; Ivanov, V S; Moroz, F V; Orlov, S Y; Seliverstov, D M; Stroe, L; Tecchio, L B; Volkov, Y M

    2003-01-01

    A new type of a high temperature electron beam ion source (HTEBIS) with a working temperature up to 2500 deg. C was developed for production of single charge ions of practically all elements. Off-line tests and on-line experiments making use of the developed ion source coupled with uranium carbide targets of different density, have been carried out. The ionization efficiency measured for stable atoms of many elements varied in the interval of 1-6%. Using the HTEBIS, the yields and on-line production efficiency of neutron rich isotopes of Mn, Fe, Co, Cu, Rh, Pd, Ag, Cd, In, Sn and isotopes of heavy elements Pb, Bi, Po and some others have been determined. The revealed confinement effect of the ions produced in the narrow electron beam inside a hot ion source cavity has been discussed.

  13. The impact of Mediterranean oscillations on periodicity and trend of temperature in the valley of the Nisava River: A fourier and wavelet approach

    Directory of Open Access Journals (Sweden)

    Martić-Bursać Nataša M.

    2017-01-01

    Full Text Available Periodicity of temperature on three stations in the Nisava River valley in period 1949-2014, has been analyzed by means of Fourier and wavelet transforms. Combined periodogram based on fast Fourier transform shows considerable similarity among individual series and identifies significant periods on 2.2, 2.7, 3.3, 5, 6-7, and 8.2 years in all datasets. Wavelet coherence analysis connects strongest 6-7 years spectral component to Mediterranean oscillation, starting in 1980s. Combined periodogram of Mediterranean oscillation index reveals 6-7 years spectral component as a dominant mode in period 1949-2014. Wavelet power spectra and partial combined periodograms show absence of 6-7 years component before 1975, after which this component becomes dominant in the spectrum. Consistency between alternation in temperature trend in the Nisava River valley and change in periodicity of Mediterranean oscillation was found. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. OI176008

  14. Aespoe Hard Rock Laboratory. Temperature Buffer Test. Sensors data report (Period 030326-080701) Report No:12

    International Nuclear Information System (INIS)

    Goudarzi, Reza; Aakesson, Mattias; Hoekmark, Harald

    2008-01-01

    TBT (Temperature Buffer Test) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at understanding and modeling the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test is carried out in Aespoe HRL in a 8 meters deep and 1.75 m diameter deposition hole, with two heaters (3 m long, 0.6 m diameter), surrounded by a MX 80 bentonite buffer and a confining plug on top anchored with 9 rods. It was installed during spring 2003. Two buffer arrangements are being investigated: - The lower heater is surrounded by bentonite in the usual way, allowing the temperature of the bentonite to exceed 100 deg C locally. - The higher heater is surrounded by a ring of sand acting as thermal protection for the bentonite, the temperature of which is kept below 100 deg C. The canisters were heated with 1500 W power from day 15 to day 1171, when the power was raised to 1600 W. Around day 1700, the power was by steps raised in the lower heater to 2000 W and reduced in the upper heater to 1000 W. This report presents data from the measurements in the Temperature Buffer Test from 030326 to 080701 (26 March 2003 to 01 July 2008). The following measurements are made in the bentonite: Temperature is measured in 92 points, total pressure in 29 points, pore water pressure in 8 points and relative humidity in 35 points. Temperature is also measured by all gauges as an auxiliary measurement used for compensation. The following additional measurements are done: temperature is measured in 40 points in the rock, in 11 points on the surface of each canister and in 6 points inside each canister. The force on the confining plug is measured in 3 of the 9 rods and its vertical displacement is measured in three points. The water inflow and water pressure in the outer sand filter is also measured. Temperature and total pressure measurements

  15. Aespoe Hard Rock Laboratory. Temperature Buffer Test. Sensors data report (Period 030326-080701) Report No:12

    Energy Technology Data Exchange (ETDEWEB)

    Goudarzi, Reza; Aakesson, Mattias; Hoekmark, Harald (Clay Technology AB, Lund (Sweden))

    2008-07-01

    TBT (Temperature Buffer Test) is a joint project between SKB/ANDRA and supported by ENRESA (modeling) and DBE (instrumentation), which aims at understanding and modeling the thermo-hydro-mechanical behavior of buffers made of swelling clay submitted to high temperatures (over 100 deg C) during the water saturation process. The test is carried out in Aespoe HRL in a 8 meters deep and 1.75 m diameter deposition hole, with two heaters (3 m long, 0.6 m diameter), surrounded by a MX 80 bentonite buffer and a confining plug on top anchored with 9 rods. It was installed during spring 2003. Two buffer arrangements are being investigated: - The lower heater is surrounded by bentonite in the usual way, allowing the temperature of the bentonite to exceed 100 deg C locally. - The higher heater is surrounded by a ring of sand acting as thermal protection for the bentonite, the temperature of which is kept below 100 deg C. The canisters were heated with 1500 W power from day 15 to day 1171, when the power was raised to 1600 W. Around day 1700, the power was by steps raised in the lower heater to 2000 W and reduced in the upper heater to 1000 W. This report presents data from the measurements in the Temperature Buffer Test from 030326 to 080701 (26 March 2003 to 01 July 2008). The following measurements are made in the bentonite: Temperature is measured in 92 points, total pressure in 29 points, pore water pressure in 8 points and relative humidity in 35 points. Temperature is also measured by all gauges as an auxiliary measurement used for compensation. The following additional measurements are done: temperature is measured in 40 points in the rock, in 11 points on the surface of each canister and in 6 points inside each canister. The force on the confining plug is measured in 3 of the 9 rods and its vertical displacement is measured in three points. The water inflow and water pressure in the outer sand filter is also measured. Temperature and total pressure measurements

  16. Daily activity of the housefly, Musca domestica, is influenced by temperature independent of 3’UTR period gene splicing

    Czech Academy of Sciences Publication Activity Database

    Bazalová, Olga; Doležel, David

    2017-01-01

    Roč. 7, č. 8 (2017), s. 2637-2649 ISSN 2160-1836 R&D Projects: GA ČR(CZ) GA17-01003S EU Projects: European Commission(XE) 316304 - MODBIOLIN Institutional support: RVO:60077344 Keywords : temperature compensation of circadian rhythms * locomotor activity * transcription Subject RIV: ED - Physiology OBOR OECD: Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology Impact factor: 2.861, year: 2016 http://www.g3journal.org/content/early/2017/06/15/g3.117.042374

  17. Influence of temperature of the short-period heat treatment on mechanical properties of the NiTi alloy

    Directory of Open Access Journals (Sweden)

    Jaroslav Čapek

    2014-01-01

    Full Text Available The equiatomic alloy of nickel and titanium, known as nitinol, possesses unique properties such as superelasticity, pseudoplasticity, shape memory, while maintaining good corrosion resistance and sufficient biocompatibility. Therefore it is used for production of various devices including surgery implants. Heat treatment of nickel-rich NiTi alloys can result in precipitation of nickel-rich phases, which strongly influence tensile and fatigue behaviour of the material.In this work we have studied influence of short-period heat treatment on tensile behaviour and fatigue life of the NiTi (50.9 at. % Ni wire intended for fabrication of surgery stents.

  18. Microfracture behaviour of extruded Mg–Zn–Y alloys containing long-period stacking ordered structure at room and elevated temperatures

    International Nuclear Information System (INIS)

    Mine, Yoji; Yoshimura, Hajime; Matsuda, Mitsuhiro; Takashima, Kazuki; Kawamura, Yoshihito

    2013-01-01

    We studied the fracture behaviour of extruded Mg–Zn–Y alloys at room temperature (RT) and at 523 K using microfracture testing. An Mg 97 Zn 1 Y 2 alloy was used to obtain two-phase specimens consisting of α-Mg and long-period stacking ordered (LPSO) structure phases, and an Mg 88 Zn 5 Y 7 alloy was used to obtain specimens consisting of an LPSO phase. The microfracture testing of the two-phase specimen revealed that the fracture behaviour changed from brittle to ductile as the testing temperature increased. By contrast, the LPSO-phase specimen remained brittle even at the elevated temperature and the intrinsic fracture toughness values obtained at both testing temperatures were nearly identical. Ex situ transmission electron microscopy of the two-phase specimen showed that mechanical twinning in the α-Mg phase did not occur at the elevated temperature, although it was activated at RT. This suggests that the plastic deformation mode in the α-Mg phase plays a crucial part in the enhanced crack growth resistance of the two-phase alloy at the elevated temperature

  19. Development of rabbit embryos during a 96-h period of in vitro culture after superovulatory treatment under conditions of elevated ambient temperature.

    Science.gov (United States)

    Cheng, H; Dooley, M P; Hopkins, S M; Anderson, L L; Yibchok-anun, S; Hsu, W H

    1999-08-16

    The effects of elevated ambient temperature on the response to exogenous gonadotropins were evaluated in female New Zealand White rabbits exposed to 33+/-1 degrees C (mean +/- SE) and 10-30% relative humidity (8 h/day) during a 5-day period. Does were treated with pFSH (0.3 mg/0.3 ml Standard Armour) twice daily during three consecutive days with a minimum interval of 8 h between injections. Six hours after the last FSH injection all does were removed from the experimental chamber, given hCG (25 IU/kg) and paired overnight. Nineteen hours after pairing, embryos were flushed from the reproductive tracts, evaluated, and subjected to in vitro culture during a 96-h period. The ovulatory responses to exogenous gonadotropins and fertilization rates did not differ significantly under conditions of elevated ambient temperature, whereas fewer blastocysts and increased number of degenerate embryos were observed after culture. We conclude that although hyperthermia was induced during exposure to elevated ambient temperature, it did not alter the ovulatory responses to gonadotropin treatment and plasma concentrations of FSH and LH compared with does in a thermoneutral environment. Exposure of donor rabbits to elevated ambient temperature before mating, however, increased embryonic degeneration.

  20. Spatial and temporal variations of the length of the ice-free season in the Arctic in the 1979-2008 period

    Science.gov (United States)

    Rodrigues, J.

    2009-04-01

    locally the variation of the ice cover in small regions such as narrow straits (which occupy one or only a few pixels in the usual 12.5 or 25km grids). Secondly, while the ice extent or area must be calculated, say, for each month of the year (for instance by averaging the daily ice extents or areas over one month), the LIFS and ISII have one single value for each year for each point, thus being more representative of the ice situation in a certain year than the usually quoted summer minimum or winter maximum. Finally, minimum and maximum values can be strongly affected by specific circumstances occurring in a comparatively short time interval. It was noticed, for instance, that in the summer of 2007 there were unusually clear skies over the Arctic Ocean which would have favoured a rapid melting, and a particular wind pattern which would have led to a strong advection of the ice out of the Arctic Ocean through Fram Strait (special conditions that may partly explain the extraordinary depletion of sea ice in the Arctic Ocean in the summer of 2007). We construct a time-series of the LIFS for the 1979-2008 period for each point of the Arctic where sea ice was found at least one day in this period. We describe in detail the melting seasons of 2007 (the longest on record) and 2008, and analyse the changes that took place in the last 30 years in 85 disjoint regions of the Arctic Ocean and peripheral seas. We found that between 1979 and 2006 the spatially averaged ice-free season in the Arctic increased at an approximately steady rate of 1.1 days/year and that the growth was considerably faster (5.5 days/year), and monotonic, in the 2001-2007 period. In 2007 the average LIFS in the Arctic was 168 days, dropping to 158 days in 2008, which makes it the fourth longer since systematic satellite monitoring of the Arctic began.

  1. MOnthly TEmperature DAtabase of Spain 1951-2010: MOTEDAS (2): The Correlation Decay Distance (CDD) and the spatial variability of maximum and minimum monthly temperature in Spain during (1981-2010).

    Science.gov (United States)

    Cortesi, Nicola; Peña-Angulo, Dhais; Simolo, Claudia; Stepanek, Peter; Brunetti, Michele; Gonzalez-Hidalgo, José Carlos

    2014-05-01

    One of the key point in the develop of the MOTEDAS dataset (see Poster 1 MOTEDAS) in the framework of the HIDROCAES Project (Impactos Hidrológicos del Calentamiento Global en España, Spanish Ministery of Research CGL2011-27574-C02-01) is the reference series for which no generalized metadata exist. In this poster we present an analysis of spatial variability of monthly minimum and maximum temperatures in the conterminous land of Spain (Iberian Peninsula, IP), by using the Correlation Decay Distance function (CDD), with the aim of evaluating, at sub-regional level, the optimal threshold distance between neighbouring stations for producing the set of reference series used in the quality control (see MOTEDAS Poster 1) and the reconstruction (see MOREDAS Poster 3). The CDD analysis for Tmax and Tmin was performed calculating a correlation matrix at monthly scale between 1981-2010 among monthly mean values of maximum (Tmax) and minimum (Tmin) temperature series (with at least 90% of data), free of anomalous data and homogenized (see MOTEDAS Poster 1), obtained from AEMEt archives (National Spanish Meteorological Agency). Monthly anomalies (difference between data and mean 1981-2010) were used to prevent the dominant effect of annual cycle in the CDD annual estimation. For each station, and time scale, the common variance r2 (using the square of Pearson's correlation coefficient) was calculated between all neighbouring temperature series and the relation between r2 and distance was modelled according to the following equation (1): Log (r2ij) = b*°dij (1) being Log(rij2) the common variance between target (i) and neighbouring series (j), dij the distance between them and b the slope of the ordinary least-squares linear regression model applied taking into account only the surrounding stations within a starting radius of 50 km and with a minimum of 5 stations required. Finally, monthly, seasonal and annual CDD values were interpolated using the Ordinary Kriging with a

  2. Effect of temperature and density fluctuations on the spatially heterogeneous dynamics of glass-forming Van der Waals liquids under high pressure.

    Science.gov (United States)

    Koperwas, K; Grzybowski, A; Grzybowska, K; Wojnarowska, Z; Sokolov, A P; Paluch, M

    2013-09-20

    In this Letter, we show how temperature and density fluctuations affect the spatially heterogeneous dynamics at ambient and elevated pressures. By using high-pressure experimental data for van der Waals liquids, we examine contributions of the temperature and density fluctuations to the dynamics heterogeneity. We show that the dynamic heterogeneity decreases significantly with increasing pressure at a constant structural relaxation time (isochronal condition), while the broadening of the relaxation spectrum remains constant. This observation questions the relationship between spectral broadening and dynamic heterogeneity.

  3. Trends of precipitation characteristics in the Czech Republic over 1961–2012, their spatial patterns and links to temperature and the North Atlantic Oscillation

    Czech Academy of Sciences Publication Activity Database

    Beranová, Romana; Kyselý, Jan

    (2017) ISSN 0899-8418 R&D Projects: GA ČR(CZ) GA16-04676S Institutional support: RVO:68378289 Keywords : precipitation * trend analysis * spatial pattern * temperature * the North Atlantic Oscillation * the Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.5392/full

  4. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians

    Science.gov (United States)

    Dunham, J.B.; Rosenberger, A.E.; Luce, C.H.; Rieman, B.E.

    2007-01-01

    Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a pre-post fire comparison of temperatures between two sites (one from a burned stream and one unburned) over 13 years, a short-term (3 year) pre-post fire comparison of a burned and unburned stream with spatially extensive data, and a short-term (1 year) comparative study of spatial variability in temperatures using a "space for time" substitutive design across 90 sites in nine streams (retrospective comparative study). The latter design included streams with a history of stand-replacing wildfire and streams with severe post-fire reorganization of channels due to debris flows and flooding. Results from these three studies indicated that summer maximum water temperatures can remain significantly elevated for at least a decade following wildfire, particularly in streams with severe channel reorganization. In the retrospective comparative study we investigated occurrence of native rainbow trout (Oncorhynchus mykiss) and tailed frog larvae (Ascaphus montanus) in relation to maximum stream temperatures during summer. Both occurred in nearly every site sampled, but tailed frog larvae were found in much warmer water than previously reported in the field (26.6??C maximum summer temperature). Our results show that physical stream habitats can remain altered (for example, increased temperature) for many years following wildfire, but that native aquatic vertebrates can be resilient. In a management context, this suggests wildfire may be less of a threat to native species than human influences that alter the capacity of stream-living vertebrates to persist in the face of natural disturbance. ?? 2007 Springer Science+Business Media, LLC.

  5. An in situ spatially resolved analytical technique to simultaneously probe gas phase reactions and temperature within the packed bed of a plug flow reactor.

    Science.gov (United States)

    Touitou, Jamal; Burch, Robbie; Hardacre, Christopher; McManus, Colin; Morgan, Kevin; Sá, Jacinto; Goguet, Alexandre

    2013-05-21

    This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. As an exemplar, we have examined a heterogeneously catalysed gas phase reaction within the bed of a powdered oxide supported metal catalyst. The design of the gas sampling and the temperature recording systems are disclosed. A stationary capillary with holes drilled in its wall and a moveable reactor coupled with a mass spectrometer are used to enable sampling and analysis. This method has been designed to limit the invasiveness of the probe on the reactor by using the smallest combination of thermocouple and capillary which can be employed practically. An 80 μm (O.D.) thermocouple has been inserted in a 250 μm (O.D.) capillary. The thermocouple is aligned with the sampling holes to enable both the gas composition and temperature profiles to be simultaneously measured at equivalent spatially resolved positions. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst and the spatial resolution profiles of chemical species concentrations and temperature as a function of the axial position within the catalyst bed are reported.

  6. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.).

    Science.gov (United States)

    Draeger, Tracie; Moore, Graham

    2017-09-01

    Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D. This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis-leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.

  7. An Efficient Approach for Pixel Decomposition to Increase the Spatial Resolution of Land Surface Temperature Images from MODIS Thermal Infrared Band Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-12-01

    Full Text Available Land surface temperature (LST images retrieved from the thermal infrared (TIR band data of Moderate Resolution Imaging Spectroradiometer (MODIS have much lower spatial resolution than the MODIS visible and near-infrared (VNIR band data. The coarse pixel scale of MODIS LST images (1000 m under nadir have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250–500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD. Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI and building index (NDBI, reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER with much higher spatial resolution than MODIS data was on-board the same platform (Terra as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error

  8. An efficient approach for pixel decomposition to increase the spatial resolution of land surface temperature images from MODIS thermal infrared band data.

    Science.gov (United States)

    Wang, Fei; Qin, Zhihao; Li, Wenjuan; Song, Caiying; Karnieli, Arnon; Zhao, Shuhe

    2014-12-25

    Land surface temperature (LST) images retrieved from the thermal infrared (TIR) band data of Moderate Resolution Imaging Spectroradiometer (MODIS) have much lower spatial resolution than the MODIS visible and near-infrared (VNIR) band data. The coarse pixel scale of MODIS LST images (1000 m under nadir) have limited their capability in applying to many studies required high spatial resolution in comparison of the MODIS VNIR band data with pixel scale of 250-500 m. In this paper we intend to develop an efficient approach for pixel decomposition to increase the spatial resolution of MODIS LST image using the VNIR band data as assistance. The unique feature of this approach is to maintain the thermal radiance of parent pixels in the MODIS LST image unchanged after they are decomposed into the sub-pixels in the resulted image. There are two important steps in the decomposition: initial temperature estimation and final temperature determination. Therefore the approach can be termed double-step pixel decomposition (DSPD). Both steps involve a series of procedures to achieve the final result of decomposed LST image, including classification of the surface patterns, establishment of LST change with normalized difference of vegetation index (NDVI) and building index (NDBI), reversion of LST into thermal radiance through Planck equation, and computation of weights for the sub-pixels of the resulted image. Since the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with much higher spatial resolution than MODIS data was on-board the same platform (Terra) as MODIS for Earth observation, an experiment had been done in the study to validate the accuracy and efficiency of our approach for pixel decomposition. The ASTER LST image was used as the reference to compare with the decomposed LST image. The result showed that the spatial distribution of the decomposed LST image was very similar to that of the ASTER LST image with a root mean square error (RMSE) of 2

  9. Post-Colonization Interval Estimates Using Multi-Species Calliphoridae Larval Masses and Spatially Distinct Temperature Data Sets: A Case Study

    Science.gov (United States)

    Weatherbee, Courtney R.; Pechal, Jennifer L.; Stamper, Trevor; Benbow, M. Eric

    2017-01-01

    Common forensic entomology practice has been to collect the largest Diptera larvae from a scene and use published developmental data, with temperature data from the nearest weather station, to estimate larval development time and post-colonization intervals (PCIs). To evaluate the accuracy of PCI estimates among Calliphoridae species and spatially distinct temperature sources, larval communities and ambient air temperature were collected at replicate swine carcasses (N = 6) throughout decomposition. Expected accumulated degree hours (ADH) associated with Cochliomyia macellaria and Phormia regina third instars (presence and length) were calculated using published developmental data sets. Actual ADH ranges were calculated using temperatures recorded from multiple sources at varying distances (0.90 m–7.61 km) from the study carcasses: individual temperature loggers at each carcass, a local weather station, and a regional weather station. Third instars greatly varied in length and abundance. The expected ADH range for each species successfully encompassed the average actual ADH for each temperature source, but overall under-represented the range. For both calliphorid species, weather station data were associated with more accurate PCI estimates than temperature loggers associated with each carcass. These results provide an important step towards improving entomological evidence collection and analysis techniques, and developing forensic error rates. PMID:28375172

  10. Post-Colonization Interval Estimates Using Multi-Species Calliphoridae Larval Masses and Spatially Distinct Temperature Data Sets: A Case Study

    Directory of Open Access Journals (Sweden)

    Courtney R. Weatherbee

    2017-04-01

    Full Text Available Common forensic entomology practice has been to collect the largest Diptera larvae from a scene and use published developmental data, with temperature data from the nearest weather station, to estimate larval development time and post-colonization intervals (PCIs. To evaluate the accuracy of PCI estimates among Calliphoridae species and spatially distinct temperature sources, larval communities and ambient air temperature were collected at replicate swine carcasses (N = 6 throughout decomposition. Expected accumulated degree hours (ADH associated with Cochliomyia macellaria and Phormia regina third instars (presence and length were calculated using published developmental data sets. Actual ADH ranges were calculated using temperatures recorded from multiple sources at varying distances (0.90 m–7.61 km from the study carcasses: individual temperature loggers at each carcass, a local weather station, and a regional weather station. Third instars greatly varied in length and abundance. The expected ADH range for each species successfully encompassed the average actual ADH for each temperature source, but overall under-represented the range. For both calliphorid species, weather station data were associated with more accurate PCI estimates than temperature loggers associated with each carcass. These results provide an important step towards improving entomological evidence collection and analysis techniques, and developing forensic error rates.

  11. The contribution of Distributed Temperature Sensing (DTS) in streams to assess spatial runoff processes in a moraine dominated agricultural catchment

    DEFF Research Database (Denmark)

    Boegh, Eva; Blemmer, Morten; Holmes, Esbern

    Evaluating impacts of site-specific changes in land use and land cover on catchment processes is significantly complicated by spatial heterogeneity and the long and variable time lags between precipitation and the responses of streams and groundwater. In this study, a 1-D soil-plant-atmosphere mo......Evaluating impacts of site-specific changes in land use and land cover on catchment processes is significantly complicated by spatial heterogeneity and the long and variable time lags between precipitation and the responses of streams and groundwater. In this study, a 1-D soil...

  12. Applying Petroleum the Pressure Buildup Well Test Procedure on Thermal Response Test—A Novel Method for Analyzing Temperature Recovery Period

    Directory of Open Access Journals (Sweden)

    Tomislav Kurevija

    2018-02-01

    Full Text Available The theory of Thermal Response Testing (TRT is a well-known part of the sizing process of the geothermal exchange system. Multiple parameters influence the accuracy of effective ground thermal conductivity measurement; like testing time, variable power, climate interferences, groundwater effect, etc. To improve the accuracy of the TRT, we introduced a procedure to additionally analyze falloff temperature decline after the power test. The method is based on a premise of analogy between TRT and petroleum well testing, since the origin of both procedures lies in the diffusivity equation with solutions for heat conduction or pressure analysis during radial flow. Applying pressure build-up test interpretation techniques to borehole heat exchanger testing, greater accuracy could be achieved since ground conductivity could be obtained from this period. Analysis was conducted on a coaxial exchanger with five different power steps, and with both direct and reverse flow regimes. Each test was set with 96 h of classical TRT, followed by 96 h of temperature decline, making for almost 2000 h of cumulative borehole testing. Results showed that the ground conductivity value could vary by as much as 25%, depending on test time, seasonal period and power fluctuations, while the thermal conductivity obtained from the falloff period provided more stable values, with only a 10% value variation.

  13. Estimates of spatial variation in evaporation using satellite-derived surface temperature and a water balance model

    NARCIS (Netherlands)

    Bouwer, L.M.; Biggs, T.W.; Aerts, J.C.J.H.

    2008-01-01

    Evaporation dominates the water balance in arid and semi-arid areas. The estimation of evaporation by land-cover type is important for proper management of scarce water resources. Here, we present a method to assess spatial and temporal patterns of actual evaporation by relating water balance

  14. Modelling the occurrence of heat waves in maximum and minimum temperatures over Spain and projections for the period 2031-60

    Science.gov (United States)

    Abaurrea, J.; Asín, J.; Cebrián, A. C.

    2018-02-01

    The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.

  15. The role of land surface fluxes in Saudi-KAU AGCM: Temperature climatology over the Arabian Peninsula for the period 1981-2010

    Science.gov (United States)

    Ashfaqur Rahman, M.; Almazroui, Mansour; Nazrul Islam, M.; O'Brien, Enda; Yousef, Ahmed Elsayed

    2018-02-01

    A new version of the Community Land Model (CLM) was introduced to the Saudi King Abdulaziz University Atmospheric Global Climate Model (Saudi-KAU AGCM) for better land surface component representation, and so to enhance climate simulation. CLM replaced the original land surface model (LSM) in Saudi-KAU AGCM, with the aim of simulating more accurate land surface fluxes globally, but especially over the Arabian Peninsula. To evaluate the performance of Saudi-KAU AGCM, simulations were completed with CLM and LSM for the period 1981-2010. In comparison with LSM, CLM generates surface air temperature values that are closer to National Centre for Environmental Prediction (NCEP) observations. The global annual averages of land surface air temperature are 9.51, 9.52, and 9.57 °C for NCEP, CLM, and LSM respectively, although the same atmospheric radiative and surface forcing from Saudi-KAU AGCM are provided to both LSM and CLM at every time step. The better temperature simulations when using CLM can be attributed to the more comprehensive plant functional type and hierarchical tile approach to the land cover type in CLM, along with better parameterization of upward land surface fluxes compared to LSM. At global scale, CLM exhibits smaller annual and seasonal mean biases of temperature with respect to NCEP data. Moreover, at regional scale, CLM demonstrates reasonable seasonal and annual mean temperature over the Arabian Peninsula as compared to the Climatic Research Unit (CRU) data. Finally, CLM generated better matches to single point-wise observations of surface air temperature and surface fluxes for some case studies.

  16. Influence of Feeding Enzymatically Hydrolyzed Yeast Cell Wall on Growth Performance and Digestive Function of Feedlot Cattle during Periods of Elevated Ambient Temperature

    Directory of Open Access Journals (Sweden)

    J. Salinas-Chavira

    2015-09-01

    Full Text Available In experiment 1, eighty crossbred steers (239±15 kg were used in a 229-d experiment to evaluate the effects of increasing levels of enzymatically hydrolyzed yeast (EHY cell wall in diets on growth performance feedlot cattle during periods of elevated ambient temperature. Treatments consisted of steam-flaked corn-based diets supplemented to provide 0, 1, 2, or 3 g EHY/hd/d. There were no effects on growth performance during the initial 139-d period. However, from d 139 to harvest, when 24-h temperature humidity index averaged 80, EHY increased dry matter intake (DMI (linear effect, p0.10 on carcass characteristics. In experiment 2, four Holstein steers (292±5 kg with cannulas in the rumen and proximal duodenum were used in a 4×4 Latin Square design experiment to evaluate treatments effects on characteristics of ruminal and total tract digestion in steers. There were no treatment effects (p>0.10 on ruminal pH, total volatile fatty acid, molar proportions of acetate, butyrate, or estimated methane production. Supplemental EHY decreased ruminal molar proportion of acetate (p = 0.08, increased molar proportion of propionate (p = 0.09, and decreased acetate:propionate molar ratio (p = 0.07 and estimated ruminal methane production (p = 0.09. It is concluded that supplemental EHY may enhance DMI and ADG of feedlot steers during periods of high ambient temperature. Supplemental EHY may also enhance ruminal fiber digestion and decrease ruminal acetate:propionate molar ratios in feedlot steers fed steam-flaked corn-based finishing diets.

  17. Simultaneous measurement of temperature and tensile loading using superstructure FBGs developed by laser direct writing of periodic on-fiber metallic films

    International Nuclear Information System (INIS)

    Alemohammad, Hamidreza; Toyserkani, Ehsan

    2009-01-01

    This paper addresses the development of superstructure fiber Bragg gratings (FBGs) by laser-assisted direct writing of on-fiber metallic films. A novel laser direct write method is characterized to fabricate periodic films of silver nanoparticles on the non-planar surface of as-fabricated FBGs. Silver films with a thickness of 9 µm are fabricated around a Bragg grating optical fiber. The performance of the superstructure FBG is studied by applying temperature and tensile stress on the fiber. An opto-mechanical model is also developed to predict the optical response of the synthesized superstructure FBG under thermal and structural loadings. The results show that the reflectivity of sidebands in the reflection spectrum can be tuned up to 20% and 37% under thermal and structural loadings, respectively. In addition, the developed superstructure FBG is used for simultaneous measurement of force and temperature to eliminate the inherent limitation of regular FBGs in multi-parameter sensing

  18. Effect of high temperature on grain filling period, yield, amylose content and activity of starch biosynthesis enzymes in endosperm of basmati rice.

    Science.gov (United States)

    Ahmed, Nisar; Tetlow, Ian J; Nawaz, Sehar; Iqbal, Ahsan; Mubin, Muhammad; Nawaz ul Rehman, Muhammad Shah; Butt, Aisha; Lightfoot, David A; Maekawa, Masahiko

    2015-08-30

    High temperature during grain filling affects yield, starch amylose content and activity of starch biosynthesis enzymes in basmati rice. To investigate the physiological mechanisms underpinning the effects of high temperature on rice grain, basmati rice was grown under two temperature conditions - 32 and 22 °C - during grain filling. High temperature decreased the grain filling period from 32 to 26 days, reducing yield by 6%, and caused a reduction in total starch (3.1%) and amylose content (22%). Measurable activities of key enzymes involved in sucrose to starch conversion, sucrose synthase, ADP-glucose pyrophosphorylase, starch phosphorylase and soluble starch synthase in endosperms developed at 32 °C were lower than those at 22 °C compared with similar ripening stage on an endosperm basis. In particular, granule-bound starch synthase (GBSS) activity was significantly lower than corresponding activity in endosperms developing at 22 °C during all developmental stages analyzed. Results suggest changes in amylose/amylopectin ratio observed in plants grown at 32 °C was attributable to a reduction in activity of GBSS, the sole enzyme responsible for amylose biosynthesis. © 2014 Society of Chemical Industry.

  19. Evaluating links between forest harvest and stream temperature threshold exceedances: the value of spatial and temporal data

    Science.gov (United States)

    Jeremiah D. Groom; Sherri L. Johnson; Joshua D. Seeds; George G. Ice

    2017-01-01

    We present the results of a replicated before-after-control-impact study on 33 streams to test the effectiveness of riparian rules for private and State forests at meeting temperature criteria in streams in western Oregon. Many states have established regulatory temperature thresholds, referred to as numeric criteria, to protect cold-water fishes such as salmon and...

  20. Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach

    Directory of Open Access Journals (Sweden)

    Yuli Shi

    2015-05-01

    Full Text Available Spatially explicit precipitation data is often responsible for the prediction accuracy of hydrological and ecological models. Several statistical downscaling approaches have been developed to map precipitation at a high spatial resolution, which are mainly based on the valid conjugations between satellite-driven precipitation data and geospatial predictors. Performance of the existing approaches should be first evaluated before applying them to larger spatial extents with a complex terrain across different climate zones. In this paper, we investigate the statistical downscaling algorithms to derive the high spatial resolution maps of precipitation over continental China using satellite datasets, including the Normalized Distribution Vegetation Index (NDVI from the Moderate Resolution Imaging Spectroradiometer (MODIS, the Global Digital Elevation Model (GDEM from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER, and the rainfall product from the Tropical Rainfall Monitoring Mission (TRMM. We compare three statistical techniques (multiple linear regression, exponential regression, and Random Forest regression trees for modeling precipitation to better understand how the selected model types affect the prediction accuracy. Then, those models are implemented to downscale the original TRMM product (3B43; 0.25° resolution onto the finer grids (1 × 1 km2 of precipitation. Finally we validate the downscaled annual precipitation (a wet year 2001 and a dry year 2010 against the ground rainfall observations from 596 rain gauge stations over continental China. The result indicates that the downscaling algorithm based on the Random Forest regression outperforms, when compared to the linear regression and the exponential regression. It also shows that the addition of the residual terms does not significantly improve the accuracy of results for the RF model. The analysis of the variable importance reveals the NDVI related predictors

  1. Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Alnoor, Hatim, E-mail: hatim.alnoor@liu.se; Chey, Chan Oeurn; Pozina, Galia; Willander, Magnus; Nur, Omer [Department of Science and Technology (ITN), Campus Norrköping, Linköping University, SE-601 74 Norrköping (Sweden); Liu, Xianjie; Khranovskyy, Volodymyr [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-583 81 Linköping (Sweden)

    2015-08-15

    Hexagonal c-axis oriented zinc oxide (ZnO) nanorods (NRs) with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL) spectra were collected for all samples. Cathodoluminescence (CL) spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE) to the deep-level emission (DLE) peaks with increasing stirring durations. This is attributed to the variation in the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h), which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h) will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.

  2. Projected Changes in Temperature and Precipitation Extremes over China as Measured by 50-yr Return Values and Periods Based on a CMIP5 Ensemble

    Science.gov (United States)

    Xu, Ying; Gao, Xuejie; Giorgi, Filippo; Zhou, Botao; Shi, Ying; Wu, Jie; Zhang, Yongxiang

    2018-04-01

    Future changes in the 50-yr return level for temperature and precipitation extremes over mainland China are investigated based on a CMIP5 multi-model ensemble for RCP2.6, RCP4.5 and RCP8.5 scenarios. The following indices are analyzed: TXx and TNn (the annual maximum and minimum of daily maximum and minimum surface temperature), RX5day (the annual maximum consecutive 5-day precipitation) and CDD (maximum annual number of consecutive dry days). After first validating the model performance, future changes in the 50-yr return values and return periods for these indices are investigated along with the inter-model spread. Multi-model median changes show an increase in the 50-yr return values of TXx and a decrease for TNn, more specifically, by the end of the 21st century under RCP8.5, the present day 50-yr return period of warm events is reduced to 1.2 yr, while extreme cold events over the country are projected to essentially disappear. A general increase in RX5day 50-yr return values is found in the future. By the end of the 21st century under RCP8.5, events of the present RX5day 50-yr return period are projected to reduce to China. Changes in CDD-50 show a dipole pattern over China, with a decrease in the values and longer return periods in the north, and vice versa in the south. Our study also highlights the need for further improvements in the representation of extreme events in climate models to assess the future risks and engineering design related to large-scale infrastructure in China.

  3. 基于GIS的新疆气温数据栅格化方法研究%GIS-based spatial interpolation of air temperature in Xinjiang

    Institute of Scientific and Technical Information of China (English)

    陈鹏翔; 毛炜峰

    2012-01-01

    以新疆99个气象台站1971-2010年年平均气温为数据源,采用多元回归结合空间插值的方法对新疆区域气温数据进行栅格化研究.建立了年平均气温与台站经纬度和海拔高度的多元回归模型,对于残差数据的插值采用了反距离权重法(IDW)、普通克立格法(Kriging)和样来函数法(Spline)3种目前应用广泛的空间插值方法,针对于这3种方法进行了基于MAE和RMSIE的交叉验证和对比分析,结果表明在新疆的年平均气温的GIS插值方案中,IDW方法精度总体要高于其他两种插值方法.%With Surfer, Grads as a platform for direct space interpolation was widely used in meteorological rasterization of air temperature data, whatever the spatial interpolation technique ( Spline, 1DW, Lagrangian, Hennite interpolation, etc. ) , do not take into account the effects of topography on the air temperature distribution, In recent years with the expansion of GIS technology applications, the method of regression model by geographic factors (elevation, longitude, latitude, etc. ) combined with spatial interpolation was used in grid-ba3ed regional climate factors and get good results. In this paper, used regression analysis methods combined with GIS spatial interpolation to rasterization of year mean air temperatures from 1971 to2010 in Xinjiang area, the 99 meteorological stations(10 of them in order to verify) that has complete observations involved in the calculation. We use the following method for air tempcrature data rasterization in Xinjiang region, Firstly, establish the average temperature multiple regression model with the air temperature data that measured by weather station (excluding test station) for the output variables, and the longitude grid data, latitude grid data and altitude grid dala of meteorological stations for the input variables, obtain the regression equation and the temperature residuals data for each weather station; Secondly, calculate the air

  4. Dendroclimatic transfer functions revisited: Little Ice Age and Medieval Warm Period summer temperatures reconstructed using artificial neural networks and linear algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Helama, S.; Holopainen, J.; Eronen, M. [Department of Geology, University of Helsinki, (Finland); Makarenko, N.G. [Russian Academy of Sciences, St. Petersburg (Russian Federation). Pulkovo Astronomical Observatory; Karimova, L.M.; Kruglun, O.A. [Institute of Mathematics, Almaty (Kazakhstan); Timonen, M. [Finnish Forest Research Institute, Rovaniemi Research Unit (Finland); Merilaeinen, J. [SAIMA Unit of the Savonlinna Department of Teacher Education, University of Joensuu (Finland)

    2009-07-01

    Tree-rings tell of past climates. To do so, tree-ring chronologies comprising numerous climate-sensitive living-tree and subfossil time-series need to be 'transferred' into palaeoclimate estimates using transfer functions. The purpose of this study is to compare different types of transfer functions, especially linear and nonlinear algorithms. Accordingly, multiple linear regression (MLR), linear scaling (LSC) and artificial neural networks (ANN, nonlinear algorithm) were compared. Transfer functions were built using a regional tree-ring chronology and instrumental temperature observations from Lapland (northern Finland and Sweden). In addition, conventional MLR was compared with a hybrid model whereby climate was reconstructed separately for short- and long-period timescales prior to combining the bands of timescales into a single hybrid model. The fidelity of the different reconstructions was validated against instrumental climate data. The reconstructions by MLR and ANN showed reliable reconstruction capabilities over the instrumental period (AD 1802-1998). LCS failed to reach reasonable verification statistics and did not qualify as a reliable reconstruction: this was due mainly to exaggeration of the low-frequency climatic variance. Over this instrumental period, the reconstructed low-frequency amplitudes of climate variability were rather similar by MLR and ANN. Notably greater differences between the models were found over the actual reconstruction period (AD 802-1801). A marked temperature decline, as reconstructed by MLR, from the Medieval Warm Period (AD 931-1180) to the Little Ice Age (AD 1601-1850), was evident in all the models. This decline was approx. 0.5 C as reconstructed by MLR. Different ANN based palaeotemperatures showed simultaneous cooling of 0.2 to 0.5 C, depending on algorithm. The hybrid MLR did not seem to provide further benefit above conventional MLR in our sample. The robustness of the conventional MLR over the calibration

  5. Studies on time of death estimation in the early post mortem period -- application of a method based on eyeball temperature measurement to human bodies.

    Science.gov (United States)

    Kaliszan, Michał

    2013-09-01

    This paper presents a verification of the thermodynamic model allowing an estimation of the time of death (TOD) by calculating the post mortem interval (PMI) based on a single eyeball temperature measurement at the death scene. The study was performed on 30 cases with known PMI, ranging from 1h 35min to 5h 15min, using pin probes connected to a high precision electronic thermometer (Dostmann-electronic). The measured eye temperatures ranged from 20.2 to 33.1°C. Rectal temperature was measured at the same time and ranged from 32.8 to 37.4°C. Ambient temperatures which ranged from -1 to 24°C, environmental conditions (still air to light wind) and the amount of hair on the head were also recorded every time. PMI was calculated using a formula based on Newton's law of cooling, previously derived and successfully tested in comprehensive studies on pigs and a few human cases. Thanks to both the significantly faster post mortem decrease of eye temperature and a residual or nonexistent plateau effect in the eye, as well as practically no influence of body mass, TOD in the human death cases could be estimated with good accuracy. The highest TOD estimation error during the post mortem intervals up to around 5h was 1h 16min, 1h 14min and 1h 03min, respectively in three cases among 30, while for the remaining 27 cases it was not more than 47min. The mean error for all 30 cases was ±31min. All that indicates that the proposed method is of quite good precision in the early post mortem period, with an accuracy of ±1h for a 95% confidence interval. On the basis of the presented method, TOD can be also calculated at the death scene with the use of a proposed portable electronic device (TOD-meter). Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. [Temperature sensitivity of wheat plant respiration and soil respiration influenced by increased UV-B radiation from elongation to flowering periods].

    Science.gov (United States)

    Chen, Shu-Tao; Hu, Zheng-Hua; Li, Han-Mao; Ji, Yu-Hong; Yang, Yan-Ping

    2009-05-15

    Field experiment was carried out in the spring of 2008 in order to investigate the effects of increased UV-B radiation on the temperature sensitivity of wheat plant respiration and soil respiration from elongation to flowering periods. Static chamber-gas chromatography method was used to measure ecosystem respiration and soil respiration under 20% UV-B radiation increase and control. Environmental factors such as temperature and moisture were also measured. Results indicated that supplemental UV-B radiation inhibited the ecosystem respiration and soil respiration from wheat elongation to flowering periods, and the inhibition effect was more obvious for soil respiration than for ecosystem respiration. Ecosystem respiration rates, on daily average, were 9%, 9%, 3%, 16% and 30% higher for control than for UV-B treatment forthe five measurement days, while soil respiration rates were 99%, 93%, 106%, 38% and 10% higher for control than for UV-B treatment. The Q10s (temperature sensitivity coefficients) for plant respiration under control and UV-B treatments were 1.79 and 1.59, respectively, while the Q10s for soil respiration were 1.38 and 1.76, respectively. The Q10s for ecosystem respiration were 1.65 and 1.63 under CK and UV-B treatments, respectively. Supplemental UV-B radiation caused a lower Q10 for plant respiration and a higher Q10 for soil respiration, although no significant effect of supplemental UV-B radiation on the Q10 for ecosystem respiration was found.

  7. Measurement of spatially resolved gas-phase plasma temperatures by optical emission and laser-induced fluorescence spectroscopy

    International Nuclear Information System (INIS)

    Davis, G.P.; Gottscho, R.A.

    1983-01-01

    Knowledge of the energy distributions of particles in glow discharges is crucial to the understanding and modeling of plasma reactors used in microelectronic manufacturing. Reaction rates, available product channels, and transport phenomena all depend upon the partitioning of energy in the discharge. Because of the nonequilibrium nature of glow discharges, however, the distribution of energy among different species and among different degrees of freedom cannot be characterized simply by one temperature. The extent to which different temperatures are needed for each degree of freedom and for each species is not known completely. How plasma operating conditions affect these energy distributions is also an unanswered question. We have investigated the temperatures of radicals, ions, and neutrals in CCl 4 , CCl 4 /N 2 (2%), and N 2 discharges. In the CCl 4 systems, we probed the CCl rotational and vibrational energy distributions by laser-induced fluorescence spectroscopy. The rotational distribution always appeared to be thermal but under identical operating conditions was found to be roughly-equal400 K colder than the vibrational distribution. The rotational temperature at any point in the discharge was strongly dependent upon both applied power and surface temperature. Thermal gradients as large as 10 2 K mm -1 were observed near electrode surfaces but the bulk plasmas were isothermal. When 2% N 2 was added to a CCl 4 discharge, N 2 second positive emission was observed and used to estimate the N 2 rotational temperature. The results suggest that emission from molecular actinometers can be used to measure plasma temperatures, providing such measurements are not made in close proximity to surfaces

  8. Design of a temperature control system using incremental PID algorithm for a special homemade shortwave infrared spatial remote sensor based on FPGA

    Science.gov (United States)

    Xu, Zhipeng; Wei, Jun; Li, Jianwei; Zhou, Qianting

    2010-11-01

    An image spectrometer of a spatial remote sensing satellite requires shortwave band range from 2.1μm to 3μm which is one of the most important bands in remote sensing. We designed an infrared sub-system of the image spectrometer using a homemade 640x1 InGaAs shortwave infrared sensor working on FPA system which requires high uniformity and low level of dark current. The working temperature should be -15+/-0.2 Degree Celsius. This paper studies the model of noise for focal plane array (FPA) system, investigated the relationship with temperature and dark current noise, and adopts Incremental PID algorithm to generate PWM wave in order to control the temperature of the sensor. There are four modules compose of the FPGA module design. All of the modules are coded by VHDL and implemented in FPGA device APA300. Experiment shows the intelligent temperature control system succeeds in controlling the temperature of the sensor.

  9. Periodic usage of low-protein methionine-fortified diets in broiler chickens under high ambient temperature conditions: effects on performance, slaughter traits, leukocyte profiles and antibody response

    Science.gov (United States)

    Ghasemi, Hossein Ali; Ghasemi, Rohollah; Torki, Mehran

    2014-09-01

    This study was performed to evaluate the effects of adding methionine supplements to low-protein diets and subsequent re-feeding with a normal diet on the productive performance, slaughter parameters, leukocyte profiles and antibody response in broiler chickens reared under heat stress conditions. During the whole experimental period (6-49 days), the birds were raised in battery cages located in high ambient temperature in an open-sided housing system. A total of 360 6-day-old male chickens were divided into six treatments in six replicates with ten chicks each. Six isoenergetic diets, with similar total sulfur amino acids levels, were formulated to provide 100 and 100 (control), 85 and 100 (85S), 70 and 100 (70S), 85 and 85 (85SG), 70 and 85 (70S85G), and 70 and 70 % (70SG) of National Research Council recommended levels for crude protein during the starter (6-21 day) and grower (22-42 day) periods, respectively. Subsequently, all groups received a diet containing the same nutrients during the finisher period (43-49 day). The results showed that, under heat stress conditions, average daily gain and feed conversion ratio and performance index from day 6 to 49, breast and thigh yields and antibody titer against Newcastle disease in the birds fed diets 85S, 70S and 85SG were similar to those of birds fed control diet, whereas feeding diets 70S85G and 70SG significantly decreased the values of above-mentioned parameters. Additionally, diets 85S, 70S and 85SG significantly decreased mortality rate and heterophil:lymphocyte ratio compared with the control diet. In conclusion, the results indicate that supplementation of methionine to diets 85S, 70S and 85SG, and then re-feeding with a conventional diet is an effective tool to maintain productive performance and to improve health indices and heat resistance in broilers under high ambient temperature conditions.

  10. Maternal Aerobic Exercise during Pregnancy Can Increase Spatial Learning by Affecting Leptin Expression on Offspring's Early and Late Period in Life Depending on Gender

    Directory of Open Access Journals (Sweden)

    Ayfer Dayi

    2012-01-01

    Full Text Available Maternal exercise during pregnancy has been suggested to exert beneficial effects on brain functions of the offspring. Leptin is an adipocytokine which is secreted from adipose tissues and has positive effects on learning, memory, and synaptic plasticity. In this study, pregnant rats were moderately exercised and we observed the effects of this aerobic exercise on their prepubertal and adult offsprings' spatial learning, hippocampal neurogenesis, and expression of leptin. All the pups whose mothers exercised during pregnancy learned the platform earlier and spent longer time in the target quadrant. Their thigmotaxis times were shorter than those measured in the control group. It is shown that hippocampal CA1, CA3 neuron numbers increased in both prepubertal and adult pups, in addition that GD neuron numbers increased in adult pups. Leptin receptor expression significantly increased in the prepubertal male, adult male, and adult female pups. In our study, maternal running during pregnancy resulted in significant increase in the expression of leptin receptor but not in prepubertal female pups, enhanced hippocampal cell survival, and improved learning memory capability in prepubertal and adult rat pups, as compared to the control group. In conclusion, maternal exercise during pregnancy may regulate spatial plasticity in the hippocampus of the offspring by increasing the expression of leptin.

  11. Spatial Pattern of Soil Salinity in Area Around the Yellow River Delta and Its Seasonal Dynamics over a 3-year Period

    Science.gov (United States)

    Lai, J.; Ouyang, Z.

    2017-12-01

    Salt-affected land varies spatially and seasonally in terms of soil salinity. "Bohai Granary" is a newly proposed national-level program which was aimed to improve soil quality and mining grain production potential of the salt-affected land in east China. In this work, soil samples were monthly taken at 11 sites within Wudi county in the Yellow river delta. The spatial distribution pattern of soil salinity were investigated and its seasonal variation over 36 months were discussed. Our findings indicate that the vertical distribution type of soil salinity was bottom-accumulating in the near coastal area while its gradually turned into a type of surface-accumulating as the sampling site moving towards the inner land. The peak of the soil salinity along the soil profile alternately moved upwards and downwards during the growing seasons. However, there was no evidence for the increasing of the total salt amount within the upper 100cm of soil. Moreover, the salt was mostly accumulated in the upper soil (0-40cm) during the late spring and early summer season; and winter wheat was tend to be affected severely at this stage. Therefore, special field practices (e.g. regular irrigation to leach salt, good maintenance of drainage system) should be taken to minimize the threat of soil salinity.

  12. Integrating SMOS brightness temperatures with a new conceptual spatially distributed hydrological model for improving flood and drought predictions at large scale.

    Science.gov (United States)

    Hostache, Renaud; Rains, Dominik; Chini, Marco; Lievens, Hans; Verhoest, Niko E. C.; Matgen, Patrick

    2017-04-01

    , SUPERFLEX is capable of predicting runoff, soil moisture, and SMOS-like brightness temperature time series. Such a model is traditionally calibrated using only discharge measurements. In this study we designed a multi-objective calibration procedure based on both discharge measurements and SMOS-derived brightness temperature observations in order to evaluate the added value of remotely sensed soil moisture data in the calibration process. As a test case we set up the SUPERFLEX model for the large scale Murray-Darling catchment in Australia ( 1 Million km2). When compared to in situ soil moisture time series, model predictions show good agreement resulting in correlation coefficients exceeding 70 % and Root Mean Squared Errors below 1 %. When benchmarked with the physically based land surface model CLM, SUPERFLEX exhibits similar performance levels. By adapting the runoff routing function within the SUPERFLEX model, the predicted discharge results in a Nash Sutcliff Efficiency exceeding 0.7 over both the calibration and the validation periods.

  13. Spatially-Resolved Influence of Temperature and Salinity on Stock and Recruitment Variability of Commercially Important Fishes in the North Sea.

    Directory of Open Access Journals (Sweden)

    Anna Akimova

    Full Text Available Understanding of the processes affecting recruitment of commercially important fish species is one of the major challenges in fisheries science. Towards this aim, we investigated the relation between North Sea hydrography (temperature and salinity and fish stock variables (recruitment, spawning stock biomass and pre-recruitment survival index for 9 commercially important fishes using spatially-resolved cross-correlation analysis. We used high-resolution (0.2° × 0.2° hydrographic data fields matching the maximal temporal extent of the fish population assessments (1948-2013. Our approach allowed for the identification of regions in the North Sea where environmental variables seem to be more influential on the fish stocks, as well as the regions of a lesser or nil influence. Our results confirmed previously demonstrated negative correlations between temperature and recruitment of cod and plaice and identified regions of the strongest correlations (German Bight for plaice and north-western North Sea for cod. We also revealed a positive correlation between herring spawning stock biomass and temperature in the Orkney-Shetland area, as well as a negative correlation between sole pre-recruitment survival index and temperature in the German Bight. A strong positive correlation between sprat stock variables and salinity in the central North Sea was also found. To our knowledge the results concerning correlations between North Sea hydrography and stocks' dynamics of herring, sole and sprat are novel. The new information about spatial distribution of the correlation provides an additional help to identify mechanisms underlying these correlations. As an illustration of the utility of these results for fishery management, an example is provided that incorporates the identified environmental covariates in stock-recruitment models.

  14. Estimation of Diurnal Cycle of Land Surface Temperature at High Temporal and Spatial Resolution from Clear-Sky MODIS Data

    Directory of Open Access Journals (Sweden)

    Si-Bo Duan

    2014-04-01

    Full Text Available The diurnal cycle of land surface temperature (LST is an important element of the climate system. Geostationary satellites can provide the diurnal cycle of LST with low spatial resolution and incomplete global coverage, which limits its applications in some studies. In this study, we propose a method to estimate the diurnal cycle of LST at high temporal and spatial resolution from clear-sky MODIS data. This method was evaluated using the MSG-SEVIRI-derived LSTs. The results indicate that this method fits the diurnal cycle of LST well, with root mean square error (RMSE values less than 1 K for most pixels. Because MODIS provides at most four observations per day at a given location, this method was further evaluated using only four MSG-SEVIRI-derived LSTs corresponding to the MODIS overpass times (10:30, 13:30, 22:30, and 01:30 local solar time. The results show that the RMSE values using only four MSG-SEVIRI-derived LSTs are approximately two times larger than those using all LSTs. The spatial distribution of the modeled LSTs at the MODIS pixel scale is presented from 07:00 to 05:00 local solar time of the next day with an increment of 2 hours. The diurnal cycle of the modeled LSTs describes the temporal evolution of the LSTs at the MODIS pixel scale.

  15. Seasonal Changes of Precipitation and Temperature of Mountainous Watersheds in Future Periods with Approach of Fifth Report of Intergovernmental Panel on Climate Change (Case study: Kashafrood Watershed Basin

    Directory of Open Access Journals (Sweden)

    Amirhosein Aghakhani Afshar

    2017-01-01

    tests to detect climatic changes in time series and trend analysis. The second purpose of this study is to compare CMIP5 models with each other and determine the changes in rainfall and temperature in the future periods in compare with base period on seasonal scale in all parts of this basin. Materials and Methods: In this research, keeping in view the importance of precipitation and temperature parameters, fourteen models obtained from the General Circulation Models (GCMs of the newest generation in the Coupled Model Intercomparison Project Phase 5 (CMIP5 were used to forecast the future climate changes in the study area. In historical time (1992-2005, simulated data of these models were compared with observed data (34 rainfall and 12 temperature stations using four evaluation criteria for goodness-of-fit including Nash-Sutcliffe (NS, Percent of Bias (PBIAS, coefficient of determination (R2 and the ratio of the root mean square error to the standard deviation of measured data (RSR. Furthermore, all models have a very good rating performance for all of the evaluation criteria and therefore investigation is done for precipitation data as an important component in survey of climate subject to select the optimum models in kashafrood watershed basin. Results and Discussion: By comparing four evaluation criteria for fourteen models of CMIP5 during historical time, finally, four climate models, including GFDL-ESM2G, IPSL-CM5A-MR, MIROC-ESM and NorESM1-M which indicated more agreement with observed data according to the evaluation criteria were selected. Furthermore, four Representative Concentration Pathways (RCPs of new emission scenario, namely RCP2.6, RCP4.5, RCP6.0 and RCP8.5 were extracted, interpolated and then under three future periods, including near-century (2006-2037, mid-century (2037-2070 and late-century (2070-2100 were investigated and compered. Conclusions: The results of Mann-Kendall test which was applied to examine the trend, revealed that the precipitation

  16. Ecological and energy non-consuming technology for extending the freshness period of fish at positive temperatures and method for freshness control

    International Nuclear Information System (INIS)

    Mirza, Maria; Saros-Rogobete, Irina; Popescu, G. M.; Dobrin, D. N.; Cristescu, T. M.; Stefanescu, Ioan; Steflea, Dumitru; Titescu, Ghe.

    2001-01-01

    As medium of preservation, unsalted water i.e. distillated water, deuterium depleted water, de-ionized water or mixtures of these were used. The following performance are reported: - Freshness period is of 18-24 hours at 30 deg. C, 5-18 days at 5-15 deg. C and 20-30 days at 0-5 deg. C. The method of freshness control was the measurement of unconventional tissue energies. The technology is advantageous because it is ecological, uses natural materials (unsalted water), can by applied in case of energetic crisis and contributes to the preservation of ozone layer. The technology implies very low costs and also extends by 2-6 times the shelf time the fish is kept at positive temperatures comparing with classical refrigeration method. (authors)

  17. Periodic oxide cracking on Fe2.25Cr1Mo produced by high-temperature fatigue tests with a compression hold

    International Nuclear Information System (INIS)

    Hecht, R.L.; Weertman, J.R.

    1993-01-01

    Long, straight cracks perpendicular to the stress axis are seen on the oxidized surface of specimens of Fe2.25Cr1Mo cycled with a compressive hold at high temperatures. The cracks in the oxide are periodically spaced. They resemble cracks observed in a brittle film on a ductile substrate after a tension test of the substrate. They also resemble the parallel multiple fractures that occur in a brittle matrix of a composite with ductile fibers undergoing tension. The authors apply both the model of a brittle film on a ductile substrate and of the brittle matrix composite to explain the observed intercrack spacing. Cracks in the oxide film lead to localized oxidation of the metal in the region around their intersection with the oxide-metal interface. These cracks are seen to penetrate the metal. Stress concentrations from deep grooves that form during compression hold fatigue, together with crack initiation from the oxide, lead to a shortened cycle life

  18. The Kinetics of Joined Action of Triplet-Triplet Annihilation and First-Order Decay of Molecules in T1 State in the Case of Nondominant First-Order Process: The Kinetic Model in the Case of Spatially Periodic Excitation

    Directory of Open Access Journals (Sweden)

    Paweł Borowicz

    2013-01-01

    Full Text Available In this paper the model developed for estimation of the diffusion coefficient of the molecules in the triplet state is presented. The model is based on the intuitive modification of the Smoluchowski equation for the time-dependent rate parameter. Since the sample is irradiated with the spatially periodic pattern nonexponential effects can be expected in the areas of the constructive interference of the exciting laser beams. This nonexponential effects introduce changes in the observed kinetics of the diffusion-controlled triplet-triplet annihilation. Due to irradiation with so-called long excitation pulse these non-exponential effects are very weak, so they can be described with introducing very simple correction to the kinetic model described in the first paper of this series. The values of diffusion coefficient of anthracene are used to calculate the annihilation radius from the data for spatially homogeneous excitation.

  19. Effect of precursor solutions stirring on deep level defects concentration and spatial distribution in low temperature aqueous chemical synthesis of zinc oxide nanorods

    Directory of Open Access Journals (Sweden)

    Hatim Alnoor

    2015-08-01

    Full Text Available Hexagonal c-axis oriented zinc oxide (ZnO nanorods (NRs with 120-300 nm diameters are synthesized via the low temperature aqueous chemical route at 80 °C on silver-coated glass substrates. The influence of varying the precursor solutions stirring durations on the concentration and spatial distributions of deep level defects in ZnO NRs is investigated. Room temperature micro-photoluminesnce (μ-PL spectra were collected for all samples. Cathodoluminescence (CL spectra of the as-synthesized NRs reveal a significant change in the intensity ratio of the near band edge emission (NBE to the deep-level emission (DLE peaks with increasing stirring durations. This is attributed to the variation in the concentration of the oxygen-deficiency with increasing stirring durations as suggested from the X-ray photoelectron spectroscopy analysis. Spatially resolved CL spectra taken along individual NRs revealed that stirring the precursor solutions for relatively short duration (1-3 h, which likely induced high super saturation under thermodynamic equilibrium during the synthesis process, is observed to favor the formation of point defects moving towards the tip of the NRs. In contrary, stirring for longer duration (5-15 h will induce low super saturation favoring the formation of point defects located at the bottom of the NRs. These findings demonstrate that it is possible to control the concentration and spatial distribution of deep level defects in ZnO NRs by varying the stirring durations of the precursor solutions.

  20. The spatial distribution of temperature and oxygen deficiency in spark-plasma sintered superconducting Bi-based materials

    International Nuclear Information System (INIS)

    Govea-Alcaide, E.; Pérez-Fernández, J.E.; Machado, I.F.; Jardim, R.F.

    2014-01-01

    Pre-reacted powders of (Bi–Pb) 2 Sr 2 Ca 2 Cu 3 O 10+δ (Bi-2223) were consolidated by using the spark plasma sintering (SPS) technique under vacuum and at different consolidate temperatures T D . X-ray diffraction patterns revealed that the dominant phase in all SPS samples is the Bi-2223 phase, but traces of the Bi 2 Sr 2 CaCu 2 O 10+x (Bi-2212) phase were identified. We have found that the transport properties of SPS samples depend on their oxygen content because the SPS process is performed under vacuum. Simulations by using the finite element method (FEM) were performed for determining the actual temperature in which powders are consolidated. From these results we have inferred that SPS samples are oxygen deficient and such a deficiency is more marked near the grain boundaries, suggesting the occurrence of grains with core–shell morphology. We also argued that the width of the shell depends on the consolidation temperature, a feature corroborated by the FEM simulations

  1. Spatial and temporal distribution of the zoobenthos community during the filling up period of Porto Primavera Reservoir (Paraná River, Brazil

    Directory of Open Access Journals (Sweden)

    A. Jorcin

    Full Text Available This study is part of the limnological monitoring undertaken by the Energy Company of the State of São Paulo (CESP during the filling up process of the Porto Primavera Reservoir (Hydroelectric Power Plant Engenheiro Sérgio Motta. This reservoir, located in the high Paraná River between the States of São Paulo and Mato Grosso do Sul, is the fourth largest in the country. The first filling up phase started in December 1998 and the second phase in March 2001. Samples for benthic community and sediment characteristics analysis were quarterly collected between August of 1999 and November 2001 and also in August of 2002 (11 sampling campaigns. Samplings were carried out at 13 stations distributed in the reservoir, and at one point located downstream of the dam. 128 invertebrate taxa were identified, being Mollusca, Annelida, Insecta and Nematoda the dominant groups during almost the whole study period. Insecta was the best represented class (9 different orders, and Diptera contributed with higher number of taxa, 63. The exotic species of bivalve Corbicula fluminea was recorded in all sampling stations showing its great capacity to colonize new habitats in the neotropical region. Noticeable variations in the fauna density were observed, considering both different periods and locations. The maximum density of organisms (mean value of 7812 ind.m-2 was recorded in the center of the reservoir, and the minimum (mean value 9 ind.m-2 in the more lacustrine area near the dam. The greatest species richness per sample (24 taxa was observed in the reservoir upstream (fluvial zone. The maximum diversity (Shannon-Wiener Index per station/period, 3.82 and 3.86 bits.ind-1, were calculated in the transitional river/reservoir zone during the beginning (August 1999 and in the reservoir central zones in the end (August 2002 of the filling up period, respectively. There was no clear relation between the distribution of the different faunistic groups and the sediment

  2. Effects of low temperature periodic annealing on the deep-level defects in 200 keV proton irradiated AlGaAs-GaAs solar cells

    Science.gov (United States)

    Li, S. S.; Chiu, T. T.; Loo, R. Y.

    1981-01-01

    The GaAs solar cell has shown good potential for space applications. However, degradation in performance occurred when the cells were irradiated by high energy electrons and protons in the space environment. The considered investigation is concerned with the effect of periodic thermal annealing on the deep-level defects induced by the 200 keV protons in the AlGaAs-GaAs solar cells. Protons at a fluence of 10 to the 11th P/sq cm were used in the irradiation cycle, while annealing temperatures of 200 C (for 24 hours), 300 C (six hours), and 400 C (six hours) were employed. The most likely candidate for the E(c) -0.71 eV electron trap observed in the 200 keV proton irradiated samples may be due to GaAs antisite, while the observed E(v) +0.18 eV hole trap has been attributed to the gallium vacancy related defect. The obtained results show that periodic annealing in the considered case does not offer any advantages over the one time annealing process.

  3. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA

    Science.gov (United States)

    Balistrieri, L.S.; Tempel, R.N.; Stillings, L.L.; Shevenell, L.A.

    2006-01-01

    This paper examines the seasonal cycling of temperature and salinity in Dexter pit lake in arid northern Nevada, and describes an approach for modeling the physical processes that operate in such systems. The pit lake contains about 596,200 m3 of dilute, near neutral (pHs 6.7-9) water. Profiles of temperature, conductivity, and selected element concentrations were measured almost monthly during 1999 and 2000. In winter (January-March), the pit lake was covered with ice and bottom water was warmer (5.3 ??C) with higher total dissolved solids (0.298 g/L) than overlying water (3.96 ??C and 0.241 g/L), suggesting inflow of warm (11.7 ??C) groundwater with a higher conductivity than the lake (657 versus 126-383 ??S/cm). Seasonal surface inflow due to spring snowmelt resulted in lower conductivity in the surface water (232-247 ??S/cm) relative to deeper water (315-318 ??S/cm). The pit lake was thermally stratified from late spring through early fall, and the water column turned over in late November (2000) or early December (1999). The pit lake is a mixture of inflowing surface water and groundwater that has subsequently been evapoconcentrated in the arid environment. Linear relationships between conductivity and major and some minor (B, Li, Sr, and U) ions indicate conservative mixing for these elements. Similar changes in the elevations of the pit lake surface and nearby groundwater wells during the year suggest that the pit lake is a flow-through system. This observation and geochemical information were used to configure an one-dimensional hydrodynamics model (Dynamic Reservoir Simulation Model or DYRESM) that predicts seasonal changes in temperature and salinity based on the interplay of physical processes, including heating and cooling (solar insolation, long and short wave radiation, latent, and sensible heat), hydrologic flow (inflow and outflow by surface and ground water, pumping, evaporation, and precipitation), and transfers of momentum (wind stirring

  4. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA

    International Nuclear Information System (INIS)

    Balistrieri, Laurie S.; Tempel, Regina N.; Stillings, Lisa L.; Shevenell, Lisa A.

    2006-01-01

    This paper examines the seasonal cycling of temperature and salinity in Dexter pit lake in arid northern Nevada, and describes an approach for modeling the physical processes that operate in such systems. The pit lake contains about 596,200 m 3 of dilute, near neutral (pHs 6.7-9) water. Profiles of temperature, conductivity, and selected element concentrations were measured almost monthly during 1999 and 2000. In winter (January-March), the pit lake was covered with ice and bottom water was warmer (5.3 deg. C) with higher total dissolved solids (0.298 g/L) than overlying water (3.96 deg. C and 0.241 g/L), suggesting inflow of warm (11.7 deg. C) groundwater with a higher conductivity than the lake (657 versus 126-383 μS/cm). Seasonal surface inflow due to spring snowmelt resulted in lower conductivity in the surface water (232-247 μS/cm) relative to deeper water (315-318 μS/cm). The pit lake was thermally stratified from late spring through early fall, and the water column turned over in late November (2000) or early December (1999). The pit lake is a mixture of inflowing surface water and groundwater that has subsequently been evapoconcentrated in the arid environment. Linear relationships between conductivity and major and some minor (B, Li, Sr, and U) ions indicate conservative mixing for these elements. Similar changes in the elevations of the pit lake surface and nearby groundwater wells during the year suggest that the pit lake is a flow-through system. This observation and geochemical information were used to configure an one-dimensional hydrodynamics model (Dynamic Reservoir Simulation Model or DYRESM) that predicts seasonal changes in temperature and salinity based on the interplay of physical processes, including heating and cooling (solar insolation, long and short wave radiation, latent, and sensible heat), hydrologic flow (inflow and outflow by surface and ground water, pumping, evaporation, and precipitation), and transfers of momentum (wind

  5. Temperature Impacts the Development and Survival of Common Cutworm (Spodoptera litura: Simulation and Visualization of Potential Population Growth in India under Warmer Temperatures through Life Cycle Modelling and Spatial Mapping.

    Directory of Open Access Journals (Sweden)

    Babasaheb B Fand

    Full Text Available The common cutworm, Spodoptera litura, has become a major pest of soybean (Glycine max throughout its Indian range. With a changing climate, there is the potential for this insect to become an increasingly severe pest in certain regions due to increased habitat suitability. To examine this possibility, we developed temperature-based phenology model for S. litura, by constructing thermal reaction norms for cohorts of single life stages, at both constant and fluctuating temperatures within the ecologically relevant range (15-38°C for its development. Life table parameters were estimated stochastically using cohort updating and rate summation approach. The model was implemented in the geographic information system to examine the potential future pest status of S. litura using temperature change projections from SRES A1B climate change scenario for the year 2050. The changes were visualized by means of three spatial indices demonstrating the risks for establishment, number of generations per year and pest abundance according to the temperature conditions. The results revealed that the development rate as a function of temperature increased linearly for all the immature stages of S. litura until approximately 34-36°C, after which it became non-linear. The extreme temperature of 38°C was found lethal to larval and pupal stages of S. litura wherein no development to the next stage occurred. Females could lay no eggs at the extreme low (15°C and high (> 35°C test temperatures, demonstrating the importance of optimum temperature in determining the suitability of climate for the mating and reproduction in S. litura. The risk mapping predicts that due to temperature increase under future climate change, much of the soybean areas in Indian states like Madhya Pradesh, Maharashtra and Rajasthan, will become suitable for S. litura establishment and increased pest activity, indicating the expansion of the suitable and favourable areas over time. This has

  6. Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe

    Directory of Open Access Journals (Sweden)

    Margot Bador

    2015-09-01

    Full Text Available Reducing the dimensionality of the complex spatio-temporal variables associated with climate modeling, especially ensembles of climate models, is a challenging and important objective. For studies of detection and attribution, it is especially important to maintain information related to the extreme values of the atmospheric processes. Typical methods for data reduction involve summarizing climate model output information through means and variances, which does not preserve any information about the extremes. In order to help solve this challenge, a dependence summary measure appropriate for extreme values must be inferred. Here, we adapt one such measure from a recent study to a larger domain with a different variable and gridded data from observations and climate model ensembles, i.e. E-OBS observations and the CNRM-CM5 model. The handling of such ensembles of data is proposed, as well as a comparison of the spatial clusterings between two different ensembles, here a present-day and a future ensemble of climate simulations. This method yields valid information concerning extremes, while greatly reducing the data set.

  7. Lateralized delay period activity marks the focus of spatial attention in working memory: evidence from somatosensory event-related brain potentials.

    Science.gov (United States)

    Katus, Tobias; Eimer, Martin

    2015-04-29

    The short-term retention of sensory information in working memory (WM) is known to be associated with a sustained enhancement of neural activity. What remains controversial is whether this neural trace indicates the sustained storage of information or the allocation of attention. To evaluate the storage and attention accounts, we examined sustained tactile contralateral delay activity (tCDA component) of the event-related potential. The tCDA manifests over somatosensory cortex contralateral to task-relevant tactile information during stimulus retention. Two tactile sample sets (S1, S2) were presented sequentially, separated by 1.5 s. Each set comprised two stimuli, one per hand. Human participants memorized the location of one task-relevant stimulus per sample set and judged whether one of these locations was stimulated again at memory test. The two relevant pulses were unpredictably located on the same hand (stay trials) or on different hands (shift trials). Initially, tCDA components emerged contralateral to the relevant S1 pulse. Sequential loading of WM enhanced the tCDA after S2 was presented on stay trials. On shift trials, the tCDA's polarity reversed after S2 presentation, resulting in delay activity that was now contralateral to the task-relevant S2 pulse. The disappearance of a lateralized neural trace for the relevant S1 pulse did not impair memory accuracy for this stimulus on shift trials. These results contradict the storage account and suggest that delay period activity indicates the sustained engagement of an attention-based rehearsal mechanism. In conclusion, somatosensory delay period activity marks the current focus of attention in tactile WM. Copyright © 2015 the authors 0270-6474/15/356689-07$15.00/0.

  8. Spatial patterns of sea surface temperature influences on East African precipitation as revealed by empirical orthogonal teleconnections

    Directory of Open Access Journals (Sweden)

    Tim eAppelhans

    2016-02-01

    Full Text Available East Africa is characterized by a rather dry annual precipitation climatology with two distinct rainy seasons. In order to investigate sea surface temperature driven precipitation anomalies for the region we use the algorithm of empirical orthogonal teleconnection analysis as a data mining tool. We investigate the entire East African domain as well as 5 smaller sub-regions mainly located in areas of mountainous terrain. In searching for influential sea surface temperature patterns we do not focus any particular season or oceanic region. Furthermore, we investigate different time lags from zero to twelve months. The strongest influence is identified for the immediate (i.e. non-lagged influences of the Indian Ocean in close vicinity to the East African coast. None of the most important modes are located in the tropical Pacific Ocean, though the region is sometimes coupled with the Indian Ocean basin. Furthermore, we identify a region in the southern Indian Ocean around the Kerguelen Plateau which has not yet been reported in the literature with regard to precipitation modulation in East Africa. Finally, it is observed that not all regions in East Africa are equally influenced by the identified patterns.

  9. Surface Temperature Data Analysis

    Science.gov (United States)

    Hansen, James; Ruedy, Reto

    2012-01-01

    Small global mean temperature changes may have significant to disastrous consequences for the Earth's climate if they persist for an extended period. Obtaining global means from local weather reports is hampered by the uneven spatial distribution of the reliably reporting weather stations. Methods had to be developed that minimize as far as possible the impact of that situation. This software is a method of combining temperature data of individual stations to obtain a global mean trend, overcoming/estimating the uncertainty introduced by the spatial and temporal gaps in the available data. Useful estimates were obtained by the introduction of a special grid, subdividing the Earth's surface into 8,000 equal-area boxes, using the existing data to create virtual stations at the center of each of these boxes, and combining temperature anomalies (after assessing the radius of high correlation) rather than temperatures.

  10. Ferroan Dolomitization by Seawater Interaction with Mafic Igneous Dikes and Carbonate Host Rock at the Latemar Platform, Dolomites, Italy: Numerical Modeling of Spatial, Temporal, and Temperature Data

    Directory of Open Access Journals (Sweden)

    K. Blomme

    2017-01-01

    Full Text Available Numerous publications address the petrogenesis of the partially dolomitized Latemar carbonate platform, Italy. A common factor is interpretation of geochemical data in terms of heating via regional igneous activity that provided kinetically favorable conditions for replacement dolomitization. New field, petrographic, XRD, and geochemical data demonstrate a spatial, temporal, and geochemical link between replacement dolomite and local mafic igneous dikes that pervasively intrude the platform. Dikes are dominated by strongly altered plagioclase and clinopyroxene. Significantly, where ferroan dolomite is present, it borders dikes. We hypothesize that seawater interacted with mafic minerals, causing Fe enrichment in the fluid that subsequently participated in dolomitization. This hypothesis was tested numerically through thermodynamic (MELTS, Arxim-GEM and reactive flow (Arxim-LMA simulations. Results confirm that seawater becomes Fe-enriched during interaction with clinopyroxene (diopside-hedenbergite and plagioclase (anorthite-albite-orthoclase solid solutions. Reaction of modified seawater with limestone causes ferroan and nonferroan replacement dolomitization. Dolomite quantities are strongly influenced by temperature. At 40 to 80°C, ferroan dolomite proportions decrease with increasing temperature, indicating that Latemar dolomitization likely occurred at lower temperatures. This relationship between igneous dikes and dolomitization may have general significance due to the widespread association of carbonates with rifting-related igneous environments.

  11. Logarithmic spatial variations and universal f-1 power spectra of temperature fluctuations in turbulent Rayleigh-Bénard convection.

    Science.gov (United States)

    He, Xiaozhou; van Gils, Dennis P M; Bodenschatz, Eberhard; Ahlers, Guenter

    2014-05-02

    We report measurements of the temperature variance σ(2)(z,r) and frequency power spectrum P(f,z,r) (z is the distance from the sample bottom and r the radial coordinate) in turbulent Rayleigh-Bénard convection (RBC) for Rayleigh numbers Ra = 1.6 × 10(13) and 1.1 × 10(15) and for a Prandtl number Pr ≃ 0.8 for a sample with a height L = 224 cm and aspect ratio D/L=0.50 (D is the diameter). For z/L ≲ 0.1 σ(2)(z,r) was consistent with a logarithmic dependence on z, and there was a universal (independent of Ra, r, and z) normalized spectrum which, for 0.02 ≲ fτ(0) ≲ 0.2, had the form P(fτ(0)) = P(0)(fτ(0))(-1) with P(0) = 0.208 ± 0.008 a universal constant. Here τ(0) = sqrt[2R] where R is the radius of curvature of the temperature autocorrelation function C(τ) at τ = 0. For z/L ≃ 0.5 the measurements yielded P(fτ(0))∼(fτ(0))(-α) with α in the range from 3/2 to 5/3. All the results are similar to those for velocity fluctuations in shear flows at sufficiently large Reynolds numbers, suggesting the possibility of an analogy between the flows that is yet to be determined in detail.

  12. Spatial and temporal changes in leaf coloring date of Acer palmatum and Ginkgo biloba in response to temperature increases in South Korea.

    Science.gov (United States)

    Park, Chang-Kyun; Ho, Chang-Hoi; Jeong, Su-Jong; Lee, Eun Ju; Kim, Jinwon

    2017-01-01

    Understanding shifts in autumn phenology associated with climate changes is critical for preserving forest ecosystems. This study examines the changes in the leaf coloring date (LCD) of two temperate deciduous tree species, Acer palmatum (Acer) and Ginkgo biloba (Ginkgo), in response to surface air temperature (Ts) changes at 54 stations of South Korea for the period 1989-2007. The variations of Acer and Ginkgo in South Korea are very similar: they show the same mean LCD of 295th day of the year and delays of about 0.45 days year-1 during the observation period. The delaying trend is closely correlated (correlation coefficient > 0.77) with increases in Ts in mid-autumn by 2.8 days °C-1. It is noted that the LCD delaying and temperature sensitivity (days °C-1) for both tree species show negligible dependences on latitudes and elevations. Given the significant LCD-Ts relation, we project LCD changes for 2016-35 and 2046-65 using a process-based model forced by temperature from climate model simulation. The projections indicate that the mean LCD would be further delayed by 3.2 (3.7) days in 2016-35 (2046-65) due to mid-autumn Ts increases. This study suggests that the mid-autumn warming is largely responsible for the observed LCD changes in South Korea and will intensify the delaying trends in the future.

  13. Analysis of multi-scale spatial separation in a block-type thorium-loaded helium-cooled high-temperature reactor

    International Nuclear Information System (INIS)

    Huang, Jie; Ding, Ming

    2017-01-01

    Highlights: • Four-level of spatial separation is described in a block-type thorium-loaded HTR. • A traditional two-step calculation scheme is used to get the neutronic performance. • Fuel cycle cost is calculated by the levelised lifetime cost method. • Fuel cycle cost decreases with the increase of separation level or thorium content. • Effective enrichment basically determines the fuel cycle cost. - Abstract: With nuclear energy’s rapid development in recent years, supply of nuclear fuel has become increasingly important. Thorium has re-gained attention because of its abundant reserves and excellent physical properties. Compared to the homogeneous Th/U MOX fuel, separation of thorium and uranium in space is a better use of thorium. Therefore, this paper describes four-level spatial separation – no separation, tristructural-isotropic (TRISO) level, channel level and block level – in a block-type thorium-loaded helium-cooled high-temperature reactor (HTR). A traditional two-step calculation scheme, lattice calculation followed by core calculation, is used to get the neutronic performance of the equilibrium cycle, including uranium enrichment, mass of fuel, effective multiplication factor, and average conversion ratio. Based on these data, the fuel cycle cost of different-scale spatial separation can be calculated by the levelised lifetime cost method as a function of thorium content. As the separation level increases from no separation to channel level, the effective enrichment decreases 15% due to the increase of resonance escape probability. So there is a 13% drop for the fuel cycle cost. For TRISO-level separation, as the thorium content increases from 9 to 57%, the effective enrichment decreases 14% because of the superior breeding capacity of U-233. As a result, the fuel cycle cost also has about a 12% decrease. From the perspective of fuel cycle economics, channel-level separation with 60% thorium content is suggested.

  14. Simultaneous reconstruction of 3D refractive index, temperature, and intensity distribution of combustion flame by double computed tomography technologies based on spatial phase-shifting method

    Science.gov (United States)

    Guo, Zhenyan; Song, Yang; Yuan, Qun; Wulan, Tuya; Chen, Lei

    2017-06-01

    In this paper, a transient multi-parameter three-dimensional (3D) reconstruction method is proposed to diagnose and visualize a combustion flow field. Emission and transmission tomography based on spatial phase-shifted technology are combined to reconstruct, simultaneously, the various physical parameter distributions of a propane flame. Two cameras triggered by the internal trigger mode capture the projection information of the emission and moiré tomography, respectively. A two-step spatial phase-shifting method is applied to extract the phase distribution in the moiré fringes. By using the filtered back-projection algorithm, we reconstruct the 3D refractive-index distribution of the combustion flow field. Finally, the 3D temperature distribution of the flame is obtained from the refractive index distribution using the Gladstone-Dale equation. Meanwhile, the 3D intensity distribution is reconstructed based on the radiation projections from the emission tomography. Therefore, the structure and edge information of the propane flame are well visualized.

  15. Microclimatic temperatures at Danish cattle farms, 2000-2016: quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus.

    Science.gov (United States)

    Haider, Najmul; Cuellar, Ana Carolina; Kjær, Lene Jung; Sørensen, Jens Havskov; Bødker, Rene

    2018-03-05

    Microclimatic temperatures provide better estimates of vector-borne disease transmission parameters than standard meteorological temperatures, as the microclimate represent the actual temperatures to which the vectors are exposed. The objectives of this study were to quantify farm-level geographic variations and temporal patterns in the extrinsic incubation period (EIP) of Schmallenberg virus transmitted by Culicoides in Denmark through generation of microclimatic temperatures surrounding all Danish cattle farms. We calculated the hourly microclimatic temperatures at potential vector-resting sites within a 500 m radius of 22,004 Danish cattle farms for the months April to November from 2000 to 2016. We then modeled the daily EIP of Schmallenberg virus at each farm, assuming vectors choose resting sites either randomly or based on temperatures (warmest or coolest available) every hour. The results of the model output are presented as 17-year averages. The difference between the warmest and coolest microhabitats at the same farm was on average 3.7 °C (5th and 95th percentiles: 1.0 °C to 7.8 °C). The mean EIP of Schmallenberg virus (5th and 95th percentiles) for all cattle farms during spring, summer, and autumn was: 23 (18-33), 14 (12-18) and 51 (48-55) days, respectively, assuming Culicoides select resting sites randomly. These estimated EIP values were considerably shorter than those estimated using standard meteorological temperatures obtained from a numerical weather prediction model for the same periods: 43 (39-52), 21 (17-24) and 57 (55-58) days, respectively. When assuming that vectors actively select the coolest resting sites at a farm, the EIP was 2.3 (range: 1.1 to 4.1) times longer compared to that of the warmest sites at the same farm. We estimated a wide range of EIP in different microclimatic habitats surrounding Danish cattle farms, stressing the importance of identifying the specific resting sites of vectors when modeling vector-borne disease

  16. Impact of Continuous Cropping on the Diurnal Range of Dew Point Temperature during the Foliar Expansion Period of Annual Crops on the Canadian Prairies

    Directory of Open Access Journals (Sweden)

    Bharat M. Shrestha

    2016-01-01

    Full Text Available It is important to increase our knowledge of the role of land use in changing the regional climate. This study asked, “Has the increase in continuous cropping over the past 50 years on the Canadian Prairies influenced the daily mean and range of morning dew point temperatures (Td during the foliar expansion period (from mid-June to mid-July of annual field crops?” We found that there has been a general increase in the decadal average of mean daily Td and in the range of morning Td from the 1960s to the 2000s. The increase in the observed range of Td between the daily minimum value, which typically occurs near sunrise, and the late morning peak was found to be related to the increase in annual crop acreage and consequent decrease in summerfallow area. The relationship was more significant in the subhumid climatic zone than in the semiarid climatic zone, and it was influenced by whether the region was experiencing either wet, normal, or dry conditions.

  17. Dependence of trapped-flux-induced surface resistance of a large-grain Nb superconducting radio-frequency cavity on spatial temperature gradient during cooldown through T_{c}

    Directory of Open Access Journals (Sweden)

    Shichun Huang

    2016-08-01

    Full Text Available Recent studies by Romanenko et al. revealed that cooling down a superconducting cavity under a large spatial temperature gradient decreases the amount of trapped flux and leads to reduction of the residual surface resistance. In the present paper, the flux expulsion ratio and the trapped-flux-induced surface resistance of a large-grain cavity cooled down under a spatial temperature gradient up to 80  K/m are studied under various applied magnetic fields from 5 to 20  μT. We show the flux expulsion ratio improves as the spatial temperature gradient increases, independent of the applied magnetic field: our results support and enforce the previous studies. We then analyze all rf measurement results obtained under different applied magnetic fields together by plotting the trapped-flux-induced surface resistance normalized by the applied magnetic field as a function of the spatial temperature gradient. All the data can be fitted by a single curve, which defines an empirical formula for the trapped-flux-induced surface resistance as a function of the spatial temperature gradient and applied magnetic field. The formula can fit not only the present results but also those obtained by Romanenko et al. previously. The sensitivity r_{fl} of surface resistance from trapped magnetic flux of fine-grain and large-grain niobium cavities and the origin of dT/ds dependence of R_{fl}/B_{a} are also discussed.

  18. Spatially resolved ozone densities and gas temperatures in a time modulated RF driven atmospheric pressure plasma jet: an analysis of the production and destruction mechanisms

    International Nuclear Information System (INIS)

    Zhang Shiqiang; Van Gessel, Bram; Hofmann, Sven; Van Veldhuizen, Eddie; Bruggeman, Peter; Van Gaens, Wouter; Bogaerts, Annemie

    2013-01-01

    In this work, a time modulated RF driven DBD-like atmospheric pressure plasma jet in Ar + 2%O 2 , operating at a time averaged power of 6.5 W is investigated. Spatially resolved ozone densities and gas temperatures are obtained by UV absorption and Rayleigh scattering, respectively. Significant gas heating in the core of the plasma up to 700 K is found and at the position of this increased gas temperature a depletion of the ozone density is found. The production and destruction reactions of O 3 in the jet effluent as a function of the distance from the nozzle are obtained from a zero-dimensional chemical kinetics model in plug flow mode which considers relevant air chemistry due to air entrainment in the jet fluent. A comparison of the measurements and the models show that the depletion of O 3 in the core of the plasma is mainly caused by an enhanced destruction of O 3 due to a large atomic oxygen density. (paper)

  19. Spatial gradients of temperature, accumulation and δ18O-ice in Greenland over a series of Dansgaard–Oeschger events

    Directory of Open Access Journals (Sweden)

    M. Guillevic

    2013-05-01

    Full Text Available Air and water stable isotope measurements from four Greenland deep ice cores (GRIP, GISP2, NGRIP and NEEM are investigated over a series of Dansgaard–Oeschger events (DO 8, 9 and 10, which are representative of glacial millennial scale variability. Combined with firn modeling, air isotope data allow us to quantify abrupt temperature increases for each drill site (1σ = 0.6 °C for NEEM, GRIP and GISP2, 1.5 °C for NGRIP. Our data show that the magnitude of stadial–interstadial temperature increase is up to 2 °C larger in central and North Greenland than in northwest Greenland: i.e., for DO 8, a magnitude of +8.8 °C is inferred, which is significantly smaller than the +11.1 °C inferred at GISP2. The same spatial pattern is seen for accumulation increases. This pattern is coherent with climate simulations in response to reduced sea-ice extent in the Nordic seas. The temporal water isotope (δ18O–temperature relationship varies between 0.3 and 0.6 (±0.08 ‰ °C−1 and is systematically larger at NEEM, possibly due to limited changes in precipitation seasonality compared to GISP2, GRIP or NGRIP. The gas age−ice age difference of warming events represented in water and air isotopes can only be modeled when assuming a 26% (NGRIP to 40% (GRIP lower accumulation than that derived from a Dansgaard–Johnsen ice flow model.

  20. Application of Thomson scattering at 1.06μm as a diagnostic for spatial profile measurements of electron temperature and density on the TCV tokamak

    International Nuclear Information System (INIS)

    Franke, S.

    1997-04-01

    The variable configuration tokamak, TCV, in operation at CRPP since the end of 1991, is a particularly challenging machine with regard to the experimental system that must provide essential information regarding properties of confined plasmas with strongly shaped, non-circular cross-sections. The importance of the energy confinement issue in a machine designed specifically for the investigation of the effect of plasma shape on confinement and stability is self-evident, as is the necessity for a diagnostic capable of providing the profiles of electron temperature and density required for evaluation of this confinement. For TCV, a comprehensive Thomson Scattering (TS) diagnostic was the natural choice, specifically owing to the resulting spatially localized and time resolved measurement. The details of the system installed on TCV, together with the results obtained from the diagnostic comprise the subject matter of this thesis. A first version of the diagnostic was equipped with only ten observation volumes. In this case, adequate spatial resolution can only be maintained if measurements are limited to plasmas located in the upper half of the highly elongated TCV vacuum vessel. The system has recently been upgraded through the addition of a further fifteen observation volumes, together with major technical improvements in the scattered light detection system. This new version now permits TS observations in all TCV plasma configurations, including equilibria produced in the lower and upper halves of the vacuum vessel and the highly elongated plasmas now routinely created. Whilst a description of the new detection system along with some results obtained using the extended set of observation volumes are included, this thesis reports principally on the hardware details of and the interpretation of data from the original, ten observation volume system. (author) figs., tabs., 75 refs

  1. Status of reactor physics activities on cross section generation and functionalization for the prismatic very high temperature reactor, and development of spatially-heterogeneous codes

    International Nuclear Information System (INIS)

    Lee, C. H.; Zhong, Z.; Taiwo, T. A.; Yang, W. S.; Smith, M. A.; Palmiotti, G.

    2006-01-01

    by using the discontinuity factors along with the nodal cross sections. In order to efficiently manage the cross section generation procedures, the X-MANAGER toolkit has been developed, with its functions programmed with UNIX shell commands. The toolkit helps to (1) submit multiple DRAGON jobs for different temperature conditions, (2) merge many ISOTXS files into one ISOTAB file, (3) generate reflector cross sections by executing DRAGON and an auxiliary finite difference code for the 1-D fuel-reflector model, (4) create delta-macroscopic cross sections for control rods comparing un-rodded and rodded ISOTAB files, and so on. In the future, the X-MANAGER toolkit will be extended with more functions for an advanced level of automation. The parallel development of spatially heterogeneous codes is being pursued under other USDOE and international programs. The status of two of these codes (UNIC and DeCART), being leveraged by this project, was reviewed in this work. It was found that much effort is required before these codes can be used for routine evaluations of the prismatic VHTR design

  2. Temperature, productivity and sediment characteristics as drivers of seasonal and spatial variations of dissolved methane in the near-shore coastal areas (Belgian coastal zone, North Sea)

    Science.gov (United States)

    Borges, Alberto V.; Speeckaert, Gaëlle; Champenois, Willy; Scranton, Mary I.; Gypens, Nathalie

    2017-04-01

    The open ocean is a modest source of CH4 to the atmosphere compared to other natural and anthropogenic CH4 emissions. Coastal regions are more intense sources of CH4 to the atmosphere than open oceanic waters, in particular estuarine zones. The CH4 emission to the atmosphere from coastal areas is sustained by riverine inputs and methanogenesis in the sediments due to high organic matter (OM) deposition. Additionally, natural gas seeps are sources of CH4 to bottom waters leading to high dissolved CH4 concentrations in bottom waters (from tenths of nmol L-1 up to several µmol L-1). We report a data set of dissolved CH4 concentrations obtained at nine fixed stations in the Belgian coastal zone (Southern North Sea), during one yearly cycle, with a bi-monthly frequency in spring, and a monthly frequency during the rest of the year. This is a coastal area with multiple possible sources of CH4 such as from rivers and gassy sediments, and where intense phytoplankton blooms are dominated by the high dimethylsulfoniopropionate (DMSP) producing micro-algae Phaeocystis globosa, leading to DMSP and dimethylsulfide (DMS) concentrations. Furthermore, the BCZ is a site of important OM sedimentation and accumulation unlike the rest of the North Sea. Spatial variations of dissolved CH4 concentrations were very marked with a minimum yearly average of 9 nmol L-1 in one of the most off-shore stations and maximum yearly average of 139 nmol L-1 at one of the most near-shore stations. The spatial variations of dissolved CH4 concentrations were related to the organic matter (OM) content of sediments, although the highest concentrations seemed to also be related to inputs of CH4 from gassy sediments associated to submerged peat. In the near-shore stations with fine sand or muddy sediments with a high OM content, the seasonal cycle of dissolved CH4 concentration closely followed the seasonal cycle of water temperature, suggesting the control of methanogenesis by temperature in these OM

  3. Evolution of periodicity in periodical cicadas.

    Science.gov (United States)

    Ito, Hiromu; Kakishima, Satoshi; Uehara, Takashi; Morita, Satoru; Koyama, Takuya; Sota, Teiji; Cooley, John R; Yoshimura, Jin

    2015-09-14

    Periodical cicadas (Magicicada spp.) in the USA are famous for their unique prime-numbered life cycles of 13 and 17 years and their nearly perfectly synchronized mass emergences. Because almost all known species of cicada are non-periodical, periodicity is assumed to be a derived state. A leading hypothesis for the evolution of periodicity in Magicicada implicates the decline in average temperature during glacial periods. During the evolution of periodicity, the determinant of maturation in ancestral cicadas is hypothesized to have switched from size dependence to time (period) dependence. The selection for the prime-numbered cycles should have taken place only after the fixation of periodicity. Here, we build an individual-based model of cicadas under conditions of climatic cooling to explore the fixation of periodicity. In our model, under cold environments, extremely long juvenile stages lead to extremely low adult densities, limiting mating opportunities and favouring the evolution of synchronized emergence. Our results indicate that these changes, which were triggered by glacial cooling, could have led to the fixation of periodicity in the non-periodical ancestors.

  4. Seasonal sea surface temperature contrast between the Holocene and last glacial period in the western Arabian Sea (Ocean Drilling Project Site 723A): Modulated by monsoon upwelling

    Digital Repository Service at National Institute of Oceanography (India)

    Naidu, P.D.; Malmgren, B.A.

    Annual, summer, and winter sea surface temperatures (SSTs) in the western Arabian Sea were reconstructed through the last 22 kyr using artificial neural networks (ANNs) based on quantitative analyses of planktic foraminifera. Down-core SST estimates...

  5. NADH oxidase activity (NOX) and enlargement of HeLa cells oscillate with two different temperature-compensated period lengths of 22 and 24 minutes corresponding to different NOX forms

    Science.gov (United States)

    Wang, S.; Pogue, R.; Morre, D. M.; Morre, D. J.

    2001-01-01

    NOX proteins are cell surface-associated and growth-related hydroquinone (NADH) oxidases with protein disulfide-thiol interchange activity. A defining characteristic of NOX proteins is that the two enzymatic activities alternate to generate a regular period length of about 24 min. HeLa cells exhibit at least two forms of NOX. One is tumor-associated (tNOX) and is inhibited by putative quinone site inhibitors (e.g., capsaicin or the antitumor sulfonylurea, LY181984). Another is constitutive (CNOX) and refractory to inhibition. The periodic alternation of activities and drug sensitivity of the NADH oxidase activity observed with intact HeLa cells was retained in isolated plasma membranes and with the solubilized and partially purified enzyme. At least two activities were present. One had a period length of 24 min and the other had a period length of 22 min. The lengths of both the 22 and the 24 min periods were temperature compensated (approximately the same when measured at 17, 27 or 37 degrees C) whereas the rate of NADH oxidation approximately doubled with each 10 degrees C rise in temperature. The rate of increase in cell area of HeLa cells when measured by video-enhanced light microscopy also exhibited a complex period of oscillations reflective of both 22 and 24 min period lengths. The findings demonstrate the presence of a novel oscillating NOX activity at the surface of cancer cells with a period length of 22 min in addition to the constitutive NOX of non-cancer cells and tissues with a period length of 24 min.

  6. A collection of sub-daily pressure and temperature observations for the early instrumental period with a focus on the “year without a summer” 1816

    Czech Academy of Sciences Publication Activity Database

    Brugnara, Y.; Auchmann, R.; Broennimann, S.; Allan, R. J.; Auer, I.; Barriendos, M.; Bergström, H.; Bhend, J.; Brázdil, Rudolf; Compo, G. S.; Cornes, R. C.; Dominguez-Castro, F.; van Engelen, A. F. V.; Filipiak, J.; Holopainen, J.; Jourdain, S.; Kunz, M.; Luterbacher, J.; Maugeri, M.; Mercalli, L.; Moberg, A.; Mock, C. J.; Pichard, G.; Řezníčková, Ladislava; van der Schrier, G.; Slonosky, V.; Ustrnul, Z.; Valente, M. A.; Wypych, A.; Yin, X.

    2015-01-01

    Roč. 11, č. 8 (2015), s. 1027-1047 ISSN 1814-9324 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : daily-air temperature * sea-level pressure * volcanic eruptions * climate Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.638, year: 2015

  7. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments.

  8. Gas-cooled reactor programs: high-temperature gas-cooled reactor technology development program. Annual progress report for period ending December 31, 1981

    International Nuclear Information System (INIS)

    1982-06-01

    Information is presented concerning HTGR chemistry; fueled graphite development; irradiation services for General Atomic Company; prestressed concrete pressure vessel development; HTGR structural materials; graphite development; high-temperature reactor physics studies; shielding studies; component flow test loop studies; core support performance test; and application and project assessments

  9. Spatial synchrony in cisco recruitment

    Science.gov (United States)

    Myers, Jared T.; Yule, Daniel L.; Jones, Michael L.; Ahrenstorff, Tyler D.; Hrabik, Thomas R.; Claramunt, Randall M.; Ebener, Mark P.; Berglund, Eric K.

    2015-01-01

    We examined the spatial scale of recruitment variability for disparate cisco (Coregonus artedi) populations in the Great Lakes (n = 8) and Minnesota inland lakes (n = 4). We found that the scale of synchrony was approximately 400 km when all available data were utilized; much greater than the 50-km scale suggested for freshwater fish populations in an earlier global analysis. The presence of recruitment synchrony between Great Lakes and inland lake cisco populations supports the hypothesis that synchronicity is driven by climate and not dispersal. We also found synchrony in larval densities among three Lake Superior populations separated by 25–275 km, which further supports the hypothesis that broad-scale climatic factors are the cause of spatial synchrony. Among several candidate climate variables measured during the period of larval cisco emergence, maximum wind speeds exhibited the most similar spatial scale of synchrony to that observed for cisco. Other factors, such as average water temperatures, exhibited synchrony on broader spatial scales, which suggests they could also be contributing to recruitment synchrony. Our results provide evidence that abiotic factors can induce synchronous patterns of recruitment for populations of cisco inhabiting waters across a broad geographic range, and show that broad-scale synchrony of recruitment can occur in freshwater fish populations as well as those from marine systems.

  10. Temperature sensisivity of long-period gratings inscribed with a CO.sub.2./sub. laser in optical fiber with graded-index cladding

    Czech Academy of Sciences Publication Activity Database

    Chomát, Miroslav; Čtyroký, Jiří; Berková, Daniela; Matějec, Vlastimil; Kaňka, Jiří; Skokánková, Jana; Todorov, Filip; Jančárek, A.; Bittner, P.

    2006-01-01

    Roč. 119, č. 2 (2006), s. 642-650 ISSN 0925-4005 R&D Projects: GA ČR(CZ) GA102/03/0475; GA MŠk(CZ) OC 288.001 Institutional research plan: CEZ:AV0Z20670512 Keywords : temperature * fibre optic sensors * optical fibre s * refractive index * diffraction gratings Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.331, year: 2006

  11. The Effect of MHD on Free Convection with Periodic Temperature and Concentration in the Presence of Thermal Radiation and Chemical Reaction

    Directory of Open Access Journals (Sweden)

    Zigta B.

    2017-12-01

    Full Text Available This paper studies the effect of magneto hydrodynamics on unsteady free convection between a pair of infinite vertical Couette plates. The temperature of the plates and concentration between the plates vary with time. Convection between the plates is considered in the presence of thermal radiation and chemical reaction. The solution is obtained using perturbation techniques. These techniques are used to transform nonlinear coupled partial differential equations to a system of ordinary differential equations. The resulting equations are solved analytically. The solution is expressed in terms of power series with some small parameter. The effect of various parameters, viz., velocity, temperature and concentration, has been discussed. Mat lab code simulation study is carried out to support the theoretical results. The result shows that as the thermal radiation parameter R increases, the temperature decreases near the moving porous plate while it approaches to a zero in the region close to the boundary layer of the stationary plate. Moreover, as the modified Grashof number, i.e., based on concentration difference, increases, the velocity of the fluid flow increases hence the concentration decreases. An increase in both the chemical reaction parameter and Schmidt number results in decreased concentration.

  12. Significance and development of the utilization of brown coal high temperature coke in the economy of the GDR for the period 1964 to 1974

    Energy Technology Data Exchange (ETDEWEB)

    Klose, E.; Heschel, W.

    1979-01-01

    Brown coal high temperature coke production in GDR in the years since 1964 is described. In 1969 the second large brown coal high temperature coking plant, Schwarze Pumpe, went into operation, increasing the total brown coal high temperature coke production to 2 million tons annually. Utilization of the coke size classes in mm from 0-3.15, 3.15-20, 20-31.5, 31.5-45 and greater than 45 mm in the metallurgical, chemical, and energy industries as well as for household heating is shown with figures from 1964, 1970 and 1974. The increasing use of coke in households partly as briquet substitution is also shown (in 1970 42% of the coke was used in households). The substitution of black coal coke by brown coal coke in additional fields of industrial production was also further advanced. Coke production at the Schwarze Pumpe plant is scheduled to increase to 1.6 million tons by 1985 by means of the application of improved coking technologies. Investigations for future industrial solutions to the following coking problems are being conducted: processing coke fines (which make up 10 to 12% of the total produced coke) by briquetting with binders into formed coke, firing coke fines in blast furnaces and power plants, mixed briquetting of coke fines with limestone for carbide production and mixed briquetting of coke and ore fines for metallurgical purposes. (8 refs.) (In German)

  13. Determination of properties of high temperature superconductors and amorphous metallic alloys using positron annihilation techniques. Final report for the period 15 January 1992 - 15 July 1995

    International Nuclear Information System (INIS)

    Kristiak, J.

    1995-11-01

    The positron lifetime results obtained on amorphous thermally treated Ni 25 Zr 55 Al 20 alloy indicate that positrons annihilate at places with different properties. The observed shifts of positron lifetime distribution were analyzed in the terms of a relaxation of free-volume, i.e. chemical (CSRO) and topological (TSRO) short range ordering. The upper limit of the activation energy of CSRO and TSRO relaxation was determined to be 2.2eV and 2.6eV, respectively. Positron lifetime τ and Doppler broadening of the annihilation line measurements on very pure C 60 sample as a function of temperature between 120 and 300 K have been reported. A rapid change of τ was observed between 240 and 250 K. This results indicate that the lattice from C 60 molecules is undergoing a phase transition and the phases coexist over an ∼ 10K range. The annihilation of positrons in amorphous tetramethylpoly-carbonate has been investigated in the temperature range from 30 to 300 K. The observed dependences of the mean lifetime of oPs and its relative intensity 1 on temperature were interpreted within the framework of the microstructural free-volume concept. The man radius of free space (hole) was deduced to be around 3,1.10 -10 m. Refs, figs, tabs

  14. Effect of dietary organic selenium and zinc on the internal egg quality of quail eggs for different periods and under different temperatures

    Directory of Open Access Journals (Sweden)

    IB Fernandez

    2011-03-01

    Full Text Available The objective of this study was to evaluate the internal quality of eggs of Japanese quails fed diets supplemented with chelated selenium and zinc. The experiment was carried out for 120 days, and 144 birds were divided in random blocks into four treatments (control; 0.3 ppm Se; 60 ppm Zn and 0.3 ppm Se + 60 ppm Zn. Ten, 14, 18, and 22 weeks after the beginning of lay, eggs were collected and stored under two different temperatures (environmental temperature or refrigeration and for 10, 20, and 30 days. Eggs were analyzed for: Haugh units (HU, albumen height (AH, yolk index (YI, and albumen index (AI. Parameters were only statistically influenced by the interaction between dietary treatment and storage time. It was concluded that the addition of organic Se and Zn influenced internal egg quality when eggs were stored up to 20 days, independently of storage temperature, suggesting that the combined supplementation of organic Se and Zn improve internal egg quality and extend egg shelf life.

  15. The Effect of MHD on Free Convection with Periodic Temperature and Concentration in the Presence of Thermal Radiation and Chemical Reaction

    Science.gov (United States)

    Zigta, B.; Koya, P. R.

    2017-12-01

    This paper studies the effect of magneto hydrodynamics on unsteady free convection between a pair of infinite vertical Couette plates. The temperature of the plates and concentration between the plates vary with time. Convection between the plates is considered in the presence of thermal radiation and chemical reaction. The solution is obtained using perturbation techniques. These techniques are used to transform nonlinear coupled partial differential equations to a system of ordinary differential equations. The resulting equations are solved analytically. The solution is expressed in terms of power series with some small parameter. The effect of various parameters, viz., velocity, temperature and concentration, has been discussed. Mat lab code simulation study is carried out to support the theoretical results. The result shows that as the thermal radiation parameter R increases, the temperature decreases near the moving porous plate while it approaches to a zero in the region close to the boundary layer of the stationary plate. Moreover, as the modified Grashof number, i.e., based on concentration difference, increases, the velocity of the fluid flow increases hence the concentration decreases. An increase in both the chemical reaction parameter and Schmidt number results in decreased concentration.

  16. Spatial and temporal Teleconnections of Sea Surface Temperature and Ocean Indices to regional Climate Variations across Thailand - a Pathway to understanding the Impact of Climate Change on Water Resources

    Science.gov (United States)

    Bejranonda, Werapol; Koch, Manfred

    2010-05-01

    (ENSO) events in the Pacific Ocean, if such teleconnections exist, one would have would have a powerful tool at hand to forecast extreme seasonal climate pattern across Thailand over a limited time period. Eventually, such a predictive tool would help to better manage the availability and adequate supply of surface water resources to the various water users in this country. In the present study the spatial and temporal relationships between the global climate circulation system and the regional weather in Thailand are assessed by various techniques of stochastic time series analysis. More specifically, the time series of the sea surface temperature (SST) and various ocean indices of the Pacific and the Indian Oceans, as well as the time series of 121 meteorological stations from 5 regions across Thailand which include humidity, evaporation, temperature and rainfall during 1950-2007 are examined using autocorrelation, ARIMA, Wavelet Transform methods. Possible teleconnections between the behaviour of the ocean states and the climate variations at meteorological stations in eastern Thailand which frequently suffers from water shortage problems are analyzed using regression, cross-correlation and the Wavelet cross-correlation method. In addition to the time series of the observed ocean and meteorological variables, 1961-2000 CGCM3 predictors of the macro-scale regional climate variations for this study area are analyzed by the methods above and correlated with the ocean indices as well. Rainfall and temperatures at selected stations are forecasted up to year 2007 using the teleconnection- relationships found by multiple linear regression with the CGCM3 predictors. In addition, autoregressive integrated moving average (ARIMA) models of these climate variable are set up that are eventually extended to include the ocean indices as external regressors. The results of these various statistical techniques show that the El-Niño 1.2 SST anomaly indice of the Pacific Ocean, which

  17. Reward or its denial during the neonatal period affects adult spatial memory and hippocampal phosphorylated cAMP response element-binding protein levels of both the neonatal and adult rat.

    Science.gov (United States)

    Diamantopoulou, A; Stamatakis, A; Panagiotaropoulos, T; Stylianopoulou, F

    2011-05-05

    Early life experiences, particularly mother-infant interactions, have been shown to influence adult coping and learning abilities via gene-environment interactions. We have developed a paradigm, in which mother contact is used as either a positive or a negative reinforcer in a T-maze, during postnatal days 10-13. In both neonates receiving (RER) or denied (DER) the expected reward, exposure to the memory test in the absence of the mother resulted in a remarkable increase in the number of pCREB immunopositive cells, when compared to their corresponding levels 2 h after the completion of the training process, but also to the levels of naïve animals. In the CA3 area, the pattern of pCREB immunoreactivity, when evaluated 2 h after the completion of the training on postnatal day 13 seemed to distinguish between the two different neonatal experiences in the T-maze, with the DER pups showing higher levels of pCREB immunopositive cells than the RER. Exposure to the Morris Water Maze (MWM) during adulthood revealed a memory advantage of the DER animals compared to the RER and the animals not exposed to the neonatal experience. Relevantly, in the DER animals an increased number of pCREB immunopositive cells was observed in the CA3 area even 24 h after the end of MWM training. When also measured after exposure to the probe trial, the number of pCREB immunopositive cells was again higher in the DER compared to the RER animals. In conclusion, we show that a learning experience involving discrepancy during the particularly plastic neonatal period is able to induce long-term effects, which result in enhanced adult hippocampal dependent spatial memory. Furthermore, our data document a role of plasticity molecules like pCREB in mediating hippocampal dependent learning and detection of novelty not only in adulthood, but also more importantly in the neonatal period of the rat. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Periodic nanostructures imprinted on high-temperature stable sol–gel films by ultraviolet-based nanoimprint lithography for photovoltaic and photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Back, Franziska [Schott AG, Research and Technology Development, Hattenbergstraße 10, 55122 Mainz (Germany); Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg (Germany); Bockmeyer, Matthias; Rudigier-Voigt, Eveline [Schott AG, Research and Technology Development, Hattenbergstraße 10, 55122 Mainz (Germany); Löbmann, Peer [Fraunhofer-Institut für Silicatforschung ISC, Neunerplatz 2, 97082 Würzburg (Germany)

    2014-07-01

    Nanostructured sol–gel films with high-temperature stability are used in the area of electronics, photonics or biomimetic materials as light-trapping architectures in solar cells, displays, waveguides or as superhydrophobic surfaces with a lotus effect. In this work, high-temperature stable 2-μm nanostructured surfaces were prepared by ultraviolet-based nanoimprint lithography using an alkoxysilane binder incorporating modified silica nanoparticles. Material densification during thermal curing and microstructural evolution which are destined for a high structural fidelity of nanostructured films were investigated in relation to precursor chemistry, particle morphology and particle content of the imprint resist. The mechanism for densification and shrinkage of the films was clarified and correlated with the structural fidelity to explain the influence of the geometrical design on the optical properties. A high internal coherence of the microstructure of the nanostructured films results in a critical film thickness of > 5 μm. The structured glassy layers with high inorganic content show thermal stability up to 800 °C and have a high structural fidelity > 90% with an axial shrinkage of 16% and a horizontal shrinkage of 1%. This material allows the realization of highly effective light-trapping architectures for polycrystalline silicon thin-film solar cells on glass but also for the preparation of 2D photonic crystals for telecommunication wavelengths. - Highlights: • Fundamental research • Hybrid sol–gel material with high-temperature stability and contour accuracy • Ensuring of cost-efficient and industrially feasible processing • Application in photonic and photovoltaic.

  19. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness

    OpenAIRE

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-01-01

    In this paper, a simple and controllable ?wet pulse annealing? technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150??C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1?s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics rev...

  20. Growth of high phase-match temperature LiNbO3 single crystals. Annual report for period ending March 15, 1978

    International Nuclear Information System (INIS)

    Kway, W.L.; Feigelson, R.S.

    1978-09-01

    LiNbO 3 crystal with T/sub pm/ greater than or equal to 180 0 C together with excellent phase matching characteristics and a high degree of optical homogeneity can be grown by the Czochralski technique with the following set of growth parameters: a melt composition of .54 Li 2 O/.46 Nb 2 O 5 doped with 1.0 mole % MgO; a growth rate of 2 mm/hr or less; positive axial and radial temperature gradients; and a crystal rotation rate of 50 rpm or higher to provide for a planar solid-liquid growth interface

  1. Influences of wildfire and channel reorganization on spatial and temporal variation in stream temperature and the distribution of fish and amphibians

    Science.gov (United States)

    Jason B. Dunham; Amanda E. Rosenberger; Charlie H. Luce; Bruce E. Rieman

    2007-01-01

    Wildfire can influence a variety of stream ecosystem properties. We studied stream temperatures in relation to wildfire in small streams in the Boise River Basin, located in central Idaho, USA. To examine the spatio-temporal aspects of temperature in relation to wildfire, we employed three approaches: a pre­post fire comparison of temperatures between two sites (one...

  2. Problem Periods

    Science.gov (United States)

    ... ovary syndrome. Read our information on PCOS for teens , and see your doctor if you think you may have PCOS. Major weight loss. Girls who have anorexia will often stop having periods. When to see ...

  3. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness.

    Science.gov (United States)

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-05-20

    In this paper, a simple and controllable "wet pulse annealing" technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm(2) V(-1) s(-1); Ion/Ioff ratio ≈ 10(8); reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances.

  4. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness

    Science.gov (United States)

    Kim, Ye Kyun; Ahn, Cheol Hyoun; Yun, Myeong Gu; Cho, Sung Woon; Kang, Won Jun; Cho, Hyung Koun

    2016-01-01

    In this paper, a simple and controllable “wet pulse annealing” technique for the fabrication of flexible amorphous InGaZnO thin film transistors (a-IGZO TFTs) processed at low temperature (150 °C) by using scalable vacuum deposition is proposed. This method entailed the quick injection of water vapor for 0.1 s and purge treatment in dry ambient in one cycle; the supply content of water vapor was simply controlled by the number of pulse repetitions. The electrical transport characteristics revealed a remarkable performance of the a-IGZO TFTs prepared at the maximum process temperature of 150 °C (field-effect mobility of 13.3 cm2 V−1 s−1; Ion/Ioff ratio ≈ 108; reduced I-V hysteresis), comparable to that of a-IGZO TFTs annealed at 350 °C in dry ambient. Upon analysis of the angle-resolved x-ray photoelectron spectroscopy, the good performance was attributed to the effective suppression of the formation of hydroxide and oxygen-related defects. Finally, by using the wet pulse annealing process, we fabricated, on a plastic substrate, an ultrathin flexible a-IGZO TFT with good electrical and bending performances. PMID:27198067

  5. Discovery and Distribution of Black Smokers on the Western Galapagos Spreading Center: Implications for Spatial and Temporal Controls on High Temperature Venting at Ridge/Hotspot Intersections

    Science.gov (United States)

    Haymon, R. M.; Anderson, P. G.; Baker, E. T.; Resing, J. A.; White, S. M.; MacDonald, K. C.

    2006-12-01

    Though nearly one-fifth of the mid-ocean ridge (MOR) lies on or near hotspots, it has been debated whether hotspots increase or decrease MOR hydrothermal flux, or affect vent biota. Despite hotspot enhancement of melt supply, high-temperature vent plumes are enigmatically sparse along two previously-surveyed ridge- hotspot intersections [Reykjanes Ridge (RR), Southeast Indian Ridge (SEIR)]. This has been attributed to crustal thickening by excess volcanism. During the 2005-06 GalAPAGoS expedition, we conducted nested sonar, plume, and camera surveys along a 540 km-long portion of the Galapagos Spreading Center (GSC) where the ridge intersects the Galapagos hotspot at lon. 94.5 -89.5 deg. W. Although MOR hydrothermal springs were first found along the eastern GSC crest in 1977 near lon. 86 deg. W, the GalAPAGoS smokers are the first active high-temperature vents to be found anywhere along the Cocos-Nazca plate boundary. Active and/or recently-inactive smokers were located beneath plumes at 5 sites on the seafloor between lon. 91 deg. W and 94.5 deg. W (see Anderson et al., this session) during near-bottom, real-time fiber-optic Medea camera surveys. Smokers occur along eruptive seafloor fissures atop axial volcanic ridges near the middles of ridge segments, mainly in areas underlain by relatively shallow, continuous axial magma chamber (AMC) seismic reflectors. These findings (1) support magmatic, rather than tectonic, control of GSC smoker distribution; (2) demonstrate that thick crust at MOR-hotspot intersections does not prevent high-temperature hydrothermal vents from forming; and, (3) appear to be inconsistent with models suggesting that enhanced hydrothermal cooling causes abrupt deepening of the AMC and transition from non-rifted to rifted GSC morphology near lon. 92.7 deg. W. The widely-spaced smoker sites located on different GSC segments exhibit remarkably similar characteristics and seafloor settings. Most sites are mature or extinct, and are on lava

  6. Effects of Packaging on Shelf Life and Postharvest Qualities of Radish Roots during Storage at Low Temperature for an Extended Period

    Directory of Open Access Journals (Sweden)

    Dulal Chandra

    2018-01-01

    Full Text Available To investigate the effects of packaging on the quality aspects of radish, Korean radish roots (Raphanus sativus L. var. Kwandong were stored at 0°C after different packaging treatments such as keeping in paper cartoon box (control, keeping in plastic crates (PC, packaging with micro perforated HDPE film in PC (HDPE + PC, curing followed by keeping in PC (Curing + PC, and curing followed by packaging with micro perforated HDPE film in PC (Curing + HDPE + PC. Weight losses of radish roots were remarkably lower (<3% in both HDPE film packaged samples compared to that of control (10% or without film (≈18%. L⁎ values, whiteness index, total soluble solids, and flesh and skin firmness were better maintained in Curing + HDPE + PC treatment compared to other treatments. Lower color difference values were also found in this treatment. Both film packaged samples had lower scores of black spot, surface shrinkage, and fungal infection incidence which revealed significantly longer marketable periods. HDPE film packaged samples exhibited longer shelf life more than one and two months compared to control and unpacked samples, respectively. Results suggest that HDPE film packaging can extend postharvest life of radish while curing might have little but beneficial effects in maintaining the quality characteristics. To our knowledge, this is the first report on quality evaluation of Korean radish during an extended storage period simulating the Korean industrial practices.

  7. Matlab Software for Spatial Panels

    NARCIS (Netherlands)

    Elhorst, J.Paul

    2014-01-01

    Elhorst provides Matlab routines to estimate spatial panel data models at his website. This article extends these routines to include the bias correction procedure proposed by Lee and Yu if the spatial panel data model contains spatial and/or time-period fixed effects, the direct and indirect

  8. Thermal Fluxes and Temperatures in Small Urban Headwater Streams of the BES LTER: Landscape Forest and Impervious Patches and the Importance of Spatial and Temporal Scales

    Science.gov (United States)

    Kim, H.; Belt, K. T.; Welty, C.; Heisler, G.; Pouyat, R. V.; McGuire, M. P.; Stack, W. P.

    2006-05-01

    Water and material fluxes from urban landscape patches to small streams are modulated by extensive "engineered" drainage networks. Small urban headwater catchments are different in character and function from their larger receiving streams because of their extensive, direct connections to impervious surface cover (ISC) and their sometimes buried nature. They need to be studied as unique functional hydrologic units if impacts on biota are to be fully understood. As part of the Baltimore Ecosystem Study LTER project, continuous water temperature data are being collected at 2-minute intervals at over twenty small catchments representing various mixtures of forest and ISC. Suburban stream sites with greater ISC generally have higher summer water temperatures. Suburban catchments with most of their channel drainage contained within storm drain pipes show subdued diurnal variation and cool temperatures, but with very large spikes in summer runoff events. Conversely, high ISC urban piped streams have elevated "baseline" temperatures that stand well above all the other monitoring sites. There is a pronounced upstream-downstream effect; nested small headwater catchments experience more frequent, larger temperature spikes related to runoff events than downstream sites. Also, runoff-initiated temperature elevations at small stream sites unexpectedly last much longer than the storm runoff hydrographs. These observations suggest that for small headwater catchments, urban landscapes not only induce an ambient, "heat island" effect on stream temperatures, but also introduce thermal disturbance regimes and fluxes that are not trivial to aquatic biota.

  9. The SMOS Validation Campaign 2010 in the Upper Danube Catchment: A Data Set for Studies of Soil Moisture, Brightness Temperature, and Their Spatial Variability Over a Heterogeneous Land Surface

    DEFF Research Database (Denmark)

    T. dall' Amico, Johanna; Schlenz, Florian; Loew, Alexander

    2013-01-01

    resolutions from roughly 400 m to 2 km. The contemporaneous distributed ground measurements include surface soil moisture, a detailed land cover map, vegetation height, phenology, and biomass. Furthermore, several ground stations provide continuous measurements of soil moisture and soil temperature as well...... infrared and L-band passive microwave data were collected together with spatially distributed in situ measurements. Two airborne radiometers, EMIRAD and HUT-2D, were used during the campaigns providing two complementary sets of measurements at incidence angles from 0$^{circ}$ to 40$^{circ}$ and with ground...

  10. Microclimatic temperatures at Danish cattle farms, 2000–2016: quantifying the temporal and spatial variation in the transmission potential of Schmallenberg virus

    DEFF Research Database (Denmark)

    Haider, Najmul; Cuellar, Ana Carolina; Kjær, Lene Jung

    2018-01-01

    Microclimatic temperatures provide better estimates of vector-borne disease transmission parameters than standard meteorological temperatures, as the microclimate represent the actual temperatures to which the vectors are exposed. The objectives of this study were to quantify farm-level geographic......-resting sites within a 500 m radius of 22,004 Danish cattle farms for the months April to November from 2000 to 2016. We then modeled the daily EIP of Schmallenberg virus at each farm, assuming vectors choose resting sites either randomly or based on temperatures (warmest or coolest available) every hour....... The results of the model output are presented as 17-year averages. Results: The difference between the warmest and coolest microhabitats at the same farm was on average 3.7 °C (5th and 95th percentiles: 1.0 °C to 7.8 °C). The mean EIP of Schmallenberg virus (5th and 95th percentiles) for all cattle farms...

  11. Effects of cut flower shape and content of sugars in flower organs on the longevity of vase life in standard type carnation [Dianthus] and relationships between the longevity and temperature and solar radiation during the growing period

    International Nuclear Information System (INIS)

    Miura, Y.; Ozawa, Y.; Takahashi, M.; Igarashi, D.; Inoue, T.; Uematsu, H.; Imai, K.; Matsuyama, A.; Soga, A.; Yoshida, M.

    2002-01-01

    We obtained carnation cut flowers 'Fransisco' from a greenhouse on the first Monday every month in February to June, and investigated the relationship between vase life and content of sugars in the cut flowers. Correlations between the longevity of vase life and temperatures in the greenhouse and amount of solar radiation during the growing period were also investigated. 1. Fresh weight and stem diameter of the cut flowers were highest in February and March, and decreased from April to June. Mean vase life was shortest in March (4.5 days) and longest in May (5.9 days). 2. Fructose and glucose contents in petals were highest in May (10.0 mg and 6.5 mg ¥ 100 mg -1 DW) and lowest in March (6.0 mg and 4.8 mg ¥ 100 mg -1 DW). 3. The vase life of carnation was highly correlated with day-time or night-time mean temperatures in 20 days to harvest, and it was estimated that the optimum growing temperature for long vase life of the cut flower was around 22°C in day-time and 14°C in night-time. (author)

  12. Spatial Operations

    Directory of Open Access Journals (Sweden)

    Anda VELICANU

    2010-09-01

    Full Text Available This paper contains a brief description of the most important operations that can be performed on spatial data such as spatial queries, create, update, insert, delete operations, conversions, operations on the map or analysis on grid cells. Each operation has a graphical example and some of them have code examples in Oracle and PostgreSQL.

  13. Spatializing Time

    DEFF Research Database (Denmark)

    Thomsen, Bodil Marie Stavning

    2011-01-01

    The article analyses some of artist Søren Lose's photographic installations in which time, history and narration is reflected in the creation of allegoric, spatial relations.......The article analyses some of artist Søren Lose's photographic installations in which time, history and narration is reflected in the creation of allegoric, spatial relations....

  14. Spatial Computation

    Science.gov (United States)

    2003-12-01

    Computation and today’s microprocessors with the approach to operating system architecture, and the controversy between microkernels and monolithic kernels...Both Spatial Computation and microkernels break away a relatively monolithic architecture into in- dividual lightweight pieces, well specialized...for their particular functionality. Spatial Computation removes global signals and control, in the same way microkernels remove the global address

  15. A procedure for estimating the electron temperature and the departure of the LTE condition in a time-dependent, spatially homogeneous, optically thin plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bredice, F. [Centro de Investigaciones Opticas, La Plata (Argentina); Borges, F.O., E-mail: borges@if.uff.br [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Instituto de Fisica. Lab. de Plasma e Espectroscopia; Di Rocco, H.O. [Instituto de Fisica Arroyo Seco (IFAS), Universidad Nacional del Centro, Tandil (Argentina); Mercado, R.S. [Grupo de Espectroscopia Optica de Emision y Laser (GEOEL), Universidad del Atlantico, Barranquilla (Colombia); Villagran-Muniz, M. [Laboratorio de Fotofisica, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico (Mexico); Palleschi, V. [Applied Laser Spectroscopy Laboratory, ICCOM-CNR, Pisa (Italy)

    2013-08-15

    We present a method to estimate the temperature of transient plasmas and their degree of departure from local thermodynamic equilibrium conditions. Our method is based on application of the Saha–Boltzmann equations on the temporal variation of the intensity of the spectral lines of the plasma, under the assumption that the plasmas at the different times when the spectra were obtained are in local thermodynamic equilibrium. The method requires no knowledge of the spectral efficiency of the spectrometer/detector, transition probabilities of the considered lines, or degeneracies of the upper and lower levels. Provided that the conditions of optically thin, homogeneous plasma in local thermodynamic equilibrium are satisfied, the accuracy of the procedure is limited only by the precision with which the line intensities and densities can be determined at two different temperatures. The procedure generates an equation describing the temporal evolution of the electron number density of transient plasmas under local thermodynamic equilibrium conditions. The method is applied to the analysis of two laser-induced breakdown spectra of cadmium at different temperatures. (author)

  16. A procedure for estimating the electron temperature and the departure of the LTE condition in a time-dependent, spatially homogeneous, optically thin plasma

    International Nuclear Information System (INIS)

    Bredice, F.; Borges, F.O.; Mercado, R.S.; Villagran-Muniz, M.; Palleschi, V.

    2013-01-01

    We present a method to estimate the temperature of transient plasmas and their degree of departure from local thermodynamic equilibrium conditions. Our method is based on application of the Saha–Boltzmann equations on the temporal variation of the intensity of the spectral lines of the plasma, under the assumption that the plasmas at the different times when the spectra were obtained are in local thermodynamic equilibrium. The method requires no knowledge of the spectral efficiency of the spectrometer/detector, transition probabilities of the considered lines, or degeneracies of the upper and lower levels. Provided that the conditions of optically thin, homogeneous plasma in local thermodynamic equilibrium are satisfied, the accuracy of the procedure is limited only by the precision with which the line intensities and densities can be determined at two different temperatures. The procedure generates an equation describing the temporal evolution of the electron number density of transient plasmas under local thermodynamic equilibrium conditions. The method is applied to the analysis of two laser-induced breakdown spectra of cadmium at different temperatures. (author)

  17. Efeito da temperatura e período de molhamento sobre o desenvolvimento de lesões de Colletotrichum musae em banana Effect of temperature and wet period on the development of Colletotrichum musae lesions in banana

    Directory of Open Access Journals (Sweden)

    Wagner Rogério Leocádio Soares Pessoa

    2007-06-01

    Full Text Available A banana é a segunda fruta mais consumida no mundo, porém do campo até o mercado consumidor algo em torno de 40 % é perdido devido entre outras causas as doenças pós-colheita e a mais significativa é a antracnose. Diante da necessidade do conhecimento de fatores ambientais que condicionam estas perdas, o trabalho objetivou avaliar métodos de inoculação (com discos de BDA e estruturas do patógeno e suspensão de conídios com e sem ferimento e a influência da temperatura (10,15,20,25 e 30 ºC e do período de molhamento (0, 12, 24 e 36 h sobre o desenvolvimento de Colletotrichum musae em banana. As frutas foram inoculadas com 17 isolados de C. musae onde todos mostraram-se patogênicos quando inoculados com ferimento independentemente do tipo de inóculo utilizado. No experimento envolvendo temperatura e período de molhamento, utilizou-se três isolados de C. musae, MAG2, SFV1 e FSA, que se comportaram como mais agressivo, intermediário e pouco agressivo, respectivamente. As temperaturas em torno de 20, 25 e 30 ºC e os períodos de molhamento testados favoreceram um maior desenvolvimento de lesões, sendo as maiores lesões observadas em temperaturas ao redor de 25 e 30 ºC, com redução à medida que ocorria uma diminuição da temperatura para todos os isolados testados. A temperatura em torno de 15 ºC proporcionou o menor desenvolvimento da doença.,The banana is the second more consumed fruit in the world, but there is a product loss of about 40% from field to consuming market due to several factors including the postharvest diseases, being the anthracnose most significative among them. Considering the necessity of studying the environmental factors that affect this losses, the objective of this work was to evaluate methods of inoculation (PDA discs with pathogen structures and suspension of conidia with and without wound and the influence of temperature (10, 15, 20, 25 and 30ºC and wet period (0, 12, 24 and 36 hours on the

  18. Muertes por lesiones de tránsito en Argentina: un análisis espacial para el período 2001-2009 Deaths from road injuries in Argentina: a spatial analysis for the 2001-2009 period

    Directory of Open Access Journals (Sweden)

    Carlos M. Leveau

    2012-05-01

    Full Text Available Las lesiones de tránsito representan la causa más frecuente de muerte por causas externas en Argentina y un problema de creciente magnitud para la salud pública a nivel global. Los principales objetivos de este trabajo son establecer el nivel de autocorrelación espacial experimentado a nivel de departamentos e identificar la conformación de agrupamientos mediante el cálculo de los indicadores locales de asociación espacial a nivel nacional. Los resultados mostraron un nivel de autocorrelación significativamente positivo en Argentina. Al relacionar las tasas de mortalidad por lesiones de tránsito con la densidad poblacional, se registró un nivel de autocorrelación espacial negativo. Se observó también que la mortalidad por lesiones de tránsito podría representar un problema más grave fuera de las grandes aglomeraciones.Traffic injuries in Argentina are the most frequent cause of death from external injuries and a public health problem of increasing magnitude at the global level. The objectives of this study are to establish the level of spatial autocorrelation at the department level and identify the formation of groupings by calculating local indicators of spatial association at the national level. The results reveal a significantly positive level of autocorrelation in Argentina. A negative level of spatial autocorrelation was recorded when mortality from road injuries was related to population density. It was also noted that mortality from road injuries could pose a more serious problem outside large urban areas.

  19. Investigation of temperature effect on half-life periods of long-lived isomer sup 1 sup 8 sup 0 sup m Hf and sup 8 sup 7 sup m Sr

    CERN Document Server

    Alpatov, V G; Davydov, A V; Isaev, Y N; Kartashov, G R; Korotkov, M M; Samojlov, V M

    2001-01-01

    The experiments on measuring the half-life periods of the sup 1 sup 8 sup 0 sup m Hf and sup 8 sup 7 sup m Sr long-lived isomers at the room temperature and at 77 K with application of the HfO sub 2 , Sr(NO sub 3) sub 2 and SrCO sub 3 massive samples are described. The isomer states of the corresponding nuclei were formed by the samples irradiation through neutrons from the Pu-Be source. According to the Vysotski theory and other authors the surrounding of the gamma-active nuclei by a large number of the same nuclei in the basic state should lead to the T sub 1 sub / sub 2 growth due to distortion of the zero electromagnetic vacuum oscillations near the nuclear energy level value. Decrease in the sample temperature leads to the narrowing of the gamma-lines, especially for the Moessbauer low-energy transitions, which increases the resonance effect on the zero oscillations spectrum. Increase in the T sub 1 sub / sub 2 by 2.99 +- 0.87% was observed by cooling the sup 1 sup 8 sup 0 sup m Hf isomer sample, in the ...

  20. Impact of heat stress on conception rate of dairy cows in the moderate climate considering different temperature-humidity index thresholds, periods relative to breeding, and heat load indices.

    Science.gov (United States)

    Schüller, L K; Burfeind, O; Heuwieser, W

    2014-05-01

    The objectives of this retrospective study were to investigate the relationship between temperature-humidity index (THI) and conception rate (CR) of lactating dairy cows, to estimate a threshold for this relationship, and to identify periods of exposure to heat stress relative to breeding in an area of moderate climate. In addition, we compared three different heat load indices related to CR: mean THI, maximum THI, and number of hours above the mean THI threshold. The THI threshold for the influence of heat stress on CR was 73. It was statistically chosen based on the observed relationship between the mean THI at the day of breeding and the resulting CR. Negative effects of heat stress, however, were already apparent at lower levels of THI, and 1 hour of mean THI of 73 or more decreased the CR significantly. The CR of lactating dairy cows was negatively affected by heat stress both before and after the day of breeding. The greatest negative impact of heat stress on CR was observed 21 to 1 day before breeding. When the mean THI was 73 or more in this period, CR decreased from 31% to 12%. Compared with the average maximum THI and the total number of hours above a threshold of more than or 9 hours, the mean THI was the most sensitive heat load index relating to CR. These results indicate that the CR of dairy cows raised in the moderate climates is highly affected by heat stress. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Spatial Theography

    OpenAIRE

    van Noppen, Jean Pierre

    1995-01-01

    Descriptive theology («theography») frequently resorts to metaphorical modes of meaning. Among these metaphors, the spatial language of localization and orientation plays an important role to delineate tentative insights into the relationship between the human and the divine. These spatial metaphors are presumably based on the universal human experience of interaction between the body and its environment. It is dangerous, however, to postulate universal agreement on meanings associated with s...

  2. Limiting global-mean temperature increase to 1.5–2 °C could reduce the incidence and spatial spread of dengue fever in Latin America

    Science.gov (United States)

    Harris, Ian; Osborn, Timothy J.; Steiner São Bernardo, Christine; Peres, Carlos A.; Lake, Iain R.

    2018-01-01

    The Paris Climate Agreement aims to hold global-mean temperature well below 2 °C and to pursue efforts to limit it to 1.5 °C above preindustrial levels. While it is recognized that there are benefits for human health in limiting global warming to 1.5 °C, the magnitude with which those societal benefits will be accrued remains unquantified. Crucial to public health preparedness and response is the understanding and quantification of such impacts at different levels of warming. Using dengue in Latin America as a study case, a climate-driven dengue generalized additive mixed model was developed to predict global warming impacts using five different global circulation models, all scaled to represent multiple global-mean temperature assumptions. We show that policies to limit global warming to 2 °C could reduce dengue cases by about 2.8 (0.8–7.4) million cases per year by the end of the century compared with a no-policy scenario that warms by 3.7 °C. Limiting warming further to 1.5 °C produces an additional drop in cases of about 0.5 (0.2–1.1) million per year. Furthermore, we found that by limiting global warming we can limit the expansion of the disease toward areas where incidence is currently low. We anticipate our study to be a starting point for more comprehensive studies incorporating socioeconomic scenarios and how they may further impact dengue incidence. Our results demonstrate that although future climate change may amplify dengue transmission in the region, impacts may be avoided by constraining the level of warming. PMID:29844166

  3. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution.

    Science.gov (United States)

    Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

    2013-12-01

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  4. Design, Construction, and Initial Test of High Spatial Resolution Thermometry Arrays for Detection of Surface Temperature Profiles on SRF Cavities in Super Fluid Helium

    Energy Technology Data Exchange (ETDEWEB)

    Ari Palczewski, Rongli Geng, Grigory Eremeev

    2011-07-01

    We designed and built two high resolution (0.6-0.55mm special resolution [1.1-1.2mm separation]) thermometry arrays prototypes out of the Allen Bradley 90-120 ohm 1/8 watt resistor to measure surface temperature profiles on SRF cavities. One array was designed to be physically flexible and conform to any location on a SRF cavity; the other was modeled after the common G-10/stycast 2850 thermometer and designed to fit on the equator of an ILC (Tesla 1.3GHz) SRF cavity. We will discuss the advantages and disadvantages of each array and their construction. In addition we will present a case study of the arrays performance on a real SRF cavity TB9NR001. TB9NR001 presented a unique opportunity to test the performance of each array as it contained a dual (4mm separation) cat eye defect which conventional methods such as OST (Oscillating Superleak second-sound Transducers) and full coverage thermometry mapping were unable to distinguish between. We will discuss the new arrays ability to distinguish between the two defects and their preheating performance.

  5. Spatial and temporal variation of phthalic acid esters (PAEs) in atmospheric PM10 and PM2.5 and the influence of ambient temperature in Tianjin, China

    Science.gov (United States)

    Kong, Shaofei; Ji, Yaqin; Liu, Lingling; Chen, Li; Zhao, Xueyan; Wang, Jiajun; Bai, Zhipeng; Sun, Zengrong

    2013-08-01

    Phthalic acid esters (PAEs) are produced in large amounts throughout the world and are excessively used in various industries, which have posed a serious threat to human health and the environment. An investigation of six major PAEs congeners in atmospheric PM10 and PM2.5 was synchronously conducted at seven sites belonging to different functional zones in spring, summer and winter in Tianjin, China in 2010. Results showed that the average concentrations of DMP, DEP, DBP, BBP, DEHP and DOP in PM10 were 0.88, 0.73, 12.90, 0.15, 98.29 and 0.83 ng m-3, respectively, and in PM2.5, they were 0.54, 0.30, 8.72, 0.08, 75.68 and 0.33 ng m-3, respectively. DEHP and DBP were the predominant species. The industrial site exhibited highest PAEs values as 135.9 ± 202.8 ng m-3. In winter, the detected percentages for DOP were low. The other five PAEs concentrations were higher in winter than those in spring and summer, which may be related to the influence of emission sources, meteorological parameters and the chemical-physical characteristic of themselves. Except for DOP, other PAEs were negatively correlated with ambient temperature and the relationships were the best fitted as exponential forms. Significant positive correlations were found for PAEs in PM2.5 and PM10, indicating common sources. The PM2.5/PM10 ratios (0.53-0.70) for the six PAEs concentrations suggested that they were preferentially concentrated in finer particles. Principal component analysis indicated the emission from cosmetics and personal care products, plasticizers and sewage and industrial wastewater may be important sources for PAEs in atmospheric particulate matter in Tianjin.

  6. Spatial networks

    Science.gov (United States)

    Barthélemy, Marc

    2011-02-01

    Complex systems are very often organized under the form of networks where nodes and edges are embedded in space. Transportation and mobility networks, Internet, mobile phone networks, power grids, social and contact networks, and neural networks, are all examples where space is relevant and where topology alone does not contain all the information. Characterizing and understanding the structure and the evolution of spatial networks is thus crucial for many different fields, ranging from urbanism to epidemiology. An important consequence of space on networks is that there is a cost associated with the length of edges which in turn has dramatic effects on the topological structure of these networks. We will thoroughly explain the current state of our understanding of how the spatial constraints affect the structure and properties of these networks. We will review the most recent empirical observations and the most important models of spatial networks. We will also discuss various processes which take place on these spatial networks, such as phase transitions, random walks, synchronization, navigation, resilience, and disease spread.

  7. Spatial interpolation

    NARCIS (Netherlands)

    Stein, A.

    1991-01-01

    The theory and practical application of techniques of statistical interpolation are studied in this thesis, and new developments in multivariate spatial interpolation and the design of sampling plans are discussed. Several applications to studies in soil science are

  8. Activity of fungal phytases stored in two ways in response to the period of storage at room temperature Atividade de fitases fúngicas armazenadas de duas maneiras em resposta ao período de armazenamento à temperatura ambiente

    Directory of Open Access Journals (Sweden)

    Luciana de Paula Naves

    2012-01-01

    Full Text Available Two distinct experiments were conducted simultaneously with phytases of Aspergillus oryzae and A. niger for determining enzyme activity in response to storage period (up to 180 days at room temperature - RT. In the first experiment, enzymes were stored as they were acquired (pure form and the activity was measured periodically during 180 days of storage at RT. In the second experiment, the phytases were incorporated to a supplement containing vitamins, minerals, and amino acids; and then this supplement was stored at RT up to 180 days, so that every 30 days of storage was collected one aliquot from each replicate for determining enzymatic activity. In conclusion, the phytase activity is affected by storage duration. To ensure 80% of the initial activity, the phytases of A. oryzae and A. niger can be stored in the pure forms for up to 53 and 135 days at RT, respectively. However, if the phytases of A. oryzae and A. niger are incorporated to a supplement containing vitamins, minerals, and amino acids then the storage period at RT should not exceed 67 and 77 days, respectively.Dois experimentos distintos foram realizados simultaneamente com fitases de Aspergillus oryzae e A. niger para a determinação da atividade enzimática em resposta ao período de armazenamento (por até 180 dias em temperatura ambiente - TA. No primeiro experimento, as enzimas foram armazenadas como adquiridas (forma pura e a atividade foi determinada periodicamente durante 180 dias de armazenamento em TA. No segundo experimento, as fitases foram incorporadas a um suplemento contendo vitaminas, minerais e aminoácidos. Então este suplemento foi armazenado em TA por até 180 dias, de modo que, a cada 30 dias de armazenamento, uma alíquota de cada repetição foi coletada para a determinação da atividade enzimática. Conclui-se que a atividade da fitase é afetada pela duração do armazenamento. Para assegurar 80% da atividade inicial, as fitases de A. oryzae e A. niger

  9. Nonparametric Inference for Periodic Sequences

    KAUST Repository

    Sun, Ying

    2012-02-01

    This article proposes a nonparametric method for estimating the period and values of a periodic sequence when the data are evenly spaced in time. The period is estimated by a "leave-out-one-cycle" version of cross-validation (CV) and complements the periodogram, a widely used tool for period estimation. The CV method is computationally simple and implicitly penalizes multiples of the smallest period, leading to a "virtually" consistent estimator of integer periods. This estimator is investigated both theoretically and by simulation.We also propose a nonparametric test of the null hypothesis that the data have constantmean against the alternative that the sequence of means is periodic. Finally, our methodology is demonstrated on three well-known time series: the sunspots and lynx trapping data, and the El Niño series of sea surface temperatures. © 2012 American Statistical Association and the American Society for Quality.

  10. A European daily high-resolution gridded dataset of surface temperature and precipitation for 1950-2006

    NARCIS (Netherlands)

    Haylock, M.; Hofstra, N.; Klein Tank, A.; Klok, L.; Jones, P.; New, M.

    2008-01-01

    We present a European land-only daily high-resolution gridded data set for precipitation and minimum, maximum, and mean surface temperature for the period 1950–2006. This data set improves on previous products in its spatial resolution and extent, time period, number of contributing stations, and

  11. Spatial distribution

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe; Hendrichsen, Ditte Katrine; Nachman, Gøsta Støger

    2008-01-01

    , depending on the nature of intraspecific interactions between them: while the individuals of some species repel each other and partition the available area, others form groups of varying size, determined by the fitness of each group member. The spatial distribution pattern of individuals again strongly......Living organisms are distributed over the entire surface of the planet. The distribution of the individuals of each species is not random; on the contrary, they are strongly dependent on the biology and ecology of the species, and vary over different spatial scale. The structure of whole...... populations reflects the location and fragmentation pattern of the habitat types preferred by the species, and the complex dynamics of migration, colonization, and population growth taking place over the landscape. Within these, individuals are distributed among each other in regular or clumped patterns...

  12. Spatial Culture

    DEFF Research Database (Denmark)

    Reeh, Henrik

    2012-01-01

    Spatial Culture – A Humanities Perspective Abstract of introductory essay by Henrik Reeh Secured by alliances between socio-political development and cultural practices, a new field of humanistic studies in spatial culture has developed since the 1990s. To focus on links between urban culture...... and modern society is, however, an intellectual practice which has a much longer history. Already in the 1980s, the debate on the modern and the postmodern cited Paris and Los Angeles as spatio-cultural illustrations of these major philosophical concepts. Earlier, in the history of critical studies, the work...... Foucault considered a constitutive feature of 20th-century thinking and one that continues to occupy intellectual and cultural debates in the third millennium. A conceptual framework is, nevertheless, necessary, if the humanities are to adequa-tely address city and space – themes that have long been...

  13. European summer temperatures since Roman times

    International Nuclear Information System (INIS)

    Luterbacher, J; Werner, J P; Smerdon, J E; Fernández-Donado, L; González-Rouco, F J; Barriopedro, D; Ljungqvist, F C; Büntgen, U; Frank, D; Zorita, E; Wagner, S; Esper, J; McCarroll, D; Toreti, A; Jungclaus, J H; Bothe, O; Barriendos, M; Bertolin, C; Camuffo, D; Brázdil, R

    2016-01-01

    The spatial context is critical when assessing present-day climate anomalies, attributing them to potential forcings and making statements regarding their frequency and severity in a long-term perspective. Recent international initiatives have expanded the number of high-quality proxy-records and developed new statistical reconstruction methods. These advances allow more rigorous regional past temperature reconstructions and, in turn, the possibility of evaluating climate models on policy-relevant, spatio-temporal scales. Here we provide a new proxy-based, annually-resolved, spatial reconstruction of the European summer (June–August) temperature fields back to 755 CE based on Bayesian hierarchical modelling (BHM), together with estimates of the European mean temperature variation since 138 BCE based on BHM and composite-plus-scaling (CPS). Our reconstructions compare well with independent instrumental and proxy-based temperature estimates, but suggest a larger amplitude in summer temperature variability than previously reported. Both CPS and BHM reconstructions indicate that the mean 20th century European summer temperature was not significantly different from some earlier centuries, including the 1st, 2nd, 8th and 10th centuries CE. The 1st century (in BHM also the 10th century) may even have been slightly warmer than the 20th century, but the difference is not statistically significant. Comparing each 50 yr period with the 1951–2000 period reveals a similar pattern. Recent summers, however, have been unusually warm in the context of the last two millennia and there are no 30 yr periods in either reconstruction that exceed the mean average European summer temperature of the last 3 decades (1986–2015 CE). A comparison with an ensemble of climate model simulations suggests that the reconstructed European summer temperature variability over the period 850–2000 CE reflects changes in both internal variability and external forcing on multi-decadal time

  14. Temporal and spatial changes in the copepod community during the 1974-1998 spring seasons in the Kuroshio region; a time period of profound changes in pelagic fish populations

    Science.gov (United States)

    Miyamoto, Hiroomi; Itoh, Hiroshi; Okazaki, Yuji

    2017-10-01

    The long-term change (1974-1998) of the pelagic copepod community in the Kuroshio region, western Pacific was examined in archival samples collected both day and night in April/May in a time period of profound changes in the pelagic fish populations. A total of 162 adult copepod species was found. The community analysis based on species composition and abundance of adult copepods identified five assemblages (A-E) by cluster analysis. These assemblages were distributed in the north-frontal area of the Kuroshio Current within the slope area (A), the Kuroshio axis area (B), the subtropical area (C, D), and the coastal area within the slope area (E), indicating that such diverse communities were formed to correspond with the gradual change in the oceanic environment across the Kuroshio Current. The abundance of copepods in the north-frontal area of the Kuroshio Current (A) was 1.6 times greater than that of the other assemblages. Kuroshio/subtropical species were abundant in the assemblage, suggesting that these species that were transported from the Kuroshio and/or subtropical regions increased in the slope region. Abundance and species richness of two assemblages (C, D), which were found in the subtropical areas were higher at night (C) than during the day (D), suggesting that diel vertical migration of copepods is one of the most important factors affecting changes in the community. Furthermore, a generalized additive model revealed that the most dominant subtropical/Kuroshio species increased in years in which the Kuroshio Current flowed further south, with the Kuroshio axis located far from the Japanese coast. In contrast, the model showed that the lower latitude of the Kuroshio axis positioned negatively affected coastal-dominant species, such as Paracalanus parvus sensu lato (s.l.). These results indicate that onshore-offshore shifts of the Kuroshio axis caused by Kuroshio meandering was an important factor involved in the inter-annual change in the copepod

  15. Electrical conductivity testing of corn seeds as influenced by temperature and period of storage Teste de condutividade elétrica em sementes de milho armazenadas sob diferentes temperaturas e períodos

    Directory of Open Access Journals (Sweden)

    Simone Aparecida Fessel

    2006-10-01

    Full Text Available The objective of this work was to evaluate the effects of temperature (10, 20, 30, 20/10 and 30/10ºC and period of storage on electrical conductivity (EC in four seed lots of corn (Zea mays L., as well as the mineral composition of the soaking solution. EC test determines indirectly the integrity of seed membrane systems, and is used for the assessment of seed vigor, because this test detects the seed deterioration process since its early phase. The research comprised determinations of water content, germination, accelerated aging (AA, cold (CT and EC vigor tests, and determinations of Ca2+, Mg2+ and K+ release to the solution, after seed soaking of four corn seed lots. The evaluations were performed each four months during a period of 16 months. For statistical analysis, a completely randomized split plot design was used with eight replications. Except for seed lots stored at 10ºC, all vigor evaluations revealed a decline in vigor, but AA and CT showed more sensitiveness to declines of seed physiological quality than EC. Potassium was the main leached ion regardless of the storage temperature.O objetivo deste estudo foi verificar o efeito da temperatura (10, 20, 30, 20/10 e 30/10ºC e do período de armazenamento, sobre os resultados do teste de condutividade elétrica e, também, sobre a composição mineral da solução de embebição de quatro lotes de sementes de milho. O teste de condutividade elétrica baseia-se na integridade do sistema de membranas celulares, e é usado para a determinação do vigor de sementes, pois permite detectar as primeiras manifestações do processo de deterioração. Foram determinados: o teor de água das sementes, a germinação, vigor (testes de envelhecimento acelerado, de frio e de condutividade elétrica e os conteúdos de Ca2+, Mg2+ e K+ na solução de embebição das sementes, usada para determinar a condutividade elétrica. Para a análise estatística foi usado o delineamento inteiramente

  16. Spatial filtring and thermocouple spatial filter

    International Nuclear Information System (INIS)

    Han Bing; Tong Yunxian

    1989-12-01

    The design and study on thermocouple spatial filter have been conducted for the flow measurement of integrated reactor coolant. The fundamental principle of spatial filtring, mathematical descriptions and analyses of thermocouple spatial filter are given

  17. Particle detector spatial resolution

    International Nuclear Information System (INIS)

    Perez-Mendez, V.

    1992-01-01

    Method and apparatus for producing separated columns of scintillation layer material, for use in detection of X-rays and high energy charged particles with improved spatial resolution is disclosed. A pattern of ridges or projections is formed on one surface of a substrate layer or in a thin polyimide layer, and the scintillation layer is grown at controlled temperature and growth rate on the ridge-containing material. The scintillation material preferentially forms cylinders or columns, separated by gaps conforming to the pattern of ridges, and these columns direct most of the light produced in the scintillation layer along individual columns for subsequent detection in a photodiode layer. The gaps may be filled with a light-absorbing material to further enhance the spatial resolution of the particle detector. 12 figs

  18. The Spatial Politics of Spatial Representation

    DEFF Research Database (Denmark)

    Olesen, Kristian; Richardson, Tim

    2011-01-01

    spatial planning in Denmark reveals how fuzzy spatial representations and relational spatial concepts are being used to depoliticise strategic spatial planning processes and to camouflage spatial politics. The paper concludes that, while relational geography might play an important role in building......This paper explores the interplay between the spatial politics of new governance landscapes and innovations in the use of spatial representations in planning. The central premise is that planning experiments with new relational approaches become enmeshed in spatial politics. The case of strategic...

  19. Convectons in periodic and bounded domains

    International Nuclear Information System (INIS)

    Mercader, Isabel; Batiste, Oriol; Alonso, Arantxa; Knobloch, Edgar

    2010-01-01

    Numerical continuation is used to compute spatially localized convection in a binary fluid with no-slip laterally insulating boundary conditions and the results are compared with the corresponding ones for periodic boundary conditions (PBC). The change in the boundary conditions produces a dramatic change in the snaking bifurcation diagram that describes the organization of localized states with PBC: the snaking branches turn continuously into a large amplitude state that resembles periodic convection with defects at the sidewalls. Odd parity convectons are more affected by the boundary conditions since the sidewalls suppress the horizontal pumping action that accompanies these states in spatially periodic domains.

  20. Convectons in periodic and bounded domains

    Energy Technology Data Exchange (ETDEWEB)

    Mercader, Isabel; Batiste, Oriol; Alonso, Arantxa [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Barcelona (Spain); Knobloch, Edgar [Department of Physics, University of California, Berkeley, CA 94720 (United States)

    2010-04-15

    Numerical continuation is used to compute spatially localized convection in a binary fluid with no-slip laterally insulating boundary conditions and the results are compared with the corresponding ones for periodic boundary conditions (PBC). The change in the boundary conditions produces a dramatic change in the snaking bifurcation diagram that describes the organization of localized states with PBC: the snaking branches turn continuously into a large amplitude state that resembles periodic convection with defects at the sidewalls. Odd parity convectons are more affected by the boundary conditions since the sidewalls suppress the horizontal pumping action that accompanies these states in spatially periodic domains.

  1. Temperature fluctuations superimposed on background temperature change

    International Nuclear Information System (INIS)

    Otto, James; Roberts, J.A.

    2016-01-01

    Proxy data allows the temperature of the Earth to be mapped over long periods of time. In this work the temperature fluctuations for over 200 proxy data sets were examined and from this set 50 sets were analyzed to test for periodic and quasi-periodic fluctuations in the data sets. Temperature reconstructions over 4 different time scales were analyzed to see if patterns emerged. Data were put into four time intervals; 4,000 years, 14,000 years, 1,000,000 years, and 3,000,000 years and analyzed with a goal to understanding periodic and quasi-periodic patterns in global temperature change superimposed on a “background” average temperature change. Quasi-periodic signatures were identified that predate the Industrial Revolution, during much of which direct data on temperature are not available. These data indicate that Earth temperatures have undergone a number of periodic and quasi-periodic intervals that contain both global warming and global cooling cycles. The fluctuations are superimposed on a background of temperature change that has a declining slope during the two periods, pre-ice age and post ice age with a transition about 12,000 BCE. The data are divided into “events” that span the time periods 3,000,000 BCE to “0” CE, 1,000,000 BCE to “0” CE, 12,000 BCE to 2,000 CE and 2,000 BCE to 2,000 CE. An equation using a quasi-periodic (frequency modulated sine waves) patterns was developed to analyze the date sets for quasi-periodic patterns. “Periodicities” which show reasonable agreement with the predictions of Milankovitch and other investigators were found in the data sets.

  2. Fast spatial atomic layer deposition of Al{sub 2}O{sub 3} at low temperature (<100 °C) as a gas permeation barrier for flexible organic light-emitting diode displays

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hagyoung; Shin, Seokyoon; Jeon, Hyeongtag, E-mail: hjeon@hanyang.ac.kr [Department of Materials Science and Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of); Choi, Yeongtae; Kim, Junghun; Kim, Sanghun; Chung, Seog Chul; Oh, Kiyoung [LIG INVENIA Co., Ltd., Seongnam, Gyeonggi 462-807 (Korea, Republic of)

    2016-01-15

    The authors developed a high throughput (70 Å/min) and scalable space-divided atomic layer deposition (ALD) system for thin film encapsulation (TFE) of flexible organic light-emitting diode (OLED) displays at low temperatures (<100 °C). In this paper, the authors report the excellent moisture barrier properties of Al{sub 2}O{sub 3} films deposited on 2G glass substrates of an industrially relevant size (370 × 470 mm{sup 2}) using the newly developed ALD system. This new ALD system reduced the ALD cycle time to less than 1 s. A growth rate of 0.9 Å/cycle was achieved using trimethylaluminum as an Al source and O{sub 3} as an O reactant. The morphological features and step coverage of the Al{sub 2}O{sub 3} films were investigated using field emission scanning electron microscopy. The chemical composition was analyzed using Auger electron spectroscopy. These deposited Al{sub 2}O{sub 3} films demonstrated a good optical transmittance higher than 95% in the visible region based on the ultraviolet visible spectrometer measurements. Water vapor transmission rate lower than the detection limit of the MOCON test (less than 3.0 × 10{sup −3} g/m{sup 2} day) were obtained for the flexible substrates. Based on these results, Al{sub 2}O{sub 3} deposited using our new high-throughput and scalable spatial ALD is considered a good candidate for preparation of TFE films of flexible OLEDs.

  3. Headwater stream temperature: interpreting response after logging, with and without riparian buffers, Washington, USA

    Science.gov (United States)

    Jack E. Janisch; Steven M. Wondzell; William J. Ehinger

    2012-01-01

    We examined stream temperature response to forest harvest in small forested headwater catchments in western Washington, USA over a seven year period (2002-2008). These streams have very low discharge in late summer and many become spatially intermittent. We used a before-after, control-impact (BACl) study design to contrast the effect of clearcut logging with two...

  4. MEMS temperature scanner: principles, advances, and applications

    Science.gov (United States)

    Otto, Thomas; Saupe, Ray; Stock, Volker; Gessner, Thomas

    2010-02-01

    Contactless measurement of temperatures has gained enormous significance in many application fields, ranging from climate protection over quality control to object recognition in public places or military objects. Thereby measurement of linear or spatially temperature distribution is often necessary. For this purposes mostly thermographic cameras or motor driven temperature scanners are used today. Both are relatively expensive and the motor drive devices are limited regarding to the scanning rate additionally. An economic alternative are temperature scanner devices based on micro mirrors. The micro mirror, attached in a simple optical setup, reflects the emitted radiation from the observed heat onto an adapted detector. A line scan of the target object is obtained by periodic deflection of the micro scanner. Planar temperature distribution will be achieved by perpendicularly moving the target object or the scanner device. Using Planck radiation law the temperature of the object is calculated. The device can be adapted to different temperature ranges and resolution by using different detectors - cooled or uncooled - and parameterized scanner parameters. With the basic configuration 40 spatially distributed measuring points can be determined with temperatures in a range from 350°C - 1000°C. The achieved miniaturization of such scanners permits the employment in complex plants with high building density or in direct proximity to the measuring point. The price advantage enables a lot of applications, especially new application in the low-price market segment This paper shows principle, setup and application of a temperature measurement system based on micro scanners working in the near infrared range. Packaging issues and measurement results will be discussed as well.

  5. Chapter 6: Temperature

    Science.gov (United States)

    Jones, Leslie A.; Muhlfeld, Clint C.; Hauer, F. Richard; F. Richard Hauer,; Lamberti, G.A.

    2017-01-01

    Stream temperature has direct and indirect effects on stream ecology and is critical in determining both abiotic and biotic system responses across a hierarchy of spatial and temporal scales. Temperature variation is primarily driven by solar radiation, while landscape topography, geology, and stream reach scale ecosystem processes contribute to local variability. Spatiotemporal heterogeneity in freshwater ecosystems influences habitat distributions, physiological functions, and phenology of all aquatic organisms. In this chapter we provide an overview of methods for monitoring stream temperature, characterization of thermal profiles, and modeling approaches to stream temperature prediction. Recent advances in temperature monitoring allow for more comprehensive studies of the underlying processes influencing annual variation of temperatures and how thermal variability may impact aquatic organisms at individual, population, and community based scales. Likewise, the development of spatially explicit predictive models provide a framework for simulating natural and anthropogenic effects on thermal regimes which is integral for sustainable management of freshwater systems.

  6. Periodic and quasiperiodic revivals in periodically driven interacting quantum systems

    Science.gov (United States)

    Luitz, David J.; Lazarides, Achilleas; Bar Lev, Yevgeny

    2018-01-01

    Recently it has been shown that interparticle interactions generically destroy dynamical localization in periodically driven systems, resulting in diffusive transport and heating. In this Rapid Communication we rigorously construct a family of interacting driven systems which are dynamically localized and effectively decoupled from the external driving potential. We show that these systems exhibit tunable periodic or quasiperiodic revivals of the many-body wave function and thus of all physical observables. By numerically examining spinless fermions on a one-dimensional lattice we show that the analytically obtained revivals of such systems remain stable for finite systems with open boundary conditions while having a finite lifetime in the presence of static spatial disorder. We find this lifetime to be inversely proportional to the disorder strength.

  7. Sulphate and desertification signals in Middle Eastern temperature trends

    International Nuclear Information System (INIS)

    Nasrallah, H.A.; Balling, R.C. Jr.

    1994-01-01

    Analysis of Middle Eastern annual temperature anomalies over the past 40 years reveals statistically significant warming over this time period of 0.07 C per decade. The warming is most pronounced over the spring season and least apparent in the winter season. Spatial analysis reveals a positive relationship between Middle Eastern warming and the degree of human-induced desertification and a negative relationship between local warming and the atmospheric concentration of sulphate

  8. Climatic factors associated with amyotrophic lateral sclerosis: a spatial analysis from Taiwan.

    Science.gov (United States)

    Tsai, Ching-Piao; Tzu-Chi Lee, Charles

    2013-11-01

    Few studies have assessed the spatial association of amyotrophic lateral sclerosis (ALS) incidence in the world. The aim of this study was to identify the association of climatic factors and ALS incidence in Taiwan. A total of 1,434 subjects with the primary diagnosis of ALS between years 1997 and 2008 were identified in the national health insurance research database. The diagnosis was also verified by the national health insurance programme, which had issued and providing them with "serious disabling disease (SDD) certificates". Local indicators of spatial association were employed to investigate spatial clustering of age-standardised incidence ratios in the townships of the study area. Spatial regression was utilised to reveal any association of annual average climatic factors and ALS incidence for the 12-year study period. The climatic factors included the annual average time of sunlight exposure, average temperature, maximum temperature, minimum temperature, atmospheric pressure, rainfall, relative humidity and wind speed with spatial autocorrelation controlled. Significant correlations were only found for exposure to sunlight and rainfall and it was similar in both genders. The annual average of the former was found to be negatively correlated with ALS, while the latter was positively correlated with ALS incidence. While accepting that ALS is most probably multifactorial, it was concluded that sunlight deprivation and/or rainfall are associated to some degree with ALS incidence in Taiwan.

  9. Handbook of Spatial Statistics

    CERN Document Server

    Gelfand, Alan E

    2010-01-01

    Offers an introduction detailing the evolution of the field of spatial statistics. This title focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and, spatial point patterns.

  10. temperature overspecification

    Directory of Open Access Journals (Sweden)

    Mehdi Dehghan

    2001-01-01

    Full Text Available Two different finite difference schemes for solving the two-dimensional parabolic inverse problem with temperature overspecification are considered. These schemes are developed for indentifying the control parameter which produces, at any given time, a desired temperature distribution at a given point in the spatial domain. The numerical methods discussed, are based on the (3,3 alternating direction implicit (ADI finite difference scheme and the (3,9 alternating direction implicit formula. These schemes are unconditionally stable. The basis of analysis of the finite difference equation considered here is the modified equivalent partial differential equation approach, developed from the 1974 work of Warming and Hyett [17]. This allows direct and simple comparison of the errors associated with the equations as well as providing a means to develop more accurate finite difference schemes. These schemes use less central processor times than the fully implicit schemes for two-dimensional diffusion with temperature overspecification. The alternating direction implicit schemes developed in this report use more CPU times than the fully explicit finite difference schemes, but their unconditional stability is significant. The results of numerical experiments are presented, and accuracy and the Central Processor (CPU times needed for each of the methods are discussed. We also give error estimates in the maximum norm for each of these methods.

  11. Soil Temperature Variability in Complex Terrain measured using Distributed a Fiber-Optic Distributed Temperature Sensing

    Science.gov (United States)

    Seyfried, M. S.; Link, T. E.

    2013-12-01

    Soil temperature (Ts) exerts critical environmental controls on hydrologic and biogeochemical processes. Rates of carbon cycling, mineral weathering, infiltration and snow melt are all influenced by Ts. Although broadly reflective of the climate, Ts is sensitive to local variations in cover (vegetative, litter, snow), topography (slope, aspect, position), and soil properties (texture, water content), resulting in a spatially and temporally complex distribution of Ts across the landscape. Understanding and quantifying the processes controlled by Ts requires an understanding of that distribution. Relatively few spatially distributed field Ts data exist, partly because traditional Ts data are point measurements. A relatively new technology, fiber optic distributed temperature system (FO-DTS), has the potential to provide such data but has not been rigorously evaluated in the context of remote, long term field research. We installed FO-DTS in a small experimental watershed in the Reynolds Creek Experimental Watershed (RCEW) in the Owyhee Mountains of SW Idaho. The watershed is characterized by complex terrain and a seasonal snow cover. Our objectives are to: (i) evaluate the applicability of fiber optic DTS to remote field environments and (ii) to describe the spatial and temporal variability of soil temperature in complex terrain influenced by a variable snow cover. We installed fiber optic cable at a depth of 10 cm in contrasting snow accumulation and topographic environments and monitored temperature along 750 m with DTS. We found that the DTS can provide accurate Ts data (+/- .4°C) that resolves Ts changes of about 0.03°C at a spatial scale of 1 m with occasional calibration under conditions with an ambient temperature range of 50°C. We note that there are site-specific limitations related cable installation and destruction by local fauna. The FO-DTS provide unique insight into the spatial and temporal variability of Ts in a landscape. We found strong seasonal

  12. Mixed layer depth trends in the Bay of Biscay over the period 1975-2010.

    Directory of Open Access Journals (Sweden)

    Xurxo Costoya

    Full Text Available Wintertime trends in mixed layer depth (MLD were calculated in the Bay of Biscay over the period 1975-2010 using the Simple Ocean Data Assimilation (SODA package. The reliability of the SODA database was confirmed correlating its results with those obtained from the experimental Argo database over the period 2003-2010. An iso-thermal layer depth (TLD and an iso-pycnal layer depth (PLD were defined using the threshold difference method with ΔT = 0.5°C and Δσθ = 0.125 kg/m3. Wintertime trends of the MLD were calculated using winter extended (December-March anomalies and annual maxima. Trends calculated for the whole Bay of Biscay using both parameters (TLD and PLD showed to be dependent on the area. Thus, MLD became deeper in the southeastern corner and shallower in the rest of the area. Air temperature was shown to play a key role in regulating the different spatial behavior of the MLD. Negative air temperature trends localized in the southeastern corner coincide with MLD deepening in this area, while, positive air temperature trends are associated to MLD shoaling in the rest of the bay. Additionally, the temperature trend calculated along the first 700 m of the water column is in good agreement with the different spatial behavior revealed for the MLD trend.

  13. Spatial Management Areas

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Spatial management files combine all related and relevant spatial management files into an integrated fisheries management file. Overlaps of the redundant spatial...

  14. [Recommendation on temperature management after cardiopulmonary arrest and severe traumatic brain injury in childhood beyond the neonatal period : Statement of the German Society for Neonatology and Pediatric Intensive Care Medicine (GNPI) and the scientific Working Group for Paediatric Anaesthesia (WAKKA) of the German Society of Anaesthesiology and Intensive Care (DGAI)].

    Science.gov (United States)

    Brenner, S; Eich, C; Rellensmann, G; Schuhmann, M U; Nicolai, T; Hoffmann, F

    2017-02-01

    The available data on the effectiveness of therapeutic hypothermia in different patient groups are heterogeneous. Although the benefits have been proven for some collectives, recommendations for the use of hypothermia treatment in other groups are based on less robust data and conclusions by analogy. This article gives a review of the current evidence of temperature management in all age groups and based on this state of knowledge, recommends active temperature management with the primary aim of strict normothermia (36-36.5 °C) for 72 hours after cardiopulmonary arrest or severe traumatic brain injury for children beyond the neonatal period.

  15. The influence of short-time period of an adaptation to decreased ambient temperature on interleukin-6 and corticosterone levels in female Wistar strain rats in the proestrous phase of the reproductive cycle.

    Directory of Open Access Journals (Sweden)

    Grazyna Wójcik

    2008-04-01

    Full Text Available To date, there has been little research examining whether short-time changes of external environmental conditions exert any effects on immune responses. The activation of metabolic changes, release of hormones responsive for immunomodulation and the action of interleukins play an important role in interaction with hormones of an anterior pituitary gland in the proestrous phase of the reproductive cycle. The aim of our study was to determine the effects of a short-time change of ambient temperature (30 minutes on interleukin-6 (IL-6 and corticosterone plasma concentration of female rats in the proestrous phase of the reproductive cycle. The climatic chamber with automatically adjustable and monitored internal environmental parameters (temperature, oxygenation, humidity was used during the experiment. The estimation of the vaginal lavage using a microscope was done to determine the estrous cycle. On the day of the experiment, animals were divided into 2 groups: the control group (ambient temperature 21 degrees C +/- 1 degrees C; normoxia 21% O2 and the test group (ambient temperature 10 degrees C +/- 1 degrees C; normoxia 21% O2 stayed in the climatic chamber for 30 minutes. The blood samples were collected before the experiment and after 30, 60, 90, 150 and 210 minutes from the beginning of the experiment. The concentrations of IL-6 and corticosterone were measured in blood plasma samples using ELISA method. There was a significant elevation of IL-6 levels after staying in 10 degrees C during the first 150 minutes from the beginning of the experiment, with the highest value occurring after 60 minutes (426.6 pg/ml; SE - 146.1 with comparison to the value at first sampling (108.5 pg/ml; SE - 29.5; p<0.05 and with comparison to the control group at the same time from the beginning of the experiment (87.6 pg/ml; SE - 2.3; p<0.05. The changed level of corticosterone in the test group in comparison to control group was observed but the differences were

  16. Effects of dietary trace mineral sources and levels fed to layers in their second laying cycle on the quality of eggs stored at different temperatures and for different periods

    Directory of Open Access Journals (Sweden)

    ESPB Saldanha

    2010-12-01

    Full Text Available This study aimed at evaluating the effects of trace mineral levels and sources supplemented to diets fed to semi-heavy layers in their second laying cycle on the quality of eggs stored for 14 days at different temperatures. The experimental diets consisted of the inclusion of inorganic trace minerals (T1 - control: 100% ITM and five supplementation levels of organic trace minerals (carboaminophopho chelates (110, 100, 90, 80, and 70% OTM. Trace mineral inclusion levels (mg/kg feed were: T1: control - 100% ITM: Zn (54, Fe (54, Mn (72, Cu (10, I (0.61 Se (0.3; T2 - 110% OTM: Zn (59.4, Fe (59.4, Mn (79.2, Cu (11.88, I (1.21 Se (0.59; T3 - 100%: OTM: Zn (54, Fe (54, Mn (72, Cu (10.8, I (1.10 Se (0.54; T4 - 90% OTM: Zn (48.6, Fe (48.6, Mn (64.8, Cu (9.72, I (0.99 Se (0.49; T5 - 80% OTM: Zn (43.2, Fe (43.2, Mn (57.6, Cu (8.64, I (0.88, Se (0.43; T6 - 70% OTM: Zn (37.8, Fe (37.8, Mn (50.4, Cu (7.56, I (0.77 Se (0.38. A completely randomized experimental design in a split-plot arrangement with 60 treatments of four replicates each was applied. The combination of six diets versus storage temperature (room or under refrigeration was randomized in plots, whereas the sub-plots consisted of storage times (0, 3, 7, 10, and 14 days. Data were submitted to analysis of variance of a model in slip-plots in time using the software package SAS (2000 at 5% probability level. It was concluded that 70% OTM supplementation can be used with no damage to egg quality, independently from storage temperature or time. The quality of refrigerated eggs stored up to 14 days is better than those stored at room temperature.

  17. The Periodic Pyramid

    Science.gov (United States)

    Hennigan, Jennifer N.; Grubbs, W. Tandy

    2013-01-01

    The chemical elements present in the modern periodic table are arranged in terms of atomic numbers and chemical periodicity. Periodicity arises from quantum mechanical limitations on how many electrons can occupy various shells and subshells of an atom. The shell model of the atom predicts that a maximum of 2, 8, 18, and 32 electrons can occupy…

  18. Book Reviews in Periodicals.

    Science.gov (United States)

    Ettelt, Harold J.

    All recent issues of periodicals found which contain indexed book reviews are listed in this compilation from Drake Memorial Library at the New York State University at Brockport. The periodicals are listed by 29 subject headings in this informal guide designed to be used at Drake Library. The number of reviews in the periodical in a recent year…

  19. Detection of the relationship between peak temperature and extreme precipitation

    Science.gov (United States)

    Yu, Y.; Liu, J.; Zhiyong, Y.

    2017-12-01

    Under the background of climate change and human activities, the characteristics and pattern of precipitation have changed significantly in many regions. As the political and cultural center of China, the structure and character of precipitation in Jingjinji District has varied dramatically in recent years. In this paper, the daily precipitation data throughout the period 1960-2013 are selected for analyzing the spatial-temporal variability of precipitation. The results indicate that the frequency and intensity of precipitation presents an increasing trend. Based on the precipitation data, the maximum, minimum and mean precipitation in different temporal and spatial scales is calculated respectively. The temporal and spatial variation of temperature is obtained by using statistical methods. The relationship between temperature and precipitation in different range is analyzed. The curve relates daily precipitation extremes with local temperatures has a peak structure, increasing at the low-medium range of temperature variations but decreasing at high temperatures. The relationship between extreme precipitation is stronger in downtown than that in suburbs.

  20. Spatial econometrics using microdata

    CERN Document Server

    Dubé, Jean

    2014-01-01

    This book provides an introduction to spatial analyses concerning disaggregated (or micro) spatial data.Particular emphasis is put on spatial data compilation and the structuring of the connections between the observations. Descriptive analysis methods of spatial data are presented in order to identify and measure the spatial, global and local dependency.The authors then focus on autoregressive spatial models, to control the problem of spatial dependency between the residues of a basic linear statistical model, thereby contravening one of the basic hypotheses of the ordinary least squares appr

  1. Temperature Effect on Energy Demand

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Duk [Korea Energy Economics Institute, Euiwang (Korea)

    1999-03-01

    We provide various estimates of temperature effect for accommodating seasonality in energy demand, particularly natural gas demand. We exploit temperature response and monthly temperature distribution to estimate the temperature effect on natural gas demand. Both local and global smoothed temperature responses are estimated from empirical relationship between hourly temperature and hourly energy consumption data during the sample period (1990 - 1996). Monthly temperature distribution estimates are obtained by kernel density estimation from temperature dispersion within a month. We integrate temperature response and monthly temperature density over all the temperatures in the sample period to estimate temperature effect on energy demand. Then, estimates of temperature effect are compared between global and local smoothing methods. (author). 15 refs., 14 figs., 2 tabs.

  2. Synthesis of spatially variant lattices.

    Science.gov (United States)

    Rumpf, Raymond C; Pazos, Javier

    2012-07-02

    It is often desired to functionally grade and/or spatially vary a periodic structure like a photonic crystal or metamaterial, yet no general method for doing this has been offered in the literature. A straightforward procedure is described here that allows many properties of the lattice to be spatially varied at the same time while producing a final lattice that is still smooth and continuous. Properties include unit cell orientation, lattice spacing, fill fraction, and more. This adds many degrees of freedom to a design such as spatially varying the orientation to exploit directional phenomena. The method is not a coordinate transformation technique so it can more easily produce complicated and arbitrary spatial variance. To demonstrate, the algorithm is used to synthesize a spatially variant self-collimating photonic crystal to flow a Gaussian beam around a 90° bend. The performance of the structure was confirmed through simulation and it showed virtually no scattering around the bend that would have arisen if the lattice had defects or discontinuities.

  3. Spatial filtering with photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Maigyte, Lina [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Staliunas, Kestutis [Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Terrassa 08222 (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona 08010 (Spain)

    2015-03-15

    Photonic crystals are well known for their celebrated photonic band-gaps—the forbidden frequency ranges, for which the light waves cannot propagate through the structure. The frequency (or chromatic) band-gaps of photonic crystals can be utilized for frequency filtering. In analogy to the chromatic band-gaps and the frequency filtering, the angular band-gaps and the angular (spatial) filtering are also possible in photonic crystals. In this article, we review the recent advances of the spatial filtering using the photonic crystals in different propagation regimes and for different geometries. We review the most evident configuration of filtering in Bragg regime (with the back-reflection—i.e., in the configuration with band-gaps) as well as in Laue regime (with forward deflection—i.e., in the configuration without band-gaps). We explore the spatial filtering in crystals with different symmetries, including axisymmetric crystals; we discuss the role of chirping, i.e., the dependence of the longitudinal period along the structure. We also review the experimental techniques to fabricate the photonic crystals and numerical techniques to explore the spatial filtering. Finally, we discuss several implementations of such filters for intracavity spatial filtering.

  4. Spatial dependence of extreme rainfall

    Science.gov (United States)

    Radi, Noor Fadhilah Ahmad; Zakaria, Roslinazairimah; Satari, Siti Zanariah; Azman, Muhammad Az-zuhri

    2017-05-01

    This study aims to model the spatial extreme daily rainfall process using the max-stable model. The max-stable model is used to capture the dependence structure of spatial properties of extreme rainfall. Three models from max-stable are considered namely Smith, Schlather and Brown-Resnick models. The methods are applied on 12 selected rainfall stations in Kelantan, Malaysia. Most of the extreme rainfall data occur during wet season from October to December of 1971 to 2012. This period is chosen to assure the available data is enough to satisfy the assumption of stationarity. The dependence parameters including the range and smoothness, are estimated using composite likelihood approach. Then, the bootstrap approach is applied to generate synthetic extreme rainfall data for all models using the estimated dependence parameters. The goodness of fit between the observed extreme rainfall and the synthetic data is assessed using the composite likelihood information criterion (CLIC). Results show that Schlather model is the best followed by Brown-Resnick and Smith models based on the smallest CLIC's value. Thus, the max-stable model is suitable to be used to model extreme rainfall in Kelantan. The study on spatial dependence in extreme rainfall modelling is important to reduce the uncertainties of the point estimates for the tail index. If the spatial dependency is estimated individually, the uncertainties will be large. Furthermore, in the case of joint return level is of interest, taking into accounts the spatial dependence properties will improve the estimation process.

  5. Diffusion in periodic potentials with path integral hyperdynamics.

    Science.gov (United States)

    Ikonen, T; Khandkar, M D; Chen, L Y; Ying, S C; Ala-Nissila, T

    2011-08-01

    We consider the diffusion of brownian particles in one-dimensional periodic potentials as a test bench for the recently proposed stochastic path integral hyperdynamics (PIHD) scheme [Chen and Horing, J. Chem. Phys. 126, 224103 (2007)]. First, we consider the case where PIHD is used to enhance the transition rate of activated rare events. To this end, we study the diffusion of a single brownian particle moving in a spatially periodic potential in the high-friction limit at low temperature. We demonstrate that the boost factor as compared to straight molecular dynamics (MD) has nontrivial behavior as a function of the bias force. Instead of growing monotonically with the bias, the boost attains an optimal maximum value due to increased error in the finite path sampling induced by the bias. We also observe that the PIHD method can be sensitive to the choice of numerical integration algorithm. As the second case, we consider parallel resampling of multiple bias force values in the case of a brownian particle in a periodic potential subject to an external ac driving force. We confirm that there is no stochastic resonance in this system. However, while the PIHD method allows one to obtain data for multiple values of the ac bias, the boost with respect to MD remains modest due to the simplicity of the equation of motion in this case.

  6. A periodic table for cancer.

    Science.gov (United States)

    Epstein, Richard J

    2015-01-01

    Cancers exhibit differences in metastatic behavior and drug sensitivity that correlate with certain tumor-specific variables such as differentiation grade, growth rate/extent and molecular regulatory aberrations. In practice, patient management is based on the past results of clinical trials adjusted for these biomarkers. Here, it is proposed that treatment strategies could be fine-tuned upfront simply by quantifying tumorigenic spatial (cell growth) and temporal (genetic stability) control losses, as predicted by genetic defects of cell-cycle-regulatory gatekeeper and genome-stabilizing caretaker tumor suppressor genes, respectively. These differential quantifications of tumor dysfunction may in turn be used to create a tumor-specific 'periodic table' that guides rational formulation of survival-enhancing anticancer treatment strategies.

  7. Painful menstrual periods

    Science.gov (United States)

    Menstruation - painful; Dysmenorrhea; Periods - painful; Cramps - menstrual; Menstrual cramps ... into two groups, depending on the cause: Primary dysmenorrhea Secondary dysmenorrhea Primary dysmenorrhea is menstrual pain that ...

  8. Middle Helladic Period

    DEFF Research Database (Denmark)

    Sarri, Kalliopi

    1999-01-01

    and their quality was improved considerably toward the end of this period. The profound cultural innovations of the Middle Helladic period were initially interpreted as a result of violent population movement and troubles provoked by the coming of the first Indo-European races. However, this matter does no more...... Helladic period is considered as a period of economic and social decline it was the time during which the mainland features merged with the insular influence, that is all the Aegean elements which led to the creation of the Mycenaean civilization were mixed in a creative way....

  9. Effects of Medieval Warm Period and Little Ice Age on the hydrology of Mediterranean region

    Science.gov (United States)

    Markonis, Y.; Kossieris, P.; Lykou, A.; Koutsoyiannis, D.

    2012-04-01

    Medieval Warm Period (950 - 1250) and Little Ice Age (1450 - 1850) are the most recent periods that reflect the magnitude of natural climate variability. As their names suggest, the first one was characterized by higher temperatures and a generally moister climate, while the opposite happened during the second period. Although their existence is well documented for Northern Europe and North America, recent findings suggest strong evidence in lower latitudes as well. Here we analyze qualitatively the influence of these climatic fluctuations on the hydrological cycle all over the Mediterranean basin, highlighting the spatial characteristics of precipitation and runoff. We use both qualitative estimates from literature review in the field of paleoclimatology and statistical analysis of proxy data series. We investigate possible regional patterns and possible tele-connections with large scale atmospheric circulation phenomena such as North Atlantic Oscillation, Siberian High, African Sahel Rainfall and Indian Monsoon.

  10. Differentiating Spatial Memory from Spatial Transformations

    Science.gov (United States)

    Street, Whitney N.; Wang, Ranxiao Frances

    2014-01-01

    The perspect